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Abstract—This paper presents an adaptive mechanism for 

improving the content download in wireless environments. The 
solution is based on the use of the file delivery over unidirectional 
transport (FLUTE) protocol in multicast networks, which reduce 
considerably the bandwidth when there are many users 
interested in the same contents. Specifically, the system proposed 
reduces the average download time of clients within the coverage 
area, thus improving the Quality of Experience. To that extent, 
clients send periodically feedback messages to the server 
reporting the losses they are experiencing. With this information, 
the server decides which is the optimum application layer – 
forward error correction (AL-FEC) code rate that minimizes the 
average download time, taking into account the channel 
bandwidth, and starts sending data with that code rate. The 
system proposed is evaluated in various scenarios, considering 
different distributions of losses in the coverage area. Results show 
that the adaptive solution proposed is very suitable in wireless 
networks with limited bandwidth. 
 

Index Terms—Adaptive codes, application layer – forward 
error correction (AL-FEC), file delivery over unidirectional 
transport (FLUTE), low density parity check (LDPC), multicast 
wireless networks.  

EDICS— 8-WMMM, 8-ERCO  
 

I. INTRODUCTION 
IRELESS networks are part of our daily lives for many 
years. Since the first half of the last century, people 

listened to the news or music through the waves that arrived to 
their radios. Some decades later, the use of the television 
became popular in all households. Today, former analogical 
broadcasting systems have been replaced by modern digital 
ones, such as DVB-T (Digital Video Broadcasting – 
Terrestrial) [1] or ATSC (Advanced Television System 
Committee) [2]. 

In contrast to radio and television, other technologies were 
intended for wired scenarios and have evolved to wireless 
systems. There are two representative examples: telephone 
and Internet. Nowadays, approximately three quarters of the 
world population has access to a mobile phone [3]. This 
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percentage exceeds the 90% in developed countries. In the last 
years, the appearance of the smartphones has revolutionized 
the industry. Through these intelligent devices, users connect 
to the Internet using new technologies such as Wi-Fi, HSPA 
(High-Speed Packet Access), WiMAX (Worlwide 
Interoperability for Microwave Access) or LTE (Long Term 
Evolution). 

In this regard, the Internet consumption through wireless 
networks has exploded in the last years due to the fact that not 
only the number of users has increased but also the amount of 
data consumed. Nowadays, a large number of the contents 
consumed by the users require a high bandwidth, for instance 
the visualization of multimedia streaming through video 
portals.  

In this framework, the exponential growth of the traffic in 
wireless networks is becoming a problem. Thus, as users 
require more bandwidth and the frequency spectrum is a 
limited resource, it is necessary to find several mechanisms 
that allow users to consume contents without getting worse 
their Quality of Experience.  

A good mechanism for reducing the bandwidth is the use of 
multicast networks. Through these networks it is possible to 
send multimedia content to different users within a single 
connection [4]. Regarding data communications, multicast file 
transmission is very useful in crowded environments where 
users have similar interests, for instance in malls, popular 
festivals or sport events. As a possible use case, in a basketball 
match users could receive on their mobile devices different 
information such as the retransmission of the best moments of 
the match or information related to the shops within the court 
(e.g., publicity or discount vouchers). Another good example 
is multicast streaming based on file multicasting. In this field, 
there are different related works in the literature that propose 
the use of file delivery to provide multicast streaming. For 
instance, [5] proposes the use of the FLUTE file delivery 
protocol to send DASH (Dynamic Adaptive Streaming over 
HTTP) segments over MBMS (Multimedia Broadcast 
/Multicast Service) [6] and eMBMS (Evolved MBMS) [7]. 
DASH [8] is a novel ISO standard for the transmission of on-
demand and live streaming. 

In this sense, FLUTE [9] is an IP multicast protocol widely 
used for multicast file download services. In fact, FLUTE has 
been established as the multicast file delivery protocol for 
different standards, such as DVB-H (DVB – Handheld) [10], 
DVB-IPTV (DVB – Internet Protocol TV) [11], or the 
aforementioned MBMS and eMBMS. FLUTE is based on the 
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use of a File Delivery Table (FDT), which is the in-band 
mechanism used by FLUTE to inform clients about the files 
(and their characteristics) transmitted within a FLUTE session 
[12]. The main characteristic of FLUTE is that it provides 
reliability to the transmission. 

In that regard, due to the transmission losses, typical in 
wireless environments, multicast networks should be protected 
against errors. To that end, there are different error control 
mechanisms for multicast transmissions [13], in wired and 
wireless networks [14]. One of the most used is Forward Error 
Correction (FEC), which allows to recover packets lost by 
adding redundancy to the transmission. Specifically, using 
FEC at the application layer (AL-FEC) avoids further 
investments in infrastructure [15]. Precisely, AL-FEC is one 
of the protection mechanisms used by FLUTE.  

In AL-FEC, the amount of protection provided to the 
transmission is defined by the code rate. As shown in a 
previous study carried out by the authors [16], there is an 
optimum code rate that minimizes the download time of a 
certain file by a client. This download time depends, among 
other parameters, on the channel losses perceived by each 
client. Therefore, it is possible to transmit a file at an optimum 
code rate for each client in order to minimize the download 
time. To that extent, clients must be able to inform the server 
about the losses they are experiencing.  

Nevertheless, in environments with limited bandwidth it 
may not be possible to send a file with different code rates, 
since the bandwidth would increase considerably. Thus, it 
would be very useful to send data at an optimum code rate that 
benefits the major part of the users. Since the losses perceived 
by the users could change quickly, this code rate should be 
chosen dynamically.  

In this sense, the present work presents an adaptive system 
where the server sends data at an optimum code rate for each 
time interval, according to the losses detected by the clients 
within the coverage area.  

Specifically, the objective of this paper is to reduce the 
average download time that clients need when downloading 
contents. It should be noted that, one of the main goals of any 
service is to provide a good Quality of Experience (QoE) to 
the users. In streaming services a good QoE is provided when 
users receive the video without interruptions, with high 
quality, and with the minimum waiting time. With regards to 
file transmission to multiple receivers, users have a good QoE 
when they receive files correctly and the download time is 
minimal. In this sense, the download time is a well-known 
QoE metrics for evaluating file multicast download. For 
instance, it is used in IP Datacast for DVB-H [10] for 
evaluating the effect of Raptor AL-FEC codes for a FLUTE 
multicast session. 

The rest of the paper is structured as follows. Next section 
provides an overview of the adaptive system proposed. 
Section III explains the evaluation methodology used to obtain 
the results presented in Section IV, where the adaptive system 
is analyzed and evaluated. Finally, the last section of the 
document includes some final conclusions. 

II. SYSTEM OVERVIEW 
This paper presents an alternative to the study presented by 

the authors in [16], taking into account the channel bandwidth. 
In the adaptive system presented in [16] a server sends 
multimedia content in a multicast network to several users, 
which inform the server about the losses they are experiencing 
through the delivery of feedback messages. Using this 
information, the server makes forward error correction parity 
symbols available to the clients at an optimum code rate. All 
parity symbols belonging to a code rate are inserted on a 
separate transmission channel. Thus, clients join to the 
channel that minimizes their losses. In order to upper-bound 
the maximum number of channels, all users that experienced 
similar losses are prompted to join the same multicast channel 
for additional parity data. Nevertheless, that scenario does not 
take into account the channel bandwidth limitations. 
Therefore, in scenarios where the bandwidth is limited, it is 
necessary to find another solution that benefits all users. 
Unlike [16], in the scenario hereby proposed, as only one code 
rate will be used in a given time, only one transmission 
channel will be needed. Thus, the file delivery session only 
contains one channel, in which both source and parity symbols 
are sent, which represents an easy solution for the server and 
the clients. In contrast to [16], the main objective of this paper 
is to optimize the bandwidth usage, but without getting worse 
the download time of clients. In this sense, this paper presents 
new proposals, algorithms, evaluation scenarios, results and 
improvements compared with [16].  

It should be mentioned that it is used a random transmission 
model, where source and parity packets are sent in a fully 
random order, since this model is more efficient than the 
sequential model, as it is proved in [17] and [18].  

Furthermore, this paper considers that the losses perceived 
by the clients can change over time. We propose an adaptive 
mechanism to assign an optimum code rate based on that used 
by RTP/RTCP (Real-time Transport Protocol / RTP Control 
Protocol) for dynamic adjustment of the bandwidth 
requirements of multimedia applications [19]. As in [19], our 
algorithm increases, holds or decreases a certain parameter (in 
this case the code rate, instead of the bandwidth) according to 
the feedback received by the clients. 

Fig. 1 shows an overview of the system proposed. There is 
a certain number of clients within the coverage area in a 
multicast wireless network. Clients perceive different losses 
depending on how far they are from the server (the further the 
more losses). Also, clients are continuously moving so the 
channel losses they perceive are changing. Initially, the server 
sends data with a certain code rate. After a while clients start 
sending feedback messages informing the server about the 
losses they are perceiving. In this paper we consider that the 
feedback messages always arrive to the server. The way 
clients send these losses reports is not analyzed in this paper. 
Different mechanisms to provide this feedback are: [20] and 
[21], based on RTCP; and the reporting mechanisms used by 
DVB-H [10] and MBMS [6], which support FLUTE, the 
protocol used in this proposal. Once the losses reports are 
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received by the server, it decides which is the optimum code 
rate that minimizes the average download time of all clients. 
Then, the server starts sending data at this optimum code rate. 
This process is carried out periodically: the clients are 
repeatedly sending feedback messages and the server is 
analyzing them at a certain time intervals. 

 
Fig. 1.  System overview. 

When choosing the code rate that best suits all clients it 
must be taken into account that using insufficient protection 
for clients with high losses has more impact on the download 
time than using an excessive protection for clients with low 
losses. Therefore, feedback messages of clients with high 
losses will have more weight when the optimum code rate is 
chosen. To that extent, in this proposal we consider that the 
server classifies the losses perceived by each user into three 
different regions: low losses, medium losses and high losses 
region. Hence, each one of the n clients is classified in each 
instant of time in a certain region according to their loss rate, 
as Fig. 2(a) depicts. The server calculates how many clients 
(nL) are in the low losses region (clients who have less than λL 
losses), how many clients (nM) are in the medium losses region 
(those who have between λL and λH losses) and how many 
clients (nH) have high losses (those who have more than λH 
losses). Then, the code rate is chosen according to the 
percentage of clients in each region. 

 
(a) 

 
(b) 

Fig. 2.  Losses region classification. (a) Without hysteresis. (b) With 
hysteresis. 

It is worth noting that, according to [16], a given AL-FEC 
code rate performs well in a wide interval of packet loss rates 
around the value for which it provides a minimum download 
time. Based on this conclusion, a priori, it could be considered 
the use of only three different code rates (as many as losses 
regions). Nevertheless, at the time of choosing the code rates 
for each region it must be taken into account the bandwidth 
increase associated to each code rate. Using a high protection 
(low code rates) increases considerably the bandwidth, 

therefore there is a trade-off between the bandwidth and the 
download time. According to the studies presented in Section 
IV.A, this paper only considers two different code rates: one 
code rate for low losses and another one for medium-high 
losses. Using two code rates instead three provides very good 
results regarding the download time, and improves 
considerably the channel bandwidth. 

In this sense, the use of a high number of losses regions 
would increase the complexity of the system and could 
become the system inefficient, since there would be a lot of 
changes of code rates and clients would have to create 
continuously the decoding parity matrix associated to that 
code rate and discard continuously parity packets previously 
received. Additional studies carried out by the authors and not 
included in this paper prove that considering six losses regions 
and therefore using six different code rates (instead two) 
slightly reduces the download time (less than a 5% in the 
scenarios considered in this paper, which are shown in Section 
IV.A) at the expense of increasing considerably the number of 
changes of code rate and the bandwidth (more than four times 
of overhead). Specifically, in scenarios 1 and 2, there is a 
download time reduction over a 2% considering six different 
code rates, but the bandwidth overhead increases from a 20% 
until a 93%. In scenario 3 the bandwidth overhead considering 
six losses regions is a 133% but the average download time is 
only 5% lower. 

Hence, in our proposal there will be two protection states: a 
state of low protection (which will use a high code rate) and a 
state of high protection (which will use a medium code rate). 
Furthermore, the encoding (and decoding) process is easier as 
less different code rates are used. The server calculates the 
optimum code rate in each instant of time according to the 
following algorithm, based on the one shown in [19] for 
bitrate (as aforementioned): 
Algorithm 1 

 1: if  nH/n ≥ Nh then new_state=HIGH_PROTECTION 
 2: else if (nM+nH)/n ≥ Nm then new_state=HIGH_PROTECTION 
 3: else  then new_state=LOW_PROTECTION 

Nh and Nm are the thresholds for clients with high and 
medium losses, respectively. The use of these thresholds 
allows to give more priority to clients with higher losses. The 
design of an efficient adaptive system depends greatly on the 
values of Nh and Nm. Other key parameters are λL and λH. In 
this sense, since it would not be very efficient to change the 
code rate too frequently when losses do not vary excessively, 
the system performance can be improved by using hysteresis 
[22]. Fig. 2(b) proposes the use of three thresholds: λL, λM, and 
λH. Therefore, when the server calculates the number of clients 
in each region, it takes into account the current protection 
state. Thus, if the server changes their state from the low 
protection state to the high protection state, a client in the low 
losses region will change to the medium losses region when 
their losses are higher than λM, whereas it will come back to 
the low losses region when their losses are lower than λL, as 
Fig. 2(b) depicts.  

On the other hand, in order to avoid an erroneous estimation 
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of the losses, the server can smooth, for each feedback 
message received, the instantaneous losses (Linst) with the 
previous average losses (Lavg), using a low-pass filter, 
calculating the new loss rate (L) as: L=(1-α)·Lavg+α·Linst, where 
α is the influence factor of the new value, ranged between 0 
and 1.  

III. EVALUATION METHODOLOGY 

A. Calculation of the download time 
This section presents a methodology to calculate 

analytically the download time. As mentioned, the objective of 
this proposal is to reduce the average download time when 
clients download contents. The download time of a certain file 
L is defined as the time passed since the transmission starts 
until the file is completely downloaded. This occurs when 
clients have received enough packets to rebuild the file. 

In this study we suppose that the server is sending files 
during a certain time, then it receives feedback messages from 
clients and then it continues sending files with the new code 
rate. In this theoretical study for simplicity we consider that, in 
each instant of time the server sends all files available in their 
repository. That is, this involves considering the use of file 
carousels to send content. The use of carousels as a delivery 
mechanism is employed by some standards that use FLUTE as 
delivery protocol, such as [10]. In this way, we will consider 
that each cycle of the carousel corresponds to an instant of 
time.  

Thus, as a first approximation, we are going to study the 
case where the server sends only one file. If a client is not able 
to download it during a certain instant of time, the client will 
need T instants of time to download the file. In each instant of 
time the server will send contents with a certain code rate, so 
the duration of each instant of time i (tT(i)) could be different. 
Therefore the download time (tD) is calculated as: 
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where tS is the time needed to send all packets (source plus 
parity packets) that compose the file in the cycle that 
completes the download. Due to the use of AL-FEC encoding, 
clients can download a file before the last packets have been 
received so, actually clients could need a time lower than tS to 
complete their downloads. To consider this, we define a factor 
0<β≤1. Remember that, in reception clients need to receive an 
amount of packets equal to the product of the number of 
source packets of the file to download by a factor called 
inefficiency ratio, which depends on the coding algorithm. 
The value of the inefficiency ratio is equal to 1 in codes that 
belong to the Maximum Distance Separable (MDS) category, 
and in the rest of codes this value is greater than 1.  

Developing expression (1): 
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where SL is the size of the file L to download, CRi is the code 

rate of the instant of time i, and b is the transmission rate. 
Moreover, in order to calculate the number of packets that 
compose a file after decoding (and thus the transmission size) 
it is necessary to ceil the division between the number of 
packets that form a file by the code rate.  

In the case of sending several files within the carousel, the 
calculation of the download time is slightly different. Fig. 3 
shows an example of a transmission using file carousels. In the 
example we suppose that a client is connected to the channel 
at the start of a certain instant of time and that they want to 
download the file F3. 

 
Fig. 3.  Example of a carousel transmission. 

First, if the client only needs one carousel cycle to 
download the file, the client will have to wait a time tW to start 
receiving packets of the file L to download. After a time tS·β, 
the client will have downloaded the file. If the client needs 
more than one cycle to complete the download, it will be 
necessary to consider the transmission time of the entire 
carousel (tT).  

In the example, each instant of time or cycle implies a 
different code rate so, as the protection in the second cycle is 
higher than in the first, the transmission size of every file in 
the second cycle is higher than in the first. Therefore, the 
transmission size of the entire carousel is bigger in the second 
cycle and thus the duration of that instant of time (tT(2)>tT(1)). 
The same applies to the value of tW and tS.  

In this way, in the general case, clients will have to wait T-1 
entire cycles, plus a time tW and tS from the cycle that 
completes the download. So, the download time of a file L is 
calculated as: 
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 Analyzing each term, the value of tW depends on the 
carousel size and the transmission schedule. Considering that 
the probability of downloading a certain file is equal to the 
probability of downloading another file in the carousel, the 
waiting time can be calculated using the following 
approximation:   

 .
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The calculation of tS is similar to the equation (2). In order 
to simplify the final expression, we do not consider the effect 
of the ceiling round: 
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 Regarding tT, this term is calculated as: 
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where N is the number of files in the carousel and Sj is the size 
of the file j.  

In this way, the download time is calculated as: 
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Simplifying that expression: 
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Analyzing the previous formula, values of Sj, N and b 
depend on each particular implementation. On the other hand, 
the value of the code rate for each instant of time (CRi) is 
calculated using the Algorithm 1, which will be analyzed in 
Section IV. The parameter β depends on the remaining packets 
needed to complete the download. This parameter is directly 
related to T, which is the number of instants of time (or 
number of cycles) that a user needs in order to download a 
certain file. 

In order to calculate T, in each instant of time the client will 
receive a certain number of packets of the file to download. 
This number will depend on the losses of the channel. Thus, 
the probability of receive x new packets at any given loop can 
be modeled by using a hypergeometric distribution: 
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where m is the number of encoding symbols (source symbols 
plus parity symbols), r is the number of received symbols at 
the beginning of the loop and l is the number of lost packets 
per loop. The latter probability yields the following expression 
for the expectation value of the number of packets correctly 
received at loop i: 
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Then, an estimation of the value of T is provided by the 
following expression:  
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where k is the number of source symbols that compose a file. 
In this way, the value of T is calculated iteratively, checking 
for each cycle if the client has received enough packets to 

rebuild the file. A methodology used to calculate T and β can 
be found in [16][23]. 

B. Evaluation parameters 
As Section II has shown, there are several parameters to 

configure when evaluating the system proposed. Firstly, it will 
be analyzed the download time of a file in a channel with 
different losses using different code rates. In the studies 
hereby presented, in order to calculate which is the code rate 
that minimizes the download time for each percentage of 
losses two different methodologies will be used: first, the 
download time will be calculated using the analytical model 
explained in the previous subsection; second, we will calculate 
the download time by carrying out measurements in a real 
environment. To do this, an implementation developed by the 
authors [18] of a file server and client based on FLUTE is 
used. It should be highlighted that the major part of the results 
presented in this paper are obtained through this 
implementation. The file server/client also includes a module 
that implements LDPC (Low Density Parity Check) codes 
[24] in order to provide reliability to the transmission. In this 
study, LDPC Staircase codes [25] will be used to evaluate the 
optimum code rate. LDPC codes have been proved to be very 
efficient, with a performance very close to Raptor and ideal 
maximum distance separable codes [16][26]. This good 
performance and their lower complexity make these codes 
very recommendable in multicast file delivery. 

It should be noted that both in the analytical and in the 
experimental results, several measurements are made. In the 
experimental ones, a server sends a file in a multicast channel 
and a client downloads it. Apart from getting the best code 
rate for each losses region, the previous study also will 
calculate the suitable values for λL, λM, and λH. 

In the scenario proposed, there are many clients within the 
coverage area that are continuously moving (sometimes they 
are getting closer to the server and sometimes are moving 
away), so the losses they perceive are continuously changing. 
As mentioned, the losses they perceive are directly related to 
the distance to the server. In [27] it is shown the relation 
between the distance to the server and the PRR (Packet 
Reception Ratio) in a particular wireless network. Based on 
that study, Fig. 4 allows to match the distance from clients to 
the server with the percentage of losses that clients have. 
These results have been carried out through simulations using 
ns-3, considering a transmission rate of 5.5 Mb/s and an 
output power of 17 dBm. This transmission rate is supported, 
among other standards, by 802.11b [28] (and subsequent 
versions), one of the Wi-Fi reference standards. Assuming 
that, in practice, the effective transmission rate is lower than 
the one specified in the standard (due to overheads or routers 
features), in the rest of studies an effective transmission rate of 
5 Mb/s is used, the same considered in [16]. All these studies 
only consider clients within the area lower than 110 meters, 
since distances higher than 110 meters provide unreasonable 
percentage of losses (higher than 60%), so it is considered that 
these clients are out of the coverage area. 
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Fig. 4.  Losses perceived depending on the distance to the server for a 

transmission rate of 5.5 Mb/s. 

The percentage of losses according to the distance to the 
server depends on the transmission rate [29] as well as the 
transmission power. Thus, if the transmission rate increases 
(or the output power decreases), the coverage area decreases. 
Taking this into consideration, we will suppose that clients 
send their feedback messages using a lower transmission rate 
(for example, 1 Mb/s) with an appropriate output power 
through a channel that guarantees that the packets arrive to the 
server. 

In order to analyze the behavior of the adaptive system 
proposed, the losses perceived by the clients change in every 
instant of time. Thus, there will be some moments when the 
average losses of all clients will increase whereas in other 
moments will decrease. The initial position of clients (and 
thus, losses) is generated randomly. Later positions of clients 
are calculated by using a simplified version of the Gauss-
Markov mobility model [30]. This model, widely used in the 
literature, takes into account the previous position and speed 
of clients to estimate the future position of clients. In our case, 
the future position of clients is obtained by choosing a random 
value in a normal (Gaussian) distribution, which mean is the 
previous position.  

Different losses scenarios are presented, as Section IV.B 
explains. Those scenarios have a losses distribution 
completely different. Also, in all scenarios, clients will be 
moving (and thus changing their losses). The system behavior 
will be evaluated, in most cases, during ten time intervals.  

Then, parameters Nh and Nm will be analyzed, as well as the 
smooth factor α and the hysteresis effect. Once all the 
configuration parameters are chosen, it is possible to calculate 
the download time for each client in each instant of time. This 
download time is calculated using the results obtained by 
means of the FLUTE server/client and by the analytical 
results. In order to do a more accurate measurement, the 
download time of a certain client in the instant i is calculated 
as the average of the download time between the instant i-1 
and the instant i, using the code rate obtained in the instant i-1. 
In this paper, ten intermediate values in a time interval have 
been used to calculate the average download time. Also, for 
simplicity we have not considered co-channel interferences 
from other users. 

IV. RESULTS AND ANALYSIS  

A. Analysis of the code rate 
First, the optimum code rate for each percentage of losses is 

analyzed. To that extent, we calculate the download time of a 

file of approximately 4 MB (3000 FLUTE packets with length 
1428 bytes), which is sent in a multicast channel using a 
transmission rate of 5 Mb/s. The download time is calculated 
by measuring the time passed since a client starts downloading 
a file until the file is completely downloaded. Note that, apart 
from the losses, the download time depends greatly on the 
values of the file size and the transmission rate. However, as 
both parameters have a linear behavior regarding the 
download time [16], the conclusions arisen in this study 
remain valid independently of the value of the file size and the 
transmission rate.  

Table I shows the download time (in milliseconds) for 
different code rates and percentage of losses for the 
experimental measurements. The table reflects that there is a 
code rate (highlighted in italics) that minimizes the download 
time depending on the losses. Based on the results of Table I, 
Table II shows the average download time for the three losses 
regions: low, medium and high. We have defined the low 
losses region as the area where losses are between 0 and 10%; 
the medium losses region corresponds with the area where 
losses are between 10 and 30%; and the high losses region is 
the area where losses are higher than 30%. Table II also shows 
the bandwidth increase for each code rate. It is worth recalling 
that a low value of the code rate increases considerably the 
bandwidth.  

TABLE I 
DOWNLOAD TIME (IN MILLISECONDS) FOR DIFFERENT CODE RATES  

 CR/ 
Loss 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0% 8926 7826 7556 7946 8514 7557 6751 6225 
5% 9388 8228 7927 8362 8723 7572 6752 18555 

10% 9776 8704 8408 9349 8714 7582 9318 25622 
15% 10600 9102 8923 9652 8595 7625 10847 29802 
20% 11174 9596 9631 10034 8739 10129 12463 32598 
25% 11396 10296 10467 10045 10196 11640 13399 37966 
30% 12534 11033 11557 11461 11509 12818 15321 45880 
40% 14560 13625 12362 13679 14463 15724 20252 60090 
50% 16859 15310 15876 17502 18026 20656 25208 74105 
60% 22182 20225 20880 22364 24403 27858 34538 101534 

TABLE II 
AVERAGE DOWNLOAD TIME (IN MILLISECONDS) FOR REGION AND BANDWIDTH 

INCREASE 
   CR/ 
Loss 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Low 9363 8253 7964 8552 8650 7570 7607 16801 
Med. 11096 9746 9797 10108 9551 9959 12270 34374 
High 16534 15048 15169 16252 17100 19264 23830 70402 
B 233% 150% 100% 67% 43% 25% 11% 0% 

As expected, if no coding is used (that is, the code rate is 
equal to 1), the download time increases drastically when 
losses increase. When losses are low, code rates 0.8 and 0.9 
provide the minimum download time. Calculating the average 
download time for low losses (Table II), both 0.8 and 0.9 
provide a similar value (only a difference of 0.5%). Therefore, 
as the bandwidth increase for code rate 0.9 is lower, this code 
rate will be chosen for the low protection state. 

Regarding the medium losses region, the code rate with 
lowest average download time is 0.7. Finally, with very high 
losses, the code rate that minimizes the download time is 0.4. 

Nevertheless, since in the scenario proposed in this paper 
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the bandwidth is a limited resource (and that is why only one 
transmission channel is used), it is not acceptable to use a code 
rate that increases excessively the bandwidth. In this sense, the 
code rate 0.4 provides the best results for high losses at the 
expense of increasing the channel bandwidth a 150%. 
Comparing the results obtained for high losses with code rates 
of 0.4 and 0.7, the download time with a code rate of 0.7 is 
only 15% higher than the one obtained with a code rate of 0.4 
when losses are 50%, whereas when losses are 30%, the 
download time of 0.7 is barely 4% higher than the one 
obtained with a code rate of 0.4. The difference regarding the 
bandwidth increase is clear: 43% with a code rate of 0.7 
against 150% with 0.4. Therefore, the code rate of 0.7 will be 
chosen when losses are both medium and high, as mentioned 
in Section II.    

Summarizing, in the low protection state, the server will 
send data using a code rate of 0.9, whereas in the high 
protection state, the server will use a code rate of 0.7.  

In order to calculate the threshold values of the low and 
medium regions shown in Fig. 2(b), that is, λL and λM, it is 
needed to compare the behavior of the code rates (CR) 0.7 and 
0.9. In this sense, Fig. 5 depicts the download time of both 
code rates for different percentage of losses. 

 
Fig. 5.  Download time comparison between CR=0.7 and CR=0.9. 

As Fig. 5 shows, when losses are equal or lower than 8%, 
the code rate 0.9 provides lower download times, whereas 
from 9% of losses the code rate of 0.7 is more suitable. Also, 
there is an area where the difference regarding the download 
time among the two code rates is very low, as Fig. 5 stresses. 
This area delimits the hysteresis zone. Initially, in order to 
provide a reasonable (not very tight) value of hysteresis, λL 
and λM will differ a 5%. Therefore, according to Fig. 5 and 
Table I, the values of the thresholds will be: λL=7%, λM=12% 
and λH=30%. These values will be analyzed in Section IV.E. 

B. Losses model 
The studies here presented consider that there are n=100 

clients in the coverage area. In order to analyze the behavior 
of the system proposed, five different scenarios with different 
distributions of losses are defined. In all scenarios, clients are 
continuously moving within the coverage area, with the aim of 
analyzing how the system works when losses change.  

The distribution of the instantaneous losses of all clients for 
each instant of time of the first scenario is represented in Fig. 
6. This scenario considers 10 instants of time. The figure 

shows the percentage of clients per losses region as well as the 
hysteresis region. Clients in the hysteresis zone will be in the 
low or in the medium losses region depending on the state 
protection. Moreover, the figure also shows the average losses 
perceived by all clients for each instant of time. On the other 
hand, Fig. 7 depicts, for the same losses distribution, the 
distance from clients to the server for three certain instants of 
time (when losses are medium, high and low respectively), 
and it can be clearly seen how clients are distributed along 
time. That figure also shows three circles that represent the 
losses thresholds λL, λM and λH. As mentioned, the amount of 
clients in each one of these circles will determine the state of 
the system and therefore the code rate. 

 
Fig. 6.  Losses distribution for scenario 1. 

 

Fig. 7.  Distance to the server in scenario 1 for instants of time 0, 1 and 6. 

 
Fig. 8.  Losses distribution for scenario 2. 

 
Fig. 9.  Losses distribution for scenario 3. 
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In the second scenario, the distribution of losses is different, 
existing time intervals when clients get closer to the server and 
others when clients move further away from it, as Fig. 8 
shows. In addition, in the third scenario (Fig. 9) the losses are, 
in general, rather higher. 

On the other hand, the fourth scenario is rather different 
from the previous ones, since losses change more abruptly. 
Fig. 10 shows the distribution of losses for each instant of time 
as well as the average losses along the time. 

Finally, the fifth scenario, shown in Fig. 11, will be used to 
evaluate the effect of the hysteresis. To that extent, the 
scenario considers many time intervals, specifically 100, 
instead of 10 used in the previous scenarios. Moreover, the 
average losses will be all around the hysteresis zone.   

 
Fig. 10.  Losses distribution for scenario 4. 

 

Fig. 11.  Losses distribution for scenario 5. 

C. Adaptive code rate 
The value of parameters Nh and Nm has a great influence on 

the performance of the system proposed. As mentioned, it is 
necessary to give more priority to those clients who perceive 
high losses, therefore if a low percentage of clients has high 
losses the protection must be increased. In the following study, 
we will consider Nh=17% (1/6) and Nm=33% (1/3), and then 
we will analyze other values. Therefore, if more than a sixth of 
clients have high losses or more than a third of clients have 
medium or high losses, the server will be in the high 
protection state. Also, initially we will consider that α=1, so 
the server will not smooth the losses perceived by the clients. 
In the three scenarios used in this subsection this value seems 
appropriate since there are not excessively abrupt changes in 
losses. 

As mentioned previously, this paper presents both analytical 
and experimental measurements. In the figures shown, the 
analytical results are presented as an upper error bar that 
represents the difference regarding the download time 
obtained in the experimental results. 

The performance of the adaptive system in scenario 1 is 
shown in Fig. 12. The figure shows the average download 
time per instant of time for different code rates: a fixed code 
rate of 0.7, a fixed code rate of 0.9, the adaptive code rate and 
the ideal case. This ideal case considers that each client 
connects to a channel which transmits with the optimum code 
rate according to their losses. That is, this case corresponds 
with the proposal presented in [16] after all parity channels 
(with code rates 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9) plus the base 
channel have been created. In this way, the ideal case provides 
the minimum average download time possible. 

Initially (in the instant of time 0) the adaptive system is in 
the low protection state (CR=0.9), and the adaptation begins in 
the next instant of time. Fig. 12 reflects how the adaptive 
system changes its protection state according to the client 
losses in each instant of time. As figure shows, the behavior of 
the adaptive system is rather good, since the server is sending 
data, in most cases, with the code rate that minimizes the 
download time. Apart from the initial instant of time, in the 
instant of time 8 the adaptive system is not transmitting with 
the optimum code rate. Nevertheless, in this case, the 
difference regarding the download time between code rates 0.7 
and 0.9 is minimal, therefore in this scenario the adaptive 
system works almost perfect. Comparing with the ideal case, 
the adaptive system provides, on average, download times 
over 20% higher, which is a rather good result.  

 
Fig. 12.  Download time evaluation in scenario 1 for Nh=1/6, Nm=1/3. 

The good behavior of the adaptive system is proven in 
scenarios 2 and 3, as Fig. 13 and Fig. 14 reflect. 

Comparing the experimental and the analytical results in 
these three scenarios, we see that, in general, analytical results 
provide higher download times, but the difference is not very 
meaningful (it is not higher than a 10% in all cases). In fact, 
both experimental and analytical results provide the same 
adaptive protection state in all instants of times, so the 
analytical model works rather well. The differences among 
two models are due to the precision of transmission rate 
module of the implemented file server when calculating the 
experimental results and due to the value of the inefficiency 
ratio used in the analytical results. Note that the value of the 
inefficiency ratio can not be calculated analytically in some 
codes (those which do not belong to the MDS category), since 
the inefficiency ratio depends on the order of the packets upon 
arrival. In this study we have used a specific value of the 
inefficiency ratio for each code rate, according to the results 
presented in [18].  
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Fig. 13.  Download time evaluation in scenario 2 for Nh=1/6, Nm=1/3. 

 

Fig. 14.  Download time evaluation in scenario 3 for Nh=1/6, Nm=1/3. 

As mentioned, one of the most important parameters to take 
into account is the bandwidth increase due to the use of AL-
FEC. As Table II has shown, the bandwidth increases over 
11% with a code rate equal to 0.9 (in low protection state), 
whereas the increase of bandwidth for 0.7 (in high protection 
state) is over 43%. Thus, the average bandwidth increase in 
the adaptive system will depend on the protection state. In 
scenario 1 the average bandwidth increase is 19.8%, in 
scenario 2 is 19.8% too, and in scenario 3 is 34.2%. The 
bandwidth distribution per time intervals in the different 
scenarios is shown in Fig. 15. In this point, it is worth 
comparing the results obtained with the adaptive case 
regarding the ideal case [16]. As mentioned, the ideal case 
provides, on average, a download time over a 20% lower than 
the adaptive case. Nevertheless, the ideal case provides an 
overhead of 396% (considering six parity channels plus the 
base channel). 

        
 (a) (b)  

  
 (c)  
Fig. 15.  Bandwidth increase in different scenarios. (a) Scenario 1. (b) 
Scenario 2. (c) Scenario 3. 

So far, we have considered that clients with high and 
medium losses have more weight than those with low losses. 
In order to analyze the effect of this condition, the next study 

gives the same priority to all losses areas, therefore the values 
of Nh and Nm change: Nh=33% (1/3) and Nm=67% (2/3). As a 
result, the server tends to be more frequently in the low 
protection state, as Fig. 16 (scenario 1) and Fig. 17 (scenario 
2) show. Comparing with the ideal case, the difference 
regarding the download time among adaptive and ideal is 
approximately the same that in the previous studies, that is, 
over 20%. 

Nevertheless, although in previous scenarios the adaptive 
system works rather well, in environments with a huge 
number of clients with high losses, previous values of Nh and 
Nm are not appropriate, such as in scenario 3, shown in Fig. 18. 

Once again, both analytical and experimental results for the 
previous three study cases provide similar values, with a 
difference regarding the download time lower than a 10%. 

 
Fig. 16.  Download time evaluation in scenario 1 for Nh=1/3, Nm=2/3. 

 

Fig. 17.  Download time evaluation in scenario 2 for Nh=1/3, Nm=2/3. 

 
Fig. 18.  Download time evaluation in scenario 3 for Nh=1/3, Nm=2/3. 

Finally, we study a particular case. We suppose that the 
server is sending the same file in a carousel, and each instant 
of time represents the moment when the server has sent the 
last packet of the file (that is, the end of the carousel). Thus, 
the time among two consecutive instants of time is the 
carousel period.  

Initially all clients within the coverage area are interested in 
this file, so they start downloading it when the server begins to 
send data. Depending on the losses perceived by each client 
and on the code rate used to send the file, clients could need 
more than one transmission of the file (that is, various carousel 
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cycles) to download it. After completing the download, clients 
leave the channel, so do not send more reports to the server. 
Therefore, the server only will consider those reports received 
by the clients within the coverage area for each instant of time. 
Next study analyzes the number of clients that have completed 
their downloads in each carousel cycle. In this case, scenario 2 
has been used. 

  
(a) 

  
(b)  

  
(c)  

Fig. 19.  Evaluation of the number of cycles to complete the download in 
scenario 2 for Nh=1/6, Nm=1/3. (a) Adaptive. (b) CR=0.9. (c) CR=0.7. 

Fig. 19 depicts, for each instant of time, the percentage of 
clients that have download a certain percentage of the file, 
analyzing the cases of adaptive code rate –Fig. 19(a) –, and 
code rates 0.9 –Fig. 19(b) –, and 0.7 –Fig. 19(c). Obviously, as 
the protection increases, the number of cycles decreases. It is 
good to recall that, although using a high protection (low code 
rate) always decreases the number of cycles needed to 
download a file, this does not entail that the download time 
decreases, since the carousel size and the carousel period 
increases, as we have seen previously. Focusing on the 
adaptive graph of Fig. 19(a), we can see that after the first 
cycle period (instant of time 1), 63% of clients have 
downloaded completely the file, whereas a 3% have not 
downloaded even the half of the file (40-49%). One carousel 
cycle later, 96% of clients have completed their downloads.  

On the other hand, each time the server changes the code 
rate, clients have to discard the parity packets previously 
received. Even so, as Fig. 19(a) shows, the adaptive code rate 
provides (slightly) better results than the code rate 0.9 –Fig. 
19(b). The performance can be improved if clients, instead of 
discarding parity symbols previously received when the code 
rate changes, save them in case the server sends data with the 
previous code rate in future carousel cycles. 

It should be noted that considering that clients leave the 
channel once they have completed the download causes that 
the protection state changes. Thus, after the first carousel cycle 
the code rate changes from 0.9 to 0.7, whereas if consider that 
all clients remain within the coverage area, the code rate does 
not change during the first carousel cycles, as Fig. 13 showed. 

D. Evaluation of the smoothing 
In networks where clients have high mobility, losses are 

continuously changing. On some occasions, when calculating 
the losses for a certain instant of time it can occur that the 
estimation is not correct, since there are peak errors that distort 
the average losses. In those cases, it is very common the use of 
a smooth factor, through which the server considers both the 
current and the previous losses in order to estimate the system 
losses. In the three scenarios previously shown, as there were 
not abrupt changes regarding the losses, no smooth process 
was used (and thus α was equal to 1). In order to evaluate how 
this smooth parameter affects the system proposed, next study 
considers the scenario 4. Fig. 20 shows the distribution of the 
average losses of n=100 clients along time as well as the 
smooth effect for different values of α. In this scenario some 
bursts appear, where losses change rapidly. 

 
Fig. 20.  Average losses distribution and smooth effect in scenario 4. 

The methodology used is the same employed in the 
previous studies, that is, in each instant of time clients report 
their losses, the server smoothes them and then it chooses the 
optimum code rate according to this information. Note that 
clients only inform about the losses they are perceiving in a 
specific instant of time. For example, in the instant of time 1, 
clients only inform about the losses they perceive in that 
instant, and not about the partial losses perceived between the 
instants of time 0 and 1. 

Fig. 21 compares the average download time obtained for 
different values of α for each instant of time. In the figure, the 
download time is in range [8000 ms, 12000 ms]. Due to the 
smooth process, in those cases where the value of α is low, the 
server tends to be in the same protection state. Fig. 21 shows 
that, in this scenario, smoothing the losses provides better 
results. Specifically, the system adapts better to the changing 
losses using α=0.3 or α=0.5. Analyzing the system behavior 
for α=0.3, we can see that the server sends at an optimum code 
rate in 8 out of 10 time intervals. This is a very good result, 
since in the instants of time when the server does not send 
with the optimum code rate, the difference between the 
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adaptive and the optimum code rate is pretty minimal. 
Therefore, we can consider that the adaptive system performs 
very well using an appropriate smooth factor. Obviously, an 
erroneous estimation of the losses can increase the average 
download time of the clients as well as the bandwidth. 

 
Fig. 21.  Download time evaluation for different values of α in scenario 4 for 
Nh=1/6, Nm=1/3. 

E. Delivery frequency of the feedback messages 
Regarding the transmission of the feedback messages from 

the clients to the server, there are two main methods to send 
these reports: synchronously or asynchronously. In the first, 
clients send periodically their losses reports with a delivery 
frequency which depends on, for instance, the number of users 
and the available bandwidth. In the latter, clients inform about 
their losses only when it is necessary (for instance, when they 
detect a meaningful change of losses). As an example, it 
should be mentioned that RTP/RTCP [21] implement both 
mechanisms: a synchronous one, where users send their 
reports with a certain offset to avoid the feedback implosion 
problem; and an asynchronous mechanism (immediate 
feedback), where users report the server only when required. 

In this way, when choosing the best policy to decide the 
delivery period of the feedback messages, there are several 
things to take into account: 
- If the delivery period of the feedback messages is very 

short, too much traffic is introduced into the network. 
There would be many collisions between the feedback 
messages of all clients, which could lead to network 
congestion. Also, if losses do not change excessively it is 
not worth sending too many reports. 

- Moreover it is not optimal to change continuously the code 
rate: clients have to discard continuously the parity packets 
previously received and generate the parity matrix. If 
clients do not send very frequently their reports, the server 
does not need to recalculate and generate a new optimum 
code rate constantly.  

- On the other hand, sending feedback messages with a low 
frequency could become the system inefficient. 

In this sense, we consider a good alternative that clients 
send the feedback messages each time they receive a FLUTE 
block. It should be noted that in FLUTE the coding is 
generated by block, so different blocks of the same file can 
have different coding and/or code rate. Thus, the delivery 
period of the feedback messages should be equal or higher 
than the transmission time of a FLUTE block. This solution is 
similar to the one used by DASH clients to request for new 
segments each time a segment is received.  

The size of a block depends on the parameters established 
in the blocking algorithm (such as the code rate or the 
encoding symbol length). LDPC codes, used in this proposal, 
work more efficiently with higher block sizes [31]. But when 
choosing the size of the blocks it should be taken into account 
the computational resources of the mobile receivers (the 
higher the block size the more complex the decoding), so there 
is a trade-off between coding efficiency and computational 
cost. 

Different tests carried out by the authors (some of them are 
shown in [18]) prove that a block size of 3000 FLUTE packets 
offers good results of the coding efficiency and the decoding 
time. Precisely, the experiments presented in this paper have 
been carried out with blocks of 3000-packet size. According to 
the results presented in Table I, the transmission of a block of 
this size takes among 7000 and 15000 ms using the optimal 
code rate for different channel losses. Thus, assuming an 
average of 10000 ms, with an average feedback delivery 
period of 10000 ms and 100 users in the system, the 
bandwidth consumed by the feedback messages will be around 
8 kbps (considering that the feedback packet size is around 
100 B). This is a good value taking into account that the 
multicast transmission rate considered is 5 Mbps. Also, 
following the DASH example, a feedback time of 10 s is 
reasonable compared to the feedback times used to request 
DASH segments (2 s in Microsoft Smooth Streaming or 10 s 
in Adobe HTTP Dynamic Streaming [32]).  

These results show that the proposal of sending feedback 
messages after receiving each block results convenient in 
terms of bandwidth, which is one of the premises of this paper. 
In any case, an exhaustive analysis of the delivery period of 
the feedback messages is part of the future work.  

F. Evaluation of the hysteresis 
The last study evaluates how the hysteresis affects two main 

parameters: the average download time and the number of 
times that the state protection changes. If the server changes 
their protection state too frequently, the adaptive system could 
become inefficient: the server is changing the code rate 
continuously whereas the clients are consuming more 
computational resources since they have to process a lot of 
coding changes. Thus, there is a trade-off between minimizing 
the download time and the number of state changes. 

Scenario 5 is used to evaluate the hysteresis, shown in Fig. 
11. In that scenario, the average losses for each instant of time 
fluctuates in range [8%, 17%], in this way the state protection 
changes very frequently. With the aim of evaluating the 
hysteresis effect, we fix the lower threshold (λL) to 7% and we 
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increase the upper threshold (λM) progressively. Fig. 22 shows 
the results obtained regarding the number of state changes and 
the average download time of all clients considering all the 
time intervals. In the graph, the x label represents the threshold 
interval, that is, λM - λL. Thus, a value of threshold interval 
equal to 1 indicates that: λL=7% and λM =8%. It should be 
noted that, in this study we establish Nh=1/3 and Nm=2/3, so 
that the high losses do not mask the effect of the hysteresis.    

Obviously, as the threshold interval increases, the number 
of state changes is lower, since the system tends to be in the 
same state protection. However, as the threshold interval is 
higher the average download time increases. 

As Fig. 22 shows, the threshold interval used in the 
previous studies (5%, λL=7% and λM =12%) represents a good 
trade-off, since there are not very much changes of protection 
state and the average download time does not get worse 
considerably regarding the minimum value (only 1.5% 
higher). 

 
Fig. 22.  Number of state changes and average download time depending on 
the threshold interval in scenario 5 for Nh=1/3, Nm=2/3.  

G. Server algorithm 
After evaluating all the parameters presented in the paper, 

this last subsection presents an algorithm that summarizes the 
process carried out by the server to obtain the best code rate 
for each instant of time so as to provide an optimal delivery.  

It should be mentioned that the algorithm is heuristic, since 
it uses the different parameters obtained throughout the 
evaluation section. The fact that the algorithm works well for 
the five scenarios evaluated provides a certain guarantee to be 
valid in other scenarios. 

Initially, the server fixes a conservative value of the code 
rate (CR=0.9) in order to save bandwidth. Also, the server 
considers an environment of low client mobility (so α=1) and 
that clients with high losses have more priority than those with 
low losses (Nh=1/6 and Nm=1/3). According to the previous 
studies the parameters that delimit each losses region are fixed 
to λL=7%, λM=12% and λH=30%. 

For each instant of time the server creates a vector with the 
losses of those clients who have sent losses reports. If the 
percentage of clients with high losses is very low (≤5%), the 
server could give the same priority to all losses regions by 
assigning Nh=1/3 and Nm=2/3. Next, the server checks if the 
percentage of losses perceived by each client has changed a lot 
regarding the previous instant of time, by comparing the 
current losses vector with the previous. If the average 
increment or decrement of losses perceived by the clients is 
higher than a 10%, the server increases the value of α. 

Otherwise the server reduces α (note that 0≤α≤1). We apply 
the additive-increase/multiplicative-decrease algorithm (using 
the results obtained in the studies carried out in this paper), 
which is used by RTP/RTCP for dynamic adjustment of the 
bandwidth as well as TCP (Transmission Control Protocol) to 
manage network congestion. Then the server calculates the 
smoothed losses of all clients, generating a smooth losses 
vector. After that, the server counts the number of clients in 
each losses region and calculates the new protection state, and 
thus the code rate. 
Algorithm 2 
  1: Fix parameters (λL=7%, λM=12%, λH=30%) 
  2: Initialize (CR=0.9, Nh=1/6 and Nm=1/3, α=1) 
  3: for (each instant of time) 
  4:  Generate “losses_vector” and calculate nH, n 
  5:  if (nH/n ≤ 5%) then Nh=1/3, Nm=2/3 
  6:  else then Nh=1/6, Nm=1/3 
  7:  end 
  8:  if (losses variation ≥ 10%) then αcurrent=0.8·αprev 
  9:  else then αcurrent=αprev+0.1 
10:  end 
11:  Calculate “smooth_losses_vector” and nM, nH, n 
12:  if (nH/n ≥ Nh) then CR=0.7 
13:  else if ((nM+nH)/n ≥ Nm) then CR=0.7 
14:  else then CR=0.9 
15:  end 
16: end 

V. CONCLUSIONS 
The adaptive system presented in this paper represents a 

good solution for file transmission in multicast environments. 
The use of an adaptive code rate minimizes the average 
download time of all clients within the coverage area, with a 
reasonable use of bandwidth.  

Although there is an optimum code rate per each client 
depending on the amount of losses perceived, a given code 
rate performs well in a wide interval of packet losses around 
the code rate that minimizes the download time. Therefore, it 
is possible to send using a code rate that benefits the major 
part of users. In order to do this, it is necessary to analyze the 
losses perceived by each client and decide the optimum code 
rate for each situation. In the studies carried out two different 
code rates have been considered: one code rate when the 
major part of clients have low losses and another one when 
they have medium-high losses. Clients with high losses must 
have more priority than those with low losses, since using 
insufficient protection for clients with high losses penalizes 
more the download time than using too much protection for 
clients with low losses. As the results have shown, the 
adaptive system proposed works very well using only two 
different code rates. The value of these code rates has a great 
impact on the system performance, as well as the thresholds 
that delimit the protection state of the system, which establish 
the code rate used to transmit. In this sense, it is recommended 
the use of hysteresis to avoid too much coding changes.       

As a particular case, this paper has shown a carousel where 
the server sends the same file in each loop and clients 
download the file in one or several carousel cycles, depending 
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on the losses. In that case, the adaptive system performs rather 
well, despite the fact that the optimum code rate could change 
every carousel cycle and clients must discard the parity 
packets previously received. 

Finally, in environments where the losses perceived by the 
users change very abruptly, it is recommended that the server 
smoothes the losses when it chooses the optimum code rate. In 
that case, choosing an accurate smooth factor has a great 
influence on the suitable performance of the adaptive system. 

To sum up, the adaptive mechanism proposed in this paper 
represents a good trade-off between the bandwidth used by a 
file server and the Quality of Experience perceived by the 
clients, therefore it is appropriate for content download 
services in multicast wireless networks. 
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