

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://dx.doi.org/ 10.1109/TMM.2014.2307155

http://hdl.handle.net/10251/56281

Institute of Electrical and Electronics Engineers (IEEE)

De Fez Lava, I.; Guerri Cebollada, JC. (2014). An Adaptive Mechanism for Optimal Content
Download in Wireless Networks. IEEE Transactions on Multimedia. 16(4):1140-1155.
doi:10.1109/TMM.2014.2307155.

 1

Abstract—This paper presents an adaptive mechanism for

improving the content download in wireless environments. The
solution is based on the use of the file delivery over unidirectional
transport (FLUTE) protocol in multicast networks, which reduce
considerably the bandwidth when there are many users
interested in the same contents. Specifically, the system proposed
reduces the average download time of clients within the coverage
area, thus improving the Quality of Experience. To that extent,
clients send periodically feedback messages to the server
reporting the losses they are experiencing. With this information,
the server decides which is the optimum application layer –
forward error correction (AL-FEC) code rate that minimizes the
average download time, taking into account the channel
bandwidth, and starts sending data with that code rate. The
system proposed is evaluated in various scenarios, considering
different distributions of losses in the coverage area. Results show
that the adaptive solution proposed is very suitable in wireless
networks with limited bandwidth.

Index Terms—Adaptive codes, application layer – forward
error correction (AL-FEC), file delivery over unidirectional
transport (FLUTE), low density parity check (LDPC), multicast
wireless networks.

EDICS— 8-WMMM, 8-ERCO

I. INTRODUCTION
IRELESS networks are part of our daily lives for many
years. Since the first half of the last century, people

listened to the news or music through the waves that arrived to
their radios. Some decades later, the use of the television
became popular in all households. Today, former analogical
broadcasting systems have been replaced by modern digital
ones, such as DVB-T (Digital Video Broadcasting –
Terrestrial) [1] or ATSC (Advanced Television System
Committee) [2].

In contrast to radio and television, other technologies were
intended for wired scenarios and have evolved to wireless
systems. There are two representative examples: telephone
and Internet. Nowadays, approximately three quarters of the
world population has access to a mobile phone [3]. This

Manuscript submitted January 3, 2013. This work is supported in part by
the Ministerio de Economía y Competitividad of the Government of Spain
under project COMINN (IPT-2012-0883-430000).

I. de Fez* and J. C. Guerri are with the Institute of Telecommunications
and Multimedia Applications (iTEAM), Universitat Politècnica de València,
Camí de Vera s/n, 46022 Valencia, Spain (phone: 34-963879588; fax: 34-
963879583; e-mail: isdefez@iteam.upv.es; jcguerri@dcom.upv.es).

percentage exceeds the 90% in developed countries. In the last
years, the appearance of the smartphones has revolutionized
the industry. Through these intelligent devices, users connect
to the Internet using new technologies such as Wi-Fi, HSPA
(High-Speed Packet Access), WiMAX (Worlwide
Interoperability for Microwave Access) or LTE (Long Term
Evolution).

In this regard, the Internet consumption through wireless
networks has exploded in the last years due to the fact that not
only the number of users has increased but also the amount of
data consumed. Nowadays, a large number of the contents
consumed by the users require a high bandwidth, for instance
the visualization of multimedia streaming through video
portals.

In this framework, the exponential growth of the traffic in
wireless networks is becoming a problem. Thus, as users
require more bandwidth and the frequency spectrum is a
limited resource, it is necessary to find several mechanisms
that allow users to consume contents without getting worse
their Quality of Experience.

A good mechanism for reducing the bandwidth is the use of
multicast networks. Through these networks it is possible to
send multimedia content to different users within a single
connection [4]. Regarding data communications, multicast file
transmission is very useful in crowded environments where
users have similar interests, for instance in malls, popular
festivals or sport events. As a possible use case, in a basketball
match users could receive on their mobile devices different
information such as the retransmission of the best moments of
the match or information related to the shops within the court
(e.g., publicity or discount vouchers). Another good example
is multicast streaming based on file multicasting. In this field,
there are different related works in the literature that propose
the use of file delivery to provide multicast streaming. For
instance, [5] proposes the use of the FLUTE file delivery
protocol to send DASH (Dynamic Adaptive Streaming over
HTTP) segments over MBMS (Multimedia Broadcast
/Multicast Service) [6] and eMBMS (Evolved MBMS) [7].
DASH [8] is a novel ISO standard for the transmission of on-
demand and live streaming.

In this sense, FLUTE [9] is an IP multicast protocol widely
used for multicast file download services. In fact, FLUTE has
been established as the multicast file delivery protocol for
different standards, such as DVB-H (DVB – Handheld) [10],
DVB-IPTV (DVB – Internet Protocol TV) [11], or the
aforementioned MBMS and eMBMS. FLUTE is based on the

An adaptive mechanism for optimal content
download in wireless networks

Ismael de Fez and Juan Carlos Guerri

W

 2

use of a File Delivery Table (FDT), which is the in-band
mechanism used by FLUTE to inform clients about the files
(and their characteristics) transmitted within a FLUTE session
[12]. The main characteristic of FLUTE is that it provides
reliability to the transmission.

In that regard, due to the transmission losses, typical in
wireless environments, multicast networks should be protected
against errors. To that end, there are different error control
mechanisms for multicast transmissions [13], in wired and
wireless networks [14]. One of the most used is Forward Error
Correction (FEC), which allows to recover packets lost by
adding redundancy to the transmission. Specifically, using
FEC at the application layer (AL-FEC) avoids further
investments in infrastructure [15]. Precisely, AL-FEC is one
of the protection mechanisms used by FLUTE.

In AL-FEC, the amount of protection provided to the
transmission is defined by the code rate. As shown in a
previous study carried out by the authors [16], there is an
optimum code rate that minimizes the download time of a
certain file by a client. This download time depends, among
other parameters, on the channel losses perceived by each
client. Therefore, it is possible to transmit a file at an optimum
code rate for each client in order to minimize the download
time. To that extent, clients must be able to inform the server
about the losses they are experiencing.

Nevertheless, in environments with limited bandwidth it
may not be possible to send a file with different code rates,
since the bandwidth would increase considerably. Thus, it
would be very useful to send data at an optimum code rate that
benefits the major part of the users. Since the losses perceived
by the users could change quickly, this code rate should be
chosen dynamically.

In this sense, the present work presents an adaptive system
where the server sends data at an optimum code rate for each
time interval, according to the losses detected by the clients
within the coverage area.

Specifically, the objective of this paper is to reduce the
average download time that clients need when downloading
contents. It should be noted that, one of the main goals of any
service is to provide a good Quality of Experience (QoE) to
the users. In streaming services a good QoE is provided when
users receive the video without interruptions, with high
quality, and with the minimum waiting time. With regards to
file transmission to multiple receivers, users have a good QoE
when they receive files correctly and the download time is
minimal. In this sense, the download time is a well-known
QoE metrics for evaluating file multicast download. For
instance, it is used in IP Datacast for DVB-H [10] for
evaluating the effect of Raptor AL-FEC codes for a FLUTE
multicast session.

The rest of the paper is structured as follows. Next section
provides an overview of the adaptive system proposed.
Section III explains the evaluation methodology used to obtain
the results presented in Section IV, where the adaptive system
is analyzed and evaluated. Finally, the last section of the
document includes some final conclusions.

II. SYSTEM OVERVIEW
This paper presents an alternative to the study presented by

the authors in [16], taking into account the channel bandwidth.
In the adaptive system presented in [16] a server sends
multimedia content in a multicast network to several users,
which inform the server about the losses they are experiencing
through the delivery of feedback messages. Using this
information, the server makes forward error correction parity
symbols available to the clients at an optimum code rate. All
parity symbols belonging to a code rate are inserted on a
separate transmission channel. Thus, clients join to the
channel that minimizes their losses. In order to upper-bound
the maximum number of channels, all users that experienced
similar losses are prompted to join the same multicast channel
for additional parity data. Nevertheless, that scenario does not
take into account the channel bandwidth limitations.
Therefore, in scenarios where the bandwidth is limited, it is
necessary to find another solution that benefits all users.
Unlike [16], in the scenario hereby proposed, as only one code
rate will be used in a given time, only one transmission
channel will be needed. Thus, the file delivery session only
contains one channel, in which both source and parity symbols
are sent, which represents an easy solution for the server and
the clients. In contrast to [16], the main objective of this paper
is to optimize the bandwidth usage, but without getting worse
the download time of clients. In this sense, this paper presents
new proposals, algorithms, evaluation scenarios, results and
improvements compared with [16].

It should be mentioned that it is used a random transmission
model, where source and parity packets are sent in a fully
random order, since this model is more efficient than the
sequential model, as it is proved in [17] and [18].

Furthermore, this paper considers that the losses perceived
by the clients can change over time. We propose an adaptive
mechanism to assign an optimum code rate based on that used
by RTP/RTCP (Real-time Transport Protocol / RTP Control
Protocol) for dynamic adjustment of the bandwidth
requirements of multimedia applications [19]. As in [19], our
algorithm increases, holds or decreases a certain parameter (in
this case the code rate, instead of the bandwidth) according to
the feedback received by the clients.

Fig. 1 shows an overview of the system proposed. There is
a certain number of clients within the coverage area in a
multicast wireless network. Clients perceive different losses
depending on how far they are from the server (the further the
more losses). Also, clients are continuously moving so the
channel losses they perceive are changing. Initially, the server
sends data with a certain code rate. After a while clients start
sending feedback messages informing the server about the
losses they are perceiving. In this paper we consider that the
feedback messages always arrive to the server. The way
clients send these losses reports is not analyzed in this paper.
Different mechanisms to provide this feedback are: [20] and
[21], based on RTCP; and the reporting mechanisms used by
DVB-H [10] and MBMS [6], which support FLUTE, the
protocol used in this proposal. Once the losses reports are

 3

received by the server, it decides which is the optimum code
rate that minimizes the average download time of all clients.
Then, the server starts sending data at this optimum code rate.
This process is carried out periodically: the clients are
repeatedly sending feedback messages and the server is
analyzing them at a certain time intervals.

Fig. 1. System overview.

When choosing the code rate that best suits all clients it
must be taken into account that using insufficient protection
for clients with high losses has more impact on the download
time than using an excessive protection for clients with low
losses. Therefore, feedback messages of clients with high
losses will have more weight when the optimum code rate is
chosen. To that extent, in this proposal we consider that the
server classifies the losses perceived by each user into three
different regions: low losses, medium losses and high losses
region. Hence, each one of the n clients is classified in each
instant of time in a certain region according to their loss rate,
as Fig. 2(a) depicts. The server calculates how many clients
(nL) are in the low losses region (clients who have less than λL
losses), how many clients (nM) are in the medium losses region
(those who have between λL and λH losses) and how many
clients (nH) have high losses (those who have more than λH
losses). Then, the code rate is chosen according to the
percentage of clients in each region.

(a)

(b)

Fig. 2. Losses region classification. (a) Without hysteresis. (b) With
hysteresis.

It is worth noting that, according to [16], a given AL-FEC
code rate performs well in a wide interval of packet loss rates
around the value for which it provides a minimum download
time. Based on this conclusion, a priori, it could be considered
the use of only three different code rates (as many as losses
regions). Nevertheless, at the time of choosing the code rates
for each region it must be taken into account the bandwidth
increase associated to each code rate. Using a high protection
(low code rates) increases considerably the bandwidth,

therefore there is a trade-off between the bandwidth and the
download time. According to the studies presented in Section
IV.A, this paper only considers two different code rates: one
code rate for low losses and another one for medium-high
losses. Using two code rates instead three provides very good
results regarding the download time, and improves
considerably the channel bandwidth.

In this sense, the use of a high number of losses regions
would increase the complexity of the system and could
become the system inefficient, since there would be a lot of
changes of code rates and clients would have to create
continuously the decoding parity matrix associated to that
code rate and discard continuously parity packets previously
received. Additional studies carried out by the authors and not
included in this paper prove that considering six losses regions
and therefore using six different code rates (instead two)
slightly reduces the download time (less than a 5% in the
scenarios considered in this paper, which are shown in Section
IV.A) at the expense of increasing considerably the number of
changes of code rate and the bandwidth (more than four times
of overhead). Specifically, in scenarios 1 and 2, there is a
download time reduction over a 2% considering six different
code rates, but the bandwidth overhead increases from a 20%
until a 93%. In scenario 3 the bandwidth overhead considering
six losses regions is a 133% but the average download time is
only 5% lower.

Hence, in our proposal there will be two protection states: a
state of low protection (which will use a high code rate) and a
state of high protection (which will use a medium code rate).
Furthermore, the encoding (and decoding) process is easier as
less different code rates are used. The server calculates the
optimum code rate in each instant of time according to the
following algorithm, based on the one shown in [19] for
bitrate (as aforementioned):
Algorithm 1

 1: if nH/n ≥ Nh then new_state=HIGH_PROTECTION
 2: else if (nM+nH)/n ≥ Nm then new_state=HIGH_PROTECTION
 3: else then new_state=LOW_PROTECTION

Nh and Nm are the thresholds for clients with high and
medium losses, respectively. The use of these thresholds
allows to give more priority to clients with higher losses. The
design of an efficient adaptive system depends greatly on the
values of Nh and Nm. Other key parameters are λL and λH. In
this sense, since it would not be very efficient to change the
code rate too frequently when losses do not vary excessively,
the system performance can be improved by using hysteresis
[22]. Fig. 2(b) proposes the use of three thresholds: λL, λM, and
λH. Therefore, when the server calculates the number of clients
in each region, it takes into account the current protection
state. Thus, if the server changes their state from the low
protection state to the high protection state, a client in the low
losses region will change to the medium losses region when
their losses are higher than λM, whereas it will come back to
the low losses region when their losses are lower than λL, as
Fig. 2(b) depicts.

On the other hand, in order to avoid an erroneous estimation

 4

of the losses, the server can smooth, for each feedback
message received, the instantaneous losses (Linst) with the
previous average losses (Lavg), using a low-pass filter,
calculating the new loss rate (L) as: L=(1-α)·Lavg+α·Linst, where
α is the influence factor of the new value, ranged between 0
and 1.

III. EVALUATION METHODOLOGY

A. Calculation of the download time
This section presents a methodology to calculate

analytically the download time. As mentioned, the objective of
this proposal is to reduce the average download time when
clients download contents. The download time of a certain file
L is defined as the time passed since the transmission starts
until the file is completely downloaded. This occurs when
clients have received enough packets to rebuild the file.

In this study we suppose that the server is sending files
during a certain time, then it receives feedback messages from
clients and then it continues sending files with the new code
rate. In this theoretical study for simplicity we consider that, in
each instant of time the server sends all files available in their
repository. That is, this involves considering the use of file
carousels to send content. The use of carousels as a delivery
mechanism is employed by some standards that use FLUTE as
delivery protocol, such as [10]. In this way, we will consider
that each cycle of the carousel corresponds to an instant of
time.

Thus, as a first approximation, we are going to study the
case where the server sends only one file. If a client is not able
to download it during a certain instant of time, the client will
need T instants of time to download the file. In each instant of
time the server will send contents with a certain code rate, so
the duration of each instant of time i (tT(i)) could be different.
Therefore the download time (tD) is calculated as:

 ,)(·
1

1
∑

−

=

+=
T

i
TSD ittt β (1)

where tS is the time needed to send all packets (source plus
parity packets) that compose the file in the cycle that
completes the download. Due to the use of AL-FEC encoding,
clients can download a file before the last packets have been
received so, actually clients could need a time lower than tS to
complete their downloads. To consider this, we define a factor
0<β≤1. Remember that, in reception clients need to receive an
amount of packets equal to the product of the number of
source packets of the file to download by a factor called
inefficiency ratio, which depends on the coding algorithm.
The value of the inefficiency ratio is equal to 1 in codes that
belong to the Maximum Distance Separable (MDS) category,
and in the rest of codes this value is greater than 1.

Developing expression (1):

 ,
)(

·
)(1

1
∑

−

=

+=
T

i

i

L

T

L

D b
CR
Sceil

b
CR
Sceil

t b (2)

where SL is the size of the file L to download, CRi is the code

rate of the instant of time i, and b is the transmission rate.
Moreover, in order to calculate the number of packets that
compose a file after decoding (and thus the transmission size)
it is necessary to ceil the division between the number of
packets that form a file by the code rate.

In the case of sending several files within the carousel, the
calculation of the download time is slightly different. Fig. 3
shows an example of a transmission using file carousels. In the
example we suppose that a client is connected to the channel
at the start of a certain instant of time and that they want to
download the file F3.

Fig. 3. Example of a carousel transmission.

First, if the client only needs one carousel cycle to
download the file, the client will have to wait a time tW to start
receiving packets of the file L to download. After a time tS·β,
the client will have downloaded the file. If the client needs
more than one cycle to complete the download, it will be
necessary to consider the transmission time of the entire
carousel (tT).

In the example, each instant of time or cycle implies a
different code rate so, as the protection in the second cycle is
higher than in the first, the transmission size of every file in
the second cycle is higher than in the first. Therefore, the
transmission size of the entire carousel is bigger in the second
cycle and thus the duration of that instant of time (tT(2)>tT(1)).
The same applies to the value of tW and tS.

In this way, in the general case, clients will have to wait T-1
entire cycles, plus a time tW and tS from the cycle that
completes the download. So, the download time of a file L is
calculated as:

 .)()·()(
1

1
∑

−

=

++=
T

i
T

L
S

L
W

L
D itTtTtt β (3)

 Analyzing each term, the value of tW depends on the
carousel size and the transmission schedule. Considering that
the probability of downloading a certain file is equal to the
probability of downloading another file in the carousel, the
waiting time can be calculated using the following
approximation:

 .
2

)(
2

)()(TtTtTt
L
STL

W −≈ (4)

The calculation of tS is similar to the equation (2). In order
to simplify the final expression, we do not consider the effect
of the ceiling round:

 5

 .
·

)(
T

LL
S CRb

STt ≅ (5)

 Regarding tT, this term is calculated as:

 ,
·

)(1

i

N

j
j

T CRb

S

it
∑

=≅ (6)

where N is the number of files in the carousel and Sj is the size
of the file j.

In this way, the download time is calculated as:

 .
·

·
··2·2

1

1

11 ∑
∑∑ −

=

== ++−≈
T

i i

N

j
j

T

L

T

L

T

N

j
j

L
D CRb

S

CRb
S

CRb
S

CRb

S

t b (7)

Simplifying that expression:

 .
··22

1·
· 1

11 ∑
∑∑

=

== +−



 −≈

T

i i

N

j
j

T

N

j
j

T

LL
D CRb

S

CRb

S

CRb
St b (8)

Analyzing the previous formula, values of Sj, N and b
depend on each particular implementation. On the other hand,
the value of the code rate for each instant of time (CRi) is
calculated using the Algorithm 1, which will be analyzed in
Section IV. The parameter β depends on the remaining packets
needed to complete the download. This parameter is directly
related to T, which is the number of instants of time (or
number of cycles) that a user needs in order to download a
certain file.

In order to calculate T, in each instant of time the client will
receive a certain number of packets of the file to download.
This number will depend on the losses of the channel. Thus,
the probability of receive x new packets at any given loop can
be modeled by using a hypergeometric distribution:

 ,
)(

),,,P(









−









−−







 −

=

lm
m

xlm
r

x
rm

lrmx (9)

where m is the number of encoding symbols (source symbols
plus parity symbols), r is the number of received symbols at
the beginning of the loop and l is the number of lost packets
per loop. The latter probability yields the following expression
for the expectation value of the number of packets correctly
received at loop i:

 .),,,(·)(
0

∑
−

=

Ρ=
rm

lrmix
x

xx (10)

Then, an estimation of the value of T is provided by the
following expression:

 },_*)(:min{
1

ratioinefkixhT
h

i

≥= ∑
=

 (11)

where k is the number of source symbols that compose a file.
In this way, the value of T is calculated iteratively, checking
for each cycle if the client has received enough packets to

rebuild the file. A methodology used to calculate T and β can
be found in [16][23].

B. Evaluation parameters
As Section II has shown, there are several parameters to

configure when evaluating the system proposed. Firstly, it will
be analyzed the download time of a file in a channel with
different losses using different code rates. In the studies
hereby presented, in order to calculate which is the code rate
that minimizes the download time for each percentage of
losses two different methodologies will be used: first, the
download time will be calculated using the analytical model
explained in the previous subsection; second, we will calculate
the download time by carrying out measurements in a real
environment. To do this, an implementation developed by the
authors [18] of a file server and client based on FLUTE is
used. It should be highlighted that the major part of the results
presented in this paper are obtained through this
implementation. The file server/client also includes a module
that implements LDPC (Low Density Parity Check) codes
[24] in order to provide reliability to the transmission. In this
study, LDPC Staircase codes [25] will be used to evaluate the
optimum code rate. LDPC codes have been proved to be very
efficient, with a performance very close to Raptor and ideal
maximum distance separable codes [16][26]. This good
performance and their lower complexity make these codes
very recommendable in multicast file delivery.

It should be noted that both in the analytical and in the
experimental results, several measurements are made. In the
experimental ones, a server sends a file in a multicast channel
and a client downloads it. Apart from getting the best code
rate for each losses region, the previous study also will
calculate the suitable values for λL, λM, and λH.

In the scenario proposed, there are many clients within the
coverage area that are continuously moving (sometimes they
are getting closer to the server and sometimes are moving
away), so the losses they perceive are continuously changing.
As mentioned, the losses they perceive are directly related to
the distance to the server. In [27] it is shown the relation
between the distance to the server and the PRR (Packet
Reception Ratio) in a particular wireless network. Based on
that study, Fig. 4 allows to match the distance from clients to
the server with the percentage of losses that clients have.
These results have been carried out through simulations using
ns-3, considering a transmission rate of 5.5 Mb/s and an
output power of 17 dBm. This transmission rate is supported,
among other standards, by 802.11b [28] (and subsequent
versions), one of the Wi-Fi reference standards. Assuming
that, in practice, the effective transmission rate is lower than
the one specified in the standard (due to overheads or routers
features), in the rest of studies an effective transmission rate of
5 Mb/s is used, the same considered in [16]. All these studies
only consider clients within the area lower than 110 meters,
since distances higher than 110 meters provide unreasonable
percentage of losses (higher than 60%), so it is considered that
these clients are out of the coverage area.

 6

Fig. 4. Losses perceived depending on the distance to the server for a

transmission rate of 5.5 Mb/s.

The percentage of losses according to the distance to the
server depends on the transmission rate [29] as well as the
transmission power. Thus, if the transmission rate increases
(or the output power decreases), the coverage area decreases.
Taking this into consideration, we will suppose that clients
send their feedback messages using a lower transmission rate
(for example, 1 Mb/s) with an appropriate output power
through a channel that guarantees that the packets arrive to the
server.

In order to analyze the behavior of the adaptive system
proposed, the losses perceived by the clients change in every
instant of time. Thus, there will be some moments when the
average losses of all clients will increase whereas in other
moments will decrease. The initial position of clients (and
thus, losses) is generated randomly. Later positions of clients
are calculated by using a simplified version of the Gauss-
Markov mobility model [30]. This model, widely used in the
literature, takes into account the previous position and speed
of clients to estimate the future position of clients. In our case,
the future position of clients is obtained by choosing a random
value in a normal (Gaussian) distribution, which mean is the
previous position.

Different losses scenarios are presented, as Section IV.B
explains. Those scenarios have a losses distribution
completely different. Also, in all scenarios, clients will be
moving (and thus changing their losses). The system behavior
will be evaluated, in most cases, during ten time intervals.

Then, parameters Nh and Nm will be analyzed, as well as the
smooth factor α and the hysteresis effect. Once all the
configuration parameters are chosen, it is possible to calculate
the download time for each client in each instant of time. This
download time is calculated using the results obtained by
means of the FLUTE server/client and by the analytical
results. In order to do a more accurate measurement, the
download time of a certain client in the instant i is calculated
as the average of the download time between the instant i-1
and the instant i, using the code rate obtained in the instant i-1.
In this paper, ten intermediate values in a time interval have
been used to calculate the average download time. Also, for
simplicity we have not considered co-channel interferences
from other users.

IV. RESULTS AND ANALYSIS

A. Analysis of the code rate
First, the optimum code rate for each percentage of losses is

analyzed. To that extent, we calculate the download time of a

file of approximately 4 MB (3000 FLUTE packets with length
1428 bytes), which is sent in a multicast channel using a
transmission rate of 5 Mb/s. The download time is calculated
by measuring the time passed since a client starts downloading
a file until the file is completely downloaded. Note that, apart
from the losses, the download time depends greatly on the
values of the file size and the transmission rate. However, as
both parameters have a linear behavior regarding the
download time [16], the conclusions arisen in this study
remain valid independently of the value of the file size and the
transmission rate.

Table I shows the download time (in milliseconds) for
different code rates and percentage of losses for the
experimental measurements. The table reflects that there is a
code rate (highlighted in italics) that minimizes the download
time depending on the losses. Based on the results of Table I,
Table II shows the average download time for the three losses
regions: low, medium and high. We have defined the low
losses region as the area where losses are between 0 and 10%;
the medium losses region corresponds with the area where
losses are between 10 and 30%; and the high losses region is
the area where losses are higher than 30%. Table II also shows
the bandwidth increase for each code rate. It is worth recalling
that a low value of the code rate increases considerably the
bandwidth.

TABLE I
DOWNLOAD TIME (IN MILLISECONDS) FOR DIFFERENT CODE RATES

 CR/
Loss 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0% 8926 7826 7556 7946 8514 7557 6751 6225
5% 9388 8228 7927 8362 8723 7572 6752 18555

10% 9776 8704 8408 9349 8714 7582 9318 25622
15% 10600 9102 8923 9652 8595 7625 10847 29802
20% 11174 9596 9631 10034 8739 10129 12463 32598
25% 11396 10296 10467 10045 10196 11640 13399 37966
30% 12534 11033 11557 11461 11509 12818 15321 45880
40% 14560 13625 12362 13679 14463 15724 20252 60090
50% 16859 15310 15876 17502 18026 20656 25208 74105
60% 22182 20225 20880 22364 24403 27858 34538 101534

TABLE II
AVERAGE DOWNLOAD TIME (IN MILLISECONDS) FOR REGION AND BANDWIDTH

INCREASE
 CR/
Loss 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Low 9363 8253 7964 8552 8650 7570 7607 16801
Med. 11096 9746 9797 10108 9551 9959 12270 34374
High 16534 15048 15169 16252 17100 19264 23830 70402
B 233% 150% 100% 67% 43% 25% 11% 0%

As expected, if no coding is used (that is, the code rate is
equal to 1), the download time increases drastically when
losses increase. When losses are low, code rates 0.8 and 0.9
provide the minimum download time. Calculating the average
download time for low losses (Table II), both 0.8 and 0.9
provide a similar value (only a difference of 0.5%). Therefore,
as the bandwidth increase for code rate 0.9 is lower, this code
rate will be chosen for the low protection state.

Regarding the medium losses region, the code rate with
lowest average download time is 0.7. Finally, with very high
losses, the code rate that minimizes the download time is 0.4.

Nevertheless, since in the scenario proposed in this paper

 7

the bandwidth is a limited resource (and that is why only one
transmission channel is used), it is not acceptable to use a code
rate that increases excessively the bandwidth. In this sense, the
code rate 0.4 provides the best results for high losses at the
expense of increasing the channel bandwidth a 150%.
Comparing the results obtained for high losses with code rates
of 0.4 and 0.7, the download time with a code rate of 0.7 is
only 15% higher than the one obtained with a code rate of 0.4
when losses are 50%, whereas when losses are 30%, the
download time of 0.7 is barely 4% higher than the one
obtained with a code rate of 0.4. The difference regarding the
bandwidth increase is clear: 43% with a code rate of 0.7
against 150% with 0.4. Therefore, the code rate of 0.7 will be
chosen when losses are both medium and high, as mentioned
in Section II.

Summarizing, in the low protection state, the server will
send data using a code rate of 0.9, whereas in the high
protection state, the server will use a code rate of 0.7.

In order to calculate the threshold values of the low and
medium regions shown in Fig. 2(b), that is, λL and λM, it is
needed to compare the behavior of the code rates (CR) 0.7 and
0.9. In this sense, Fig. 5 depicts the download time of both
code rates for different percentage of losses.

Fig. 5. Download time comparison between CR=0.7 and CR=0.9.

As Fig. 5 shows, when losses are equal or lower than 8%,
the code rate 0.9 provides lower download times, whereas
from 9% of losses the code rate of 0.7 is more suitable. Also,
there is an area where the difference regarding the download
time among the two code rates is very low, as Fig. 5 stresses.
This area delimits the hysteresis zone. Initially, in order to
provide a reasonable (not very tight) value of hysteresis, λL
and λM will differ a 5%. Therefore, according to Fig. 5 and
Table I, the values of the thresholds will be: λL=7%, λM=12%
and λH=30%. These values will be analyzed in Section IV.E.

B. Losses model
The studies here presented consider that there are n=100

clients in the coverage area. In order to analyze the behavior
of the system proposed, five different scenarios with different
distributions of losses are defined. In all scenarios, clients are
continuously moving within the coverage area, with the aim of
analyzing how the system works when losses change.

The distribution of the instantaneous losses of all clients for
each instant of time of the first scenario is represented in Fig.
6. This scenario considers 10 instants of time. The figure

shows the percentage of clients per losses region as well as the
hysteresis region. Clients in the hysteresis zone will be in the
low or in the medium losses region depending on the state
protection. Moreover, the figure also shows the average losses
perceived by all clients for each instant of time. On the other
hand, Fig. 7 depicts, for the same losses distribution, the
distance from clients to the server for three certain instants of
time (when losses are medium, high and low respectively),
and it can be clearly seen how clients are distributed along
time. That figure also shows three circles that represent the
losses thresholds λL, λM and λH. As mentioned, the amount of
clients in each one of these circles will determine the state of
the system and therefore the code rate.

Fig. 6. Losses distribution for scenario 1.

Fig. 7. Distance to the server in scenario 1 for instants of time 0, 1 and 6.

Fig. 8. Losses distribution for scenario 2.

Fig. 9. Losses distribution for scenario 3.

 8

In the second scenario, the distribution of losses is different,
existing time intervals when clients get closer to the server and
others when clients move further away from it, as Fig. 8
shows. In addition, in the third scenario (Fig. 9) the losses are,
in general, rather higher.

On the other hand, the fourth scenario is rather different
from the previous ones, since losses change more abruptly.
Fig. 10 shows the distribution of losses for each instant of time
as well as the average losses along the time.

Finally, the fifth scenario, shown in Fig. 11, will be used to
evaluate the effect of the hysteresis. To that extent, the
scenario considers many time intervals, specifically 100,
instead of 10 used in the previous scenarios. Moreover, the
average losses will be all around the hysteresis zone.

Fig. 10. Losses distribution for scenario 4.

Fig. 11. Losses distribution for scenario 5.

C. Adaptive code rate
The value of parameters Nh and Nm has a great influence on

the performance of the system proposed. As mentioned, it is
necessary to give more priority to those clients who perceive
high losses, therefore if a low percentage of clients has high
losses the protection must be increased. In the following study,
we will consider Nh=17% (1/6) and Nm=33% (1/3), and then
we will analyze other values. Therefore, if more than a sixth of
clients have high losses or more than a third of clients have
medium or high losses, the server will be in the high
protection state. Also, initially we will consider that α=1, so
the server will not smooth the losses perceived by the clients.
In the three scenarios used in this subsection this value seems
appropriate since there are not excessively abrupt changes in
losses.

As mentioned previously, this paper presents both analytical
and experimental measurements. In the figures shown, the
analytical results are presented as an upper error bar that
represents the difference regarding the download time
obtained in the experimental results.

The performance of the adaptive system in scenario 1 is
shown in Fig. 12. The figure shows the average download
time per instant of time for different code rates: a fixed code
rate of 0.7, a fixed code rate of 0.9, the adaptive code rate and
the ideal case. This ideal case considers that each client
connects to a channel which transmits with the optimum code
rate according to their losses. That is, this case corresponds
with the proposal presented in [16] after all parity channels
(with code rates 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9) plus the base
channel have been created. In this way, the ideal case provides
the minimum average download time possible.

Initially (in the instant of time 0) the adaptive system is in
the low protection state (CR=0.9), and the adaptation begins in
the next instant of time. Fig. 12 reflects how the adaptive
system changes its protection state according to the client
losses in each instant of time. As figure shows, the behavior of
the adaptive system is rather good, since the server is sending
data, in most cases, with the code rate that minimizes the
download time. Apart from the initial instant of time, in the
instant of time 8 the adaptive system is not transmitting with
the optimum code rate. Nevertheless, in this case, the
difference regarding the download time between code rates 0.7
and 0.9 is minimal, therefore in this scenario the adaptive
system works almost perfect. Comparing with the ideal case,
the adaptive system provides, on average, download times
over 20% higher, which is a rather good result.

Fig. 12. Download time evaluation in scenario 1 for Nh=1/6, Nm=1/3.

The good behavior of the adaptive system is proven in
scenarios 2 and 3, as Fig. 13 and Fig. 14 reflect.

Comparing the experimental and the analytical results in
these three scenarios, we see that, in general, analytical results
provide higher download times, but the difference is not very
meaningful (it is not higher than a 10% in all cases). In fact,
both experimental and analytical results provide the same
adaptive protection state in all instants of times, so the
analytical model works rather well. The differences among
two models are due to the precision of transmission rate
module of the implemented file server when calculating the
experimental results and due to the value of the inefficiency
ratio used in the analytical results. Note that the value of the
inefficiency ratio can not be calculated analytically in some
codes (those which do not belong to the MDS category), since
the inefficiency ratio depends on the order of the packets upon
arrival. In this study we have used a specific value of the
inefficiency ratio for each code rate, according to the results
presented in [18].

 9

Fig. 13. Download time evaluation in scenario 2 for Nh=1/6, Nm=1/3.

Fig. 14. Download time evaluation in scenario 3 for Nh=1/6, Nm=1/3.

As mentioned, one of the most important parameters to take
into account is the bandwidth increase due to the use of AL-
FEC. As Table II has shown, the bandwidth increases over
11% with a code rate equal to 0.9 (in low protection state),
whereas the increase of bandwidth for 0.7 (in high protection
state) is over 43%. Thus, the average bandwidth increase in
the adaptive system will depend on the protection state. In
scenario 1 the average bandwidth increase is 19.8%, in
scenario 2 is 19.8% too, and in scenario 3 is 34.2%. The
bandwidth distribution per time intervals in the different
scenarios is shown in Fig. 15. In this point, it is worth
comparing the results obtained with the adaptive case
regarding the ideal case [16]. As mentioned, the ideal case
provides, on average, a download time over a 20% lower than
the adaptive case. Nevertheless, the ideal case provides an
overhead of 396% (considering six parity channels plus the
base channel).

 (a) (b)

 (c)
Fig. 15. Bandwidth increase in different scenarios. (a) Scenario 1. (b)
Scenario 2. (c) Scenario 3.

So far, we have considered that clients with high and
medium losses have more weight than those with low losses.
In order to analyze the effect of this condition, the next study

gives the same priority to all losses areas, therefore the values
of Nh and Nm change: Nh=33% (1/3) and Nm=67% (2/3). As a
result, the server tends to be more frequently in the low
protection state, as Fig. 16 (scenario 1) and Fig. 17 (scenario
2) show. Comparing with the ideal case, the difference
regarding the download time among adaptive and ideal is
approximately the same that in the previous studies, that is,
over 20%.

Nevertheless, although in previous scenarios the adaptive
system works rather well, in environments with a huge
number of clients with high losses, previous values of Nh and
Nm are not appropriate, such as in scenario 3, shown in Fig. 18.

Once again, both analytical and experimental results for the
previous three study cases provide similar values, with a
difference regarding the download time lower than a 10%.

Fig. 16. Download time evaluation in scenario 1 for Nh=1/3, Nm=2/3.

Fig. 17. Download time evaluation in scenario 2 for Nh=1/3, Nm=2/3.

Fig. 18. Download time evaluation in scenario 3 for Nh=1/3, Nm=2/3.

Finally, we study a particular case. We suppose that the
server is sending the same file in a carousel, and each instant
of time represents the moment when the server has sent the
last packet of the file (that is, the end of the carousel). Thus,
the time among two consecutive instants of time is the
carousel period.

Initially all clients within the coverage area are interested in
this file, so they start downloading it when the server begins to
send data. Depending on the losses perceived by each client
and on the code rate used to send the file, clients could need
more than one transmission of the file (that is, various carousel

 10

cycles) to download it. After completing the download, clients
leave the channel, so do not send more reports to the server.
Therefore, the server only will consider those reports received
by the clients within the coverage area for each instant of time.
Next study analyzes the number of clients that have completed
their downloads in each carousel cycle. In this case, scenario 2
has been used.

(a)

(b)

(c)

Fig. 19. Evaluation of the number of cycles to complete the download in
scenario 2 for Nh=1/6, Nm=1/3. (a) Adaptive. (b) CR=0.9. (c) CR=0.7.

Fig. 19 depicts, for each instant of time, the percentage of
clients that have download a certain percentage of the file,
analyzing the cases of adaptive code rate –Fig. 19(a) –, and
code rates 0.9 –Fig. 19(b) –, and 0.7 –Fig. 19(c). Obviously, as
the protection increases, the number of cycles decreases. It is
good to recall that, although using a high protection (low code
rate) always decreases the number of cycles needed to
download a file, this does not entail that the download time
decreases, since the carousel size and the carousel period
increases, as we have seen previously. Focusing on the
adaptive graph of Fig. 19(a), we can see that after the first
cycle period (instant of time 1), 63% of clients have
downloaded completely the file, whereas a 3% have not
downloaded even the half of the file (40-49%). One carousel
cycle later, 96% of clients have completed their downloads.

On the other hand, each time the server changes the code
rate, clients have to discard the parity packets previously
received. Even so, as Fig. 19(a) shows, the adaptive code rate
provides (slightly) better results than the code rate 0.9 –Fig.
19(b). The performance can be improved if clients, instead of
discarding parity symbols previously received when the code
rate changes, save them in case the server sends data with the
previous code rate in future carousel cycles.

It should be noted that considering that clients leave the
channel once they have completed the download causes that
the protection state changes. Thus, after the first carousel cycle
the code rate changes from 0.9 to 0.7, whereas if consider that
all clients remain within the coverage area, the code rate does
not change during the first carousel cycles, as Fig. 13 showed.

D. Evaluation of the smoothing
In networks where clients have high mobility, losses are

continuously changing. On some occasions, when calculating
the losses for a certain instant of time it can occur that the
estimation is not correct, since there are peak errors that distort
the average losses. In those cases, it is very common the use of
a smooth factor, through which the server considers both the
current and the previous losses in order to estimate the system
losses. In the three scenarios previously shown, as there were
not abrupt changes regarding the losses, no smooth process
was used (and thus α was equal to 1). In order to evaluate how
this smooth parameter affects the system proposed, next study
considers the scenario 4. Fig. 20 shows the distribution of the
average losses of n=100 clients along time as well as the
smooth effect for different values of α. In this scenario some
bursts appear, where losses change rapidly.

Fig. 20. Average losses distribution and smooth effect in scenario 4.

The methodology used is the same employed in the
previous studies, that is, in each instant of time clients report
their losses, the server smoothes them and then it chooses the
optimum code rate according to this information. Note that
clients only inform about the losses they are perceiving in a
specific instant of time. For example, in the instant of time 1,
clients only inform about the losses they perceive in that
instant, and not about the partial losses perceived between the
instants of time 0 and 1.

Fig. 21 compares the average download time obtained for
different values of α for each instant of time. In the figure, the
download time is in range [8000 ms, 12000 ms]. Due to the
smooth process, in those cases where the value of α is low, the
server tends to be in the same protection state. Fig. 21 shows
that, in this scenario, smoothing the losses provides better
results. Specifically, the system adapts better to the changing
losses using α=0.3 or α=0.5. Analyzing the system behavior
for α=0.3, we can see that the server sends at an optimum code
rate in 8 out of 10 time intervals. This is a very good result,
since in the instants of time when the server does not send
with the optimum code rate, the difference between the

 11

adaptive and the optimum code rate is pretty minimal.
Therefore, we can consider that the adaptive system performs
very well using an appropriate smooth factor. Obviously, an
erroneous estimation of the losses can increase the average
download time of the clients as well as the bandwidth.

Fig. 21. Download time evaluation for different values of α in scenario 4 for
Nh=1/6, Nm=1/3.

E. Delivery frequency of the feedback messages
Regarding the transmission of the feedback messages from

the clients to the server, there are two main methods to send
these reports: synchronously or asynchronously. In the first,
clients send periodically their losses reports with a delivery
frequency which depends on, for instance, the number of users
and the available bandwidth. In the latter, clients inform about
their losses only when it is necessary (for instance, when they
detect a meaningful change of losses). As an example, it
should be mentioned that RTP/RTCP [21] implement both
mechanisms: a synchronous one, where users send their
reports with a certain offset to avoid the feedback implosion
problem; and an asynchronous mechanism (immediate
feedback), where users report the server only when required.

In this way, when choosing the best policy to decide the
delivery period of the feedback messages, there are several
things to take into account:
- If the delivery period of the feedback messages is very

short, too much traffic is introduced into the network.
There would be many collisions between the feedback
messages of all clients, which could lead to network
congestion. Also, if losses do not change excessively it is
not worth sending too many reports.

- Moreover it is not optimal to change continuously the code
rate: clients have to discard continuously the parity packets
previously received and generate the parity matrix. If
clients do not send very frequently their reports, the server
does not need to recalculate and generate a new optimum
code rate constantly.

- On the other hand, sending feedback messages with a low
frequency could become the system inefficient.

In this sense, we consider a good alternative that clients
send the feedback messages each time they receive a FLUTE
block. It should be noted that in FLUTE the coding is
generated by block, so different blocks of the same file can
have different coding and/or code rate. Thus, the delivery
period of the feedback messages should be equal or higher
than the transmission time of a FLUTE block. This solution is
similar to the one used by DASH clients to request for new
segments each time a segment is received.

The size of a block depends on the parameters established
in the blocking algorithm (such as the code rate or the
encoding symbol length). LDPC codes, used in this proposal,
work more efficiently with higher block sizes [31]. But when
choosing the size of the blocks it should be taken into account
the computational resources of the mobile receivers (the
higher the block size the more complex the decoding), so there
is a trade-off between coding efficiency and computational
cost.

Different tests carried out by the authors (some of them are
shown in [18]) prove that a block size of 3000 FLUTE packets
offers good results of the coding efficiency and the decoding
time. Precisely, the experiments presented in this paper have
been carried out with blocks of 3000-packet size. According to
the results presented in Table I, the transmission of a block of
this size takes among 7000 and 15000 ms using the optimal
code rate for different channel losses. Thus, assuming an
average of 10000 ms, with an average feedback delivery
period of 10000 ms and 100 users in the system, the
bandwidth consumed by the feedback messages will be around
8 kbps (considering that the feedback packet size is around
100 B). This is a good value taking into account that the
multicast transmission rate considered is 5 Mbps. Also,
following the DASH example, a feedback time of 10 s is
reasonable compared to the feedback times used to request
DASH segments (2 s in Microsoft Smooth Streaming or 10 s
in Adobe HTTP Dynamic Streaming [32]).

These results show that the proposal of sending feedback
messages after receiving each block results convenient in
terms of bandwidth, which is one of the premises of this paper.
In any case, an exhaustive analysis of the delivery period of
the feedback messages is part of the future work.

F. Evaluation of the hysteresis
The last study evaluates how the hysteresis affects two main

parameters: the average download time and the number of
times that the state protection changes. If the server changes
their protection state too frequently, the adaptive system could
become inefficient: the server is changing the code rate
continuously whereas the clients are consuming more
computational resources since they have to process a lot of
coding changes. Thus, there is a trade-off between minimizing
the download time and the number of state changes.

Scenario 5 is used to evaluate the hysteresis, shown in Fig.
11. In that scenario, the average losses for each instant of time
fluctuates in range [8%, 17%], in this way the state protection
changes very frequently. With the aim of evaluating the
hysteresis effect, we fix the lower threshold (λL) to 7% and we

 12

increase the upper threshold (λM) progressively. Fig. 22 shows
the results obtained regarding the number of state changes and
the average download time of all clients considering all the
time intervals. In the graph, the x label represents the threshold
interval, that is, λM - λL. Thus, a value of threshold interval
equal to 1 indicates that: λL=7% and λM =8%. It should be
noted that, in this study we establish Nh=1/3 and Nm=2/3, so
that the high losses do not mask the effect of the hysteresis.

Obviously, as the threshold interval increases, the number
of state changes is lower, since the system tends to be in the
same state protection. However, as the threshold interval is
higher the average download time increases.

As Fig. 22 shows, the threshold interval used in the
previous studies (5%, λL=7% and λM =12%) represents a good
trade-off, since there are not very much changes of protection
state and the average download time does not get worse
considerably regarding the minimum value (only 1.5%
higher).

Fig. 22. Number of state changes and average download time depending on
the threshold interval in scenario 5 for Nh=1/3, Nm=2/3.

G. Server algorithm
After evaluating all the parameters presented in the paper,

this last subsection presents an algorithm that summarizes the
process carried out by the server to obtain the best code rate
for each instant of time so as to provide an optimal delivery.

It should be mentioned that the algorithm is heuristic, since
it uses the different parameters obtained throughout the
evaluation section. The fact that the algorithm works well for
the five scenarios evaluated provides a certain guarantee to be
valid in other scenarios.

Initially, the server fixes a conservative value of the code
rate (CR=0.9) in order to save bandwidth. Also, the server
considers an environment of low client mobility (so α=1) and
that clients with high losses have more priority than those with
low losses (Nh=1/6 and Nm=1/3). According to the previous
studies the parameters that delimit each losses region are fixed
to λL=7%, λM=12% and λH=30%.

For each instant of time the server creates a vector with the
losses of those clients who have sent losses reports. If the
percentage of clients with high losses is very low (≤5%), the
server could give the same priority to all losses regions by
assigning Nh=1/3 and Nm=2/3. Next, the server checks if the
percentage of losses perceived by each client has changed a lot
regarding the previous instant of time, by comparing the
current losses vector with the previous. If the average
increment or decrement of losses perceived by the clients is
higher than a 10%, the server increases the value of α.

Otherwise the server reduces α (note that 0≤α≤1). We apply
the additive-increase/multiplicative-decrease algorithm (using
the results obtained in the studies carried out in this paper),
which is used by RTP/RTCP for dynamic adjustment of the
bandwidth as well as TCP (Transmission Control Protocol) to
manage network congestion. Then the server calculates the
smoothed losses of all clients, generating a smooth losses
vector. After that, the server counts the number of clients in
each losses region and calculates the new protection state, and
thus the code rate.
Algorithm 2
 1: Fix parameters (λL=7%, λM=12%, λH=30%)
 2: Initialize (CR=0.9, Nh=1/6 and Nm=1/3, α=1)
 3: for (each instant of time)
 4: Generate “losses_vector” and calculate nH, n
 5: if (nH/n ≤ 5%) then Nh=1/3, Nm=2/3
 6: else then Nh=1/6, Nm=1/3
 7: end
 8: if (losses variation ≥ 10%) then αcurrent=0.8·αprev
 9: else then αcurrent=αprev+0.1
10: end
11: Calculate “smooth_losses_vector” and nM, nH, n
12: if (nH/n ≥ Nh) then CR=0.7
13: else if ((nM+nH)/n ≥ Nm) then CR=0.7
14: else then CR=0.9
15: end
16: end

V. CONCLUSIONS
The adaptive system presented in this paper represents a

good solution for file transmission in multicast environments.
The use of an adaptive code rate minimizes the average
download time of all clients within the coverage area, with a
reasonable use of bandwidth.

Although there is an optimum code rate per each client
depending on the amount of losses perceived, a given code
rate performs well in a wide interval of packet losses around
the code rate that minimizes the download time. Therefore, it
is possible to send using a code rate that benefits the major
part of users. In order to do this, it is necessary to analyze the
losses perceived by each client and decide the optimum code
rate for each situation. In the studies carried out two different
code rates have been considered: one code rate when the
major part of clients have low losses and another one when
they have medium-high losses. Clients with high losses must
have more priority than those with low losses, since using
insufficient protection for clients with high losses penalizes
more the download time than using too much protection for
clients with low losses. As the results have shown, the
adaptive system proposed works very well using only two
different code rates. The value of these code rates has a great
impact on the system performance, as well as the thresholds
that delimit the protection state of the system, which establish
the code rate used to transmit. In this sense, it is recommended
the use of hysteresis to avoid too much coding changes.

As a particular case, this paper has shown a carousel where
the server sends the same file in each loop and clients
download the file in one or several carousel cycles, depending

 13

on the losses. In that case, the adaptive system performs rather
well, despite the fact that the optimum code rate could change
every carousel cycle and clients must discard the parity
packets previously received.

Finally, in environments where the losses perceived by the
users change very abruptly, it is recommended that the server
smoothes the losses when it chooses the optimum code rate. In
that case, choosing an accurate smooth factor has a great
influence on the suitable performance of the adaptive system.

To sum up, the adaptive mechanism proposed in this paper
represents a good trade-off between the bandwidth used by a
file server and the Quality of Experience perceived by the
clients, therefore it is appropriate for content download
services in multicast wireless networks.

REFERENCES
[1] Digital Video Broadcasting (DVB); Framing structure, channel coding

and modulation for digital terrestrial television, ETSI EN 300 744
v1.5.1, Jun. 2004.

[2] Advanced Television Systems Committee (ATSC) standards webpage,
available at: http://www.atsc.org/cms/index.php/standards/.

[3] World Bank, “Information and Communications for Development 2012:
Maximizing Mobile,” available at: http://www.worldbank.org, 2012.

[4] D. Dujovne and T. Turletti, “Multicast in 802.11 WLANs: an
experimental study,” presented at ACM Int. Symp. on MSWIM, Málaga,
Spain, Oct. 2006.

[5] T. Stockhammer and M. G. Luby, “DASH in mobile networks and
services,” presented at IEEE Visual Communications and Image
Processing (VCIP), San Diego, CA, USA, Nov. 2012.

[6] Universal Mobile Telecommunications Systems (UMTS); LTE;
Multimedia Broadcast/Multicast Service (MBMS); Protocols and
Codecs, ETSI TS 126 346 v11.3.0, Jan. 2013.

[7] D. Lecompte and F. Gabin, “Evolved Multimedia Broadcast/Multicast
Service (eMBMS) in LTE-Advanced: Overview and Rel-11
Enhancements,” IEEE Communications Magazine, vol. 50, no. 11, pp.
68-74, Nov. 2012.

[8] ISO/IEC 23009-1, “Dynamic adaptive streaming over HTTP (DASH) –
Part 1: media presentation description and segment formats, 2012.

[9] T. Paila, R. Walsh, M. Luby, V. Roca, and R. Lehtonen, “FLUTE– File
delivery over unidirectional transport,” IETF RFC, vol. 6726, Nov.
2012.

[10] Digital Video Broadcasting (DVB); IP Datacast over DVB-H: Content
Delivery Protocols, ETSI TS 102 472, v1.3.1, Jun. 2009.

[11] Digital Video Broadcasting (DVB); Transport of MPEG-2 TS Based
DVB Services over IP based Networks (and associated XML), ETSI TS
102 034 v1.4.1, Aug. 2009.

[12] I. de Fez, F. Fraile, and J. C. Guerri, “Effect of the FDT transmission
frequency for an optimum content delivery using the FLUTE protocol,”
Computer Communications, vol. 36, no. 12, pp. 1298-1309, Jul. 2013.

[13] J. Lacan and T. Pérennou, “Evaluation of error control mechanisms for
802.11b multicast transmissions,” presented at Int. Symp. on Modeling
and Optimization in Mobile, Ad Hoc and Wireless Networks, Boston,
USA, Apr. 2006

[14] M. Kobayashi, H. Nakayama, N. Ansari, and N. Kato, “Reliable
application layer multicast over combined wired and wireless networks,”
IEEE Trans. on Multimedia, vol. 11, no. 8, pp. 1466-1477, Dec. 2009.

[15] H.-T. Chiao, S.-Y. Chang, K.-M. Li, Y.-T. Kuo, and M.-C. Tseng,
“WiFi multicast streaming using AL-FEC inside the trains of high-speed
rails,” presented at IEEE Int. Symp. on BMSB, Seoul, Korea, Jun. 2012.

[16] I. de Fez, F. Fraile, R. Belda, and J. C. Guerri, “Analysis and evaluation
of adaptive LDPC AL-FEC codes for content download services,” IEEE
Trans. on Multimedia, vol. 14, no. 3, pp. 641-650, Jun. 2012.

[17] C. Neumann, V. Roca, A. Francillon, and D. Furodet, “Impacts of packet
scheduling and packet loss distribution on FEC performances:
observations and recommendations,” in Proc. of CoNEXT, Toulouse,
France, Oct. 2005, pp. 166-176.

[18] I. de Fez, F. Fraile, R. Belda, and J. C. Guerri, “Performance evaluation
of AL-FEC LDPC codes for push content applications in wireless
unidirectional environments,” Multimedia Tools and App., vol. 60, no. 3,
pp. 669-688, Oct. 2012.

[19] I. Busse, B. Deffner, and H. Schulzrinne, “Dynamic QoS control of
multimedia applications based on RTP,” Computer Communications,
vol. 19, no. 1, pp. 49-58, Jan. 1996.

[20] Digital Video Broadcasting (DVB); Transport of MPEG-2 TS Based
DVB Services Over IP Based Networks, ETSI TS 102 024 v1.4.1, Aug.
2009.

[21] J. Ott, S. Wenger, N. Sato, C. Burmeister, and J. Rey, “Extended RTP
profile for real-time transport control protocol (RTCP) –based feedback
(RTP/AVPF),” IETF RFC, vol. 4585, Jul. 2006.

[22] J. C. Guerri, M. Esteve, C. Palau, and V. Casares, “Feedback flow
control with hysteresial techniques for multimedia retrievals,”
Multimedia Tools and App., vol. 13, no. 3, pp. 307-332, Mar. 2001.

[23] J. Peltotalo, S. Peltotalo, J. Harju, and R. Walsh, “Performance analysis
of a file delivery system based on the FLUTE protocol,” Int. J. Commun.
Syst., vol. 20, no. 6, pp. 633-659, Jun. 2007.

[24] R. G. Gallager, “Low density parity check codes,” IRE Trans. Inf.
Theory, vol. 8, no. 1, pp. 21-28, Jan. 1962.

[25] V. Roca, C. Neumann, and D. Furodet, “Low density parity check
(LDPC) staircase and triangle forward error correction (FEC) schemes,”
IETF RFC, vol. 5170, Jun. 2008.

[26] E. Paolini, M. Varrella, M. Chiani, B. Matuz, and G. Liva, “Low-
Complexity LDPC Codes with Near-Optimum Performance over the
BEC,” in Proc. Advanced Satellite Mobile Systems (ASMS), Bologna,
Italy, Aug. 2008, pp. 274-282.

[27] M. Zúñiga-Zamalloa and B. Krishnamachari, “An analysis of
unreliability and asymmetry in low-power wireless links,” ACM Trans.
on Sensor Networks (TOSN), vol. 3, no. 2, Jun. 2007.

[28] IEEE Computer Society, “Std 802.11b, Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) specifications:
Higher-Speed Physical Layer Extension in the 2.4 GHz Band,” Sep.
1999.

[29] T. S. Rappaport, Wireless communications. Principles & Practice,
Prentice Hall Communications Engineering and Emerging Technologies
Series, 1996.

[30] B. Liang and Z. Haas, “Predictive distance-based mobility management
for PCS networks,” in Proc. of INFOCOM, vol. 3, New York, USA,
Mar. 1999, pp. 1377-1384.

[31] V. Roca and C. Neumann, “Design, evaluation and comparison of four
large block FEC Codecs, LDPC, LDGM, LDGM Staircase and LDGM
Triangle, plus a Reed-Solomon small block FEC codec,” INRIA, Rhône-
Alpes, Montbonnot-St-Martin, France, INRIA Res. Rep. RR-5225, Jun.
2004.

[32] S. Akshsabi, S. Narayanaswamy, A. C. Begen, C. Dovrolis, “An
experimental evaluation of rate-adaptive video players over HTTP,”
Signal Processing: Image Communication, vol. 27, no. 4, pp. 271–287,
2012.

Ismael de Fez received his Telecommunications
Engineering degree and the M.S. in Telematics from the
Universitat Politècnica de València (UPV), Spain, in
2007 and 2010 respectively. Currently he works as a
researcher at the Multimedia Communications research
group (COMM) of the Institute of Telecommunications
and Multimedia Applications (iTEAM), where he is
working toward his Ph. D. degree. His areas of interest

are file transmission over unidirectional environments and file encoding.

Juan Carlos Guerri received his M.S. and Ph. D. (Dr.
Ing.) degrees, both in Telecommunication Engineering,
from the Universitat Politècnica de València (UPV), in
1993 and 1997, respectively. He is a professor in the
E.T.S. Telecommunications Engineering at the UPV,
and he leads the Multimedia Communications research
group (COMM) of the iTEAM Institute. He is currently
involved in research and development projects for the
application of multimedia to industry, medicine,

education and communications.

