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Abstract 14 

The aim of this study was to develop a model able to correctly reproduce the 15 

filtration process of submerged anaerobic MBRs (SAnMBRs). The proposed model 16 

was calibrated and validated in a SAnMBR demonstration plant fitted with 17 

industrial-scale hollow-fibre membranes. Three suspended components were 18 

contemplated in the model: total solids concentration; dry mass of cake on the 19 

membrane surface; and dry mass of irreversible fouling on the membrane surface. 20 

The model addressed the following physical processes: the build-up and 21 

compression of the cake layer during filtration; cake layer removal using biogas 22 

sparging to scour the membrane; cake layer removal during back-flushing; and the 23 

consolidation of irreversible fouling. The short- and long-term validation of the 24 

model resulted in correlation coefficients (R2) of 0.962 and 0.929, respectively. 25 

 26 
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Highlights  1 

 2 
A model for filtration in SAnMBRs has been developed. 3 

This model (based on the resistance-in-series model) can easily be used with any 4 

biological model.  5 

The model was calibrated and validated using industrial-scale hollow-fibre 6 

membranes. 7 

Short- and long-term validation resulted in R2 of 0.962 and 0.929, respectively.  8 

 9 

Graphical abstract 10 

 11 

 12 

1. Introduction 13 

 14 

In recent years, membrane bioreactors (MBRs), particularly submerged versions 15 

[1], have attracted a lot of attention in the realm of wastewater treatment. Rather than 16 

aerobic MBRs, submerged anaerobic MBRs (SAnMBR) have emerged as a promising 17 

technology for municipal wastewater treatment because not only do they feature the 18 

main advantages of MBRs (i.e. clarified and partially disinfected effluent and a smaller 19 

environmental footprint for WWTPs) but they also offer the greater sustainability of 20 

anaerobic rather than aerobic processes, i.e. low sludge production (due to low 21 

anaerobic biomass yield), low energy consumption (no aeration required) and, finally, 22 

the biogas generated can be used as an energy resource.  23 
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 1 

However, further study of membrane technology is needed in order to gain more 2 

insight into how to optimise their efficiency. One key operating challenge of SAnMBR 3 

technology in particular concerns how membrane performance can be optimised whilst 4 

minimising membrane fouling. In this respect, mathematical modelling of MBR 5 

technology may help provide an insight into the factors that play a key role in 6 

membrane fouling [1], whilst providing invaluable data for the design, forecast and 7 

control of membrane technology [2].  8 

 9 

The biological processes involved in MBR systems can be successfully modelled 10 

by using either classical models [3, 4] or plant-wide models [5, 6]. 11 

 12 

As for the modelling of the physical processes (in addition to the modelling of 13 

integrated processes, i.e. biological + physical processes), several empirical/semi-14 

empirical models have been proposed [7, 8, 9] to express the relationship between 15 

sludge characteristics and/or operating conditions, and membrane fouling. Broekmann 16 

et al. [10] modelled the pore blocking and cake formation in membrane filtration taking 17 

into account the adhesive forces between the particles and the membrane surface, and 18 

also the impact of the particle and membrane pore size distributions. Duclos-Orsello et 19 

al. [11] proposed a model for the decrease in flux during microfiltration (as a function of 20 

the bulk solids concentration) using three classical fouling mechanisms: pore blockage, 21 

pore constriction and cake formation. Li and Wang [12] proposed a “comprehensive 22 

mathematical model for membrane fouling in a submerged MBR” that includes the 23 

impact of shear intensity on membrane scouring. Brusch et al. [13] created a model of 24 

submerged hollow-fibre (HF) membrane filtration that incorporated the geometry and 25 

hydrodynamics of the system. Zarragoitia-González et al. [14] developed a 26 
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mathematical model for simulating the filtration process and impact of aeration in 1 

submerged MBRs, including biological kinetics and the dynamics of sludge build-up on 2 

membranes and its removal by the formation and degradation of soluble microbial 3 

products (SMP). Mannina et al. [1] proposed an advanced model for MBR systems that 4 

takes into account the exchange of mixed liquor total solids (MLTS) and SMP between 5 

mixed liquor and membrane surface. Wu et al. [15] modelled membrane fouling in a 6 

submerged MBR by considering the role of MLTS, soluble and colloidal components, 7 

activated sludge floc distribution and aeration intensity. 8 

 9 

Most of the above-mentioned modelling approaches can reproduce the way in 10 

which sludge affects membrane performance. However, these models usually rely on 11 

parameters that cannot be measured on line and require specific laboratory equipment 12 

(e.g. SMP). Moreover, some of them cannot reproduce the impact of the different 13 

membrane module operating stages (relaxation, back-flushing…) or cannot easily be 14 

used together with a given biological model. In this respect, some authors are currently 15 

developing simple new filtration models that can easily be used in conjunction with 16 

biological processes in an attempt to reproduce the impact of the most critical fouling 17 

variables, i.e. membrane tank shear intensity and MLTS. For instance, Ludwig et al. 18 

[16] proposed a dynamic model for simulating submerged membranes on the basis of 19 

the standard parameters usually measured in filtration processes (MLTS and cross flow 20 

aeration); whilst Sarioglu et al. [17] proposed a “resistance-in-series” membrane 21 

filtration model that considers overall membrane resistance in terms of three distinct 22 

components: intrinsic membrane resistance, accumulated solids resistance and 23 

membrane fouling resistance.   24 

 25 

The main objective of our study, based on said resistance-in-series filtration model, 26 
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is to propose a filtration model able to correctly reproduce the filtration performance of 1 

SAnMBR technology. On the basis of the experimental results obtained whilst operating 2 

a SAnMBR plant fitted with industrial-scale HF membranes, we developed, calibrated 3 

and validated a filtration model (based on the resistance-in-series model) that can easily 4 

be used in conjunction with a biological model. The model proposed takes into account 5 

the effect of the shear intensity in the membrane tank caused by the flow of recycled 6 

biogas. This makes it possible to reproduce the membrane scouring process occurring 7 

during the different membrane module operating stages (filtration, relaxation…). The 8 

physical processes contemplated in our model are: cake layer build-up and compression 9 

during filtration; cake layer removal using biogas sparging to scour the membrane; cake 10 

layer removal during back-flushing; and the consolidation of irreversible fouling.  11 

 12 

2. Materials and methods 13 

 14 

2.1. SAnMBR plant description 15 

 16 

The filtration model proposed in our study was calibrated and validated using data 17 

obtained from a demonstration-scale SAnMBR system. The plant consists of an 18 

anaerobic reactor with a total volume of 1.3 m3 (0.4 m3 head space for biogas) 19 

connected to two membrane tanks each with a total volume of 0.8 m3 (0.2 m3 head 20 

space for biogas). Each membrane tank (MT) has one industrial HF ultrafiltration 21 

membrane unit (PURON®, Koch Membrane Systems (PUR-PSH31) with 0.05 µm 22 

pores). Each module has a total membrane surface of 30 m2. To recover the bubbles of 23 

biogas in the permeate leaving the membrane tank, two degasification vessels (DV) 24 

were installed: one between each MT and the respective vacuum pump. The funnel-25 

shaped section of conduit makes the biogas accumulate at the top of the DV. The 26 
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resulting permeate is stored in the CIP tank.  1 

 2 

Complete stirring conditions are assumed in the anaerobic reactor and the MTs. To 3 

provide proper stirring conditions in the anaerobic reactor, a portion of the sludge is 4 

continuously pumped from bottom to top. In addition, a fraction of the produced biogas 5 

is recycled from its bottom to improve the stirring conditions. On the other hand, the 6 

sludge is continuously recycled from the anaerobic reactor through the external MTs. 7 

Another fraction of the produced biogas is also recycled to the MTs from the bottom of 8 

each fibre bundle, which improves the stirring conditions. 9 

 10 

The membrane operating schedule included not only the classic membrane 11 

operating stages (filtration, relaxation and back-flushing) but also a ventilation stage. In 12 

the ventilation stage, permeate is pumped into the membrane tank through the 13 

degasification vessel instead of through the membrane. The aim of ventilation is to 14 

recover the biogas that accumulates in the degasification vessel. As regards membrane 15 

cleaning, ventilation acts as relaxation since no transmembrane flux is applied whilst 16 

maintaining a given gas sparging intensity. 17 

 18 

For further details of this SAnMBR system, see Robles et al. [18]. 19 

 20 

2.2. Monitoring system  21 

 22 

Many on-line sensors and automatic devices were installed in order to automate and 23 

control plant operations and provide on-line information about the state of the process. 24 

The on-line sensors used in this study were: 1 solids concentration sensor located in the 25 

anaerobic reactor; 1 flow indicator transmitter for the permeate pump; 1 flow indicator 26 
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transmitter for the membrane tank blower; 1 pH-temperature sensor located in the 1 

membrane tank; and 1 liquid pressure indicator transmitter to monitor the 2 

transmembrane pressure (TMP). The actuators used in this study were: 1 group of on/off 3 

flow-direction valves to control the different membrane operating stages (filtration, 4 

back-flushing, ventilation…), and 2 frequency converters to control the rotating speed 5 

of the permeate pump and the membrane tank blower.  6 

 7 

In addition to being monitored on line, grab samples of anaerobic sludge were taken 8 

once a day to assess filtration performance. MLTS was determined according to 9 

Standard Methods [19] using procedure 2540 B. Influent COD was also daily 10 

determined by Standard Methods [19]. 11 

 12 

3. Description of model  13 

 14 

Our proposed model was developed on the basis of the resistance-in-series model 15 

using the experimental results obtained from operating a SAnMBR plant fitted with 16 

industrial-scale HF membranes. Our model contemplates two parameters usually 17 

measured in filtration processes: MLTS and biogas recycling flow. Although MLTS is 18 

an elementary parameter in comparison with the complexity of the model, MLTS was 19 

defined as model input because it can be directly linked with the existing biological 20 

models and it is easy to measure. This model reproduces the main processes that occur 21 

during filtration in SAnMBRs: cake layer build-up and consolidation during filtration; 22 

membrane scouring by biogas sparging; removal of cake layer by back-flushing; and 23 

irreversible fouling consolidation. MLTS and biogas recycling flow were identified as 24 

the key model parameters related to cake layer build-up and membrane scouring by 25 

biogas sparging. In this regard, MLTS and biogas recycling flow finally determine the 26 
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dry mass of cake on the membrane surface. This was established on the basis of the 1 

experimental results obtained from different flux-step trials conducted throughout the 2 

whole operating period of the plant. On the other hand, the irreversible fouling 3 

consolidation process was considered as a function not only of the dry mass of solids 4 

forming the cake-layer but also function of an irreversible fouling rate constant. This 5 

irreversible fouling rate constant indirectly reflects the possible effect of the different 6 

bulk characteristics affecting the physiological state of the biomass thus affecting the 7 

irreversible fouling phenomenon, such as, for instance, EPSs and SMPs composition. 8 

 9 

3.1. Conceptual modelling 10 

 11 

3.1.1. Resistance-in-series model 12 

 13 

The proposed filtration model is based on the resistance-in-series model. The 14 

resistance-in-series model (Eq. 1) describes the flux through each in-series medium 15 

using Darcy’s law: the permeate volume (V, m3) is driven through each medium by a 16 

difference in transmembrane hydraulic pressure and the total filtration resistance (RT, m-17 

1) is assumed to be the sum of the different assumed partial resistances.  18 

 19 

𝐽 =
1

𝐴

𝑑𝑉

𝑑𝑡
=

𝑇𝑀𝑃

𝜇·𝑅𝑇
 (Eq. 1) 20 

 21 

Like other authors [16, 17], our model contemplates the following three partial 22 

resistances (Eq. 2): cake layer resistance (RC, m-1); irreversible fouling resistance (RI, m
-23 

1); and intrinsic membrane resistance (RM, m-1). Taking into account the membrane 24 

operating mode, cake build-up was considered to be the main fouling mechanism in the 25 
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short-term, and irreversible fouling, the main fouling mechanism in the long-term. 1 

Therefore, the model must be calibrated correctly not only in the short term but also in 2 

the long term. 3 

 4 

𝑅𝑇 = 𝑅𝐶 + 𝑅𝐼 + 𝑅𝑀 (Eq. 2) 5 

 6 

As regards RC, Sarioglu et al. [17] assumed the cake layer to be homogenous, 7 

making it possible to calculate the cake layer thickness (𝛿𝐶) using Eq. 3.  8 

 9 

𝛿𝐶 =
𝑚𝑐

𝜌𝑐· (1−𝜀) ·𝐴
 (Eq. 3) 10 

Where: 11 

- mc is the dry mass of cake layer (kg). 12 

- ρc is the cake density (kg m-3). 13 

- A is the area of the medium (m2). 14 

- ε is the porosity (dimensionless)  =
𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑟𝑒𝑠 𝑣𝑜𝑙𝑢𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑟𝑜𝑢𝑠 𝑚𝑒𝑑𝑖𝑎 𝑣𝑜𝑙𝑢𝑚𝑒
   15 

 16 

Defining the coefficient 𝑚𝑐/𝐴 as 𝜔𝐶 (the mass of cake deposited per membrane 17 

area, kg m-2), redefines the cake layer thickness thus (Eq. 4): 18 

 19 

𝛿𝐶 =
𝜔𝐶

𝜌𝑐· (1−𝜀)
 (Eq. 4) 20 

 21 

On the other hand, RC can be calculated by combining the cake layer thickness 22 

equation and the Carman-Kozeny equation for flow through porous passages as follows 23 

[17]: 24 

 25 
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𝑅𝐶 = 180
(1−𝜀)· 𝜔𝐶 

𝜀3·𝑑𝑝
2 ·𝜌𝑐

 (Eq. 5) 1 

Where: 2 

- dp is the pore diameter (m2). 3 

 4 

From Eq. 5 we define the average specific cake resistance (𝛼𝐶, m kg-1) as shown 5 

in Eq. 6 and RC can be expressed as shown in Eq. 7. 6 

 7 

𝛼𝐶 =
180·(1−𝜀)

𝜀3·𝑑𝑝
2 ·𝜌𝑐

 (Eq. 6) 8 

𝑅𝐶 = 𝜔𝐶  ·  𝛼𝐶   (Eq. 7) 9 

 10 

Concerning RI, the same approach than the one used for defining 𝛼𝐶 and 𝜔𝐶 was 11 

considered for defining the average specific irreversible fouling resistance (𝛼𝐼, m kg-1) 12 

and the mass of irreversible fouling per membrane area (𝜔𝐼, kg m-2). Therefore, 13 

assuming RM to be constant over time, the resistance-in-series model shown in Eq. 1 can 14 

be assumed to represent the dynamic evolution of TMP as shown in Eq. 8.  15 

 16 

𝑇𝑀𝑃 (𝑡) = 𝐽 ·  𝜇 ·  (𝜔𝐶 · 𝛼𝐶 +  𝜔𝐼 · 𝛼𝐼 + 𝑅𝑀) (Eq. 8) 17 

 18 

Defining the average specific resistances allows reducing a great deal of effort 19 

related to correctly determine specific characteristics of the filter medium that Carman-20 

Kozeny equation requires. It is, therefore, advisable to minimise the number of 21 

parameters to be included in the model. 22 

 23 

The value of αC was assumed to be time and TMP dependent (its calibration 24 

protocol is shown in following sections).  25 
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 1 

3.2. Cake layer compression and sub-critical fouling 2 

 3 

As per the methodology proposed by Bugge et al. [20] and Jørgensen et al. [21], a 4 

linear relationship was assumed between the specific resistance of the cake and TMP 5 

(see Eq. 9). 6 

 7 

𝛼𝐶,𝑇𝑀𝑃 =  𝛼𝐶,0 ·  (1 +  
𝑇𝑀𝑃

𝑇𝑀𝑃𝑎
) (Eq. 9) 8 

Where: 9 

- 𝛼𝐶,𝑇𝑀𝑃 is the specific resistance of the cake at the operating TMP (kg m-2). 10 

- 𝛼𝐶,0 is the specific resistance of the cake at zero pressure (kg m-2). 11 

- 𝑇𝑀𝑃𝑎 is the pressure needed to double the specific resistance (Pa). 12 

 13 

On the other hand, cake compression caused by a drop in pressure is time 14 

dependent due to both the deformation of soft sludge flocs and the structural 15 

rearrangement of particles [23]. The increase in the specific resistance of the cake as a 16 

result of the pressure drop over time is described in Eq. 10. 17 

 18 

𝑑𝛼𝐶

𝑑𝑡
=  𝑘𝑡 · (𝛼𝐶,𝑇𝑀𝑃 −  𝛼𝐶) (Eq. 10) 19 

Where: 20 

- 
𝑑𝛼𝐶

𝑑𝑡
 is the change in 𝛼𝐶 (kg m-2). 21 

- 𝑑𝑡 is the time step (s). 22 

- kt  is the time constant (s-1). 23 

-  𝛼𝐶 is the specific resistance of the cake (kg m-2). 24 
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 1 

Eq. 11 shows the Euler solution (using the Backward Euler Method) to Eq. 10. 2 

 3 

𝛼𝐶(𝑡) =  𝛼𝐶(𝑡 − 𝑑𝑡) + 𝑘𝑡 · (𝛼𝐶,𝑇𝑀𝑃 −  𝛼𝐶  (𝑡 − 𝑑𝑡)) · 𝑑𝑡 (Eq. 11) 4 

Where: 5 

- 𝛼𝐶(𝑡) is the specific resistance of the cake at time t (kg m-2). 6 

- 𝛼𝐶(𝑡 − 𝑑𝑡) is the specific resistance of the cake at a previous moment in time 7 

(kg m-2). 8 

 9 

In our study, setting the maximum time step size to 10 seconds was enough to 10 

minimise the numerical error. Moreover, the time step must be maintained at low levels 11 

to properly reproduce the effect of the different operating stages (i.e. filtration, back-12 

flushing, etc.) on membrane performance. 13 

  14 

On the other hand, the overall filtration resistance was seen to increase (even 15 

when operating sub-critically) during extended filtration periods. This was attributed 16 

mainly to increasing partial resistances, not contemplated in the model, associated with 17 

specific fouling mechanisms such as colloidal matter absorption. In this respect, Hughes 18 

and Field [24] observed that colloidal matter absorption increases the specific resistance 19 

of cake-like deposits, as a result of which their impact is greater than it would be 20 

without such absorption. Therefore, we incorporated an additional single dependence of 21 

αC on time (see Eq. 12).  22 

 23 

𝛼𝐶(𝑡) =  𝛼𝐶(𝑡 − 𝑑𝑡) + 𝑘𝑆𝐹 · 𝑑𝑡 (Eq. 12) 24 

Where: 25 
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- 𝑘𝑆𝐹 is the sub-critical fouling parameter (kg m-2 s-1). 1 

 2 

In our model, we propose that Eq. 11 (dependence of cake compression on TMP 3 

and time) be combined with Eq. 12 (dependence of sub-critical fouling on time) to give 4 

the final variation in αC (see Eq. 13). Therefore, when the maximum αC related to the 5 

structural rearrangement of particles is reached at a given TMP, it is possible to account 6 

for the increase in αC due to the absorption of colloids. 7 

 8 

𝛼𝐶(𝑡) =  𝛼𝐶(𝑡 − 𝑑𝑡) + max (𝑘𝑆𝐹 , 𝑘𝑡 · (𝛼𝐶,𝑇𝑀𝑃 −  𝛼𝐶  (𝑡 − 𝑑𝑡))) · 𝑑𝑡 (Eq. 13) 9 

 10 

3.3. Modelling approach 11 

 12 

We propose a black-box approach to describe the most important physical 13 

interactions occurring in fouling: the attachment of solids to the membrane surface; the 14 

removal of solids from the membrane surface; and the irreversible fouling of the 15 

membrane. Stirring is considered to be complete, therefore uniform MLTS and shear 16 

conditions are assumed. The notation used in this modelling approach complies with the 17 

nomenclature proposed by Corominas et al. [25] and the Petersen/Gujer matrix 18 

structure. 19 

 20 

The model contemplates 3 suspended components: 21 

𝑋TS [kg TS m-3] is the MLTS concentration (this component can be obtained from 22 

the biological model). 23 

𝑋mC
 [kg TS] is the dry mass of cake on the membrane surface. 24 

𝑋mI
 [kg TS] is the dry mass of irreversible fouling on the membrane surface. 25 
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 1 

The model we developed contemplates a total of four kinetically governed physical 2 

processes: (1) cake layer build-up during filtration; (2) cake layer removal using biogas 3 

sparging to scour the membrane; (3) cake layer removal during back-flushing; and (4) 4 

irreversible fouling consolidation. Table 1 shows the stoichiometry of these four 5 

processes. The model does not consider diffusive back transport as this process is 6 

thought to be less significant than the other processes considered [16].  7 

 8 

Table 2 shows the conversion factors to be applied to the elements of the model in 9 

the continuity equations. Since no biological processes are contemplated in relation to 10 

the cake layer, a value of 1 was assigned to the yield of 𝑋mI
 generated from 𝑋mC

. 11 

However, this parameter could be calculated by taking into account the actual content of 12 

the bulk foulants that contribute to irreversible fouling (i.e. 𝑖TS_𝑋mI
 in Table 2). 13 

 14 

Table 3 shows the kinetic expressions of the processes included in the model. 15 

Process 1 (cake layer build-up) is the convective transport of foulants (XTS in the model) 16 

to the membrane, which is a function of the permeate flow-rate (Q20P) and the bulk 17 

concentration (XTS). Process 2 (membrane scouring by biogas sparging) is the impact of 18 

the hydrodynamic conditions in the membrane tank caused by biogas sparging 19 

(measured as BRFV: biogas recycling flow per bulk volume in the membrane tank). In 20 

our study, a maximum membrane scouring velocity (qMS,Max) was defined for process 2. 21 

In process 3, the back-flushing removal rate is defined as a function of the back-flushing 22 

flow rate (Q20BF) and 𝑋mC
. Like Sarioglu et al. [17], we defined a maximum back-23 

flushing removal velocity (qBF,Max) for process 3. 24 

 25 
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One half-saturation switching function (𝑀XmC
, Eq. 14) for both membrane scouring 1 

(process 2) and back-flushing (process 3) was used to vary the removal of solids 2 

smoothly as the cake layer disappeared [17].  3 

 4 

𝑀𝑋mC
=   

𝑋mC

𝐾𝑆, 𝑋mC
+ 𝑋mC

        (Eq. 14) 5 

Where: 6 

- 𝐾𝑆,XmC
 is the half-saturation coefficient for the mass of cake solids during 7 

membrane scouring and back-flushing (kg TS). 8 

 9 

On the basis of the results obtained from different flux-step trials conducted in 10 

accordance with Robles et al. [26], a fouling rate (FR) model was defined as a function 11 

of BRFV and MLTS (see Eq. 15).  12 

 13 

𝐹𝑅 =  𝐾𝐹 ·  𝑒(𝐽20· (𝛽1· 𝐵𝑅𝐹𝑉+ 𝛽2·𝑀𝐿𝑇𝑆+𝛾))     (Eq. 15) 14 

Where: 15 

- 𝐾𝐹 is the adjustment parameter representing the fouling rate when the gross 20 16 

ºC-normalised transmembrane flux (J20) tends to zero (Pa s-1). 17 

- β1, β2, γ are the model parameters ([s2 m-1], [s m2 kg-1] and [s m-1], respectively). 18 

 19 

Eq. 15 predicts that when the membranes are operated sub-critically at given 20 

operating conditions (BRFV and MLTS), the value of FR remain low, which implies 21 

operating at maximum membrane scouring velocity (qMS,Max). On the other hand, a 22 

considerable increase in FR is observed when operating supra-critically, which implies a 23 
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reduction in the membrane scouring rate (qMS). Therefore, one sigmoid inhibition 1 

function (𝐼𝑀𝑆, Eq. 16) was defined and used in process 2 to model the impact of filtering 2 

at conditions above or below critical levels. 3 

 4 

𝐼𝑀𝑆 =
1

1 + 𝐹𝑅
=

1

1+ 𝐾𝐹· 𝑒
(𝐽20· (𝛽1·𝐵𝑅𝐹𝑉+𝛽2·𝑀𝐿𝑇𝑆+𝛾))

     (Eq. 5 

16) 6 

 7 

Moreover, on the basis of long-term experimental results, the value of γ was 8 

defined as a function of RI to account for the reduction over time in the filtering 9 

capacity of the membranes due to the onset of irreversible fouling. This dependence on 10 

irreversible fouling can be expressed as: 11 

 12 

𝛾𝑡 = 𝛾0 −  (𝑅𝐼𝑡
−  𝑅𝐼0

) ·  𝑘𝑅𝐼       (Eq. 17) 13 

Where: 14 

- γt is the value of γ at time t (s m-1). 15 

- γ0 is the value of γ at the initial time (s m-1). 16 

- 𝑅𝐼𝑡
 is the irreversible fouling resistance at time t (m-1). 17 

- 𝑅𝐼0
 is the irreversible fouling resistance at the initial time (m-1). 18 

- kRI is the proportional constant (s). 19 

 20 

Finally, the irreversible fouling (process 4) is represented in the proposed model as 21 

a direct function of 𝑋mC
 and a maximum irreversible fouling kinetic constant (qIF,Max). 22 

As mentioned before, this irreversible fouling rate constant indirectly reflects the 23 

possible effect of the different bulk characteristics affecting the physiological state of 24 
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the biomass thus affecting the irreversible fouling phenomenon, such as, for instance, 1 

EPSs and SMPs composition. In this regard, EPSs and SMPs seem to be the main 2 

factors affecting irreversible fouling in MBRs [27], which are directly dependent on 3 

both T [28] and SRT [29]. Commonly, SMP and EPS composition decrease as SRT 4 

increases, whilst SMP and EPS increase as T increases due to a higher microbial 5 

activity. Therefore, qIF,Max is expected to be function of T and SRT. Nevertheless, 6 

further research is required to assess the real dependence of qIF,Max on T and SRT and 7 

maybe to find proper link variables between biological and filtration models besides the 8 

MLTS used in this model. 9 

 10 

4. Calibration of model  11 

 12 

On the basis of the data available for estimating the parameter (dynamic 13 

measurements of TMP, MLTS and biogas recycling flow) we decided to divide the 14 

calibration procedure into the following parameter estimation subsets: off-line 15 

calibration using short-term data, dynamic calibration using short-term data, parameter 16 

estimation from experimental data, and dynamic calibration using long-term data. On 17 

the other hand, based on expert knowledge, we assigned default values to those 18 

parameters that could not be estimated from the available data. 19 

 20 

4.1. Off-line calibration in the short-term 21 

 22 

The following parameters for membrane scouring by biogas sparging were 23 

calibrated by using the short-term filtration data obtained from different flux-step trials 24 

according to Robles et al. [26]: KF, β1, β2 and γ0. The FR results from the flux-step trials 25 

were adjusted to Eq. 15 using the GRG non-linear method included in the Solver 26 
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complement of MS Excel. Figure 1 shows the FR results obtained in the flux-step trials 1 

conducted at three BRFV (0.0023, 0.0032 and 0.0046 Nm3 h-1 m-3
, equivalent to BRFs of 2 

5, 7 and 10 Nm3 h-1, respectively) and MLTS of 18.5 (Figure 1a), 22.5 (Figure 1b) and 3 

28.5 g L-1 (Figure 1c).  4 

 5 

Figure 1 illustrates the different values estimated for the parameters of Eq. 15. As 6 

Figure 1 shows, it was possible to adjust KF, β1, β2 and γ0 to identical values for the 7 

different MLTS operating levels (18.5, 22.5 and 28.5 g L-1). This clearly demonstrates 8 

that critical flux is dependant not only on BRFV [26] but also on MLTS.  9 

 10 

The calibrated values of parameters KF, β1, β2 and γ0 included in the model are 11 

shown in Table 4.  12 

 13 

4.2. Dynamic calibration in the short-term 14 

 15 

Similar to Bugge et al. [20] and Jørgensen et al. [21], this dynamic calibration was 16 

carried out using data obtained from different flux-step trials conducted at different 17 

BRFs (5, 7 and 10 Nm3 h-1) and MLTS levels (18.5, 22.5 and 28.5 g L-1).  Parameters 18 

kSF, αC,0, TMPa, and qMS,Max related to cake build-up and compression (process 1) and 19 

membrane scouring by biogas sparging (process 2) were calibrated. The dynamic 20 

calibration consisted of adjusting the simulated TMP (TMPSIM) to the experimental 21 

TMP (TMPEXP). This non-linear parameter was calculated using the least squares 22 

method together with the subspace trust region method [22], based on the interior-23 

reflective Newton method (implemented in MATLAB® LSQNONLIN), and the Runge-24 

Kutta method (MATLAB® ode45 function). The minimising objective function (OF) 25 

applied is shown in Eq. 18.  26 
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 1 

𝑂𝐹 = ∑ √(𝑇𝑀𝑃𝑆𝐼𝑀 − 𝑇𝑀𝑃𝐸𝑋𝑃)2      (Eq. 18) 2 

 3 

In this dynamic calibration, the values used for the other parameters contemplated 4 

in the proposed model are shown in Table 4 together with the values estimated for 5 

qMS,Max, kSF, αC,0 and TMPa. It is important to emphasise that the values obtained for αC 6 

and TMPa were similar to the ones observed by Jørgensen et al. [21] in aerobic MBRs.  7 

 8 

Figure 2 shows how the model evolved in comparison with the experimental data. 9 

Figure 2a shows the applied J20, the measured TMP and the modelled TMP in a flux-10 

step trial conducted at a BRF of 7 Nm3 h-1 (which corresponds to a BRFV of 0.0032 11 

Nm3 h-1 m-3) and a MLTS of 28.5 g L-1. Figure 2b shows the modelling results for ωC 12 

and RC in the same trial. The results obtained (see Figure 2a) indicated that the results 13 

predicted by the model (TMPSIM) accurately reproduced the corresponding experimental 14 

data (TMPEXP): an accurate correlation coefficient (R2) of 0.999 was obtained for the 15 

flux-step trial shown. Moreover, it was possible to simulate ωC and RC in the short term 16 

(see Figure 2b). As Figure 2b shows, ωC increased sharply when J20 climbed above 8 17 

LMH, i.e. ωC increased from approx. 0.01 to 0.03 kg m-2 when J20 increased from 18 

approx. 8 to 10 LMH. Moreover, ωC climbed to 0.06 kg m-2 when operating at a J20 of 19 

approx. 12 LMH, an indication that the critical flux had been exceeded. Figure 2b also 20 

shows that RC increased as J20 increased. This is the result of not only the effect of J20 on 21 

ωC (a direct increase in J20 means an increase in ωC at given operating conditions), but 22 

also the effect of TMP on αC (increasing TMP results in an increase in αC, see Eq. 9 and 23 

Eq. 10). 24 

 25 

It is important to emphasise that modelling ωC and RC performance may allow the 26 
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overall performance of membranes in SAnMBR technology to be optimised. In this 1 

respect, operating and control strategies aimed to minimise the formation of a cake layer 2 

should be tested and developed.  3 

 4 

4.3. Parameter estimations using experimental data and long-term dynamic calibration  5 

 6 

The parameters 𝐾𝑆,XmC
, kRI, and qIF,Max were estimated using experimental data and 7 

then validated dynamically using long-term data. 8 

 9 

The half-saturation coefficient for the mass of cake solids during membrane 10 

scouring and back-flushing (𝐾𝑆,XmC
) was estimated using experimental data obtained 11 

from different short-term trials [18]. The estimated value is shown in Table 4. 12 

 13 

The parameter kRI was calculated using data from flux-step trials carried out at 14 

different operating times. These flux-step trials resulted in different γt values. On the 15 

other hand, the RI of each operating time was estimated using data from back-flushing 16 

stages (considering RM to be constant) as shown in Robles et al. [30]. Finally, kRI was 17 

calculated, the result being 1.6·10-07 (see Table 4). 18 

 19 

As regards the maximum irreversible fouling rate, since the operating temperature 20 

during the operating period was 20 ºC (commonly assumed to be the benchmark 21 

temperature when calibrating model parameters) qIF,Max was directly set as the inverse of 22 

the operating SRT (38.5 days in this period): 3·10-07 s-1 (see Table 4). Nevertheless, 23 

further study of the long-term data is required in order to determine the actual 24 

dependence of qIF,Max on T and SRT. 25 

 26 
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4.4. Default values 1 

 2 

Due to the lack of data, a default value was set for qBF,Max, kt and αI (see Table 4). 3 

As regards qBF,Max and kt, no significant differences were observed in the dynamic 4 

calibration when modifying the established default value. Nevertheless, these 5 

parameters were included in the model proposed by Sarioglu et al. [17] and Bugge et al. 6 

[20]. As regards αI, it may be necessary to calibrate αI using the experimental data of RI 7 

and ωI.. 8 

 9 

5. Validation of model  10 

 11 

The model was validated in both the short and the long term. The short-term 12 

validation consisted of 24 hours of continuous operation. The long-term validation 13 

consisted of a 3-month operating period. 14 

 15 

5.1. Short-term validation 16 

 17 

Figures 3 and 4 provide an example of the results obtained from the short-term 18 

validation (recorded on operating day 167 in Figure 5). This validation was carried out 19 

using experimental data obtained by applying different J20 and BRF values. The results 20 

shown in Figures 3 and 4 were obtained when operating with a MLTS concentration of 21 

21 g L-1. The gas sparging intensity ranged from approx. 4 to 12 Nm3 h-1. The gross J20 22 

ranged from approx. 4 to 12 LMH. 23 

 24 

Figure 3a shows the evolution of the experimental J20 and BRF. Figure 3b shows 25 

the evolution of TMPSIM and TMPEXP, and the membrane operating stage. Like Figure 26 
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2, Figure 3b shows that although considerably high variations were applied to J20 and 1 

BRF (see Figure 3a), the results predicted by the model (TMPSIM) accurately reproduced 2 

the corresponding experimental data (TMPEXP) giving a R2 coefficient of 0.962. On the 3 

other hand, Figure 3b shows that the model is capable of reproducing the reduction in 4 

TMP caused by ventilation or back-flushing (see, for example, minutes 285 and 515, 5 

respectively). This model is able to reproduce this reduction in TMP because it takes 6 

into account not only the cake build-up, membrane scouring and back-flushing 7 

processes, but also the cake compression process. In this respect, a recovery of αC after 8 

each decompression (i.e. relaxation and back-flushing) is achieved. Therefore, a 9 

considerable decrease in TMP is observed (see minutes 285 and 515 in Figure 3b) even 10 

when operating at low ωC levels (see minutes 200 to 600 in Figure 4a).   11 

 12 

Figure 4 shows the evolution of the simulated ωC and RC (Figures 4a and 5b, 13 

respectively). As figure 4 shows, a sharp increase in both ωC and RC was observed when 14 

operating at fluxes close to the critical flux recorded in experiments. Previous trials 15 

revealed critical fluxes around operating day 167 of about 8 LMH when operating at a 16 

MLTS of 21 g L-1 and a BRF of 10 Nm3 h-1. These results are in line with the results 17 

shown in Figure 4, where a sharp increase in ωC was observed (see minutes 600 to 800) 18 

when operating at fluxes close to the critical flux. 19 

 20 

Figure 4a also shows a minimum amount of ωC of about 0.005 kg m-2 remaining 21 

over time. This performance (modelled mainly by applying the half-saturation switching 22 

function represented by Eq. 14) is the result of the drop in the effectiveness of the 23 

membrane scouring due to the reduction in the membrane area that is reversibly fouled. 24 

This remaining ωC was assumed in our study to be one of the main factors that finally 25 

determines the propensity of membranes to foul irreversibly. Therefore, in accordance 26 
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with the sub-critical filtration theory, higher ωC values resulting from operating at a high 1 

J20 will result in a greater propensity to foul irreversibly than when operating at a low 2 

J20.  3 

 4 

On the other hand, sub-critical fouling has been modelled by the increase in the αC 5 

value resulting from applying Eq. 12. In this regard, Figure 4b shows how RC increases 6 

during sub-critical filtration (see, for example, minutes 200 to 600) due to increasing αC. 7 

Nevertheless, as mentioned before, αC returns to its default value when there is no 8 

compression of the cake layer, and therefore RC decreases (see, for example, minutes 9 

285 and 515 in Figure 4b). In our study, a constant sub-critical fouling velocity (kSF in 10 

Eq. 12) was established for simulating the sub-critical fouling processes related to 11 

specific mechanisms not contemplated in the model. However, this parameter might be 12 

established in accordance with the operating value of J20 because sub-critical fouling 13 

also depends on J20. 14 

 15 

5.2. Long-term validation 16 

 17 

The proposed model was validated using the long-term data of the following 18 

average daily operating conditions: MLTS levels from approx. 15 – 25 g L-1, BRF from 19 

6 to 12 Nm3 h-1 and net 20 ºC-normalised transmembrane fluxes (J20net) from 2.5 to 9 20 

LMH.  21 

 22 

Figure 5 shows the results from the long-term model validation carried out using 23 

data from three months of continuous operation. Figure 5a shows the average daily 24 

values for J20net, BRF, and MLTS. It is important to note that the model was calibrated 25 

and validated using highly fouled membranes, which resulted in very low operating 26 
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J20net values. Figure 5b shows the average daily TMPSIM and TMPEXP. As Figure 5 1 

shows, even when operating at different MLTS, J20net and BRF levels (see Figure 5a), 2 

the model was able to accurately predict the membrane performance in the long term 3 

(see Figure 5b): a high R2 coefficient was obtained (0.929).  4 

 5 

5.3. Model applicability and future perspectives 6 

 7 

The model validation shown in this study illustrates that the proposed model was 8 

able to properly reproduce the filtration performance of an SAnMBR system in the 9 

short- and long-term. Moreover, a sensitivity analysis based on the Morris method [31] 10 

revealed that most of the suggested model parameters were identified as influential (data 11 

not shown). This was mainly the result of building the model on the basis of 12 

experimental results. Therefore, most of the proposed model parameters are required to 13 

represent in a general way all possible membrane performances in systems of this type. 14 

The less influential parameters were: KS,XmC, qIF,Max, αI, qBF,Max and kt, which implies that 15 

these parameters could be set to a default value in order to simplify the model 16 

calibration. 17 

 18 

It is worth to point out that some estimations/measurements (e.g. cake and 19 

irreversible fouling thickness and specific resistance) would further improve process 20 

validation for accurately validating not only the modelling approach but also the 21 

calibrated values for the different model parameters. Therefore, further research would 22 

be required on this area. 23 

 24 

On the other hand, further research must be accomplished in order to extend the 25 

applicability of the proposed filtration model to other MBR applications (e.g. aerobic 26 
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operation, flat-sheet membrane modules, industrial wastewater treatment, and so on.). 1 

To this aim, it is expected that the re-calibration of the model parameters would be 2 

necessary. In this regard, recent literature reveals differences on membrane performance 3 

in MBR technology not only due to changes on the physiological state of the mixed 4 

liquor but also due to changes on membrane operating mode and configuration [18]. 5 

Nevertheless, it is important to highlight the wide range of operating conditions in 6 

which the model has been validated in this work: influent COD concentration from 7 

approx. 200 to 900  mgCOD L-1, MLTS levels from approx. 15 – 25 g L-1, BRF from 6 8 

to 12 Nm3 h-1 and J20net from 2.5 to 9 LMH. 9 

 10 

In the future, it is planned to validate this model at a wider range of operating 11 

conditions, mainly regarding membrane operating mode and mixed liquor 12 

characteristics. Moreover, it is planned to verify the applicability of the model for other 13 

membrane module configurations such as flat-sheet type. Then, the corresponding 14 

model modifications will be made if necessary, in order to verify and/or extend the 15 

applicability of the proposed model, which will facilitate the design and simulation of 16 

membrane technology in WWTPs. 17 

 18 

Other aspect on filtration process to be considered is that biological modelling on 19 

anaerobic filtration-based systems is quite recent, which makes difficult to obtain 20 

reliable information about the interaction between biological and filtration processes. In 21 

this respect, enhancing biological modelling of anaerobic processes of this type may 22 

allow improving the quality of the proposed filtration model since a greater amount of 23 

reliable data related to different fouling mechanisms (e.g. EPS, SMP, colloidal matter, 24 

etc.) would be available. 25 

 26 
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Finally, it must be highlighted that the proposed filtration model (in conjunction 1 

with a biological model) can be applied for different reasons: to design and upgrade 2 

SAnMBR systems, or to develop, operate and control strategies designed to optimise 3 

process performance – not only in the short term, but also in the long term. 4 

 5 

5. Conclusions  6 

 7 

 The short- and long-term validation of the filtration model proposed in this study 8 

resulted in satisfactory correlation coefficients (R2) of 0.962 and 0.929 respectively. 9 

Thus, this model was able to accurately reproduce the filtration process in a SAnMBR 10 

demonstration plant fitted with industrial-scale hollow-fibre membranes. This model 11 

can be used to develop operating and control strategies intended to optimise filtration in 12 

SAnMBRs since the weighted average distribution of overall filtration resistance can be 13 

modelled. Further research will be done in order to extend the applicability of the 14 

proposed filtration model to a wider range of operating conditions and other MBR 15 

applications. 16 
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 1 

Figure and table captions 2 

 3 

Figure 1. Effect of J20 on FR when operating at BRFV of 0.0023, 0.0032 and 0.0046 Nm3 h-1 m-3, and 4 

MLTS of (a) 18.5, (b) 22.5, and (c) 28.5 g L-1. 5 

Figure 2. Results of the dynamic calibration of qMS,Max, kSF, αC,0, and TMPa. Flux-step experiment 6 

conducted at a MLTS of 28.5 g L-1 and a BRF of 7 Nm3 h-1. Evolution of (a) TMPEXP, TMPSIM and J20 and 7 

(b) ωC and RC. 8 

Figure 3. Short-term model validation: results from operating day 167 (see Figure 5). Evolution of (a) J20 9 

and BRF and (b) TMPEXP, TMPSIM and membrane operating stage (V:Ventilation; BF:Back-Flushing). 10 

Figure 4. Short-term model validation: results from operating day 167 (see Figure 5).  11 

Evolution of (a) ωC and (b) RC. 12 

Figure 5. Long-term model validation. Average daily values of (a) MLTS, J20 and BRF and (b) TMPEXP 13 

and TMPSIM.  14 

 15 

 16 

Table 1. Stoichiometry of the kinetic processes contemplated in the model. 17 

Table 2. Conversion factors to be applied in the continuity equations of the mass of the model. 18 

Table 3. Kinetic expressions of the processes included in the model. 19 

Table 4. Values assumed for the different parameters included in the proposed filtration model.  20 
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(c) 6 

Figure 1. Effect of J20 on FR when operating at BRFV of 0.0023, 0.0032 and 0.0046 Nm3 h-1 m-3, and 7 

MLTS of (a) 18.5, (b) 22.5, and (c) 28.5 g L-1. 8 
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(a) 2 

 3 

(b) 4 

Figure 2. Results of the dynamic calibration of qMS,Max, kSF, αC,0, and TMPa. Flux-step experiment 5 

conducted at a MLTS of 28.5 g L-1 and a BRF of 7 Nm3 h-1. Evolution of (a) TMPEXP, TMPSIM and J20 and 6 

(b) ωC and RC. 7 
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(b) 4 

Figure 3. Short-term model validation: results from operating day 167 (see Figure 5). Evolution of (a) J20 5 

and BRF and (b) TMPEXP, TMPSIM and membrane operating stage (V:Ventilation; BF:Back-Flushing). 6 
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Figure 4. Short-term model validation: results from operating day 167 (see Figure 5).  5 

Evolution of (a) ωC and (b) RC. 6 
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(b) 4 

Figure 5. Long-term model validation. Average daily values of (a) MLTS, J20 and BRF and (b) TMPEXP 5 

and TMPSIM.  6 
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Table 1. Stoichiometry of the kinetic processes contemplated in the model. 1 

Component i 

j Process 
𝑋TS 

(kg TS m-3) 

𝑋mC
 

(kg TS) 

𝑋mI
 

(kg TS) 

1. Cake layer formation -1 1  

2. Membrane scouring by biogas sparging  1 -1  

3. Cake layer detachment during back-flushing 1 -1  

4. Irreversible fouling consolidation  -1 1 
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Table 2. Conversion factors to be applied in the continuity equations of the mass of the model. 1 

Component i 

Conservation for 
𝑋TS 

(kg TS) 

𝑋mC
 

(kg TS) 

𝑋mI
 

(kg TS) 

Mass (kg TS) iTS_i -1 1 1 
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Table 3. Kinetic expressions of the processes included in the model. 1 

j Process Kinetic expression 

1. Cake layer formation 𝑄20𝑃 · 𝑋TS 

2. Membrane scouring by biogas sparging  𝑞MS,Max ·  𝑀𝑋mC
·  𝐼MS · 𝐵𝑅𝐹V · 𝑋mC

 

3. Cake layer detachment during back-flushing 𝑞BF,Max ·  𝑄20𝐵𝐹 ·  𝑀𝑋mC
· 𝑋mC

 

4. Irreversible fouling consolidation 𝑞IF,Max · 𝑋mC
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Table 4. Values assumed for the different parameters included in the proposed filtration model. 1 

Parameter Unit Value Calculation method 

qMS,Max  6.31 Dynamically calibrated 

qBF,Max m-3 1 Default value 

qIF,Max s-1 3·10-07 Calculated from experimental data 

KS,XmC kg SST 0.2 Calculated from experimental data 

αC,0 m kg-1 1.02·1013 Dynamically calibrated 

TMPa kPa 18.9 Dynamically calibrated 

kt s-1 1 Default value 

kSF m kg-1 s-1 4.09·1010 Dynamically calibrated 

KF Pa s-1 5.6·10-4 Experimentally calibrated 

β 1 s2 m-1 -2.48·108 Experimentally calibrated 

β 2 s m2 kg-1 5.1·104 Experimentally calibrated 

γ0 s m-1 2.81·106 Experimentally calibrated 

kRI s 1.6·10-07 Calculated from experimental data 

αI m kg-1 1·1014 Default value 
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