

PROYECTO DE INFRAESTRUCTURAS HIDRÁULICAS URBANAS EN EL BARRIO LA VIÑA, TÉRMINO MUNICIPAL DE LORCA (MURCIA): RED DE DISTRIBUCIÓN DE AGUA POTABLE.

Trabajo final de grado

Curso: 2014/15

Autor: Alba Traver Gual Tutor: José Ferrer Polo

Cotutor: Daniel Aguado García

Titulación: Grado en Ingeniería Civil

Valencia, septiembre de 2015

MEMORIA

Curso: 2014/2015

Universidad Politécnica de Valencia (UPV) Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos (ETSICCP)

Grado en Ingeniería Civil Tutor: José Ferrer Polo Cotutor: Daniel Aguado García Autora: Alba Traver Gual

Índice

1.	Introducción	3
2.	Antecedentes y objetivos del proyecto	3
	Situación y emplazamiento de las obras	
	Descripción del proyecto	
	Justificación de precios	
	Presupuesto	
	Documentos que integran el proyecto	
	Conclusión	

Índice de anejos

- Anejo 1. Topográfico
- Anejo 2. Geológico y geotécnico
- Anejo 3. Planeamiento urbanístico
- Anejo 4. Cálculos hidráulicos
- Anejo 5. Cálculos mecánicos
- Anejo 6. Justificación de precios

Índice de plano

- Plano 1. Situación y emplazamiento
- Plano 2. Planta de ordenación urbanística
- Plano 3. Planta topográfica
- Plano 4. Red de abastecimiento
- Plano 5. Planta general
- Plano 6. Detalle elementos de red
- Plano 7. Sección detalle zanja
- Plano 8. Perfiles longitudinales 1
- Plano 9. Perfiles longitudinales 2
- Plano 10. Perfiles longitudinales 3
- Plano 11. Perfiles longitudinales 4
- Plano 12. Perfiles longitudinales 5
- Plano 13. Perfiles longitudinales 6
- Plano 14. Perfiles longitudinales 7
- Plano 15. Perfiles longitudinales 8
- Plano 16. Perfiles longitudinales 9
- Plano 17. Perfiles longitudinales 10
- Plano 18. Perfiles longitudinales 11
- Plano 19. Perfiles longitudinales 12
- Plano 20. Perfiles longitudinales 13
- Plano 21. Perfiles longitudinales 14

Memoria Página 2 de 5

1. Introducción

En el presente documento, se expondrá brevemente el trabajo de fin de grado titulado "Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable".

2. Antecedentes y objetivos del proyecto

Tras los terremotos sufridos en el municipio de Lorca el 11 de Mayo de 2011 muchas infraestructuras se vieron comprometidas. Concretamente, y como se describe en el Anejo 2. Geológico y geotécnico, debido a la situación del barrio La Viña respecto a la falla que produjo el movimiento sísmico, la red de abastecimiento de la zona quedó inutilizada.

En el sector de actuación detallado gráficamente en el Plano 1. Situación y emplazamiento, se han proyectado una serie de infraestructuras, algunas de ellas ya construidas, que necesitarán abastecimiento de agua potable. Dichas infraestructuras están detalladas en el Anejo 3. Planeamiento urbanístico y Plano 2. Planta de ordenación urbanística.

El objeto de este proyecto es abastecer de agua potable al sector urbanístico afectado, cumpliendo todos los requisitos necesarios.

3. Situación y emplazamiento de las obras

Las obras de las que es objeto el presente documento, se encuentran en el término municipal de Lorca, en la provincia de Murcia.

La zona de actuación del proyecto está situada al suroeste de su termino municipal, en el barrio de La Viña. Se encuentra delimitada por la N-340a, la autovía del mediterráneo A7 y la Carretera RM-11.

Las calles por las cuales se va a discurrir la obra son:

- c/ Tejedores
- c/ de Forjadores
- c/ de Diego Pallarés Cachá
- c/ Tintoretos
- c/ Albañilería
- c/ Curtidores
- c/ de la Herrería
- c/ Jardineros
- c/ de la Panadería
- c/ Agricultores
- c/ de la Cerámica
- c/ de la Carpintería
- c/ Modistería
- c/ Sastrería
- c/ Pintores
- Av/ de la Vendimia

En el Plano 1. Situación y emplazamiento, se puede obtener una situación gráfica de la zona de actuación, además de los límites de esta.

Memoria Página 3 de 5

4. Descripción del proyecto

4.1 Situación actual

Actualmente se dispone de una zona urbana, que como se ha explicado anteriormente, tras los terremotos, vio afectada sus infraestructuras hidráulicas de servicio de abastecimiento de red potable.

4.2 Cálculo hidráulico

En el Anejo 4. Cálculos hidráulicos se muestra el procedimiento realizado para obtener los resultados necesarios para el diseño de la red.

Se han fijado una serie de criterios de partida a tener en cuenta en el diseño de la red de abastecimiento de agua potable. Son los siguientes:

- Garantizar una dotación suficiente para las necesidades previstas.
- No comprometer la calidad del agua.
- Limitar las presiones de distribución a unos valores adecuados para el correcto funcionamiento de la red.
- Establecer una red de hidrantes para dar servicio a la extinción de incendios.
- Respetar los principios de economía hidráulica mediante la imposición de unos diámetros mínimos de tuberías a instalar.

La red está formada aproximadamente por 3.245 metros de tuberías de polietileno (PE 100) de las cuales la gran mayoría tienen un diámetro nominal de 90 mm. Sin embargo, la totalidad de la red está compuesta por conducciones de diámetros nominales de 90, 110, 125, 160, 180, 200, 225, 250, 280, 315 mm.

Cabe destacar que el diseño de la red se ha realizado bajo unos supuestos los cuales deben cumplirse para su correcto funcionamiento. A lo largo del proyecto se han ido solucionando los problemas encontrados debido a la orografía del terreno y la situación de los puntos de conexión a la red de abastecimiento de Lorca.

4.3 Cálculo mecánico

En el Anejo 5. Cálculos mecánicos, se describe el procedimiento realizado para obtener los resultados necesarios para el diseño de la red. Se ha determinado una presión nominal de 10 bar, comprobándose así que las tuberías resisten mecánicamente con las secciones definidas en el Anejo 4. Cálculos hidráulicos y en el Plano 4. Red de abastecimiento.

5. Justificación de precios

En el Anejo X. Justificación de precios quedan reflejado el procedimiento para obtener los precios de las unidades de obra y los costes indirectos.

6. Presupuesto

A partir de las mediciones y los precios justificados, se ha obtenido el Presupuesto de Ejecución Material al cual se ha aplicado los porcentajes de Gastos Generales y Beneficio Industrial obteniendo así el Presupuesto de Licitación. A esta suma, se le ha aplicado el porcentaje de I.V.A. obteniendo así el Presupuesto Total de Licitación.

Memoria Página 4 de 5

CAPITULO	RESUMEN		EUROS	%
01	MOVIMIENTO DE TIERRAS		74,318.39	21.95
02	MATERIALES		45,025.37	13.30
03	ACCESORIOS		219,303.88	64.76
		TOTAL EJECUCIÓN MATERIAL	338,647.64	
		13.00% Gastos generales		
		6.00 % Beneficio industrial		
		SUMA DE G.G. y B.I.	64,343.05	
		21.00% LV.A	84,628.04	
		TOTAL PRESUPUESTO CONTRATA	487,618.73	
		TOTAL PRESUPUESTO GENERAL	487,618.73	

Así obtenemos como presupuesto de ejecución material la cifra de 487.618,73 €, como presupuesto de licitación la cifra de 402.990,69 €, y como presupuesto total la cantidad de CUATROCIENTOS OCHENTA Y SIETE MIL SEISCIENTOS DIECIOCHO EUROS con SETENTA Y TRES CÉNTIMOS.

7. Documentos que integran el proyecto

- Documento Nº1: Memoria y anejos
 - o Memoria
 - o Anejo 1. Topográfico
 - o Anejo 2. Geológico y geotécnico
 - o Anejo 3. Planeamiento urbanístico
 - o Anejo 4. Cálculo hidráulico
 - o Anejo 5. Cálculo mecánico
 - o Anejo 6. Justificación de precios
- Documento Nº2: Planos
- Documento Nº3: Presupuesto

8. Conclusión

Se considera justificada la actuación de este proyecto a través de lo anteriormente expuesto,

, a de Septiembre de 2015

LA PROPIEDAD LA DIRECCIÓN FACULTATIVA

Memoria Página 5 de 5

ANEJOS

Curso: 2014/2015

Universidad Politécnica de Valencia (UPV) Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos (ETSICCP)

Grado en Ingeniería Civil Tutor: José Ferrer Polo Cotutor: Daniel Aguado García Autora: Alba Traver Gual

ANEJO Nº 1: TOPOGRÁFICO

Curso: 2014/2015

Universidad Politécnica de Valencia (UPV) Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos (ETSICCP)

Grado en Ingeniería Civil Tutor: José Ferrer Polo Cotutor: Daniel Aguado García Autora: Alba Traver Gual

Índice

1.	Introducción	3
2.	Obtención y tratamiento de los datos	3

1. Introducción

En este documento se expondrá la obtención de la superficie topográfica de la zona.

2. Obtención y tratamiento de datos

Los tutores del proyecto proporcionaron un plano en formato PDF en el que aparecía la cota de ciertos puntos relevantes del sector.

Los datos de cada uno de los puntos topográficos con su cota han sido facilitados por el Ayuntamiento de Lorca. Este proporciono los planos de la zona a abastecer. Con estos planos, a través del software Autocad, se han procesado los datos para así obtener una superficie topográfica de la zona, la cual servirá para conocer la cota de todos los puntos de la red. Dicha información se ve reflejada en el Plano 3. Planta topográfica, en el cual se ve la zona de actuación y las líneas de nivel del terreno.

ANEJO Nº 2: GEOLÓGICO Y GEOTÉCNICO

Curso: 2014/2015

Universidad Politécnica de Valencia (UPV) Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos (ETSICCP)

Grado en Ingeniería Civil Tutor: José Ferrer Polo Cotutor: Daniel Aguado García Autora: Alba Traver Gual

Índice

1.	Introducción	. 3
2.	Situación geográfica	. 3
	Geología	
4.	Sismología	. 5
5.	Terremoto 11 Mayo 2011	. 7

1. Introducción

El objeto del presente anejo es dar una breve caracterización geológica y geotécnica del terreno en la zona del proyecto.

2. Situación geográfica

La ciudad de Lorca es un municipio español de la Región de Murcia situado en el sureste de la Península Ibérica. Su término municipal abarca unos 1675 km2, el segundo más extenso de España tras el de Cáceres con 1750,33 km2 de extensión.

Lorca está ubicada en la parte suroccidental de la Región de Murcia, en el valle del Guadalentín, situada a 353 metros sobre el nivel del mar.

Noroeste: Vélez Blanco	Norte: Caravaca de la Cruz y Cehegín	Noreste: Mula
Oeste: Vélez Rubio	NO NE E	Este: Aledo y Totana
Suroeste Pulpí, Puerto Lumbreras y Huércal- Overa	Sur: Águilas y Mar Mediterráneo.	Sureste: Mazarrón

Figura 1. Municipios Limítrofes de Lorca

El casco urbano de Lorca se divide a su vez en diferentes barrios. Con la aplicación de la ley de municipios de gran población se prevé dividir la ciudad en distritos:

- Alfonso X El Sabio
- Apolonia
- Calvario
- Casas del Banco
- Corazón de María
- La isla
- La Viña
- Los Ángeles
- San Antonio
- San Cristóbal

- San Diego
- San Fernando
- San Iosé
- San Juan
- San Lázaro
- San Pedro
- Santa María
- Santa Quiteria
- Santiago
- Virgen de las Huertas

3. Geología

La Región de Murcia se sitúa dentro del ámbito de las Cordilleras Béticas, y en ella están representados materiales pertenecientes a las tres zonas en que tradicionalmente se dividen: Prebética y Subbética (zonas externas) y Bética (zonas internas); la primera tiene un carácter paraautóctono y las otras dos alóctono.

Existe una gran diversidad estratigráfica en la Región de Murcia; sin embargo, se observa una distribución geográfica que, a grandes rasgos, es la siguiente:

- · En la Zona Prebética los materiales predominantes son los carbonatados del Cretácico superior; en el Sur de la misma están representadas las calizas y margas del Paleoceno y Eoceno.
- En la Zona Subbética abundan las calizas y dolomías del Jurásico y las arcillas con yesos del Trías; también están muy presentes las margas del Cretácico.
- · Sólo en la Zona Bética, zona en la cual se encuentra Lorca, afloran terrenos metamórficos, constituidos por esquistos, cuarcitas y mármoles del Permo-Triásico; además de éstos existen dolomías del Trías.

En todas las zonas hay cuencas postectónicas rellenas fundamentalmente de materiales margosos miocénicos, pero éstas son más frecuentes y presentan un mayor desarrollo en la Zona Bética.

La cuenca de Lorca se encuentra al suroeste de la Región de Murcia sobre el contacto entre las Zonas internas (Bético) y Externas (Subbético) de las Cordilleras Béticas.

Zona Bética

La depresión de Lorca abunda en materiales evaporíticos y al tratarse de un sinclinorio retocado por fallas de borde, tiene una forma cuadrada.

Lorca se formó junto al río Guadalentín, en el árido pero fértil valle del mismo nombre.

En el norte del amplio término municipal se encuentran las mayores alturas, por ello esta zona se denomina *las pedanías altas*, como son las sierras del Gigante, la Culebrina y del Cambrón, en donde se articula la cabecera del río Guadalentín, formado por la unión de los ríos Vélez y Luchena.

Al sur del municipio hay otras sierras de importancia, como son las de Torrecilla, Peñarrubia, Del Caño, Tercia, Carrasquilla y Almenara. Entre estas sierras se extiende el amplio valle del Guadalentín, formado por la denominada depresión prelitoral murciana, que comienza en Puerto Lumbreras y, siguiendo una dirección suroeste-noroeste con una altitud descendente, llega hasta la provincia de Alicante.

El terreno esta constituido por la ladera Sur de una serie de estibaciones, surcadas por vaguadas de la Sierra denominada "La Peñarrubia", con una extensión superficial de 62.208 m2. El suelo cuenta con una composición a base de margas calcáreas y yesosas semi-compactas, lo que constituye un magnífico firme para construcciones futuras.

Teniendo en cuenta el estudio geológico-geotécnico realizado para el proyecto de la autopista del mediterráneo en su tramo Murcia-Lorca. El suelo presente en la zona del proyecto es un suelo de tipo cohesivo, formado por limos arcillosos, arcillas con algunos cantos dispersos y arena escasa.

De estos datos recogidos, se desestima la posibilidad de reutilización del material obtenido en la excavación por no ser adecuado ni seleccionado.

4. Sismología

La región de Murcia, en la que se encuentra el municipio de Lorca, es una de las zonas sismológicas más activa de España (junto con Granada), si bien esta localidad, concretamente, no está entre las de mayor peligrosidad dentro de ella.

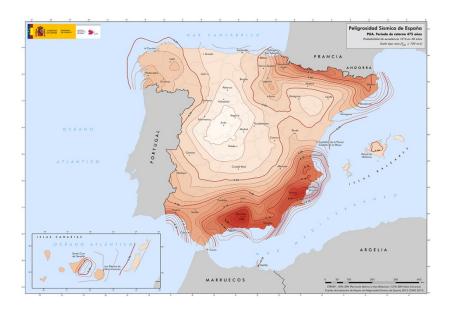


Figura 2. Mapa peligrosidad sísmica de España según la intensidad

Figura 3. Mapa peligrosidad sísmica de España según la aceleración

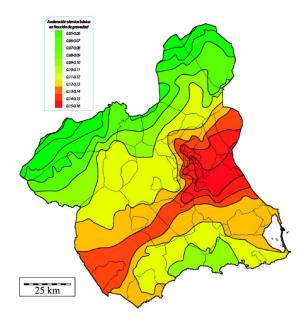


Figura 4. Mapa sismológico de la Región de Murcia

La falla de Alhama de Murcia se localiza en el centro de la Región de Murcia, con sentido SW-NE, atravesando las ciudades de Puerto Lumbreras, Lorca, Totana, Alhama de Murcia y terminando en la zona sur de Abanilla. Ésta falla está en constante movimiento provocando gran cantidad de terremotos, la mayoría de pequeña magnitud.

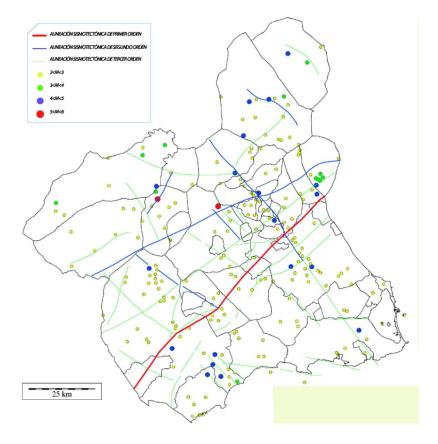


Figura 5. Principales fallas activas en Murcia

5. Terremoto 11 Mayo 2011

El 11 de mayo de 2011 ocurrió un seísmo, cuyo principal terremoto tuvo una magnitud 5,2 en el SE de la Cordillera Bética que produjo enormes daños en Lorca.

Las características sismotectónicas del terremoto, la estructura local y la localización y cuantía de la deformación superficial son coherentes con una ruptura asimétrica (propagándose hacia el SO) de un tramo de la Falla de Alhama de Murcia de hasta 7 km de longitud. La ruptura produjo una sacudida orientada NO-SE (perpendicular a la falla) que explicaría los efectos de direccionalidad observados en los desprendimientos de rocas y en los daños orientados de los edificios. El efecto de directividad de la ruptura hacia el SO explicaría la concentración de los mayores efectos en el barrio de la Viña.

Fecha	Hora	Profundidad	Magnitud	Lugar	Observaciones
		(km)			
11/5	15:05:13	2	4,5	Lorca (NE)	Terremoto previo
11/5	15:21:01	10	2,6	Lorca (E)	
11/5	16:47:25	1	5,1	Lorca (NE)	Terremoto
11/5	12:53:15	11	2,8	Lorca (E)	Réplica
11/5	19:28:18	2	2,9	Lorca (NE)	Réplica
11/5	20:37:45	4	3,9	Lorca (NE)	Réplica más fuerte
11/5	20:44:06	11	2,7	Lorca (E)	Réplica
13/5	21:08:37	6	2,6	Lorca (E)	Réplica
14/5	00:49:32	4	2,8	Lorca (NE)	Réplica
14/5	21:10:25	5	2,9	Lorca (SE)	Réplica
14/5	21:54:35	4	2,7	Lorca (E)	Réplica
15/5	00:03:03	7	2,8	Lorca (SE)	Réplica

Tabla 1. Datos sismicos

El epicentro estaba situado en el subsuelo de Barranco Hondo y el hipocentro del terremoto fue extremadamente superficial. El seísmo se dejo sentir en todo el sureste peninsular, especialmente en la Región de Murcia. En la zona, como bien se ha explicado anteriormente, se localiza el límite de placas entre la placa euroasiática y la placa africana.

El terremoto fue especialmente grave debido a la combinación de poca profundidad y una magnitud moderada. Dio como resultado un gran temblor que se sintió en toda la región de Murcia. En Lorca, cerca del epicentro del sismo, grandes movimientos de tierra registraron una intensidad de VII en la escala de Mercalli.

El 22 de octubre de 2012 se dio a conocer que el terremoto de Lorca estaría relacionado con un descenso continuo del nivel de aguas subterráneas, que habría podido generar un desplazamiento de toda la zona.

ANEJO Nº 3: PLANEAMIENTO URBANÍSTICO

Curso: 2014/2015 Universidad Politécnica de Valencia (UPV) Escuela Técnica Superior de Ingenieros de

Caminos, Canales y Puertos (ETSICCP) Grado en Ingeniería Civil

Tutor: José Ferrer Polo Cotutor: Daniel Aguado García Autora: Alba Traver Gual

Índice

1.	Introducción	. 3
2.	Planeamiento Urbanístico	. 3
3.	Urbanización viviendas colectivas y unifamiliares	. 3
4.	Equipamiento religioso	6
5.	Zonas verdes	6

1. Introducción

En el siguiente documento se expondrá el tipo de urbanización de cada tipo de parcela, las características de las edificaciones y el número de habitantes totales del sector.

2. Planeamiento urbanístico

La red de abastecimiento pertenece a la zona llamada en el Plan General de Planeamiento Urbanístico de Lorca "La viña", que discurre en el Sector 16 de dicho Plan.

Esta zona está catalogada en el Plan General como Suelo Urbanizable Sectorado, por lo que este proyecto está dentro del Plan Parcial de desarrollo urbanístico pormenorizado de la citada unidad de actuación.

Se adjunta el plano de ordenación urbana del Plan General, donde queda reflejada la ordenación urbanística de la zona que atañe a este proyecto.

El suelo está clasificado de uso global residencial, de baja densidad, formado por:

- Viviendas unifamiliares
- Vivienda colectiva
- Equipamiento Religioso
- Zonas Verdes

3. Urbanización viviendas colectivas y unifamiliares

Puesto que no se ha construido la totalidad de la zona, se han obtenido las viviendas correspondientes a cada tipo de parcela.

Según lo establecido en el Plan General de Planeamiento Urbanístico de Lorca, y el Plan Parcial de La Viña, el índice de edificabilidad es el siguiente:

- Vivienda unifamiliar: para cada m2 de suelo, corresponde 3m3 de construcción.
- Vivienda colectiva:
 - o Tipo 1
 - o Tipo 2
 - o Tipo 3

Se ha decidido entonces, que las viviendas sean de la siguiente manera:

- Las viviendas unifamiliares tendrán una edificabilidad de 3m3/m2. Éstas constarán de planta baja y primer piso, además de una zona destinada a jardín correspondiente aproximadamente al 40% de la superficie total.
- Las viviendas colectivas :
 - o Tipo 1: constarán de 5 plantas incluyendo la planta baja y 16 m de altura, con 2 viviendas en cada altura. El total de viviendas en cada edificio será de 10.
 - o Tipo 2: constarán de 4 plantas incluyendo la planta bajas y 12 de altura, con 2 viviendas en cada altura. El total de viviendas en cada edificio será de 8.
 - o Tipo 3: constarán de 2 plantas incluyendo planta baja, con 1 viviendas en cada altura. El total de viviendas en cada edificio será de 2.

Teniendo en cuenta lo anteriormente mencionado, se puede comprobar en la siguiente tabla los diferentes tipos de parcelas, las dimensiones de éstas y la edificabilidad.

Viviendas colectivas tipo 1	Superficie total	Nº de alturas	Longitud de fachada	Fachada por bloque	Nº de bloques de vivienda	Nº de viviendas	Nº de habitantes	Nº de puertas	Nº de habitantes por puerta
A1	1589	5	85	11	8.00	80	320	8	40
B1	1582	5	71.5	11	7.00	70	280	7	40
С	2559	5	72	11	7.00	140	560	14	40

Viviendas colectivas tipo 2	Superficie total	Nº de alturas	Longitud de fachada	Fachada por bloque	Nº de bloques de vivienda	Nº de viviendas	Nº de habitantes	Nº de puertas	Nº de habitantes por puerta
A2	2414	4	101	11	9.00	72	288	9	32
B2	1788	4	84	11	8.00	64	256	8	32
D	4613	4	104.5	15	7.00	112	448	14	32
E	3705	4	83.5	15	6.00	96	384	12	32
F	2661	4	110	15	7.00	56	224	14	32
G	1998	4	83.5	15	6.00	48	192	12	32
Н	2484	4	104	15	7.00	56	224	14	32
I	1718	4	71.5	15	5.00	40	160	10	32

Viviendas colectivas tipo 3	Superficie total	Nº de alturas	Longitud de fachada	Fachada por bloque	Nº de bloques de vivienda	Nº de viviendas	Nº de habitantes	Nº de puertas	Nº de habitantes por puerta
J	1007	2	-	-	-	14	56	7	8
K	1350	2	55.5	15	4.00	16	64	8	8
L	1340	2	55.5	15	4.00	16	64	8	8
M	1357	2	55.5	15	4.00	16	64	8	8
N	1324	2	55.5	15	4.00	16	64	8	8
0	1392	2	55.5	15	4.00	16	64	8	8
Р	1352	2	55.5	15	4.00	16	64	8	8

Viviendas unifamiliares	Superficie total	Nº de alturas	Nº Viviendas	Jardin por vivienda	Nº habitantes	Nº de puertas	Nº de habitantes por puerta
Q	1418	2	9	63.02	36.00	9	4
R	1419	2	9	63.07	36.00	9	4
S	774	2	5	61.92	20.00	5	4
Т	779	2	5	62.32	20.00	5	4
U	1418	2	9	63.02	36.00	9	4
V	1416	2	9	62.93	36.00	9	4

Se ha tenido en cuenta, que en cada vivienda habitarán una media de 4 habitantes, por lo que se ha obtenido también los habitantes totales.

Se puede encontrar la identificación de cada parcela en el Plano 2: Planta de ordenación urbanística.

De esta manera, en el sector encontramos 177 parcelas calificadas para la edificación de viviendas colectivas. En total se contabilizan 29 edificios de 5 alturas, 93 edificios de 4 alturas y 55 edificios de 2 alturas. Teniendo en cuenta 2 viviendas por altura (a excepción de las viviendas colectivas de Tipo 3, que constan de 1 vivienda por altura) obtenemos 1144 viviendas.

Por otro lado, se observan 46 parcelas calificadas para la edificación de viviendas unifamiliares en las que se contabilizan 46 viviendas en total.

Por consiguiente, teniendo un total de 1190 viviendas en la zona de actuación, además de un equipamiento religioso, el cual se ha contabilizado como una vivienda más. Po lo tanto encontramos un total de 4764 habitantes en la zona.

4. Equipamiento religioso

En la parcela donde está ubicado el equipamiento religioso, se proyecta una iglesia, y se contabiliza un consumo equivalente al de una vivienda formada por 4 habitantes.

5. Zonas Verdes

Encontramos el Parque de la Viña, una pista de deportes en la Plaza de los Aprendices y la Plaza Cristo Rey. Una extensión total de suelo destinado a zonas verdes de 316 m2

ANEJO Nº 4: CÁLCULO HIDRÁULICO

Curso: 2014/2015 Universidad Politécnica de Valencia (UPV)

Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos (ETSICCP)

Grado en Ingeniería Civil Tutor: José Ferrer Polo Cotutor: Daniel Aguado García Autora: Alba Traver Gual

Índice

1.	Introducción	3
2.	Obtención de datos previos	
3.		
4.	Determinación del consumo	4
	4.1. Dotación para zona residencial	
	4.2. Dotación para incendios	
5.	Cuantía de demanda	5
	5.1. Caudal medio por vivienda	
	5.2. Coeficiente punta en función del número de viviendas	
6.	Descripción de la red de abastecimiento	ϵ
	6.1. Condiciones de trazado	
	6.2. Arterias principales de la red de distribución	
	6.3. Ramales distribuidores	
	6.4. Ramales de acometida	
	6.5. Hidrantes de incendio	
	6.6. Piezas especiales	
7.	Dimensionamiento de la Red de Abastecimiento	7
	7.1. Diámetros	
	7.2. Presión máxima en la red	
	7.3. Velocidades admisibles	
	7.4. Caudales	
	7.5. Perdidas de carga	
8.	Cálculo de la red de abastecimiento9)
	8.1. Predimensionamiento de la red	
	8.1.1. Asignación del número de viviendas y el caudal correspondiente	
	a cada tramo	
	8.1.2.Diámetro mínimo	
	8.1.3.Cálculo de las presiones en cada nudo	
	8.2. Cálculo de la red mallada	
	8.2.1.Comprobación de incendios	

1. Introducción

En el presente documento se mostrará el procedimiento llevado a cabo para realizar los cálculos hidráulicos y posteriormente los resultados y conclusiones obtenidos.

2. Obtención de datos previos

Puesto que la zona objeto del proyecto, se trata de un barrio el cual no esta construido en su totalidad, se ha calculado una población ficticia a abastecer teniendo en cuenta las limitaciones de la norma urbanística. Esto significa que la red diseñada funcionará correctamente solo con una población igual o menor a la ficticia. La justificación del calculo de dicha población se encuentra en el Anejo N 3 : Planeamiento Urbanístico.

3. Características de la red

Se ha llegado a la conclusión de que la tipología de red más correcta es la mallada, de manera que las canalizaciones se comunican formando bucles, por lo que el agua puede circular en ambos sentidos. Las arterias formarán una o más mallas y su trazado seguirá las vías urbanas de primer orden, coincidentes con las zonas de mayor consumo.

La red quedará dividida en sectores mediante llaves de paso, de manera que, en caso necesario, cualquiera de ellos pueda quedar fuera de servicio.

Las llaves de paso en las conducciones se colocarán de forma que una avería en una conducción no implique el cierre de las llaves en conducciones de diámetro superior, para lo cual se seguirán los siguientes criterios:

- En las arterias se instalarán dos llaves de paso en las tes. Se colocarán además las llaves de paso necesarias para poder aislar tramos se una longitud no superior a 200m.
- En los distribuidores se instalará una llave de paso en cada unión con la red arterial.

 En las uniones entre distribuidores se colocará una llave de paso en el de menor diámetro.

 Se colocarán las llaves de desagüe necesarias para que cualquier sector pueda ser vaciado en su totalidad.
 - Los desagües estarán conectados a cauce natural o a pozos de la red de alcantarillado, preferentemente a los de aguas pluviales.
 - Cuando se conecte a la red de alcantarillado se colocará en la conducción de desagüe una válvula de retención para evitar succiones.

Ventajas de este tipo de red:

- Las presiones son más uniformes
- La red es menos sensible frente averías, ya que operando de manera adecuada las válvulas, se puede aislar la zona dañada.
- Al cambiar periódicamente el sentido de circulación del agua, los puntos singulares se ven menos afectados por la sedimentación, y no se quedan tramos estancados.

4. Determinación del consumo

4.1 Dotación para zona residencial

El consumo es el dato de partida para el cálculo de la red. La dotación para zonas exclusivamente residenciales en función del nivel socioeconómico de la vivienda en ciudades puede estimarse con la siguiente tabla:

Nivel socioeconómico	Dotación (agua registrada) (l/hab/dia)
Bajo / Alto	150 – 175
Medio / Bajo	175 - 200
Medio / Medio	200 – 225
Medio / Alto	225 – 275
Alto / Baio	275 - 325

Tabla 1. Dotación para ciudades no planificadas

Se tomará como dotación 250 l/hab/día al tratarse de una zona con viviendas unifamiliares y colectivas. En esta dotación, ya se tiene en cuenta el riego de las zonas ajardinas de las viviendas unifamiliares. La dotación de riego para zonas verdes será de 9 l/hab/día al tratarse de un clima seco.

En la dotación de 250 l/hab/día se incluyen 3 l/hab/día para la limpieza de calles y alcantarillado.

4.2 Dotación para incendios

La normativa española a utilizar en este caso es la CTE DB-SI (R.D. 314/2006) (Código Técnico de la Edificación, Documento Básico de Seguridad en caso de Incendio).

Los caudales de incendio suministrados desde los hidrantes exteriores situados en la vía pública deben ser considerados en el momento de establecer los requerimientos de presión y caudal punta del sistema de abastecimiento. Según el Código (CTE DB-SI) en el trazado de redes de abastecimiento de agua incluidas en actuaciones de planeamiento urbanístico debe contemplarse una instalación de hidrantes la cual cumplirá con las condiciones establecidas en el Reglamento de Instalaciones de Protección contra Incendios (RD 314/2006).

Los hidrantes deben estar situados en lugares fácilmente accesibles, fuera del espacio destinado a circulación y estacionamiento de vehículos, debidamente señalizados conforme a la Norma UNE 23.033 y distribuidos de tal manera que la distancia entre ellos medida por espacios públicos no sea mayor de 200 metros.

La red hidráulica que abastece los hidrantes debe permitir el funcionamiento simultáneo de dos hidrantes consecutivos durante dos horas, cada uno de ellos con un caudal punta de 1000 l/min y una presión mínima de 10 m.c.a. (1kg/cm2). En núcleos urbanos consolidados en los que no se pudiera garantizar el caudal de abastecimiento de agua, puede aceptarse que este sea de 500 l/min, pero la presión se mantendrá en 10 m.c.a. Si por motivos justificados, la instalación de hidrantes no pudiera conectarse a una red general de abastecimiento de agua, debe haber una reserva de agua adecuada para proporcionar el caudal antes indicado.

Además deberán contar con la instalación de al menos un hidrante los siguientes edificios:

- Los recintos deportivos con superficie construida comprendida entre 5000 y 10000 m2.
- Los de uso Hospitalario o Residencial, con superficie construida comprendida entre 2000 y 10000 m2.

- Los de uso Administrativo, Docente o Vivienda, con superficie construida comprendida entre 5000 y 10000 m2.
- Los de uso Comercial o de Garaje o Aparcamiento, con superficie construida comprendida entre 5000 y 10000 m2.

Los hidrantes de la red pública pueden tenerse en cuenta a efectos de cumplimiento de las dotaciones indicadas en el punto anterior.

En el caso de nuestro sector se colocará un hidrante de incendio en los nudos N2, N18 Y N34, con lo que cumplirá la limitación de que la distancia entre hidrantes no supere los 200 metros medidos por espacios públicos. Puesto que la población abastecida es superior a 5.000 habitantes, se debe utilizar un hidrante tipo 100 mm. El diámetro mínimo requerido en las conducciones que los alimentan debe ser 150 mm, con un caudal de 16,3 l/s.

5. Cuantía de demanda

5.1. Caudal medio por vivienda

Se ha tenido en cuenta que una vivienda está ocupada por 4 habitantes.

 $Q_{m,viv}$ = dotación × habitantes vivienda = 250 × 4 = 1000 l/viv/día

$$Q_{m,viv} = \frac{1000}{86400} = 0.011574 l/viv/día$$

5.2. Coeficiente punta en función del número de viviendas

Se calculan los coeficientes punta correspondiente al número de viviendas que abastecerá cada tramo según la tabla siguiente:

N viviendas	Кр
<10	18,51
16	14,02
24	10,062
56	5,575
64	5,216
72	4,857
112	3,889
120	3,808
128	3,728
168	3,325
176	3,245
184	3,164
200	3
300	2,76
400	2,48
500	2,2
600	2

Tabla 2. Coeficientes punta en función del número de viviendas

6. Descripción de la Red de Abastecimiento

6.1. Condiciones de trazado

El trazado de la red vendrá definido de acuerdo con lo prescrito en los documentos de ordenación urbana del municipio o, en su defecto, siguiendo las vías públicas preferiblemente bajo las aceras y no demasiado cerca de la línea de fachada, para evitar problemas de descalces de cimentación debido a averías de la red.

Se fijarán teniendo en cuenta, como criterio general, que las distintas conducciones que componen la red de abastecimiento y distribución no tengan problemas de circulación del fluido y estén lo más protegidas posible.

Se diseñará siguiendo el trazado viario o espacios públicos no edificables, evitando cualquier tipo de desviación en los tramos. Las conducciones se situarán bajo las aceras y se colocará la parte inferior del tubo a una cota de 0,6 metros de profundidad. La tubería que no discurre por acera se situará a una cota de 1 metro por debajo de la cota existente del terreno bajo la calzada, de manera que queda asegurada la imposibilidad de rotura por acciones de tráfico.

La red está formada por las siguientes conducciones: arterias, distribuidores y ramales de acometida.

6.2. Arterias principales de la red de distribución

Conducen el agua desde la conducción de alimentación hasta los distribuidores. Su función principal es de conducción y en general no se conectan a ellas ramales de acometida.

6.3. Ramales distribuidores

Se conectan a la artería principal conduciendo el agua hasta los ramales de acometida.

Sus dimensiones y longitudes resultan de los cálculos posteriores y se detallarán posteriormente y en los planos.

6.4. Ramales de acometida

Conectados a los distribuidores, conducen el agua hasta las arquetas de acometida.

6.5. Hidrantes de incendio

Se conectarán a la red mediante una conducción para cada boca o hidrante, provista en su comienzo de una llave de paso y de un racor. Deben ser sólidos, seguros e incongelables. Para ello debe tener el cierre hidráulico al menos a 1 metro de profundidad, y el tramo de tubo comprendido entre el cierre y el racor debe vaciarse automáticamente.

6.6. Piezas especiales

Se colocarán reducciones en los cambios de sección de las conducciones, codos en los cambios de dirección y piezas en T en las derivaciones.

Se colocarán dos válvulas en las T, de forma que sea posible cortar el flujo de agua.

En los puntos bajos de cada sector definido en el cálculo, se colocarán llaves de paso con desagüe para poder vaciar y cortar el paso de ésta cuando sea necesario.

Las arquetas de acometida se colocarán en los extremos de los ramales de acometida para conectar la red de distribución con las viviendas.

7. Dimensionamiento de la Red de Abastecimiento

La determinación de los diámetros de las tuberías que configurarán la red deben atender a los siguientes criterios:

- Se deben suministrar los caudales y presiones que los usuarios precisan, incluyendo la extinción de incendios.
- Se deben cumplir las restricciones funcionales relacionadas con diámetros, velocidades del agua y presiones.
- Se debe minimizar el coste de la red, considerando amortización, mantenimiento y explotación.

Se ha decidido utilizar tuberías de polietileno (PE 100) debido a la baja densidad del material, con lo que se facilita su colocación en obra debido a su bajo peso. Además, su elevada resistencia disminuye o elimina los problemas por golpes o corrosión. La utilización de tubos de polietileno (PE) tiene grandes ventajas respecto a otros tubos tradicionales:

- Durabilidad: Se considera vida útil del tubo de PE un periodo de más de 50 años.
- Atoxicidad: Se trata de tubos inodoros, insípidos y atóxicos, siendo de esta forma el PE un material idóneo para la conducción de agua potable.
- Resistencia: El polietileno es resistente a la corrosión y a la mayor parte de los agentes químicos.
- Baja pérdida de carga: debido a la superficie lisa de los tubos de PE, la pérdida de carga por rozamiento es casi nula con respecto a otros materiales.
- Flexibilidad y elasticidad: facilita los trazados más sinuosos. Así mismo, la resistencia al golpe de ariete aumenta considerablemente respecto a otros materiales rígidos.
- Insensibles a la congelación: la gran capacidad como aislante de los tubos de PE hace que los mismos tengas una gran resistencia a la congelación. En el caso de que el agua se helara en el interior del tubo, el aumento de volumen no provocaría la rotura del tubo gracias a la flexibilidad del mismo.
- Fácil instalación: además del tendido convencional, y apertura de zanja, los tubos de PE pueden ser instalados por diversos sistemas, como son el arado topo, entubados (Refining) en tubos ya existentes, instalación sin apertura de zanja, etc. Por otro lado, presentan una gran aceptación frente a la unión por electrofusión, la cual permite una unión más rápida aplicable en tubos de diferente diámetro.
- Ligeros: el fácil manejo de los tubos PE, debido a su poco peso, supone una gran ventaja para la instalación en zonas difíciles.

7.1. Diámetros

Se recomienda utilizar unos diámetros mínimos que permitan garantizar que se dispondrá de caminos alternativos para el suministro en caso de averías, que las presiones serán relativamente uniformes en toda la red y que se podrán garantizar los caudales de incendio y riego.

7.2. Presión máxima en la red

La presión de servicio debe asegurar en todo momento la correcta alimentación de los dispositivos de consumo del usuario.

La presión estática Pe en cualquier punto de la red de distribución no será superior a 60 m.c.a, recomendándose no superar los 40 m.c.a. El empleo de presiones elevadas únicamente puede producir efectos negativos en la red, tales como:

- Encarecimiento de la red al tener que adoptar un diámetro mayor y un espesor de las paredes de las tuberías mayor.
- Aumento de fugas por avería.

La presión máxima que debe soportar una conducción es la estática más la debida al golpe de ariete por cierre de válvulas.

7.3 Velocidades admisibles

La velocidad de circulación del agua, para un caudal dado, esta relacionada con el diámetro de la tubería. La elección más adecuada es aquella que permite minimizar costes, pero a la vez asegura un funcionamiento sin problemas de la red.

La AEAS, Asociación Española de Abastecimientos de Agua y Saneamiento, propone valores de velocidad comprendidos entre 0.6 y 2.3 m/s, con valor mínimo de 0.3 m/s.

En general, los valores límite de las velocidades son los siguientes:

- En conducciones por gravedad hasta 2,5 m/s
- En impulsiones y aspiración hasta 2 m/s
- Impulsiones y elevación hasta 1 m/s
- Red de distribución en poblaciones hasta 1,5 m/s

En las conducciones a presión es posible alcanzar velocidades superiores manteniendo algunas precauciones, tales como:

- No deben existir cambios bruscos en la conducción
- El agua circulante debe estar exenta de arena en suspensión, ya que provocaría la erosión de tubos y codos.

Las velocidades mínimas vendrían condicionadas por:

- Evaporación
- Agotamiento del oxígeno
- Aparición de contaminantes
- Sedimentación

Una velocidad excesivamente pequeña puede producir un tiempo de permanencia excesivo de agua en la red, disminuyendo la calidad del agua distribuida. Es conveniente que la velocidad sea superior, como se ha dicho antes, a 0,6 m/s, pero resulta casi imposible conseguir esos valores en todos los tramos.

7.4. Caudales

El caudal de diseño de toda la red de distribución es el caudal punta de la población. Para cada zona de la red de distribución debe establecerse el caudal punta en función del número de habitantes conectados a ella.

7.5. Pérdida de carga

Cuando se producen variaciones en el régimen de circulación, debido a los cambios de pendiente, las variaciones en las velocidades y singularidades de los distintos tramos, dan lugar a una pérdida de carga o energía.

Esta pérdida de carga se traduce en una pérdida de presión y se mide en m.c.a. Si dividimos éstas por la longitud total del tramo, obtenemos la pérdida de carga unitaria, cuyas unidades vendrán en m/km.

En este caso, para realizar los cálculos de las pérdidas en una tubería por fricción al paso del agua, se ha utilizado la fórmula de Darcy-Weisbach. Esta fórmula es, desde el punto de vista académico, la más correcta y aplicable a todo tipo de líquidos y regímenes:

$$hp = f \times \left(\frac{8 \times L \times Q^2}{\pi^2 \times g \times D^5} \right)$$

donde:

hp: pérdida de carga (m.c.a.)

f: factor de fricción

L: longitud de la conducción (m)

Q: caudal circulante por la conducción (m3/s)

D: diámetro interior (m)

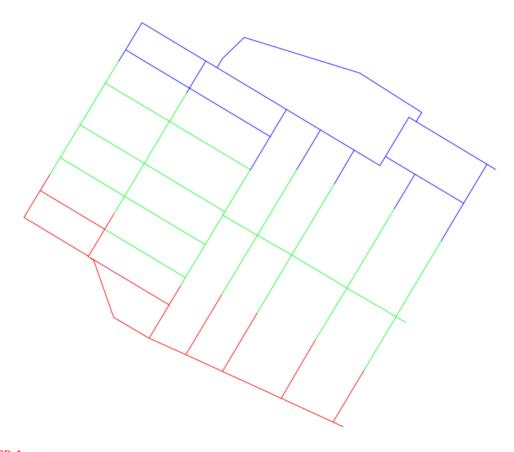
Para la obtención del factor de fricción utilizaremos la fórmula Colebrook-White:

$$\frac{1}{\sqrt{f}} = -2 \times \log \left| \left(\frac{\varepsilon}{3.7 \times D} \right) + \left(\frac{2.51}{\text{Re} \times \sqrt{f}} \right) \right|$$

El factor de fricción f es función de:

- El número de Reynolds (Re): representa la relación entre las fuerzas de inercia y las fuerzas viscosas en la tubería.
- Rugosidad relativa (ε /D): Traduce matemáticamente las imperfecciones del tubo. A efectos de diseño, conviene considerar para todos los materiales una rugosidad absoluta de 0.1 mm, para tener en cuenta:
 - Las juntas
 - o El envejecimiento del material
 - o La posible deposición de carbonatos en la superficie interna de la tubería.

8. Cálculo de la red de abastecimiento


Se ha tomado la decisión de que las conducciones transcurran por las aceras en lugar de por el centro de la calzada, ya que por este circulan las aguas residuales. Se ha realizado el dibujo en AutoCAD para delimitar la forma de la red siguiendo el curso de las vías y así disponer de la longitud de dichas conducciones.

Inicialmente, para proceder al cálculo de la red mallada, se ramifica la malla mediante el método de la ramificación. Para ello, se efectúa el diseño de la red transformándola en ramificada, mediante la realización de unos cortes en la red, separando la red única en subredes por el método de las distancias mínimas. Este método permite un dimensionamiento de la red próximo al óptimo económico y establecer el funcionamiento de la red como ramificada de una forma sistemática. Sólo es útil para red nueva o de aplicación en una zona de ampliación de red. Las hipótesis básicas de dicho método son:

- El agua alcanza cualquier nudo de la red por el itinerario más corto entre él y el nudo de inyección.
- La H de cualquier nudo de la red, es función exclusiva de la longitud del itinerario más corto al nudo de inyección. Esto equivale a decir que la pérdida de carga unitaria en toda la red es constante.

8.1. Predimensionamiento de la red

Al haber tres puntos de conexión con la red, se realizarán los cortes de manera que se obtengan dos redes ramificadas independientes. Los nudos corresponderán a una u otra malla según la distancia que tengan al punto de toma. Se han numerado todos los nudos, identificando con una comilla (') aquellos nudos dobles.

RED 1

RED 2

RED 3

Figura 1. Esquema de la red dividida y ramificada

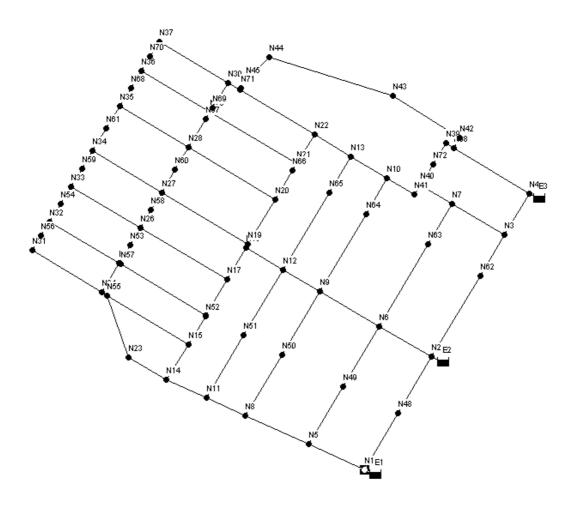


Figura 2. Esquema con la numeración de los nudos

8.1.1. Asignación del número de viviendas y el caudal correspondiente a cada tramo

Se asigna a cada tramo el número de viviendas y otros servicios que abastezca, excluyendo los hidrantes de incendio.

Para ello, se tiene en cuenta los coeficientes punta correspondientes al número de viviendas que abastece cada tramo según la tabla X presentada anteriormente. Se calcula para cada tramo el número de viviendas que son abastecidas por el mismo y por los tramos consecutivos. Se multiplica el número total de viviendas acumuladas por el caudal medio por vivienda y por el coeficiente punta correspondiente al número de viviendas calculado.

En el caso de que el número de viviendas no aparezca en la tabla anterior, se ha calculado interpolando, de manera que se obtiene la siguiente tabla:

N viviendas	Кр	Q (l/s)	40	7.819	3.62
1	18.51	0.21	48	6.697	3.72
2	18.51	0.43	50	6.416	3.71
4	18.51	0.86	56	5.575	3.61
5	18.51	1.07	59	5.44	3.71
6	18.51	1.29	63	5.261	3.84
7	18.51	1.50	64	5.216	3.86
8	18.51	1.71	69	5.164	4.12
9	18.51	1.93	71	5.14	4.22
10	18.51	2.14	72	5.13	4.28
11	17.762	2.26	115	4.685	6.24
12	17.01	2.36	140	4.425	7.17
13	16.265	2.45	171	4.102	8.12
14	15.517	2.51	196	3.84	8.71
15	14.768	2.56	235	3.436	9.35
16	14.02	2.60	252	3.26	9.51
17	13.525	2.66	285	2.916	9.62
18	13.03	2.71	300	2.76	9.58
19	12.536	2.76	316	2.715	9.93
20	12.041	2.79	372	2.558	11.01
21	11.546	2.81	400	2.48	11.48
22	11.052	2.81	500	2.2	12.73
23	10.56	2.81	508	2.192	12.89
24	10.062	2.80	588	2.112	14.37
30	9.22	3.20	700	2	16.20
32	8.94	3.31			

Tabla 3. Coeficientes punta en función del número de viviendas

8.1.2. Diámetro mínimo

Se obtienen los diámetros mínimos exigidos para cada tramo, eligiendo el más restrictivo frente tres métodos distintos:

- Diámetro mínimo según NTE-IFA:

Habitantes	Tuberías de distribución (mm)	Arterias (mm)
< 1.000	60	100
1.000 - 6.000	80	125
> 6.000	100	175

Tabla 4. Valores mínimos de los diámetros Recomendados por NTE-IFA

Por lo que, al tratarse de una población de 4764 habitantes:

o Tuberías de distribución: 80 mm

o Arterias: 125 mm

- Diámetro mínimo según hidrante

Según el tipo de hidrante que tenga que alimentar el tramo, se tendrá que disponer un diámetro mínimo. Para los hidrantes de tipo 80 mm es necesario un diámetro mínimo de 100 mm.

- Diámetro mínimo según la velocidad de Mougnie

La siguiente tabla establece los diámetros mínimos a disponer para que las velocidades sean las adecuadas según la expresión de Mougnie que da la velocidad máxima recomendada para cada diámetro:

Diámetro (mm)	Velocidad (m/s)	Caudal (l/s)	Jmax (mca/km)
60	0.5	1.43	6.8
80	0.54	2.71	4.8
100	0.58	4.56	4.1
150	0.67	11.84	3.3
200	0.75	23.56	2.85
300	0.89	62.9	2.4
400	1.01	125.66	2.1
600	1.21	339.29	1.84

Tabla 5. Velocidades máximas y sus perdidas de carga para la formula de Mougnie

La expresión de Mougnie es:

$$V = 1.5 \times \left(\sqrt{D + 0.05}\right)$$

v : velocidad (m/s) D: diámetro (m)

Los diámetros obtenidos mediante este método se obtienen interpolando los valores de caudales entre los de la tabla y eligiendo el diámetro comercial inmediatamente superior.

8.1.3. Cálculo de las presiones en cada nudo

Una vez elegido el diámetro y el caudal circulante en cada tramo, se ha de calcular la velocidad, el factor de fricción f y la pérdida de carga en m.c.a de cada tramo según se especifica en el punto 7.5 de este mismo documento. Partiendo del punto de enlace con la conducción de alimentación, se calculará la presión en cada nudo.

Se necesitará una presión mínima total de 30 m.c.a. Esto es debido a la necesidad de tener una presión en las acometidas de 15 m.c.a, más la altura del edificio.

En las siguientes tablas pueden comprobarse los valores obtenidos

Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable

	RED 1											338.35	46.65		
NUDO	Qmax (I/s)	Ømin NTE	Ømin Hidr	Ø mougnie	Ø	DN	е	Ø int	L	v (m/s)	Re	f	hf	Cota (m)	P(mca)
DEP1-1	9.62	125	80	150	200	200	11.9	188.1	8.84	0.35	56623.74047	0.0222	6.38E-03	338.35	46.64
1-5	9.35	125	80	150	200	200	11.9	188.1	46.10	0.34	55034.50867	0.022305	3.16E-02	338.75	47.01
5-8	8.12	125	80	150	175	180	10.7	169.3	52.14	0.36	53102.05759	0.022615	4.62E-02	340.31	48.53
8-11	6.24	125	80	150	175	180	10.7	169.3	32.57	0.28	40807.49254	0.023635	1.78E-02	341.92	50.12
11-14	3.71	125	80	100	150	160	9.5	150.5	32.46	0.21	27292.90025	0.025635	1.23E-02	343.89	52.08
14-23	2.76	80	80	100	80	90	5.4	84.6	33.22	0.49	36120.27077	0.025625	1.24E-01	345.77	53.83
23-47	2.56	80	80	80	80	90	5.4	84.6	49.76	0.46	33502.85985	0.02592	1.61E-01	348.44	56.34
47-24	2.45	80	80	80	80	90	5.4	84.6	4.59	0.44	32063.28384	0.026095	1.37E-02	348.44	56.33
24-31	0.86	80	80	60	80	90	5.4	84.6	60.86	0.15	11254.86698	0.03179	2.73E-02	351.25	59.11
14-15	3.62	80	80	100	125	125	7.4	117.6	31.40	0.33	34081.094	0.02506	3.79E-02	345.45	53.60
15-55	2.6	80	80	80	80	90	5.4	84.6	71.47	0.46	34026.34203	0.02586	2.38E-01	348.44	56.35
47-55'		80	80	60	80	90	5.4	84.6						348.44	56.34
24-25	1.93	80	80	80	80	90	5.4	84.6	25.50	0.34	25258.01543	0.027135	4.92E-02	349.17	57.01
25-32	1.71	80	80	80	80	90	5.4	84.6	60.76	0.30	22378.86341	0.027715	9.40E-02	353.36	61.10
31-56		80	80	60	80	90	5.4	84.6						353.36	61.22
32-56'		80	80	60	80	90	5.4	84.6						353.36	61.10
1-48	3.71	80	80	100	100	110	6.6	103.4	49.65	0.44	39725.15946	0.02474	1.18E-01	337.30	45.48
5-49	3.86	80	80	100	80	90	5.4	84.6	50.70	0.69	50516.03086	0.02447	3.53E-01	338.80	46.71
8-50	3.61	80	80	100	80	90	5.4	84.6	53.30	0.64	47244.26721	0.02468	3.27E-01	341.01	48.90
11-51	3.61	80	80	100	80	90	5.4	84.6	54.64	0.64	47244.26721	0.02468	3.35E-01	342.72	50.58
15-52	1.71	80	80	80	80	90	5.4	84.6	24.93	0.30	22378.86341	0.027715	3.86E-02	345.51	53.62
25-53		80	80	60	80	90	5.4	84.6						351.32	59.16
32-54		80	80	60	80	90	5.4	84.6						353.51	61.25

Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable

	RED 2													336.2	48.8
NUD	Qmax (I/s)	Ømin NTE	Ømin Hidr	Ø mougnie	Ø	DN	е	Ø int	L	v (m/s)	Re	f	hf	Cota (m)	P(mca)
DEP2 -	2 14.37	125	150	175	300	315	18.7	296.3	9.02	0.21	53695.43869	0.02176	1.47E-03	336.20	48.80
2-6	12.89	125	150	175	275	280	16.6	263.4	45.74	0.24	54181.30049	0.021865	1.08E-02	338.87	51.46
6-9	11.01	125	150	150	250	250	14.8	235.2	52.14	0.25	51827.74101	0.022185	1.61E-02	341.71	54.28
9-12	9.51	125	150	150	225	225	13.4	211.6	32.16	0.27	49759.62879	0.022495	1.28E-02	343.52	56.08
12-18	7.17	125	150	150	200	200	11.9	188.1	32.04	0.26	42202.93339	0.02333	1.35E-02	345.13	57.68
18-17	4.22	80	80	100	150	160	9.5	150.5	27.73	0.24	31044.75446	0.02502	1.32E-02	345.66	58.19
17-26	2.81	80	80	100	80	90	5.4	84.6	75.98	0.50	36774.6235	0.02556	2.93E-01	353.47	65.71
26-33	1.29	80	80	60	80	90	5.4	84.6	60.64	0.23	16882.30047	0.02922	5.63E-02	353.66	65.84
18-19	4.12	80	150	100	175	180	10.7	169.3	3.13	0.18	26943.40853	0.025525	8.06E-04	345.13	57.67
19-27		80	150	100	150	160	9.5	150.5	75.94	0.16	20671.98105	0.02709	1.74E-02	348.38	60.91
27-34		80	80	60	100	110	6.6	103.4	60.52	0.13	11457.12146	0.03134	1.52E-02	352.97	65.48
19-20		100	80	100	150	160	9.5	150.5	39.74	0.21	27366.46602	0.02562	1.51E-02	344.07	56.60
20-28		80	80	100	80	90	5.4	84.6	76.01	0.50	36643.75296	0.02557	2.91E-01	347.35	59.59
28-35		80	80	80	80	90	5.4	84.6	60.36	0.27	19630.58194	0.02839	7.36E-02	352.90	65.07
2-48	3.2	80	80	100	100	110	6.6	103.4	49.47	0.38	34264.28848	0.025325		337.30	49.81
2-62	3.71	80	80	100	150	160	9.5	150.5	71.17	0.21	27292.90025	0.025635		335.33	47.90
6-49	3.86	80	80	100	80	90	5.4	84.6	53.06	0.69	50516.03086	0.02447	3.69E-01	338.80	51.02
6-63	4.28	80	80	100	100	110	6.6	103.4	72.06	0.51	45828.48584	0.02422	2.24E-01	337.92	50.28
9-50	3.61	80	80	100	80	90	5.4	84.6	55.69	0.64	47244.26721	0.02468	3.42E-01	341.01	53.24
9-64	3.86	80	80	100	80	90	5.4	84.6	67.79	0.69	50516.03086	0.02447	4.72E-01	340.35	52.45
12-51		80	80	100	80	90	5.4	84.6	57.62	0.64	47244.26721	0.02468	3.54E-01	342.72	54.93
12-65		80	80	100	80	90	5.4	84.6	67.75	0.64	47244.26721	0.02468	4.16E-01	341.88	54.02
17-16		80	80	100	100	110	6.6	103.4	31.12	0.43	38761.47634	0.024835		345.51	57.97
16-52		80	80	80	80	90	5.4	84.6	0.68	0.30	22378.86341	0.027715		345.51	57.97
16-57		80	80	80	80	90	5.4	84.6	76.03	0.46	34026.34203	0.02586	2.54E-01	349.17	61.38
26-53		80	80	60	80	90	5.4	84.6	20.72	0.04	2748.281472	0.045725	7.97E-04	351.32	63.56
26-58		80	80	60	80	90	5.4	84.6						350.90	63.14

Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable

33-54'		80	80	60	80	90	5.4	84.6						353.51	65.69
33-59		80	80	60	80	90	5.4	84.6						353.30	65.48
27-58'		80	80	60	80	90	5.4	84.6						350.90	63.43
27-60		80	80	60	80	90	5.4	84.6						347.86	60.39
34-59'		80	80	60	80	90	5.4	84.6						353.30	65.81
34-61		80	80	60	80	90	5.4	84.6						352.90	65.41
20-66	2.6	80	80	80	80	90	5.4	84.6	27.98	0.46	34026.34203	0.02586	9.34E-02	342.84	55.28
28-60'		80	80	60	80	90	5.4	84.6						347.86	60.10
28-67	1.71	80	80	80	80	90	5.4	84.6	24.91	0.30	22378.86341	0.027715	3.85E-02	346.61	58.81
35-61'		80	80	60	80	90	5.4	84.6						352.90	65.07
35-68		80	80	60	80	90	5.4	84.6						352.37	64.54

	RED 3											333.72	51.28		
NUDO	Qmax (I/s)	Ømin NTE	Ømin Hidr	Ø mougnie	Ø	DN	е	Ø int	L	v (m/s)	Re	f	hf	Cota (m)	P(mca)
DEP3-4	9.97	175	80	150	200	200	11.9	188.1	8.02	0.36	58683.85577	0.022075	6.18E-03	333.72	51.27
4-38	4.22	125	60	100	150	160	9.5	150.5	66.72	0.24	31044.75446	0.02502	3.18E-02	336.10	53.62
38-42	0.21	80	80	60	125	125	7.4	117.6	8.75	0.02	1977.080038	0.05028	7.13E-05	336.06	53.58
42-43	0.21	100	80	60	125	125	7.4	117.6	59.25	0.02	1977.080038	0.05028	4.83E-04	338.60	56.12
43-44		100	80	60	125	125	7.4	117.6						342.80	60.32
44-45		100	80	60	125	125	7.4	117.6						343.60	61.12
45-71		100	80	60	125	125	7.4	117.6						343.60	61.12
4-3	9.47	125	80	150	150	160	9.5	150.5	36.69	0.53	69666.78312	0.021955	7.74E-02	334.46	51.94
3-7	9.25	125	80	150	150	160	9.5	150.5	46.14	0.52	68048.33621	0.022025	9.31E-02	336.98	54.36
7-40	7.2	125	80	150	125	125	7.4	117.6	27.5	0.66	67785.60132	0.02264	1.19E-01	337.50	54.76
40-72		125	80	60	100	110	6.6	103.4						336.80	54.06
38-39		125	80	60	100	110	6.6	103.4						336.10	53.62
39-72'		125	80	60	100	110	6.6	103.4						336.80	54.32
40-41	6.32	125	80	150	150	160	9.5	150.5	8.54	0.36	46493.56593	0.02333	8.52E-03	338.12	55.38

Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable

41-1	0 6.32	125	80	150	125	125	7.4	117.6	24.16	0.58	59500.69449	0.02303	8.17E-02	338.99	56.16
10-1	4.92	125	80	150	100	110	6.6	103.4	31.75	0.59	52681.34354	0.02375	1.28E-01	340.24	57.29
13-2	3.68	125	80	100	80	90	5.4	84.6	32.05	0.65	48160.36103	0.02462	2.04E-01	341.77	58.61
22-4	6 2.45	80	80	80	100	110	6.6	103.4	65.45	0.29	26233.59587	0.0265	7.29E-02	343.60	60.37
46-3	0 1.07	80	80	60	125	125	7.4	117.6	10.58	0.10	10073.69353	0.032105	1.43E-03	344.70	61.47
46-71	1'	80	80	60	80	125	7.4	117.6						343.60	60.37
30-3	7 0.86	80	80	60	80	90	5.4	84.6	60.13	0.15	11254.86698	0.03179	2.70E-02	350.67	67.41
22-2	3.62	80	80	100	80	90	5.4	84.6	25.61	0.64	47375.13775	0.024675	1.58E-01	342.84	59.52
21-2	9 2.8	80	80	100	80	90	5.4	84.6	76.02	0.50	36643.75296	0.02557	2.91E-01	345.87	62.26
29-3	6 1.71	80	80	80	80	90	5.4	84.6	60.23	0.30	22378.86341	0.027715	9.32E-02	351.85	68.15
36-7	0	80	80	60	80	90	5.4	84.6						351.26	67.56
37-70	0'	80	80	60	80	90	5.4	84.6						351.26	67.56
29-6	9	80	80	60	80	90	5.4	84.6						345.28	61.67
30-69	9' 0.21	80	80	60	80	90	5.4	84.6	25.58	0.04	2748.281472	0.045725	9.84E-04	345.28	62.05
3-62	2.79	80	80	100	150	160	9.5	150.5	72.165	0.16	20524.84952	0.02713	1.63E-02	335.33	52.79
7-63	3.62	80	80	100	100	110	6.6	103.4	34.965	0.43	38761.47634	0.024835	7.96E-02	337.92	55.22
10-64	3.31	80	80	100	80	90	5.4	84.6	31.175	0.59	43318.15082	0.02497	1.63E-01	340.35	57.36
13-65	3.31	80	80	100	80	90	5.4	84.6	31.55	0.59	43318.15082	0.02497	1.65E-01	341.88	58.76
21-66		80	80	60	80	90	5.4	84.6						342.84	59.52
29-67	7'	80	80	60	80	90	5.4	84.6						346.61	63.00
36-68	3'	80	80	60	80	90	5.4	84.6						352.37	68.67

8.2. Cálculo de la red mallada

Para el cálculo de la red se ha utilizado el software EPANET, programa diseñado por la Agencia de Protección Ambiental de Estados Unidos y que tiene por objetivo el análisis y la simulación de redes hidráulicas a presión.

En el proyecto de la red de abastecimiento se ha considerado la demanda para el caudal punta distribuido en los nudos de la red de manera que a cada nudo de inicio y final de tramo se le asignan la mitad de las viviendas de dicho tramo y de los tramos que confluyan en ese nudo.

EPANET modeliza un sistema de distribución de agua con un conjunto de líneas conectadas a los nudos.

El programa asume que las tuberías están llenas en todo momento. El agua fluye a presión y siempre del nudo de mayor altura piezométrica al de menor. Los datos imputados a las tuberías son:

- Nudos inicial y final
- Diámetro
- Longitud
- Coeficiente de rugosidad
- Estado (abierta o cerrada)

Los resultados obtenidos son:

- Caudal de circulación
- Velocidad del fluio
- Pérdida de carga unitaria

Los nudos son los puntos donde confluyen las tuberías, y los datos imputados a estos son:

- Cota
- Demanda de agua

Los resultados obtenidos son:

- Altura piezométrica
- Presión

Los embalses son nudos que representan una fuente externa de alimentación de capacidad limitada. En este caso se utilizarán para imitar los puntos de toma con la tubería existente, por lo que se colocan 3 depósitos en la parte baja de la red, en los puntos de conexión con la tubería de alimentación. Se ha introducido la cota a la que se encuentra la tubería y una altura de lámina de agua de X m para simular la presión a la que se necesita que circule el agua para obtener un correcto abastecimiento de la zona.

La malla resultante puede observarse en los siguientes gráficos obtenidos de EPANET

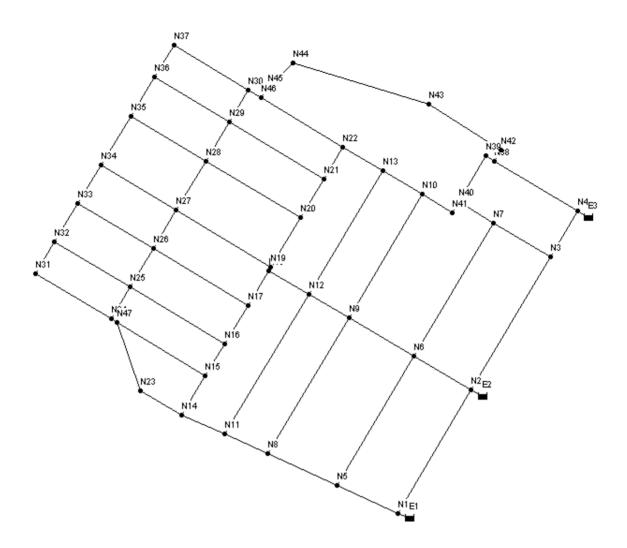


Figura 3. Esquema numeración de nudos

Se introduce la demanda base a cada nudo expuesta anteriormente y su respectiva cota, los diámetros obtenidos de predimensionado y la longitud de las tuberías, que viene determinada por las cotas de cada nudo. Se procede entonces a ejecutar el software para obtener los cálculos de la red.

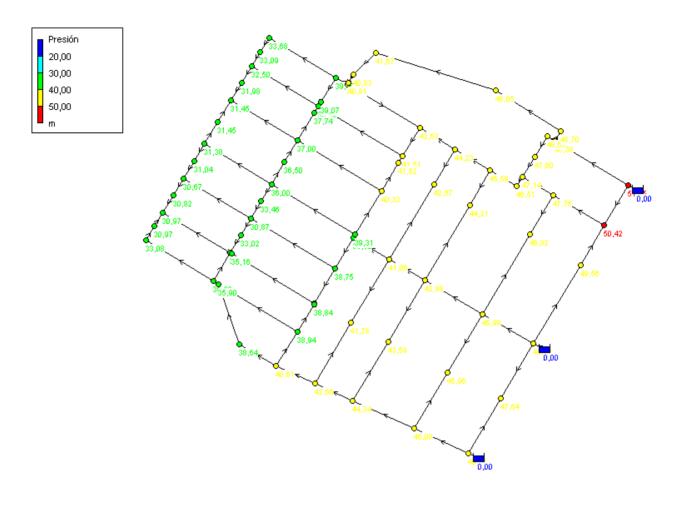


Figura 4. Esquema presiones en la red

8.2.1 Comprobación de incendio

Una vez realizada la comprobación del funcionamiento de la red, se procede a comprobar el funcionamiento de esta con una demanda de caudal frente a incendios. Se incluye el caudal de incendio a la demanda base de los nudos consecutivos desfavorables. Al disponer hidrantes del tipo 100, el caudal de incendio a añadir será de 16,33 l/s.

Como se puede comprobar, los nudos con menor presión son N34 y N18. A estos de les incluirá el caudal de incendio y se comprobará que tienen como mínimo una presión de 10 m.c.a.

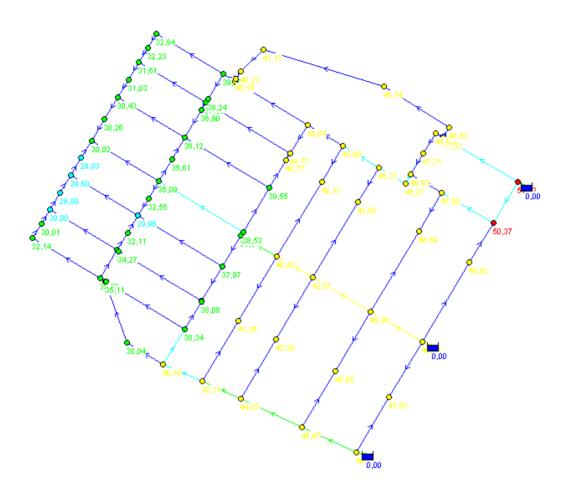


Figura 5. Comprobación incendios nudos N34 y N18

Como se puede apreciar en la figura, las presiones en los nudos de los hidrantes se ven poco afectadas, y los valores son superiores a 10 mca.

Por último, comprobamos la condición de incendio en los dos hidrantes consecutivos siguientes, observando también que los valores de presión obtenidos en sus nudos N18 y N2 son superiores a 10 mca.

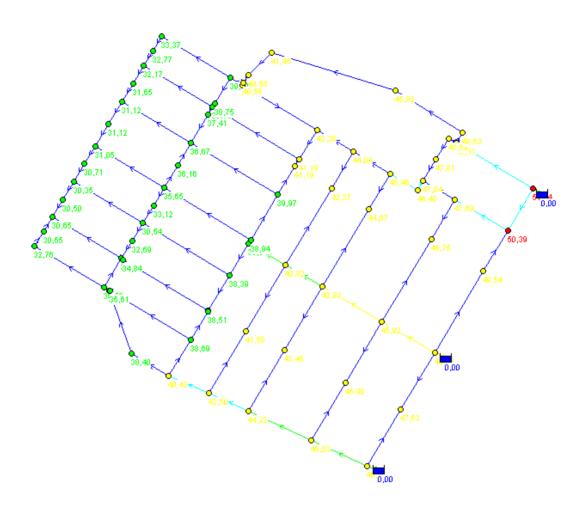


Figura 6. Comprobación incendios nudos N18 y N2

ANEJO Nº 5: CÁLCULO MECÁNICO

Curso: 2014/2015

Universidad Politécnica de Valencia (UPV) Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos (ETSICCP)

Grado en Ingeniería Civil Tutor: José Ferrer Polo Cotutor: Daniel Aguado García Autora: Alba Traver Gual

Índice

1. I	ntroducción	3
	Obtención de datos previos	
3. I	Bases para el cálculo mecánico	8
4. I	nformes de resultados abreviados obtenidos	10
4.1	1 Resultados DN 90 con carga de tráfico SLW 30	
4.2	Resultados DN 110 con carga de tráfico SLW 30	
4.3	U	
4.4	0	
4.5	S	
4.6	· · · · · · · · · · · · · · · · · · ·	
4.7	Resultados DN 225 con carga de tráfico SLW 30	
4.8	Resultados DN 250 con carga de tráfico SLW 30	
4.9	S	
	10 Resultados DN 315 con carga de tráfico SLW 30	
	nformes de resultados completos	11
5.1	ĕ	
5.2	O	
5.3	O	
5.4	0	
5.5	0	
5.6	S	
5.7	0	
5.8	Ö	
5.9	S	
5.1	10 Resultados DN 315 con carga de tráfico SLW 30	

1. Introducción

En el presente documento se detallarán las permisas para el cálculo mecánico y se explicarán los resultados obtenidos a partir del programa de "Cálculo mecánico de tuberías compactadas de polietileno (PE) a presión ", facilitado por la Asociación Española de fabricantes de Tubos y Accesorios Plásticos (AseTUB).

2. Obtención de datos previos

Para realizar el cálculo mecánico se deberá obtener la presión máxima de diseño (MDP), el ancho de la zanja correspondiente para cada diámetro nominal y la profundidad de instalación de dicha tubería. Además se supondrán las densidades del suelo y el agua, las cargas de tráfico y el tipo de terreno de la zona.

La presión máxima de diseño (MDP) es aquella máxima presión, incluyendo las posibles fluctuaciones causadas por el golpe de ariete, que puede alcanzarse en una sección de la tubería en servicio. Debe calcularse para comprobar que la tubería es capaz de soportar dicha presión. A continuación se muestra el procedimiento de cálculo y los resultados obtenidos.

$$Dm = D + e$$

Modulo de elasticidad del polietileno: $10^8 kg/m^2$ (E)

$$Kc = \frac{10^{10}}{E}$$

$$a = \frac{9900}{\sqrt{48.3 + kc \times \frac{D}{e}}}$$

$$\Delta H = \frac{a \times \upsilon}{9.81}$$

$$P_{min} = P - \Delta H$$

$$P_{max} = P + \Delta H$$

Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable

RED 1										
NUDO	е	Ø int	E (kg/m2)	Кс	a (m/s)	v (m/s)	Δн	P (mca)	P min	Pmax
DEP1-1	11.9	188.1	1.E+08	100	245.29	0.346	8.66	46.64	37.99	55.30
1-5	11.9	188.1	1.E+08	100	245.29	0.336	8.41	47.01	38.60	55.43
5-8	10.7	169.3	1.E+08	100	245.17	0.361	9.01	48.53	39.51	57.54
8-11	10.7	169.3	1.E+08	100	245.17	0.277	6.93	50.12	43.19	57.05
11-14	9.5	150.5	1.E+08	100	245.02	0.209	5.21	52.08	46.87	57.28
14-23	5.4	84.6	1.E+08	100	246.35	0.491	12.33	53.83	41.50	66.16
23-47	5.4	84.6	1.E+08	100	246.35	0.455	11.44	56.34	44.90	67.78
47-24	5.4	84.6	1.E+08	100	246.35	0.436	10.95	56.33	45.38	67.27
24-31	5.4	84.6	1.E+08	100	246.35	0.153	3.84	59.11	55.27	62.95
14-15	7.4	117.6	1.E+08	100	244.65	0.333	8.31	53.60	45.29	61.91
15-55	5.4	84.6	1.E+08	100	246.35	0.463	11.62	56.35	44.73	67.96
47-55'	5.4	84.6	1.E+08	100	246.35					
24-25	5.4	84.6	1.E+08	100	246.35	0.343	8.62	57.01	48.39	65.63
25-32	5.4	84.6	1.E+08	100	246.35	0.304	7.64	61.10	53.46	68.74
31-56	5.4	84.6	1.E+08	100	246.35					
32-56'	5.4	84.6	1.E+08	100	246.35					
1-48	6.6	103.4	1.E+08	100	246.35	0.442	11.10	45.48	34.38	56.57
5-49	5.4	84.6	1.E+08	100	246.35	0.687	17.24	46.71	29.47	63.95
8-50	5.4	84.6	1.E+08	100	246.35	0.642	16.13	48.90	32.77	65.03
11-51	5.4	84.6	1.E+08	100	246.35	0.642	16.13	50.58	34.46	66.71
15-52	5.4	84.6	1.E+08	100	246.35	0.304	7.64	53.62	45.98	61.26
25-53	5.4	84.6	1.E+08	100	246.35					
32-54	5.4	84.6	1.E+08	100	246.35					

Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable

					RED 2					
NUDO	е	Ø int	E (kg/m2)	Кс	a (m/s)	v (m/s)	Δн	P (mca)	P min	Pmax
DEP2 - 2	18.7	296.3	1.E+08	100	245.00	0.208	5.20	48.799	43.59	54.00
2-6	16.6	263.4	1.E+08	100	244.83	0.237	5.90	51.458	45.55	57.36
6-9	14.8	235.2	1.E+08	100	244.65	0.253	6.32	54.282	47.96	60.60
9-12	13.4	211.6	1.E+08	100	245.41	0.270	6.77	56.079	49.31	62.84
12-18	11.9	188.1	1.E+08	100	245.29	0.258	6.45	57.675	51.22	64.13
18-17	9.5	150.5	1.E+08	100	245.02	0.237	5.92	58.192	52.27	64.12
17-26	5.4	84.6	1.E+08	100	246.35	0.500	12.55	65.709	53.16	78.26
26-33	5.4	84.6	1.E+08	100	246.35	0.229	5.76	65.843	60.08	71.61
18-19	10.7	169.3	1.E+08	100	245.17	0.183	4.57	57.675	53.10	62.25
19-27	9.5	150.5	1.E+08	100	245.02	0.158	3.95	60.907	56.96	64.85
27-34	6.6	103.4	1.E+08	100	246.35	0.127	3.20	65.482	62.28	68.68
19-20	9.5	150.5	1.E+08	100	245.02	0.209	5.22	56.599	51.38	61.82
20-28	5.4	84.6	1.E+08	100	246.35	0.498	12.51	59.589	47.08	72.10
28-35	5.4	84.6	1.E+08	100	246.35	0.267	6.70	65.065	58.36	71.77
2-48'	6.6	103.4	1.E+08	100	246.35	0.381	9.57	49.809	40.24	59.38
2-62	9.5	150.5	1.E+08	100	245.02	0.209	5.21	47.902	42.69	53.11
6-49'	5.4	84.6	1.E+08	100	246.35	0.687	17.24	51.019	33.77	68.26
6-63	6.6	103.4	1.E+08	100	246.35	0.510	12.80	50.284	37.48	63.08
9-50'	5.4	84.6	1.E+08	100	246.35	0.642	16.13	53.240	37.11	69.37
9-64	5.4	84.6	1.E+08	100	246.35	0.687	17.24	52.450	35.21	69.69
12-51'	5.4	84.6	1.E+08	100	246.35	0.642	16.13	54.925	38.80	71.05
12-65	5.4	84.6	1.E+08	100	246.35	0.642	16.13	54.023	37.90	70.15
17-16	6.6	103.4	1.E+08	100	246.35	0.431	10.83	57.971	47.15	68.80
16-52'	5.4	84.6	1.E+08	100	246.35	0.304	7.64	57.970	50.33	65.61
16-57'	5.4	84.6	1.E+08	100	246.35	0.463	11.62	61.378	49.76	72.99
26-53'	5.4	84.6	1.E+08	100	246.35	0.037	0.94	63.559	62.62	64.50
26-58	5.4	84.6	1.E+08	100	246.35					

Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable

33-54'	5.4	84.6	1.E+08	100	246.35					
33-59	5.4	84.6	1.E+08	100	246.35					
27-58'	5.4	84.6	1.E+08	100	246.35					
27-60	5.4	84.6	1.E+08	100	246.35					
34-59'	5.4	84.6	1.E+08	100	246.35					
34-61	5.4	84.6	1.E+08	100	246.35					
20-66	5.4	84.6	1.E+08	100	246.35	0.463	11.62	55.276	43.66	66.89
28-60'	5.4	84.6	1.E+08	100	246.35					
28-67	5.4	84.6	1.E+08	100	246.35	0.304	7.64	58.810	51.17	66.45
35-61'	5.4	84.6	1.E+08	100	246.35					
35-68	5.4	84.6	1.E+08	100	246.35					

					RED 3					
NUDO	е	Ø int	E (kg/m2)	Кс	a (m/s)	v (m/s)	Δн	P (mca)	P min	Pmax
DEP3-4	11.9	188.1	1.E+08	100	245.29	0.359	8.97	51.27	42.30	60.24
4-38	9.5	150.5	1.E+08	100	245.02	0.237	5.92	53.62	47.70	59.55
38-42	7.4	117.6	1.E+08	100	244.65	0.019	0.48	53.58	53.10	54.06
42-43	7.4	117.6	1.E+08	100	244.65	0.019	0.482	56.12	55.64	56.60
43-44	7.4	117.6	1.E+08	100	244.65					
44-45	7.4	117.6	1.E+08	100	244.65					
45-71	7.4	117.6	1.E+08	100	244.65					
4-3	9.5	150.5	1.E+08	100	245.02	0.532	13.29	51.94	38.64	65.23
3-7	9.5	150.5	1.E+08	100	245.02	0.520	12.98	54.36	41.38	67.35
7-40	7.4	117.6	1.E+08	100	244.65	0.663	16.53	54.76	38.23	71.30
40-72	6.6	103.4	1.E+08	100	246.35					
38-39	6.6	103.4	1.E+08	100	246.35					

Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable

39-72'	6.6	103.4	1.E+08	100	246.35					
40-41	9.5	150.5	1.E+08	100	245.02	0.355	8.87	55.38	46.50	64.25
41-10	7.4	117.6	1.E+08	100	244.65	0.582	14.51	56.16	41.65	70.68
10-13	6.6	103.4	1.E+08	100	246.35	0.586	14.71	57.29	42.57	72.00
13-22	5.4	84.6	1.E+08	100	246.35	0.655	16.44	58.61	42.17	75.05
22-46	6.6	103.4	1.E+08	100	246.35	0.292	7.32	60.37	53.04	67.70
46-30	7.4	117.6	1.E+08	100	244.65	0.099	2.45	61.47	59.01	63.93
46-71'	5.4	84.6	1.E+08	100	246.35					
30-37	5.4	84.6	1.E+08	100	246.35	0.153	3.84	67.41	63.57	71.25
22-21	5.4	84.6	1.E+08	100	246.35	0.644	16.17	59.52	43.35	75.70
21-29	5.4	84.6	1.E+08	100	246.35	0.498	12.50	62.26	49.76	74.77
29-36	5.4	84.6	1.E+08	100	246.35	0.304	7.68	68.15	60.51	75.79
36-70	5.4	84.6	1.E+08	100	246.35					
37-70'	5.4	84.6	1.E+08	100	246.35					
29-69	5.4	84.6	1.E+08	100	246.35					
30-69'	5.4	84.6	1.E+08	100	246.35	0.037	0.93	62.05	61.11	62.99
3-62'	9.5	150.5	1.E+08	100	245.02	0.157	3.91	52.79	48.87	56.71
7-63'	6.6	103.4	1.E+08	100	246.35	0.431	10.82	55.22	44.40	66.05
10-64'	5.4	84.6	1.E+08	100	246.35	0.589	14.78	57.36	42.57	72.15
13-65'	5.4	84.6	1.E+08	100	246.35	0.589	14.78	58.76	43.97	73.55
21-66'	5.4	84.6	1.E+08	100	246.35					
29-67'	5.4	84.6	1.E+08	100	246.35					
36-68'	5.4	84.6	1.E+08	100	246.35					

Se han calculado también las presiones mínimas para comprobar que estas no son negativas debidas al golpe de ariete. Puesto que no se da el caso, no se producirá el colapso de la red. El valor más elevado de las presiones máximas será la presión máxima de funcionamiento de la red (MDP), en este caso se trata de 7.44 bar (75.79 mca correspondiente al tramo 29_36).

Puesto que las conducciones se sitúan debajo de acera, según la Norma UNE 53331 IN, la profundidad mínima a la que debe situarse la clave de la tubería es de 0.6 m y en los cruces de calzadas a 1 m. Podemos definir el ancho de la zanja B como:

$$B = DN(m) + e(m) + 0.4$$

Además, siguiendo el criterio de esta mismo norma, se ha definido el espesor de la cama de apoyo. Este apoyo se ha considerado de tipo A, es decir, cama en la que descansa la conducción, continua, de material granular compactado de manera uniforme en toda su longitud. El espesor (e) de dicha cama de apoyo se obtendrá como:

$$e = 0.1 \times \left[1 + DN(m)\right]$$

A continuación se muestran los valores de las variables anteriores obtenidos:

DN	B (m)	e (m)
90	0.495	0.109
110	0.517	0.111
125	0.532	0.113
160	0.570	0.116
180	0.591	0.118
200	0.612	0.120
225	0.638	0.123
250	0.665	0.125
280	0.697	0.128
315	0.736	0.132

Tabla 1. Cálculo del ancho de zanjas y espesor de camas de apoyo

3. Bases para el cálculo mecánico

Para dimensionar mecánicamente conducciones de polietileno se debe seguir la metodología de cálculo especificada en la Norma UNE 53331 IN, la cual esta basada en la norma alemana ATV 127. Puesto que el polietileno es muy flexible, el diseño mecánico se verá limitado por la deformación máxima admisible a causa de la seguridad. Sin embargo, deben de realizarse cada una de las comprobaciones siguientes:

- Hipótesis 1: estado tensional debido a la acción de la presión interna positiva

En esta hipótesis se tendrá en cuenta la presión interna que ejerce el agua sobre la tubería, por tanto deberá comprobarse que:

$$PD < PN (= PFA)$$
 $MDP < PMA$

Dado que la máxima presión de diseño de la red es de 7,44 bar y la presión nominal que soportan las tuberías es de 10 bar, este criterio se cumple.

- Hipótesis 2: estado tensional y deformaciones debidas a las acciones externas y la presión interna positiva.

En esta hipótesis debe comprobarse que el coeficiente de seguridad a largo plazo para los esfuerzos tangenciales a flexotracción en clave, riñones y base de la conducción sea superior al coeficiente de seguridad (C) establecido por la Norma UNE 53331 IN, y que la deformación que se produzca sea menor al 6% del diámetro de la tubería.

- Hipótesis 3: estado tensional y deformaciones debidas a las acciones externas

En esta hipótesis se comprueba que las acciones externas generan un coeficiente de seguridad a largo plazo para los esfuerzos tangenciales de flexotracción en clave, riñones y base, superior al admisible (C) establecido por la Norma UNE 53331 IN y que las deformaciones son inferiores al 6% del diámetro de la conducción.

- Hipótesis 4: pandeo o colapso debido a acciones externas y presión interna negativa En esta hipótesis se plantea la acción conjunta de las presiones internas negativas y las cargas externas para comprobar que el coeficiente de seguridad frente a pandeo sea superior al establecido por la Norma UNE 53331 IN (C).

Existen dos clases de seguridad en la Norma UNE 53331 y se ha establecido un tipo de seguridad A. Aunque no se conozca la presencia del nivel freático en la zona, se ha supuesto dicho nivel de seguridad puesto que la zona de implantación de la red es urbana y una reducción del servicio o fallo podría suponer notables consecuencias económicas. Por tanto, el coeficiente de seguridad (C) impuesto por la Norma UNE 53331 IN tiene un valor de 2.5.

Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable					
4. Informes de resultados abreviados					

INFORME ABREVIADO

Estudio estático para Tuberías A 127

Proyecto:	Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable
Empresa / Entidad:	Universidad Politécnica de Valencia -ETSICCP
Autor:	Alba Traver Gual
Informe n°:	001
Fecha:	15/09/2015

Este programa es una herramienta gratuita, que puede ser utilizada por personas con conocimientos técnicos en el cálculo estático de tuberías. El programa no puede reemplazar al ingeniero responsable.

Contenido

١.	. : DN 90	3	,
	1.1. Entrada de datos:	3	;
	1.1.1. Opciones de seguridad	3	;
	1.1.2. Suelo	3	;
	1.1.3. Carga	3	;
	1.1.4. Instalación	3	;
	1.1.5. Tubo de la base de datos	4	ļ
	1.2. Resultados:	4	Ļ
	1.2.1. Caso de carga a largo plazo	4	Ļ
	1.2.1.1. prueba de tensión	4	
	1.2.1.2. Prueba de deformación	4	
	1.2.1.3. Prueba de estabilidad (lineal):	5)

1.: DN 90

Descripción del tramo: DN 90 Tipo de cálculo: Según tabla

Añadir dibujo para imprimir:

1.1. Entrada de datos:

1.1.1. Opciones de seguridad

Clase de seguridad: A (caso normal) Deflexión admisible: 6% (habitual)

De acuerdo con la nota 39 de la ATV 127 Tratamiento de la presión interna:

Menores factores de seguridad para compresión por flexión: no (ATV A 127) No

La aplicación de la ATV A 127 no ha sido verificada para ver si la rigidez

circunferencial mínima ha sido alcanzada:

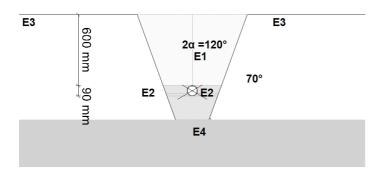
1.1.2. Suelo

1.1.2. Guelo			
Tipo de relleno:	G1		
Cálculo E1:	Módulo de elastic	idad E	
Módulo de elasticidad E1:	E1	8,0	N/mm²
Tipo de relleno en la zona del tubo:	G1		
Cálculo E20:	Módulo de elastic	idad E	
Módulo de elasticidad E20:	E ₂₀	16,0	N/mm²
Tipo de suelo natural:	G4		
Cálculo E3:	Módulo de elastic	idad E	
Módulo de elasticidad E3:	E3	1,5	N/mm²
E4 = 10 · E1:	No		
Suelo bajo la zanja:	G1		
Cálculo E4:	Módulo de elastic	idad E	
Módulo de elasticidad E4:	E4	1,5	N/mm²
1.1.3. Carga			
Altura de recubrimiento:	h	0,60	m
Densidad del suelo:	γ	20,0	kN/m³
Carga superficial adicional:	p_0	0,0	kN/m²
Nivel freático máximo sobre el lecho del tubo:	h _{W,max}	0,00	m
Nivel freático mínimo sobre el lecho del tubo:	h _{W,min}	0,00	m
Presión interna, corto plazo:	P _{I,K}	7,7	bar
Presión interna, largo plazo:	P _{I,L}	6,5	bar
Sección llena:	Si ^{,-}		
Densidad del fluido:	YF	10,0	kN/m³
Carga de tráfico:	SLW 30		

1.1.4. Instalación

Instalación:	Zanja		
Ancho de zanja:	b	0,50	m
Ángulo del talud:	β	70	0
Condiciones de relleno:	A4		
Condiciones de la instalación:	B4		
Tipo de apoyo:	suelto		
Ángulo de apoyo:	120°		
Proyección relativa:	а	1,00	[-]

1.1.5. Tubo de la base de datos


Material:

Presión nominal:

Diámetro nominal:

PE 100 PN = 10,0 bar (SDR = 17,0) DN 90 (5,4 mm)

Carga de tráfico: SLW 30

្ 495 mm ្

1.2. Resultados:

1.2.1. Caso de carga a largo plazo

1.2.1.1. prueba de tensión

		clave	generatriz sobre el diámetro horizontal del tubo	base	
Coeficiente de seguridad externo	Υ	3,700	3,700	3,700	[-]
Coeficiente de seguridad externo	γ	3,700	3,700	3,700	[-]
(Los coeficientes de seguridad para la te	ensión de compres	ión por flexión esta	án marcados con	un signo me	nos)
Coeficiente global de seguridad requerio tracción:	do, fallo por inestat	oilidad, tensión a	$\text{erf } \gamma_{RBZ}$	2,50	[-]
Coeficiente global de seguridad requerio compresión:	do, fallo por inestat	oilidad, tensión a	erf γ _{RBD}	2,50	[-]

Todos los coeficientes de seguridad calculados en la prueba de tensión son suficientes.

1.2.1.2. Prueba de deformación

Deformación vertical relativa: δ_{V} 1,10 % $zul \delta_v$ Deflexión admisible: 6,00 %

La deflexión determinada es menor que la deflexión permitida.

1.2.1.3. Prueba de estabilidad (lineal):

26,69 [-] [-] Coeficiente de seguridad de estabilidad: erf γ_{stab} Coeficiente global de seguridad requerido, fallo por inestabilidad: 2,00

Los coeficientes de seguridad al pandeo determinados son suficientes.

Todas las pruebas necesarias son correctas.

INFORME ABREVIADO

Estudio estático para Tuberías A 127

Proyecto:	Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable
Empresa / Entidad:	Universidad Politécnica de Valencia - ETSICCP
Autor:	Alba Traver Gual
Informe n°:	002
Fecha:	15/09/2015

Este programa es una herramienta gratuita, que puede ser utilizada por personas con conocimientos técnicos en el cálculo estático de tuberías. El programa no puede reemplazar al ingeniero responsable.

Contenido

١.	. : DN 110	3
	1.1. Entrada de datos:	3
	1.1.1. Opciones de seguridad	3
	1.1.2. Suelo	3
	1.1.3. Carga	3
	1.1.4. Instalación	3
	1.1.5. Tubo de la base de datos	4
	1.2. Resultados:	4
	1.2.1. Caso de carga a largo plazo	4
	1.2.1.1. prueba de tensión	4
	1.2.1.2. Prueba de deformación	4
	1.2.1.3. Prueba de estabilidad (lineal):	5

1.: DN 110

Descripción del tramo: **DN 110** Tipo de cálculo: Según tabla

Añadir dibujo para imprimir:

1.1. Entrada de datos:

1.1.1. Opciones de seguridad

Clase de seguridad: A (caso normal) Deflexión admisible: 6% (habitual)

De acuerdo con la nota 39 de la ATV 127 Tratamiento de la presión interna:

Menores factores de seguridad para compresión por flexión: no (ATV A 127) No

La aplicación de la ATV A 127 no ha sido verificada para ver si la rigidez

circunferencial mínima ha sido alcanzada:

1.1.2. Suelo

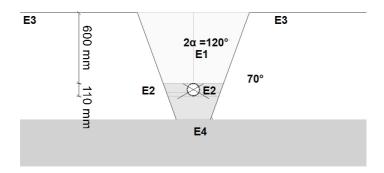
Tipo de relleno:	G1		
Cálculo E1:	Módulo de elastic	cidad E	
Módulo de elasticidad E1:	E1	8,0	N/mm²
Tipo de relleno en la zona del tubo:	G1	-,-	
Cálculo E20:	Módulo de elastic	cidad E	
Módulo de elasticidad E20:	E ₂₀	16,0	N/mm²
Tipo de suelo natural:	G4		
Cálculo E3:	Módulo de elastic	cidad E	
Módulo de elasticidad E3:	E3	1,5	N/mm²
E4 = 10 · E1:	No		
Suelo bajo la zanja:	G4		
Cálculo E4:	Módulo de elastic		N1/2
Módulo de elasticidad E4:	E4	1,5	N/mm²
1.1.3. Carga			
Altura de recubrimiento:	h	0,60	m
Densidad del suelo:	γ	20,0	kN/m³
Carga superficial adicional:	p_0	0,0	kN/m²
Nivel freático máximo sobre el lecho del tubo:	$h_{W,max}$	0,00	m
	**,	-,	
Nivel freático mínimo sobre el lecho del tubo:	$h_{W,min}$	0,00	m
Presión interna, corto plazo:	h _{W,min} P _{I,K}	0,00 7,1	bar
Presión interna, corto plazo: Presión interna, largo plazo:	h _{W,min} P _{I,K} P _{I,L}	0,00	
Presión interna, corto plazo: Presión interna, largo plazo: Sección llena:	h _{W,min} P _{I,K}	0,00 7,1 5,6	bar bar
Presión interna, corto plazo: Presión interna, largo plazo: Sección llena: Densidad del fluido:	$\begin{array}{l} h_{W,min} \\ P_{I,K} \\ P_{I,L} \\ Si \\ YF \end{array}$	0,00 7,1	bar
Presión interna, corto plazo: Presión interna, largo plazo: Sección llena:	h _{W,min} P _{I,K} P _{I,L} Si	0,00 7,1 5,6	bar bar

Instalación:	Zanja		
Ancho de zanja:	b	0,52	m
Ángulo del talud:	β	70	0
Condiciones de relleno:	A4		
Condiciones de la instalación:	B4		
Tipo de apoyo:	suelto		
Ángulo de apoyo:	120°		
Proyección relativa:	а	1,00	[-]

1.1.5. Tubo de la base de datos

Material:

Presión nominal:


Diámetro nominal:

PE 100

PN = 10,0 bar (SDR = 17,0)

DN 110 (6,6 mm)

Carga de tráfico: SLW 30

_լ 517 mm լ

1.2. Resultados:

1.2.1. Caso de carga a largo plazo

1.2.1.1. prueba de tensión

		clave	generatriz sobre el diámetro horizontal del tubo	base	
Coeficiente de seguridad externo	γ	4,246	4,246	4,246	[-]
Coeficiente de seguridad externo	Y	4,246	4,246	4,246	[-]
(Los coeficientes de seguridad para la tens	sión de compre	sión por flexión está	án marcados cor	n un signo me	nos)
Coeficiente global de seguridad requerido, tracción:	fallo por inesta	abilidad, tensión a	$\text{erf } \gamma_{RBZ}$	2,50	[-]
Coeficiente global de seguridad requerido, compresión:	fallo por inesta	abilidad, tensión a	erf γ _{RBD}	2,50	[-]

Todos los coeficientes de seguridad calculados en la prueba de tensión son suficientes.

1.2.1.2. Prueba de deformación

Deformación vertical relativa:	$\delta_{\sf v}$	1,08	%
Deflexión admisible:	zul δ_{v}	6,00	%

La deflexión determinada es menor que la deflexión permitida.

1.2.1.3. Prueba de estabilidad (lineal):

27,04 [-] [-] Coeficiente de seguridad de estabilidad: erf γ_{stab} Coeficiente global de seguridad requerido, fallo por inestabilidad: 2,00

Los coeficientes de seguridad al pandeo determinados son suficientes.

Todas las pruebas necesarias son correctas.

INFORME ABREVIADO

Estudio estático para Tuberías A 127

Proyecto:	Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable
Empresa / Entidad:	Universidad Politécnica de Valencia - ETSICCP
Autor:	Alba Traver Gual
Informe n°:	003
Fecha:	15/09/2015

Este programa es una herramienta gratuita, que puede ser utilizada por personas con conocimientos técnicos en el cálculo estático de tuberías. El programa no puede reemplazar al ingeniero responsable.

Contenido

l. :	: DN 125	3	,
	1.1. Entrada de datos:	3	į
	1.1.1. Opciones de seguridad	3	,
	1.1.2. Suelo	3	,
	1.1.3. Carga	3	,
	1.1.4. Instalación	3	,
	1.1.5. Tubo de la base de datos	4	
	1.2. Resultados:	4	
	1.2.1. Caso de carga a largo plazo	4	
	1.2.1.1. prueba de tensión	4	
	1.2.1.2. Prueba de deformación	4	
	1.2.1.3. Prueba de estabilidad (lineal):	5	,

1.: DN 125

Descripción del tramo: DN 125 Tipo de cálculo: Según tabla

Añadir dibujo para imprimir:

1.1. Entrada de datos:

1.1.1. Opciones de seguridad

Clase de seguridad: A (caso normal) Deflexión admisible: 6% (habitual)

De acuerdo con la nota 39 de la ATV 127 Tratamiento de la presión interna:

Menores factores de seguridad para compresión por flexión: no (ATV A 127) No

La aplicación de la ATV A 127 no ha sido verificada para ver si la rigidez

circunferencial mínima ha sido alcanzada:

1.1.2. Suelo

Tipo de relleno: Cálculo E1: Módulo de elasticidad E1: Tipo de relleno en la zona del tubo: Cálculo E20:	G1 Módulo de elastic E1 G1 Módulo de elastic	8,0	N/mm²
Módulo de elasticidad E20: Tipo de suelo natural: Cálculo E3:	E ₂₀ G4 Módulo de elastic	16,0	N/mm²
Módulo de elasticidad E3: E4 = 10 · E1: Suelo bajo la zanja: Cálculo F4:	E3 No G4 Módulo de elastic	1,5	N/mm²
Módulo de elasticidad E4: 1.1.3. Carga	E4	1,5	N/mm²
Altura de recubrimiento: Densidad del suelo: Carga superficial adicional: Nivel freático máximo sobre el lecho del tubo: Nivel freático mínimo sobre el lecho del tubo: Presión interna, corto plazo: Presión interna, largo plazo: Sección llena: Densidad del fluido: Carga de tráfico:	h Y P0 hW,max hW,min PI,K PI,L Si YF SLW 30	0,60 20,0 0,0 0,00 0,00 7,0 5,4	m kN/m³ kN/m² m m bar bar kN/m³

1.1.4. Instalación

Instalación:	Zanja		
Ancho de zanja:	b	0,53	m
Ángulo del talud:	β	70	0
Condiciones de relleno:	A4		
Condiciones de la instalación:	B4		
Tipo de apoyo:	suelto		
Ángulo de apoyo:	120°		
Proyección relativa:	а	1,00	[-]

1.1.5. Tubo de la base de datos


Material:

Presión nominal: Diámetro nominal: PE 100

PN = 10,0 bar (SDR = 17,0)

DN 125 (7,4 mm)

Carga de tráfico: SLW 30

ր 532 mm լ

1.2. Resultados:

1.2.1. Caso de carga a largo plazo

1.2.1.1. prueba de tensión

		clave	generatriz sobre el diámetro horizontal del tubo	base	
Coeficiente de seguridad externo	γ	4,369	4,369	4,369	[-]
Coeficiente de seguridad externo	Y	4,369	4,369	4,369	[-]
(Los coeficientes de seguridad para la tens	sión de compre	esión por flexión está	in marcados con	un signo me	nos)
Coeficiente global de seguridad requerido, tracción:	fallo por inesta	abilidad, tensión a	erf γ_{RBZ}	2,50	[-]
Coeficiente global de seguridad requerido, compresión:	fallo por inesta	abilidad, tensión a	erf γ _{RBD}	2,50	[-]

Todos los coeficientes de seguridad calculados en la prueba de tensión son suficientes.

1.2.1.2. Prueba de deformación

Deformación vertical relativa:	$\delta_{\sf v}$	1,30	%
Deflexión admisible:	zul δ_{v}	6,00	%

La deflexión determinada es menor que la deflexión permitida.

1.2.1.3. Prueba de estabilidad (lineal):

23,00 [-] [-] Coeficiente de seguridad de estabilidad: erf γ_{stab} Coeficiente global de seguridad requerido, fallo por inestabilidad: 2,00

Los coeficientes de seguridad al pandeo determinados son suficientes.

Todas las pruebas necesarias son correctas.

INFORME ABREVIADO

Estudio estático para Tuberías A 127

Proyecto:	Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino
	municipal de Lorca (Murcia): Red distribución de agua potable
Empresa / Entidad:	Universidad Politécnica de Valencia - ETSICCP
Autor:	Alba Traver Gual
Informe n°:	004
Fecha:	15/09/2015

Este programa es una herramienta gratuita, que puede ser utilizada por personas con conocimientos técnicos en el cálculo estático de tuberías. El programa no puede reemplazar al ingeniero responsable.

Contenido

I. : DN 160	3
1.1. Entrada de datos:	3
1.1.1. Opciones de seguridad	3
1.1.2. Suelo	3
1.1.3. Carga	3
1.1.4. Instalación	3
1.1.5. Tubo de la base de datos	4
1.2. Resultados:	4
1.2.1. Caso de carga a largo plazo	4
1.2.1.1. prueba de tensión	4
1.2.1.2. Prueba de deformación	4
1.2.1.3. Prueba de estabilidad (lineal):	5

Descripción del tramo: DN 160 Tipo de cálculo: Según tabla

Añadir dibujo para imprimir: Si

1.1. Entrada de datos:

1.1.1. Opciones de seguridad

Clase de seguridad: A (caso normal) Deflexión admisible: 6% (habitual)

De acuerdo con la nota 39 de la ATV 127 Tratamiento de la presión interna:

Menores factores de seguridad para compresión por flexión: no (ATV A 127) No

La aplicación de la ATV A 127 no ha sido verificada para ver si la rigidez

circunferencial mínima ha sido alcanzada:

1.1.2. Suelo

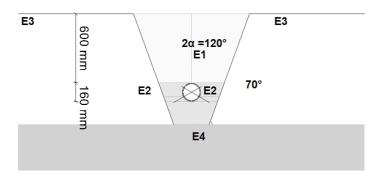
G1		
Módulo de el	asticidad E	
E1	8,0	N/mm²
G1		
Módulo de el	asticidad E	
E ₂₀	16,0	N/mm²
G4		
Módulo de el	asticidad E	
E3	1,5	N/mm²
No		
G4		
Módulo de el	asticidad E	
E4	1,5	N/mm²
h	0,60	m
γ	20,0	kN/m³
p ₀	0,0	kN/m²
$h_{W,max}$	0,00	m
	Módulo de el E1 G1 Módulo de el E20 G4 Módulo de el E3 No G4 Módulo de el E4	Módulo de elasticidad E E1 8,0 G1 Módulo de elasticidad E E $_{20}$ 16,0 G4 Módulo de elasticidad E E3 1,5 No G4 Módulo de elasticidad E E4 1,5

Altura		

Altura de recubrimiento:	h	0,60	m
Densidad del suelo:	γ	20,0	kN/m³
Carga superficial adicional:	p_0	0,0	kN/m²
Nivel freático máximo sobre el lecho del tubo:	$h_{W,max}$	0,00	m
Nivel freático mínimo sobre el lecho del tubo:	$h_{W,min}$	0,00	m
Presión interna, corto plazo:	$P_{l,K}$	6,6	bar
Presión interna, largo plazo:	$P_{I,L}$	5,3	bar
Sección Ilena:	Si		
Densidad del fluido:	ΥF	10,0	kN/m³
Carga de tráfico:	SLW 30		

1.1.4. Instalación

Instalación:	Zanja		
Ancho de zanja:	b	0,57	m
Ángulo del talud:	β	70	0
Condiciones de relleno:	A4		
Condiciones de la instalación:	B4		
Tipo de apoyo:	suelto		
Ángulo de apoyo:	120°		
Proyección relativa:	а	1,00	[-]


Material:

Presión nominal: Diámetro nominal: PE 100

PN = 10,0 bar (SDR = 17,0)

DN 160 (9,5 mm)

Carga de tráfico: SLW 30

570 mm

1.2. Resultados:

1.2.1. Caso de carga a largo plazo

1.2.1.1. prueba de tensión

		clave	generatriz sobre el diámetro horizontal del tubo	base	
Coeficiente de seguridad externo	γ	4,416	4,416	4,416	[-]
Coeficiente de seguridad externo	γ	4,416	4,416	4,416	[-]
(Los coeficientes de seguridad para la tens	sión de compre	sión por flexión está	in marcados con	ı un signo me	nos)
Coeficiente global de seguridad requerido, tracción:	, fallo por inesta	bilidad, tensión a	$\text{erf } \gamma_{RBZ}$	2,50	[-]
Coeficiente global de seguridad requerido, compresión:	, fallo por inesta	bilidad, tensión a	erf γ _{RBD}	2,50	[-]

Todos los coeficientes de seguridad calculados en la prueba de tensión son suficientes.

1.2.1.2. Prueba de deformación

Deformación vertical relativa:	$\delta_{\sf v}$	1,85	%
Deflexión admisible:	zul δ_{v}	6,00	%

16,56 [-] [-] Coeficiente de seguridad de estabilidad: erf γ_{stab} Coeficiente global de seguridad requerido, fallo por inestabilidad: 2,00

Los coeficientes de seguridad al pandeo determinados son suficientes.

INFORME ABREVIADO

Estudio estático para Tuberías A 127

Proyecto:	Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable
Empresa / Entidad:	Universidad Politécnica de Valencia - ETSICCP
Autor:	Alba Traver Gual
Informe n°:	005
Fecha:	15/09/2015

١.	. : DN 180	3
	1.1. Entrada de datos:	3
	1.1.1. Opciones de seguridad	3
	1.1.2. Suelo	3
	1.1.3. Carga	3
	1.1.4. Instalación	3
	1.1.5. Tubo de la base de datos	4
	1.2. Resultados:	4
	1.2.1. Caso de carga a largo plazo	4
	1.2.1.1. prueba de tensión	4
	1.2.1.2. Prueba de deformación	4
	1.2.1.3. Prueba de estabilidad (lineal):	5

Descripción del tramo: DN 180 Tipo de cálculo: Según tabla Si

Añadir dibujo para imprimir:

1.1. Entrada de datos:

1.1.1. Opciones de seguridad

Clase de seguridad: A (caso normal) Deflexión admisible: 6% (habitual)

De acuerdo con la nota 39 de la ATV 127 Tratamiento de la presión interna:

Menores factores de seguridad para compresión por flexión: no (ATV A 127) No

La aplicación de la ATV A 127 no ha sido verificada para ver si la rigidez

circunferencial mínima ha sido alcanzada:

1.1.2. Suelo

Tipo de relleno: Cálculo E1: Módulo de elasticidad E1: Tipo de relleno en la zona del tubo: Cálculo E20: Módulo de elasticidad E20: Tipo de suelo natural: Cálculo E3: Módulo de elasticidad E3: E4 = 10 · E1: Suelo bajo la zanja: Cálculo E4: Módulo de elasticidad E4:	G1 Módulo de ela E1 G1 Módulo de ela E20 G4 Módulo de ela E3 No G4 Módulo de ela E4	8,0 esticidad E 16,0 esticidad E 1,5	N/mm² N/mm² N/mm²
1.1.3. Carga			
Altura de recubrimiento: Densidad del suelo: Carga superficial adicional: Nivel freático máximo sobre el lecho del tubo: Nivel freático mínimo sobre el lecho del tubo: Presión interna, corto plazo: Presión interna, largo plazo: Sección llena: Densidad del fluido: Carga de tráfico:	h Y P0 h _{W,max} h _{W,min} P _{I,K} P _{I,L} Si YF SLW 30	1,00 20,0 0,0 0,00 0,00 6,1 5,7	m kN/m³ kN/m² m m bar bar kN/m³
1.1.4. Instalación			
Instalación:	Zanja		

b

β

A4

В4

suelto

120°

а

0,59

1,00

70

m

[-]

Ancho de zanja:

Ángulo del talud:

Tipo de apoyo:

Ángulo de apoyo:

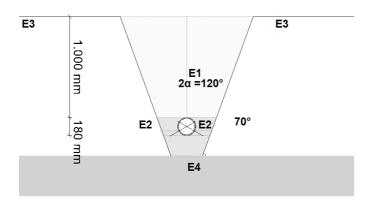
Proyección relativa:

Condiciones de relleno:

Condiciones de la instalación:

Material:

Presión nominal:


Diámetro nominal:

PE 100

PN = 10,0 bar (SDR = 17,0)

DN 180 (10,7 mm)

Carga de tráfico: SLW 30

ր 591 mm լ

1.2. Resultados:

1.2.1. Caso de carga a largo plazo

1.2.1.1. prueba de tensión

Coeficiente de seguridad externo Coeficiente de seguridad externo (Los coeficientes de seguridad para la tensión	γ γ de compresión	clave 4,172 4,172 por flexión est	generatriz sobre el diámetro horizontal del tubo 4,172 4,172 án marcados con u	4,172 4,172 un signo me	[-] [-] enos)
Coeficiente global de seguridad requerido, falla tracción:	o por inestabilid	ad, tensión a	$\text{erf } \gamma_{RBZ}$	2,50	[-]
Coeficiente global de seguridad requerido, fallo compresión:	o por inestabilid	ad, tensión a	erf γ_{RBD}	2,50	[-]

Todos los coeficientes de seguridad calculados en la prueba de tensión son suficientes.

1.2.1.2. Prueba de deformación

Deformación vertical relativa:	δ_{V}	1,34	%
Deflexión admisible:	zul δ_{v}	6,00	%

20,66 [-] [-] Coeficiente de seguridad de estabilidad: erf γ_{stab} Coeficiente global de seguridad requerido, fallo por inestabilidad: 2,00

Los coeficientes de seguridad al pandeo determinados son suficientes.

INFORME ABREVIADO

Estudio estático para Tuberías A 127

Proyecto:	Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable
Empresa / Entidad:	Universidad Politécnica de Valencia - ETSICCP
Autor:	Alba Traver Gual
Informe n°:	006
Fecha:	15/09/2015

I.: DN 200		3	3
	1.1. Entrada de datos:	3	3
	1.1.1. Opciones de seguridad	3	3
	1.1.2. Suelo	3	3
	1.1.3. Carga	3	3
	1.1.4. Instalación	3	3
	1.1.5. Tubo de la base de datos	4	1
	1.2. Resultados:	4	1
	1.2.1. Caso de carga a largo plazo	4	1
	1.2.1.1. prueba de tensión 1.2.1.2. Prueba de deformación	4	4
	1,2,1,3. Prueba de estabilidad (lineal):	5	5

Descripción del tramo: DN 200 Tipo de cálculo: Según tabla Si

Añadir dibujo para imprimir:

1.1. Entrada de datos:

1.1.1. Opciones de seguridad

Clase de seguridad: A (caso normal) Deflexión admisible: 6% (habitual)

De acuerdo con la nota 39 de la ATV 127 Tratamiento de la presión interna:

Menores factores de seguridad para compresión por flexión: no (ATV A 127) No

La aplicación de la ATV A 127 no ha sido verificada para ver si la rigidez

circunferencial mínima ha sido alcanzada:

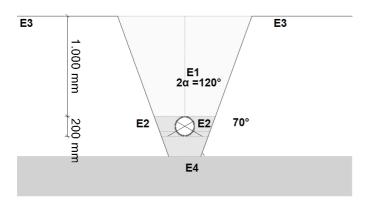
1.1.2. Suelo

Tipo de relleno: Cálculo E1: Módulo de elasticidad E1: Tipo de relleno en la zona del tubo: Cálculo E20:	G1 Módulo de elastic E1 G1 Módulo de elastic	8,0	N/mm²
Módulo de elasticidad E20: Tipo de suelo natural:	E ₂₀ G4	8,0	N/mm²
Cálculo E3:	Módulo de elastic		N1/2
Módulo de elasticidad E3: E4 = 10 · E1:	E3 No	1,5	N/mm²
Suelo bajo la zanja:	G4		
Cálculo E4:	Módulo de elastic	idad E	
Módulo de elasticidad E4:	E4	1,5	N/mm²
1.1.3. Carga			
Altura de recubrimiento:	h	1,00	m
Densidad del suelo:	γ	20,0	kN/m³
Carga superficial adicional:	p_0	0,0	kN/m²
Nivel freático máximo sobre el lecho del tubo:	$h_{W,max}$	0,00	m
Nivel freático mínimo sobre el lecho del tubo:	h _{W,min}	0,00	m
Presión interna, corto plazo:	$P_{I,K}$	6,3	bar
Presión interna, largo plazo:	P _{I,L}	5,7	bar
Sección llena: Densidad del fluido:	Si v-	10,0	kN/m³
Carga de tráfico:	YF SLW 30	10,0	KIN/III
1.1.4. Instalación			

Instalación:	Zanja		
Ancho de zanja:	b	0,61	m
Ángulo del talud:	β	70	0
Condiciones de relleno:	A4		
Condiciones de la instalación:	B4		
Tipo de apoyo:	suelto		
Ángulo de apoyo:	120°		
Proyección relativa:	а	1,00	[-]

Material:

Presión nominal:


Diámetro nominal:

PE 100

PN = 10,0 bar (SDR = 17,0)

DN 200 (11,9 mm)

Carga de tráfico: SLW 30

ը 612 mm լ

1.2. Resultados:

1.2.1. Caso de carga a largo plazo

1.2.1.1. prueba de tensión

		clave	generatriz sobre el diámetro horizontal del tubo	base	
Coeficiente de seguridad externo	γ	4,176	4,176	4,176	[-]
Coeficiente de seguridad externo	γ	4,176	4,176	4,176	[-]
(Los coeficientes de seguridad para la tens	sión de compre	sión por flexión está	án marcados cor	n un signo me	nos)
Coeficiente global de seguridad requerido, tracción:	fallo por inesta	abilidad, tensión a	$\text{erf } \gamma_{RBZ}$	2,50	[-]
Coeficiente global de seguridad requerido, compresión:	fallo por inesta	abilidad, tensión a	erf γ _{RBD}	2,50	[-]

Todos los coeficientes de seguridad calculados en la prueba de tensión son suficientes.

1.2.1.2. Prueba de deformación

Deformación vertical relativa:	$\delta_{\sf v}$	1,57	%
Deflexión admisible:	zul δ_{v}	6,00	%

17,47 [-] [-] Coeficiente de seguridad de estabilidad: erf γ_{stab} Coeficiente global de seguridad requerido, fallo por inestabilidad: 2,00

Los coeficientes de seguridad al pandeo determinados son suficientes.

INFORME ABREVIADO

Estudio estático para Tuberías A 127

Proyecto:	Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable
Empresa / Entidad:	Universidad Politécnica de Valencia - ETSICCP
Autor:	Alba Traver Gual
Informe n°:	007
Fecha:	15/09/2015

I.: DN 225	
1.1. Entrada de datos:	3
1.1.1. Opciones de seguridad	3
1.1.2. Suelo	3
1.1.3. Carga	3
1.1.4. Instalación	3
1.1.5. Tubo de la base de datos	4
1.2. Resultados:	4
1.2.1. Caso de carga a largo plazo	4
1.2.1.1. prueba de tensión	4
1.2.1.2. Prueba de deformación	4
1.2.1.3. Prueba de estabilidad (lineal):	5

Descripción del tramo: DN 225 Tipo de cálculo: Según tabla

Añadir dibujo para imprimir: Si

1.1. Entrada de datos:

1.1.1. Opciones de seguridad

Clase de seguridad: A (caso normal) Deflexión admisible: 6% (habitual)

De acuerdo con la nota 39 de la ATV 127 Tratamiento de la presión interna:

Menores factores de seguridad para compresión por flexión: no (ATV A 127) No

La aplicación de la ATV A 127 no ha sido verificada para ver si la rigidez

circunferencial mínima ha sido alcanzada:

1.1.2. Suelo

1.1.2. Suelo			
Tipo de relleno:	G1		
Cálculo E1:	Módulo de elastici	dad E	
Módulo de elasticidad E1:	E1	8,0	N/mm²
Tipo de relleno en la zona del tubo:	G1		
Cálculo E20:	Módulo de elastici	dad E	
Módulo de elasticidad E20:	E ₂₀	16,0	N/mm²
Tipo de suelo natural:	G4		
Cálculo E3:	Módulo de elastici	dad E	
Módulo de elasticidad E3:	E3	1,5	N/mm²
E4 = 10 · E1:	No		
Suelo bajo la zanja:	G4		
Cálculo E4:	Módulo de elastici	dad E	
Módulo de elasticidad E4:	E4	1,5	N/mm²
1.1.3. Carga			
Altura de recubrimiento:	h	0,60	m
Densidad del suelo:	γ	20,0	kN/m³
Carga superficial adicional:	p_0	0,0	kN/m²
Nivel freático máximo sobre el lecho del tubo:	h _{W,max}	0,00	m
Nivel freático mínimo sobre el lecho del tubo:	h _{W.min}	0,00	m
Presión interna, corto plazo:	P _{I,K}	6,8	bar
Presión interna, largo plazo:	P _{I,L}	5,5	bar
Sección llena:	Si		

1.1.4. Instalación

Carga de tráfico:

Densidad del fluido:

Instalación:	Zanja		
Ancho de zanja:	b	0,64	m
Ángulo del talud:	β	70	0
Condiciones de relleno:	A4		
Condiciones de la instalación:	B4		
Tipo de apoyo:	suelto		
Ángulo de apoyo:	120°		
Proyección relativa:	а	1,00	[-]

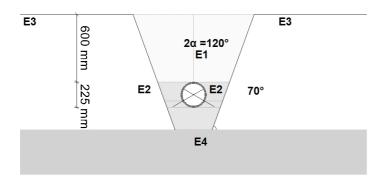
10,0

YF SLW 30

kN/m³

Material:

Presión nominal:


Diámetro nominal:

PE 100

PN = 10,0 bar (SDR = 17,0)

DN 225 (13,4 mm)

Carga de tráfico: SLW 30

638 mm

1.2. Resultados:

1.2.1. Caso de carga a largo plazo

1.2.1.1. prueba de tensión

		clave	generatriz sobre el diámetro horizontal del tubo	base	
Coeficiente de seguridad externo	γ	4,302	4,302	4,302	[-]
Coeficiente de seguridad externo	γ	4,302	4,302	4,302	[-]
(Los coeficientes de seguridad para la ten	sión de compres	sión por flexión está	án marcados con	un signo me	nos)
Coeficiente global de seguridad requerido tracción:	, fallo por inesta	bilidad, tensión a	erf γ_{RBZ}	2,50	[-]
Coeficiente global de seguridad requerido compresión:	, fallo por inesta	bilidad, tensión a	erf γ _{RBD}	2,50	[-]

Todos los coeficientes de seguridad calculados en la prueba de tensión son suficientes.

1.2.1.2. Prueba de deformación

Deformación vertical relativa:	δ_{V}	2,24	%
Deflexión admisible:	zul δ_{v}	6,00	%

[-] [-] Coeficiente de seguridad de estabilidad: 13,17 erf γ_{stab} Coeficiente global de seguridad requerido, fallo por inestabilidad: 2,00

Los coeficientes de seguridad al pandeo determinados son suficientes.

INFORME ABREVIADO

Estudio estático para Tuberías A 127

Proyecto:	Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable
Empresa / Entidad:	Universidad Politécnica de Valencia - ETSICCP
Autor:	Alba Traver Gual
Informe n°:	008
Fecha:	15/09/2015

I.: DN 250		3
	1.1. Entrada de datos:	3
	1.1.1. Opciones de seguridad	3
	1.1.2. Suelo	3
	1.1.3. Carga	3
	1.1.4. Instalación	3
	1.1.5. Tubo de la base de datos	4
	1.2. Resultados:	4
	1.2.1. Caso de carga a largo plazo	4
	1.2.1.1. prueba de tensión	4
	1.2.1.2. Prueba de deformación	4
	1.2.1.3. Prueba de estabilidad (lineal):	5

Descripción del tramo: DN 250 Tipo de cálculo: Según tabla

Añadir dibujo para imprimir: Si

1.1. Entrada de datos:

1.1.1. Opciones de seguridad

Clase de seguridad: A (caso normal) Deflexión admisible: 6% (habitual)

De acuerdo con la nota 39 de la ATV 127 Tratamiento de la presión interna:

Menores factores de seguridad para compresión por flexión: no (ATV A 127) No

La aplicación de la ATV A 127 no ha sido verificada para ver si la rigidez

circunferencial mínima ha sido alcanzada:

1.1.2. Suelo

1.1.2. Suelo			
Tipo de relleno: Cálculo E1:	G1 Mádula da algati	isided F	
	Módulo de elasti		N1/ma ma 2
Módulo de elasticidad E1:	E1	8,0	N/mm²
Tipo de relleno en la zona del tubo:	G1	اماما ت	
Cálculo E20:	Módulo de elasti		N1/2
Módulo de elasticidad E20:	E ₂₀	16,0	N/mm²
Tipo de suelo natural:	G4		
Cálculo E3:	Módulo de elasti		
Módulo de elasticidad E3:	E3	1,5	N/mm²
E4 = 10 · E1:	No		
Suelo bajo la zanja:	G4		
Cálculo E4:	Módulo de elasti	icidad E	
Módulo de elasticidad E4:	E4	1,5	N/mm²
1.1.3. Carga			
Altura de recubrimiento:	h	0,60	m
Densidad del suelo:	γ	20,0	kN/m³
Carga superficial adicional:	p_0	0,0	kN/m²
Nivel freático máximo sobre el lecho del tubo:	h _{W.max}	0,00	m
Nivel freático mínimo sobre el lecho del tubo:	$h_{W,min}$	0,00	m
Presión interna, corto plazo:	P _{I,K}	6,0	bar
Presión interna, largo plazo:	P _{I,L}	5,3	bar
Sección llena:	Si		

1.1.4. Instalación

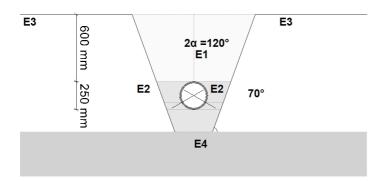
Carga de tráfico:

Densidad del fluido:

Instalación:	Zanja		
Ancho de zanja:	b	0,67	m
Ángulo del talud:	β	70	0
Condiciones de relleno:	A4		
Condiciones de la instalación:	B4		
Tipo de apoyo:	suelto		
Ángulo de apoyo:	120°		
Proyección relativa:	а	1,00	[-]

10,0

kN/m³


Material:

Presión nominal:

Diámetro nominal:

PE 100 PN = 10,0 bar (SDR = 17,0) DN 250 (14,8 mm)

Carga de tráfico: SLW 30

665 mm

1.2. Resultados:

1.2.1. Caso de carga a largo plazo

1.2.1.1. prueba de tensión

Coeficiente de seguridad externo Coeficiente de seguridad externo (Los coeficientes de seguridad para la tens	γ γ sión de compre	clave 4,410 4,410 esión por flexión esta	generatriz sobre el diámetro horizontal del tubo 4,410 4,410 án marcados con	4,410 4,410 un signo me	[-] [-] :nos)
Coeficiente global de seguridad requerido, tracción:	fallo por inesta	abilidad, tensión a	$\text{erf } \gamma_{RBZ}$	2,50	[-]
Coeficiente global de seguridad requerido, compresión:	fallo por inesta	abilidad, tensión a	erf γ _{RBD}	2,50	[-]

Todos los coeficientes de seguridad calculados en la prueba de tensión son suficientes.

1.2.1.2. Prueba de deformación

Deformación vertical relativa:	$\delta_{\sf V}$	2,34	%
Deflexión admisible:	zul δ_{v}	6,00	%

12,47 [-] [-] Coeficiente de seguridad de estabilidad: erf γ_{stab} Coeficiente global de seguridad requerido, fallo por inestabilidad: 2,00

Los coeficientes de seguridad al pandeo determinados son suficientes.

INFORME ABREVIADO

Estudio estático para Tuberías A 127

Proyecto:	Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable
Empresa / Entidad:	Universidad Politécnica de Valencia - ETSICCP
Autor:	Alba Traver Gual
Informe n°:	009
Fecha:	15/09/2015

I.: DN 280		3
	1.1. Entrada de datos:	3
	1.1.1. Opciones de seguridad	3
	1.1.2. Suelo	3
	1.1.3. Carga	3
	1.1.4. Instalación	3
	1.1.5. Tubo de la base de datos	4
	1.2. Resultados:	4
	1.2.1. Caso de carga a largo plazo	4
	1.2.1.1. prueba de tensión	4
	1.2.1.2. Prueba de deformación	4
	1.2.1.3. Prueba de estabilidad (lineal):	5

Descripción del tramo: DN 280 Tipo de cálculo: Según tabla

Si Añadir dibujo para imprimir:

1.1. Entrada de datos:

1.1.1. Opciones de seguridad

Clase de seguridad: A (caso normal) Deflexión admisible: 6% (habitual)

De acuerdo con la nota 39 de la ATV 127 Tratamiento de la presión interna:

Menores factores de seguridad para compresión por flexión: no (ATV A 127) No

La aplicación de la ATV A 127 no ha sido verificada para ver si la rigidez

circunferencial mínima ha sido alcanzada:

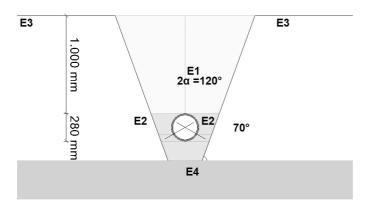
1.1.2. Suelo

Tipo de relleno: Cálculo E1:	G1 Módulo de elastic	idad E	
Módulo de elasticidad E1:	E1	8.0	N/mm²
Tipo de relleno en la zona del tubo:	G1	,	
Cálculo E20:	Módulo de elastic	idad E	
Módulo de elasticidad E20:	E ₂₀	16,0	N/mm²
Tipo de suelo natural:	G4		
Cálculo E3:	Módulo de elastic	idad E	
Módulo de elasticidad E3:	E3	1,5	N/mm ²
E4 = 10 · E1:	No		
Suelo bajo la zanja:	G4		
Cálculo E4:	Módulo de elastic	idad E	
Módulo de elasticidad E4:	E4	1,5	N/mm²
1.1.3. Carga			
Altura de recubrimiento:	h	1,00	m
Densidad del suelo:	γ	20,0	kN/m³
Carga superficial adicional:	p_0	0,0	kN/m²
Nivel freático máximo sobre el lecho del tubo:	h _{W,max}	0,00	m
Nivel freático mínimo sobre el lecho del tubo:	h _{W.min}	0,00	m
Presión interna, corto plazo:	$P_{I,K}$	5,6	bar
Presión interna, largo plazo:	$P_{I,L}$	5,1	bar
Sección llena:	Si		
Densidad del fluido:	ΥF	10,0	kN/m³
Carga de tráfico:	SLW 30		
1.1.4. Instalación			
lactalación:	Zania		

Instalación:	Zanja		
Ancho de zanja:	b	0,70	m
Ángulo del talud:	β	70	0
Condiciones de relleno:	A4		
Condiciones de la instalación:	B4		
Tipo de apoyo:	suelto		
Ángulo de apoyo:	120°		
Proyección relativa:	а	1,00	[-]

Material:

Presión nominal:


Diámetro nominal:

PE 100

PN = 10,0 bar (SDR = 17,0)

DN 280 (16,6 mm)

Carga de tráfico: SLW 30

697 mm

1.2. Resultados:

1.2.1. Caso de carga a largo plazo

1.2.1.1. prueba de tensión

Coeficiente de seguridad externo Coeficiente de seguridad externo (Los coeficientes de seguridad para la tensi	γ γ ión de compre	clave 4,662 4,662 esión por flexión esta	generatriz sobre el diámetro horizontal del tubo 4,662 4,662 án marcados cor	4,662 4,662 n un signo me	[-] [-] nos)
Coeficiente global de seguridad requerido, tracción:	fallo por inesta	abilidad, tensión a	$\text{erf } \gamma_{RBZ}$	2,50	[-]
Coeficiente global de seguridad requerido, seguridad requerido requerid	fallo por inesta	abilidad, tensión a	erf γ_{RBD}	2,50	[-]

Todos los coeficientes de seguridad calculados en la prueba de tensión son suficientes.

1.2.1.2. Prueba de deformación

Deformación vertical relativa:	$\delta_{\sf v}$	1,68	%
Deflexión admisible:	zul δ_{v}	6,00	%

15,86 [-] [-] Coeficiente de seguridad de estabilidad: erf γ_{stab} Coeficiente global de seguridad requerido, fallo por inestabilidad: 2,00

Los coeficientes de seguridad al pandeo determinados son suficientes.

INFORME ABREVIADO

Estudio estático para Tuberías A 127

Proyecto:	Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable
Empresa / Entidad:	Universidad Politécnica de Valencia - ETSICCP
Autor:	Alba Traver Gual
Informe n°:	010
Fecha:	15/09/2015

I.: DN 315		3
	1.1. Entrada de datos:	3
	1.1.1. Opciones de seguridad	3
	1.1.2. Suelo	3
	1.1.3. Carga	3
	1.1.4. Instalación	3
	1.1.5. Tubo de la base de datos	4
	1.2. Resultados:	4
	1.2.1. Caso de carga a largo plazo	4
	1.2.1.1. prueba de tensión	4
	1.2.1.2. Prueba de deformación	4
	1.2.1.3. Prueba de estabilidad (lineal):	5

Descripción del tramo: DN 315 Tipo de cálculo: Según tabla

Añadir dibujo para imprimir:

1.1. Entrada de datos:

1.1.1. Opciones de seguridad

Clase de seguridad: A (caso normal) Deflexión admisible: 6% (habitual)

De acuerdo con la nota 39 de la ATV 127 Tratamiento de la presión interna:

Menores factores de seguridad para compresión por flexión: no (ATV A 127) No

La aplicación de la ATV A 127 no ha sido verificada para ver si la rigidez

circunferencial mínima ha sido alcanzada:

1.1.2. Suelo

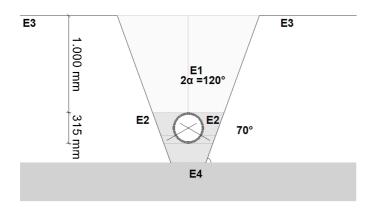
11.12. Guolo				
Tipo de relleno: Cálculo E1:	G1 Módulo de elas	sticidad E		
Módulo de elasticidad E1: Tipo de relleno en la zona del tubo:	E1 G1	8,0	N/mm²	
Cálculo E20:	Módulo de elas	sticidad E		
Módulo de elasticidad E20:	E ₂₀	16,0	N/mm²	
Tipo de suelo natural: Cálculo E3:	G4 Módulo de elas	sticidad F		
Módulo de elasticidad E3:	E3	1,5	N/mm²	
E4 = 10 · E1:	No			
Suelo bajo la zanja:	G4	4:-:		
Cálculo E4:	Módulo de elas			
Módulo de elasticidad E4:	E4	1,5	N/mm²	
1.1.3. Carga				
Altura de recubrimiento:	h	1,00	m	
Densidad del suelo:	γ	20,0	kN/m³	
Carga superficial adicional:	p_0	0,0	kN/m²	
Nivel freático máximo sobre el lecho del tubo:	h _{W,max}	0,00	m	
Nivel freático mínimo sobre el lecho del tubo:	$h_{W,\min}$	0,00	m	
Presión interna, corto plazo:	$P_{l,K}$	5,3	bar	
Presión interna, largo plazo:	$P_{I,L}$	4,8	bar	
Sección llena:	Si			
Densidad del fluido:	YF	10,0	kN/m³	
Carga de tráfico:	SLW 30			

1.1.4. Instalación

Instalación:	Zanja		
Ancho de zanja:	b	0,74	m
Ángulo del talud:	β	70	0
Condiciones de relleno:	A4		
Condiciones de la instalación:	B4		
Tipo de apoyo:	suelto		
Ángulo de apoyo:	120°		
Proyección relativa:	а	1,00	[-]

Material:

Presión nominal:


Diámetro nominal:

PE 100

PN = 10,0 bar (SDR = 17,0)

DN 315 (18,7 mm)

Carga de tráfico: SLW 30

736 mm

1.2. Resultados:

1.2.1. Caso de carga a largo plazo

1.2.1.1. prueba de tensión

Coeficiente de seguridad externo Coeficiente de seguridad externo (Los coeficientes de seguridad para la tens	γ γ ión de compr	clave 4,922 4,922 esión por flexión esta	generatriz sobre el diámetro horizontal del tubo 4,922 4,922 án marcados cor	4,922 4,922 1 un signo me	[-] [-] nos)
Coeficiente global de seguridad requerido, tracción:	fallo por inest	tabilidad, tensión a	$\text{erf } \gamma_{RBZ}$	2,50	[-]
Coeficiente global de seguridad requerido, compresión:	fallo por inest	tabilidad, tensión a	erf γ_{RBD}	2,50	[-]

Todos los coeficientes de seguridad calculados en la prueba de tensión son suficientes.

1.2.1.2. Prueba de deformación

Deformación vertical relativa:	$\delta_{\sf V}$	1,73	%
Deflexión admisible:	zul δ_{v}	6,00	%

15,20 [-] [-] Coeficiente de seguridad de estabilidad: erf γ_{stab} Coeficiente global de seguridad requerido, fallo por inestabilidad: 2,00

Los coeficientes de seguridad al pandeo determinados son suficientes.

Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable					
5. Informes de resultados completos					
	_				

INFORME COMPLETO

Estudio estático para Tuberías A 127

Proyecto:	Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable
Empresa / Entidad:	Universidad Politécnica de Valencia -ETSICCP
Autor:	Alba Traver Gual
Informe n°:	001
Fecha:	15/09/2015

. : DN 90	3
1.1. Entrada de datos:	3
1.1.1. Opciones de seguridad	3
1.1.2. Suelo	3
1.1.3. Carga	3
1.1.4. Instalación	3
1.1.5. Tubo de la base de datos	4
1.2. Resultados:	4
1.2.1. resultados intermedios del tubo	4
1.2.1.1. propiedades del material 1.2.1.2. Factores de seguridad	4 5
1.2.2. Resultados intermedios para caso de carga	5
 1.2.2.1. geometría del tubo 1.2.2.2. Teoría del silo 1.2.2.3. Carga 1.2.2.4. Módulo de deformación del suelo EB 1.2.2.5. Valores de rigidez del suelo 1.2.2.6. Ángulo de apoyo, proyección relativa efectiva y ángulo de fricción 1.2.2.7. Valores característicos del material del tubo y rigidez anular 1.2.2.8. relación de rigidez 1.2.2.9. Coeficientes 1.2.2.10. Factores de concentracion λR y λB 1.2.2.11. Distribución de presiones en la circunferencia del tubo 1.2.3. Sección fuerzas clave 	5 5 5 5 5 5 5 6 6 6 7 7 8 8
1.2.4. Sección fuerzas generatriz sobre el diámetro horizontal del tubo	9
1.2.5. Sección fuerzas base	9
 1.2.6. Caso de carga a corto plazo 1.2.6.1. prueba de tensión 1.2.6.2. Prueba de deformación 1.2.6.3. Prueba de estabilidad (lineal): 1.2.7. Caso de carga a largo plazo 1.2.7.1. prueba de tensión 	10 10 11 11 12
1.2.7.2. Prueba de deformación 1.2.7.3. Prueba de estabilidad (lineal):	13 13

1.: DN 90

Descripción del tramo: DN 90 Tipo de cálculo: Según tabla

Añadir dibujo para imprimir:

1.1. Entrada de datos:

1.1.1. Opciones de seguridad

Clase de seguridad: A (caso normal) Deflexión admisible: 6% (habitual)

De acuerdo con la nota 39 de la ATV 127 Tratamiento de la presión interna:

Menores factores de seguridad para compresión por flexión: no (ATV A 127) No

La aplicación de la ATV A 127 no ha sido verificada para ver si la rigidez

circunferencial mínima ha sido alcanzada:

1.1.2. Suelo

1.1.2. Suelo			
Tipo de relleno:	G1	–	
Cálculo E1:	Módulo de elastic	idad E	
Módulo de elasticidad E1:	E1	8,0	N/mm²
Tipo de relleno en la zona del tubo:	G1		
Cálculo E20:	Módulo de elastic	idad E	
Módulo de elasticidad E20:	E ₂₀	16,0	N/mm²
Tipo de suelo natural:	G4		
Cálculo E3:	Módulo de elastic	idad E	
Módulo de elasticidad E3:	E3	1,5	N/mm²
E4 = 10 · E1:	No		
Suelo bajo la zanja:	G1		
Cálculo É4:	Módulo de elastic	idad E	
Módulo de elasticidad E4:	E4	1,5	N/mm²
1.1.3. Carga			
Altura de recubrimiento:	h	0.60	m
Densidad del suelo:	γ	20,0	kN/m³
Carga superficial adicional:	p_0	0,0	kN/m²
Nivel freático máximo sobre el lecho del tubo:	h _{W,max}	0,00	m
Nivel freatico mínimo sobre el lecho del tubo:		0,00	m
	h _{W,min}	,	
Presión interna, corto plazo:	$P_{I,K}$	7,7	bar

1.1.4. Instalación

Carga de tráfico:

Sección Ilena: Densidad del fluido:

Presión interna, largo plazo:

Instalación:	Zanja		
Ancho de zanja:	b	0,50	m
Ángulo del talud:	β	70	0
Condiciones de relleno:	A4		
Condiciones de la instalación:	B4		
Tipo de apoyo:	suelto		
Ángulo de apoyo:	120°		
Proyección relativa:	а	1,00	[-]

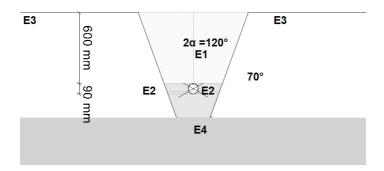
6,5

10,0

bar

kN/m³

1.1.5. Tubo de la base de datos


Material:

Presión nominal:

Diámetro nominal:

PE 100 PN = 10,0 bar (SDR = 17,0) DN 90 (5,4 mm)

Carga de tráfico: SLW 30

្ 495 mm ្

1.2. Resultados:

1.2.1. resultados intermedios del tubo

Diámetro interior: Diámetro exterior: Radio del eje centroide de la pared del tubo: Espesor: Proporción: Factor de corrección de la curvatura interior: Factor de corrección de la curvatura exterior:	d _i d _a r _m s r _m /s α _{ki} α _{ka}	79,2 90,0 42,3 5,4 7,833 1,043 0,957	mm mm mm [-] [-]
Predeformación local:	$\delta_{vl} \ \delta_{vg}$	0,00	%
Predeformación (ovalización antes de aplicación de la carga):		1,00	%
Superficie del perfil radial: Distancia de inercia: Momento de inercia: Momento resistente exterior: Momento resistente interior:	A _{rad}	5,4	mm²/mm
	e	2,7	mm
	I	13,1	mm^4/mm
	W _a	4,9	mm³/mm
	W _i	4,9	mm³/mm

1.2.1.1. propiedades del material

		corto plazo	largo plazo	
Gravedad específica	YR	9,4	9,4	kN/m³
Coeficiente de poisson	V	0.38	0.38	[-]

<u> Valor.5akadteréstide ritgiblezódelosdele</u> lasticidad en sentido circunferencial	E _R	1.200,0	200,0	N/mm²
Valor característico de tracción por deflexión Valor característico de la deflexión radial por esfuerzo de	σ_{RBZ} σ_{RBD}	23,0 23,0	17,5 17,5	N/mm² N/mm²
compresión Valor característico de la tensión en sentido circunferencial	σ_{RZ}	23,0	17,5	N/mm²
1.2.1.2. Factores de seguridad				
Coeficiente global de seguridad requerido, fallo por	$\text{erf } \gamma_{RBZ}$	2,50	2,50	[-]
inestabilidad, tensión a tracción Coeficiente global de seguridad requerido, fallo por inestabilidad, tensión a compresión	$\text{erf } \gamma_{RBD}$	2,50	2,50	[-]
Coeficiente global de seguridad requerido, fallo por inestabilidad	erf γ _{stab}	2,00	2,00	[-]
1.2.2. Resultados intermedios para caso de carga				
1.2.2.1. geometría del tubo				
Radio del eje centroide de la pared del tubo:		r _m	42,3	mm
Factor de corrección de la curvatura interior: Factor de corrección de la curvatura exterior:		α _{ki} α _{ka}	1,043 0,957	[-] [-]
1.2.2.2. Teoría del silo				
Coeficiente de carga del suelo к para carga en zanja (Teoría	del Silo):	K	1,000	[-]
$\kappa = \frac{1^{-\frac{e^{-2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}}{2}}}{2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}$				(5.04)
Coeficiente de carga del suelo κ0 para cargas superficiales (Τ	Teoría del Silo):	κ ₀	1,000	[-]
$\kappa_0 = e^{-2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}$				(5.05)
$\kappa 0$ y κ están indicadas como 1, porque E1 es mayor que E3.				
1.2.2.3. Carga				
Nivel freático máximo sobre la cama del tubo: Carga vertical debida al peso del relleno: Carga vertical debida al peso del relleno y a la carga superfic Tensión debida a carga de tráfico: Coefficiente de impacto (incl.):	ial:	h _{W.Scheitel} P _{Erd} P _E P _V ¢	0,00 12,00 12,00 75,14 1,40	m kN/m² kN/m² kN/m² [-]
1.2.2.4. Módulo de deformación del suelo EB				
Módulo elástico del relleno bajo carga: Módulo elástico de los riñones bajo carga: Factor de reducción por fluencia: Factor de reducción E20 (nivel freático): Factor de reducción E20 (zanja estrecha): Módulo elástico del apoyo (reducido): Módulo elástico del suelo natural: Módulo elástico del suelo bajo el tubo:		$E_{1,\sigma}$ $E_{20,\sigma}$ f_1 f_2 α_B $E_{2,\sigma}$ $E_{3,\sigma}$ $E_{4,\sigma}$	8,00 16,00 1,000 1,000 1,000 16,00 1,50 1,50	N/mm² N/mm² [-] [-] N/mm² N/mm² N/mm²

Factor de corrección por rigidez del apoyo hori:	zontal:		ζ	1,000	[-]
1 667					
$\zeta = \frac{1,007}{\Delta f + (1,667 - \Delta f) \cdot \frac{E_2}{E_3}}$					(6.17)
$\Delta f = \frac{\frac{b}{d_a} \cdot 1}{0.982 + 0.283 \cdot \left(\frac{b}{d_a} \cdot 1\right)} \le 1,667$				Corr	rección (6.18)
Si el angulo de talud de la zanja es < 90º se debe consider	rar la anchura de la	zanja a la altura de	el centro de la tuber	ía en lugar de la a	nchura de la
zanja a la altura de la corona Rigidez del apoyo horizontal:			S_{Bh}	9,600	N/mm²
$S_{Bh} = 0.6 \cdot \zeta \cdot E_2$					(6.16)
Rigidez de apoyo vertical:			S _{Bv}	16,000	N/mm²
$S_{Bv} = \frac{E_2}{a}$					(6.12)
1.2.2.6. Ángulo de apoyo, proyección relativa e	efectiva y ángulo	de fricción			
Ángulo de apoyo, proyección relativa efectiva y Proyección incrementada debido a la pérdida o Proyección relativa efectiva:			2α a _S a'	120 1,00 0,500	。 [-] [-]
$a'=a_{S}-\frac{E_1}{E_2} \ge 0.26$					(6.05)
Ángulo de fricción interna: Ángulo de fricción de la pared:			φ' δ	20,000 20,000	0
		corto plazo Todas las cargas	largo plazo Cargas del suelo cargas de	largo plazo otro Cargas	
			tráfico		
1.2.2.7. Valores característicos del material del					
Valor característico del módulo de elasticidad en sentido circunferencial	E _R	1.200,0	1.062,3	200,0	N/mm²
Valor característico de tracción por deflexión Valor característico de la deflexión radial por esfuerzo de compresión	σ_{RBZ} σ_{RBD}	23,0 23,0	22,2 22,2	17,5 17,5	N/mm² N/mm²
Valor característico de la tensión en sentido circunferencial	σ_{RZ}	23,0	22,2	17,5	N/mm²
Rigidez del tubo	S_R	208,046	184,173	34,674	kN/m²
$S_{R} = \frac{E_R \cdot I}{r_m^3}$					(6.10a)
1.2.2.8. relación de rigidez					
Rigidez del sistema	V_{RB}	0,0217	0,0192	0,0036	[-]

$V_{RB} = \frac{S_R}{S_{Bh}} = \frac{8 \cdot S_0}{S_{Bh}}$					(6.15)
Relación de rigidez	V_S	0,4930	0,4697	 [-]	
$V_{S} = \frac{S_{R}}{ c_{V}^{\star} \cdot S_{BV}}$					(6.08a)
1.2.2.9. Coeficientes					
Relación por presión de enterramiento (apoyo) Coeficiente por presión de reacción del apoyo		0,400 1,010	0,400 1,039	 [-] [-]	
$K^* = \frac{c_{h,qv}}{V_{RB} - c_{h,qh^*}}$					(6.14)
Coeficiente por presión de reacción del apoyo	C _V *	-0,026	-0,025	 [-]	
$c_{V}^{\star} = c_{V,qV} + c_{V,qh^{\star}} \cdot K^{\star}$					(6.13)
1.2.2.10. Factores de concentracion λR y λB					
Factor de concentración máximo	max λ	1,023	1,023	 [-]	
<u>h</u>					
max $\lambda = 1 + \frac{\frac{11}{d_a}}{\frac{3.5}{a'} + \frac{2.2}{E_4} \cdot (a' - 0.25)} + \frac{0.62}{a'} + \frac{1}{\frac{E_4}{E_1} \cdot (a' - 0.25)}$,6 (-0,25)				(6.04)
Coeficiente por factor de concentración máximo	K'	0,822	0,812	 [-]	
$K' = -\frac{c_{v,qh} + \frac{c_{h,qh}}{c_{h,qv}} \cdot c_{v,qh^*} \cdot K^*}{c_{v,qv} + c_{v,qh^*} \cdot K^*}$					(6.06b)
Factor de concentración sobre el tubo, valor inicial	λ_{R}	0,964	0,961	 [-]	
$\lambda_{R} = \frac{\max \lambda \cdot V_{s} + a' \cdot \frac{4 \cdot K_{2} \cdot K'}{3} \cdot \frac{\max \lambda - 1}{a' - 0.25}}{V_{s} + a' \cdot \frac{3 + K_{2} \cdot K'}{3} \cdot \frac{\max \lambda - 1}{a' - 0.25}}$					(6.06a)
Factor de concentración sobre el tubo, bajo el efecto de la zanja	λ_{RG}	0,964	0,961	 [-]	
$\lambda_{RG} = \lambda_{R} = const.$					(6.21b)
Factor de concentración sobre el tubo, límite superior	λ_{fo}	3,910	3,910	 [-]	
Factor de concentración sobre el tubo, limite inferior	λ_{fu}	0,376	0,376	 [-]	
Factor de concentación sobre el tubo, valor	λ_{RG}	0,964	0,961	 [-]	
final Factor de concentración del suelo	λ_{B}	1,012	1,013	 [-]	
$\lambda_{B} = \frac{4 - \lambda_{R}}{3}$					(6.07)

1.2.2.11. Distribución de presiones en la circur	nferencia del tu	<u>ıbo</u>			
Carga vertical total	q_v	86,71	86,68		kN/m²
$q_V = \lambda_{RG} \cdot p_E + p_V$					(6.24)
Presion lateral	q _h	5,22	5,22		kN/m²
$q_h = K_2 \cdot \left(\lambda_B \cdot p_E + \gamma_B \cdot \frac{d_a}{2} \right)$					(7.01)
Presión de reacción del apoyo (carga del suelo)	q* _h	82,54	84,87		kN/m²
$q^*_h = \frac{c_{h,qv} \cdot q_v + c_{h,qh} \cdot q_h}{V_{RB} - c_{h,qh}^*}$					(7.02a)
Presión de reacción del apoyo (sección llena)	q* _{hw}	0,31	0,39		kN/m²
$q^*_{hw} = \frac{c_{hw} \cdot q_w}{V_{RB} - c_{h,qh}^*}$					(7.02b)
1.2.3. Sección fuerzas clave					
Momento debido a cargas verticales totales Momento debido a la presión lateral Momento debido a la reacción de la presión de	el apoyo	M _{qv} M _{qh} M* _{qh}	corto plazo 0,040 -0,002 -0,027	largo plazo 0,040 -0,002 -0,027	kNm/m kNm/m kNm/m
horizontal Momento debido a la reacción de la presión de	el apoyo	M* _{qw}	0,000	0,000	kNm/m
(sección llena) Momento debido a las cargas muertas Momento debido a la sección llena Momento debido a la presión del agua Momento debido al nivel freático a la altura de	la clave	M _g M _w M _{pw} M _{pa1}	0,000 0,000 0,002 0,000	0,000 0,000 0,002 0,000	kNm/m kNm/m kNm/m kNm/m
$\Sigma M = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_g$	1 _{pw}				
Momentos totales		ΣΜ	0,013	0,012	kNm/m
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w$, + M _{pa1}				
Momentos totales sin presión interna/externa		ΣM_{sonst}	0,012	0,011	kNm/m
$\Sigma M'=M_{qv}+M_{qh}+M^*_{qh}+M_g$					
Momentos totales debidos a la sección llena y	a la presión	ΣΜ'	0,011	0,011	kNm/m
Fuerza normal debida a las cargas verticales to Fuerza normal debida a la presión lateral Fuerza normal debida a la reacción de la presi Fuerza normal debida a la reacción de la presi (relleno del agua) Fuerza normal debida al peso muerto Fuerza normal debida al relleno de agua Fuerza normal debida al nivel freático hasta la	ón del lecho ón del lecho	$egin{array}{l} N_{qv} \ N_{qh} \ N^*_{qh} \ N^*_{qw} \ N_g \ N_w \ N_{pa1} \end{array}$	0,099 -0,221 -2,015 -0,008 0,001 0,011 0,000	0,099 -0,221 -2,071 -0,010 0,001 0,011 0,000	kN/m kN/m kN/m kN/m kN/m kN/m
Fuerzas totales normales Total sin presión interna/externa Total sin sección llena y sin presión		$\Sigma N \\ \Sigma N_{sonst} \\ \Sigma N'$	28,281 -2,132 -2,136	23,351 -2,191 -2,193	kN/m kN/m kN/m

1.2.4. Sección fuerzas generatriz sobre el diámetro horizontal del tubo

3				
		corto plazo	largo plazo	
Momento debido a cargas verticales totales	M _{qv}	-0,041	-0,041	kNm/m
Momento debido a la presión lateral Momento debido a la reacción de la presión del apoyo	M _{qh}	0,002 0,031	0,002 0,032	kNm/m kNm/m
horizontal	M* _{qh}	0,031	0,032	KINIII/III
Momento debido a la reacción de la presión del apoyo	M* _{qw}	0,000	0,000	kNm/m
(sección llena)	·•· qw	0,000	0,000	
Momento debido a las cargas muertas	M_q	0,000	0.000	kNm/m
Momento debido a la sección llena	M_w^9	0,000	0,000	kNm/m
Momento debido a la presión del agua	M _{pw}	0,002	0,002	kNm/m
Momento debido al nivel freático a la altura de la clave	M _{pa1}	0,000	0,000	kNm/m
$\Sigma M = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pw}$				
Momentos totales	ΣΜ	-0,006	-0,006	kNm/m
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pa1}$				
Momentos totales sin presión interna/externa	ΣM_{sonst}	-0,008	-0,007	kNm/m
$\Sigma M' = M_{qv} + M_{qh} + M^*_{qh} + M_{q}$				
Momentos totales debidos a la sección llena y a la presión	ΣΜ'	-0,008	-0,007	kNm/m
		0.000		
Fuerza normal debida a las cargas verticales totales	N_{qv}	-3,668	-3,666	kN/m
Fuerza normal debida a la presión lateral	N _{qh}	0,000	0,000	kN/m
Fuerza normal debida a la reacción de la presión del lecho Fuerza normal debida a la reacción de la presión del lecho	N* ⁱ qh	0,000 0,000	0,000 0,000	kN/m kN/m
(relleno del agua)	N* _{qw}	0,000	0,000	KIN/III
Fuerza normal debida al peso muerto	N_g	-0,003	-0,003	kN/m
Fuerza normal debida al relleno de agua	N _w	0,004	0,004	kN/m
Fuerza normal debida al nivel freático hasta la clave	N _{pa1}	0,000	0,000	kN/m
	ра і	5,555	5,555	
Fuerzas totales normales	ΣΝ	26,745	21,876	kN/m
Total sin presión interna/externa	ΣN _{sonst}	-3,668	-3,666	kN/m
Total sin sección llena y sin presión	ΣN'	-3,671	-3,670	kN/m
	2.11	0,01	0,0.0	
1.2.5. Sección fuerzas base				
		corto plazo	largo plazo	
Momento debido a cargas verticales totales	M_{qv}	0,043	0,043	kNm/m
Momento debido a la presión lateral	M _{qh}	-0,002	-0,002	kNm/m
Momento debido a la reacción de la presión del apoyo	M* _{qh}	-0,027	-0,027	kNm/m
horizontal	N 4*	0.000	0.000	Lell Inno /ma
Momento debido a la reacción de la presión del apoyo	M^*_{qw}	0,000	0,000	kNm/m
(sección llena) Momento debido a las cargas muertas	M_q	0,000	0,000	kNm/m
Momento debido a la sección llena	M _w	0,000	0,000	kNm/m
Momento debido a la presión del agua	M _{pw}	0,002	0,002	kNm/m
Momento debido al nivel freático a la altura de la clave	M _{pa1}	0,000	0,000	kNm/m
	pui	7	,,,,,,	
$\Sigma M = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_{g} + M_{w}^* + M_{pw}^*$				
Momentos totales	ΣΜ	0,016	0,015	kNm/m
		3,010	3,010	751 411 1111
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pa1}$				
Momentos totales sin presión interna/externa	ΣM_{sonst}	0,014	0,013	kNm/m

$\Sigma M'= M_{qv} + M_{qh} + M^*_{qh} + M_g$					
Momentos totales debidos a la sección llena y	a la presión	ΣΜ'	0,014	0,013	kNm/m
Fuerza normal debida a las cargas verticales totales Fuerza normal debida a la presión lateral Fuerza normal debida a la reacción de la presión del lecho Fuerza normal debida a la reacción de la presión del lecho (relleno del agua)		N _{qv} N _{qh} N* _{qh} N* _{qw}	-0,099 -0,221 -2,015 -0,008	-0,099 -0,221 -2,071 -0,010	kN/m kN/m kN/m kN/m
Fuerza normal debida al peso muerto Fuerza normal debida al relleno de agua Fuerza normal debida al nivel freático hasta la	clave	N _g N _w N _{pa1}	-0,001 0,025 0,000	-0,001 0,025 0,000	kN/m kN/m kN/m
Fuerzas totales normales Total sin presión interna/externa Total sin sección llena y sin presión		ΣΝ ΣΝ _{sonst} ΣΝ'	28,095 -2,318 -2,335	23,165 -2,377 -2,392	kN/m kN/m kN/m
1.2.6. Caso de carga a corto plazo					
1.2.6.1. prueba de tensión					
Coeficiente de superposición de tensiones: Relación de deflexión: Presión interior resultante (pl - pW):			Ζ η p _{I,res}	1,18 1,22 7,68	[-] [-] bar
Valor característico de la tensión en sentido ci	rcunferencial:		σ_{RZ}	23,0	N/mm²
$\sigma_{R,res} = \frac{\sigma_{qv,qh,qh^*} \cdot \sigma_R + \sigma_{sonst} \cdot \sigma_{R,L}}{\sigma_{qv,qh,qh^*} + \sigma_{sonst}}$					(9.01c)
$\sigma_{R,res} = \frac{\sigma_{qv,qh,qh^*} \cdot \sigma_R + \sigma_{sonst} \cdot \sigma_{R,L}}{\sigma_{qv,qh,qh^*} + \sigma_{sonst}}$ Interior:		clave	generatriz sobre el diámetro horizontal del tubo	base	(9.01c)
Interior: Tensiones debidas a carga externa Coeficiente de seguridad para carga externa,	σ a ΥΒΖ,a	clave 2,074 11,091	sobre el diámetro	base 2,519 9,129	(9.01c) N/mm² [-]
Interior: Tensiones debidas a carga externa		2,074	sobre el diámetro horizontal del tubo -2,428	2,519	N/mm²
Interior: Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión: Coeficiente de seguridad por carga externa,	Ү ВZ,а	2,074	sobre el diámetro horizontal del tubo -2,428	2,519	N/mm² [-]
Interior: Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión: Coeficiente de seguridad por carga externa, compresión por flexión: Tensiones debidas a presión interna Coeficiente de seguridad por presión interna Factor de reducción de acuerdo a	YBZ,a YBD,a O _i	2,074 11,091 5,632	sobre el diámetro horizontal del tubo -2,428 9,472	2,519 9,129 5,632	N/mm² [-] [-] N/mm²
Interior: Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión: Coeficiente de seguridad por carga externa, compresión por flexión: Tensiones debidas a presión interna Coeficiente de seguridad por presión interna Factor de reducción de acuerdo a Netzer/Pattis Tensión por cálculo de superposición Coeficiente de seguridad para cálculo de	YBZ,a YBD,a O _i Yi	2,074 11,091 5,632 4,084	sobre el diámetro horizontal del tubo -2,428 9,472 5,632 4,084	2,519 9,129 5,632 4,084	N/mm² [-] [-] N/mm² [-]
Interior: Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión: Coeficiente de seguridad por carga externa, compresión por flexión: Tensiones debidas a presión interna Coeficiente de seguridad por presión interna Factor de reducción de acuerdo a Netzer/Pattis Tensión por cálculo de superposición Coeficiente de seguridad para cálculo de superposición, tensión por flexión: Coeficiente de seguridad para cálculos de	YBZ,a YBD,a σ_{i} Yi $\sigma_{r}es$	2,074 11,091 5,632 4,084 0,812 6,260	sobre el diámetro horizontal del tubo -2,428 9,472 5,632 4,084 0,793 2,542	2,519 9,129 5,632 4,084 0,789 6,434	N/mm² [-] N/mm² [-] [-] N/mm²
Interior: Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión: Coeficiente de seguridad por carga externa, compresión por flexión: Tensiones debidas a presión interna Coeficiente de seguridad por presión interna Factor de reducción de acuerdo a Netzer/Pattis Tensión por cálculo de superposición Coeficiente de seguridad para cálculo de superposición, tensión por flexión:	YBZ,a YBD,a Oi Yi n Ores YBZ,res	2,074 11,091 5,632 4,084 0,812 6,260 3,674	sobre el diámetro horizontal del tubo -2,428 9,472 5,632 4,084 0,793 2,542 9,049	2,519 9,129 5,632 4,084 0,789 6,434	N/mm² [-] N/mm² [-] [-] N/mm² [-]

Exterior:		clave	generatriz sobre el diámetro horizontal del tubo	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a YBZ,a	-2,662 	0,927 24,808	-3,137 	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a	8,641		7,332	[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	5,632 4,084	5,632 4,084	5,632 4,084	N/mm² [-]
Factor de reducción de acuerdo a Netzer/Pattis	n	0,784	0,915	0,751	[-]
Tensión por cálculo de superposición Coeficiente de seguridad para cálculo de superposición, tensión por flexión:	σ _r es YBZ,res	2,327 9,883	6,003 3,831	1,874 12,272	N/mm² [-]
Coeficiente de seguridad para cálculos de superposición, compresión por flexión:	YBD,res				[-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	23,00	23,00	23,00	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	23,00	23,00	23,00	N/mm²

1.2.6.2. Prueba de deformación

Modo de cálculo: Relación: Relación 'I/(A·rm²)·κq':				lineal I/(A·rm²) I/(A·rm²)·κ _q		0,00136 0,00136	
Coeficiente de deflexión para momentos de deflexión	C _V	q_{v}	-0,0893	q _h 0,0833	q _h *	0,0640	[-]
Coeficiente de deflexión por fuerzas normales Coeficiente de deflexión por fuerzas laterales Coeficiente resultante de deformación	cN _v cQ _v c' _v		-0,6830 -0,3590 -0,0916	-0,6810 0,3350 0,0836		-0,2470 0,2430 0,0646	[-] [-] [-]
Cambio del diámetro vertical: Cambio del diámetro horizontal:				$\Delta d_{ m V} \ \Delta d_{ m h}$		0,88 0,73	mm mm
Deformación vertical relativa: Deflexión admisible:				δ_v zul δ_v		1,05 6,00	% %

La deflexión determinada es menor que la deflexión permitida.

1.2.6.3. Prueba de estabilidad (lineal):

Carga vertical total:	q_v	86,71	kN/m²
Factor de reducción de carga de colapso por cargas de suelo/tráfico:	K _{v2}	0,87	[-]
Carga vertical total crítica:	krit q _v	2.459,0	kN/m²

krit $q_V = 2 \cdot \kappa_{V2} \cdot (8S_0 \cdot S_{Bh})^{0.5}$ (9.06a)

La prueba de colapso por presión de agua no aplica, dado que no hay presencia de nivel freático ni vacío.

Coeficiente de seguridad de estabilidad: Coeficiente global de seguridad requerido, falle	o por inestabilida	d:	γ erf γ _{stab}	28,36 2,00	[-] [-]
Los coeficientes de seguridad al pandeo dete	rminados son su	ficientes.			
1.2.7. Caso de carga a largo plazo					
1.2.7.1. prueba de tensión					
Coeficiente de superposición de tensiones: Relación de deflexión: Presión interior resultante (pI - pW):			Ζ η p _{I,res}	5,37 1,28 6,45	[-] [-] bar
Valor característico de la tensión en sentido ci	rcunferencial:		σ_{RZ}	17,5	N/mm²
$\sigma_{R,res} = \frac{\sigma_{qv,qh,qh^*} \cdot \sigma_R + \sigma_{sonst} \cdot \sigma_{R,L}}{\sigma_{qv,qh,qh^*} + \sigma_{sonst}}$					(9.01c)
Interior:		clave	generatriz sobre el diámetro horizontal del tubo	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa,	σ _a YBZ,a	1,891 11,759	-2,232 	2,337 9,518	N/mm² [-]
tensión por flexión: Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a		9,967		[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	4,730 3,700	4,730 3,700	4,730 3,700	N/mm² [-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	18,85	13,26	19,07	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	18,85	13,26	19,07	N/mm²
Exterior:		clave	generatriz sobre el diámetro horizontal del	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa,	σ _a YBZ,a	-2,515 	tubo 0,747 29,771	-2,991 	N/mm² [-]
tensión por flexión: Coeficiente de seguridad por carga externa, compresión por flexión:	Y _{BD} ,a	8,842		7,438	[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	4,730 3,700	4,730 3,700	4,730 3,700	N/mm² [-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	12,11	18,15	9,35	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	12,11	18,15	9,35	N/mm²

1.2.7.2. Prueba de deformación

Modo de cálculo: Relación: Relación 'I/(A·rm²)·κq':				lineal I/(A·rm²) I/(A·rm²)·κ _q		0,00136 0,00136	
Coeficiente de deflexión para momentos de deflexión	C _V	q _v	-0,0893	q _h 0,0833	q _h *	0,0640	[-]
Coeficiente de deflexión por fuerzas normales Coeficiente de deflexión por fuerzas laterales Coeficiente resultante de deformación	cN _v cQ _v c' _v		-0,6830 -0,3590 -0,0916	-0,6810 0,3350 0,0836		-0,2470 0,2430 0,0646	[-] [-] [-]
Cambio del diámetro vertical: Cambio del diámetro horizontal:				$\Delta d_{v} \ \Delta d_{h}$		0,93 0,75	mm mm
Deformación vertical relativa: Deflexión admisible:				δ_{v} zul δ_{v}		1,10 6,00	% %

La deflexión determinada es menor que la deflexión permitida.

1.2.7.3. Prueba de estabilidad (lineal):

Carga vertical total:	q_v	86,68	kN/m²
Factor de reducción de carga de colapso por cargas de suelo/tráfico:	K _{v2}	0,87	[-]
Carga vertical total crítica:	krit q _v	2.313,6	kN/m²

krit $q_v = 2 \cdot \kappa_{v2} \cdot (8S_0 \cdot S_{Bh})^{0.5}$ (9.06a)

La prueba de colapso por presión de agua no aplica, dado que no hay presencia de nivel freático ni vacío.

Coeficiente de seguridad de estabilidad: γ 26,69 [-] Coeficiente global de seguridad requerido, fallo por inestabilidad: erf γ_{stab} 2,00 [-]

Los coeficientes de seguridad al pandeo determinados son suficientes.

Todas las pruebas necesarias son correctas.

INFORME COMPLETO

Estudio estático para Tuberías A 127

Proyecto:	Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino
	municipal de Lorca (Murcia): Red distribución de agua potable
Empresa / Entidad:	Universidad Politécnica de Valencia - ETSICCP
Autor:	Alba Traver Gual
Informe n°:	002
Fecha:	15/09/2015

Este programa es una herramienta gratuita, que puede ser utilizada por personas con conocimientos técnicos en el cálculo estático de tuberías. El programa no puede reemplazar al ingeniero responsable.

Contenido

1. : DN 110	3
1.1. Entrada de datos:	3
1.1.1. Opciones de seguridad	3
1.1.2. Suelo	3
1.1.3. Carga	3
1.1.4. Instalación	3
1.1.5. Tubo de la base de datos	4
1.2. Resultados:	4
1.2.1. resultados intermedios del tubo	4
1.2.1.1. propiedades del material	4
1.2.1.2. Factores de seguridad	5 5
1.2.2. Resultados intermedios para caso de carga1.2.2.1. geometría del tubo	5
1.2.2.2. Teoría del silo	5
1.2.2.3. Carga	5
1.2.2.4. Módulo de deformación del suelo EB	5 5
 1.2.2.5. Valores de rigidez del suelo 1.2.2.6. Ángulo de apoyo, proyección relativa efectiva y ángulo de fricción 	6
1.2.2.7. Valores característicos del material del tubo y rigidez anular	6
1.2.2.8. relación de rigidez	6
1.2.2.9. Coeficientes	7
1.2.2.10. Factores de concentracion λR y λB	7
1.2.2.11. Distribución de presiones en la circunferencia del tubo	8
1.2.3. Sección fuerzas clave	8
1.2.4. Sección fuerzas generatriz sobre el diámetro horizontal del tubo	9
1.2.5. Sección fuerzas base	9
1.2.6. Caso de carga a corto plazo	10
1.2.6.1. prueba de tensión	10
1.2.6.2. Prueba de deformación	11
1.2.6.3. Prueba de estabilidad (lineal):	11
1.2.7. Caso de carga a largo plazo	12
1.2.7.1. prueba de tensión	12
1.2.7.2. Prueba de deformación 1.2.7.3. Prueba de estabilidad (lineal):	13 13
1.2.7.3. Prueba de estabilidad (linear).	13

1.: DN 110

Descripción del tramo: DN 110 Tipo de cálculo: Según tabla

Añadir dibujo para imprimir:

1.1. Entrada de datos:

1.1.1. Opciones de seguridad

Clase de seguridad: A (caso normal) Deflexión admisible: 6% (habitual)

De acuerdo con la nota 39 de la ATV 127 Tratamiento de la presión interna:

Menores factores de seguridad para compresión por flexión: no (ATV A 127) No

La aplicación de la ATV A 127 no ha sido verificada para ver si la rigidez

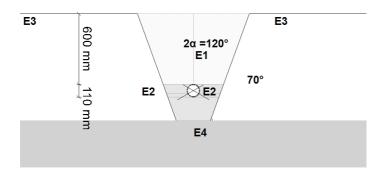
circunferencial mínima ha sido alcanzada:

1.1.2. Suelo

11.12. Guolo			
Tipo de relleno: Cálculo E1:	G1 Módulo de ela:	sticidad E	
Módulo de elasticidad E1: Tipo de relleno en la zona del tubo:	E1 G1	8,0	N/mm²
Cálculo E20:	Módulo de ela:	sticidad E	
Módulo de elasticidad E20: Tipo de suelo natural:	E ₂₀ G4	16,0	N/mm²
Cálculo E3:	Módulo de ela	sticidad E	
Módulo de elasticidad E3:	E3	1,5	N/mm²
E4 = 10 · E1:	No		
Suelo bajo la zanja:	G4		
Cálculo E4:	Módulo de ela	0	
Módulo de elasticidad E4:	E4	1,5	N/mm²
1.1.3. Carga			
Altura de recubrimiento:	h	0,60	m
Densidad del suelo:	Υ	20,0	kN/m³
Carga superficial adicional:	p_0	0,0	kN/m²
Nivel freático máximo sobre el lecho del tubo:	$h_{W,max}$	0,00	m
Nivel freático mínimo sobre el lecho del tubo:	$h_{W,min}$	0,00	m
Presión interna, corto plazo:	P_I,K	7,1	bar
Presión interna, largo plazo:	$P_{l,L}$	5,6	bar
Sección llena:	Si	40.0	1.1.1.2
Densidad del fluido:	YF	10,0	kN/m³
Carga de tráfico:	SLW 30		

1.1.4. Instalación

Instalación:	Zanja		
Ancho de zanja:	b	0,52	m
Ángulo del talud:	β	70	0
Condiciones de relleno:	A4		
Condiciones de la instalación:	B4		
Tipo de apoyo:	suelto		
Ángulo de apoyo:	120°		
Proyección relativa:	а	1,00	[-]



1.1.5. Tubo de la base de datos

Material:

Presión nominal: Diámetro nominal: PE 100 PN = 10,0 bar (SDR = 17,0) DN 110 (6,6 mm)

Carga de tráfico: SLW 30

_ը 517 mm լ

1.2. Resultados:

1.2.1. resultados intermedios del tubo

Diámetro interior:	d _i	96.8	mm
Diámetro exterior:	d _a	110,0	mm
Radio del eje centroide de la pared del tubo:	r _m	51,7	mm
Espesor:	s	6,6	mm
Proporción:	r _m /s	7,833	[-]
Factor de corrección de la curvatura interior:	α_{ki}	1,043	[-]
Factor de corrección de la curvatura exterior:	α_{ka}	0,957	[-]
Predeformación local:	$\delta_{ m VI}$	0.00	%
Predeformación (ovalización antes de aplicación de la carga):	δ_{vg}	1,00	%
Superficie del perfil radial:	A _{rad}	6,6	mm²/mm
Distancia de inercia:	e e	3.3	mm
Momento de inercia:	Ĭ	24.0	mm^4/mm
Momento resistente exterior:	Wa	7,3	mm³/mm
Momento resistente interior:	W _i	7,3	mm³/mm

1.2.1.1. propiedades del material

		corto piazo	iargo piazo	
Gravedad específica	YR	9,4	9,4	kN/m³
Coeficiente de poisson	V	0,38	0,38	[-]

♥മി∆:5a\ഷdt eréstide ៧ଞ୍ଜାଧାଳର୍ଯdelo delelasticidad en sentido circunferencial	E _R	1.200,0	200,0	N/mm²
Valor característico de tracción por deflexión Valor característico de la deflexión radial por esfuerzo de compresión	σ_{RBZ} σ_{RBD}	23,0 23,0	17,5 17,5	N/mm² N/mm²
Valor característico de la tensión en sentido circunferencial	σ_{RZ}	23,0	17,5	N/mm²
1.2.1.2. Factores de seguridad				
Coeficiente global de seguridad requerido, fallo por inestabilidad, tensión a tracción	$\text{erf } \gamma_{RBZ}$	2,50	2,50	[-]
Coeficiente global de seguridad requerido, fallo por nestabilidad, tensión a compresión	$\text{erf } \gamma_{RBD}$	2,50	2,50	[-]
Coeficiente global de seguridad requerido, fallo por nestabilidad	erf γ _{stab}	2,00	2,00	[-]
1.2.2. Resultados intermedios para caso de carga				
1.2.2.1. geometría del tubo				
Radio del eje centroide de la pared del tubo: Factor de corrección de la curvatura interior:		r _m	51,7 1,043	mm
Factor de corrección de la curvatura interior:		α _{ki} α _{ka}	0,957	[-] [-]
1.2.2.2. Teoría del silo				
Coeficiente de carga del suelo к para carga en zanja (Teoría d	del Silo):	K	1,000	[-]
$\kappa = \frac{1^{-\frac{e^{-2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}}{2}}}{2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}$				(5.04)
2 · K ₁ · tano· – b				
Coeficiente de carga del suelo к0 para cargas superficiales (Т	eoría del Silo):	κ_0	1,000	[-]
$\kappa_0 = e^{-2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}$				(5.05)
κ0 y κ están indicadas como 1, porque E1 es mayor que E3.				
1.2.2.3. Carga				
Nivel freático máximo sobre la cama del tubo: Carga vertical debida al peso del relleno: Carga vertical debida al peso del relleno y a la carga superfici Tensión debida a carga de tráfico: Coefficiente de impacto (incl.):	ial:	h _{W.Scheitel} P _{Erd} P _E P _V ¢	0,00 12,00 12,00 73,94 1,40	m kN/m² kN/m² kN/m² [-]
1.2.2.4. Módulo de deformación del suelo EB				
Módulo elástico del relleno bajo carga: Módulo elástico de los riñones bajo carga:		Ε _{1.σ} Ε _{20,σ}	8,00 16,00 1,000	N/mm² N/mm² [-]

Factor de corrección por rigidez del apoyo hor	izontal:		ζ	1,000	[-]
$\zeta = \frac{1,667}{\Delta f + (1,667 - \Delta f) \cdot \frac{E_2}{E_3}}$					(6.17)
$\Delta f = \frac{\frac{b}{d_a} - 1}{0.982 + 0.283 \cdot \left(\frac{b}{d_a} - 1\right)} \le 1,667$				Corı	rección (6.18)
Si el angulo de talud de la zanja es < 90° se debe conside zanja a la altura de la corona Rigidez del apoyo horizontal:	erar la anchura de l	a zanja a la altura d	lel centro de la tube S _{Bh}	ría en lugar de la a 9,600	anchura de la N/mm²
$S_{Bh} = 0.6 \cdot \zeta \cdot E_2$					(6.16)
Rigidez de apoyo vertical:			S_{Bv}	16,000	N/mm²
$S_{Bv} = \frac{E_2}{a}$					(6.12)
1.2.2.6. Ángulo de apoyo, proyección relativa	efectiva v ángu	lo de fricción			
Ángulo de apoyo, proyección relativa efectiva Proyección incrementada debido a la pérdida Proyección relativa efectiva:	y ángulo de frio	cción:	2α a _S a'	120 1,00 0,500	。 [-] [-]
a'= a _S - E ₁ ≥ 0,26					(6.05)
Ángulo de fricción interna: Ángulo de fricción de la pared:			φ' δ	20,000 20,000	0
		corto plazo Todas las cargas	largo plazo Cargas del suelo	largo plazo otro	
		oargao	cargas de tráfico	Cargas	
1.2.2.7. Valores característicos del material de	el tubo y rigidez	anular			
Valor característico del módulo de elasticidad en sentido circunferencial	E_R	1.200,0	1.060,4	200,0	N/mm²
Valor característico de tracción por deflexión Valor característico de la deflexión radial por esfuerzo de compresión	σ_{RBZ} σ_{RBD}	23,0 23,0	22,2 22,2	17,5 17,5	N/mm² N/mm²
Valor característico de la tensión en sentido circunferencial	σ_{RZ}	23,0	22,2	17,5	N/mm²
Rigidez del tubo	S _R	208,046	183,838	34,674	kN/m²
$S_{R} = \frac{E_{R} \cdot I}{r_{m}^{3}}$					(6.10a)
1.2.2.8. relación de rigidez					
Rigidez del sistema	V_{RB}	0,0217	0,0191	0,0036	[-]

$V_{RB} = \frac{S_R}{S_{Bh}} = \frac{8 \cdot S_0}{S_{Bh}}$					(6.15)
Relación de rigidez	V_S	0,4930	0,4694	 [-]	
$V_{S} = \frac{S_{R}}{ c_{V}^{*} \cdot S_{BV}}$					(6.08a)
1.2.2.9. Coeficientes					
Relación por presión de enterramiento (apoyo Coeficiente por presión de reacción del apoyo		0,400 1,010	0,400 1,039	 [-] [-]	
$K^* = \frac{c_{h,qv}}{V_{RB} - c_{h,qh^*}}$					(6.14)
Coeficiente por presión de reacción del apoyo	C _V *	-0,026	-0,024	 [-]	
$c_{V}^{*} = c_{V,qV} + c_{V,qh^{*}} \cdot K^{*}$					(6.13)
1.2.2.10. Factores de concentracion λR y λB					
Factor de concentración máximo	max λ	1,022	1,022	 [-]	
max $\lambda = 1 + \frac{\frac{h}{d_a}}{\frac{3.5}{a'} + \frac{2.2}{\frac{E_4}{E_1}} \cdot (a' - 0.25)} + \frac{0.62}{a'} + \frac{\frac{1}{E_4}}{\frac{E_4}{E_1}} \cdot (a' - 0.25)}$	1,6 '-0,25) . h				(6.04)
Coeficiente por factor de concentración máximo	К'	0,822	0,812	 [-]	
$K'= - \frac{c_{v,qh} + \frac{c_{h,qh}}{c_{h,qv}} \cdot c_{v,qh^*} \cdot K^*}{c_{v,qv} + c_{v,qh^*} \cdot K^*}$					(6.06b)
Factor de concentración sobre el tubo, valor inicial	λ_{R}	0,965	0,962	 [-]	
$\lambda_{R} = \frac{\max \lambda \cdot V_{s} + a' \cdot \frac{4 \cdot K_{2} \cdot K'}{3} \cdot \frac{\max \lambda - 1}{a' - 0,25}}{V_{s} + a' \cdot \frac{3 + K_{2} \cdot K'}{3} \cdot \frac{\max \lambda - 1}{a' - 0,25}}$					(6.06a)
Factor de concentración sobre el tubo, bajo el efecto de la zanja	λ_{RG}	0,965	0,962	 [-]	
$\lambda_{RG} = \lambda_{R} = const.$					(6.21b)
Factor de concentración sobre el tubo, límite	λ_{fo}	3,910	3,910	 [-]	
superior Factor de concentración sobre el tubo, limite	λ_{fu}	0,435	0,435	 [-]	
inferior Factor de concentación sobre el tubo, valor	λ_{RG}	0,965	0,962	 [-]	
final Factor de concentración del suelo	λ_{B}	1,012	1,013	 [-]	
$\lambda_{B} = \frac{4 - \lambda_{R}}{3}$					(6.07)

1.2.2.11. Distribución de presiones en la circur	nferencia del tu	<u>ıbo</u>			
Carga vertical total	q_{v}	85,53	85,49		kN/m²
$q_V = \lambda_{RG} \cdot p_E + p_V$					(6.24)
Presion lateral	q_h	5,30	5,30		kN/m²
$q_h = K_2 \cdot \left(\lambda_B \cdot p_E + \gamma_B \cdot \frac{d_a}{2} \right)$					(7.01)
Presión de reacción del apoyo (carga del suelo)	q* _h	81,27	83,59		kN/m²
$q^*_h = \frac{c_{h,qv} \cdot q_v + c_{h,qh} \cdot q_h}{V_{RB} - c_{h,qh}^*}$					(7.02a)
Presión de reacción del apoyo (sección llena)	q* _{hw}	0,38	0,48		kN/m²
$q^*_{hw} = \frac{c_{hw} \cdot q_w}{V_{RB} - c_{h,qh}^*}$					(7.02b)
1.2.3. Sección fuerzas clave					
Momento debido a cargas verticales totales Momento debido a la presión lateral Momento debido a la reacción de la presión de horizontal	el apoyo	M _{qv} M _{qh} M* _{qh}	corto plazo 0,060 -0,004 -0,039	largo plazo 0,060 -0,004 -0,040	kNm/m kNm/m kNm/m
Momento debido a la reacción de la presión de (sección llena)	el apoyo	M^*_{qw}	0,000	0,000	kNm/m
Momento debido a las cargas muertas Momento debido a la sección llena Momento debido a la presión del agua Momento debido al nivel freático a la altura de	la clave	M _g M _w M _{pw} M _{pa1}	0,000 0,000 0,003 0,000	0,000 0,000 0,002 0,000	kNm/m kNm/m kNm/m kNm/m
$\Sigma M = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + N_g$	1 _{pw}				
Momentos totales		ΣΜ	0,020	0,018	kNm/m
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w$, + M _{pa1}				
Momentos totales sin presión interna/externa		ΣM_{sonst}	0,017	0,016	kNm/m
$\Sigma M'=M_{qv}+M_{qh}+M^*_{qh}+M_g$					
Momentos totales debidos a la sección llena y	a la presión	ΣΜ'	0,017	0,016	kNm/m
Fuerza normal debida a las cargas verticales to Fuerza normal debida a la presión lateral Fuerza normal debida a la reacción de la presión relleno del agua) Fuerza normal debida al peso muerto Fuerza normal debida al relleno de agua Fuerza normal debida al nivel freático hasta la	ón del lecho ón del lecho	$egin{array}{l} N_{qv} \ N_{qh} \ N^*_{qh} \ N^*_{qw} \ N_g \ N_w \ N_{pa1} \end{array}$	0,119 -0,274 -2,424 -0,011 0,001 0,017 0,000	0,119 -0,274 -2,494 -0,014 0,001 0,017 0,000	kN/m kN/m kN/m kN/m kN/m kN/m
Fuerzas totales normales Total sin presión interna/externa Total sin sección llena y sin presión		ΣΝ ΣΝ _{sonst} ΣΝ'	31,646 -2,572 -2,578	24,556 -2,645 -2,648	kN/m kN/m kN/m

1.2.4. Sección fuerzas generatriz sobre el diámetro horizontal del tubo

		corto plazo	largo plazo	
Momento debido a cargas verticales totales	M _{qv}	-0,061	-0,061	kNm/m
Momento debido a la presión lateral Momento debido a la reacción de la presión del apoyo	M _{qh} M* _{qh}	0,004 0,045	0,004 0,046	kNm/m kNm/m
horizontal	··· qn	0,010	0,010	10.411
Momento debido a la reacción de la presión del apoyo (sección llena)	M* _{qw}	0,000	0,000	kNm/m
Momento debido a las cargas muertas	M_{g}	0,000	0,000	kNm/m
Momento debido a la sección llena	M _w	0,000	0,000	kNm/m
Momento debido a la presión del agua Momento debido al nivel freático a la altura de la clave	M _{pw} M _{pa1}	0,003 0,000	0,002 0,000	kNm/m kNm/m
Montento debido al filver freatico a la altura de la ciave	мрат Портава	0,000	0,000	KINIII/III
$\Sigma M = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pw}$				
Momentos totales	ΣΜ	-0,009	-0,009	kNm/m
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pa1}$				
Momentos totales sin presión interna/externa	ΣM_{sonst}	-0,012	-0,011	kNm/m
$\Sigma M' = M_{qv} + M_{qh} + M^*_{qh} + M_g$				
Momentos totales debidos a la sección llena y a la presión	ΣΜ'	-0,012	-0,011	kNm/m
Fuerza normal debida a las cargas verticales totales	N_{qv}	-4,422	-4,420	kN/m
Fuerza normal debida a la presión lateral	N _{qh}	0,000	0,000	kN/m
Fuerza normal debida a la reacción de la presión del lecho Fuerza normal debida a la reacción de la presión del lecho	N* ['] qh N* _{qw}	0,000 0,000	0,000 0,000	kN/m kN/m
(relleno del agua)	14 qw	0,000	0,000	KIN/III
Fuerza normal débida al peso muerto	N_g	-0,005	-0,005	kN/m
Fuerza normal debida al relleno de agua	N_w	0,006	0,006	kN/m
Fuerza normal debida al nivel freático hasta la clave	N _{pa1}	0,000	0,000	kN/m
Fuerzas totales normales	ΣΝ	29,798	22,782	kN/m
Total sin presión interna/externa	ΣN _{sonst}	-4,421	-4,419	kN/m
Total sin sección llena y sin presión	ΣΝ'	-4,427	-4,425	kN/m
1.2.5. Sección fuerzas base				
		corto plazo	largo plazo	
Momento debido a cargas verticales totales	M_{qv}	0,063	0,063	kNm/m
Momento debido a la presión lateral	M _{qh}	-0,004	-0,004	kNm/m
Momento debido a la reacción de la presión del apoyo horizontal	M* ['] qh	-0,039	-0,040	kNm/m
Momento debido a la reacción de la presión del apoyo (sección llena)	M* _{qw}	0,000	0,000	kNm/m
Momento debido a las cargas muertas	M_q	0,000	0,000	kNm/m
Momento debido a la sección llena	M_W	0,000	0,000	kNm/m
Momento debido a la presión del agua	M _{pw}	0,003	0,002	kNm/m
Momento debido al nivel freático a la altura de la clave	M _{pa1}	0,000	0,000	kNm/m
$\Sigma M = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pw}$				
Momentos totales	ΣΜ	0,023	0,021	kNm/m
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pa1}$				
Momentos totales sin presión interna/externa	ΣM_{sonst}	0,020	0,019	kNm/m

$\Sigma M'= M_{qv} + M_{qh} + M^*_{qh} + M_g$					
Momentos totales debidos a la sección llena y	a la presión	ΣΜ'	0,020	0,019	kNm/m
Fuerza normal debida a las cargas verticales t Fuerza normal debida a la presión lateral Fuerza normal debida a la reacción de la presi Fuerza normal debida a la reacción de la presi (relleno del agua)	ón del lecho	N _{qv} N _{qh} N* _{qh} N* _{qw}	-0,119 -0,274 -2,424 -0,011	-0,119 -0,274 -2,494 -0,014	kN/m kN/m kN/m kN/m
Fuerza normal debida al peso muerto Fuerza normal debida al relleno de agua Fuerza normal debida al nivel freático hasta la	clave	N _g N _w N _{pa1}	-0,001 0,037 0,000	-0,001 0,037 0,000	kN/m kN/m kN/m
Fuerzas totales normales Total sin presión interna/externa Total sin sección llena y sin presión		ΣN ΣN_{sonst} $\Sigma N'$	31,426 -2,793 -2,818	24,336 -2,865 -2,888	kN/m kN/m kN/m
1.2.6. Caso de carga a corto plazo					
1.2.6.1. prueba de tensión					
Coeficiente de superposición de tensiones: Relación de deflexión: Presión interior resultante (pl - pW):			Z η p _{I,res}	1,18 1,22 7,07	[-] [-] bar
Valor característico de la tensión en sentido ci	rcunferencial:		σ_{RZ}	23,0	N/mm²
$\sigma_{R,res} = \frac{\sigma_{qv,qh,qh^*} \cdot \sigma_R + \sigma_{sonst} \cdot \sigma_{R,L}}{\sigma_{qv,qh,qh^*} + \sigma_{sonst}}$					(9.01c)
$\sigma_{R,res} = \frac{\sigma_{qv,qh,qh^*} \cdot \sigma_R + \sigma_{sonst} \cdot \sigma_{R,L}}{\sigma_{qv,qh,qh^*} + \sigma_{sonst}}$ Interior:		clave	generatriz sobre el diámetro horizontal del tubo	base	(9.01c)
	σ a YBZ,a	clave 2,044 11,250	sobre el diámetro	base 2,488 9,245	(9.01c) N/mm² [-]
Interior: Tensiones debidas a carga externa Coeficiente de seguridad para carga externa,		2,044	sobre el diámetro horizontal del tubo -2,397	2,488	N/mm²
Interior: Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión: Coeficiente de seguridad por carga externa,	YBZ,a	2,044	sobre el diámetro horizontal del tubo -2,397	2,488 9,245	N/mm² [-]
Interior: Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión: Coeficiente de seguridad por carga externa, compresión por flexión: Tensiones debidas a presión interna Coeficiente de seguridad por presión interna Factor de reducción de acuerdo a	YBZ,a YBD,a σ _i	2,044 11,250 5,185	sobre el diámetro horizontal del tubo -2,397 9,597	2,488 9,245 5,185	N/mm² [-] [-] N/mm²
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión: Coeficiente de seguridad por carga externa, compresión por flexión: Tensiones debidas a presión interna Coeficiente de seguridad por presión interna Factor de reducción de acuerdo a Netzer/Pattis Tensión por cálculo de superposición Coeficiente de seguridad para cálculo de	YBZ,a YBD,a O _i Yi	2,044 11,250 5,185 4,436	sobre el diámetro horizontal del tubo -2,397 9,597	2,488 9,245 5,185 4,436	N/mm² [-] [-] N/mm² [-]
Interior: Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión: Coeficiente de seguridad por carga externa, compresión por flexión: Tensiones debidas a presión interna Coeficiente de seguridad por presión interna Factor de reducción de acuerdo a Netzer/Pattis Tensión por cálculo de superposición Coeficiente de seguridad para cálculo de superposición, tensión por flexión: Coeficiente de seguridad para cálculos de	YBZ,a YBD,a σ_{i} Yi n $\sigma_{r}es$	2,044 11,250 5,185 4,436 0,804 5,810	sobre el diámetro horizontal del tubo -2,397 9,597 5,185 4,436 0,786 2,191	2,488 9,245 5,185 4,436 0,782 6,000	N/mm² [-] N/mm² [-] [-] N/mm²
Interior: Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión: Coeficiente de seguridad por carga externa, compresión por flexión: Tensiones debidas a presión interna Coeficiente de seguridad por presión interna Factor de reducción de acuerdo a Netzer/Pattis Tensión por cálculo de superposición Coeficiente de seguridad para cálculo de superposición, tensión por flexión:	YBZ,a YBD,a Oi Yi n Ores YBZ,res	2,044 11,250 5,185 4,436 0,804 5,810	sobre el diámetro horizontal del tubo -2,397 9,597 5,185 4,436 0,786 2,191	2,488 9,245 5,185 4,436 0,782 6,000	N/mm² [-] N/mm² [-] [-] N/mm² [-]

Exterior:		clave	generatriz sobre el diámetro horizontal del tubo	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a YBZ,a	-2,625 	0,916 25,110	-3,097 	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a	8,761		7,428	[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	5,185 4,436	5,185 4,436	5,185 4,436	N/mm² [-]
Factor de reducción de acuerdo a Netzer/Pattis	n	0,775	0,908	0,735	[-]
Tensión por cálculo de superposición	$\sigma_{r}es$	1,983	5,537	1,536	N/mm²
Coeficiente de seguridad para cálculo de superposición, tensión por flexión:	YBZ,res	11,601	4,154	14,978	[-]
Coeficiente de seguridad para cálculos de superposición, compresión por flexión:	YBD,res				[-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	23,00	23,00	23,00	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	23,00	23,00	23,00	N/mm²

1.2.6.2. Prueba de deformación

Modo de cálculo: Relación: Relación 'I/(A·rm²)·κq':				lineal I/(A·rm²) I/(A·rm²)·κ _q		0,00136 0,00136	
Coeficiente de deflexión para momentos de	C _V	q_{v}	-0,0893	q _h 0,0833	q _h *	0,0640	[-]
deflexión Coeficiente de deflexión por fuerzas normales Coeficiente de deflexión por fuerzas laterales Coeficiente resultante de deformación	cN _v cQ _v c' _v		-0,6830 -0,3590 -0,0916	-0,6810 0,3350 0,0836		-0,2470 0,2430 0,0646	[-] [-] [-]
Cambio del diámetro vertical: Cambio del diámetro horizontal:				$\Delta d_{ m V} \ \Delta d_{ m h}$		1,06 0,88	mm mm
Deformación vertical relativa: Deflexión admisible:				δ_{v} zul δ_{v}		1,03 6,00	% %

La deflexión determinada es menor que la deflexión permitida.

1.2.6.3. Prueba de estabilidad (lineal):

Carga vertical total:	q_{v}	85,53	kN/m²
Factor de reducción de carga de colapso por cargas de suelo/tráfico:	K _{V2}	0,87	[-]
Carga vertical total crítica:	krit q _v	2.459,0	kN/m²

krit $q_V = 2 \cdot \kappa_{V2} \cdot (8S_0 \cdot S_{Bh})^{0.5}$ (9.06a)

La prueba de colapso por presión de agua no aplica, dado que no hay presencia de nivel freático ni vacío.

Coeficiente de seguridad de estabilidad: Coeficiente global de seguridad requerido, falle	o por inestabilida	ıd:	γ erf γ _{stab}	28,75 2,00	[-] [-]
Los coeficientes de seguridad al pandeo dete	rminados son su	ficientes.			
1.2.7. Caso de carga a largo plazo					
1.2.7.1. prueba de tensión					
Coeficiente de superposición de tensiones: Relación de deflexión: Presión interior resultante (pl - pW):			Ζ η p _{I,res}	5,37 1,28 5,62	[-] [-] bar
Valor característico de la tensión en sentido ci	rcunferencial:		σ_{RZ}	17,5	N/mm²
$\sigma_{R,res} = \frac{\sigma_{qv,qh,qh^*} \cdot \sigma_R + \sigma_{sonst} \cdot \sigma_{R,L}}{\sigma_{qv,qh,qh^*} + \sigma_{sonst}}$					(9.01c)
Interior:		clave	generatriz sobre el diámetro horizontal del	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a YBZ,a	1,861 11,945	tubo -2,199 	2,304 9,647	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a		10,111		[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	4,121 4,246	4,121 4,246	4,121 4,246	N/mm² [-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	18,97	12,09	19,20	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	18,97	12,09	19,20	N/mm²
Exterior:		clave	generatriz sobre el diámetro horizontal del	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a YBZ,a	-2,478 	tubo 0,735 30,251	-2,949 	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a	8,971		7,538	[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	4,121 4,246	4,121 4,246	4,121 4,246	N/mm² [-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	10,36	18,22	5,59	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	10,36	18,22	5,59	N/mm²

1.2.7.2. Prueba de deformación

Modo de cálculo: Relación: Relación 'I/(A·rm²)·κq':				lineal I/(A·rm²) I/(A·rm²)·κ _q		0,00136 0,00136	
Coeficiente de deflexión para momentos de deflexión	c_{v}	q_{v}	-0,0893	q _h 0,0833	q _h *	0,0640	[-]
Coeficiente de deflexión por fuerzas normales Coeficiente de deflexión por fuerzas laterales Coeficiente resultante de deformación	cN _v cQ _v c' _v		-0,6830 -0,3590 -0,0916	-0,6810 0,3350 0,0836		-0,2470 0,2430 0,0646	[-] [-] [-]
Cambio del diámetro vertical: Cambio del diámetro horizontal:				$\Delta d_{v} \ \Delta d_{h}$		1,12 0,90	mm mm
Deformación vertical relativa: Deflexión admisible:				δ_v zul δ_v		1,08 6,00	% %

La deflexión determinada es menor que la deflexión permitida.

1.2.7.3. Prueba de estabilidad (lineal):

Carga vertical total:	q_v	85,49	kN/m²
Factor de reducción de carga de colapso por cargas de suelo/tráfico:	K _{v2}	0,87	[-]
Carga vertical total crítica:	krit q _v	2.311,5	kN/m²

krit
$$q_v = 2 \cdot \kappa_{v2} \cdot (8S_0 \cdot S_{Bh})^{0.5}$$
 (9.06a)

La prueba de colapso por presión de agua no aplica, dado que no hay presencia de nivel freático ni vacío.

Coeficiente de seguridad de estabilidad: γ 27,04 [-] Coeficiente global de seguridad requerido, fallo por inestabilidad: γ 27,04 [-] 2,00 [-]

Los coeficientes de seguridad al pandeo determinados son suficientes.

Todas las pruebas necesarias son correctas.

INFORME COMPLETO

Estudio estático para Tuberías A 127

Proyecto:	Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino
	municipal de Lorca (Murcia): Red distribución de agua potable
Empresa / Entidad:	Universidad Politécnica de Valencia -
	ETSICCP
Autor:	Alba Traver Gual
Informe n°:	003
Fecha:	15/09/2015

Este programa es una herramienta gratuita, que puede ser utilizada por personas con conocimientos técnicos en el cálculo estático de tuberías. El programa no puede reemplazar al ingeniero responsable.

Contenido

. : DN 125	3
1.1. Entrada de datos:	3
1.1.1. Opciones de seguridad	3
1.1.2. Suelo	3
1.1.3. Carga	3
1.1.4. Instalación	3
1.1.5. Tubo de la base de datos	4
1.2. Resultados:	4
1.2.1. resultados intermedios del tubo	4
1.2.1.1. propiedades del material 1.2.1.2. Factores de seguridad	4 5
1.2.2. Resultados intermedios para caso de carga	5
 1.2.2.1. geometría del tubo 1.2.2.2. Teoría del silo 1.2.2.3. Carga 1.2.2.4. Módulo de deformación del suelo EB 1.2.2.5. Valores de rigidez del suelo 1.2.2.6. Ángulo de apoyo, proyección relativa efectiva y ángulo de fricción 1.2.2.7. Valores característicos del material del tubo y rigidez anular 1.2.2.8. relación de rigidez 1.2.2.9. Coeficientes 1.2.2.10. Factores de concentracion λR y λB 1.2.2.11. Distribución de presiones en la circunferencia del tubo 1.2.3. Sección fuerzas clave 	5 5 5 5 5 6 6 7 7 8 8
1.2.4. Sección fuerzas generatriz sobre el diámetro horizontal del tubo	9
1.2.5. Sección fuerzas base	9
1.2.6. Caso de carga a corto plazo1.2.6.1. prueba de tensión1.2.6.2. Prueba de deformación1.2.6.3. Prueba de estabilidad (lineal):	10 10 11 11
1.2.7. Caso de carga a largo plazo	12
1.2.7.1. prueba de tensión1.2.7.2. Prueba de deformación1.2.7.3. Prueba de estabilidad (lineal):	12 13 13

1.: DN 125

Descripción del tramo: DN 125 Tipo de cálculo: Según tabla

Añadir dibujo para imprimir:

1.1. Entrada de datos:

1.1.1. Opciones de seguridad

Clase de seguridad: A (caso normal) Deflexión admisible: 6% (habitual)

De acuerdo con la nota 39 de la ATV 127 Tratamiento de la presión interna:

Menores factores de seguridad para compresión por flexión: no (ATV A 127) No

La aplicación de la ATV A 127 no ha sido verificada para ver si la rigidez

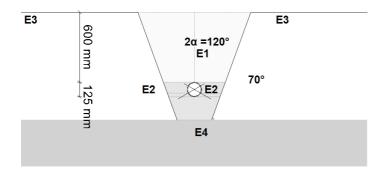
circunferencial mínima ha sido alcanzada:

1.1.2. Suelo

Tipo de relleno: Cálculo E1:	G1 Módulo de elastic	idad F	
Módulo de elasticidad E1:	E1	8.0	N/mm²
Tipo de relleno en la zona del tubo:	G1	0,0	13/11111
Cálculo E20:	Módulo de elastic	idad F	
Módulo de elasticidad E20:	E ₂₀	16.0	N/mm²
Tipo de suelo natural:	G4	, .	
Cálculo E3:	Módulo de elastic	idad E	
Módulo de elasticidad E3:	E3	1,5	N/mm²
E4 = 10 · E1:	No		
Suelo bajo la zanja:	G4		
Cálculo É4:	Módulo de elastic	idad E	
Módulo de elasticidad E4:	E4	1,5	N/mm²
1.1.3. Carga			
Altura de recubrimiento:	h	0,60	m
Densidad del suelo:	γ	20,0	kN/m³
Carga superficial adicional:	p_0	0,0	kN/m²
Nivel freático máximo sobre el lecho del tubo:	$h_{W,max}$	0,00	m
Nivel freático mínimo sobre el lecho del tubo:	$h_{W,min}$	0,00	m
Presión interna, corto plazo:	$P_{I,K}$	7,0	bar
Presión interna, largo plazo:	$P_{I,L}$	5,4	bar
Sección llena:	Si		
Densidad del fluido:	YF	10,0	kN/m³
Carga de tráfico:	SLW 30		

1.1.4. Instalación

Instalación:	Zanja		
Ancho de zanja:	b	0,53	m
Ángulo del talud:	β	70	0
Condiciones de relleno:	A4		
Condiciones de la instalación:	B4		
Tipo de apoyo:	suelto		
Ángulo de apoyo:	120°		
Proyección relativa:	а	1,00	[-]



1.1.5. Tubo de la base de datos

Material:

Presión nominal: Diámetro nominal: PE 100 PN = 10,0 bar (SDR = 17,0) DN 125 (7,4 mm)

Carga de tráfico: SLW 30

្ 532 mm ្

1.2. Resultados:

1.2.1. resultados intermedios del tubo

Diámetro interior:	d _i	110.2	mm
Diámetro exterior:	ďa	125,0	mm
Radio del eje centroide de la pared del tubo:	r _m	58,8	mm
Espesor:	s'''	7,4	mm
Proporción:	r _m /s	7,946	[-]
Factor de corrección de la curvatura interior:	α_{ki}	1,042	[-]
Factor de corrección de la curvatura exterior:	α_{ka}	0,958	[-]
Predeformación local:	$\delta_{ m vl}$	0.00	%
Predeformación (ovalización antes de aplicación de la carga):	δ_{vg}	1,00	%
Superficie del perfil radial:	Λ.	7,4	mm²/mm
Distancia de inercia:	A _{rad} e	3,7	mm
Momento de inercia:	I	33.8	mm^4/mm
Momento resistente exterior:	W _a	9,1	mm³/mm
Momento resistente exterior:	W _i	9,1	mm³/mm

1.2.1.1. propiedades del material

		corto piazo	iargo piazo	
Gravedad específica	YR	9,4	9,4	kN/m³
Coeficiente de poisson	V	0,38	0,38	[-]

<u>₩alα:5akadteréstide ribeiblenódelosdele</u> lasticidad en sentido	E _n	1.200,0	200.0	N/mm²
circunferencial	E _R	1.200,0	200,0	14/111111
Valor característico de tracción por deflexión Valor característico de la deflexión radial por esfuerzo de	σ_{RBZ}	23,0 23,0	17,5 17,5	N/mm² N/mm²
compresión Valor característico de la tensión en sentido circunferencial	σ_{RZ}	23,0	17,5	N/mm²
1.2.1.2. Factores de seguridad				
Coeficiente global de seguridad requerido, fallo por inestabilidad, tensión a tracción	$\text{erf } \gamma_{RBZ}$	2,50	2,50	[-]
Coeficiente global de seguridad requerido, fallo por inestabilidad, tensión a compresión	$\text{erf } \gamma_{RBD}$	2,50	2,50	[-]
Coeficiente global de seguridad requerido, fallo por inestabilidad	erf γ _{stab}	2,00	2,00	[-]
1.2.2. Resultados intermedios para caso de carga				
1.2.2.1. geometría del tubo				
Radio del eje centroide de la pared del tubo: Factor de corrección de la curvatura interior:		r _m	58,8 1,042	mm
Factor de corrección de la curvatura exterior:		α _{ki} α _{ka}	0,958	[-] [-]
1.2.2.2. Teoría del silo				
Coeficiente de carga del suelo к para carga en zanja (Teoría	del Silo):	K	1,000	[-]
$\kappa = \frac{1^{-\frac{\theta}{b}} - 2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}{2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}$				(5.04)
Соeficiente de carga del suelo к0 para cargas superficiales (Т	reoría del Silo):	κ ₀	1,000	[-]
$\kappa_0 = e^{-2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}$				(5.05)
$\kappa 0$ y κ están indicadas como 1, porque E1 es mayor que E3.				
1.2.2.3. Carga				
Nivel freático máximo sobre la cama del tubo: Carga vertical debida al peso del relleno: Carga vertical debida al peso del relleno y a la carga superfici Tensión debida a carga de tráfico: Coefficiente de impacto (incl.):	ial:	h _{W.Scheitel} P _{Erd} P _E P _V ¢	0,00 12,00 12,00 73,10 1,40	m kN/m² kN/m² kN/m² [-]
1.2.2.4. Módulo de deformación del suelo EB				
Módulo elástico del relleno bajo carga: Módulo elástico de los riñones bajo carga: Factor de reducción por fluencia: Factor de reducción E20 (nivel freático): Factor de reducción E20 (zanja estrecha): Módulo elástico del apoyo (reducido): Módulo elástico del suelo natural: Módulo elástico del suelo bajo el tubo:		$E_{1,\sigma}$ $E_{20,\sigma}$ f_1 f_2 α_B $E_{2,\sigma}$ $E_{3,\sigma}$ $E_{4,\sigma}$	8,00 16,00 1,000 1,000 1,000 16,00 1,50 1,50	N/mm² N/mm² [-] [-] N/mm² N/mm² N/mm²

Factor de corrección por rigidez del apoyo hor	izontal:		ζ	0,740	[-]
_ 1,667					
$\zeta = \frac{1,667}{\Delta f + (1,667 - \Delta f) \cdot \frac{E_2}{E_3}}$					(6.17)
$\Delta f = \frac{\frac{b}{d_a} - 1}{0.982 + 0.283 \cdot \left(\frac{b}{d_a} - 1\right)} \le 1,667$				Con	rección (6.18)
Si el angulo de talud de la zanja es < 90° se debe conside zanja a la altura de la corona	erar la anchura de	la zanja a la altura d	lel centro de la tube	ría en lugar de la a	anchura de la
Rigidez del apoyo horizontal:			S_{Bh}	7,100	N/mm²
$S_{Bh} = 0.6 \cdot \zeta \cdot E_2$					(6.16)
Rigidez de apoyo vertical:			S_{Bv}	16,000	N/mm²
$S_{Bv} = \frac{E_2}{a}$					(6.12)
1.2.2.6. Ángulo de apoyo, proyección relativa	efectiva y ángı	ulo de fricción			
Ángulo de apoyo, proyección relativa efectiva Proyección incrementada debido a la pérdida Proyección relativa efectiva:			2α a _S a'	120 1,00 0,500	。 [-] [-]
$a'=a_{S}-\frac{E_1}{E_2} \ge 0.26$				·	(6.05)
Ángulo de fricción interna: Ángulo de fricción de la pared:			φ' δ	20,000 20,000	0
		corto plazo Todas las cargas	largo plazo Cargas del suelo cargas de	largo plazo otro Cargas	
			tráfico	Ourgus	
1.2.2.7. Valores característicos del material de	el tubo y rigide:	z anular			
Valor característico del módulo de elasticidad en sentido circunferencial	E _R	1.200,0	1.059,0	200,0	N/mm²
Valor característico de tracción por deflexión Valor característico de la deflexión radial por esfuerzo de compresión	σ_{RBZ} σ_{RBD}	23,0 23,0	22,2 22,2	17,5 17,5	N/mm² N/mm²
Valor característico de la tensión en sentido circunferencial	σ_{RZ}	23,0	22,2	17,5	N/mm²
Rigidez del tubo	S_R	199,326	175,904	33,221	kN/m²
$S_{R} = \frac{E_{R} \cdot I}{r_{m}^{3}}$					(6.10a)
1.2.2.8. relación de rigidez					
Rigidez del sistema	V_{RB}	0,0281	0,0248	0,0047	[-]

$V_{RB} = \frac{S_R}{S_{Bh}} = \frac{8 \cdot S_0}{S_{Bh}}$					(6.15)
Relación de rigidez	V _S	0,4060	0,3856	 [-]	
$V_{S} = \frac{S_{R}}{ c_{V}^{*} \cdot S_{Bv}}$					(6.08a)
1.2.2.9. Coeficientes					
Relación por presión de enterramiento (apoyo) Coeficiente por presión de reacción del apoyo		0,400 0,942	0,400 0,976	 [-] [-]	
$K^* = \frac{c_{h,qv}}{V_{RB} - c_{h,qh^*}}$					(6.14)
Coeficiente por presión de reacción del apoyo	C _V *	-0,031	-0,029	 [-]	
$c_{v}^* = c_{v,qv} + c_{v,qh^*} \cdot K^*$					(6.13)
1.2.2.10. Factores de concentracion λR y λB					
Factor de concentración máximo	max λ	1,021	1,021	 [-]	
<u>h</u>					
max $\lambda = 1 + \frac{\frac{1}{d_a}}{\frac{3.5}{a'} + \frac{2.2}{\frac{E_4}{E_1}} \cdot (a' - 0.25)} + \frac{0.62}{a'} + \frac{1}{\frac{E_4}{E_1}} \cdot (a' - 0.25)}$,6 - 0,25) . h da				(6.04)
Coeficiente por factor de concentración máximo	K'	0,842	0,834	 [-]	
$K'= - \frac{c_{v,qh} + \frac{c_{h,qh}}{c_{h,qv}} \cdot c_{v,qh^*} \cdot K^*}{c_{v,qv} + c_{v,qh^*} \cdot K^*}$					(6.06b)
Factor de concentración sobre el tubo, valor inicial	λ_{R}	0,956	0,953	 [-]	
$\lambda_{R} = \frac{\max \lambda \cdot V_{s} + a' \cdot \frac{4 \cdot K_{2} \cdot K'}{3} \cdot \frac{\max \lambda - 1}{a' - 0.25}}{V_{s} + a' \cdot \frac{3 + K_{2} \cdot K'}{3} \cdot \frac{\max \lambda - 1}{a' - 0.25}}$					(6.06a)
Factor de concentración sobre el tubo, bajo el efecto de la zanja	λ_{RG}	0,956	0,953	 [-]	
$\lambda_{RG} = \lambda_{R} = \text{const.}$					(6.21b)
Factor de concentración sobre el tubo, límite	λ_{fo}	3,910	3,910	 [-]	
superior Factor de concentración sobre el tubo, limite	λ_{fu}	0,473	0,473	 [-]	
inferior Factor de concentación sobre el tubo, valor	λ_{RG}	0,956	0,953	 [-]	
final Factor de concentración del suelo	λ_{B}	1,015	1,016	 [-]	
$\lambda_{B} = \frac{4 - \lambda_{R}}{3}$					(6.07)

1.2.2.11 Distribución de pregiance en la circu	oforonoia dal tu	ıba			
1.2.2.11. Distribución de presiones en la circur Carga vertical total			94.54		kN/m²
	q_{v}	84,58	84,54		
$q_V = \lambda_{RG} \cdot p_E + p_V$					(6.24)
Presion lateral	q_h	5,37	5,38		kN/m²
$q_h = K_2 \cdot \left(\lambda_B \cdot p_E + \gamma_B \cdot \frac{d_a}{2} \right)$					(7.01)
Presión de reacción del apoyo (carga del suelo)	q* _h	74,88	77,52		kN/m²
$q_{h}^{*} = \frac{c_{h,qv} \cdot q_{v} + c_{h,qh} \cdot q_{h}}{V_{RB} - c_{h,qh}^{*}}$					(7.02a)
Presión de reacción del apoyo (sección llena)	q* _{hw}	0,40	0,54		kN/m²
$q^*_{hw} = \frac{c_{hw} \cdot q_w}{V_{RB} - c_{h,qh}^*}$					(7.02b)
1.2.3. Sección fuerzas clave					
Momento debido a cargas verticales totales Momento debido a la presión lateral Momento debido a la reacción de la presión de	el apoyo	M _{qv} M _{qh} M* _{qh}	corto plazo 0,076 -0,005 -0,047	largo plazo 0,076 -0,005 -0,049	kNm/m kNm/m kNm/m
horizontal Momento debido a la reacción de la presión de (sección llena)	el apoyo	M* _{qw}	0,000	0,000	kNm/m
Momento debido a las cargas muertas Momento debido a la sección llena Momento debido a la presión del agua Momento debido al nivel freático a la altura de	la clave	M _g M _w M _{pw} M _{pa1}	0,000 0,000 0,003 0,000	0,000 0,000 0,002 0,000	kNm/m kNm/m kNm/m kNm/m
$\Sigma M = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{qw}^*$	1 _{pw}				
Momentos totales		ΣΜ	0,028	0,026	kNm/m
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_q + M_v$	v + M _{na1}				
Momentos totales sin presión interna/externa		ΣM_{sonst}	0,025	0,023	kNm/m
$\Sigma M' = M_{av} + M_{ah} + M^*_{ah} + M_a$		301131	- ,	2,2	
Momentos totales debidos a la sección llena y	a la proción	ZV4.	0.025	0 033	kNm/m
·	·	ΣΜ'	0,025	0,023	
Fuerza normal debida a las cargas verticales t Fuerza normal debida a la presión lateral	otales	N _{qv}	0,134 -0,316	0,134 -0,316	kN/m kN/m
Fuerza normal debida a la reacción de la presi	ión del lecho	N _{qh} N* _{qh}	-0,510 -2,541	-0,310	kN/m
Fuerza normal debida a la reacción de la presi		N* _{qw}	-0,014	-0,018	kN/m
(relleno del agua)		· · · qw	-,	2,2 . 2	
Fuerza normal debida al peso muerto		N_g	0,001	0,001	kN/m
Fuerza normal debida al relleno de agua		N_w	0,022	0,022	kN/m
Fuerza normal debida al nivel freático hasta la	clave	N _{pa1}	0,000	0,000	kN/m
Fuerzas totales normales		ΣΝ	35,857	26,836	kN/m
Total sin presión interna/externa		ΣN _{sonst}	-2,713	-2,807	kN/m
Total sin sección llena y sin presión		ΣΝ'	-2,721	-2,811	kN/m

1.2.4. Sección fuerzas generatriz sobre el diámetro horizontal del tubo

Momento debido a cargas verticales totales	M _{qv}	corto plazo -0,077	largo plazo -0,077	kNm/m
Momento debido a la presión lateral Momento debido a la reacción de la presión del apoyo horizontal	M _{qh} M* _{qh}	0,005 0,054	0,005 0,056	kNm/m kNm/m
Momento debido a la reacción de la presión del apoyo (sección llena)	M* _{qw}	0,000	0,000	kNm/m
Momento debido a las cargas muertas Momento debido a la sección llena	M _g M _w	0,000 0,000	0,000 0,000	kNm/m kNm/m
Momento debido a la presión del agua	M _{pw}	0,003	0,002	kNm/m
Momento debido al nivel freático a la altura de la clave	M _{pa1}	0,000	0,000	kNm/m
$\Sigma M = M_{qv} + M_{qh} + M^*_{qh} + M^*_{qw} + M_g + M_w + M_{pw}$				
Momentos totales	ΣΜ	-0,016	-0,015	kNm/m
ΣM_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pa1}				
Momentos totales sin presión interna/externa	ΣM_{sonst}	-0,019	-0,017	kNm/m
$\Sigma M' = M_{qv} + M_{qh} + M^*_{qh} + M_g$				
Momentos totales debidos a la sección llena y a la presión	ΣΜ'	-0,019	-0,017	kNm/m
Fuerza normal debida a las cargas verticales totales	N_{qv}	-4,973	-4,971	kN/m
Fuerza normal debida a la presión lateral Fuerza normal debida a la reacción de la presión del lecho	N _{qh} N* _{qh}	0,000 0,000	0,000 0,000	kN/m kN/m
Fuerza normal debida a la reacción de la presión del lecho	N* _{qw}	0,000	0,000	kN/m
(relleno del agua)	·	-,	2,000	
Fuerza normal debida al peso muerto	N_g	-0,006	-0,006	kN/m
Fuerza normal debida al relleno de agua Fuerza normal debida al nivel freático hasta la clave	N _W	0,007 0,000	0,007 0,000	kN/m kN/m
i del 2a normai debida al nivel freatico fiasta la ciave	N _{pa1}	0,000	0,000	KIN/III
Fuerzas totales normales	ΣΝ	33,598	24,674	kN/m
Total sin presión interna/externa	ΣN_{sonst}	-4,972	-4,970	kN/m
Total sin sección llena y sin presión	ΣΝ'	-4,980	-4,977	kN/m
1.2.5. Sección fuerzas base				
Momento debido a cargas verticales totales	M_{qv}	corto plazo 0,080	largo plazo 0,080	kNm/m
Momento debido a la presión lateral	M _{qh}	-0,005	-0,005	kNm/m
Momento debido a la reacción de la presión del apoyo	M* _{qh}	-0,047	-0,049	kNm/m
horizontal Momento debido a la reacción de la presión del apoyo (sección llena)	M* _{qw}	0,000	0,000	kNm/m
Momento debido a las cargas muertas	M_g	0,000	0,000	kNm/m
Momento debido a la sección llena	M _w	0,001	0,001	kNm/m
Momento debido a la presión del agua Momento debido al nivel freático a la altura de la clave	M _{pw}	0,003 0,000	0,002 0,000	kNm/m kNm/m
Momento debido al filver freatico a la altura de la ciave	M _{pa1}	0,000	0,000	KINIII/III
$\Sigma M = M_{qv} + M_{qh} + M^*_{qh} + M^*_{qw} + M_g + M_w + M_{pw}$				
Momentos totales	ΣΜ	0,033	0,030	kNm/m
ΣM_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pa1}				
Momentos totales sin presión interna/externa	ΣM_{sonst}	0,029	0,028	kNm/m

$\Sigma M' = M_{qv} + M_{qh} + M^*_{qh} + M_q$					
Momentos totales debidos a la sección llena y	a la presión	ΣΜ'	0,029	0,027	kNm/m
Fuerza normal debida a las cargas verticales totales Fuerza normal debida a la presión lateral Fuerza normal debida a la reacción de la presión del lecho Fuerza normal debida a la reacción de la presión del lecho		N _{qv} N _{qh} N* _{qh} N* _{qw}	-0,134 -0,316 -2,541 -0,014	-0,134 -0,316 -2,630 -0,018	kN/m kN/m kN/m kN/m
(relleno del agua) Fuerza normal debida al peso muerto Fuerza normal debida al relleno de agua Fuerza normal debida al nivel freático hasta la	clave	N _g N _w N _{pa1}	-0,001 0,048 0,000	-0,001 0,048 0,000	kN/m kN/m kN/m
Fuerzas totales normales Total sin presión interna/externa Total sin sección llena y sin presión		ΣN ΣN_{sonst} $\Sigma N'$	35,612 -2,958 -2,992	26,592 -3,052 -3,081	kN/m kN/m kN/m
1.2.6. Caso de carga a corto plazo					
1.2.6.1. prueba de tensión					
Coeficiente de superposición de tensiones: Relación de deflexión: Presión interior resultante (pl - pW):			Ζ η Pι,res	1,21 1,48 7,00	[-] [-] bar
Valor característico de la tensión en sentido cir	rcunferencial:		σ_{RZ}	23,0	N/mm²
$\sigma_{R,res} = \frac{\sigma_{qv,qh,qh^*} \cdot \sigma_R + \sigma_{sonst} \cdot \sigma_{R,L}}{\sigma_{qv,qh,qh^*} + \sigma_{sonst}}$					(9.01c)
$\sigma_{R,res} = \frac{\sigma_{qv,qh,qh^*} \cdot \overline{\sigma}_R + \sigma_{sonst} \cdot \sigma_{R,L}}{\sigma_{qv,qh,qh^*} + \sigma_{sonst}}$ Interior:		clave	generatriz sobre el diámetro horizontal del	base	(9.01c)
Interior: Tensiones debidas a carga externa Coeficiente de seguridad para carga externa,	σ _a ΥΒΖ,a	clave 2,493 9,226	sobre el diámetro	base 2,947 7,803	(9.01c) N/mm² [-]
Interior: Tensiones debidas a carga externa		2,493	sobre el diámetro horizontal del tubo -2,871	2,947	N/mm²
Interior: Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión: Coeficiente de seguridad por carga externa,	YBZ,a	2,493	sobre el diámetro horizontal del tubo -2,871	2,947	N/mm² [-]
Interior: Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión: Coeficiente de seguridad por carga externa, compresión por flexión: Tensiones debidas a presión interna Coeficiente de seguridad por presión interna Factor de reducción de acuerdo a	YBZ,a YBD,a σ _i	2,493 9,226 5,212	sobre el diámetro horizontal del tubo -2,871 8,010	2,947 7,803 5,212	N/mm² [-] [-] N/mm²
Interior: Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión: Coeficiente de seguridad por carga externa, compresión por flexión: Tensiones debidas a presión interna Coeficiente de seguridad por presión interna Factor de reducción de acuerdo a Netzer/Pattis Tensión por cálculo de superposición Coeficiente de seguridad para cálculo de	YBZ,a YBD,a σ _i Yi	2,493 9,226 5,212 4,413	sobre el diámetro horizontal del tubo -2,871 8,010 5,212 4,413	2,947 7,803 5,212 4,413	N/mm² [-] [-] N/mm² [-]
Interior: Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión: Coeficiente de seguridad por carga externa, compresión por flexión: Tensiones debidas a presión interna Coeficiente de seguridad por presión interna Factor de reducción de acuerdo a Netzer/Pattis Tensión por cálculo de superposición Coeficiente de seguridad para cálculo de superposición, tensión por flexión: Coeficiente de seguridad para cálculos de	YBZ,a YBD,a σ_{i} Yi n $\sigma_{r}es$	2,493 9,226 5,212 4,413 0,784 6,040	sobre el diámetro horizontal del tubo -2,871 8,010 5,212 4,413 0,756 1,770	2,947 7,803 5,212 4,413 0,750 6,120	N/mm² [-] [-] N/mm² [-] [-]
Interior: Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión: Coeficiente de seguridad por carga externa, compresión por flexión: Tensiones debidas a presión interna Coeficiente de seguridad por presión interna Factor de reducción de acuerdo a Netzer/Pattis Tensión por cálculo de superposición Coeficiente de seguridad para cálculo de superposición, tensión por flexión:	YBZ,a YBD,a σ_{i} Yi n $\sigma_{r}es$ YBZ,res	2,493 9,226 5,212 4,413 0,784 6,040 3,808	sobre el diámetro horizontal del tubo -2,871 8,010 5,212 4,413 0,756 1,770 12,997	2,947 7,803 5,212 4,413 0,750 6,120 3,758	N/mm² [-] [-] N/mm² [-] [-] N/mm² [-]

Exterior:		clave	generatriz sobre el diámetro norizontal del tubo	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a YBZ,a	-2,996 	1,350 17,032	-3,477 	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a	7,677		6,614	[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	5,212 4,413	5,212 4,413	5,212 4,413	N/mm² [-]
Factor de reducción de acuerdo a Netzer/Pattis	n	0,746	0,870	0,716	[-]
Tensión por cálculo de superposición	$\sigma_{r}es$	1,654	5,708	1,242	N/mm²
Coeficiente de seguridad para cálculo de superposición, tensión por flexión:	YBZ,res	13,905	4,030	18,524	[-]
Coeficiente de seguridad para cálculos de superposición, compresión por flexión:	YBD,res				[-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	23,00	23,00	23,00	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	23,00	23,00	23,00	N/mm²

1.2.6.2. Prueba de deformación

Modo de cálculo: Relación: Relación 'I/(A·rm²)·κq':				lineal I/(A·rm²) I/(A·rm²)·κ _q		0,00132 0,00132	
		q_{v}		q_h	q _h *		
Coeficiente de deflexión para momentos de deflexión	C _V		-0,0893	0,0833		0,0640	[-]
Coeficiente de deflexión por fuerzas normales	cN_v		-0,6830	-0,6810		-0,2470	[-]
Coeficiente de deflexión por fuerzas laterales	cQ _v		-0,3590	0,3350		0,2430	[-]
Coeficiente resultante de deformación	c' _v		-0,0915	0,0836		0,0646	[-]
Cambio del diámetro vertical:				Δd_v		1,45	mm
Cambio del diámetro horizontal:				Δd_h		1,24	mm
Defermentian vertical relatives				2		4.00	0/
Deformación vertical relativa: Deflexión admisible:				$\delta_{ m v}$ zul $\delta_{ m v}$		1,23 6,00	% %
				•		, -	

La deflexión determinada es menor que la deflexión permitida.

1.2.6.3. Prueba de estabilidad (lineal):

Carga vertical total:	q_v	84,58	kN/m²
Factor de reducción de carga de colapso por cargas de suelo/tráfico:	K _{V2}	0,87	[-]
Carga vertical total crítica:	krit q _v	2.070,0	kN/m²

krit $q_V = 2 \cdot \kappa_{V2} \cdot (8S_0 \cdot S_{Bh})^{0.5}$ (9.06a)

La prueba de colapso por presión de agua no aplica, dado que no hay presencia de nivel freático ni vacío.

Coeficiente de seguridad de estabilidad: Coeficiente global de seguridad requerido, fallo por inestabilidad:			γ erf γ _{stab}	24,47 2,00	[-] [-]			
Los coeficientes de seguridad al pandeo determinados son suficientes.								
1.2.7. Caso de carga a largo plazo								
1.2.7.1. prueba de tensión								
Coeficiente de superposición de tensiones: Relación de deflexión: Presión interior resultante (pl - pW):			Ζ η p _{I,res}	5,52 1,56 5,38	[-] [-] bar			
Valor característico de la tensión en sentido ci	rcunferencial:		σ_{RZ}	17,5	N/mm²			
$\sigma_{R,res} = \frac{\sigma_{qv,qh,qh^*} \cdot \sigma_R + \sigma_{sonst} \cdot \sigma_{R,L}}{\sigma_{qv,qh,qh^*} + \sigma_{sonst}}$					(9.01c)			
Interior:		clave	generatriz sobre el diámetro horizontal del	base				
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a YBZ,a	2,278 9,757	tubo -2,639 	2,732 8,135	N/mm² [-]			
Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a		8,421		[-]			
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	4,006 4,369	4,006 4,369	4,006 4,369	N/mm² [-]			
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	19,21	8,38	19,42	N/mm²			
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	19,21	8,38	19,42	N/mm²			
Exterior:		clave	generatriz sobre el diámetro horizontal del	base				
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa,	σ _a YBZ,a	-2,823 	tubo 1,137 19,540	-3,304 	N/mm² [-]			
tensión por flexión: Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a	7,874		6,727	[-]			
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	4,006 4,369	4,006 4,369	4,006 4,369	N/mm² [-]			
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	6,23	18,54	-4,73	N/mm²			
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	6,23	18,54	-4,73	N/mm²			

1.2.7.2. Prueba de deformación

Modo de cálculo: Relación: Relación 'I/(A·rm²)·κq':				lineal I/(A·rm²) I/(A·rm²)·κ _q		0,00132 0,00132	
Coeficiente de deflexión para momentos de deflexión	c_{v}	q_{v}	-0,0893	q _h 0,0833	q _h *	0,0640	[-]
Coeficiente de deflexión por fuerzas normales Coeficiente de deflexión por fuerzas laterales Coeficiente resultante de deformación	cN _v cQ _v c' _v		-0,6830 -0,3590 -0,0915	-0,6810 0,3350 0,0836		-0,2470 0,2430 0,0646	[-] [-] [-]
Cambio del diámetro vertical: Cambio del diámetro horizontal:				$\Delta d_{v} \ \Delta d_{h}$		1,53 1,28	mm mm
Deformación vertical relativa: Deflexión admisible:				$\begin{array}{c} \delta_v \\ zul \ \delta_v \end{array}$		1,30 6,00	% %

La deflexión determinada es menor que la deflexión permitida.

1.2.7.3. Prueba de estabilidad (lineal):

Carga vertical total:	q_v	84,54	kN/m²
Factor de reducción de carga de colapso por cargas de suelo/tráfico:	K _{v2}	0,87	[-]
Carga vertical total crítica:	krit q _v	1.944,6	kN/m²

krit $q_v = 2 \cdot \kappa_{v2} \cdot (8S_0 \cdot S_{Bh})^{0.5}$ (9.06a)

La prueba de colapso por presión de agua no aplica, dado que no hay presencia de nivel freático ni vacío.

Coeficiente de seguridad de estabilidad: γ 23,00 [-] Coeficiente global de seguridad requerido, fallo por inestabilidad: γ 27,00 [-]

Los coeficientes de seguridad al pandeo determinados son suficientes.

Todas las pruebas necesarias son correctas.

INFORME COMPLETO

Estudio estático para Tuberías A 127

Proyecto:	Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable
Empresa / Entidad:	Universidad Politécnica de Valencia - ETSICCP
Autor:	Alba Traver Gual
Informe n°:	004
Fecha:	15/09/2015

Este programa es una herramienta gratuita, que puede ser utilizada por personas con conocimientos técnicos en el cálculo estático de tuberías. El programa no puede reemplazar al ingeniero responsable.

Contenido

. : DN 160	3
1.1. Entrada de datos:	3
1.1.1. Opciones de seguridad	3
1.1.2. Suelo	3
1.1.3. Carga	3
1.1.4. Instalación	3
1.1.5. Tubo de la base de datos	4
1.2. Resultados:	4
1.2.1. resultados intermedios del tubo	4
1.2.1.1. propiedades del material 1.2.1.2. Factores de seguridad	4 5
1.2.2. Resultados intermedios para caso de carga	5
 1.2.2.1. geometría del tubo 1.2.2.2. Teoría del silo 1.2.2.3. Carga 1.2.2.4. Módulo de deformación del suelo EB 1.2.2.5. Valores de rigidez del suelo 1.2.2.6. Ángulo de apoyo, proyección relativa efectiva y ángulo de fricción 1.2.2.7. Valores característicos del material del tubo y rigidez anular 1.2.2.8. relación de rigidez 1.2.2.9. Coeficientes 1.2.2.10. Factores de concentracion λR y λB 1.2.2.11. Distribución de presiones en la circunferencia del tubo 1.2.3. Sección fuerzas clave 	5 5 5 5 5 5 6 6 6 7 7 8 8
1.2.4. Sección fuerzas generatriz sobre el diámetro horizontal del tubo	9
1.2.5. Sección fuerzas base	9
1.2.6. Caso de carga a corto plazo1.2.6.1. prueba de tensión1.2.6.2. Prueba de deformación1.2.6.3. Prueba de estabilidad (lineal):1.2.7. Caso de carga a largo plazo1.2.7.1. prueba de tensión	10 10 11 11 12 12
1.2.7.2. Prueba de deformación 1.2.7.3. Prueba de estabilidad (lineal):	13 13

1.: DN 160

Descripción del tramo: DN 160 Tipo de cálculo: Según tabla

Añadir dibujo para imprimir: Si

1.1. Entrada de datos:

1.1.1. Opciones de seguridad

Clase de seguridad: A (caso normal) Deflexión admisible: 6% (habitual)

De acuerdo con la nota 39 de la ATV 127 Tratamiento de la presión interna:

Menores factores de seguridad para compresión por flexión: no (ATV A 127) No

La aplicación de la ATV A 127 no ha sido verificada para ver si la rigidez

circunferencial mínima ha sido alcanzada:

1.1.2. Suelo

Tipo de relleno:	G1		
Cálculo E1:	Módulo de elastic	idad E	
Módulo de elasticidad E1:	E1	8,0	N/mm²
Tipo de relleno en la zona del tubo:	G1		
Cálculo E20:	Módulo de elastic	idad E	
Módulo de elasticidad E20:	E ₂₀	16,0	N/mm²
Tipo de suelo natural:	G4		
Cálculo E3:	Módulo de elastic	idad E	
Módulo de elasticidad E3:	E3	1,5	N/mm²
E4 = 10 · E1:	No		
Suelo bajo la zanja:	G4		
Cálculo E4:	Módulo de elastic	idad E	
Módulo de elasticidad E4:	E4	1,5	N/mm²
1.1.3. Carga			
1.1.o. Jurgu			
Altura de recubrimiento:	h	0,60	m
Densidad del suelo:	γ	20,0	kN/m³
Carga superficial adicional:	p_0	0,0	kN/m²
Nivel freático máximo sobre el lecho del tubo:	$h_{W,max}$	0,00	m
Nivel freático mínimo sobre el lecho del tubo:	$h_{W,min}$	0,00	m
Presión interna, corto plazo:	$P_{I,K}$	6,6	bar
Presión interna, largo plazo:	$P_{I,L}$	5,3	bar

1.1.4. Instalación

Carga de tráfico:

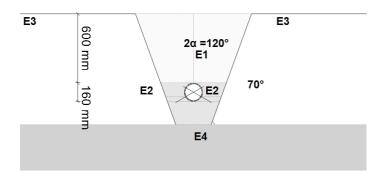
Sección Ilena: Densidad del fluido:

Instalación:	Zanja		
Ancho de zanja:	b	0,57	m
Ángulo del talud:	β	70	0
Condiciones de relleno:	A4		
Condiciones de la instalación:	B4		
Tipo de apoyo:	suelto		
Ángulo de apoyo:	120°		
Proyección relativa:	а	1,00	[-]

10,0

kN/m³

1.1.5. Tubo de la base de datos


Material:

Presión nominal:

Diámetro nominal:

PE 100 PN = 10,0 bar (SDR = 17,0) DN 160 (9,5 mm)

Carga de tráfico: SLW 30

570 mm

1.2. Resultados:

1.2.1. resultados intermedios del tubo

Diámetro interior: Diámetro exterior: Radio del eje centroide de la pared del tubo: Espesor: Proporción: Factor de corrección de la curvatura interior: Factor de corrección de la curvatura exterior:	d _i d _a r _m s r _m /s α _{ki} α _{ka}	141,0 160,0 75,3 9,5 7,921 1,042 0,958	mm mm mm [-] [-]
Predeformación local:	$\delta_{vl} \ \delta_{vg}$	0,00	%
Predeformación (ovalización antes de aplicación de la carga):		1,00	%
Superficie del perfil radial: Distancia de inercia: Momento de inercia: Momento resistente exterior: Momento resistente interior:	A _{rad}	9,5	mm²/mm
	e	4,8	mm
	I	71,4	mm^4/mm
	W _a	15,0	mm³/mm
	W _i	15,0	mm³/mm

1.2.1.1. propiedades del material

		corto piazo	iargo piazo	
Gravedad específica	YR	9,4	9,4	kN/m³
Coeficiente de poisson	V	0,38	0,38	[-]

√ <u>வி∆ி.5a\ædtæréstide rilæiblæródelosdele</u> lasticidad en sentido circunferencial	E _R	1.200,0	200,0	N/mm²
Valor característico de tracción por deflexión Valor característico de la deflexión radial por esfuerzo de compresión	σ_{RBZ} σ_{RBD}	23,0 23,0	17,5 17,5	N/mm² N/mm²
Valor característico de la tensión en sentido circunferencial	σ_{RZ}	23,0	17,5	N/mm²
1.2.1.2. Factores de seguridad				
Coeficiente global de seguridad requerido, fallo por nestabilidad, tensión a tracción	$\text{erf } \gamma_{RBZ}$	2,50	2,50	[-]
Coeficiente global de seguridad requerido, fallo por nestabilidad, tensión a compresión	$\text{erf } \gamma_{RBD}$	2,50	2,50	[-]
Coeficiente global de seguridad requerido, fallo por nestabilidad	erf γ _{stab}	2,00	2,00	[-]
1.2.2. Resultados intermedios para caso de carga				
1.2.2.1. geometría del tubo				
Radio del eje centroide de la pared del tubo: Factor de corrección de la curvatura interior:		r _m	75,3 1,042	mm
ractor de corrección de la curvatura interior: Factor de corrección de la curvatura exterior:		α _{ki} α _{ka}	0,958	[-] [-]
.2.2.2. Teoría del silo				
Coeficiente de carga del suelo κ para carga en zanja (Teoría α	del Silo):	K	1,000	[-]
$K = \frac{1 - e^{-2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}}{2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}$				(5.04)
b Coeficiente de carga del suelo к0 para cargas superficiales (Т	eoría del Silo):	κ ₀	1,000	[-]
$\kappa_0 = e^{-2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}$	·	Ü		(5.05)
к0 у к están indicadas como 1, porque E1 es mayor que E3.				
1.2.2.3. Carga				
Nivel freático máximo sobre la cama del tubo: Carga vertical debida al peso del relleno: Carga vertical debida al peso del relleno y a la carga superfici Tensión debida a carga de tráfico: Coefficiente de impacto (incl.):	ial:	hw.scheitel PErd PE PV ¢	0,00 12,00 12,00 71,35 1,40	m kN/m² kN/m² kN/m² [-]
1.2.2.4. Módulo de deformación del suelo EB				
∕lódulo elástico del relleno bajo carga: ∕lódulo elástico de los riñones bajo carga:		Ε _{1.σ} Ε _{20,σ}	8,00 16,00	N/mm² N/mm²

Factor de corrección por rigidez del apoyo hori	zontal:		ζ	0,368	[-]
1,667					
$\zeta = \frac{1,667}{\Delta f + (1,667 - \Delta f) \cdot \frac{E_2}{E_3}}$					(6.17)
$\Delta f = \frac{\frac{b}{d_a} \cdot 1}{0.982 + 0.283 \cdot \left(\frac{b}{d_a} \cdot 1\right)} \le 1,667$				Corr	rección (6.18)
Si el angulo de talud de la zanja es < 90° se debe consider zanja a la altura de la corona	rar la anchura de la	zanja a la altura de	el centro de la tuber	ía en lugar de la a	inchura de la
Rigidez del apoyo horizontal:			S_{Bh}	3,530	N/mm²
S_{Bh} = 0,6 · ζ · E_2					(6.16)
Rigidez de apoyo vertical:			S_{Bv}	16,000	N/mm²
$S_{Bv} = \frac{E_2}{a}$					(6.12)
1.2.2.6. Ángulo de apoyo, proyección relativa e	efectiva y ángulo	o de fricción			
Ángulo de apoyo, proyección relativa efectiva y Proyección incrementada debido a la pérdida o Proyección relativa efectiva:			2α a _S a'	120 1,00 0,500	。 [-] [-]
$a'=a_{S}-\frac{E_1}{E_2} \ge 0.26$					(6.05)
Ángulo de fricción interna: Ángulo de fricción de la pared:			φ' δ	20,000 20,000	0
		corto plazo Todas las cargas	largo plazo Cargas del suelo cargas de	largo plazo otro Cargas	
			tráfico		
1.2.2.7. Valores característicos del material de			4.050.0	000.0	N1/2
Valor característico del módulo de elasticidad en sentido circunferencial	E _R	1.200,0	1.056,0	200,0	N/mm²
Valor característico de tracción por deflexión Valor característico de la deflexión radial por esfuerzo de compresión	σ_{RBZ} σ_{RBD}	23,0 23,0	22,2 22,2	17,5 17,5	N/mm² N/mm²
Valor característico de la tensión en sentido circunferencial	σ_{RZ}	23,0	22,2	17,5	N/mm²
Rigidez del tubo	S _R	201,211	177,069	33,535	kN/m²
$S_{R} = \frac{E_{R} \cdot I}{r_{m}^{3}}$					(6.10a)
1.2.2.8. relación de rigidez					
Rigidez del sistema	V_{RB}	0,0570	0,0502	0,0095	[-]

$V_{RB} = \frac{S_R}{S_{Bh}} = \frac{8 \cdot S_0}{S_{Bh}}$					(6.15)
Relación de rigidez	V _S	0,2804	0,2627	 [-]	
$V_{S} = \frac{S_{R}}{ c_{V}^{*} \cdot S_{BV}}$					(6.08a)
1.2.2.9. Coeficientes					
Relación por presión de enterramiento (apoyo Coeficiente por presión de reacción del apoyo		0,400 0,723	0,400 0,765	 [-] [-]	
$K^* = \frac{c_{h,qv}}{V_{RB} - c_{h,qh^*}}$					(6.14)
Coeficiente por presión de reacción del apoyo	C _V *	-0,045	-0,042	 [-]	
$c_{V}^{*} = c_{V,qV} + c_{V,qh^{*}} \cdot K^{*}$					(6.13)
1.2.2.10. Factores de concentracion λR y λB					
Factor de concentración máximo	max λ	1,020	1,020	 [-]	
max $\lambda = 1 + \frac{\frac{h}{d_a}}{\frac{3.5}{a'} + \frac{2.2}{\frac{E_4}{E_1}} \cdot (a' - 0.25)} + \frac{0.62}{a'} + \frac{\frac{E_4}{E_1}}{(a' - 0.25)} \cdot (a' - 0.25)}$	1,6 '-0,25)				(6.04)
Coeficiente por factor de concentración máximo	K'	0,876	0,871	 [-]	
$K' = -\frac{c_{v,qh} + \frac{c_{h,qh}}{c_{h,qv}} \cdot c_{v,qh^*} \cdot K^*}{c_{v,qv} + c_{v,qh^*} \cdot K^*}$					(6.06b)
Factor de concentración sobre el tubo, valor inicial	λ_{R}	0,937	0,932	 [-]	
$\lambda_{R} = \frac{\max \lambda \cdot V_{s} + a' \cdot \frac{4 \cdot K_{2} \cdot K'}{3} \cdot \frac{\max \lambda - 1}{a' - 0,25}}{V_{s} + a' \cdot \frac{3 + K_{2} \cdot K'}{3} \cdot \frac{\max \lambda - 1}{a' - 0,25}}$					(6.06a)
Factor de concentración sobre el tubo, bajo el efecto de la zanja	λ_{RG}	0,946	0,942	 [-]	
$\lambda_{RG} = \frac{\lambda_R - 1}{3} \cdot \frac{b}{d_a} + \frac{4 - \lambda_R}{3}$					(6.21a)
Factor de concentración sobre el tubo, límite	λ_{fo}	3,910	3,910	 [-]	
superior Factor de concentración sobre el tubo, limite	λ_{fu}	0,546	0,546	 [-]	
inferior Factor de concentación sobre el tubo, valor	λ_{RG}	0,946	0,942	 [-]	
final Factor de concentración del suelo	λ_{B}	1,021	1,023	 [-]	

$\lambda_{B} = \frac{4 - \lambda_{R}}{3}$					(6.07)
1.2.2.11. Distribución de presiones en la circur	nferencia de	l tubo			
Carga vertical total	q_{v}	82,70	82,65		kN/m²
$q_V = \lambda_{RG} \cdot p_E + p_V$					(6.24)
Presion lateral	q _h	5,54	5,55		kN/m²
$q_h = K_2 \cdot \left(\lambda_B \cdot p_E + \gamma_B \cdot \frac{d_a}{2} \right)$					(7.01)
Presión de reacción del apoyo (carga del suelo)	q* _h	55,99	59,20		kN/m²
$q^*_h = \frac{c_{h,qv} \cdot q_v + c_{h,qh} \cdot q_h}{V_{RB} - c_{h,qh}^*}$					(7.02a)
Presión de reacción del apoyo (sección llena)	q* _{hw}	0,40	0,64		kN/m²
$q^*_{hw} = \frac{c_{hw} \cdot q_w}{V_{RB} - c_{h,qh}^*}$					(7.02b)
1.2.3. Sección fuerzas clave					
Momento debido a cargas verticales totales Momento debido a la presión lateral Momento debido a la reacción de la presión de horizontal	el apoyo	M _{qv} M _{qh} M* _{qh}	corto plazo 0,122 -0,008 -0,057	largo plazo 0,122 -0,008 -0,061	kNm/m kNm/m kNm/m
Momento debido a la reacción de la presión de	el apoyo	M* _{aw}	0,000	-0,001	kNm/m

		corto plazo	largo plazo		
Momento debido a cargas verticales totales	M_{qv}	0,122	0,122	kNm/m	
Momento debido a la presión lateral	M_{qh}	-0,008	-0,008	kNm/m	
Momento debido a la reacción de la presión del apoyo	M* _{gh}	-0,057	-0,061	kNm/m	
horizontal	4				
Momento debido a la reacción de la presión del apoyo	M* _{qw}	0.000	-0,001	kNm/m	
(sección llena)	4**	-,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Momento debido a las cargas muertas	M_q	0,000	0.000	kNm/m	
Momento debido a la sección llena	M _w	0,001	0,001	kNm/m	
Momento debido a la presión del agua	M _{pw}	0,005	0,004	kNm/m	
Momento debido al nivel freático a la altura de la clave	M _{pa1}	0,000	0,000	kNm/m	
Momento debido al filver freatico a la altura de la ciave	wpa1	0,000	0,000	KINIII/III	
$\Sigma M = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pw}$					
Manager	514	0.000	0.050	I N I /	
Momentos totales	ΣΜ	0,063	0,058	kNm/m	
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_{q} + M_{w} + M_{pa1}$					
Zivisonst iviqv i viqh i ivi qh i ivi qw i ivig i iviw i ivipa1					
Momentos totales sin presión interna/externa	ΣM_{sonst}	0,058	0,054	kNm/m	
'	301131	•	•		
$\Sigma M' = M_{qv} + M_{qh} + M_{qh}^* + M_{q}$					
Momentos totales debidos a la sección llena y a la presión	ΣΜ'	0,057	0,054	kNm/m	
	N.I.	0.400	0.400	1-01/	
Fuerza normal debida a las cargas verticales totales	N_{qv}	0,168	0,168	kN/m	
Fuerza normal debida a la presión lateral	N_{qh}	-0,417	-0,418	kN/m	
Fuerza normal debida a la reacción de la presión del lecho	N* ['] qh	-2,431	-2,570	kN/m	
Fuerza normal debida a la reacción de la presión del lecho	N* _{qw}	-0,017	-0,028	kN/m	
(relleno del agua)					
Fuerza normal debida al peso muerto	N_q	0,002	0,002	kN/m	
Fuerza normal debida al relleno de agua	N _w	0,035	0,035	kN/m	
Fuerza normal debida al nivel freático hasta la clave	N _{pa1}	0,000	0,000	kN/m	
	pui	-,,	-,		
Fuerzas totales normales	ΣΝ	43,940	34,836	kN/m	

-		0.000	0.044	
Total sin presión interna/externa Total sin sección llena y sin presión	ΣN _{sonst} ΣN'	-2,660 -2,678	-2,811 -2,818	kN/m kN/m
Total sill seccion liena y sill presion	ZIN	-2,076	-2,010	KIN/III
1.2.4. Sección fuerzas generatriz sobre el diámetro horiz	ontal del tubo			
		corto plazo	largo plazo	
Momento debido a cargas verticales totales	M_{qv}	-0,124	-0,124	kNm/m
Momento debido a la presión lateral	M _{qh}	0,008	0,008	kNm/m
Momento debido a la reacción de la presión del apoyo	M*qh	0,066	0,070	kNm/m
horizontal Momento debido a la reacción de la presión del apoyo	M* _{qw}	0,000	0,001	kNm/m
(sección llena)	W qw	0,000	0,001	KINIIIII
Momento debido a las cargas muertas	M_g	0,000	0,000	kNm/m
Momento debido a la sección llena	M_{w}	-0,001	-0,001	kNm/m
Momento debido a la presión del agua	M_{pw}	0,005	0,004	kNm/m
Momento debido al nivel freático a la altura de la clave	M _{pa1}	0,000	0,000	kNm/m
$\Sigma M = M_{qv} + M_{qh} + M^*_{qh} + M^*_{qw} + M_g + M_w + M_{pw}$				
Momentos totales	ΣΜ	-0,046	-0,043	kNm/m
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pa1}$				
Momentos totales sin presión interna/externa	ΣM_{sonst}	-0,051	-0,047	kNm/m
$\Sigma M' = M_{qv} + M_{qh} + M^*_{qh} + M_g$				
Momentos totales debidos a la sección llena y a la presión	ΣΜ'	-0,051	-0,047	kNm/m
Fuerza normal debida a las cargas verticales totales	N_{qv}	-6,223	-6,219	kN/m
Fuerza normal debida a la presión lateral	N_{qh}	0,000	0,000	kN/m
Fuerza normal debida a la reacción de la presión del lecho	N* _{qh}	0,000	0,000	kN/m
Fuerza normal debida a la reacción de la presión del lecho	N* _{qw}	0,000	0,000	kN/m
(relleno del agua) Fuerza normal debida al peso muerto	N_g	-0,011	-0,011	kN/m
Fuerza normal debida al relleno de agua	N _w	0,012	0,012	kN/m
Fuerza normal debida al nivel freático hasta la clave	N _{pa1}	0,000	0,000	kN/m
	ρω.			
Fuerzas totales normales	ΣΝ	40,379	31,429	kN/m
Total sin presión interna/externa	ΣN _{sonst}	-6,222	-6,218	kN/m
Total sin sección llena y sin presión	ΣΝ'	-6,234	-6,230	kN/m
1.2.5. Sección fuerzas base				
		corto plaza	large plaze	
Momento debido a cargas verticales totales	M_{qv}	corto plazo 0,129	largo plazo 0,129	kNm/m
Momento debido a la presión lateral	M _{qh}	-0,008	-0,008	kNm/m
Momento debido a la reacción de la presión del apoyo	M* _{gh}	-0,057	-0,061	kNm/m
horizontal				
Momento debido a la reacción de la presión del apoyo (sección llena)	M^*_{qw}	0,000	-0,001	kNm/m
Momento debido a las cargas muertas	M_{g}	0,000	0,000	kNm/m
Momento debido a la sección llena	M _w	0,001	0,001	kNm/m
Momento debido a la presión del agua	M_{pw}	0,005	0,004	kNm/m
Momento debido al nivel freático a la altura de la clave	M _{pa1}	0,000	0,000	kNm/m
$\Sigma M = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pw}$				
Momentos totales	ΣΜ	0,069	0,065	kNm/m
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pa1}$				

Momentos totales sin presión interna/externa		ΣM_{sonst}	0,065	0,061	kNm/m
$\Sigma M' = M_{qv} + M_{qh} + M^*_{qh} + M_g$					
Momentos totales debidos a la sección llena y	a la presión	ΣΜ'	0,064	0,060	kNm/m
Fuerza normal debida a las cargas verticales su Fuerza normal debida a la presión lateral Fuerza normal debida a la reacción de la presu Fuerza normal debida a la reacción de la presu (relleno del agua) Fuerza normal debida al peso muerto	ión del lecho	N _{qv} N _{qh} N* _{qh} N* _{qw}	-0,168 -0,417 -2,431 -0,017	-0,168 -0,418 -2,570 -0,028	kN/m kN/m kN/m kN/m
Fuerza normal debida al relleno de agua Fuerza normal debida al nivel freático hasta la	a clave	N _w N _{pa1}	0,078 0,000	0,078 0,000	kN/m kN/m
Fuerzas totales normales Total sin presión interna/externa Total sin sección llena y sin presión		$\Sigma N \ \Sigma N_{sonst} \ \Sigma N'$	43,644 -2,957 -3,018	34,539 -3,108 -3,158	kN/m kN/m kN/m
1.2.6. Caso de carga a corto plazo					
1.2.6.1. prueba de tensión					
Coeficiente de superposición de tensiones: Relación de deflexión: Presión interior resultante (pl - pW):			Ζ η p _{I,res}	1,20 2,14 6,61	[-] [-] bar
Valor característico de la tensión en sentido c	ircunferencial:		σ_{RZ}	23,0	N/mm²
$\sigma_{R,res} = \frac{\sigma_{qv,qh,qh^*} \cdot \sigma_R + \sigma_{sonst} \cdot \sigma_{R,L}}{\sigma_{qv,qh,qh^*} + \sigma_{sonst}}$					(9.01c)
Interior:		clave	generatriz sobre el diámetro horizontal del tubo	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a Y _{BZ,a}	3,710 6,199	-4,188 	4,159 5,531	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	Y _{BD} ,a		5,491		[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	4,905 4,689	4,905 4,689	4,905 4,689	N/mm² [-]
Factor de reducción de acuerdo a Netzer/Pattis	n	0,711	0,694	0,695	[-]
Tensión por cálculo de superposición Coeficiente de seguridad para cálculo de superposición, tensión por flexión:	σ _r es Y _{BZ,res}	6,130 3,752	0,497 46,238	6,298 3,652	N/mm² [-]
Coeficiente de seguridad para cálculos de superposición, compresión por flexión:	YBD,res				[-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	23,00	23,00	23,00	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	23,00	23,00	23,00	N/mm²

Exterior:		clave	generatriz sobre el diámetro horizontal del tubo	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a YBZ,a	-3,948 	2,593 8,869	-4,420 	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a	5,826		5,204	[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	4,905 4,689	4,905 4,689	4,905 4,689	N/mm² [-]
Factor de reducción de acuerdo a Netzer/Pattis	n	0,702	0,778	0,687	[-]
Tensión por cálculo de superposición Coeficiente de seguridad para cálculo de superposición, tensión por flexión:	σ _r es YBZ,res	0,672 34,208	5,834 3,943	0,333 69,022	N/mm² [-]
Coeficiente de seguridad para cálculos de superposición, compresión por flexión:	YBD,res				[-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	23,00	23,00	23,00	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	23,00	23,00	23,00	N/mm²

1.2.6.2. Prueba de deformación

Modo de cálculo: Relación: Relación 'I/(A·rm²)·κq':				lineal I/(A·rm²) I/(A·rm²)·κ _q		0,00133 0,00133	
Coeficiente de deflexión para momentos de	c_{V}	q_{v}	-0,0893	q _h 0,0833	q _h *	0,0640	[-]
deflexión Coeficiente de deflexión por fuerzas normales Coeficiente de deflexión por fuerzas laterales Coeficiente resultante de deformación	cN _v cQ _v c' _v		-0,6830 -0,3590 -0,0915	-0,6810 0,3350 0,0836		-0,2470 0,2430 0,0646	[-] [-] [-]
Cambio del diámetro vertical: Cambio del diámetro horizontal:				Δd _v Δd _h		2,61 2,39	mm mm
Deformación vertical relativa: Deflexión admisible:				δ_v zul δ_v		1,73 6,00	% %

La deflexión determinada es menor que la deflexión permitida.

1.2.6.3. Prueba de estabilidad (lineal):

Carga vertical total:	q_v	82,70	kN/m²
Factor de reducción de carga de colapso por cargas de suelo/tráfico:	K _{V2}	0,86	[-]
Carga vertical total crítica:	krit q _v	1.457,5	kN/m²

krit $q_v = 2 \cdot \kappa_{v2} \cdot (8S_0 \cdot S_{Bh})^{0.5}$ (9.06a)

La prueba de colapso por presión de agua no aplica, dado que no hay presencia de nivel freático ni vacío.

Coeficiente de seguridad de estabilidad: Coeficiente global de seguridad requerido, fallo por inestabilidad:			γ erf γ _{stab}	17,62 2,00	[-] [-]
Los coeficientes de seguridad al pandeo dete	rminados son su	ficientes.			
1.2.7. Caso de carga a largo plazo					
1.2.7.1. prueba de tensión					
Coeficiente de superposición de tensiones: Relación de deflexión: Presión interior resultante (pl - pW):			Ζ η p _{I,res}	5,49 2,28 5,34	[-] [-] bar
Valor característico de la tensión en sentido ci	rcunferencial:		σ_{RZ}	17,5	N/mm²
$\sigma_{R,res} = \frac{\sigma_{qv,qh,qh^*} \cdot \sigma_R + \sigma_{sonst} \cdot \sigma_{R,L}}{\sigma_{qv,qh,qh^*} + \sigma_{sonst}}$					(9.01c)
Interior:		clave	generatriz sobre el diámetro horizontal del	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a YBZ,a	3,443 6,451	tubo -3,900 	3,891 5,708	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	Y _{BD} ,a		5,695		[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	3,963 4,416	3,963 4,416	3,963 4,416	N/mm² [-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	19,69	-273,43	19,83	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	19,69	-273,43	19,83	N/mm²
Exterior:		clave	generatriz sobre el diámetro horizontal del	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a YBZ,a	-3,732 	tubo 2,329 9,537	-4,204 	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a	5,950		5,282	[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	3,963 4,416	3,963 4,416	3,963 4,416	N/mm² [-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	-58,76	19,24	99,45	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	-58,76	19,24	99,45	N/mm²

1.2.7.2. Prueba de deformación

Modo de cálculo: Relación: Relación 'I/(A·rm²)·κq':				lineal I/(A·rm²) I/(A·rm²)·κ _q		0,00133 0,00133	
Coeficiente de deflexión para momentos de deflexión	c_{v}	q_{v}	-0,0893	q _h 0,0833	q _h *	0,0640	[-]
Coeficiente de deflexión por fuerzas normales Coeficiente de deflexión por fuerzas laterales Coeficiente resultante de deformación	cN _v cQ _v c' _v		-0,6830 -0,3590 -0,0915	-0,6810 0,3350 0,0836		-0,2470 0,2430 0,0646	[-] [-] [-]
Cambio del diámetro vertical: Cambio del diámetro horizontal:				$\Delta d_{ m V} \ \Delta d_{ m h}$		2,79 2,52	mm mm
Deformación vertical relativa: Deflexión admisible:				δ_v zul δ_v		1,85 6,00	% %

La deflexión determinada es menor que la deflexión permitida.

1.2.7.3. Prueba de estabilidad (lineal):

Carga vertical total: Factor de reducción de carga de colapso por cargas de suelo/tráfico:	q _ν κ _{ν2}	82,65 0,87	kN/m² [-]	
Carga vertical total crítica:	krit q _v	1.368,9	kN/m²	
krit $q_v = 2 \cdot K_{v2} \cdot (8S_0 \cdot S_{Bh})^{0.5}$			(9.0	6a)

La prueba de colapso por presión de agua no aplica, dado que no hay presencia de nivel freático ni vacío.

Coeficiente de seguridad de estabilidad: γ 16,56 [-] Coeficiente global de seguridad requerido, fallo por inestabilidad: erf γ_{stab} 2,00 [-]

Los coeficientes de seguridad al pandeo determinados son suficientes.

Todas las pruebas necesarias son correctas.

INFORME COMPLETO

Estudio estático para Tuberías A 127

Proyecto:	Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable
Empresa / Entidad:	Universidad Politécnica de Valencia - ETSICCP
Autor:	Alba Traver Gual
Informe n°:	005
Fecha:	15/09/2015

Este programa es una herramienta gratuita, que puede ser utilizada por personas con conocimientos técnicos en el cálculo estático de tuberías. El programa no puede reemplazar al ingeniero responsable.

Contenido

1. : DN 180	3
1.1. Entrada de datos:	3
1.1.1. Opciones de seguridad	3
1.1.2. Suelo	3
1.1.3. Carga	3
1.1.4. Instalación	3
1.1.5. Tubo de la base de datos	4
1.2. Resultados:	4
1.2.1. resultados intermedios del tubo	4
1.2.1.1. propiedades del material	4
1.2.1.2. Factores de seguridad 1.2.2. Resultados intermedios para caso de carga	5 5
1.2.2.1. geometría del tubo	5
1.2.2.2. Teoría del silo	5
1.2.2.3. Carga	5
1.2.2.4. Módulo de deformación del suelo EB1.2.2.5. Valores de rigidez del suelo	5 5
1.2.2.6. Ángulo de apoyo, proyección relativa efectiva y ángulo de fricción	6
1.2.2.7. Valores característicos del material del tubo y rigidez anular	6
1.2.2.8. relación de rigidez	6
1.2.2.9. Coeficientes	7
1.2.2.10. Factores de concentracion λR y λB	7
1.2.2.11. Distribución de presiones en la circunferencia del tubo	8
1.2.3. Sección fuerzas clave	8
1.2.4. Sección fuerzas generatriz sobre el diámetro horizontal del tubo	9
1.2.5. Sección fuerzas base	9
1.2.6. Caso de carga a corto plazo	10
1.2.6.1. prueba de tensión	10
1.2.6.2. Prueba de deformación	11
1.2.6.3. Prueba de estabilidad (lineal):	11
1.2.7. Caso de carga a largo plazo	12
1.2.7.1. prueba de tensión	12
1.2.7.2. Prueba de deformación 1.2.7.3. Prueba de estabilidad (lineal):	13 13
1.2.7.3. I Tuoba uo ostabilidad (ilitodi).	13

1.: DN 180

Descripción del tramo: DN 180 Tipo de cálculo: Según tabla

Añadir dibujo para imprimir:

1.1. Entrada de datos:

1.1.1. Opciones de seguridad

Clase de seguridad: A (caso normal) Deflexión admisible: 6% (habitual)

De acuerdo con la nota 39 de la ATV 127 Tratamiento de la presión interna:

Menores factores de seguridad para compresión por flexión: no (ATV A 127) No

La aplicación de la ATV A 127 no ha sido verificada para ver si la rigidez

circunferencial mínima ha sido alcanzada:

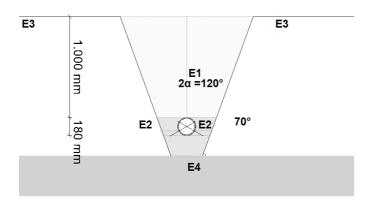
1.1.2. Suelo

Tipo de relleno:	G1 Médula da alastia	idad F	
Cálculo E1:	Módulo de elastic		
Módulo de elasticidad E1:	E1	8,0	N/mm²
Tipo de relleno en la zona del tubo:	G1		
Cálculo E20:	Módulo de elastic	idad E	
Módulo de elasticidad E20:	E ₂₀	16,0	N/mm ²
Tipo de suelo natural:	G4		
Cálculo E3:	Módulo de elastic	idad E	
Módulo de elasticidad E3:	E3	1,5	N/mm²
E4 = 10 · E1:	No	•	
Suelo bajo la zanja:	G4		
Cálculo E4:	Módulo de elastic	idad E	
Módulo de elasticidad E4:	E4	1.5	N/mm²
		.,0	
1.1.3. Carga			
Altura de recubrimiento:	h	1,00	m
Densidad del suelo:	γ	20,0	kN/m³
Carga superficial adicional:	p_0	0,0	kN/m²
Nivel freático máximo sobre el lecho del tubo:	h _{W,max}	0,00	m
Nivel freático mínimo sobre el lecho del tubo:	h _{W,min}	0,00	m
Presión interna, corto plazo:	P _{I,K}	6,1	bar
Presión interna, largo plazo:	P _{I,L}	5,7	bar
Sección Ilena:	Si	0,1	bai
Densidad del fluido:	_	10,0	kN/m³
	VE		
Carga de tráfico:	YF SLW 30	10,0	KIN/III

1.1.4. Instalación

Instalación:	Zanja		
Ancho de zanja:	b	0,59	m
Ángulo del talud:	β	70	0
Condiciones de relleno:	A4		
Condiciones de la instalación:	B4		
Tipo de apoyo:	suelto		
Ángulo de apoyo:	120°		
Proyección relativa:	а	1,00	[-]

1.1.5. Tubo de la base de datos


Material:

Presión nominal:

Diámetro nominal:

PE 100 PN = 10,0 bar (SDR = 17,0) DN 180 (10,7 mm)

Carga de tráfico: SLW 30

្ 591 mm ្

1.2. Resultados:

1.2.1. resultados intermedios del tubo

Diámetro interior:	d _i	158,6	mm
Diámetro exterior:	ďa	180,0	mm
Radio del eje centroide de la pared del tubo:	r _m	84,7	mm
Espesor:	S	10,7	mm
Proporción:	r _m /s	7,911	[-]
Factor de corrección de la curvatura interior:	α_{ki}	1,042	[-]
Factor de corrección de la curvatura exterior:	α_{ka}	0,958	[-]
Predeformación local:	$\delta_{ m VI}$	0.00	%
Predeformación (ovalización antes de aplicación de la carga):	δ_{vg}	1,00	%
Superficie del perfil radial:	A _{rad}	10,7	mm²/mm
Distancia de inercia:	e	5,4	mm
Momento de inercia:	I	102,1	mm^4/mm
Momento resistente exterior:	W_a	19,1	mm³/mm
Momento resistente interior:	Wi	19,1	mm³/mm

1.2.1.1. propiedades del material

		corto piazo	iargo piazo	
Gravedad específica	YR	9,4	9,4	kN/m³
Coeficiente de poisson	V	0,38	0,38	[-]

<u> </u>	E _R	1.200,0	200,0	N/mm²
Valor característico de tracción por deflexión Valor característico de la deflexión radial por esfuerzo de	σ_{RBZ} σ_{RBD}	23,0 23,0	17,5 17,5	N/mm² N/mm²
compresión Valor característico de la tensión en sentido circunferencial	σ_{RZ}	23,0	17,5	N/mm²
1.2.1.2. Factores de seguridad				
Coeficiente global de seguridad requerido, fallo por inestabilidad, tensión a tracción	$\text{erf } \gamma_{RBZ}$	2,50	2,50	[-]
Coeficiente global de seguridad requerido, fallo por	$\text{erf } \gamma_{RBD}$	2,50	2,50	[-]
inestabilidad, tensión a compresión Coeficiente global de seguridad requerido, fallo por inestabilidad	erf γ _{stab}	2,00	2,00	[-]
1.2.2. Resultados intermedios para caso de carga				
1.2.2.1. geometría del tubo				
Radio del eje centroide de la pared del tubo:		r _m	84,7	mm
Factor de corrección de la curvatura interior: Factor de corrección de la curvatura exterior:		α _{ki} α _{ka}	1,042 0,958	[-] [-]
1.2.2.2. Teoría del silo				
Coeficiente de carga del suelo κ para carga en zanja (Teoría	K	1,000	[-]	
$\kappa = \frac{1 - e^{-2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}}{2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}$				(5.04)
Coeficiente de carga del suelo к0 para cargas superficiales (Teoría del Silo):	κ ₀	1,000	[-]
$\kappa_0 = e^{-2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}$				(5.05)
κ0 y κ están indicadas como 1, porque E1 es mayor que E3.				
1.2.2.3. Carga				
Nivel freático máximo sobre la cama del tubo: Carga vertical debida al peso del relleno: Carga vertical debida al peso del relleno y a la carga superfic Tensión debida a carga de tráfico: Coefficiente de impacto (incl.):	h _{W.Scheitel} P _{Erd} P _E P _V ¢	0,00 20,00 20,00 34,36 1,40	m kN/m² kN/m² kN/m² [-]	
1.2.2.4. Módulo de deformación del suelo EB				
Módulo elástico del relleno bajo carga: Módulo elástico de los riñones bajo carga: Factor de reducción por fluencia: Factor de reducción E20 (nivel freático): Factor de reducción E20 (zanja estrecha): Módulo elástico del apoyo (reducido): Módulo elástico del suelo natural: Módulo elástico del suelo bajo el tubo:		$E_{1,\sigma}$ $E_{20,\sigma}$ f_1 f_2 α_B $E_{2,\sigma}$ $E_{3,\sigma}$ $E_{4,\sigma}$	8,00 16,00 1,000 1,000 1,000 16,00 1,50 1,50	N/mm² N/mm² [-] [-] N/mm² N/mm²

Factor de corrección por rigidez del apoyo hor	izontal:		ζ	0,297	[-]
1,667					
$\zeta = \frac{1,667}{\Delta f + (1,667 - \Delta f) \cdot \frac{E_2}{E_3}}$					(6.17)
$\Delta f = \frac{\frac{b}{d_a} - 1}{0.982 + 0.283 \cdot \left(\frac{b}{d_a} - 1\right)} \le 1,667$				Corr	rección (6.18)
Si el angulo de talud de la zanja es < 90° se debe conside	erar la anchura de la	a zanja a la altura d	el centro de la tube	ría en lugar de la a	inchura de la
zanja a la altura de la corona Rigidez del apoyo horizontal:			S_{Bh}	2,849	N/mm²
$S_{Bh} = 0.6 \cdot \zeta \cdot E_2$					(6.16)
Rigidez de apoyo vertical:			S_{Bv}	16,000	N/mm²
$S_{Bv} = \frac{E_2}{a}$					(6.12)
1.2.2.6. Ángulo de apoyo, proyección relativa	efectiva y ángul	o de fricción			
Ángulo de apoyo, proyección relativa efectiva Proyección incrementada debido a la pérdida Proyección relativa efectiva:			2α a _S a'	120 1,00 0,500	。 [-] [-]
a'= a _S - E ₁ ≥ 0,26					(6.05)
Ángulo de fricción interna: Ángulo de fricción de la pared:			φ' δ	20,000 20,000	o o
		corto plazo Todas las cargas	largo plazo Cargas del suelo	largo plazo otro	
		ou.gue	cargas de tráfico	Cargas	
1.2.2.7. Valores característicos del material de	el tubo y rigidez	<u>anular</u>			
Valor característico del módulo de elasticidad en sentido circunferencial	E _R	1.200,0	832,1	200,0	N/mm²
Valor característico de tracción por deflexión Valor característico de la deflexión radial por esfuerzo de compresión	σ_{RBZ} σ_{RBD}	23,0 23,0	21,0 21,0	17,5 17,5	N/mm² N/mm²
Valor característico de la tensión en sentido circunferencial	σ_{RZ}	23,0	21,0	17,5	N/mm²
Rigidez del tubo	S_R	201,962	140,045	33,660	kN/m²
$S_{R} = \frac{E_{R} \cdot I}{r_{m}^{3}}$					(6.10a)
1.2.2.8. relación de rigidez					
Rigidez del sistema	V_{RB}	0,0709	0,0491	0,0118	[-]

$V_{RB} = \frac{S_R}{S_{Bh}} = \frac{8 \cdot S_0}{S_{Bh}}$					(6.15)
Relación de rigidez	V _S	0,2548	0,2099	 [-]	
$V_{S} = \frac{S_{R}}{ c_{V}^{*} \cdot S_{BV}}$					(6.08a)
1.2.2.9. Coeficientes					
Relación por presión de enterramiento (apoyo Coeficiente por presión de reacción del apoyo		0,400 0,650	0,400 0,772	 [-] [-]	
$K^* = \frac{c_{h,qv}}{V_{RB} - c_{h,qh^*}}$					(6.14)
Coeficiente por presión de reacción del apoyo	C _V *	-0,050	-0,042	 [-]	
$c_{v}^{\star} = c_{v,qv} + c_{v,qh^{\star}} \cdot K^{\star}$					(6.13)
1.2.2.10. Factores de concentracion λR y λB					
Factor de concentración máximo	max λ	1,022	1,022	 [-]	
max $\lambda = 1 + \frac{\frac{h}{d_a}}{\frac{3.5}{a'} + \frac{2.2}{\frac{E_4}{E_1}} \cdot (a' - 0.25)} + \frac{0.62}{a'} + \frac{\frac{E_4}{E_1}}{\frac{E_4}{E_1}} \cdot (a' - 0.25)}$	1,6 '-0,25) . h				(6.04)
Coeficiente por factor de concentración máximo	K'	0,883	0,870	 [-]	
$K'= - \frac{c_{v,qh} + \frac{c_{h,qh}}{c_{h,qv}} \cdot c_{v,qh^*} \cdot K^*}{c_{v,qv} + c_{v,qh^*} \cdot K^*}$					(6.06b)
Factor de concentración sobre el tubo, valor inicial	λ_{R}	0,924	0,906	 [-]	
$\lambda_{R} = \frac{\max \lambda \cdot V_{s} + a' \cdot \frac{4 \cdot K_{2} \cdot K'}{3} \cdot \frac{\max \lambda - 1}{a' - 0,25}}{V_{s} + a' \cdot \frac{3 + K_{2} \cdot K'}{3} \cdot \frac{\max \lambda - 1}{a' - 0,25}}$					(6.06a)
Factor de concentración sobre el tubo, bajo el efecto de la zanja	λ_{RG}	0,942	0,929	 [-]	
$\lambda_{RG} = \frac{\lambda_R - 1}{3} \cdot \frac{b}{d_a} + \frac{4 - \lambda_R}{3}$					(6.21a)
Factor de concentración sobre el tubo, límite	λ_{fo}	3,850	3,850	 [-]	
superior Factor de concentración sobre el tubo, limite	λ_{fu}	0,429	0,429	 [-]	
inferior Factor de concentación sobre el tubo, valor	λ_{RG}	0,942	0,929	 [-]	
final Factor de concentración del suelo	λ_{B}	1,025	1,031	 [-]	

$\lambda_{B} = \frac{4 - \lambda_{R}}{3}$					(6.07)
1.2.2.11. Distribución de presiones en la circu	nferencia de	el tubo			
Carga vertical total	q_{ν}	53,21	52,94		kN/m²
$q_V = \lambda_{RG} \cdot p_E + p_V$					(6.24)
Presion lateral	q _h	8,92	8,97		kN/m²
$q_h = K_2 \cdot \left(\lambda_B \cdot p_E + \gamma_B \cdot \frac{d_a}{2} \right)$					(7.01)
Presión de reacción del apoyo (carga del suelo)	q* _h	29,10	34,28		kN/m²
$q^*_h = \frac{c_{h,qv} \cdot q_v + c_{h,qh} \cdot q_h}{V_{RB} - c_{h,qh}^*}$					(7.02a)
Presión de reacción del apoyo (sección llena)	q* _{hw}	0,40	0,70		kN/m²
$q^*_{hw} = \frac{c_{hw} \cdot q_w}{V_{RB} - c_{h,qh}^*}$					(7.02b)
1.2.3. Sección fuerzas clave					
Momento debido a cargas verticales totales Momento debido a la presión lateral Momento debido a la reacción de la presión d horizontal	el apoyo	M _{qv} M _{qh} M* _{qh}	corto plazo 0,100 -0,016 -0,038	largo plazo 0,099 -0,016 -0,044	kNm/m kNm/m kNm/m
Momento debido a la reacción de la presión de (sección llena)	el apoyo	M^*_{qw}	-0,001	-0,001	kNm/m
Manageta deleide e las assesses serventas		N.4	0.000	0.000	Lell Inno /ma

horizontal	IVI "qh	-0,038	-0,044	KINITI/III	
Momento debido a la reacción de la presión del apoyo (sección llena)	M^*_{qw}	-0,001	-0,001	kNm/m	
Momento debido a las cargas muertas	M_q	0.000	0,000	kNm/m	
Momento debido a la sección llena	M_{W}^{9}	0,001	0,001	kNm/m	
Momento debido a la presión del agua	M_{pw}	0,006	0,005	kNm/m	
Momento debido al nivel freático a la altura de la clave	M _{pa1}	0,000	0,000	kNm/m	
$\Sigma M = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pw}$					
Momentos totales	ΣΜ	0,053	0,044	kNm/m	
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pa1}$					
Momentos totales sin presión interna/externa	ΣM_{sonst}	0,047	0,039	kNm/m	
$\Sigma M' = M_{qv} + M_{qh} + M^*_{qh} + M_g$					
Momentos totales debidos a la sección llena y a la presión	ΣΜ'	0,046	0,039	kNm/m	
Fuerza normal debida a las cargas verticales totales	N_{qv}	0,122	0,121	kN/m	
Fuerza normal debida a la presión lateral	N_{qh}	-0,755	-0,759	kN/m	
Fuerza normal debida a la reacción de la presión del lecho	N* ['] qh	-1,421	-1,674	kN/m	
Fuerza normal debida a la reacción de la presión del lecho (relleno del agua)	N* _{qw}	-0,020	-0,034	kN/m	
Fuerza normal debida al peso muerto	N_g	0,002	0,002	kN/m	
Fuerza normal debida al relleno de agua	N_{w}	0,045	0,045	kN/m	
Fuerza normal debida al nivel freático hasta la clave	N _{pa1}	0,000	0,000	kN/m	
Fuerzas totales normales	ΣΝ	46,425	42,584	kN/m	

Total sin presión interna/externa	ΣN_{sonst}	-2,027	-2,300	kN/m				
Total sin sección llena y sin presión	ΣΝ'	-2,053	-2,310	kN/m				
1.2.4. Sección fuerzas generatriz sobre el diámetro horizontal del tubo								
Momento debido a cargas verticales totales Momento debido a la presión lateral Momento debido a la reacción de la presión del apoyo	M _{qv} M _{qh} M* _{qh}	corto plazo -0,101 0,016 0,043	largo plazo -0,101 0,016 0,051	kNm/m kNm/m kNm/m				
horizontal Momento debido a la reacción de la presión del apoyo (sección llena)	M* _{qw}	0,001	0,001	kNm/m				
Momento debido a las cargas muertas Momento debido a la sección llena Momento debido a la presión del agua Momento debido al nivel freático a la altura de la clave	M _g M _w M _{pw} M _{pa1}	0,000 -0,001 0,006 0,000	0,000 -0,001 0,005 0,000	kNm/m kNm/m kNm/m kNm/m				
$\Sigma M = M_{qv} + M_{qh} + M^*_{qh} + M^*_{qw} + M_g + M_w + M_{pw}$								
Momentos totales	ΣΜ	-0,037	-0,029	kNm/m				
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pa1}$								
Momentos totales sin presión interna/externa	ΣM_{sonst}	-0,043	-0,034	kNm/m				
$\Sigma M' = M_{qv} + M_{qh} + M^*_{qh} + M_g$								
Momentos totales debidos a la sección llena y a la presión	ΣΜ'	-0,042	-0,034	kNm/m				
Fuerza normal debida a las cargas verticales totales Fuerza normal debida a la presión lateral Fuerza normal debida a la reacción de la presión del lecho Fuerza normal debida a la reacción de la presión del lecho (relleno del agua)	N _{qv} N _{qh} N* _{qh} N* _{qw}	-4,504 0,000 0,000 0,000	-4,481 0,000 0,000 0,000	kN/m kN/m kN/m kN/m				
Fuerza normal debida al peso muerto Fuerza normal debida al relleno de agua Fuerza normal debida al nivel freático hasta la clave	N _g N _w N _{pa1}	-0,013 0,015 0,000	-0,013 0,015 0,000	kN/m kN/m kN/m				
Fuerzas totales normales Total sin presión interna/externa Total sin sección llena y sin presión	$\Sigma N \ \Sigma N_{sonst} \ \Sigma N'$	43,950 -4,502 -4,518	40,405 -4,479 -4,495	kN/m kN/m kN/m				
1.2.5. Sección fuerzas base								
Momento debido a cargas verticales totales Momento debido a la presión lateral Momento debido a la reacción de la presión del apoyo horizontal	M _{qv} M _{qh} M* _{qh}	corto plazo 0,105 -0,016 -0,038	largo plazo 0,104 -0,016 -0,044	kNm/m kNm/m kNm/m				
Momento debido a la reacción de la presión del apoyo (sección llena)	M^*_{qw}	-0,001	-0,001	kNm/m				
Momento debido a las cargas muertas Momento debido a la sección llena Momento debido a la presión del agua Momento debido al nivel freático a la altura de la clave	M _g M _w M _{pw} M _{pa1}	0,000 0,002 0,006 0,000	0,000 0,002 0,005 0,000	kNm/m kNm/m kNm/m kNm/m				
$\Sigma M = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pw}$								
Momentos totales	ΣΜ	0,058	0,050	kNm/m				
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pa1}$								

Momentos totales sin presión interna/externa		ΣM_{sonst}	0,053	0,045	kNm/m
$\Sigma M' = M_{qv} + M_{qh} + M^*_{qh} + M_g$					
Momentos totales debidos a la sección llena y	a la presión	ΣΜ'	0,052	0,044	kNm/m
Fuerza normal debida a las cargas verticales fuerza normal debida a la presión lateral Fuerza normal debida a la reacción de la pres Fuerza normal debida a la reacción de la pres (relleno del agua)	ión del lecho	N _{qv} N _{qh} N* _{qh} N* _{qw}	-0,122 -0,755 -1,421 -0,020	-0,121 -0,759 -1,674 -0,034	kN/m kN/m kN/m kN/m
Fuerza normal debida al peso muerto Fuerza normal debida al relleno de agua Fuerza normal debida al nivel freático hasta la	ı clave	N _g N _w N _{pa1}	-0,002 0,099 0,000	-0,002 0,099 0,000	kN/m kN/m kN/m
Fuerzas totales normales Total sin presión interna/externa Total sin sección llena y sin presión		ΣΝ ΣΝ _{sonst} ΣΝ'	46,231 -2,221 -2,300	42,391 -2,492 -2,557	kN/m kN/m kN/m
1.2.6. Caso de carga a corto plazo					
1.2.6.1. prueba de tensión					
Coeficiente de superposición de tensiones: Relación de deflexión: Presión interior resultante (pl - pW):			Ζ η p _{I,res}	1,20 2,35 6,11	[-] [-] bar
Valor característico de la tensión en sentido ci	rcunferencial:		σ_{RZ}	23,0	N/mm²
$\sigma_{R,res} = \frac{\sigma_{qv,qh,qh^*} \cdot \sigma_R + \sigma_{sonst} \cdot \sigma_{R,L}}{\sigma_{qv,qh,qh^*} + \sigma_{sonst}}$					(9.01c)
Interior:		clave	generatriz sobre el diámetro horizontal del tubo	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a Y _{BZ,a}	2,361 9,741	-2,755 	2,663 8,636	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	Y _{BD} ,a		8,348		[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	4,528 5,079	4,528 5,079	4,528 5,079	N/mm² [-]
Factor de reducción de acuerdo a Netzer/Pattis	n	0,783	0,751	0,758	[-]
Tensión por cálculo de superposición Coeficiente de seguridad para cálculo de superposición, tensión por flexión:	$\sigma_r es \\ Y_{BZ,res}$	5,396 4,262	1,332 17,269	5,450 4,220	N/mm² [-]
Coeficiente de seguridad para cálculos de	YBD,res				[-]
superposición, compresión por flexión: Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	23,00	23,00	23,00	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	23,00	23,00	23,00	N/mm²

Exterior:		clave	generatriz sobre el diámetro horizontal del tubo	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a YBZ,a	-2,534 	1,725 13,334	-2,846 	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a	9,077		8,081	[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	4,528 5,079	4,528 5,079	4,528 5,079	N/mm² [-]
Factor de reducción de acuerdo a Netzer/Pattis	n	0,768	0,822	0,745	[-]
Tensión por cálculo de superposición Coeficiente de seguridad para cálculo de superposición, tensión por flexión:	σ _r es YBZ,res	1,532 15,017	5,142 4,473	1,253 18,353	N/mm² [-]
Coeficiente de seguridad para cálculos de superposición, compresión por flexión:	YBD,res				[-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	23,00	23,00	23,00	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	23,00	23,00	23,00	N/mm²

1.2.6.2. Prueba de deformación

Modo de cálculo: Relación: Relación 'I/(A·rm²)·κq':				lineal I/(A·rm²) I/(A·rm²)·κ _q		0,00133 0,00133	
		q_{v}		q_h	q _h *		
Coeficiente de deflexión para momentos de deflexión	C _V		-0,0893	0,0833		0,0640	[-]
Coeficiente de deflexión por fuerzas normales	cN _v		-0,6830	-0,6810		-0,2470	[-]
Coeficiente de deflexión por fuerzas laterales	cQ_v		-0,3590	0,3350		0,2430	[-]
Coeficiente resultante de deformación	c' _v		-0,0915	0,0836		0,0646	[-]
Cambio del diámetro vertical:				Δd_{v}		1,88	mm
Cambio del diámetro horizontal:				Δd_h		1,73	mm
						•	
Deformación vertical relativa:				δ_{v}		1,11	%
Deflexión admisible:				zul δ_{v}		6,00	%

La deflexión determinada es menor que la deflexión permitida.

1.2.6.3. Prueba de estabilidad (lineal):

Carga vertical total:	q_v	53,21	kN/m²
Factor de reducción de carga de colapso por cargas de suelo/tráfico:	K _{V2}	0,86	[-]
Carga vertical total crítica:	krit q _v	1.309,1	kN/m²

krit $q_v = 2 \cdot \kappa_{v2} \cdot (8S_0 \cdot S_{Bh})^{0.5}$ (9.06a)

La prueba de colapso por presión de agua no aplica, dado que no hay presencia de nivel freático ni vacío.

Coeficiente de seguridad de estabilidad: Coeficiente global de seguridad requerido, falle	o por inestabilida	ıd:	γ erf γ _{stab}	24,60 2,00	[-] [-]
Los coeficientes de seguridad al pandeo dete	rminados son su	ficientes.			
1.2.7. Caso de carga a largo plazo					
1.2.7.1. prueba de tensión					
Coeficiente de superposición de tensiones: Relación de deflexión: Presión interior resultante (pl - pW):			Ζ η p _{I,res}	5,48 2,86 5,66	[-] [-] bar
Valor característico de la tensión en sentido ci	rcunferencial:		σ_{RZ}	17,5	N/mm²
$\sigma_{R,res} = \frac{\sigma_{qv,qh,qh^*} \cdot \sigma_R + \sigma_{sonst} \cdot \sigma_{R,L}}{\sigma_{qv,qh,qh^*} + \sigma_{sonst}}$					(9.01c)
Interior:		clave	generatriz sobre el diámetro horizontal del	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a YBZ,a	1,915 10,953	tubo -2,274 	2,216 9,467	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a		9,224		[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	4,195 4,172	4,195 4,172	4,195 4,172	N/mm² [-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	18,59	13,38	18,70	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	18,59	13,38	18,70	N/mm²
Exterior:		clave	generatriz sobre el diámetro horizontal del	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a YBZ,a	-2,173 	tubo 1,287 16,300	-2,484 	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	Y _{BD} ,a	9,655		8,446	[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	4,195 4,172	4,195 4,172	4,195 4,172	N/mm² [-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	13,76	18,32	12,45	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	13,76	18,32	12,45	N/mm²

1.2.7.2. Prueba de deformación

Modo de cálculo: Relación: Relación 'I/(A·rm²)·κq':				lineal I/(A·rm²) I/(A·rm²)·κ _q		0,00133 0,00133	
Coeficiente de deflexión para momentos de deflexión	C _V	q _v	-0,0893	q _h 0,0833	q _h *	0,0640	[-]
Coeficiente de deflexión por fuerzas normales Coeficiente de deflexión por fuerzas laterales Coeficiente resultante de deformación	cN _v cQ _v c' _v		-0,6830 -0,3590 -0,0915	-0,6810 0,3350 0,0836		-0,2470 0,2430 0,0646	[-] [-] [-]
Cambio del diámetro vertical: Cambio del diámetro horizontal:				$\Delta d_{v} \ \Delta d_{h}$		2,28 2,04	mm mm
Deformación vertical relativa: Deflexión admisible:				δ_v zul δ_v		1,34 6,00	% %

La deflexión determinada es menor que la deflexión permitida.

1.2.7.3. Prueba de estabilidad (lineal):

Carga vertical total:	q_{v}	52,94	kN/m²
Factor de reducción de carga de colapso por cargas de suelo/tráfico:	K _{V2}	0,87	[-]
Carga vertical total crítica:	krit q _v	1.094,0	kN/m²

krit $q_v = 2 \cdot \kappa_{v2} \cdot (8S_0 \cdot S_{Bh})^{0.5}$ (9.06a)

La prueba de colapso por presión de agua no aplica, dado que no hay presencia de nivel freático ni vacío.

Coeficiente de seguridad de estabilidad: γ 20,66 [-] Coeficiente global de seguridad requerido, fallo por inestabilidad: γ 20,66 [-] 2,00 [-]

Los coeficientes de seguridad al pandeo determinados son suficientes.

Todas las pruebas necesarias son correctas.

INFORME COMPLETO

Estudio estático para Tuberías A 127

Proyecto:	Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable
Empresa / Entidad:	Universidad Politécnica de Valencia - ETSICCP
Autor:	Alba Traver Gual
Informe n°:	006
Fecha:	15/09/2015

Este programa es una herramienta gratuita, que puede ser utilizada por personas con conocimientos técnicos en el cálculo estático de tuberías. El programa no puede reemplazar al ingeniero responsable.

Contenido

. : DN 200	3
1.1. Entrada de datos:	3
1.1.1. Opciones de seguridad	3
1.1.2. Suelo	3
1.1.3. Carga	3
1.1.4. Instalación	3
1.1.5. Tubo de la base de datos	4
1.2. Resultados:	4
1.2.1. resultados intermedios del tubo	4
1.2.1.1. propiedades del material 1.2.1.2. Factores de seguridad	4 5
1.2.2. Resultados intermedios para caso de carga	5
 1.2.2.1. geometría del tubo 1.2.2.2. Teoría del silo 1.2.2.3. Carga 1.2.2.4. Módulo de deformación del suelo EB 1.2.2.5. Valores de rigidez del suelo 1.2.2.6. Ángulo de apoyo, proyección relativa efectiva y ángulo de fricción 1.2.2.7. Valores característicos del material del tubo y rigidez anular 1.2.2.8. relación de rigidez 1.2.2.9. Coeficientes 1.2.2.10. Factores de concentracion λR y λB 1.2.2.11. Distribución de presiones en la circunferencia del tubo 1.2.3. Sección fuerzas clave 	5 5 5 5 6 6 7 7 8 8
1.2.4. Sección fuerzas generatriz sobre el diámetro horizontal del tubo	9
1.2.5. Sección fuerzas base	9
1.2.6. Caso de carga a corto plazo1.2.6.1. prueba de tensión1.2.6.2. Prueba de deformación1.2.6.3. Prueba de estabilidad (lineal):	10 10 11 11
1.2.7. Caso de carga a largo plazo	12
1.2.7.1. prueba de tensión1.2.7.2. Prueba de deformación1.2.7.3. Prueba de estabilidad (lineal):	12 13 13

1.: DN 200

Descripción del tramo: DN 200 Tipo de cálculo: Según tabla

Añadir dibujo para imprimir:

1.1. Entrada de datos:

1.1.1. Opciones de seguridad

Clase de seguridad: A (caso normal) Deflexión admisible: 6% (habitual)

De acuerdo con la nota 39 de la ATV 127 Tratamiento de la presión interna:

Menores factores de seguridad para compresión por flexión: no (ATV A 127) No

La aplicación de la ATV A 127 no ha sido verificada para ver si la rigidez

circunferencial mínima ha sido alcanzada:

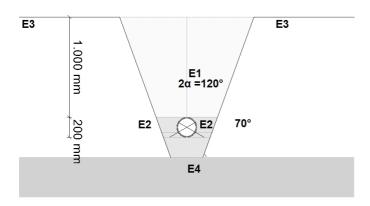
1.1.2. Suelo

1.1.2. Guelo			
Tipo de relleno:	G1	:-:	
Cálculo E1:	Módulo de elast		
Módulo de elasticidad E1:	E1	8,0	N/mm²
Tipo de relleno en la zona del tubo:	G1		
Cálculo E20:	Módulo de elast	icidad E	
Módulo de elasticidad E20:	E ₂₀	8,0	N/mm²
Tipo de suelo natural:	G4		
Cálculo E3:	Módulo de elast	icidad E	
Módulo de elasticidad E3:	E3	1,5	N/mm²
E4 = 10 · E1:	No	·	
Suelo bajo la zanja:	G4		
Cálculo E4:	Módulo de elast	icidad E	
Módulo de elasticidad E4:	E4	1,5	N/mm²
		,-	
1.1.3. Carga			
Altura de recubrimiento:	h	1,00	m
Densidad del suelo:	γ	20,0	kN/m³
Carga superficial adicional:	p_0	0,0	kN/m²
Nivel freático máximo sobre el lecho del tubo:	h _{W,max}	0,00	m
Nivel freático mínimo sobre el lecho del tubo:	h _{W,min}	0,00	m
Presión interna, corto plazo:	P _{I,K}	6,3	bar
Presión interna, largo plazo:	P _{I,L}	5,7	bar
Sección llena:	Si	-,-	
Densidad del fluido:	VF	10,0	kN/m³
Carga de tráfico:	SLW 30	10,0	
Carga de tranco.	CLVV 50		

1.1.4. Instalación

Instalación:	Zanja		
Ancho de zanja:	b	0,61	m
Ángulo del talud:	β	70	0
Condiciones de relleno:	A4		
Condiciones de la instalación:	B4		
Tipo de apoyo:	suelto		
Ángulo de apoyo:	120°		
Proyección relativa:	а	1,00	[-]

1.1.5. Tubo de la base de datos


Material:

Presión nominal:

Diámetro nominal:

PE 100 PN = 10,0 bar (SDR = 17,0) DN 200 (11,9 mm)

Carga de tráfico: SLW 30

ը 612 mm լ

1.2. Resultados:

1.2.1. resultados intermedios del tubo

Diámetro interior: Diámetro exterior: Radio del eje centroide de la pared del tubo: Espesor: Proporción: Factor de corrección de la curvatura interior: Factor de corrección de la curvatura exterior:	d _i d _a r _m s r _m /s α _{ki} α _{ka}	176,2 200,0 94,1 11,9 7,903 1,042 0,958	mm mm mm [-] [-]
Predeformación local:	δ _{vI}	0,00	%
Predeformación (ovalización antes de aplicación de la carga):	δ _{vg}	1,00	%
Superficie del perfil radial: Distancia de inercia: Momento de inercia: Momento resistente exterior: Momento resistente interior:	A _{rad}	11,9	mm²/mm
	e	6,0	mm
	I	140,4	mm^4/mm
	W _a	23,6	mm³/mm
	W _i	23,6	mm³/mm

1.2.1.1. propiedades del material

		corto piazo	iargo piazo	
Gravedad específica	YR	9,4	9,4	kN/m³
Coeficiente de poisson	V	0,38	0,38	[-]

<u>Wal ଦ: ରୋഷ) teréstide ritgibleró del csdel e</u> lasticidad en sentido circunferencial	E _R	1.200,0	200,0	N/mm²
Valor característico de tracción por deflexión Valor característico de la deflexión radial por esfuerzo de	σ_{RBZ}	23,0 23,0	17,5 17,5	N/mm² N/mm²
compresión Valor característico de la tensión en sentido circunferencial	σ_{RZ}	23,0	17,5	N/mm²
1.2.1.2. Factores de seguridad				
Coeficiente global de seguridad requerido, fallo por inestabilidad, tensión a tracción	$\text{erf } \gamma_{RBZ}$	2,50	2,50	[-]
Coeficiente global de seguridad requerido, fallo por inestabilidad, tensión a compresión	$\text{erf } \gamma_{RBD}$	2,50	2,50	[-]
Coeficiente global de seguridad requerido, fallo por inestabilidad	erf γ _{stab}	2,00	2,00	[-]
1.2.2. Resultados intermedios para caso de carga				
1.2.2.1. geometría del tubo				
Radio del eje centroide de la pared del tubo:		r_{m}	94,1	mm
Factor de corrección de la curvatura interior: Factor de corrección de la curvatura exterior:		α _{ki} α _{ka}	1,042 0,958	[-] [-]
1.2.2.2. Teoría del silo				
Coeficiente de carga del suelo κ para carga en zanja (Teoría	del Silo):	κ	1,000	[-]
$\kappa = \frac{1^{-\frac{\theta}{b}}}{2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}$				(5.04)
ο Coeficiente de carga del suelo κ0 para cargas superficiales (Γeoría del Silo):	κ ₀	1,000	[-]
$\kappa_0 = e^{-2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}$				(5.05)
$\kappa 0$ y κ están indicadas como 1, porque E1 es mayor que E3.				
1.2.2.3. Carga				
Nivel freático máximo sobre la cama del tubo: Carga vertical debida al peso del relleno: Carga vertical debida al peso del relleno y a la carga superfic Tensión debida a carga de tráfico: Coefficiente de impacto (incl.):	ial:	hw.scheitel P _{Erd} P _E P _V ¢	0,00 20,00 20,00 34,22 1,40	m kN/m² kN/m² kN/m² [-]
1.2.2.4. Módulo de deformación del suelo EB				
Módulo elástico del relleno bajo carga: Módulo elástico de los riñones bajo carga: Factor de reducción por fluencia: Factor de reducción E20 (nivel freático): Factor de reducción E20 (zanja estrecha): Módulo elástico del apoyo (reducido): Módulo elástico del suelo natural: Módulo elástico del suelo bajo el tubo:		$E_{1,\sigma}$ $E_{20,\sigma}$ f_1 f_2 α_B $E_{2,\sigma}$ $E_{3,\sigma}$ $E_{4,\sigma}$	8,00 8,00 1,000 1,000 1,000 8,00 1,50 1,50	N/mm² N/mm² [-] [-] N/mm² N/mm²

Factor de corrección por rigidez del apoyo hori	zontal:		ζ	0,431	[-]
1.667					
$\zeta = \frac{1,667}{\Delta f + (1,667 - \Delta f) \cdot \frac{E_2}{E_3}}$					(6.17)
$\Delta f = \frac{\frac{b}{d_a} \cdot 1}{0.982 + 0.283 \cdot \left(\frac{b}{d_a} \cdot 1\right)} \le 1,667$				Corr	rección (6.18)
Si el angulo de talud de la zanja es < 90° se debe conside zanja a la altura de la corona	rar la anchura de la	zanja a la altura de	el centro de la tuber	ía en lugar de la a	ınchura de la
Rigidez del apoyo horizontal:			S_{Bh}	2,071	N/mm²
S_{Bh} = 0,6 · ζ · E_2					(6.16)
Rigidez de apoyo vertical:			S _{Bv}	8,000	N/mm²
$S_{BV} = \frac{E_2}{a}$					(6.12)
1.2.2.6. Ángulo de apoyo, proyección relativa e	efectiva y ángulo	o de fricción			
Ángulo de apoyo, proyección relativa efectiva y Proyección incrementada debido a la pérdida o Proyección relativa efectiva:			2α a _S a'	120 1,00 1,000	。 [-] [-]
$a'=a_{S}-\frac{E_1}{E_2} \ge 0.26$					(6.05)
Ángulo de fricción interna: Ángulo de fricción de la pared:			φ' δ	20,000 20,000	o o
		corto plazo Todas las cargas	largo plazo Cargas del suelo cargas de	largo plazo otro Cargas	
			tráfico		
1.2.2.7. Valores característicos del material de	l tubo y rigidez a	<u>anular</u>			
Valor característico del módulo de elasticidad en sentido circunferencial	E _R	1.200,0	831,1	200,0	N/mm²
Valor característico de tracción por deflexión Valor característico de la deflexión radial por esfuerzo de compresión	σ_{RBZ} σ_{RBD}	23,0 23,0	21,0 21,0	17,5 17,5	N/mm² N/mm²
Valor característico de la tensión en sentido	σ_{RZ}	23,0	21,0	17,5	N/mm²
circunferencial Rigidez del tubo	S _R	202,565	140,300	33,761	kN/m²
$S_{R} = \frac{E_{R} \cdot I}{r_{m}^{3}}$					(6.10a)
1.2.2.8. relación de rigidez					
Rigidez del sistema	V_{RB}	0,0978	0,0677	0,0163	[-]

$V_{RB} = \frac{S_R}{S_{Bh}} = \frac{8 \cdot S_0}{S_{Bh}}$					(6.15)
Relación de rigidez	V _S	0,4491	0,3611	 [-]	
$V_{S} = \frac{S_{R}}{ c_{V}^{*} \cdot S_{BV}}$					(6.08a)
1.2.2.9. Coeficientes					
Relación por presión de enterramiento (apoyo Coeficiente por presión de reacción del apoyo		0,400 0,544	0,400 0,666	 [-] [-]	
$K^* = \frac{c_{h,qv}}{V_{RB} - c_{h,qh^*}}$					(6.14)
Coeficiente por presión de reacción del apoyo	C _V *	-0,056	-0,049	 [-]	
$c_{V}^* = c_{V,qV} + c_{V,qh^*} \cdot K^*$					(6.13)
1.2.2.10. Factores de concentracion λR y λB					
Factor de concentración máximo	max λ	1,063	1,063	 [-]	
max $\lambda = 1 + \frac{\frac{h}{d_a}}{\frac{3.5}{a'} + \frac{2.2}{\frac{E_4}{E_1}} \cdot (a' - 0.25)} + \frac{0.62}{a'} + \frac{\frac{E_4}{E_1}}{\frac{E_4}{E_1}} \cdot (a' - 0.25)}$	1,6 '-0,25) . h				(6.04)
Coeficiente por factor de concentración máximo	K'	0,891	0,881	 [-]	
$K'= - \frac{c_{v,qh} + \frac{c_{h,qh}}{c_{h,qv}} \cdot c_{v,qh^*} \cdot K^*}{c_{v,qv} + c_{v,qh^*} \cdot K^*}$					(6.06b)
Factor de concentración sobre el tubo, valor inicial	λ_{R}	0,952	0,930	 [-]	
$\lambda_{R} = \frac{\max \lambda \cdot V_{s} + a' \cdot \frac{4 \cdot K_{2} \cdot K'}{3} \cdot \frac{\max \lambda - 1}{a' - 0.25}}{V_{s} + a' \cdot \frac{3 + K_{2} \cdot K'}{3} \cdot \frac{\max \lambda - 1}{a' - 0.25}}$					(6.06a)
Factor de concentración sobre el tubo, bajo el efecto de la zanja	λ_{RG}	0,967	0,952	 [-]	
$\lambda_{RG} = \frac{\lambda_R - 1}{3} \cdot \frac{b}{d_a} + \frac{4 - \lambda_R}{3}$					(6.21a)
Factor de concentración sobre el tubo, límite	λ_{fo}	3,850	3,850	 [-]	
superior Factor de concentración sobre el tubo, limite	λ_{fu}	0,460	0,460	 [-]	
inferior Factor de concentación sobre el tubo, valor	λ_{RG}	0,967	0,952	 [-]	
final Factor de concentración del suelo	λ_{B}	1,016	1,023	 [-]	
	5	, -	, -		

$\lambda_{B} = \frac{4 - \lambda_{R}}{3}$					(6.07)		
1.2.2.11. Distribución de presiones en la circunferencia del tubo							
Carga vertical total	q_{ν}	53,57	53,26		kN/m²		
$q_V = \lambda_{RG} \cdot p_E + p_V$					(6.24)		
Presion lateral	q _h	8,93	8,99		kN/m²		
$q_h = K_2 \cdot \left(\lambda_B \cdot p_E + \gamma_B \cdot \frac{d_a}{2} \right)$					(7.01)		
Presión de reacción del apoyo (carga del suelo)	q* _h	24,54	29,77		kN/m²		
$q^*_h = \frac{c_{h,qv} \cdot q_v + c_{h,qh} \cdot q_h}{V_{RB} - c_{h,qh}^*}$					(7.02a)		
Presión de reacción del apoyo (sección llena)	q* _{hw}	0,37	0,74		kN/m²		
$q^*_{hw} = \frac{c_{hw} \cdot q_w}{V_{RB} - c_{h,qh}^*}$					(7.02b)		
1.2.3. Sección fuerzas clave							
Momento debido a cargas verticales totales		M _{qv}	corto plazo 0,124	largo plazo 0,123	kNm/m		

Momento debido a cargas verticales totales Momento debido a la presión lateral Momento debido a la reacción de la presión del apoyo horizontal Momento debido a la reacción de la presión del apoyo (sección llena) Momento debido a las cargas muertas Momento debido a la sección llena Momento debido a la presión del agua Momento debido al nivel freático a la altura de la clave	M _{qv} M _{qh} M* _{qh} M* _{qw} M _g M _w M _{pw} M _{pa1}	corto plazo 0,124 -0,020 -0,039 -0,001 0,000 0,002 0,007 0,000	largo plazo 0,123 -0,020 -0,048 -0,001 0,000 0,002 0,007 0,000	kNm/m kNm/m kNm/m kNm/m kNm/m kNm/m kNm/m
$\Sigma M = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pw}$				
Momentos totales	ΣΜ	0,073	0,063	kNm/m
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pa1}$				
Momentos totales sin presión interna/externa	ΣM_{sonst}	0,066	0,056	kNm/m
$\Sigma M'= M_{qv} + M_{qh} + M^*_{qh} + M_g$				
Momentos totales debidos a la sección llena y a la presión	ΣΜ'	0,065	0,056	kNm/m
Fuerza normal debida a las cargas verticales totales Fuerza normal debida a la presión lateral Fuerza normal debida a la reacción de la presión del lecho Fuerza normal debida a la reacción de la presión del lecho (relleno del agua) Fuerza normal debida al peso muerto Fuerza normal debida al relleno de agua Fuerza normal debida al nivel freático hasta la clave	N _{qv} N _{qh} N*qh N*qw N _g N _w N _{pa1}	0,136 -0,840 -1,332 -0,020 0,003 0,055 0,000	0,135 -0,845 -1,615 -0,040 0,003 0,055 0,000	kN/m kN/m kN/m kN/m kN/m kN/m
Fuerzas totales normales	ΣΝ	53,505	47,557	kN/m

Total sin presión interna/externa Total sin sección llena y sin presión	$\Sigma N_{sonst} \ \Sigma N'$	-1,998 -2,033	-2,307 -2,323	kN/m kN/m		
1.2.4. Sección fuerzas generatriz sobre el diámetro horizontal del tubo						
Momento debido a cargas verticales totales Momento debido a la presión lateral Momento debido a la reacción de la presión del apoyo horizontal	M _{qv} M _{qh} M* _{qh}	corto plazo -0,126 0,020 0,045	largo plazo -0,125 0,020 0,055	kNm/m kNm/m kNm/m		
Momento debido a la reacción de la presión del apoyo (sección llena)	M* _{qw}	0,001	0,001	kNm/m		
Momento debido a las cargas muertas Momento debido a la sección llena Momento debido a la presión del agua Momento debido al nivel freático a la altura de la clave	M _g M _w M _{pw} M _{pa1}	0,000 -0,002 0,007 0,000	0,000 -0,002 0,007 0,000	kNm/m kNm/m kNm/m kNm/m		
$\Sigma M = M_{qv} + M_{qh} + M^*_{qh} + M^*_{qw} + M_g + M_w + M_{pw}$						
Momentos totales	ΣΜ	-0,055	-0,044	kNm/m		
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pa1}$						
Momentos totales sin presión interna/externa	ΣM_{sonst}	-0,062	-0,051	kNm/m		
$\Sigma M' = M_{qv} + M_{qh} + M^*_{qh} + M_g$						
Momentos totales debidos a la sección llena y a la presión	ΣΜ'	-0,061	-0,051	kNm/m		
Fuerza normal debida a las cargas verticales totales Fuerza normal debida a la presión lateral Fuerza normal debida a la reacción de la presión del lecho Fuerza normal debida a la reacción de la presión del lecho (relleno del agua)	N _{qv} N _{qh} N* _{qh} N* _{qw}	-5,038 0,000 0,000 0,000	-5,009 0,000 0,000 0,000	kN/m kN/m kN/m kN/m		
Fuerza normal debida al peso muerto Fuerza normal debida al relleno de agua Fuerza normal debida al nivel freático hasta la clave	N _g N _w N _{pa1}	-0,017 0,019 0,000	-0,017 0,019 0,000	kN/m kN/m kN/m		
Fuerzas totales normales Total sin presión interna/externa Total sin sección llena y sin presión	ΣΝ ΣΝ _{sonst} ΣΝ'	50,467 -5,036 -5,055	44,858 -5,007 -5,026	kN/m kN/m kN/m		
1.2.5. Sección fuerzas base						
Momento debido a cargas verticales totales Momento debido a la presión lateral Momento debido a la reacción de la presión del apoyo horizontal	M _{qv} M _{qh} M* _{qh}	corto plazo 0,130 -0,020 -0,039	largo plazo 0,130 -0,020 -0,048	kNm/m kNm/m kNm/m		
Momento debido a la reacción de la presión del apoyo (sección llena)	M^*_{qw}	-0,001	-0,001	kNm/m		
Momento debido a las cargas muertas Momento debido a la sección llena Momento debido a la presión del agua Momento debido al nivel freático a la altura de la clave	M _g M _w M _{pw} M _{pa1}	0,001 0,002 0,007 0,000	0,001 0,002 0,007 0,000	kNm/m kNm/m kNm/m kNm/m		
$\Sigma M = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pw}$						
Momentos totales	ΣΜ	0,081	0,070	kNm/m		
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pa1}$						

Momentos totales sin presión interna/externa		ΣM_{sonst}	0,073	0,064	kNm/m
$\Sigma M' = M_{qv} + M_{qh} + M^*_{qh} + M_g$					
Momentos totales debidos a la sección llena y	a la presión	ΣΜ'	0,072	0,063	kNm/m
Fuerza normal debida a las cargas verticales fuerza normal debida a la presión lateral Fuerza normal debida a la reacción de la pres Fuerza normal debida a la reacción de la pres (relleno del agua)	ión del lecho	N _{qV} N _{qh} N* _{qh} N* _{qw}	-0,136 -0,840 -1,332 -0,020	-0,135 -0,845 -1,615 -0,040	kN/m kN/m kN/m kN/m
Fuerza normal debida al peso muerto Fuerza normal debida al relleno de agua Fuerza normal debida al nivel freático hasta la	ı clave	N _g N _w N _{pa1}	-0,003 0,122 0,000	-0,003 0,122 0,000	kN/m kN/m kN/m
Fuerzas totales normales Total sin presión interna/externa Total sin sección llena y sin presión		ΣΝ ΣΝ _{sonst} ΣΝ'	53,294 -2,209 -2,310	47,348 -2,517 -2,598	kN/m kN/m kN/m
1.2.6. Caso de carga a corto plazo					
1.2.6.1. prueba de tensión					
Coeficiente de superposición de tensiones: Relación de deflexión: Presión interior resultante (pl - pW):			Ζ η p _{I,res}	1,20 1,34 6,30	[-] [-] bar
Valor característico de la tensión en sentido c	ircunferencial:		σ_{RZ}	23,0	N/mm²
$\sigma_{R,res} = \frac{\sigma_{qv,qh,qh^*} \cdot \sigma_R + \sigma_{sonst} \cdot \sigma_{R,L}}{\sigma_{qv,qh,qh^*} + \sigma_{sonst}}$					(9.01c)
Interior:		clave	generatriz sobre el diámetro horizontal del tubo	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a Y _{BZ,a}	2,746 8,375	-3,172 	3,053 7,533	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	Y _{BD,a}		7,252		[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	4,664 4,931	4,664 4,931	4,664 4,931	N/mm² [-]
Factor de reducción de acuerdo a Netzer/Pattis	n	0,739	0,710	0,717	[-]
Tensión por cálculo de superposición Coeficiente de seguridad para cálculo de superposición, tensión por flexión:	σ _r es Y _{BZ,res}	5,477 4,199	1,059 21,716	5,534 4,156	N/mm² [-]
Coeficiente de seguridad para cálculos de superposición, compresión por flexión:	YBD,res				[-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	23,00	23,00	23,00	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	23,00	23,00	23,00	N/mm²

Exterior:		clave	generatriz sobre el diámetro horizontal del	base	
		0.040	tubo	0.400	.
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a YBZ,a	-2,846 	2,103 10,937	-3,162 	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a	8,081		7,273	[-]
Tensiones debidas a presión interna	σ_{i}	4,664	4,664	4,664	N/mm²
Coeficiente de seguridad por presión interna	Yi	4,931	4,931	4,931	[-]
Factor de reducción de acuerdo a Netzer/Pattis	n	0,731	0,789	0,710	[-]
Tensión por cálculo de superposición	σ_r es	1,330	5,337	1,067	N/mm²
Coeficiente de seguridad para cálculo de superposición, tensión por flexión:	YBZ,res	17,296	4,309	21,562	[-]
Coeficiente de seguridad para cálculos de superposición, compresión por flexión:	YBD,res				[-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	23,00	23,00	23,00	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	23,00	23,00	23,00	N/mm²

1.2.6.2. Prueba de deformación

Modo de cálculo: Relación: Relación 'I/(A·rm²)·κq':				lineal I/(A·rm²) I/(A·rm²)·κ _q		0,00133 0,00133	
Coeficiente de deflexión para momentos de	C _V	q_{v}	-0,0893	q _h 0,0833	q _h *	0,0640	[-]
deflexión Coeficiente de deflexión por fuerzas normales	_ *		-0,6830	-0,6810		-0,2470	[-]
Coeficiente de deflexión por fuerzas laterales Coeficiente resultante de deformación	cQ _v c' _v		-0,3590 -0,0915	0,3350 0,0836		0,2430 0,0646	[-] [-]
Cambio del diámetro vertical: Cambio del diámetro horizontal:				$\Delta d_{V} \ \Delta d_{h}$		2,39 2,23	mm mm
Deformación vertical relativa: Deflexión admisible:				δ_{v} zul δ_{v}		1,27 6,00	% %

La deflexión determinada es menor que la deflexión permitida.

1.2.6.3. Prueba de estabilidad (lineal):

Carga vertical total:	q_{v}	53,57	kN/m²
Factor de reducción de carga de colapso por cargas de suelo/tráfico:	K _{V2}	0,86	[-]
Carga vertical total crítica:	krit q _v	1.114,3	kN/m²

krit $q_v = 2 \cdot \kappa_{v2} \cdot (8S_0 \cdot S_{Bh})^{0.5}$ (9.06a)

La prueba de colapso por presión de agua no aplica, dado que no hay presencia de nivel freático ni vacío.

Coeficiente de seguridad de estabilidad: Coeficiente global de seguridad requerido, fall	o por inestabilida	ıd:	γ erf γ _{stab}	20,80 2,00	[-] [-]
Los coeficientes de seguridad al pandeo dete	erminados son su	ficientes.			
1.2.7. Caso de carga a largo plazo					
1.2.7.1. prueba de tensión					
Coeficiente de superposición de tensiones: Relación de deflexión: Presión interior resultante (pl - pW):			Ζ η p _{I,res}	5,47 1,66 5,66	[-] [-] bar
Valor característico de la tensión en sentido ci	rcunferencial:		σ_{RZ}	17,5	N/mm²
$\sigma_{R,res} = \frac{\sigma_{qv,qh,qh^*} \cdot \sigma_R + \sigma_{sonst} \cdot \sigma_{R,L}}{\sigma_{qv,qh,qh^*} + \sigma_{sonst}}$					(9.01c)
Interior:		clave	generatriz sobre el diámetro horizontal del	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a YBZ,a	2,289 9,164	tubo -2,678 	2,594 8,085	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a		7,830		[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	4,190 4,176	4,190 4,176	4,190 4,176	N/mm² [-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	18,73	11,35	18,83	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	18,73	11,35	18,83	N/mm²
Exterior:		clave	generatriz sobre el diámetro horizontal del tubo	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a YBZ,a	-2,475 	1,654 12,678	-2,790 	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a	8,472		7,517	[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	4,190 4,176	4,190 4,176	4,190 4,176	N/mm² [-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	12,49	18,48	10,58	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	12,49	18,48	10,58	N/mm²

1.2.7.2. Prueba de deformación

Modo de cálculo: Relación: Relación 'I/(A·rm²)·κq':				lineal I/(A·rm²) I/(A·rm²)·κ _q		0,00133 0,00133	
Coeficiente de deflexión para momentos de deflexión	C _V	q _v	-0,0893	q _h 0,0833	q _h *	0,0640	[-]
Coeficiente de deflexión por fuerzas normales Coeficiente de deflexión por fuerzas laterales Coeficiente resultante de deformación	cN _v cQ _v c' _v		-0,6830 -0,3590 -0,0915	-0,6810 0,3350 0,0836		-0,2470 0,2430 0,0646	[-] [-] [-]
Cambio del diámetro vertical: Cambio del diámetro horizontal:				$\Delta d_V \ \Delta d_h$		2,95 2,70	mm mm
Deformación vertical relativa: Deflexión admisible:				δ_{v} zul δ_{v}		1,57 6,00	% %

La deflexión determinada es menor que la deflexión permitida.

1.2.7.3. Prueba de estabilidad (lineal):

Carga vertical total:	q _v	53,26	kN/m²	
Factor de reducción de carga de colapso por cargas de suelo/tráfico:	K _{v2}	0,86	[-]	
Carga vertical total crítica:	krit q _v	930,6	kN/m²	
krit $q_V = 2 \cdot \kappa_{V2} \cdot (8S_0 \cdot S_{Bh})^{0.5}$			(9.06a)	

La prueba de colapso por presión de agua no aplica, dado que no hay presencia de nivel freático ni vacío.

Coeficiente de seguridad de estabilidad: γ 17,47 [-] Coeficiente global de seguridad requerido, fallo por inestabilidad: erf γ_{stab} 2,00 [-]

Los coeficientes de seguridad al pandeo determinados son suficientes.

Todas las pruebas necesarias son correctas.

INFORME COMPLETO

Estudio estático para Tuberías A 127

Proyecto:	Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable
Empresa / Entidad:	Universidad Politécnica de Valencia - ETSICCP
Autor:	Alba Traver Gual
Informe n°:	007
Fecha:	15/09/2015

Este programa es una herramienta gratuita, que puede ser utilizada por personas con conocimientos técnicos en el cálculo estático de tuberías. El programa no puede reemplazar al ingeniero responsable.

Contenido

. : DN 225	3
1.1. Entrada de datos:	3
1.1.1. Opciones de seguridad	3
1.1.2. Suelo	3
1.1.3. Carga	3
1.1.4. Instalación	3
1.1.5. Tubo de la base de datos	4
1.2. Resultados:	4
1.2.1. resultados intermedios del tubo	4
1.2.1.1. propiedades del material 1.2.1.2. Factores de seguridad	4 5
1.2.2. Resultados intermedios para caso de carga	5
 1.2.2.1. geometría del tubo 1.2.2.2. Teoría del silo 1.2.2.3. Carga 1.2.2.4. Módulo de deformación del suelo EB 1.2.2.5. Valores de rigidez del suelo 1.2.2.6. Ángulo de apoyo, proyección relativa efectiva y ángulo de fricción 1.2.2.7. Valores característicos del material del tubo y rigidez anular 1.2.2.8. relación de rigidez 1.2.2.9. Coeficientes 1.2.2.10. Factores de concentracion λR y λB 1.2.2.11. Distribución de presiones en la circunferencia del tubo 1.2.3. Sección fuerzas clave 	5 5 5 5 5 5 6 6 6 7 7 8 8
1.2.4. Sección fuerzas generatriz sobre el diámetro horizontal del tubo	9
1.2.5. Sección fuerzas base	9
1.2.6. Caso de carga a corto plazo1.2.6.1. prueba de tensión1.2.6.2. Prueba de deformación1.2.6.3. Prueba de estabilidad (lineal):1.2.7. Caso de carga a largo plazo1.2.7.1. prueba de tensión	10 10 11 11 12 12
1.2.7.2. Prueba de deformación 1.2.7.3. Prueba de estabilidad (lineal):	13 13

1.: DN 225

Descripción del tramo: DN 225 Tipo de cálculo: Según tabla

Añadir dibujo para imprimir:

1.1. Entrada de datos:

1.1.1. Opciones de seguridad

Clase de seguridad: A (caso normal) Deflexión admisible: 6% (habitual)

De acuerdo con la nota 39 de la ATV 127 Tratamiento de la presión interna:

Menores factores de seguridad para compresión por flexión: no (ATV A 127) No

La aplicación de la ATV A 127 no ha sido verificada para ver si la rigidez

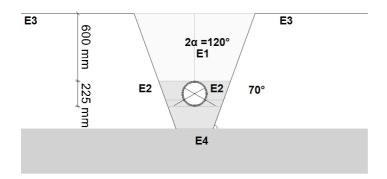
circunferencial mínima ha sido alcanzada:

1.1.2. Suelo

1.1.2. Suelo				
Tipo de relleno:	G1			
Cálculo E1:	Módulo de ela:	sticidad E		
Módulo de elasticidad E1:	E1	8,0	N/mm²	
Tipo de relleno en la zona del tubo:	G1			
Cálculo E20:	Módulo de ela:	sticidad E		
Módulo de elasticidad E20:	E ₂₀	16,0	N/mm²	
Tipo de suelo natural:	G4			
Cálculo E3:	Módulo de ela	sticidad E		
Módulo de elasticidad E3:	E3	1,5	N/mm ²	
E4 = 10 · E1:	No			
Suelo bajo la zanja:	G4			
Cálculo É4:	Módulo de ela	sticidad E		
Módulo de elasticidad E4:	E4	1,5	N/mm²	
1.1.3. Carga				
Altura de recubrimiento:	h	0,60	m	
Densidad del suelo:	γ	20,0	kN/m³	
Carga superficial adicional:	p ₀	0,0	kN/m²	
Nivel freático máximo sobre el lecho del tubo:	h _{W,max}	0,00	m	
Nivel freático mínimo sobre el lecho del tubo:	$h_{W,min}$	0,00	m	
Presión interna, corto plazo:	P _{I,K}	6,8	bar	
Presión interna, largo plazo:	P _{I,L}	5,5	bar	
Sección llena:	Si	•		
Densidad del fluido:	YF	10,0	kN/m³	
Carga de tráfico:	SLW 30	•		
•				

1.1.4. Instalación

Instalación:	Zanja		
Ancho de zanja:	b	0,64	m
Ángulo del talud:	β	70	0
Condiciones de relleno:	A4		
Condiciones de la instalación:	B4		
Tipo de apoyo:	suelto		
Ángulo de apoyo:	120°		
Proyección relativa:	а	1,00	[-]



1.1.5. Tubo de la base de datos

Material:

Presión nominal: Diámetro nominal: PE 100 PN = 10,0 bar (SDR = 17,0) DN 225 (13,4 mm)

Carga de tráfico: SLW 30

638 mm

1.2. Resultados:

1.2.1. resultados intermedios del tubo

Diámetro interior:	d _i	198,2	mm
Diámetro exterior:	d _a	225,0	mm
Radio del eje centroide de la pared del tubo:	r _m	105,8	mm
Espesor:	S	13,4	mm
Proporción:	r _m /s	7,896	[-]
Factor de corrección de la curvatura interior:	α_{ki}	1,042	[-]
Factor de corrección de la curvatura exterior:	α_{ka}	0,958	[-]
Predeformación local:	$\delta_{ m vl}$	0,00	%
Predeformación (ovalización antes de aplicación de la carga):	δ_{vg}	1,00	%
Superficie del perfil radial:	A _{rad}	13,4	mm²/mm
Distancia de inercia:	е	6,7	mm
Momento de inercia:	1	200,5	mm^4/mm
Momento resistente exterior:	W_a	29,9	mm³/mm
Momento resistente interior:	Wi	29,9	mm³/mm

1.2.1.1. propiedades del material

		corto plazo	largo plazo	
Gravedad específica	YR	9,4	9,4	kN/m³
Coeficiente de poisson	V	0,38	0,38	[-]

E _R	1.200,0	200,0	N/mm²
σ_{RBZ} σ_{RBD}	23,0 23,0	17,5 17,5	N/mm² N/mm²
σ_{RZ}	23,0	17,5	N/mm²
$\text{erf } \gamma_{RBZ}$	2,50	2,50	[-]
$\text{erf } \gamma_{RBD}$	2,50	2,50	[-]
erf γ _{stab}	2,00	2,00	[-]
	r _m a _{ki}	105,8 1.042	mm [-]
	α_{ka}	0,958	[-]
del Silo):	K	1,000	[-]
			(5.04)
Teoría del Silo):	κ_0	1,000	[-]
			(5.05)
1.2.2.3. Carga Nivel freático máximo sobre la cama del tubo: Carga vertical debida al peso del relleno: Carga vertical debida al peso del relleno y a la carga superficial: Tensión debida a carga de tráfico: Coefficiente de impacto (incl.):		0,00 12,00 12,00 68,57 1,40	m kN/m² kN/m² kN/m² [-]
	Ε _{1.σ} Ε _{20,σ}	8,00 16,00	N/mm² N/mm²
	σ _{RBZ} σ _{RBD} σ _{RZ} erf γ _{RBZ} erf γ _{RBD} erf γ _{Stab}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	σRBZ σRBD 23,0 23,0 17,5 17,5 σRZ 23,0 17,5 erf γRBZ erf γRBD 2,50 2,50 2,50 2,50 erf γRBD erf γstab 2,00 2,00 rm αki αka 1,042 0,958 del Silo): κ 1,000 Feoría del Silo): κ 1,000 al: PErd PErd PV φ 12,00 12,00 12,00 12,00 14,40

Factor de corrección por rigidez del apoyo hori:	zontal:		ζ	0,219	[-]
1 667					
$\zeta = \frac{1,007}{\Delta f + (1,667 - \Delta f) \cdot \frac{E_2}{E_3}}$					(6.17)
$\Delta f = \frac{\frac{b}{d_a} \cdot 1}{0.982 + 0.283 \cdot \left(\frac{b}{d_a} \cdot 1\right)} \le 1,667$				Corı	rección (6.18)
Si el angulo de talud de la zanja es < 90º se debe consider	rar la anchura de la	zanja a la altura d	el centro de la tuber	ía en lugar de la a	inchura de la
zanja a la altura de la corona Rigidez del apoyo horizontal:			S_{Bh}	2,103	N/mm²
$S_{Bh} = 0.6 \cdot \zeta \cdot E_2$					(6.16)
Rigidez de apoyo vertical:			S _{Bv}	16,000	N/mm²
$S_{Bv} = \frac{E_2}{a}$					(6.12)
1.2.2.6. Ángulo de apoyo, proyección relativa e	efectiva y ángulo	de fricción			
Ángulo de apoyo, proyección relativa efectiva y Proyección incrementada debido a la pérdida o Proyección relativa efectiva:			2α a _S a'	120 1,00 0,500	。 [-] [-]
$a'= a_{S}-\frac{E_1}{E_2} \ge 0.26$					(6.05)
Ángulo de fricción interna: Ángulo de fricción de la pared:			φ' δ	20,000 20,000	0
		corto plazo Todas las cargas	largo plazo Cargas del suelo cargas de tráfico	largo plazo otro Cargas	
400-14			tranco		
1.2.2.7. Valores característicos del material del			4.054.4	200.0	N1/mamma2
Valor característico del módulo de elasticidad en sentido circunferencial	E _R	1.200,0	1.051,1	200,0	N/mm²
Valor característico de tracción por deflexión Valor característico de la deflexión radial por esfuerzo de compresión	σ_{RBZ} σ_{RBD}	23,0 23,0	22,2 22,2	17,5 17,5	N/mm² N/mm²
Valor característico de la tensión en sentido circunferencial	σ_{RZ}	23,0	22,2	17,5	N/mm²
Rigidez del tubo	S _R	203,169	177,953	33,861	kN/m²
$S_{R} = \frac{E_{R} \cdot I}{r_{m}^{3}}$					(6.10a)
1.2.2.8. relación de rigidez					
Rigidez del sistema	V_{RB}	0,0966	0,0846	0,0161	[-]

$V_{RB} = \frac{S_R}{S_{Bh}} = \frac{8 \cdot S_0}{S_{Bh}}$					(6.15)
Relación de rigidez	V_S	0,2262	0,2085	 [-]	
$V_{S} = \frac{S_{R}}{ c_{V}^{*} \cdot S_{BV}}$					(6.08a)
1.2.2.9. Coeficientes					
Relación por presión de enterramiento (apoyo Coeficiente por presión de reacción del apoyo		0,400 0,548	0,400 0,592	 [-] [-]	
$K^* = \frac{c_{h,qv}}{V_{RB} - c_{h,qh^*}}$					(6.14)
Coeficiente por presión de reacción del apoyo	C _V *	-0,056	-0,053	 [-]	
$c_{v}^{*} = c_{v,qv} + c_{v,qh^{*}} \cdot K^{*}$					(6.13)
1.2.2.10. Factores de concentracion λR y λB					
Factor de concentración máximo	max λ	1,018	1,018	 [-]	
max λ = 1+ $\frac{\frac{h}{d_a}}{\frac{3.5}{a'} + \frac{2.2}{\frac{E_4}{E_1}} \cdot (a' - 0.25)} + \left[\frac{0.62}{a'} + \frac{\frac{E_4}{E_1}}{\frac{E_4}{E_1}} \cdot (a' - 0.25) + \frac{1}{2} \right]$	1,6 ' - 0,25)				(6.04)
Coeficiente por factor de concentración máximo	K'	0,891	0,887	 [-]	
$K' = -\frac{c_{v,qh} + \frac{c_{h,qh}}{c_{h,qv}} \cdot c_{v,qh^*} \cdot K^*}{c_{v,qv} + c_{v,qh^*} \cdot K^*}$					(6.06b)
Factor de concentración sobre el tubo, valor inicial	λ_{R}	0,928	0,922	 [-]	
$\lambda_{R} = \frac{\max \lambda \cdot V_{s} + a' \cdot \frac{4 \cdot K_{2} \cdot K'}{3} \cdot \frac{\max \lambda - 1}{a' - 0,25}}{V_{s} + a' \cdot \frac{3 + K_{2} \cdot K'}{3} \cdot \frac{\max \lambda - 1}{a' - 0,25}}$					(6.06a)
Factor de concentración sobre el tubo, bajo el efecto de la zanja	λ_{RG}	0,956	0,952	 [-]	
$\lambda_{RG} = \frac{\lambda_R - 1}{3} \cdot \frac{b}{d_a} + \frac{4 - \lambda_R}{3}$					(6.21a)
Factor de concentración sobre el tubo, límite	λ_{fo}	3,910	3,910	 [-]	
superior Factor de concentración sobre el tubo, limite	λ_{fu}	0,640	0,640	 [-]	
inferior Factor de concentación sobre el tubo, valor	λ_{RG}	0,956	0,952	 [-]	
final Factor de concentración del suelo	λΒ	1,024	1,026	 [-]	
. dota. do concentidación del adelo	מי	1,021	1,020	ιJ	

$\lambda_{B} = \frac{4 - \lambda_{R}}{3}$					(6.07)	
1.2.2.11. Distribución de presiones en la circur	nferencia de	l tubo				
Carga vertical total	q_{ν}	80,05	80,00		kN/m²	
$q_V = \lambda_{RG} \cdot p_E + p_V$					(6.24)	
Presion lateral	q _h	5,81	5,83		kN/m²	
$q_h = K_2 \cdot \left(\lambda_B \cdot p_E + \gamma_B \cdot \frac{d_a}{2} \right)$					(7.01)	
Presión de reacción del apoyo (carga del suelo)	q* _h	40,87	44,06		kN/m²	
$q_{h}^{*} = \frac{c_{h,qv} \cdot q_{v} + c_{h,qh} \cdot q_{h}}{V_{RB} - c_{h,qh}^{*}}$					(7.02a)	
Presión de reacción del apoyo (sección llena)	q* _{hw}	0,42	0,83		kN/m²	
$q^*_{hw} = \frac{c_{hw} \cdot q_w}{V_{RB} - c_{h,qh}^*}$					(7.02b)	
1.2.3. Sección fuerzas clave						
Momento debido a cargas verticales totales Momento debido a la presión lateral Momento debido a la reacción de la presión de horizontal	el apoyo	M _{qv} M _{qh} M* _{qh}	corto plazo 0,234 -0,016 -0,083	largo plazo 0,234 -0,016 -0,089	kNm/m kNm/m kNm/m	
Momento debido a la reacción de la presión de (sección llena)	el apoyo	M^*_{qw}	-0,001	-0,002	kNm/m	
Momento debido a las cargas muertas		М.,	0.001	0.001	kNm/m	

Momento debido a la presión lateral	M_{qh}	-0,016	-0,016	kNm/m	
Momento debido a la reacción de la presión del apoyo horizontal	M*qh	-0,083	-0,089	kNm/m	
Momento debido a la reacción de la presión del apoyo (sección llena)	M* _{qw}	-0,001	-0,002	kNm/m	
Momento debido a las cargas muertas	Ma	0,001	0,001	kNm/m	
Momento debido a la sección llena	M_{w}^{s}	0,002	0,002	kNm/m	
Momento debido a la presión del agua	M_{pw}	0,010	0,008	kNm/m	
Momento debido al nivel freático a la altura de la clave	M _{pa1}	0,000	0,000	kNm/m	
$\Sigma M = M_{qv} + M_{qh} + M^*_{qh} + M^*_{qw} + M_g + M_w + M_{pw}$					
Momentos totales	ΣΜ	0,147	0,137	kNm/m	
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pa1}$					
Momentos totales sin presión interna/externa	ΣM_{sonst}	0,137	0,129	kNm/m	
$\Sigma M'= M_{qv} + M_{qh} + M^*_{qh} + M_g$					
Momentos totales debidos a la sección llena y a la presión	ΣΜ'	0,135	0,129	kNm/m	
Fuerza normal debida a las cargas verticales totales	N_{qv}	0,229	0,229	kN/m	
Fuerza normal debida a la presión lateral	N_{qh}	-0,615	-0,616	kN/m	
Fuerza normal debida a la reacción de la presión del lecho	N* _{qh}	-2,495	-2,690	kN/m	
Fuerza normal debida a la reacción de la presión del lecho (relleno del agua)	N* _{qw}	-0,026	-0,051	kN/m	
Fuerza normal debida al peso muerto	N_g	0,003	0,003	kN/m	
Fuerza normal debida al relleno de agua	N_w	0,070	0,070	kN/m	
Fuerza normal debida al nivel freático hasta la clave	N _{pa1}	0,000	0,000	kN/m	
Fuerzas totales normales	ΣΝ	64,059	51,450	kN/m	

Total sin presión interna/externa	ΣN_{sonst}	-2,834	-3,055	kN/m
Total sin sección llena y sin presión	ΣΝ'	-2,878	-3,074	kN/m
1.2.4. Sección fuerzas generatriz sobre el diámetro horizo	ontal del tubo			
Momento debido a cargae verticales totales	M	corto plazo	largo plazo	kNm/m
Momento debido a cargas verticales totales Momento debido a la presión lateral	M _{qv} M _{qh}	-0,237 0,016	-0,237 0,016	kNm/m
Momento debido a la reacción de la presión del apoyo horizontal	M* _{qh}	0,095	0,103	kNm/m
Momento debido a la reacción de la presión del apoyo (sección llena)	M* _{qw}	0,001	0,002	kNm/m
Momento debido a las cargas muertas	M_{g}	-0,001	-0,001	kNm/m
Momento debido a la sección llena	M_w^{g}	-0,003	-0,003	kNm/m
Momento debido a la presión del agua	M_{pw}	0,010	0,008	kNm/m
Momento debido al nivel freático a la altura de la clave	M _{pa1}	0,000	0,000	kNm/m
$\Sigma M = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pw}$				
Momentos totales	ΣΜ	-0,118	-0,112	kNm/m
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pa1}$				
Momentos totales sin presión interna/externa	ΣM_{sonst}	-0,128	-0,120	kNm/m
$\Sigma M' = M_{qv} + M_{qh} + M^*_{qh} + M_g$				
Momentos totales debidos a la sección llena y a la presión	ΣΜ'	-0,127	-0,119	kNm/m
Fuerza normal debida a las cargas verticales totales	N_{qv}	-8,469	-8,464	kN/m
Fuerza normal debida a la presión lateral	N_{qh}	0,000	0,000	kN/m
Fuerza normal debida a la reacción de la presión del lecho	N* _{qh}	0,000	0,000	kN/m
Fuerza normal debida a la reacción de la presión del lecho (relleno del agua)	N* _{qw}	0,000	0,000	kN/m
Fuerza normal debida al peso muerto	N_g	-0,021	-0,021	kN/m
Fuerza normal debida al relleno de agua	N_w^s	0,024	0,024	kN/m
Fuerza normal debida al nivel freático hasta la clave	N _{pa1}	0,000	0,000	kN/m
Fuerzas totales normales	ΣΝ	58,427	46,044	kN/m
Total sin presión interna/externa	ΣN_{sonst}	-8,466	-8,461	kN/m
Total sin sección llena y sin presión	ΣΝ'	-8,490	-8,485	kN/m
1.2.5. Sección fuerzas base				
Mamanta dabida a paresa varticales tatala-	N.4	corto plazo	largo plazo	
Momento debido a cargas verticales totales Momento debido a la presión lateral	M _{qv} M	0,246 -0,016	0,246 -0,016	kNm/m kNm/m
Momento debido a la presión del la presión del apoyo	M _{qh} M* _{qh}	-0,016	-0,010	kNm/m
horizontal	·	0,000	0,000	KI VIII/III
Momento debido a la reacción de la presión del apoyo (sección llena)	M* _{qw}	-0,001	-0,002	kNm/m
Momento debido a las cargas muertas	M_g	0,001	0,001	kNm/m
Momento debido a la sección llena	Mw	0,003	0,003	kNm/m
Momento debido a la presión del agua	M _{pw}	0,010	0,008	kNm/m
Momento debido al nivel freático a la altura de la clave	M _{pa1}	0,000	0,000	kNm/m
$\Sigma M = M_{qv} + M_{qh} + M^*_{qh} + M^*_{qw} + M_g + M_w + M_{pw}$				
Momentos totales	ΣΜ	0,160	0,151	kNm/m
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pa1}$				
sonst ····qv ····qn ···· qn · ··· qw · ···g · ···w · ···pa1				

Momentos totales sin presión interna/externa		ΣM_{sonst}	0,150	0,143	kNm/m
$\Sigma M' = M_{qv} + M_{qh} + M^*_{qh} + M_g$					
Momentos totales debidos a la sección llena y	a la presión	ΣΜ'	0,148	0,141	kNm/m
Fuerza normal debida a las cargas verticales a Fuerza normal debida a la presión lateral Fuerza normal debida a la reacción de la pres Fuerza normal debida a la reacción de la pres (relleno del agua)	ión del lecho	N _{qv} N _{qh} N* _{qh} N* _{qw}	-0,229 -0,615 -2,495 -0,026	-0,229 -0,616 -2,690 -0,051	kN/m kN/m kN/m kN/m
Fuerza normal débida al peso muerto Fuerza normal debida al relleno de agua Fuerza normal debida al nivel freático hasta la	ı clave	N _g N _w N _{pa1}	-0,003 0,154 0,000	-0,003 0,154 0,000	kN/m kN/m kN/m
Fuerzas totales normales Total sin presión interna/externa Total sin sección llena y sin presión		ΣΝ ΣΝ _{sonst} ΣΝ'	63,679 -3,214 -3,342	51,071 -3,434 -3,538	kN/m kN/m kN/m
1.2.6. Caso de carga a corto plazo					
1.2.6.1. prueba de tensión					
Coeficiente de superposición de tensiones: Relación de deflexión: Presión interior resultante (pl - pW):			Ζ η p _{I,res}	1,19 2,65 6,75	[-] [-] bar
Valor característico de la tensión en sentido ci	ircunferencial:		σ_{RZ}	23,0	N/mm²
$\sigma_{R,res} = \frac{\sigma_{qv,qh,qh^*} \cdot \sigma_R + \sigma_{sonst} \cdot \sigma_{R,L}}{\sigma_{qv,qh,qh^*} + \sigma_{sonst}}$					(9.01c)
Interior:		clave	generatriz sobre el diámetro horizontal del tubo	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a Y _{BZ,a}	4,550 5,055	-5,099 	4,994 4,605	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	Y _{BD} ,a		4,511		[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	4,992 4,607	4,992 4,607	4,992 4,607	N/mm² [-]
Factor de reducción de acuerdo a Netzer/Pattis	n	0,691	0,680	0,679	[-]
Tensión por cálculo de superposición Coeficiente de seguridad para cálculo de superposición, tensión por flexión:	σ _r es Y _{BZ,res}	6,591 3,490	-0,073 	6,785 3,390	N/mm² [-]
Coeficiente de seguridad para cálculos de superposición, compresión por flexión:	YBD,res		317,098		[-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	23,00	23,00	23,00	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	23,00	23,00	23,00	N/mm²

Exterior:		clave	generatriz sobre el diámetro horizontal del tubo	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a ΥΒΖ,a	-4,587 	3,473 6,622	-5,050 	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a	5,014		4,555	[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	4,992 4,607	4,992 4,607	4,992 4,607	N/mm² [-]
Factor de reducción de acuerdo a Netzer/Pattis	n	0,690	0,730	0,680	[-]
Tensión por cálculo de superposición Coeficiente de seguridad para cálculo de superposición, tensión por flexión:	σ _r es YBZ,res	0,279 82,360	6,183 3,720	-0,039 	N/mm² [-]
Coeficiente de seguridad para cálculos de superposición, compresión por flexión:	YBD,res			585,993	[-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	23,00	23,00	23,00	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	23,00	23,00	23,00	N/mm²

1.2.6.2. Prueba de deformación

Modo de cálculo: Relación: Relación 'I/(A·rm²)·κq':				`	al ·rm²) ·rm²)·κ _q		0,00134 0,00134	
Coeficiente de deflexión para momentos de	C _V	q_{v}	-0,0893	q_{h}	0,0833	q _h *	0,0640	[-]
deflexión	·							
Coeficiente de deflexión por fuerzas normales	cN _v		-0,6830		-0,6810		-0,2470	[-]
Coeficiente de deflexión por fuerzas laterales	cQ_v		-0,3590		0,3350		0,2430	[-]
Coeficiente resultante de deformación	c' _v		-0,0915		0,0836		0,0646	[-]
Cambio del diámetro vertical:				Δd_v			4,38	mm
Cambio del diámetro horizontal:				∆d _h	l		4,11	mm
Deformación vertical relativa:				δ_{v}			2,07	%
Deflexión admisible:				zul	δ_{v}		6,00	%

La deflexión determinada es menor que la deflexión permitida.

1.2.6.3. Prueba de estabilidad (lineal):

Carga vertical total:	q_v	80,05	kN/m²
Factor de reducción de carga de colapso por cargas de suelo/tráfico:	K _{V2}	0,86	[-]
Carga vertical total crítica:	krit q _v	1.124,7	kN/m²

krit $q_v = 2 \cdot \kappa_{v2} \cdot (8S_0 \cdot S_{Bh})^{0.5}$ (9.06a)

La prueba de colapso por presión de agua no aplica, dado que no hay presencia de nivel freático ni vacío.

Coeficiente de seguridad de estabilidad: Coeficiente global de seguridad requerido, falle	o por inestabilida	ıd:	γ erf γ _{stab}	14,05 2,00	[-] [-]
Los coeficientes de seguridad al pandeo dete	rminados son su	ficientes.			
1.2.7. Caso de carga a largo plazo					
1.2.7.1. prueba de tensión					
Coeficiente de superposición de tensiones: Relación de deflexión: Presión interior resultante (pl - pW):			Ζ η p _{I,res}	5,45 2,88 5,50	[-] [-] bar
Valor característico de la tensión en sentido ci	rcunferencial:		σ_{RZ}	17,5	N/mm²
$\sigma_{R,res} = \frac{\sigma_{qv,qh,qh^*} \cdot \sigma_R + \sigma_{sonst} \cdot \sigma_{R,L}}{\sigma_{qv,qh,qh^*} + \sigma_{sonst}}$					(9.01c)
Interior:		clave	generatriz sobre el diámetro horizontal del	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a YBZ,a	4,274 5,190	tubo -4,801 	4,718 4,702	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a		4,620		[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	4,068 4,302	4,068 4,302	4,068 4,302	N/mm² [-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	19,90	48,16	20,01	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	19,90	48,16	20,01	N/mm²
Exterior:		clave	generatriz sobre el diámetro horizontal del	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a YBZ,a	-4,365 	tubo 3,200 6,932	-4,827 	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a	5,082		4,595	[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	4,068 4,302	4,068 4,302	4,068 4,302	N/mm² [-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	86,22	19,56	47,24	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	86,22	19,56	47,24	N/mm²

1.2.7.2. Prueba de deformación

Modo de cálculo: Relación: Relación 'I/(A·rm²)·κq':				lineal I/(A·rm²) I/(A·rm²)·κ _q		0,00134 0,00134	
Coeficiente de deflexión para momentos de deflexión	c_{v}	q_{ν}	-0,0893	q _h 0,0833	q _h *	0,0640	[-]
Coeficiente de deflexión por fuerzas normales Coeficiente de deflexión por fuerzas laterales Coeficiente resultante de deformación	cN _v cQ _v c' _v		-0,6830 -0,3590 -0,0915	-0,6810 0,3350 0,0836		-0,2470 0,2430 0,0646	[-] [-] [-]
Cambio del diámetro vertical: Cambio del diámetro horizontal:				Δd _v Δd _h		4,75 4,43	mm mm
Deformación vertical relativa: Deflexión admisible:				δ_v zul δ_v		2,24 6,00	% %

La deflexión determinada es menor que la deflexión permitida.

1.2.7.3. Prueba de estabilidad (lineal):

Carga vertical total:	q_{v}	80,00	kN/m²
Factor de reducción de carga de colapso por cargas de suelo/tráfico:	K _{v2}	0,86	[-]
Carga vertical total crítica:	krit q _v	1.053,9	kN/m²

krit $q_v = 2 \cdot \kappa_{v2} \cdot (8S_0 \cdot S_{Bh})^{0.5}$ (9.06a)

La prueba de colapso por presión de agua no aplica, dado que no hay presencia de nivel freático ni vacío.

Coeficiente de seguridad de estabilidad: γ 13,17 [-] Coeficiente global de seguridad requerido, fallo por inestabilidad: erf γ_{stab} 2,00 [-]

Los coeficientes de seguridad al pandeo determinados son suficientes.

Todas las pruebas necesarias son correctas.

INFORME COMPLETO

Estudio estático para Tuberías A 127

Proyecto:	Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable
Empresa / Entidad:	Universidad Politécnica de Valencia - ETSICCP
Autor:	Alba Traver Gual
Informe n°:	008
Fecha:	15/09/2015

Este programa es una herramienta gratuita, que puede ser utilizada por personas con conocimientos técnicos en el cálculo estático de tuberías. El programa no puede reemplazar al ingeniero responsable.

Contenido

. : DN 250	3
1.1. Entrada de datos:	3
1.1.1. Opciones de seguridad	3
1.1.2. Suelo	3
1.1.3. Carga	3
1.1.4. Instalación	3
1.1.5. Tubo de la base de datos	4
1.2. Resultados:	4
1.2.1. resultados intermedios del tubo	4
1.2.1.1. propiedades del material 1.2.1.2. Factores de seguridad	4 5
1.2.2. Resultados intermedios para caso de carga	5
 1.2.2.1. geometría del tubo 1.2.2.2. Teoría del silo 1.2.2.3. Carga 1.2.2.4. Módulo de deformación del suelo EB 1.2.2.5. Valores de rigidez del suelo 1.2.2.6. Ángulo de apoyo, proyección relativa efectiva y ángulo de fricción 1.2.2.7. Valores característicos del material del tubo y rigidez anular 1.2.2.8. relación de rigidez 1.2.2.9. Coeficientes 1.2.2.10. Factores de concentracion λR y λB 1.2.2.11. Distribución de presiones en la circunferencia del tubo 1.2.3. Sección fuerzas clave 	5 5 5 5 5 6 6 7 7 8 8
1.2.4. Sección fuerzas generatriz sobre el diámetro horizontal del tubo	9
1.2.5. Sección fuerzas base	9
1.2.6. Caso de carga a corto plazo1.2.6.1. prueba de tensión1.2.6.2. Prueba de deformación1.2.6.3. Prueba de estabilidad (lineal):	10 10 11 11
1.2.7. Caso de carga a largo plazo	12
1.2.7.1. prueba de tensión1.2.7.2. Prueba de deformación1.2.7.3. Prueba de estabilidad (lineal):	12 13 13

1.: DN 250

Descripción del tramo: DN 250 Tipo de cálculo: Según tabla

Añadir dibujo para imprimir: Si

1.1. Entrada de datos:

1.1.1. Opciones de seguridad

Clase de seguridad: A (caso normal) Deflexión admisible: 6% (habitual)

De acuerdo con la nota 39 de la ATV 127 Tratamiento de la presión interna:

Menores factores de seguridad para compresión por flexión: no (ATV A 127) No

La aplicación de la ATV A 127 no ha sido verificada para ver si la rigidez

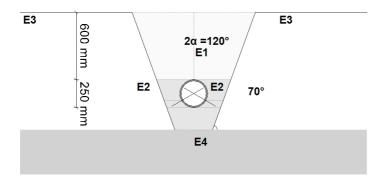
circunferencial mínima ha sido alcanzada:

1.1.2. Suelo

Tipo de relleno: Cálculo E1:	G1 Módulo de ela	ısticidad F	
Módulo de elasticidad E1:	E1	8,0	N/mm²
Tipo de relleno en la zona del tubo:	G1	0,0	
Cálculo E20:	Módulo de ela	sticidad F	
Módulo de elasticidad E20:	E ₂₀	16,0	N/mm²
Tipo de suelo natural:	G4	,-	
Cálculo E3:	Módulo de ela	sticidad E	
Módulo de elasticidad E3:	E3	1,5	N/mm²
E4 = 10 · E1:	No	•	
Suelo bajo la zanja:	G4		
Cálculo É4:	Módulo de ela	sticidad E	
Módulo de elasticidad E4:	E4	1,5	N/mm²
1.1.3. Carga			
Altura de recubrimiento:	h	0,60	m
Densidad del suelo:	γ	20,0	kN/m³
Carga superficial adicional:	p_0	0,0	kN/m²
Nivel freático máximo sobre el lecho del tubo:	h _{W.max}	0,00	m
Nivel freático mínimo sobre el lecho del tubo:	$h_{W,min}$	0,00	m
Presión interna, corto plazo:	P _{I,K}	6,0	bar
Presión interna, largo plazo:	P _{I,L}	5,3	bar
Sección llena:	Si [′]		
Densidad del fluido:	YF	10,0	kN/m³
Carga de tráfico:	SLW 30		

1.1.4. Instalación

Instalación:	Zanja		
Ancho de zanja:	b	0,67	m
Ángulo del talud:	β	70	0
Condiciones de relleno:	A4		
Condiciones de la instalación:	B4		
Tipo de apoyo:	suelto		
Ángulo de apoyo:	120°		
Proyección relativa:	а	1,00	[-]



1.1.5. Tubo de la base de datos

Material:

Presión nominal: Diámetro nominal: PE 100 PN = 10,0 bar (SDR = 17,0) DN 250 (14,8 mm)

Carga de tráfico: SLW 30

665 mm

1.2. Resultados:

1.2.1. resultados intermedios del tubo

Diámetro interior: Diámetro exterior: Radio del eje centroide de la pared del tubo: Espesor: Proporción: Factor de corrección de la curvatura interior: Factor de corrección de la curvatura exterior:	d _i d _a r _m s r _m /s α _{ki} α _{ka}	220,4 250,0 117,6 14,8 7,946 1,042 0,958	mm mm mm mm [-] [-]
Predeformación local:	$\begin{array}{l} \delta_{vl} \\ \delta_{vg} \end{array}$	0,00	%
Predeformación (ovalización antes de aplicación de la carga):		1,00	%
Superficie del perfil radial: Distancia de inercia: Momento de inercia: Momento resistente exterior: Momento resistente interior:	A _{rad}	14,8	mm²/mm
	e	7,4	mm
	I	270,1	mm^4/mm
	W _a	36,5	mm³/mm
	W _i	36,5	mm³/mm

1.2.1.1. propiedades del material

		corto plazo	largo plazo	
Gravedad específica	YR	9,4	9,4	kN/m³
Coeficiente de poisson	V	0,38	0,38	[-]

<u>Valor.5a vad teréstide riteideró delos dele</u> lasticidad en sentido circunferencial	E _R	1.200,0	200,0	N/mm²
Valor característico de tracción por deflexión Valor característico de la deflexión radial por esfuerzo de compresión	σ_{RBZ} σ_{RBD}	23,0 23,0	17,5 17,5	N/mm² N/mm²
Valor característico de la tensión en sentido circunferencial	σ_{RZ}	23,0	17,5	N/mm²
1.2.1.2. Factores de seguridad				
Coeficiente global de seguridad requerido, fallo por inestabilidad, tensión a tracción	$\text{erf } \gamma_{RBZ}$	2,50	2,50	[-]
Coeficiente global de seguridad requerido, fallo por inestabilidad, tensión a compresión	$\text{erf } \gamma_{RBD}$	2,50	2,50	[-]
Coeficiente global de seguridad requerido, fallo por inestabilidad	erf γ _{stab}	2,00	2,00	[-]
1.2.2. Resultados intermedios para caso de carga				
1.2.2.1. geometría del tubo				
Radio del eje centroide de la pared del tubo:		r _m	117,6	mm
Factor de corrección de la curvatura interior: Factor de corrección de la curvatura exterior:		α _{ki} α _{ka}	1,042 0,958	[-] [-]
1.2.2.2. Teoría del silo				
Coeficiente de carga del suelo κ para carga en zanja (Teoría	del Silo):	κ	1,000	[-]
$\kappa = \frac{1 - e^{-2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}}{2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}$				(5.04)
Coeficiente de carga del suelo κ0 para cargas superficiales (1	Teoría del Silo):	κ ₀	1,000	[-]
$\kappa_0 = e^{-2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}$				(5.05)
κ 0 y κ están indicadas como 1, porque E1 es mayor que E3.				
1.2.2.3. Carga				
Nivel freático máximo sobre la cama del tubo: Carga vertical debida al peso del relleno: Carga vertical debida al peso del relleno y a la carga superfic Tensión debida a carga de tráfico: Coefficiente de impacto (incl.):	ial:	hw.scheitel P _{Erd} P _E P _V ¢	0,00 12,00 12,00 67,63 1,40	m kN/m² kN/m² kN/m² [-]
1.2.2.4. Módulo de deformación del suelo EB				
Módulo elástico del relleno bajo carga: Módulo elástico de los riñones bajo carga: Factor de reducción por fluencia: Factor de reducción E20 (nivel freático): Factor de reducción E20 (zanja estrecha): Módulo elástico del apoyo (reducido): Módulo elástico del suelo natural: Módulo elástico del suelo bajo el tubo:		$E_{1,\sigma}$ $E_{20,\sigma}$ f_1 f_2 α_B $E_{2,\sigma}$ $E_{3,\sigma}$ $E_{4,\sigma}$	8,00 16,00 1,000 1,000 1,000 16,00 1,50 1,50	N/mm² N/mm² [-] [-] [-] N/mm² N/mm²

Factor de corrección por rigidez del apoyo hori	zontal:		ζ	0,196	[-]
_ 1,667					
$\zeta = \frac{1,667}{\Delta f + (1,667 - \Delta f) \cdot \frac{E_2}{E_3}}$					(6.17)
$\Delta f = \frac{\frac{b}{d_a} \cdot 1}{0.982 + 0.283 \cdot \left(\frac{b}{d_a} \cdot 1\right)} \le 1,667$				Corr	rección (6.18)
Si el angulo de talud de la zanja es < 90° se debe consider zanja a la altura de la corona	rar la anchura de la	zanja a la altura de	el centro de la tuber	ía en lugar de la a	nchura de la
Rigidez del apoyo horizontal:			S_{Bh}	1,884	N/mm²
S_{Bh} = 0,6 · ζ · E_2					(6.16)
Rigidez de apoyo vertical:			S_{Bv}	16,000	N/mm²
$S_{Bv} = \frac{E_2}{a}$					(6.12)
1.2.2.6. Ángulo de apoyo, proyección relativa e	efectiva y ángulo	o de fricción			
Ángulo de apoyo, proyección relativa efectiva y Proyección incrementada debido a la pérdida o Proyección relativa efectiva:			2α a _S a'	120 1,00 0,500	。 [-] [-]
$a'=a_{S}-\frac{E_1}{E_2} \ge 0.26$					(6.05)
Ángulo de fricción interna: Ángulo de fricción de la pared:			φ' δ	20,000 20,000	0
		corto plazo Todas las cargas	largo plazo Cargas del suelo cargas de	largo plazo otro Cargas	
			tráfico	Odrgas	
1.2.2.7. Valores característicos del material de	l tubo y rigidez a	<u>anular</u>			
Valor característico del módulo de elasticidad en sentido circunferencial	E _R	1.200,0	1.049,3	200,0	N/mm²
Valor característico de tracción por deflexión Valor característico de la deflexión radial por esfuerzo de compresión	σ_{RBZ} σ_{RBD}	23,0 23,0	22,2 22,2	17,5 17,5	N/mm² N/mm²
Valor característico de la tensión en sentido circunferencial	σ_{RZ}	23,0	22,2	17,5	N/mm²
Rigidez del tubo	S _R	199,326	174,294	33,221	kN/m²
$S_{R} = \frac{E_{R} \cdot I}{r_{m}^{3}}$					(6.10a)
1.2.2.8. relación de rigidez					
Rigidez del sistema	V_{RB}	0,1058	0,0925	0,0176	[-]

$V_{RB} = \frac{S_R}{S_{Bh}} = \frac{8 \cdot S_0}{S_{Bh}}$					(6.15)
Relación de rigidez	V _S	0,2149	0,1974	 [-]	
$V_{S} = \frac{S_{R}}{ c_{V}^{*} \cdot S_{BV}}$					(6.08a)
1.2.2.9. Coeficientes					
Relación por presión de enterramiento (apoyo Coeficiente por presión de reacción del apoyo		0,400 0,519	0,400 0,562	 [-] [-]	
$K^* = \frac{c_{h,qv}}{V_{RB} - c_{h,qh^*}}$					(6.14)
Coeficiente por presión de reacción del apoyo	C _V *	-0,058	-0,055	 [-]	
$c_{V}^{*} = c_{V,qV} + c_{V,qh^{*}} \cdot K^{*}$					(6.13)
1.2.2.10. Factores de concentracion λR y λB					
Factor de concentración máximo	max λ	1,017	1,017	 [-]	
max $\lambda = 1 + \frac{\frac{h}{d_a}}{\frac{3.5}{a'} + \frac{2.2}{\frac{E_4}{E_1}} \cdot (a' - 0.25)} + \frac{0.62}{a'} + \frac{\frac{E_4}{E_1}}{(a' - 0.25)} \cdot (a' - 0.25)}$	1,6 '-0,25) h				(6.04)
Coeficiente por factor de concentración máximo	K'	0,893	0,890	 [-]	
$K' = -\frac{c_{v,qh} + \frac{c_{h,qh}}{c_{h,qv}} \cdot c_{v,qh^*} \cdot K^*}{c_{v,qv} + c_{v,qh^*} \cdot K^*}$					(6.06b)
Factor de concentración sobre el tubo, valor inicial	λ_{R}	0,927	0,920	 [-]	
$\lambda_{R} = \frac{\max \lambda \cdot V_{s} + a' \cdot \frac{4 \cdot K_{2} \cdot K'}{3} \cdot \frac{\max \lambda - 1}{a' - 0.25}}{V_{s} + a' \cdot \frac{3 + K_{2} \cdot K'}{3} \cdot \frac{\max \lambda - 1}{a' - 0.25}}$					(6.06a)
Factor de concentración sobre el tubo, bajo el efecto de la zanja	λ_{RG}	0,960	0,956	 [-]	
$\lambda_{RG} = \frac{\lambda_R - 1}{3} \cdot \frac{b}{d_a} + \frac{4 - \lambda_R}{3}$					(6.21a)
Factor de concentración sobre el tubo, límite	λ_{fo}	3,910	3,910	 [-]	
superior Factor de concentración sobre el tubo, limite	λ_{fu}	0,667	0,667	 [-]	
inferior Factor de concentación sobre el tubo, valor	λ_{RG}	0,960	0,956	 [-]	
final Factor de concentración del suelo	λ_{B}	1,024	1,027	 [-]	

$\lambda_{B} = \frac{4 - \lambda_{R}}{3}$					(6.07)	
1.2.2.11. Distribución de presiones en la circur	nferencia del tu	<u>bo</u>				
Carga vertical total	q_{ν}	79,14	79,10		kN/m²	
$q_V = \lambda_{RG} \cdot p_E + p_V$					(6.24)	
Presion lateral	q_h	5,92	5,93		kN/m²	
$q_h = K_2 \cdot \left(\lambda_B \cdot p_E + \gamma_B \cdot \frac{d_a}{2} \right)$					(7.01)	
Presión de reacción del apoyo (carga del suelo)	q* _h	38,18	41,32		kN/m²	
$q_{h}^{*} = \frac{c_{h,qv} \cdot q_{v} + c_{h,qh} \cdot q_{h}}{V_{RB} - c_{h,qh}^{*}}$					(7.02a)	
Presión de reacción del apoyo (sección llena)	q* _{hw}	0,45	0,91		kN/m²	
$q^*_{hw} = \frac{c_{hw} \cdot q_w}{V_{RB} - c_{h,qh}^*}$					(7.02b)	
1.2.3. Sección fuerzas clave						
Momento debido a cargas verticales totales Momento debido a la presión lateral Momento debido a la reacción de la presión de	el apoyo	M _{qv} M _{qh} M* _{qh}	corto plazo 0,286 -0,020 -0,096	largo plazo 0,286 -0,020 -0,103	kNm/m kNm/m kNm/m	

		corto plazo	largo plazo	
Momento debido a cargas verticales totales	M_{qv}	0,286	0,286	kNm/m
Momento debido a la presión lateral	M _{gh}	-0,020	-0,020	kNm/m
Momento debido a la reacción de la presión del apoyo horizontal	M* _{qh}	-0,096	-0,103	kNm/m
Momento debido a la reacción de la presión del apoyo (sección llena)	M* _{qw}	-0,001	-0,002	kNm/m
Momento debido a las cargas muertas	M_{α}	0,001	0,001	kNm/m
Momento debido a la sección llena	M_{w}	0,003	0,003	kNm/m
Momento debido a la presión del agua	M_{pw}	0,011	0,010	kNm/m
Momento debido al nivel freático a la altura de la clave	M _{pa1}	0,000	0,000	kNm/m
$\Sigma M = M_{qv} + M_{qh} + M^*_{qh} + M^*_{qw} + M_g + M_w + M_{pw}$				
Momentos totales	ΣΜ	0,183	0,173	kNm/m
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pa1}$				
Momentos totales sin presión interna/externa	ΣM_{sonst}	0,172	0,163	kNm/m
$\Sigma M' = M_{qv} + M_{qh} + M^*_{qh} + M_g$				
Momentos totales debidos a la sección llena y a la presión	ΣΜ'	0,170	0,162	kNm/m
Fuerza normal debida a las cargas verticales totales	N_{qv}	0,251	0,251	kN/m
Fuerza normal debida a la presión lateral	N_{qh}	-0,696	-0,697	kN/m
Fuerza normal debida a la reacción de la presión del lecho	N* _{qh}	-2,591	-2,804	kN/m
Fuerza normal debida a la reacción de la presión del lecho (relleno del agua)	N*qw	-0,030	-0,062	kN/m
Fuerza normal debida al peso muerto	N_q	0,004	0,004	kN/m
Fuerza normal debida al relleno de agua	Nw	0,086	0,086	kN/m
Fuerza normal debida al nivel freático hasta la clave	N _{pa1}	0,000	0,000	kN/m
	·			
Fuerzas totales normales	ΣΝ	62,594	55,515	kN/m

Total discount of the control of	- N1	0.075	0.004	1.817
Total sin presión interna/externa Total sin sección llena y sin presión	ΣN _{sonst} ΣΝ'	-2,975 -3,031	-3,221 -3,246	kN/m kN/m
·			3,2 .3	10.0111
1.2.4. Sección fuerzas generatriz sobre el diámetro horizo	ontal del tubo			
		corto plazo	largo plazo	
Momento debido a cargas verticales totales	M_{qv}	-0,290	-0,290	kNm/m
Momento debido a la presión lateral	M _{qh}	0,020	0,020	kNm/m
Momento debido a la reacción de la presión del apoyo	M* _{qh}	0,110	0,119	kNm/m
horizontal Momento debido a la reacción de la presión del apoyo	M* _{qw}	0,001	0,003	kNm/m
(sección llena)	ivi qw	0,001	0,003	KINIII/III
Momento debido a las cargas muertas	M_g	-0,001	-0,001	kNm/m
Momento debido a la sección llena	Mw	-0,004	-0,004	kNm/m
Momento debido a la presión del agua	M _{pw}	0,011	0,010	kNm/m
Momento debido al nivel freático a la altura de la clave	M _{pa1}	0,000	0,000	kNm/m
	P			
$\Sigma M = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_q + M_w + M_{pw}$				
Momentos totales	ΣΜ	0.152	0 142	kNm/m
Momentos totales	ZIVI	-0,152	-0,143	KINIII/III
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pa1}$				
Momentos totales sin presión interna/externa	ΣM_{sonst}	-0,163	-0,152	kNm/m
$\Sigma M' = M_{qv} + M_{qh} + M^*_{qh} + M_g$				
Momentos totales debidos a la sección llena y a la presión	ΣΜ'	-0,161	-0,151	kNm/m
Fuerza normal debida a las cargas verticales totales	N_{qv}	-9,307	-9,302	kN/m
Fuerza normal debida a la presión lateral	N _{gh}	0,000	0,000	kN/m
Fuerza normal debida a la reacción de la presión del lecho	N* _{qh}	0,000	0,000	kN/m
Fuerza normal debida a la reacción de la presión del lecho	N* _{qw}	0,000	0,000	kN/m
(relleno del agua)	4"	•	·	
Fuerza normal debida al peso muerto	N_g	-0,026	-0,026	kN/m
Fuerza normal debida al relleno de agua	N_{w}	0,030	0,030	kN/m
Fuerza normal debida al nivel freático hasta la clave	N _{pa1}	0,000	0,000	kN/m
	•			
Fuerzas totales normales	ΣΝ	56,266	49,439	kN/m
Total sin presión interna/externa	ΣN _{sonst}	-9,303	-9,298	kN/m
Total sin sección llena y sin presión	ΣΝ'	-9,333	-9,328	kN/m
1.2.5. Sección fuerzas base		·	·	
		oorte mis	lorge misse	
Mamonto dobido a cargas verticales totales	M	corto plazo	largo plazo	kNm/m
Momento debido a cargas verticales totales	M _{qv}	0,301	0,301	kNm/m
Momento debido a la presión lateral Momento debido a la reacción de la presión del apoyo	M _{qh}	-0,020 -0,096	-0,020 0.103	kNm/m
horizontal	M* _{qh}	-0,096	-0,103	kNm/m
Momento debido a la reacción de la presión del apoyo	M* _{qw}	-0,001	-0,002	kNm/m
(sección llena)		0.004	0.004	
Momento debido a las cargas muertas	M _g	0,001	0,001	kNm/m
Momento debido a la sección llena	Mw	0,004	0,004	kNm/m
Momento debido a la presión del agua	M _{pw}	0,011	0,010	kNm/m
Momento debido al nivel freático a la altura de la clave	M _{pa1}	0,000	0,000	kNm/m
\(\text{NA} = \text{NA} \text{I \text{NA}} \text{NA} \text{NA} \text{NA} \text{NA} \text{NA} \q				
$\Sigma M = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pw}$				
Momentos totales	ΣΜ	0,200	0,190	kNm/m
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pa1}$				

Momentos totales sin presión interna/externa		ΣM_{sonst}	0,189	0,180	kNm/m
$\Sigma M' = M_{qv} + M_{qh} + M^*_{qh} + M_g$					
Momentos totales debidos a la sección llena y	a la presión	ΣΜ'	0,186	0,178	kNm/m
Fuerza normal debida a las cargas verticales fruerza normal debida a la presión lateral Fuerza normal debida a la reacción de la pres Fuerza normal debida a la reacción de la pres (relleno del agua)	ión del lecho	N _{qv} N _{qh} N* _{qh} N* _{qw}	-0,251 -0,696 -2,591 -0,030	-0,251 -0,697 -2,804 -0,062	kN/m kN/m kN/m kN/m
Fuerza normal debida al peso muerto Fuerza normal debida al relleno de agua Fuerza normal debida al nivel freático hasta la	ı clave	N _g N _w N _{pa1}	-0,004 0,190 0,000	-0,004 0,190 0,000	kN/m kN/m kN/m
Fuerzas totales normales Total sin presión interna/externa Total sin sección llena y sin presión		ΣΝ ΣΝ _{sonst} ΣΝ'	62,187 -3,382 -3,542	55,109 -3,628 -3,756	kN/m kN/m kN/m
1.2.6. Caso de carga a corto plazo					
1.2.6.1. prueba de tensión					
Coeficiente de superposición de tensiones: Relación de deflexión: Presión interior resultante (pl - pW):			Ζ η PI,res	1,21 2,79 5,95	[-] [-] bar
Valor característico de la tensión en sentido ci	ircunferencial:		σ_{RZ}	23,0	N/mm²
$\sigma_{R,res} = \frac{\sigma_{qv,qh,qh^*} \cdot \sigma_R + \sigma_{sonst} \cdot \sigma_{R,L}}{\sigma_{qv,qh,qh^*} + \sigma_{sonst}}$					(9.01c)
Interior:		clave	generatriz sobre el diámetro horizontal del tubo	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a YBZ,a	4,718 4,875	-5,278 	5,168 4,451	N/mm² [-]
Coeficiente de seguridad por carga externa,					
compresión por flexión:	YBD,a		4,358		[-]
compresión por flexión: Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	YBD,a O _i Yi	 4,430 5,191	4,358 4,430 5,191	 4,430 5,191	[-] N/mm² [-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna Factor de reducción de acuerdo a	$\sigma_{\rm i}$		4,430		N/mm²
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna Factor de reducción de acuerdo a Netzer/Pattis Tensión por cálculo de superposición Coeficiente de seguridad para cálculo de	σ _i Yi	5,191	4,430 5,191	5,191	N/mm² [-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna Factor de reducción de acuerdo a Netzer/Pattis Tensión por cálculo de superposición Coeficiente de seguridad para cálculo de superposición, tensión por flexión: Coeficiente de seguridad para cálculos de	$\sigma_{i} \\ \gamma_{i} \\ n \\ \sigma_{r}es$	5,191 0,681 6,228	4,430 5,191 0,686	5,191 0,685 6,572	N/mm² [-] [-] N/mm²
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna Factor de reducción de acuerdo a Netzer/Pattis Tensión por cálculo de superposición Coeficiente de seguridad para cálculo de superposición, tensión por flexión:	σ_{i} γ_{i} n $\sigma_{r}es$ $\gamma_{BZ,res}$	5,191 0,681 6,228	4,430 5,191 0,686 -0,581	5,191 0,685 6,572	N/mm² [-] [-] N/mm² [-]

Exterior:		clave	generatriz sobre el diámetro norizontal del tubo	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a Yвz,a	-4,724 	3,646 6,308	-5,190 	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a	4,869		4,431	[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	4,430 5,191	4,430 5,191	4,430 5,191	N/mm² [-]
Factor de reducción de acuerdo a Netzer/Pattis	n	0,681	0,703	0,685	[-]
Tensión por cálculo de superposición Coeficiente de seguridad para cálculo de superposición, tensión por flexión:	σ _r es YBZ,res	-0,200 	5,679 4,050	-0,521 	N/mm² [-]
Coeficiente de seguridad para cálculos de superposición, compresión por flexión:	YBD,res	115,069		44,179	[-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	23,00	23,00	23,00	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	23,00	23,00	23,00	N/mm²

1.2.6.2. Prueba de deformación

Modo de cálculo: Relación: Relación 'I/(A·rm²)·κq':				lineal I/(A·rm²) I/(A·rm²)·κ _q		0,00132 0,00132	
		q_v		q _h	q _h *		
Coeficiente de deflexión para momentos de deflexión	C _V		-0,0893	0,0833		0,0640	[-]
Coeficiente de deflexión por fuerzas normales	cN_v		-0,6830	-0,6810		-0,2470	[-]
Coeficiente de deflexión por fuerzas laterales	cQ _v		-0,3590	0,3350		0,2430	[-]
Coeficiente resultante de deformación	c' _v		-0,0915	0,0836		0,0646	[-]
Cambio del diámetro vertical:				Δd_{v}		5.05	mm
Cambio del diámetro horizontal:				Δd_h		4,77	mm
Deformación vertical relativa:				δ_{v}		2,15	%
Deflexión admisible:				zul δ_{v}		6,00	%

La deflexión determinada es menor que la deflexión permitida.

1.2.6.3. Prueba de estabilidad (lineal):

Carga vertical total: kN/m^2 79,14 Factor de reducción de carga de colapso por cargas de suelo/tráfico: 0,86 [-] Carga vertical total crítica: 1.054,1 kN/m²

$$krit q_v = \kappa_{v2} \cdot \left\{ 3 + \frac{1}{3 V_{RB}} \right\} \cdot 8S_0 \tag{9.06b}$$

La prueba de colapso por presión de agua no aplica, dado que no hay presencia de nivel freático ni vacío.

Coeficiente de seguridad de estabilidad: Coeficiente global de seguridad requerido, fall	o por inestabilida	d:	γ erf γ _{stab}	13,32 2,00	[-] [-]
Los coeficientes de seguridad al pandeo dete	rminados son su	ficientes.			
1.2.7. Caso de carga a largo plazo					
1.2.7.1. prueba de tensión					
Coeficiente de superposición de tensiones: Relación de deflexión: Presión interior resultante (pl - pW):			Ζ η p _{I,res}	5,52 3,04 5,33	[-] [-] bar
Valor característico de la tensión en sentido ci	rcunferencial:		σ_{RZ}	17,5	N/mm²
$\sigma_{R,res} = \frac{\sigma_{qv,qh,qh^*} \cdot \sigma_R + \sigma_{sonst} \cdot \sigma_{R,L}}{\sigma_{qv,qh,qh^*} + \sigma_{sonst}}$					(9.01c)
Interior:		clave	generatriz sobre el diámetro horizontal del	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a YBZ,a	4,438 4,996	tubo -4,976 	4,888 4,536	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a		4,456		[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	3,969 4,410	3,969 4,410	3,969 4,410	N/mm² [-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	19,97	40,58	20,08	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	19,97	40,58	20,08	N/mm²
Exterior:		clave	generatriz sobre el diámetro horizontal del	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a YBZ,a	-4,498 	tubo 3,369 6,580	-4,965 	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a	4,929		4,466	[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	3,969 4,410	3,969 4,410	3,969 4,410	N/mm² [-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	57,16	19,64	40,78	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	57,16	19,64	40,78	N/mm²

1.2.7.2. Prueba de deformación

Modo de cálculo: Relación: Relación 'I/(A·rm²)·κq':				lineal I/(A·rm²) I/(A·rm²)·κ _q		0,00132 0,00132	
Coeficiente de deflexión para momentos de deflexión	C _V	q _v	-0,0893	q _h 0,0833	q _h *	0,0640	[-]
Coeficiente de deflexión por fuerzas normales Coeficiente de deflexión por fuerzas laterales Coeficiente resultante de deformación	cN _v cQ _v c' _v		-0,6830 -0,3590 -0,0915	-0,6810 0,3350 0,0836		-0,2470 0,2430 0,0646	[-] [-] [-]
Cambio del diámetro vertical: Cambio del diámetro horizontal:				$\Delta d_V \ \Delta d_h$		5,50 5,16	mm mm
Deformación vertical relativa: Deflexión admisible:				δ_{v} zul δ_{v}		2,34 6,00	% %

La deflexión determinada es menor que la deflexión permitida.

1.2.7.3. Prueba de estabilidad (lineal):

Carga vertical total:	q_v	79,10	kN/m²	
Factor de reducción de carga de colapso por cargas de suelo/tráfico:	K _{V2}	0,86	[-]	
Carga vertical total crítica:	krit q _v	986,5	kN/m²	
0.5				
krit $q_V = 2 \cdot K_{V2} \cdot (8S_0 \cdot S_{Bh})^{0.5}$			(9.0	6a)

La prueba de colapso por presión de agua no aplica, dado que no hay presencia de nivel freático ni vacío.

Coeficiente de seguridad de estabilidad:	γ	12,47	[-]
Coeficiente global de seguridad requerido, fallo por inestabilidad:	erf v _{stab}	2,00	[-]

Los coeficientes de seguridad al pandeo determinados son suficientes.

Todas las pruebas necesarias son correctas.

INFORME COMPLETO

Estudio estático para Tuberías A 127

Proyecto:	Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable
Empresa / Entidad:	Universidad Politécnica de Valencia - ETSICCP
Autor:	Alba Traver Gual
Informe n°:	009
Fecha:	15/09/2015

Este programa es una herramienta gratuita, que puede ser utilizada por personas con conocimientos técnicos en el cálculo estático de tuberías. El programa no puede reemplazar al ingeniero responsable.

Contenido

. : DN 280	3
1.1. Entrada de datos:	3
1.1.1. Opciones de seguridad	3
1.1.2. Suelo	3
1.1.3. Carga	3
1.1.4. Instalación	3
1.1.5. Tubo de la base de datos	4
1.2. Resultados:	4
1.2.1. resultados intermedios del tubo	4
1.2.1.1. propiedades del material 1.2.1.2. Factores de seguridad	4 5
1.2.2. Resultados intermedios para caso de carga	5
 1.2.2.1. geometría del tubo 1.2.2.2. Teoría del silo 1.2.2.3. Carga 1.2.2.4. Módulo de deformación del suelo EB 1.2.2.5. Valores de rigidez del suelo 1.2.2.6. Ángulo de apoyo, proyección relativa efectiva y ángulo de fricción 1.2.2.7. Valores característicos del material del tubo y rigidez anular 1.2.2.8. relación de rigidez 1.2.2.9. Coeficientes 1.2.2.10. Factores de concentracion λR y λB 1.2.2.11. Distribución de presiones en la circunferencia del tubo 1.2.3. Sección fuerzas clave 	5 5 5 5 5 6 6 7 7 8 8
1.2.4. Sección fuerzas generatriz sobre el diámetro horizontal del tubo	9
1.2.5. Sección fuerzas base	9
1.2.6. Caso de carga a corto plazo1.2.6.1. prueba de tensión1.2.6.2. Prueba de deformación1.2.6.3. Prueba de estabilidad (lineal):	10 10 11 11
1.2.7. Caso de carga a largo plazo	12
1.2.7.1. prueba de tensión1.2.7.2. Prueba de deformación1.2.7.3. Prueba de estabilidad (lineal):	12 13 13

1.: DN 280

Descripción del tramo:

Tipo de cálculo:

Añadir dibuia para imprimir:

Siguin tabla

Añadir dibujo para imprimir:

1.1. Entrada de datos:

1.1.1. Opciones de seguridad

Clase de seguridad: A (caso normal)
Deflexión admisible: 6% (habitual)

Tratamiento de la presión interna:

De acuerdo con la nota 39 de la ATV 127

Menores factores de seguridad para compresión por flexión: no (ATV A 127)

La aplicación de la ATV A 127 no ha sido verificada para ver si la rigidez No

circunferencial mínima ha sido alcanzada:

1.1.2. Suelo

Tipo de relleno: Cálculo E1:	G1 Módulo de el	asticidad E	
Módulo de elasticidad E1:	E1	8,0	N/mm²
Tipo de relleno en la zona del tubo:	G1		
Cálculo E20:	Módulo de el	asticidad E	
Módulo de elasticidad E20:	E ₂₀	16,0	N/mm²
Tipo de suelo natural:	G4		
Cálculo E3:	Módulo de el	asticidad E	
Módulo de elasticidad E3:	E3	1,5	N/mm²
E4 = 10 · E1:	No		
Suelo bajo la zanja:	G4		
Cálculo E4:	Módulo de el		
Módulo de elasticidad E4:	E4	1,5	N/mm²
1.1.3. Carga			
Altura de recubrimiento:	h	1,00	m
Densidad del suelo:	γ	20,0	kN/m³
Carga superficial adicional:	p ₀	0,0	kN/m²
Nivel freático máximo sobre el lecho del tubo:	$h_{W,max}$	0,00	m
Nivel freático mínimo sobre el lecho del tubo:	$h_{W,min}$	0,00	m
Presión interna, corto plazo:	$P_{I,K}$	5,6	bar
Presión interna, largo plazo:	$P_{I,L}$	5,1	bar
Sección llena:	Si		
Densidad del fluido:	ΥF	10,0	kN/m³
Carga de tráfico:	SLW 30		
1.1.4. Instalación			
Instalación:	Zanja		

b

β

Α4

В4

suelto

120°

а

0,70

1,00

70

m

[-]

Ancho de zanja:

Ángulo del talud:

Tipo de apoyo:

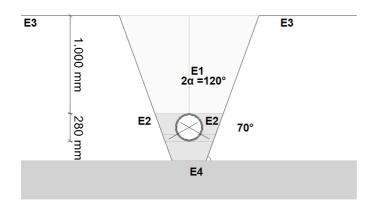
Ángulo de apoyo:

Proyección relativa:

Condiciones de relleno:

Condiciones de la instalación:

1.1.5. Tubo de la base de datos


Material:

Presión nominal:

Diámetro nominal:

PE 100 PN = 10,0 bar (SDR = 17,0) DN 280 (16,6 mm)

Carga de tráfico: SLW 30

697 mm

1.2. Resultados:

1.2.1. resultados intermedios del tubo

Diámetro interior: Diámetro exterior:	d _i d _a	246,8 280,0	mm mm
Radio del eje centroide de la pared del tubo:	r _m	131,7	mm
Espesor:	S	16,6	mm
Proporción:	r _m /s	7,934	[-]
Factor de corrección de la curvatura interior:	α_{ki}	1,042	[-]
Factor de corrección de la curvatura exterior:	α_{ka}	0,958	[-]
Predeformación local:	$\delta_{ m vl}$	0,00	%
Predeformación (ovalización antes de aplicación de la carga):	δ_{vg}	1,00	%
Superficie del perfil radial:	A _{rad}	16,6	mm²/mm
Distancia de inercia:	e	8,3	mm
Momento de inercia:	I	381,2	mm^4/mm
Momento resistente exterior:	W_a	45,9	mm³/mm
Momento resistente interior:	Wi	45,9	mm³/mm

1.2.1.1. propiedades del material

		corto plazo	largo plazo	
Gravedad específica	YR	9,4	9,4	kN/m³
Coeficiente de poisson	V	0.38	0.38	[-]

<u>Val∆r.5akadteréstide riteilderódelosdele</u> lasticidad en sentido circunferencial	E _R	1.200,0	200,0	N/mm²
Valor característico de tracción por deflexión Valor característico de la deflexión radial por esfuerzo de compresión	σ_{RBZ} σ_{RBD}	23,0 23,0	17,5 17,5	N/mm² N/mm²
Valor característico de la tensión en sentido circunferencial	σ_{RZ}	23,0	17,5	N/mm²
1.2.1.2. Factores de seguridad				
Coeficiente global de seguridad requerido, fallo por nestabilidad, tensión a tracción	$\text{erf } \gamma_{RBZ}$	2,50	2,50	[-]
Coeficiente global de seguridad requerido, fallo por nestabilidad, tensión a compresión	$\text{erf } \gamma_{RBD}$	2,50	2,50	[-]
Coeficiente global de seguridad requerido, fallo por nestabilidad	erf γ _{stab}	2,00	2,00	[-]
1.2.2. Resultados intermedios para caso de carga				
1.2.2.1. geometría del tubo				
Radio del eje centroide de la pared del tubo: Factor de corrección de la curvatura interior:		r _m α _{ki}	131,7 1,042	mm [-]
Factor de corrección de la curvatura exterior:		α_{ka}	0,958	[-]
1.2.2.2. Teoría del silo				
Coeficiente de carga del suelo к para carga en zanja (Teoría	del Silo):	К	1,000	[-]
$K = \frac{1 - e^{-2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}}{2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}$				(5.04)
2 · K ₁ · tano· – b				
Coeficiente de carga del suelo к0 para cargas superficiales (Т	Teoría del Silo):	κ_0	1,000	[-]
$\kappa_0 = e^{-2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}$				(5.05)
κ0 y κ están indicadas como 1, porque E1 es mayor que E3.				
1.2.2.3. Carga				
Nivel freático máximo sobre la cama del tubo: Carga vertical debida al peso del relleno: Carga vertical debida al peso del relleno y a la carga superfici Fensión debida a carga de tráfico: Coefficiente de impacto (incl.):	ial:	h _{W.Scheitel} P _{Erd} P _E P _V φ	0,00 20,00 20,00 33,70 1,40	m kN/m² kN/m² kN/m² [-]
1.2.2.4. Módulo de deformación del suelo EB				
Aódulo elástico del relleno bajo carga: Aódulo elástico de los riñones bajo carga:		$E_{1,\sigma} \ E_{20,\sigma} \ f_1$	8,00 16,00 1,000	N/mm² N/mm² [-]

Factor de corrección por rigidez del apoyo ho	rizontal:		ζ	0,177	[-]
$\zeta = \frac{1,667}{\Delta f + (1,667 - \Delta f) \cdot \frac{E_2}{E_3}}$					(6.17)
$\Delta f = \frac{\frac{b}{d_a} \cdot 1}{0.982 + 0.283 \cdot \left(\frac{b}{d_a} \cdot 1\right)} \le 1.667$				Corr	rección (6.18)
Si el angulo de talud de la zanja es < 90° se debe consideranja a la altura de la corona	erar la anchura de	la zanja a la altura d		-	inchura de la
Rigidez del apoyo horizontal:			S _{Bh}	1,699	N/mm²
$S_{Bh} = 0.6 \cdot \zeta \cdot E_2$			0	40,000	(6.16)
Rigidez de apoyo vertical:			S_{Bv}	16,000	N/mm²
$S_{Bv} = \frac{E_2}{a}$					(6.12)
1.2.2.6. Ángulo de apoyo, proyección relativa			2~	120	•
Ángulo de apoyo, proyección relativa efectiva Proyección incrementada debido a la pérdida Proyección relativa efectiva:			2α a _S a'	1,00 0,500	[-] [-]
a'= a _S - E ₁ ≥ 0,26					(6.05)
Ángulo de fricción interna: Ángulo de fricción de la pared:			φ' δ	20,000 20,000	•
		corto plazo Todas las cargas	largo plazo Cargas del suelo cargas de tráfico	largo plazo otro Cargas	
1.2.2.7. Valores característicos del material del tubo y rigidez anular					
Valor característico del módulo de elasticidad		1.200,0	827,6	200,0	N/mm²
en sentido circunferencial Valor característico de tracción por deflexión Valor característico de la deflexión radial por	σ_{RBZ} σ_{RBD}	23,0 23,0	21,0 21,0	17,5 17,5	N/mm² N/mm²
esfuerzo de compresión Valor característico de la tensión en sentido	σ_{RZ}	23,0	21,0	17,5	N/mm²
circunferencial Rigidez del tubo	S _R	200,247	138,101	33,375	kN/m²
$S_{R} = \frac{E_{R} \cdot I}{r_{m}^{3}}$					(6.10a)
1.2.2.8. relación de rigidez					
Rigidez del sistema	V_{RB}	0,1178	0,0813	0,0196	[-]

$V_{RB} = \frac{S_R}{S_{Bh}} = \frac{8 \cdot S_0}{S_{Bh}}$					(6.15)
Relación de rigidez	V _S	0,2080	0,1645	 [-]	
$V_{S} = \frac{S_{R}}{ c_{V}^{*} \cdot S_{BV}}$					(6.08a)
1.2.2.9. Coeficientes					
Relación por presión de enterramiento (apoyo Coeficiente por presión de reacción del apoyo		0,400 0,486	0,400 0,605	 [-] [-]	
$K^* = \frac{c_{h,qv}}{V_{RB} - c_{h,qh^*}}$					(6.14)
Coeficiente por presión de reacción del apoyo	C _V *	-0,060	-0,052	 [-]	
$c_{V}^{*} = c_{V,qV} + c_{V,qh^{*}} \cdot K^{*}$					(6.13)
1.2.2.10. Factores de concentracion λR y λB					
Factor de concentración máximo	max λ	1,020	1,020	 [-]	
max $\lambda = 1 + \frac{\frac{h}{d_a}}{\frac{3.5}{a'} + \frac{2.2}{\frac{E_4}{E_1}} \cdot (a' - 0.25)} + \frac{0.62}{a'} + \frac{\frac{E_4}{E_1}}{(a' - 0.25)} \cdot (a' - 0.25)}$	1,6 '-0,25) · h				(6.04)
Coeficiente por factor de concentración máximo	K'	0,895	0,887	 [-]	
$K' = -\frac{c_{v,qh} + \frac{c_{h,qh}}{c_{h,qv}} \cdot c_{v,qh^*} \cdot K^*}{c_{v,qv} + c_{v,qh^*} \cdot K^*}$					(6.06b)
Factor de concentración sobre el tubo, valor inicial	λ_{R}	0,916	0,893	 [-]	
$\lambda_{R} = \frac{\max \lambda \cdot V_{s} + a' \cdot \frac{4 \cdot K_{2} \cdot K'}{3} \cdot \frac{\max \lambda - 1}{a' - 0,25}}{V_{s} + a' \cdot \frac{3 + K_{2} \cdot K'}{3} \cdot \frac{\max \lambda - 1}{a' - 0,25}}$					(6.06a)
Factor de concentración sobre el tubo, bajo el efecto de la zanja	λ_{RG}	0,958	0,947	 [-]	
$\lambda_{RG} = \frac{\lambda_R - 1}{3} \cdot \frac{b}{d_a} + \frac{4 - \lambda_R}{3}$					(6.21a)
Factor de concentración sobre el tubo, límite	λ_{fo}	3,850	3,850	 [-]	
superior Factor de concentración sobre el tubo, limite	λ_{fu}	0,560	0,560	 [-]	
inferior Factor de concentación sobre el tubo, valor	λ_{RG}	0,958	0,947	 [-]	
final Factor de concentración del suelo	λ_{B}	1,028	1,036	 [-]	

$\lambda_{\rm B} = \frac{4 - \lambda_{\rm R}}{3}$					(6.07)			
1.2.2.11. Distribución de presiones en la circunferencia del tubo								
Carga vertical total	q_{v}	52,86	52,64		kN/m²			
$q_v = \lambda_{RG} \cdot p_E + p_v$					(6.24)			
Presion lateral	q _h	9,35	9,40		kN/m²			
$q_h = K_2 \cdot \left(\lambda_B \cdot p_E + \gamma_B \cdot \frac{d_a}{2} \right)$					(7.01)			
Presión de reacción del apoyo (carga del suelo)	q* _h	21,36	26,44		kN/m²			
$q_{h}^{*} = \frac{c_{h,q_{V}} \cdot q_{V} + c_{h,q_{h}} \cdot q_{h}}{V_{RB} - c_{h,q_{h}}^{*}}$					(7.02a)			
Presión de reacción del apoyo (sección llena)	q* _{hw}	0,47	0,99		kN/m²			
$q^*_{hw} = \frac{c_{hw} \cdot q_w}{V_{RB} - c_{h,qh}^*}$					(7.02b)			
1.2.3. Sección fuerzas clave								
Momento debido a cargas verticales totales Momento debido a la presión lateral Momento debido a la reacción de la presión de horizontal Momento debido a la reacción de la presión de (sección llena) Momento debido a las cargas muertas Momento debido a la sección llena Momento debido a la presión del agua Momento debido al nivel freático a la altura de	el apoyo	M _{qv} M _{qh} M* _{qh} M* _{qw} M _g M _w M _{pw} M _{pa1}	corto plazo 0,239 -0,041 -0,067 -0,001 0,001 0,004 0,013 0,000	largo plazo 0,238 -0,041 -0,083 -0,003 0,001 0,004 0,012 0,000	kNm/m kNm/m kNm/m kNm/m kNm/m kNm/m kNm/m			
$\Sigma M = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + N_g$	1 _{pw}							

(sección llena) Momento debido a las cargas muertas Momento debido a la sección llena Momento debido a la presión del agua Momento debido al nivel freático a la altura de la clave	M _g M _w M _{pw} M _{pa1}	0,001 0,004 0,013 0,000	0,001 0,004 0,012 0,000	kNm/m kNm/m kNm/m kNm/m	
Momento debido di filvoi frodutos di la ditura de la diave	ттра г	0,000	0,000	KINIII	
$\Sigma M = M_{qv} + M_{qh} + M^*_{qh} + M^*_{qw} + M_g + M_w + M_{pw}$					
Momentos totales	ΣΜ	0,149	0,128	kNm/m	
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pa1}$					
Momentos totales sin presión interna/externa	ΣM_{sonst}	0,136	0,117	kNm/m	
$\Sigma M'= M_{qv} + M_{qh} + M^*_{qh} + M_g$					
Momentos totales debidos a la sección llena y a la presión	ΣΜ'	0,133	0,116	kNm/m	
Fuerza normal debida a las cargas verticales totales Fuerza normal debida a la presión lateral Fuerza normal debida a la reacción de la presión del lecho Fuerza normal debida a la reacción de la presión del lecho (relleno del agua) Fuerza normal debida al peso muerto Fuerza normal debida al relleno de agua Fuerza normal debida al nivel freático hasta la clave	$\begin{array}{c} N_{qv} \\ N_{qh} \\ N^*_{qh} \\ N^*_{qw} \end{array}$ $\begin{array}{c} N_g \\ N_w \\ N_{pa1} \end{array}$	0,188 -1,231 -1,623 -0,035 0,005 0,108 0,000	0,187 -1,239 -2,009 -0,075 0,005 0,108 0,000	kN/m kN/m kN/m kN/m kN/m kN/m	
Fuerzas totales normales	ΣΝ	66,886	59,294	kN/m	

Total sin presión interna/externa	ΣN _{sonst}	-2,588	-3,023	kN/m
Total sin sección llena y sin presión	ΣΝ'	-2,661	-3,056	kN/m
1.2.4. Sección fuerzas generatriz sobre el diámetro horiz	ontal del tubo)		
Manageta dabida a agreea verticales totales	NA	corto plazo	largo plazo	Ish Iron /ron
Momento debido a cargas verticales totales Momento debido a la presión lateral	M _{qv} M _{ah}	-0,243 0,041	-0,242 0,041	kNm/m kNm/m
Momento debido a la reacción de la presión del apoyo horizontal	M* _{qh}	0,077	0,095	kNm/m
Momento debido a la reacción de la presión del apoyo (sección llena)	M* _{qw}	0,002	0,004	kNm/m
Momento debido a las cargas muertas	M_g	-0,001	-0,001	kNm/m
Momento debido a la sección llena	Mw	-0,005	-0,005	kNm/m
Momento debido a la presión del agua Momento debido al nivel freático a la altura de la clave	M _{pw}	0,013 0,000	0,012 0,000	kNm/m kNm/m
inomento debido al filver freatico a la altura de la ciave	M _{pa1}	0,000	0,000	KINIII/III
$\Sigma M = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pw}$				
Momentos totales	ΣΜ	-0,117	-0,097	kNm/m
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pa1}$				
Momentos totales sin presión interna/externa	ΣM_{sonst}	-0,130	-0,108	kNm/m
$\Sigma M'= M_{qv} + M_{qh} + M^*_{qh} + M_g$				
Momentos totales debidos a la sección llena y a la presión	ΣΜ'	-0,127	-0,107	kNm/m
Fuerza normal debida a las cargas verticales totales	N_{qv}	-6,962	-6,933	kN/m
Fuerza normal debida a la presión lateral	N _{gh}	0,000	0,000	kN/m
Fuerza normal debida a la reacción de la presión del lecho	N* ['] qh	0,000	0,000	kN/m
Fuerza normal debida a la reacción de la presión del lecho (relleno del agua)	N*qw	0,000	0,000	kN/m
Fuerza normal debida al peso muerto	N_g	-0,032	-0,032	kN/m
Fuerza normal debida al relleno de agua	N _w	0,037	0,037	kN/m
Fuerza normal debida al nivel freático hasta la clave	N _{pa1}	0,000	0,000	kN/m
Fuerzas totales normales	ΣΝ	62,517	55,389	kN/m
Total sin presión interna/externa	ΣN _{sonst}	-6,957	-6,928	kN/m
Total sin sección llena y sin presión	ΣΝ'	-6,995	-6,965	kN/m
1.2.5. Sección fuerzas base		corto plazo	largo plazo	
Momento debido a cargas verticales totales	M_{qv}	0,252	0,251	kNm/m
Momento debido a la presión lateral	M _{gh}	-0,041	-0,041	kNm/m
Momento debido a la reacción de la presión del apoyo horizontal	M* _{qh}	-0,067	-0,083	kNm/m
Momento debido a la reacción de la presión del apoyo (sección llena)	M^*_{qw}	-0,001	-0,003	kNm/m
Momento debido a las cargas muertas	M_q	0,001	0,001	kNm/m
Momento debido a la sección llena	$M_W^{\mathfrak{s}}$	0,006	0,006	kNm/m
Momento debido a la presión del agua	M_{pw}	0,013	0,012	kNm/m
Momento debido al nivel freático a la altura de la clave	M _{pa1}	0,000	0,000	kNm/m
$\Sigma M = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pw}$				
Momentos totales	ΣΜ	0,163	0,143	kNm/m
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_{q} + M_{w} + M_{pa1}$				
sonstqvqn qn qwgwpa1				

Momentos totales sin presión interna/externa		ΣM_{sonst}	0,150	0,132	kNm/m
$\Sigma M' = M_{qv} + M_{qh} + M^*_{qh} + M_g$					
Momentos totales debidos a la sección llena y	a la presión	ΣΜ'	0,146	0,129	kNm/m
Fuerza normal debida a las cargas verticales of Fuerza normal debida a la presión lateral Fuerza normal debida a la reacción de la pres Fuerza normal debida a la reacción de la pres (relleno del agua)	ión del lecho	N _{qv} N _{qh} N* _{qh} N* _{qw}	-0,188 -1,231 -1,623 -0,035	-0,187 -1,239 -2,009 -0,075	kN/m kN/m kN/m kN/m
Fuerza normal debida al peso muerto Fuerza normal debida al relleno de agua Fuerza normal debida al nivel freático hasta la	a clave	N _g N _w N _{pa1}	-0,005 0,238 0,000	-0,005 0,238 0,000	kN/m kN/m kN/m
Fuerzas totales normales Total sin presión interna/externa Total sin sección llena y sin presión		$\Sigma N \\ \Sigma N_{sonst} \\ \Sigma N'$	66,630 -2,844 -3,047	59,040 -3,277 -3,440	kN/m kN/m kN/m
1.2.6. Caso de carga a corto plazo					
1.2.6.1. prueba de tensión					
Coeficiente de superposición de tensiones: Relación de deflexión: Presión interior resultante (pl - pW):			Ζ η p _{I,res}	1,21 2,88 5,63	[-] [-] bar
Valor característico de la tensión en sentido ci	ircunferencial:		σ_{RZ}	23,0	N/mm²
$\sigma_{R,res} = \frac{\sigma_{qv,qh,qh^*} \cdot \sigma_R + \sigma_{sonst} \cdot \sigma_{R,L}}{\sigma_{qv,qh,qh^*} + \sigma_{sonst}}$					(9.01c)
Interior:		clave	generatriz sobre el diámetro horizontal del tubo	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a Y _{BZ,a}	2,922 7,872	-3,367 	3,243 7,093	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	Y _{BD} ,a		6,830		[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	4,185 5,496	4,185 5,496	4,185 5,496	N/mm² [-]
Factor de reducción de acuerdo a Netzer/Pattis	n	0,730	0,708	0,713	[-]
Tensión por cálculo de superposición Coeficiente de seguridad para cálculo de superposición, tensión por flexión:	σ _r es Y _{BZ,res}	5,189 4,433	0,579 39,732	5,299 4,340	N/mm² [-]
Coeficiente de seguridad para cálculos de	YBD,res				[-]
superposición, compresión por flexión: Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	23,00	23,00	23,00	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	23,00	23,00	23,00	N/mm²

Exterior:		clave	generatriz sobre el diámetro horizontal del tubo	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a YBZ,a	-2,985 	2,291 10,038	-3,310 	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a	7,704		6,949	[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	4,185 5,496	4,185 5,496	4,185 5,496	N/mm² [-]
Factor de reducción de acuerdo a Netzer/Pattis	n	0,726	0,776	0,710	[-]
Tensión por cálculo de superposición	$\sigma_{r}es$	0,872	5,028	0,622	N/mm²
Coeficiente de seguridad para cálculo de superposición, tensión por flexión:	YBZ,res	26,388	4,574	36,989	[-]
Coeficiente de seguridad para cálculos de superposición, compresión por flexión:	YBD,res				[-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	23,00	23,00	23,00	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	23,00	23,00	23,00	N/mm²

Todos los coeficientes de seguridad calculados en la prueba de tensión son suficientes.

1.2.6.2. Prueba de deformación

Modo de cálculo: Relación: Relación 'I/(A·rm²)·κq':				lineal I/(A·rm²) I/(A·rm²)·κ _q		0,00132 0,00132	
Coeficiente de deflexión para momentos de deflexión	C _V	q_{v}	-0,0893	q _h 0,0833	q _h *	0,0640	[-]
Coeficiente de deflexión por fuerzas normales Coeficiente de deflexión por fuerzas laterales Coeficiente resultante de deformación	cN _v cQ _v c' _v		-0,6830 -0,3590 -0,0915	-0,6810 0,3350 0,0836		-0,2470 0,2430 0,0646	[-] [-] [-]
Cambio del diámetro vertical: Cambio del diámetro horizontal:				$\Delta d_{ m V} \ \Delta d_{ m h}$		3,52 3,31	mm mm
Deformación vertical relativa: Deflexión admisible:				δ_v zul δ_v		1,34 6,00	% %

La deflexión determinada es menor que la deflexión permitida.

1.2.6.3. Prueba de estabilidad (lineal):

Carga vertical total: kN/m^2 52,86 Factor de reducción de carga de colapso por cargas de suelo/tráfico: 0,86 [-] Carga vertical total crítica: 1.003,0 kN/m²

$$krit q_v = \kappa_{v2} \cdot \left\{ 3 + \frac{1}{3 V_{RB}} \right\} \cdot 8S_0 \tag{9.06b}$$

La prueba de colapso por presión de agua no aplica, dado que no hay presencia de nivel freático ni vacío.

Coeficiente de seguridad de estabilidad: Coeficiente global de seguridad requerido, fall	o por inestabilida	d:	γ erf γ _{stab}	18,97 2,00	[-] [-]
Los coeficientes de seguridad al pandeo dete	rminados son su	ficientes.			
1.2.7. Caso de carga a largo plazo					
1.2.7.1. prueba de tensión					
Coeficiente de superposición de tensiones: Relación de deflexión: Presión interior resultante (pl - pW):			Ζ η p _{I,res}	5,51 3,65 5,05	[-] [-] bar
Valor característico de la tensión en sentido ci	rcunferencial:		σ_{RZ}	17,5	N/mm²
$\sigma_{R,res} = \frac{\sigma_{qv,qh,qh^*} \cdot \sigma_R + \sigma_{sonst} \cdot \sigma_{R,L}}{\sigma_{qv,qh,qh^*} + \sigma_{sonst}}$					(9.01c)
Interior:		clave	generatriz sobre el diámetro horizontal del	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a YBZ,a	2,467 8,492	tubo -2,877 	2,787 7,518	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a		7,282		[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	3,754 4,662	3,754 4,662	3,754 4,662	N/mm² [-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	18,87	6,17	18,97	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	18,87	6,17	18,97	N/mm²
Exterior:		clave	generatriz sobre el diámetro horizontal del	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a YBZ,a	-2,618 	tubo 1,844 11,361	-2,941 	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	Y _{BD} ,a	8,004		7,124	[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	3,754 4,662	3,754 4,662	3,754 4,662	N/mm² [-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	9,55	18,64	5,01	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	9,55	18,64	5,01	N/mm²

Todos los coeficientes de seguridad calculados en la prueba de tensión son suficientes.

1.2.7.2. Prueba de deformación

Modo de cálculo: Relación: Relación 'I/(A·rm²)·κq':				lineal I/(A·rm²) I/(A·rm²)·κ _q		0,00132 0,00132	
Coeficiente de deflexión para momentos de deflexión	C _V	q _v	-0,0893	q _h 0,0833	q _h *	0,0640	[-]
Coeficiente de deflexión por fuerzas normales Coeficiente de deflexión por fuerzas laterales Coeficiente resultante de deformación	cN _v cQ _v c' _v		-0,6830 -0,3590 -0,0915	-0,6810 0,3350 0,0836		-0,2470 0,2430 0,0646	[-] [-] [-]
Cambio del diámetro vertical: Cambio del diámetro horizontal:				$\Delta d_{v} \ \Delta d_{h}$		4,43 4,10	mm mm
Deformación vertical relativa: Deflexión admisible:				δ_v zul δ_v		1,68 6,00	% %

La deflexión determinada es menor que la deflexión permitida.

1.2.7.3. Prueba de estabilidad (lineal):

Carga vertical total: Factor de reducción de carga de colapso por cargas de suelo/tráfico: Carga vertical total crítica:	q _v K _{v2} krit q _v	52,64 0,86 834,9	kN/m² [-] kN/m²	
krit $q_v = 2 \cdot \kappa_{v2} \cdot (8S_0 \cdot S_{Bh})^{0.5}$			(9.0	6a)

La prueba de colapso por presión de agua no aplica, dado que no hay presencia de nivel freático ni vacío.

Coeficiente de seguridad de estabilidad: γ 15,86 [-] Coeficiente global de seguridad requerido, fallo por inestabilidad: erf γ_{stab} 2,00 [-]

Los coeficientes de seguridad al pandeo determinados son suficientes.

Todas las pruebas necesarias son correctas.

INFORME COMPLETO

Estudio estático para Tuberías A 127

Proyecto:	Proyecto de infraestructuras hidráulicas urbanas en el barrio La Viña, termino municipal de Lorca (Murcia): Red distribución de agua potable
Empresa / Entidad:	Universidad Politécnica de Valencia - ETSICCP
Autor:	Alba Traver Gual
Informe n°:	010
Fecha:	15/09/2015

Este programa es una herramienta gratuita, que puede ser utilizada por personas con conocimientos técnicos en el cálculo estático de tuberías. El programa no puede reemplazar al ingeniero responsable.

Contenido

1. : DN 315	3
1.1. Entrada de datos:	3
1.1.1. Opciones de seguridad	3
1.1.2. Suelo	3
1.1.3. Carga	3
1.1.4. Instalación	3
1.1.5. Tubo de la base de datos	4
1.2. Resultados:	4
1.2.1. resultados intermedios del tubo	4
1.2.1.1. propiedades del material	4
1.2.1.2. Factores de seguridad	5 5
 1.2.2. Resultados intermedios para caso de carga 1.2.2.1. geometría del tubo 	5
1.2.2.2. Teoría del tabo	5
1.2.2.3. Carga	5
1.2.2.4. Módulo de deformación del suelo EB	5
1.2.2.5. Valores de rigidez del suelo	5 6
 1.2.2.6. Ángulo de apoyo, proyección relativa efectiva y ángulo de fricción 1.2.2.7. Valores característicos del material del tubo y rigidez anular 	6
1.2.2.8. relación de rigidez	6
1.2.2.9. Coeficientes	7
1.2.2.10. Factores de concentracion λR y λB	7
1.2.2.11. Distribución de presiones en la circunferencia del tubo	8
1.2.3. Sección fuerzas clave	8
1.2.4. Sección fuerzas generatriz sobre el diámetro horizontal del tubo	9
1.2.5. Sección fuerzas base	9
1.2.6. Caso de carga a corto plazo	10
1.2.6.1. prueba de tensión	10
1.2.6.2. Prueba de deformación	11
1.2.6.3. Prueba de estabilidad (lineal):	11
1.2.7. Caso de carga a largo plazo	12
1.2.7.1. prueba de tensión	12
1.2.7.2. Prueba de deformación	13
1.2.7.3. Prueba de estabilidad (lineal):	13

1.: DN 315

Descripción del tramo: DN 315 Tipo de cálculo: Según tabla

Añadir dibujo para imprimir:

1.1. Entrada de datos:

1.1.1. Opciones de seguridad

Clase de seguridad: A (caso normal) Deflexión admisible: 6% (habitual)

De acuerdo con la nota 39 de la ATV 127 Tratamiento de la presión interna:

Menores factores de seguridad para compresión por flexión: no (ATV A 127) No

La aplicación de la ATV A 127 no ha sido verificada para ver si la rigidez

circunferencial mínima ha sido alcanzada:

1.1.2. Suelo

Tipo de relleno: Cálculo E1: Módulo de elasticidad E1: Tipo de relleno en la zona del tubo: Cálculo E20: Módulo de elasticidad E20: Tipo de suelo natural: Cálculo E3: Módulo de elasticidad E3: E4 = 10 · E1: Suelo bajo la zanja: Cálculo E4: Módulo de elasticidad E4:	G1 Módulo de ela E1 G1 Módulo de ela E20 G4 Módulo de ela E3 No G4 Módulo de ela E4	8,0 asticidad E 16,0 asticidad E 1,5	N/mm² N/mm² N/mm²
1.1.3. Carga			
Altura de recubrimiento: Densidad del suelo: Carga superficial adicional: Nivel freático máximo sobre el lecho del tubo: Nivel freático mínimo sobre el lecho del tubo: Presión interna, corto plazo: Presión interna, largo plazo: Sección llena: Densidad del fluido: Carga de tráfico:	h Y p ₀ h _{W,max} h _{W,min} P _{I,K} P _{I,L} Si YF SLW 30	1,00 20,0 0,0 0,00 0,00 5,3 4,8	m kN/m³ kN/m² m m bar bar kN/m³
1.1.4. Instalación			
Instalación:	Zanja		

Ancho de zanja: b Ángulo del talud: β 70 Condiciones de relleno: A4 Condiciones de la instalación: В4 Tipo de apoyo: suelto Ángulo de apoyo: 120° Proyección relativa: а

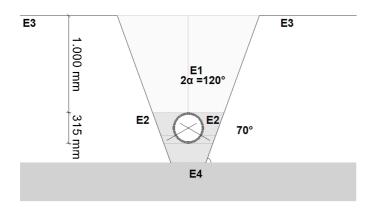
0,74

1,00

m

[-]

1.1.5. Tubo de la base de datos


Material:

Presión nominal:

Diámetro nominal:

PE 100 PN = 10,0 bar (SDR = 17,0) DN 315 (18,7 mm)

Carga de tráfico: SLW 30

736 mm

1.2. Resultados:

1.2.1. resultados intermedios del tubo

Diámetro interior: Diámetro exterior: Radio del eje centroide de la pared del tubo: Espesor: Proporción: Factor de corrección de la curvatura interior: Factor de corrección de la curvatura exterior:	d _i d _a r _m s r _m /s α _{ki} α _{ka}	277,6 315,0 148,2 18,7 7,922 1,042 0,958	mm mm mm [-] [-]
Predeformación local:	$\begin{array}{c} \delta_{vl} \\ \delta_{vg} \end{array}$	0,00	%
Predeformación (ovalización antes de aplicación de la carga):		1,00	%
Superficie del perfil radial: Distancia de inercia: Momento de inercia: Momento resistente exterior: Momento resistente interior:	A _{rad}	18,7	mm²/mm
	e	9,4	mm
	I	544,9	mm^4/mm
	W _a	58,3	mm³/mm
	W _i	58,3	mm³/mm

1.2.1.1. propiedades del material

		corto plazo	largo plazo	
Gravedad específica	YR	9,4	9,4	kN/m³
Coeficiente de poisson	V	0,38	0,38	[-]

<u>Walar.5a kadteréstide riteiblezó dellos delle</u> lasticidad en sentido circunferencial	E _R	1.200,0	200,0	N/mm²
Valor característico de tracción por deflexión Valor característico de la deflexión radial por esfuerzo de compresión	σ_{RBZ}	23,0 23,0	17,5 17,5	N/mm² N/mm²
Valor característico de la tensión en sentido circunferencial	σ_{RZ}	23,0	17,5	N/mm²
1.2.1.2. Factores de seguridad				
Coeficiente global de seguridad requerido, fallo por inestabilidad, tensión a tracción	$\text{erf } \gamma_{RBZ}$	2,50	2,50	[-]
Coeficiente global de seguridad requerido, fallo por	$\text{erf } \gamma_{RBD}$	2,50	2,50	[-]
inestabilidad, tensión a compresión Coeficiente global de seguridad requerido, fallo por inestabilidad	erf γ _{stab}	2,00	2,00	[-]
1.2.2. Resultados intermedios para caso de carga				
1.2.2.1. geometría del tubo				
Radio del eje centroide de la pared del tubo:		r _m	148,2	mm
Factor de corrección de la curvatura interior: Factor de corrección de la curvatura exterior:		α _{ki} α _{ka}	1,042 0,958	[-] [-]
1.2.2.2. Teoría del silo				
Coeficiente de carga del suelo к para carga en zanja (Teoría	del Silo):	К	1,000	[-]
$\kappa = \frac{1 - e^{-2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}}{2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}$				(5.04)
Coeficiente de carga del suelo κ0 para cargas superficiales (Ί	Teoría del Silo):	κ ₀	1,000	[-]
$\kappa_0 = e^{-2 \cdot K_1 \cdot \tan \delta \cdot \frac{h}{b}}$				(5.05)
κ0 y κ están indicadas como 1, porque E1 es mayor que E3.				
1.2.2.3. Carga				
Nivel freático máximo sobre la cama del tubo: Carga vertical debida al peso del relleno: Carga vertical debida al peso del relleno y a la carga superficial: Tensión debida a carga de tráfico: Coefficiente de impacto (incl.):		hw.scheitel P _{Erd} P _E P _V ¢	0,00 20,00 20,00 33,50 1,40	m kN/m² kN/m² kN/m² [-]
1.2.2.4. Módulo de deformación del suelo EB				
Módulo elástico del relleno bajo carga: Módulo elástico de los riñones bajo carga: Factor de reducción por fluencia: Factor de reducción E20 (nivel freático): Factor de reducción E20 (zanja estrecha): Módulo elástico del apoyo (reducido): Módulo elástico del suelo natural: Módulo elástico del suelo bajo el tubo:		$E_{1,\sigma}$ $E_{20,\sigma}$ f_1 f_2 α_B $E_{2,\sigma}$ $E_{3,\sigma}$ $E_{4,\sigma}$	8,00 16,00 1,000 1,000 1,000 16,00 1,50 1,50	N/mm² N/mm² [-] [-] N/mm² N/mm²

Factor de corrección por rigidez del apoyo hori	zontal:		ζ	0,162	[-]
1.667					
$\zeta = \frac{1,667}{\Delta f + (1,667 - \Delta f) \cdot \frac{E_2}{E_3}}$					(6.17)
$\Delta f = \frac{\frac{b}{d_a} - 1}{0.982 + 0.283 \cdot \left(\frac{b}{d_a} - 1\right)} \le 1,667$				Corr	rección (6.18)
Si el angulo de talud de la zanja es < 90° se debe conside zanja a la altura de la corona	rar la anchura de la	zanja a la altura de		_	
Rigidez del apoyo horizontal:			S_{Bh}	1,553	N/mm²
S_{Bh} = 0,6 · ζ · E_2					(6.16)
Rigidez de apoyo vertical:			S_{Bv}	16,000	N/mm²
$S_{BV} = \frac{E_2}{a}$					(6.12)
1.2.2.6. Ángulo de apoyo, proyección relativa e	efectiva y ángulo	o de fricción			
Ángulo de apoyo, proyección relativa efectiva y Proyección incrementada debido a la pérdida o Proyección relativa efectiva:			2α a _S a'	120 1,00 0,500	。 [-] [-]
$a'=a_{S}-\frac{E_1}{E_2} \ge 0.26$					(6.05)
Ángulo de fricción interna: Ángulo de fricción de la pared:			φ' δ	20,000 20,000	0
		corto plazo Todas las cargas	largo plazo Cargas del suelo cargas de	largo plazo otro Cargas	
			tráfico		
1.2.2.7. Valores característicos del material de					
Valor característico del módulo de elasticidad en sentido circunferencial	E _R	1.200,0	826,2	200,0	N/mm²
Valor característico de tracción por deflexión Valor característico de la deflexión radial por esfuerzo de compresión	σ_{RBZ} σ_{RBD}	23,0 23,0	20,9 20,9	17,5 17,5	N/mm² N/mm²
Valor característico de la tensión en sentido circunferencial	σ_{RZ}	23,0	20,9	17,5	N/mm²
Rigidez del tubo	S_R	201,104	138,452	33,517	kN/m²
$S_{R} = \frac{E_{R} \cdot I}{r_{m}^{3}}$					(6.10a)
1.2.2.8. relación de rigidez					
Rigidez del sistema	V_{RB}	0,1295	0,0891	0,0216	[-]

$V_{RB} = \frac{S_R}{S_{Bh}} = \frac{8 \cdot S_0}{S_{Bh}}$					(6.15)
Relación de rigidez	V_S	0,2026	0,1590	 [-]	
$V_{S} = \frac{S_{R}}{ c_{v}^{*} \cdot S_{Bv}}$					(6.08a)
1.2.2.9. Coeficientes					
Relación por presión de enterramiento (apoyo Coeficiente por presión de reacción del apoyo		0,400 0,457	0,400 0,575	 [-] [-]	
$K^* = \frac{c_{h,qv}}{V_{RB} - c_{h,qh^*}}$					(6.14)
Coeficiente por presión de reacción del apoyo	C _V *	-0,062	-0,054	 [-]	
$c_v^* = c_{v,qv} + c_{v,qh^*} \cdot K^*$					(6.13)
1.2.2.10. Factores de concentracion λR y λB					
Factor de concentración máximo	max λ	1,019	1,019	 [-]	
max $\lambda = 1 + \frac{\frac{h}{d_a}}{\frac{3.5}{a'} + \frac{2.2}{\frac{E_4}{F_1}} \cdot (a' - 0.25)} + \frac{0.62}{a'} + \frac{\frac{E_4}{E_4}}{\frac{E_4}{F_1}} \cdot (a' - 0.25)}$	1,6 n' - 0,25)				(6.04)
Coeficiente por factor de concentración máximo	K'	0,896	0,889	 [-]	
$K'= - \frac{c_{v,qh} + \frac{c_{h,qh}}{c_{h,qv}} \cdot c_{v,qh^*} \cdot K^*}{c_{v,qv} + c_{v,qh^*} \cdot K^*}$					(6.06b)
Factor de concentración sobre el tubo, valor inicial	λ_{R}	0,916	0,893	 [-]	
$\lambda_{R} = \frac{\max \lambda \cdot V_{s} + a' \cdot \frac{4 \cdot K_{2} \cdot K'}{3} \cdot \frac{\max \lambda \cdot 1}{a' \cdot 0,25}}{V_{s} + a' \cdot \frac{3 + K_{2} \cdot K'}{3} \cdot \frac{\max \lambda \cdot 1}{a' \cdot 0,25}}$					(6.06a)
Factor de concentración sobre el tubo, bajo el efecto de la zanja	λ_{RG}	0,963	0,952	 [-]	
$\lambda_{RG} = \frac{\lambda_R - 1}{3} \cdot \frac{b}{d_a} + \frac{4 - \lambda_R}{3}$					(6.21a)
Factor de concentración sobre el tubo, límite	λ_{fo}	3,850	3,850	 [-]	
superior Factor de concentración sobre el tubo, limite	λ_{fu}	0,593	0,593	 [-]	
inferior Factor de concentación sobre el tubo, valor	λ_{RG}	0,963	0,952	 [-]	
final Factor de concentración del suelo	λ_{B}	1,028	1,036	 [-]	

$\lambda_{B} = \frac{4 - \lambda_{R}}{3}$					(6.07)
1.2.2.11. Distribución de presiones en la circur	nferencia del tul	<u>bo</u>			
Carga vertical total	q_{v}	52,75	52,54		kN/m²
$q_V = \lambda_{RG} \cdot p_E + p_V$					(6.24)
Presion lateral	q _h	9,48	9,55		kN/m²
$q_h = K_2 \cdot \left(\lambda_B \cdot p_E + \gamma_B \cdot \frac{d_a}{2} \right)$					(7.01)
Presión de reacción del apoyo (carga del suelo)	q* _h	19,98	24,98		kN/m²
$q^*_h = \frac{c_{h,qv} \cdot q_v + c_{h,qh} \cdot q_h}{V_{RB} - c_{h,qh}^*}$					(7.02a)
Presión de reacción del apoyo (sección llena)	q* _{hw}	0,49	1,09		kN/m²
$q^*_{hw} = \frac{c_{hw} \cdot q_w}{V_{RB} - c_{h,qh}^*}$					(7.02b)
1.2.3. Sección fuerzas clave					
Momento debido a cargas verticales totales Momento debido a la presión lateral Momento debido a la reacción de la presión de horizontal	el apoyo	M _{qv} M _{qh} M* _{qh}	corto plazo 0,302 -0,052 -0,079	largo plazo 0,301 -0,052 -0,099	kNm/m kNm/m kNm/m

		corto plazo	largo plazo		
Momento debido a cargas verticales totales	M_{av}	0,302	0,301	kNm/m	
Momento debido a la presión lateral	Mah	-0,052	-0,052	kNm/m	
Momento debido a la reacción de la presión del apoyo	M* _{gh}	-0,079	-0,099	kNm/m	
horizontal	71				
Momento debido a la reacción de la presión del apoyo	M* _{gw}	-0,002	-0,004	kNm/m	
(sección llena)	4	,	,		
Momento debido a las cargas muertas	M_q	0,001	0,001	kNm/m	
Momento debido a la sección llena	M_w^g	0,006	0,006	kNm/m	
Momento debido a la presión del agua	M_{pw}	0,015	0,014	kNm/m	
Momento debido al nivel freático a la altura de la clave	M _{pa1}	0,000	0,000	kNm/m	
	рат	-,	5,555		
$\Sigma M = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pw}$					
Momentos totales	ΣΜ	0,192	0,167	kNm/m	
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_{q} + M_{w} + M_{pa1}$					
Momentos totales sin presión interna/externa	ΣM_{sonst}	0,176	0,153	kNm/m	
$\Sigma M' = M_{qv} + M_{qh} + M^*_{qh} + M_{q}$					
mqv - mqn - m qn - mg					
Momentos totales debidos a la sección llena y a la presión	ΣΜ'	0,172	0,151	kNm/m	
From a small debide a les serves verticales totales	NI	0.044	0.040	1-11/	
Fuerza normal debida a las cargas verticales totales	N _{qv}	0,211	0,210	kN/m	
Fuerza normal debida a la presión lateral	N _{qh}	-1,405	-1,414	kN/m	
Fuerza normal debida a la reacción de la presión del lecho	N* ['] qh	-1,708	-2,135	kN/m	
Fuerza normal debida a la reacción de la presión del lecho	N* _{qw}	-0,042	-0,093	kN/m	
(relleno del agua)		0.007	0.007	1.817	
Fuerza normal debida al peso muerto	N_g	0,007	0,007	kN/m	
Fuerza normal debida al relleno de agua	N _w	0,137	0,137	kN/m	
Fuerza normal debida al nivel freático hasta la clave	N _{pa1}	0,000	0,000	kN/m	
Fuerzas totales normales	ΣΝ	70,763	63,196	kN/m	

Total sin prosión interna/oyterna	ΣΝ .	-2,801	-3,289	kN/m				
Total sin presión interna/externa Total sin sección llena y sin presión	ΣN _{sonst} ΣN'	-2,896	-3,269	kN/m				
1.2.4. Sección fuerzas generatriz sobre el diámetro horizontal del tubo								
		corto plazo	largo plazo					
Momento debido a cargas verticales totales	M_{qv}	-0,307	-0,306	kNm/m				
Momento debido a la presión lateral	M_{qh}	0,052	0,052	kNm/m				
Momento debido a la reacción de la presión del apoyo horizontal	M*qh	0,091	0,114	kNm/m				
Momento debido a la reacción de la presión del apoyo	M* _{qw}	0,002	0,005	kNm/m				
(sección llena) Momento debido a las cargas muertas	M_{g}	-0,002	-0,002	kNm/m				
Momento debido a la sección llena	M _w	-0,007	-0,007	kNm/m				
Momento debido a la presión del agua	M _{pw}	0,015	0,014	kNm/m				
Momento debido al nivel freático a la altura de la clave	M _{pa1}	0,000	0,000	kNm/m				
$\Sigma M = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_{q} + M_{w} + M_{pw}$								
Momentos totales	ΣΜ	-0,155	-0,129	kNm/m				
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pa1}$								
Momentos totales sin presión interna/externa	ΣM_{sonst}	-0,170	-0,143	kNm/m				
$\Sigma M' = M_{qv} + M_{qh} + M^*_{qh} + M_g$								
Momentos totales debidos a la sección llena y a la presión	ΣΜ'	-0,165	-0,141	kNm/m				
Fuerza normal debida a las cargas verticales totales	N_{qv}	-7,815	-7,784	kN/m				
Fuerza normal debida a la presión lateral	N_{qh}	0,000	0,000	kN/m				
Fuerza normal debida a la reacción de la presión del lecho	N* ['] qh	0,000	0,000	kN/m				
Fuerza normal debida a la reacción de la presión del lecho (relleno del agua)	N* _{qw}	0,000	0,000	kN/m				
Fuerza normal debida al peso muerto	N_g	-0,041	-0,041	kN/m				
Fuerza normal debida al relleno de agua	N _w	0,047	0,047	kN/m				
Fuerza normal debida al nivel freático hasta la clave	N _{pa1}	0,000	0,000	kN/m				
	рат	-,	-,					
Fuerzas totales normales	ΣΝ	65,756	58,707	kN/m				
Total sin presión interna/externa	ΣN_{sonst}	-7,808	-7,778	kN/m				
Total sin sección llena y sin presión	ΣΝ'	-7,856	-7,825	kN/m				
1.2.5. Sección fuerzas base								
		corto plazo	largo plazo					
Momento debido a cargas verticales totales	M_{qv}	0,318	0,317	kNm/m				
Momento debido a la presión lateral	M_{qh}	-0,052	-0,052	kNm/m				
Momento debido a la reacción de la presión del apoyo horizontal	M* _{qh}	-0,079	-0,099	kNm/m				
Momento debido a la reacción de la presión del apoyo (sección llena)	M^*_{qw}	-0,002	-0,004	kNm/m				
Momento debido a las cargas muertas	M_{g}	0,002	0,002	kNm/m				
Momento debido a la sección llena	M_{W}^{9}	0,008	0,008	kNm/m				
Momento debido a la presión del agua	M_{pw}	0,015	0,014	kNm/m				
Momento debido al nivel freático a la altura de la clave	M _{pa1}	0,000	0,000	kNm/m				
$\Sigma M = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_{q} + M_{w} + M_{pw}$								
	Z1.4	0.011	0.400	leNier-fra				
Momentos totales	ΣΜ	0,211	0,186	kNm/m				
$\Sigma M_{sonst} = M_{qv} + M_{qh} + M_{qh}^* + M_{qw}^* + M_g + M_w + M_{pa1}$								

Momentos totales sin presión interna/externa		ΣM _{sonst}	0,195	0,172	kNm/m
$\Sigma M' = M_{qv} + M_{qh} + M^*_{qh} + M_g$					
Momentos totales debidos a la sección llena y	a la presión	ΣΜ'	0,189	0,168	kNm/m
Fuerza normal debida a las cargas verticales a Fuerza normal debida a la presión lateral Fuerza normal debida a la reacción de la pres Fuerza normal debida a la reacción de la pres (relleno del agua)	ión del lecho	N _{qv} N _{qh} N* _{qh} N* _{qw}	-0,211 -1,405 -1,708 -0,042	-0,210 -1,414 -2,135 -0,093	kN/m kN/m kN/m kN/m
Fuerza normal debida al peso muerto Fuerza normal debida al relleno de agua Fuerza normal debida al nivel freático hasta la	ı clave	N _g N _w N _{pa1}	-0,007 0,302 0,000	-0,007 0,302 0,000	kN/m kN/m kN/m
Fuerzas totales normales Total sin presión interna/externa Total sin sección llena y sin presión		ΣΝ ΣΝ _{sonst} ΣΝ'	70,493 -3,071 -3,331	62,927 -3,558 -3,766	kN/m kN/m kN/m
1.2.6. Caso de carga a corto plazo					
1.2.6.1. prueba de tensión					
Coeficiente de superposición de tensiones: Relación de deflexión: Presión interior resultante (pl - pW):			Ζ η Pι,res	1,20 2,96 5,30	[-] [-] bar
Valor característico de la tensión en sentido ci	rcunferencial:		σ_{RZ}	23,0	N/mm²
$\sigma_{R,res} = \frac{\sigma_{qv,qh,qh^*} \cdot \sigma_R + \sigma_{sonst} \cdot \sigma_{R,L}}{\sigma_{qv,qh,qh^*} + \sigma_{sonst}}$					(9.01c)
Interior:		clave	generatriz sobre el diámetro horizontal del tubo	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a Y _{BZ,a}	3,005 7,654	-3,460 	3,331 6,906	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	Y _{BD} ,a		6,648		[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	3,934 5,847	3,934 5,847	3,934 5,847	N/mm² [-]
Factor de reducción de acuerdo a Netzer/Pattis	n	0,717	0,697	0,702	[-]
Tensión por cálculo de superposición Coeficiente de seguridad para cálculo de superposición, tensión por flexión:	σ _r es Y _{BZ,res}	4,974 4,624	0,330 69,635	5,098 4,512	N/mm² [-]
Coeficiente de seguridad para cálculos de superposición, compresión por flexión:	YBD,res				[-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	23,00	23,00	23,00	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	23,00	23,00	23,00	N/mm²

Exterior:		clave h	generatriz sobre el diámetro orizontal del tubo	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa, tensión por flexión:	σ _a YBZ,a	-3,050 	2,379 9,668	-3,377 	N/mm² [-]
Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a	7,541		6,811	[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	3,934 5,847	3,934 5,847	3,934 5,847	N/mm² [-]
Factor de reducción de acuerdo a Netzer/Pattis	n	0,715	0,757	0,700	[-]
Tensión por cálculo de superposición	σ_r es	0,632	4,780	0,390	N/mm²
Coeficiente de seguridad para cálculo de superposición, tensión por flexión:	YBZ,res	36,410	4,812	59,001	[-]
Coeficiente de seguridad para cálculos de superposición, compresión por flexión:	YBD,res				[-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	23,00	23,00	23,00	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	23,00	23,00	23,00	N/mm²

Todos los coeficientes de seguridad calculados en la prueba de tensión son suficientes.

1.2.6.2. Prueba de deformación

Modo de cálculo: Relación: Relación 'I/(A·rm²)·κq':				lineal I/(A·rm²) I/(A·rm²)·κ _q		0,00133 0,00133	
		q_v		q _h	q _h *		
Coeficiente de deflexión para momentos de deflexión	C _V		-0,0893	0,0833		0,0640	[-]
Coeficiente de deflexión por fuerzas normales	cN _v		-0,6830	-0,6810		-0,2470	[-]
Coeficiente de deflexión por fuerzas laterales	cQ _v		-0,3590	0,3350		0,2430	[-]
Coeficiente resultante de deformación	c' _v		-0,0915	0,0836		0,0646	[-]
Cambio del diámetro vertical:				Δd_{v}		4.04	mm
Cambio del diámetro horizontal:				Δd_h		3,81	mm
Deformación vertical relativa:				δ_{V}		1,36	%
Deflexión admisible:				zul δ_{V}		6,00	%

La deflexión determinada es menor que la deflexión permitida.

1.2.6.3. Prueba de estabilidad (lineal):

Carga vertical total:	q_{v}	52,75	kN/m²
Factor de reducción de carga de colapso por cargas de suelo/tráfico:	K _{v2}	0,86	[-]
Carga vertical total crítica:	krit q _v	962,8	kN/m²

krit
$$q_v = \kappa_{v2} \cdot \left(3 + \frac{1}{3 V_{RB}} \right) \cdot 8S_0$$
 (9.06b)

La prueba de colapso por presión de agua no aplica, dado que no hay presencia de nivel freático ni vacío.

Coeficiente de seguridad de estabilidad: Coeficiente global de seguridad requerido, falle	o por inestabilida	ıd:	γ erf γ _{stab}	18,25 2,00	[-] [-]
Los coeficientes de seguridad al pandeo dete	rminados son su	ficientes.			
1.2.7. Caso de carga a largo plazo					
1.2.7.1. prueba de tensión					
Coeficiente de superposición de tensiones: Relación de deflexión: Presión interior resultante (pl - pW):			Ζ η p _{I,res}	5,49 3,77 4,79	[-] [-] bar
Valor característico de la tensión en sentido ci	rcunferencial:		σ_{RZ}	17,5	N/mm²
$\sigma_{R,res} = \frac{\sigma_{qv,qh,qh^*} \cdot \sigma_R + \sigma_{sonst} \cdot \sigma_{R,L}}{\sigma_{qv,qh,qh^*} + \sigma_{sonst}}$					(9.01c)
Interior:		clave	generatriz sobre el diámetro horizontal del tubo	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa,	σ _a Yвz,a	2,554 8,199	-2,974 	2,879 7,275	N/mm² [-]
tensión por flexión: Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a		7,042		[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	3,555 4,922	3,555 4,922	3,555 4,922	N/mm² [-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	18,94	-0,12	19,04	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	18,94	-0,12	19,04	N/mm²
Exterior:		clave	generatriz sobre el diámetro horizontal del tubo	base	
Tensiones debidas a carga externa Coeficiente de seguridad para carga externa,	σ _a YBZ,a	-2,686 	1,936 10,821	-3,012 	N/mm² [-]
tensión por flexión: Coeficiente de seguridad por carga externa, compresión por flexión:	YBD,a	7,798		6,954	[-]
Tensiones debidas a presión interna Coeficiente de seguridad por presión interna	σ _i Yi	3,555 4,922	3,555 4,922	3,555 4,922	N/mm² [-]
Tensión de tracción por flexión a ser considerada	$\sigma_{RBZ,res}$	6,86	18,71	-1,58	N/mm²
Tensión de compresión por flexión a ser considerada	$\sigma_{RBD,res}$	6,86	18,71	-1,58	N/mm²

Todos los coeficientes de seguridad calculados en la prueba de tensión son suficientes.

1.2.7.2. Prueba de deformación

Modo de cálculo: Relación: Relación 'I/(A·rm²)·κq':				lineal I/(A·rm²) I/(A·rm²)·κ _q		0,00133 0,00133	
Coeficiente de deflexión para momentos de deflexión	c _v	q_{v}	-0,0893	q _h 0,0833	q _h *	0,0640	[-]
Coeficiente de deflexión por fuerzas normales Coeficiente de deflexión por fuerzas laterales Coeficiente resultante de deformación	cN _v cQ _v c' _v		-0,6830 -0,3590 -0,0915	-0,6810 0,3350 0,0836		-0,2470 0,2430 0,0646	[-] [-] [-]
Cambio del diámetro vertical: Cambio del diámetro horizontal:				$\Delta d_{v} \ \Delta d_{h}$		5,13 4,77	mm mm
Deformación vertical relativa: Deflexión admisible:				δ_{v} zul δ_{v}		1,73 6,00	% %

La deflexión determinada es menor que la deflexión permitida.

1.2.7.3. Prueba de estabilidad (lineal):

Carga vertical total:	q_{v}	52,54	kN/m²	
Factor de reducción de carga de colapso por cargas de suelo/tráfico:	K _{V2}	0,86	[-]	
Carga vertical total crítica:	krit q _v	798,5	kN/m²	
0.5			(0.0	

 $krit q_{v} = 2 \cdot \kappa_{v2} \cdot (8S_{0} \cdot S_{Bh})^{0.5}$ (9.06a)

La prueba de colapso por presión de agua no aplica, dado que no hay presencia de nivel freático ni vacío.

Coeficiente de seguridad de estabilidad: γ 15,20 [-] Coeficiente global de seguridad requerido, fallo por inestabilidad: γ 2,00 [-]

Los coeficientes de seguridad al pandeo determinados son suficientes.

Todas las pruebas necesarias son correctas.

ANEJO Nº 6: JUSTIFICACIÓN DE PRECIOS

Curso: 2014/2015 Universidad Politécnica de Valencia (UPV) Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos (ETSICCP)

Grado en Ingeniería Civil Tutor: José Ferrer Polo Cotutor: Daniel Aguado Ga

Cotutor: Daniel Aguado García Autora: Alba Traver Gual

Índice

1.	Introducción	. 3
2.	Coeficientes de costes indirectos	. 3
	2.1. Método de cálculo	
	2.2. Cálculo del coeficiente K de costes indirectos	
3.	Justificación de precios	5

1. Introducción

El objeto del presente anejo es la justificación detallada de los precios resultantes para cada una de las unidades de obra incluidas en el Cuadro de Precios N 1 del documento del presupuesto.

Para la determinación del precio se obtienen los costes directos, que son los que se producen en la obra o fuera de ella, y los costes indirectos. La suma de ambos costes para cada unidad nos proporcionan el precio unitario de la unidad.

Los costes directos comprenden los materiales, la maquinaría y la mano de obra que intervienen directamente en la ejecución de la obra. A estos costes se les aplicará el coeficiente de costes indirectos para obtener el precio unitario de la unidad de obra.

Los precios de materiales se han obtenido de catálogos de empresas del sector. Los precios de mano de obra y maquinaria utilizados se han obtenido de la base de datos de la página web www.generadordeprecios.info de CYPE Ingenieros, S.A.

2. Coeficiente de costes indirectos

2.1. Método de cálculo

Según la 0.M de 12 de Junio de 1968, cada precio se obtiene mediante la aplicación de la siguiente expresión:

$$P = \left(\frac{1+k}{100}\right) \times Cd$$

donde:

P: Precio de ejecución material K: Coeficiente de costes indirectos Cd: Coste directo de la unidad de obra

2.2. Cálculo del coeficiente K de costes indirectos

El coeficiente K viene dado por la expresión:

K= K1+K2

donde:

K1: Coeficiente de imprevistos cuyo valor es igual a 1 cuando se trata de obras terrestres.

K2: Porcentaje resultante de la relación entre costes indirectos de instalaciones y personal, y los costes directos. Este sumando está limitado por Ley a un máximo de 5%.

$$K2 = \left(\frac{Ci}{Cd}\right) \times 100$$

donde:

Ci: Coste indirecto de la obra Cd: Coste directo de la obra

Puesto que se prevé una duración de la obra de 3-4 meses, estimandose los siguientes costes indirectos:

	Plazo de ejecución	(€/mes)	€
Personal Técnico y Administrativo	3.5	1,590.00	5,565.00
Instalaciones auxiliares	3.5	3,100.00	10,850.00
		TOTAL	16,414.00

Aplicando a las unidades de obra del proyecto los costes directos, se estima un presupuesto total de la obra, sin tener en cuenta los costes indirectos previstos, de 320,000 €.

De esta forma se tiene:

$$K2 = \left(\frac{16414}{3290000}\right) \times 100 = 5\%$$

Por lo tanto:

Porcentaje de costes indirectos que se aplica en los precios para obtener el precio total.

Proyecto de infraestructuras hidráulicas urbanas en el municipal de Lorca (Murcia): Red distribución	barrio La Viña, termino de agua potable
3. Justificación de precios	

CAPÍTULO 01 MOVIMIENTO DE TIERRAS

CANTIDAD UD RESUMEN

CÓDIGO

E01	М3	EXCAVACIÓN DE ZANJA EN CUALQUIER TIPO DE TERRENO			
		M3 EXCAVACIÓN DE ZANJA EN CUALQUIER TIPO DE TERRENO TRANSPORTE A VERTEDERO), CON EQUIPOS MECÁNICOS	, CARGA Y	
P01	0.332 h	RETROEXCAVADORA HIDRÁULICA SOBRE NEUMÁTICOS DE 115 KW	48.42	16.08	
P02	0.232 h	OFICIAL 2ª CONSTRUCCIÓN	15.92	3.69	
%CI	6.000 %	CI	19.80	1.19	
ı		TOTAL PA	RTIDA		20.96
Asciende el preci	io total de la partida a	la mencionada cantidad de VEINTE EUROS con NOVENTA Y SEIS	S CÉNTIMOS		
E02	М3	CAMA DE ARENA LAVADA			
		M3 CAMA DE ARENA LAVADA, INCLUSO TRANSPORTE, VERTIL TROL DE LA COMPACTACIÓN	DO EN ZANJA, COMPACTACIÓ	N Y CON-	
P03	1.400 M3	ARENA 0/6 TRITURADA	9.71	13.59	
P04	0.101 h	DUMPER DESCARGA FRONTAL DE 2T CARGA ÚTIL	9.25	0.93	
P05	0.040 h	OFICIAL 1ª CONSTRUCCIÓN	17.24	0.69	
P06	0.150 h	OFICIAL 2ª CONSTRUCCIÓN	15.92	2.39	
P07	0.151 h	BANDEJA VIBRANTE DE GUIADO MANUAL	6.38	0.96	
%CI	6.000 %	CI	18.60	1.12	
İ		TOTAL PA	RTIDA		19.68
Asciende el preci	io total de la partida a	la mencionada cantidad de DIECINUEVE EUROS con SESENTA Y	OCHO CÉNTIMOS		
E03	М3	RELLENO DE ZANJA CON MATERIAL M3 RELLENO DE ZANJA CON MATERIAL DE PRESTAMO, INCLU COMPACTACIÓN Y CONTROL DE LA COMPACTACIÓN	JSO TRANSPORTE, VERTIDO	EN ZANJA,	
P08	1.200 M3	MATERIAL DE PRESTAMO	5.16	6.19	
P09	0.010 h	PALA CARGADORA 120KW	40.13	0.40	
P10	0.040 h	OFICIAL 1ª CONSTRUCCIÓN	17.24	0.69	
P11	0.150 h	OFICIAL 2ª CONSTRUCCIÓN	15.92	2.39	
P12	0.100 h	BANDEJA VIBRANTE DE GUIADO MANUAL	6.38	0.64	
%CI	6.000 %	CI	10.30	0.62	
		TOTAL PA	RTIDA		10.93

IMPORTE

PRECIO

SUBTOTAL

Asciende el precio total de la partida a la mencionada cantidad de DIEZEUROS con NOVENTA Y TRES CÉNTIMOS

CÓDIGO

CANTIDAD UD RESUMEN

CODIGO	CANTIDAD OD	RESUMEN	PRECIO	SUBTUTAL	IMPORTE
CAPÍTULO 0	2 MATERIALES				
E04		TUBERÍA PE100 BANDA AZUL CON PN10 Y DN90			
		ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN90, INCLUSO CIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA	REDUCCIÓN, TRANSPO	RTE, COLOCA-	
P13	1.000 ML	TUBERÍA PE100 BANDA AZUL CON PN10 Y DN90	3.77	3.77	
P14	0.022 h	CAMIÓN DE GRÚA DE HASTA 6TON	50.01	1.10	
P15	0.150 h	OFICIAL 1ª FONTANERO	17.82	2.67	
P16	0.150 h	AYUDANTE FONTANERO	16.10	2.42	
%CI	6.000 %	CI	10.00	0.60	
		TOTAL PAR	RTIDA		10.56
Asciende el pre	ecio total de la partida a	la mencionada cantidad de DIEZ EUROS con CINCUENTA Y SEIS $^{\circ}$	CÉNTIMOS		
E05	ML	TUBERÍA PE100 BANDA AZUL CON PN10 Y DN110			
		ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN110, INCLUSO CIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA) REDUCCIÓN, TRANSPO	RTE, COLOCA-	
P17	1.000 ML	TUBERÍA PE100 BANDA AZUL CON PN10 Y DN110	5.45	5.45	
P18	0.022 h	CAMIÓN GRÚA DE HASTA 6TON	50.01	1.10	
P19	0.150 h	OFICIAL 1ª FONTANERO	17.82	2.67	
P20	0.150 h	AYUDANTE FONTANERO	16.10	2.42	
%CI	6.000 %	CI	11.60	0.70	
		TOTAL PAR	TIDA		12.34
Asciende el pre	ecio total de la partida a	la mencionada cantidad de DOCE EUROS con TREINTA Y CUATRO) CÉNTIMOS		12.7
	•		, o		
E06	ML	TUBERÍA PE100 BANDA AZUL CON PN10 Y DN125 ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN125, INCLUSO CIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA) REDUCCIÓN, TRANSPO	RTE, COLOCA-	
P21	1.000 ML	TUBERÍA PE100 BANDA AZUL CON PN10 Y DN125	7.03	7.03	
P22	0.022 h	CAMIÓN GRÚA DE HASTA 6TON	50.01	1.10	
P23	0.150 h	OFICIAL 1º FONTANERO	17.82	2.67	
P24	0.150 h	AYUDANTE FONTANERO	16.10	2.42	
%CI	6.000 %	CI	13.20	0.79	
		TOTAL PAR	 Rtida		14.01
Asciende el pre	ecio total de la partida a	la mencionada cantidad de CATORCE EUROS con UN CÉNTIMOS			
E07	ML	TUBERÍA PE100 BANDA AZUL CON PN10 Y DN160 ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN160, INCLUSO CIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA) REDUCCIÓN, TRANSPO	RTE, COLOCA-	
P25	1.000 ML	TUBERÍA PE100 BANDA AZUL CON PN10 Y DN160	11.28	11.28	
P26	0.022 h	CAMIÓN GRÚA DE HASTA 6TON	50.01	1.10	
P27	0.150 h	OFICIAL 1ª FONTANERO	17.82	2.67	
P28	0.150 h	AYUDANTE FONTANERO	16.10	2.42	
%CI	6.000 %	CI	17.50	1.05	
		TOTAL PAR	 RTIDA		18.52
Asciende el pre	ecio total de la partida a	la mencionada cantidad de DIECIOCHO EUROS con CINCUENTA	Y DOS CÉNTIMOS		
E08	ML	TUBERÍA PE100 BANDA AZUL CON PN10 Y DN180 ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN90, INCLUSO	REDUCCIÓN, TRANSPO	RTE, COLOCA-	
		CIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA			
P29		TUBERÍA PE100 BANDA AZUL CON PN10 Y DN180	14.58	14.58	
P30	0.022 h	CAMIÓN GRÚA DE HASTA 6TON	50.01	1.10	
P31	0.150 h	OFICIAL 1ª FONTANERO	17.82	2.67	
P32	0.150 h	AYUDANTE FONTANERO	16.10	2.42	
%CI	6.000 %	CI	20.80	1.25	
		TOTAL PAR	RTIDA		22.02
Asciende el pre	ecio total de la partida a	la mencionada cantidad de VEINTIDOS EUROS con DOS CÉNTIMO	OS		
	•				

PRECIO

SUBTOTAL

IMPORTE

CANTIDAD UD RESUMEN

ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN200

CÓDIGO

E09

E09	ML	TUBERIA PE100 BANDA AZUL CON PN10 Y DN200	DEDUCCIÓN TRANCRORTE		
		ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN200, INCLUSO CIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA	D REDUCCION, TRANSPORTE	t, COLOCA-	
P33	1.000 ML	TUBERÍA PE100 BANDA AZUL CON PN10 Y DN200	17.58	17.58	
P34	0.022 h	CAMIÓN GRÚA DE HASTA 6TON	50.01	1.10	
P35	0.150 h	OFICIAL 1ª FONTANERO	17.82	2.67	
P36	0.150 h	AYUDANTE FONTANERO	16.10	2.42	
%CI	6.000 %	CI	23.80	1.43	
		TOTAL PAR	RTIDA		25.20
Asciende el prec	io total de la partida a	la mencionada cantidad de VEINTICINCO EUROS con VEINTE CÉ	NTIMOS		
E10	ML	TUBERÍA PE100 BANDA AZUL CON PN10 Y DN225 ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN225, INCLUSO CIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA	O REDUCCIÓN, TRANSPORTE	E, COLOCA-	
P37	1.000 ML	TUBERÍA PE100 BANDA AZUL CON PN10 Y DN225	22.40	22.40	
P38	0.022 h	CAMIÓN GRÚA DE HASTA 6TON	50.01	1.10	
P39	0.150 h	OFICIAL 1ª FONTANERO	17.82	2.67	
P40	0.150 h	AYUDANTE FONTANERO	16.10	2.42	
%CI	6.000 %	CI	28.60	1.72	
		TOTAL PAR	RTIDA		30.31
Asciende el prec	io total de la partida a	la mencionada cantidad de TREINTA EUROS con TREINTA Y UN C	ÉNTIMOS		
E11	ML	TUBERÍA PE100 BANDA AZUL CON PN10 Y DN250	O DEDUCCIÓN TRANCRODES	- 001004	
		ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN250, INCLUSO CIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA	REDUCCION, TRANSPORTE	, COLOCA-	
P41	1.000 ML	TUBERÍA PE100 BANDA AZUL CON PN10 Y DN250	27.50	27.50	
P42	0.022 h	CAMIÓN GRÚA DE HASTA 6TON	50.01	1.10	
P43	0.150 h	OFICIAL 1ª FONTANERO	17.82	2.67	
P44	0.150 h	AYUDANTE FONTANERO	16.10	2.42	
%CI	6.000 %	CI	33.70	2.02	
			RTIDA		35.71
Asciende el prec	io total de la partida a	la mencionada cantidad de TREINTA Y CINCO EUROS con SETEN	TA Y UN CÉNTIMOS		
E12	ML	TUBERÍA PE100 BANDA AZUL CON PN10 Y DN280 ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN280, INCLUSO CIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA	O REDUCCIÓN, TRANSPORTE	E, COLOCA-	
P45	1.000 ML	TUBERÍA PE100 BANDA AZUL CON PN10 Y DN280	34.94	34.94	
P46	0.022 h	CAMIÓN GRÚA DE HASTA 6TON	50.01	1.10	
P47	0.150 h	OFICIAL 1ª FONTANERO	17.82	2.67	
P48	0.150 h	AYUDANTE FONTANERO	16.10	2.42	
%CI	6.000 %	CI	41.10	2.47	
		TOTAL PAR	RTIDA		43.60
Asciende el prec	io total de la partida a	la mencionada cantidad de CUARENTA Y TRES EUROS con SESE	NTA CÉNTIMOS		
E13	ML	TUBERÍA PE100 BANDA AZUL CON PN10 Y DN315 ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN315, INCLUSO CIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA	O REDUCCIÓN, TRANSPORTE	E, COLOCA-	
P49	1.000 ML	TUBERÍA PE100 BANDA AZUL CON PN10 Y DN315	44.13	44.13	
P50	0.022 h	CAMIÓN GRÚA DE HASTA 6TON	50.01	1.10	
P51	0.150 h	OFICIAL 1ª FONTANERO	17.82	2.67	
P52	0.150 h	AYUDANTE FONTANERO	16.10	2.42	
%CI	6.000 %	CI	50.30	3.02	
		TOTAL PAR	 RTIDA		53.34
Asciende el prec	io total de la partida a	la mencionada cantidad de CINCUENTA Y TRES EUROS con TREI	NTA Y CUATRO CÉNTIMOS	3	

PRECIO

SUBTOTAL

IMPORTE

CÓDIGO

CANTIDAD UD RESUMEN

	ACCESORIOS				
E14	U	HIDRANTE TIPO 100			
		U HIDRANTE ENTERRADO DOBLE SALIDA DE COLUMNA SECA DN100 \ COLOCACIÓN, UNIÓN Y PRUEBA	Y PN16, INCLUIDO TE	RANSPORTE,	
P53	1.000 U	HIDRANTE TIPO 100 ENTERRADO DOBLE SALIDA DE COLUMNA SECA	507.50	507.50	
P54	0.450 h	OFICIAL 1ª FONTANERO	17.82	8.02	
P55	0.450 h	AYUDANTE FONTANERO	16.10	7.25	
%CI	6.000 %	CI	522.80	31.37	
		TOTAL PARTIDA.			554.14
Asciende el precio	o total de la partida a	a la mencionada cantidad de QUINIENTOS CINCUENTA Y CUATRO EUR	OS con CATORCE C	ÉNTIMOS	
E15	U	VÁLVULA DE CORTE DN90 U VÁLVULA DE CORTE DE COMPUERTA PARA DN90, INCLUSO TRANS PRUEBA.	SPORTE, COLOCACIÓ	DN, UNIÓN Y	
P56	1.000 U	VÁLVULA DE CORTE DE COMPUERTA DN90 CON REDUCTOR MANUAL	1,324.00	1,324.00	
P57	0.600 h	OFICIAL 1ª FONTANERO	17.82	10.69	
P58	0.600 h	AYUDANTE FONTANERO	16.10	9.66	
%CI	6.000 %	CI	1,344.40	80.66	
İ		TOTAL PARTIDA.			1,425.01
Asciende el precio	total de la partida a	a la mencionada cantidad de MIL CUATROCIENTOS VEINTICINCO EURO	S con UN CÉNTIMO	S	
E16	U	VÁLVULA DE CORTE DN110			
-10	·	U VÁLVULA DE CORTE DE COMPUERTA PARA D110, INCLUSO TRANS PRUEBA.	SPORTE, COLOCACIÓ	on, unión y	
P59	1.000 U	VÁLVULA DE CORTE DE COMPUERTA DN110 CON REDUCTOR MANUAL	1,374.00	1,374.00	
P60	0.600 h	OFICIAL 1º FONTANERO	17.82	10.69	
P61	0.600 h	AYUDANTE FONTANERO	16.10	9.66	
%CI	6.000 %	CI	1,394.40	83.66	
		TOTAL PARTIDA.			1,478.01
Asciende el precio	o total de la partida a	a la mencionada cantidad de MIL CUATROCIENTOS SETENTA Y OCHO E	UROS con UN CÉN	пмоѕ	
E17	U	VÁLVULA DE CORTE DN125 U VÁLVULA DE CORTE DE COMPUERTA PARA DN125, INCLUSO TRAN PRUEBA.	SPORTE, COLOCACIO	ÓN, UNIÓN Y	
P62	1.000 U	VÁLVULA DE CORTE DE COMPUERTA DN125 CON REDUCTOR MANUAL	1,553.00	1,553.00	
P63	0.600 h	OFICIAL 1ª FONTANERO	17.82	10.69	
P64	0.600 h	AYUDANTE FONTANERO	16.10	9.66	
%CI	6.000 %	CI	1,573.40	94.40	
		TOTAL PARTIDA.			1,667.75
Asciende el precio CÉNTIMOS	o total de la partida a	a la mencionada cantidad de MIL SEISCIENTOS SESENTA Y SIETE EURO	OS con SETENTA Y C	INCO	
E18	U	VÁLVULA DE CORTE DN160 U VÁLVULA DE CORTE DE COMPUERTA PARA DN160, INCLUSO TRAN PRUEBA.	SPORTE, COLOCACK	ÓN, UNIÓN Y	
P65	1.000 U	VÁLVULA DE CORTE DE COMPUERTA DN160 CON REDUCTOR MANUAL	1,624.00	1,624.00	
P66	0.600 h	OFICIAL 1ª FONTANERO	17.82	10.69	
P67	0.600 h	AYUDANTE FONTANERO	16.10	9.66	
%CI	6.000 %	CI	1,644.40	98.66	
		TOTAL PARTIDA.			1,743.01
1	total do la partida	a la mencionada cantidad de MIL SETECIENTOS CUARENTA Y TRES EUF	ROS con UN CÉNTIM	201	•

PRECIO

SUBTOTAL

IMPORTE

IÓN Y 585.00 10.69 9.66 102.32
10.69 9.66 102.32
9.66 102.32
9.66 102.32
102.32
1,807.67 IÓN Y 735.00 10.69 9.66 105.32 1,860.67
1ÓN Y 735.00 10.69 9.66 105.32
735.00 10.69 9.66 105.32
735.00 10.69 9.66 105.32
10.69 9.66 105.32
9.66 105.32 1,860.67
1,860.67 1,860.67
108
IÓN Y
670.00
10.69
9.66
161.42
2,851.77
SIETE
IÓN Y
334.00
10.69
9.66
171.26
3,025.61
IÓN Y
980.00
10.69
9.66
180.02
3,180.37
S
EBA.
357.60
8.02
8.02 7.25
7.25
3 1 1 1

CANTIDAD UD RESUMEN

CÓDIGO

25	U	CODO DE POLIETILENO DN90 U CODO DE POLIETILENO DN 90 DE CUALQUIER ÁNGULO, INCLUIDO TRANSPORTE, COLOCACIÓN, SOL-DADURA Y PRUEBA			
P86	1.000 U	CODO DE POLIETILENO DN90	64.26	64.26	
P87	0.300 h	OFICIAL 1ª FONTANERO	17.82	5.35	
P88	0.300 h	AYUDANTE FONTANERO	16.10	4.83	
%CI	6.000 %	CI	74.40	4.46	
		т	OTAL PARTIDA		78.90
Asciende el precio	o total de la partida a	a la mencionada cantidad de SETENTA Y OCHO EUROS co	on NOVENTA CÉNTIMOS		
- 26	U	CODO DE POLIETILENO DN110 U CODO DE POLIETILENO DN 110 DE CUALQUIER ÁNGULO, INCLUIDO TRANSPORTE, COLOCACIÓN, SOL- DADURA Y PRUEBA			
289	1.000 U	CODO DE POLIETILENO DN110	89.56	89.56	
90	0.300 h	OFICIAL 1ª FONTANERO	17.82	5.35	
91	0.300 h	AYUDANTE FONTANERO	16.10	4.83	
%CI	6.000 %	CI	99.70	5.98	
		т	TOTAL PARTIDA		105.72
sciende el precio	o total de la partida a	a la mencionada cantidad de CIENTO CINCO EUROS con S	SETENTA Y DOS CÉNTIMOS		
27	 U CODO DE POLIETILENO DN125 U CODO DE POLIETILENO DN 125 DE CUALQUIER ÁNGULO, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA 				
92	1.000 U	CODO DE POLIETILENO DN125	102.58	102.58	
93	0.300 h	OFICIAL 1ª FONTANERO	17.82	5.35	
94	0.300 h	AYUDANTE FONTANERO	16.10	4.83	
%CI	6.000 %	CI	112.80	6.77	
		т	OTAL PARTIDA		119.53
Asciende el precio	o total de la partida a	a la mencionada cantidad de CIENTO DIECINUEVE EURO	S con CINCUENTA Y TRES CÉNTIMO	os	
E28	U	CODO DE POLIETILENO DN160 U CODO DE POLIETILENO DN 160 DE CUALQUIER ÁNGU DADURA Y PRUEBA	ULO, INCLUIDO TRANSPORTE, COLOCA	ACIÓN, SOL-	
95	1.000 U	CODO DE POLIETILENO DN160	137.09	137.09	
P96	0.300 h	OFICIAL 1ª FONTANERO	17.82	5.35	
97	0.300 h	AYUDANTE FONTANERO	16.10	4.83	
%CI	6.000 %	CI	147.30	8.84	
		т	OTAL PARTIDA		156.11
Asciende el precio	o total de la partida a	a la mencionada cantidad de CIENTO CINCUENTA Y SEIS	S EUROS con ONCE CÉNTIMOS		
29	U	"T" DE POLIETILENO DN90	COLOGRADIÓN, COLDADUDA VIDRUED		
200	4 000 11	U "T" DE POLIETILENO DN 90, INCLUIDO TRANSPORTE			
98	1.000 U	"T" DE POLIETILENO DN90	69.79	69.79	
99	0.600 h	OFICIAL 1ª FONTANERO	17.82	10.69	
2001	0.600 h	AYUDANTE FONTANERO	16.10	9.66	
6CI	6.000 %	CI	90.10	5.41	
			TOTAL PARTIDA		95.55
sciende el precio	o total de la partida a	a la mencionada cantidad de NOVENTA Y CINCO EUROS	con CINCUENTA Y CINCO CENTIMO	OS	
E30	U	"T" DE POLIETILENO DN110 U "T" DE POLIETILENO DN 110, INCLUIDO TRANSPORTI	E, COLOCACIÓN, SOLDADURA Y PRUEI	BA.	
P002	1.000 U	"T" DE POLIETILENO DN110	77.23	77.23	
2003	0.600 h	OFICIAL 1ª FONTANERO	17.82	10.69	
2004	0.600 h	AYUDANTE FONTANERO	16.10	9.66	
6CI	6.000 %	CI	97.60	5.86	
		т	OTAL PARTIDA		103.44
Lagianda al mus -!:	o total da la mantala				100.77
%CI	6.000 %	CI	97.60	5.86	

PRECIO

SUBTOTAL

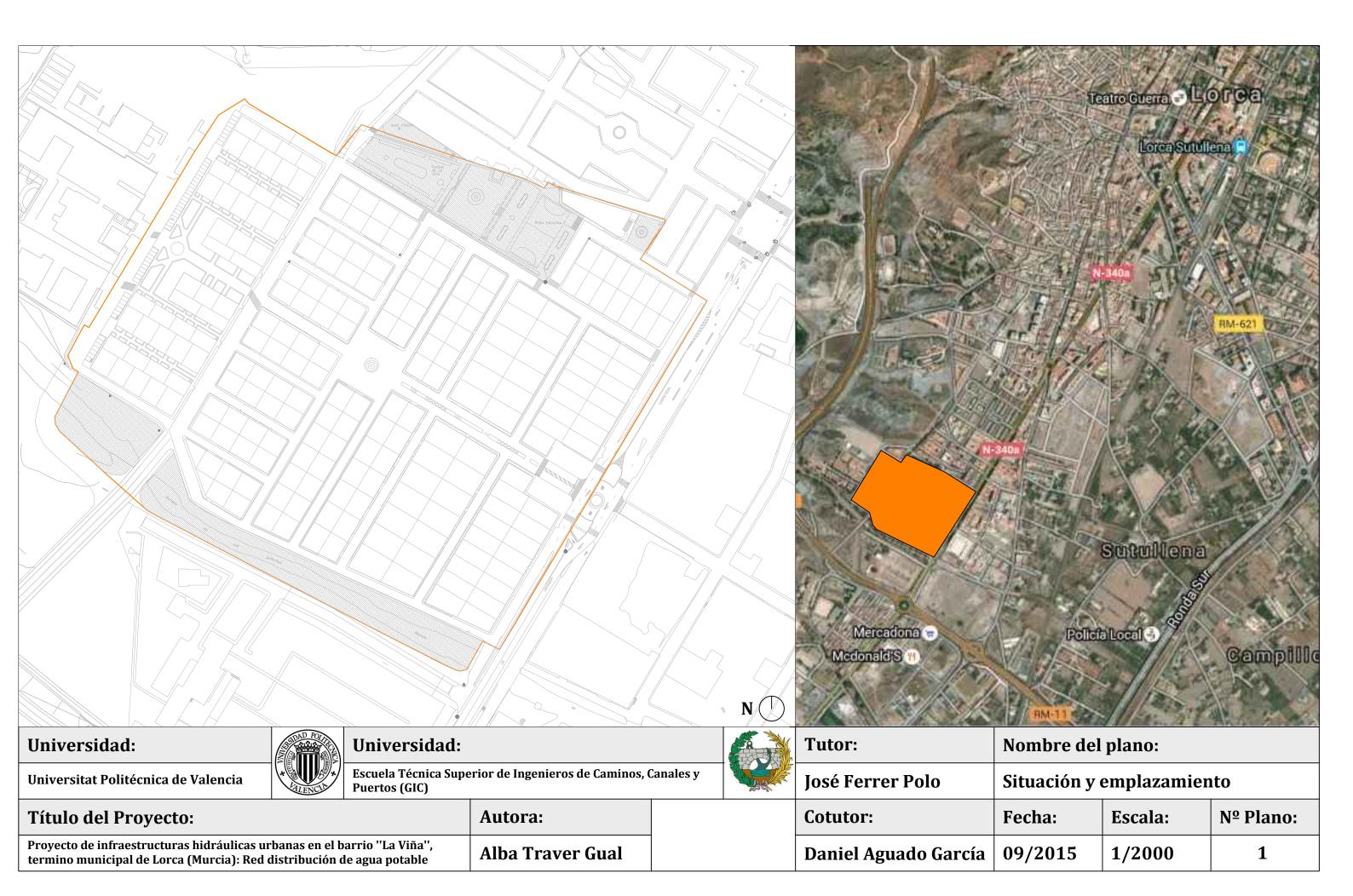
IMPORTE

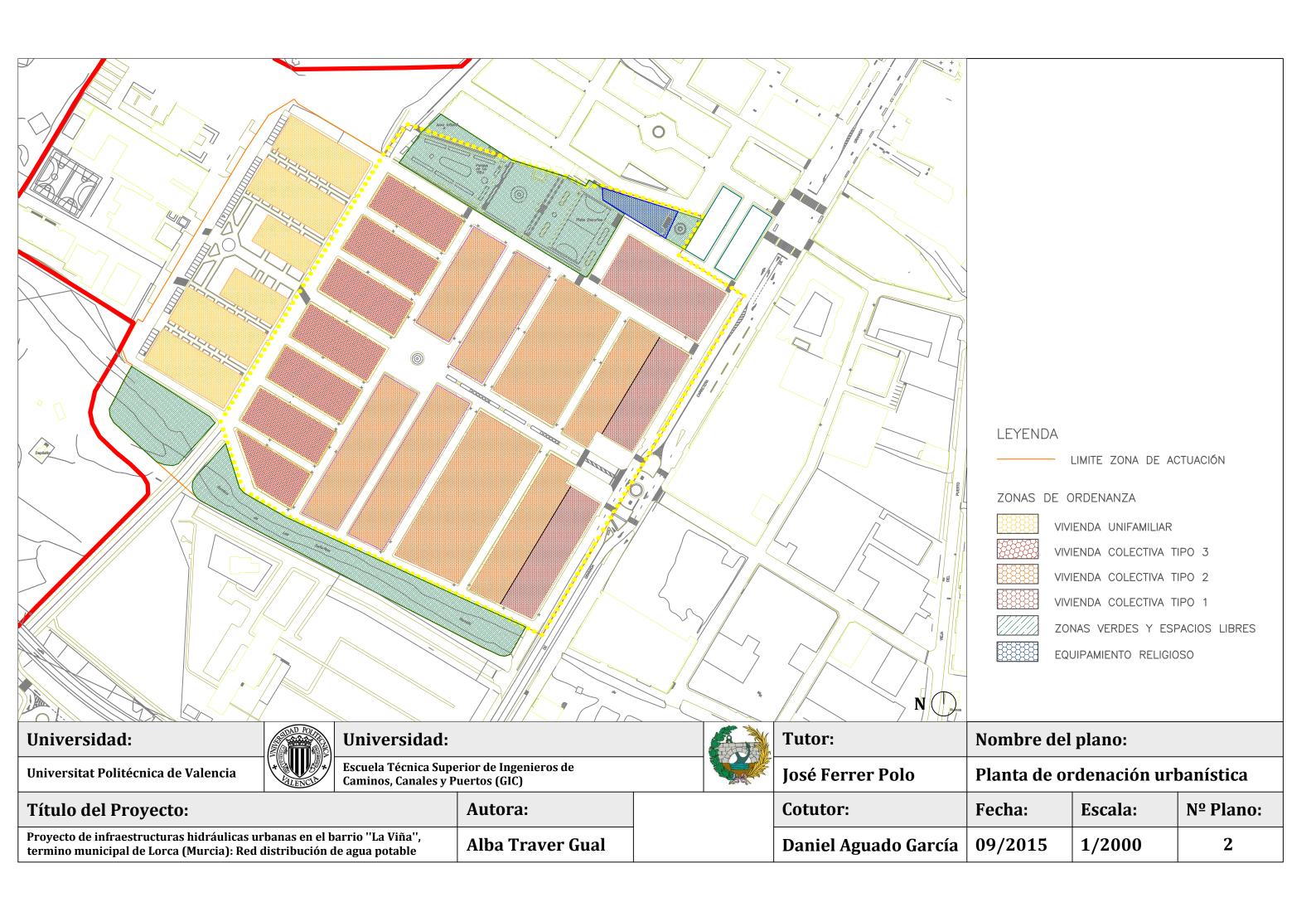
CÓDIGO	CANTIDAD UD	RESUMEN	PRECIO	SUBTOTAL	IMPORTE
E31	U	"T" DE POLIETILENO DN125			
		U "T" DE POLIETILENO DN 125, INCLUIDO TRANSPORTE, COLOCACIÓ	ÓN, SOLDADURA Y PR	UEBA.	
P005	1.000 U	"T" DE POLIETILENO DN125	101.54	101.54	
P006	0.600 h	OFICIAL 1ª FONTANERO	17.82	10.69	
P007	0.600 h	AYUDANTE FONTANERO	16.10	9.66	
%CI	6.000 %	CI	121.90	7.31	
		TOTAL PARTID)A		129.20
Asciende el pred	cio total de la partida a	la mencionada cantidad de CIENTO VEINTINUEVE EUROS con VEINT	TE CÉNTIMOS		
≣32	U	"T" DE POLIETILENO DN160 U "T" DE POLIETILENO DN 160, INCLUIDO TRANSPORTE, COLOCACIÓ	ÓN, SOLDADURA Y PR	UEBA.	
2008	1.000 U	"T" DE POLIETILENO DN160	127.49	127.49	
2009	0.600 h	OFICIAL 1ª FONTANERO	17.82	10.69	
P010	0.600 h	AYUDANTE FONTANERO	16.10	9.66	
%CI	6.000 %	CI	147.80	8.87	
		TOTAL PARTID	 DA		156.71
Asciende el pred	cio total de la partida a	la mencionada cantidad de CIENTO CINCUENTA Y SEIS EUROS con	SETENTA Y UN CÉN	ITIMOS	
E33	U	"T" DE POLIETILENO DN180	ÁN GOLDADUDA V DD		
D011	1 000	U "T" DE POLIETILENO DN 180, INCLUIDO TRANSPORTE, COLOCACIÓ			
P011	1.000	"T" DE POLIETILENO DN180	152.51	152.51	
P012	0.600	OFICIAL 1ª FONTANERO	17.82	10.69	
P013	0.600	AYUDA FONTATERO	16.10	9.66	
%CI	6.000 %	CI	172.90 ——	10.37	
)A		183.23
Asciende el pred	cio total de la partida a	la mencionada cantidad de CIENTO OCHENTA Y TRES EUROS con VE	EINTITRES CÉNTIMO	OS	
E34	U	"T" DE POLIETILENO DN200 U "T" DE POLIETILENO DN 200, INCLUIDO TRANSPORTE, COLOCACIÓ	ÓN, SOLDADURA Y PR	UEBA.	
P014	1.000	"T" DE POLIETILENO DN200	176.64	176.64	
P015	0.600	OFICIAL 1ª FONTANERO	17.82	10.69	
P016	0.600	AYUDANTE FONTANERO	16.10	9.66	
%CI	6.000 %	CI	197.00	11.82	
		TOTAL PARTID	OA		208.81
Asciende el pred	cio total de la partida a	la mencionada cantidad de DOSCIENTOS OCHO EUROS con OCHEN	ITA Y UN CÉNTIMOS	;	
E35	U	"T" DE POLIETILENO DN225			
			ÓN COLDADUDA V DD		
D047	4 000 11	U "T" DE POLIETILENO DN 225, INCLUIDO TRANSPORTE, COLOCACIÓ	•		
	1.000 U	"T" DE POLIETILENO DN225	189.48	189.48	
P018	0.600 h	"T" DE POLIETILENO DN225 OFICIAL 1ª FONTANERO	189.48 17.82	189.48 10.69	
P018 P019	0.600 h 0.600 h	"T" DE POLIETILENO DN225 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO	189.48 17.82 16.10	189.48 10.69 9.66	
P018 P019	0.600 h	"T" DE POLIETILENO DN225 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO CI	189.48 17.82 16.10 209.80	189.48 10.69 9.66 12.59	
P018 P019 %CI	0.600 h 0.600 h 6.000 %	"T" DE POLIETILENO DN225 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO CI TOTAL PARTID	189.48 17.82 16.10 209.80	189.48 10.69 9.66 12.59	222.42
P018 P019 %CI Asciende el pred	0.600 h 0.600 h 6.000 % cio total de la partida a	"T" DE POLIETILENO DN225 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO CI TOTAL PARTID Ia mencionada cantidad de DOSCIENTOS VEINTIDOS EUROS con CU	189.48 17.82 16.10 209.80	189.48 10.69 9.66 12.59	222.42
P018 P019 %CI Asciende el pred	0.600 h 0.600 h 6.000 %	"T" DE POLIETILENO DN225 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO CI TOTAL PARTID la mencionada cantidad de DOSCIENTOS VEINTIDOS EUROS con CU "T" DE POLIETILENO DN250	189.48 17.82 16.10 209.80 DA	189.48 10.69 9.66 12.59	222.42
P018 P019 %CI Asciende el pred E 36	0.600 h 0.600 h 6.000 % sio total de la partida a U	"T" DE POLIETILENO DN225 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO CI TOTAL PARTID Ia mencionada cantidad de DOSCIENTOS VEINTIDOS EUROS con CU "T" DE POLIETILENO DN250 U "T" DE POLIETILENO DN 250, INCLUIDO TRANSPORTE, COLOCACIÓ	189.48 17.82 16.10 209.80 DA	189.48 10.69 9.66 12.59	222.42
P018 P019 %CI Asciende el pred E36 P020	0.600 h 0.600 h 6.000 % cio total de la partida a	"T" DE POLIETILENO DN225 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO CI TOTAL PARTID la mencionada cantidad de DOSCIENTOS VEINTIDOS EUROS con CU "T" DE POLIETILENO DN250 U "T" DE POLIETILENO DN 250, INCLUIDO TRANSPORTE, COLOCACIÓ "T" DE POLIETILENO DN250	189.48 17.82 16.10 209.80 DA	189.48 10.69 9.66 12.59 NTIMOS UEBA. 196.35	222.42
P018 P019 %CI Asciende el pred E36 P020 P021	0.600 h 0.600 h 6.000 % cio total de la partida a U 1.000 U 0.600 h	"T" DE POLIETILENO DN225 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO CI TOTAL PARTID la mencionada cantidad de DOSCIENTOS VEINTIDOS EUROS con CU "T" DE POLIETILENO DN250 U "T" DE POLIETILENO DN250 OFICIAL 1ª FONTANERO	189.48 17.82 16.10 209.80 ————————————————————————————————————	189.48 10.69 9.66 12.59 NTIMOS UEBA. 196.35 10.69	222.42
P018 P019 %CI Asciende el pred E36 P020 P021 P022	0.600 h 0.600 h 6.000 % cio total de la partida a U 1.000 U 0.600 h 0.600 h	"T" DE POLIETILENO DN225 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO CI TOTAL PARTID la mencionada cantidad de DOSCIENTOS VEINTIDOS EUROS con CU "T" DE POLIETILENO DN250 U "T" DE POLIETILENO DN 250, INCLUIDO TRANSPORTE, COLOCACIÓ "T" DE POLIETILENO DN250	189.48 17.82 16.10 209.80 ————————————————————————————————————	189.48 10.69 9.66 12.59 	222.42
P018 P019 %CI Asciende el pred E36 P020 P021 P022	0.600 h 0.600 h 6.000 % cio total de la partida a U 1.000 U 0.600 h	"T" DE POLIETILENO DN225 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO CI TOTAL PARTID la mencionada cantidad de DOSCIENTOS VEINTIDOS EUROS con CU "T" DE POLIETILENO DN250 U "T" DE POLIETILENO DN250 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO CI	189.48 17.82 16.10 209.80 	189.48 10.69 9.66 12.59 NTIMOS UEBA. 196.35 10.69 9.66 13.00	
P018 P019 %CI Asciende el pred E36 P020 P021 P022 %CI	0.600 h 0.600 h 6.000 % cio total de la partida a U 1.000 U 0.600 h 0.600 h 6.000 %	"T" DE POLIETILENO DN225 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO CI TOTAL PARTID la mencionada cantidad de DOSCIENTOS VEINTIDOS EUROS con CU "T" DE POLIETILENO DN250 U "T" DE POLIETILENO DN250 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO CI	189.48 17.82 16.10 209.80 DA	189.48 10.69 9.66 12.59 NTIMOS UEBA. 196.35 10.69 9.66 13.00	222.42
P018 P019 %CI Asciende el pred E36 P020 P021 P022 %CI Asciende el pred Asciende el pred	0.600 h 0.600 h 6.000 % cio total de la partida a U 1.000 U 0.600 h 0.600 h 6.000 %	"T" DE POLIETILENO DN225 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO CI TOTAL PARTID Ia mencionada cantidad de DOSCIENTOS VEINTIDOS EUROS con CU "T" DE POLIETILENO DN250 U "T" DE POLIETILENO DN250 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO CI TOTAL PARTID Ia mencionada cantidad de DOSCIENTOS VEINTINUEVE EUROS con "T" DE POLIETILENO DN280	189.48 17.82 16.10 209.80 DA	189.48 10.69 9.66 12.59 	
P018 P019 %CI Asciende el pred E36 P020 P021 P022 %CI Asciende el pred E37	0.600 h 0.600 h 6.000 % cio total de la partida a U 1.000 U 0.600 h 0.600 h 6.000 %	"T" DE POLIETILENO DN225 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO CI TOTAL PARTID Ia mencionada cantidad de DOSCIENTOS VEINTIDOS EUROS con CU "T" DE POLIETILENO DN250 U "T" DE POLIETILENO DN250 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO CI TOTAL PARTID Ia mencionada cantidad de DOSCIENTOS VEINTINUEVE EUROS con "T" DE POLIETILENO DN280 U "T" DE POLIETILENO DN 280, INCLUIDO TRANSPORTE, COLOCACIÓ	189.48 17.82 16.10 209.80 DA	189.48 10.69 9.66 12.59 NTIMOS UEBA. 196.35 10.69 9.66 13.00	
P018 P019 %CI Asciende el pred E36 P020 P021 P022 %CI Asciende el pred E37	0.600 h 0.600 h 6.000 % cio total de la partida a U 1.000 U 0.600 h 0.600 h 6.000 % cio total de la partida a U 1.000 U	"T" DE POLIETILENO DN225 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO CI TOTAL PARTID Ia mencionada cantidad de DOSCIENTOS VEINTIDOS EUROS con CU "T" DE POLIETILENO DN250 U "T" DE POLIETILENO DN250 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO CI TOTAL PARTID Ia mencionada cantidad de DOSCIENTOS VEINTINUEVE EUROS con "T" DE POLIETILENO DN280 U "T" DE POLIETILENO DN280 U "T" DE POLIETILENO DN280	189.48 17.82 16.10 209.80 DA	189.48 10.69 9.66 12.59 NTIMOS UEBA. 196.35 10.69 9.66 13.00	
P018 P019 %CI Asciende el pred E36 P020 P021 P022 %CI Asciende el pred E37 P023 P024	0.600 h 0.600 h 6.000 % Sio total de la partida a U 1.000 U 0.600 h 0.600 h 6.000 % Sio total de la partida a U 1.000 U 0.600 h	"T" DE POLIETILENO DN225 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO CI TOTAL PARTID Ia mencionada cantidad de DOSCIENTOS VEINTIDOS EUROS con CU "T" DE POLIETILENO DN250 U "T" DE POLIETILENO DN 250, INCLUIDO TRANSPORTE, COLOCACIÓ "T" DE POLIETILENO DN250 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO CI TOTAL PARTID Ia mencionada cantidad de DOSCIENTOS VEINTINUEVE EUROS con "T" DE POLIETILENO DN280 U "T" DE POLIETILENO DN 280, INCLUIDO TRANSPORTE, COLOCACIÓ "T" DE POLIETILENO DN280 OFICIAL 1ª FONTANERO	189.48 17.82 16.10 209.80 DA	189.48 10.69 9.66 12.59 NTIMOS UEBA. 196.35 10.69 9.66 13.00 S UEBA. 215.78 10.69	
P018 P019 %CI Asciende el pred E36 P020 P021 P022 %CI Asciende el pred E37 P023 P024 P025	0.600 h 0.600 h 6.000 % cio total de la partida a U 1.000 U 0.600 h 6.000 % cio total de la partida a U 1.000 U 0.600 h 0.600 h	"T" DE POLIETILENO DN225 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO CI TOTAL PARTID Ia mencionada cantidad de DOSCIENTOS VEINTIDOS EUROS con CU "T" DE POLIETILENO DN250 U "T" DE POLIETILENO DN 250, INCLUIDO TRANSPORTE, COLOCACIÓ "T" DE POLIETILENO DN250 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO CI TOTAL PARTID Ia mencionada cantidad de DOSCIENTOS VEINTINUEVE EUROS con "T" DE POLIETILENO DN280 U "T" DE POLIETILENO DN 280, INCLUIDO TRANSPORTE, COLOCACIÓ "T" DE POLIETILENO DN280 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO	189.48 17.82 16.10 209.80 DA	189.48 10.69 9.66 12.59 NTIMOS UEBA. 196.35 10.69 9.66 13.00 S UEBA. 215.78 10.69 9.66	
P020 P021 P022 %CI	0.600 h 0.600 h 6.000 % Sio total de la partida a U 1.000 U 0.600 h 0.600 h 6.000 % Sio total de la partida a U 1.000 U 0.600 h	"T" DE POLIETILENO DN225 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO CI TOTAL PARTID Ia mencionada cantidad de DOSCIENTOS VEINTIDOS EUROS con CU "T" DE POLIETILENO DN250 U "T" DE POLIETILENO DN250 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO CI TOTAL PARTID Ia mencionada cantidad de DOSCIENTOS VEINTINUEVE EUROS con "T" DE POLIETILENO DN280 U "T" DE POLIETILENO DN280 OFICIAL 1ª FONTANERO AYUDANTE FONTANERO OFICIAL 1ª FONTANERO OFICIAL 1ª FONTANERO AYUDANTE FONTANERO AYUDANTE FONTANERO AYUDANTE FONTANERO AYUDANTE FONTANERO	189.48 17.82 16.10 209.80 DA	189.48 10.69 9.66 12.59 NTIMOS UEBA. 196.35 10.69 9.66 13.00 S UEBA. 215.78 10.69 9.66 14.17	

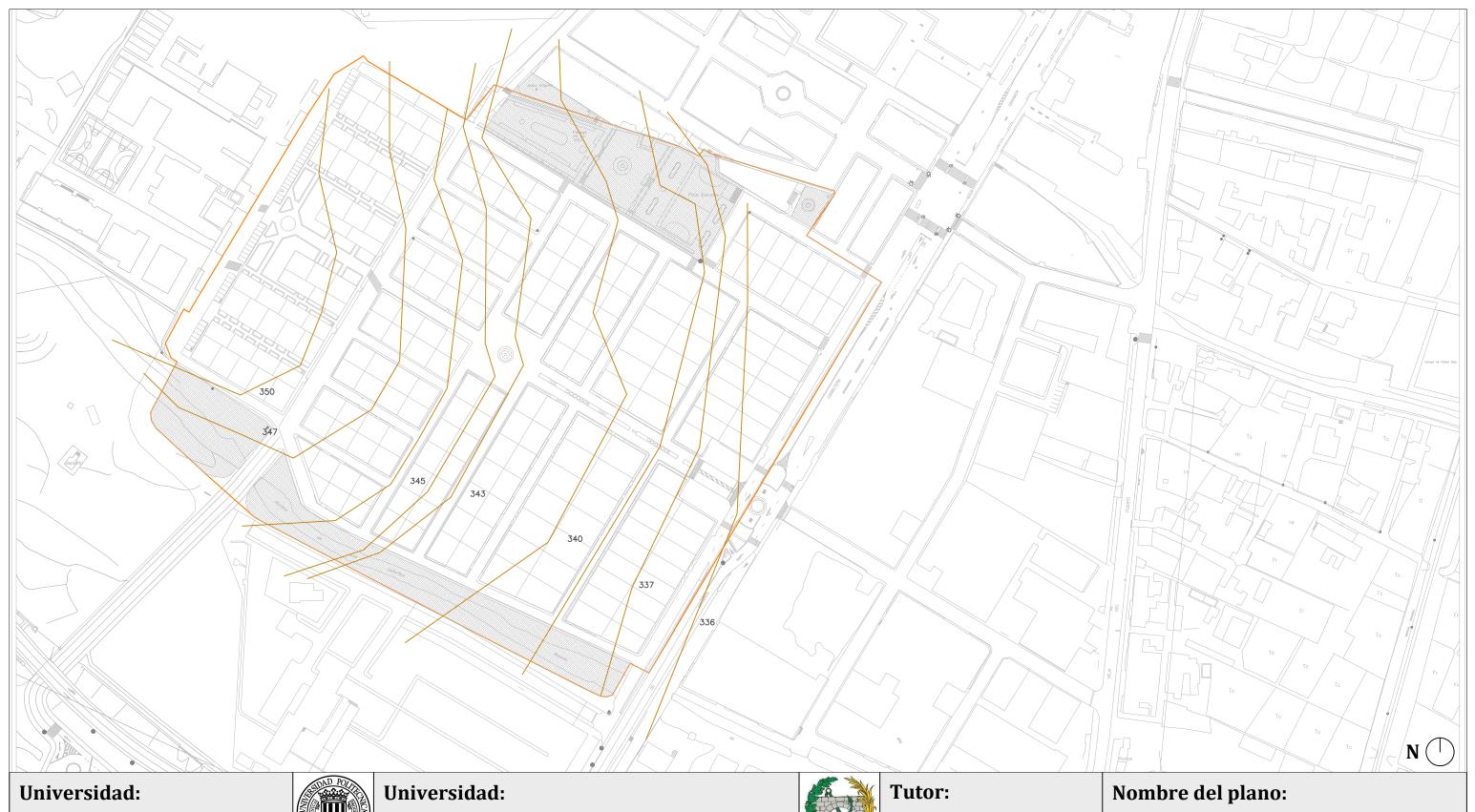
CÓDIGO	CANTIDAD UD	RESUMEN	PRECIO	SUBTOTAL	IMPORTE
E38	U	"T" DE POLIETILENO DN315			
		U "T" DE POLIETILENO DN 315, INCLUIDO TRANSPORTE, COLOCAC	CIÓN, SOLDADURA Y PR	UEBA.	
P026	1.000	"T" DE POLIETILENO DN315	246.54	246.54	
P027	0.600	OFICIAL 1ª FONTANERO	17.82	10.69	
P028	0.600	AYUDANTE FONTANERO	16.10	9.66	
%CI	6.000 %	CI	266.90	16.01	
		TOTAL PART	 IDA		282.90
Asciende el pre	ecio total de la partida a	la mencionada cantidad de DOSCIENTOS OCHENTA Y DOS EUROS	S con NOVENTA CÉNT	IMOS	
E39	U	ACOMETIDA DE ABASTECIMIENTO DE AGUA			
		U ACOMETIDA DE ABASTECIMIENTO DE AGUA POTABLE DESDE LA	RED GENERAL DE DIÁ	METRO 90-250,	
		A UNA DISTANCIA MÁXIMA DE 5 METROS, Y LLAVE DE COMPUERTA		A 55X55X55 CM	
		CON TAPA PVC. INCLUSO ACCESORIOS Y MONTAJE, INSTALADA Y			
P029	1.000 U	ACOMETIDA DE PE	13.27	13.27	
P030	1.000 U	ARQUETA PREFABRICADA DE POLIPROPENO	95.59	95.59	
P031	1.000 U	TAPA PVC	112.14	112.14	
P032	1.000 U	VÁLVULA DE ESFERA	153.54	153.54	
P033	0.600 h	COMPRESOR PORTÁTIL ELÉCTRICO 5M3/MIN DE CAUDAL	6.88	4.13	
P034	0.600 h	MARTILLO NEUMÁTICO	4.07	2.44	
P035	2.050 h	OFICIAL 1ª CONSTRUCCIÓN	17.24	35.34	
P036	1.980 h	OFICIAL 2ª CONSTRUCCIÓN	15.92	31.52	
P037	6.350 h	OFICIAL 1ª FONTANERO	17.82	113.16	
P038	3.180 h	AYUDANTE FONTANERO	16.10	51.20	
%CI	6.000 %	CI	612.30	36.74	
		TOTAL PART	 IDA		649.07

Asciende el precio total de la partida a la mencionada cantidad de SEISCIENTOS CUARENTA Y NUEVE EUROS con SIETE CÉNTIMOS

PLANOS

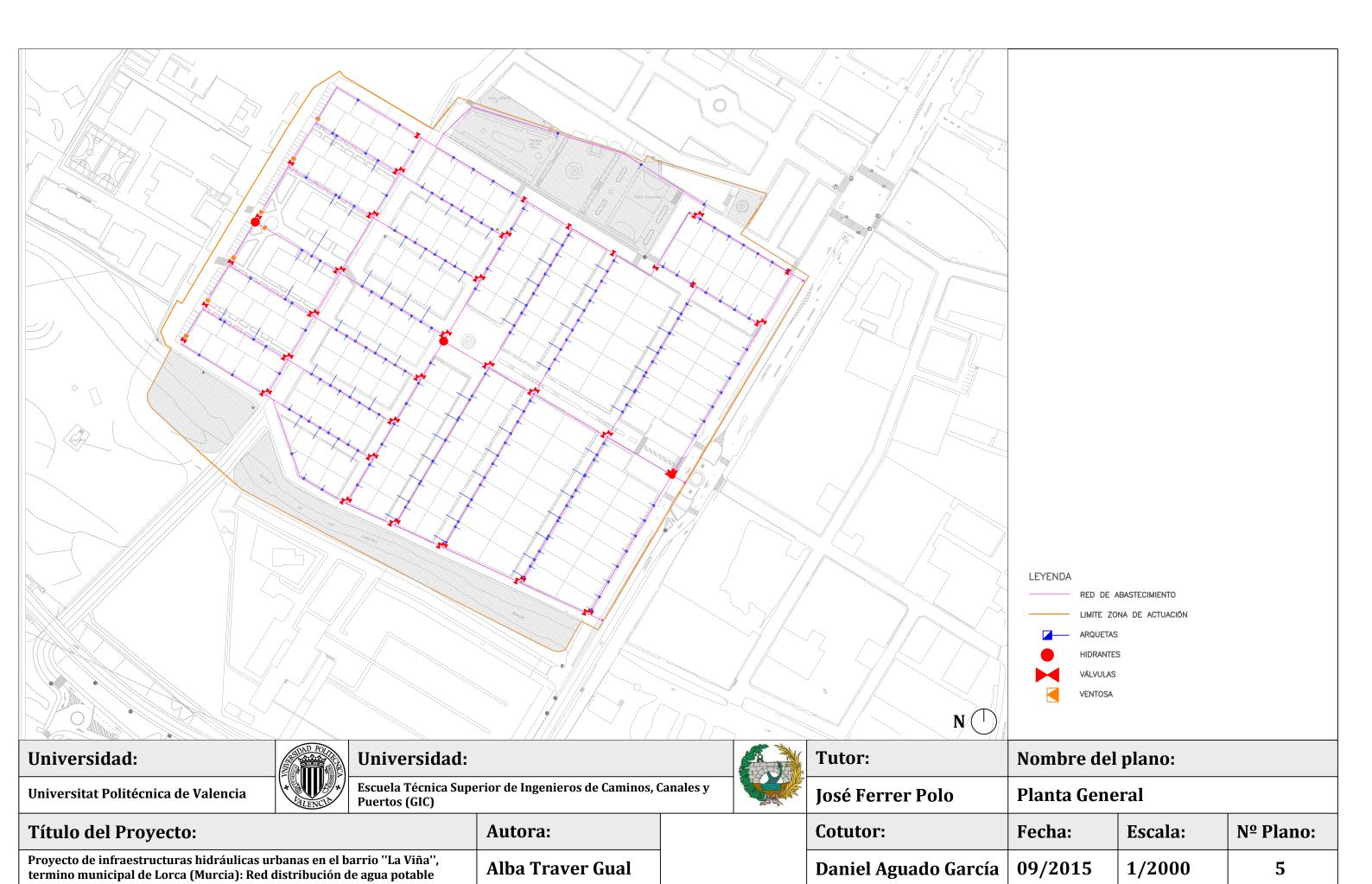

Curso: 2014/2015

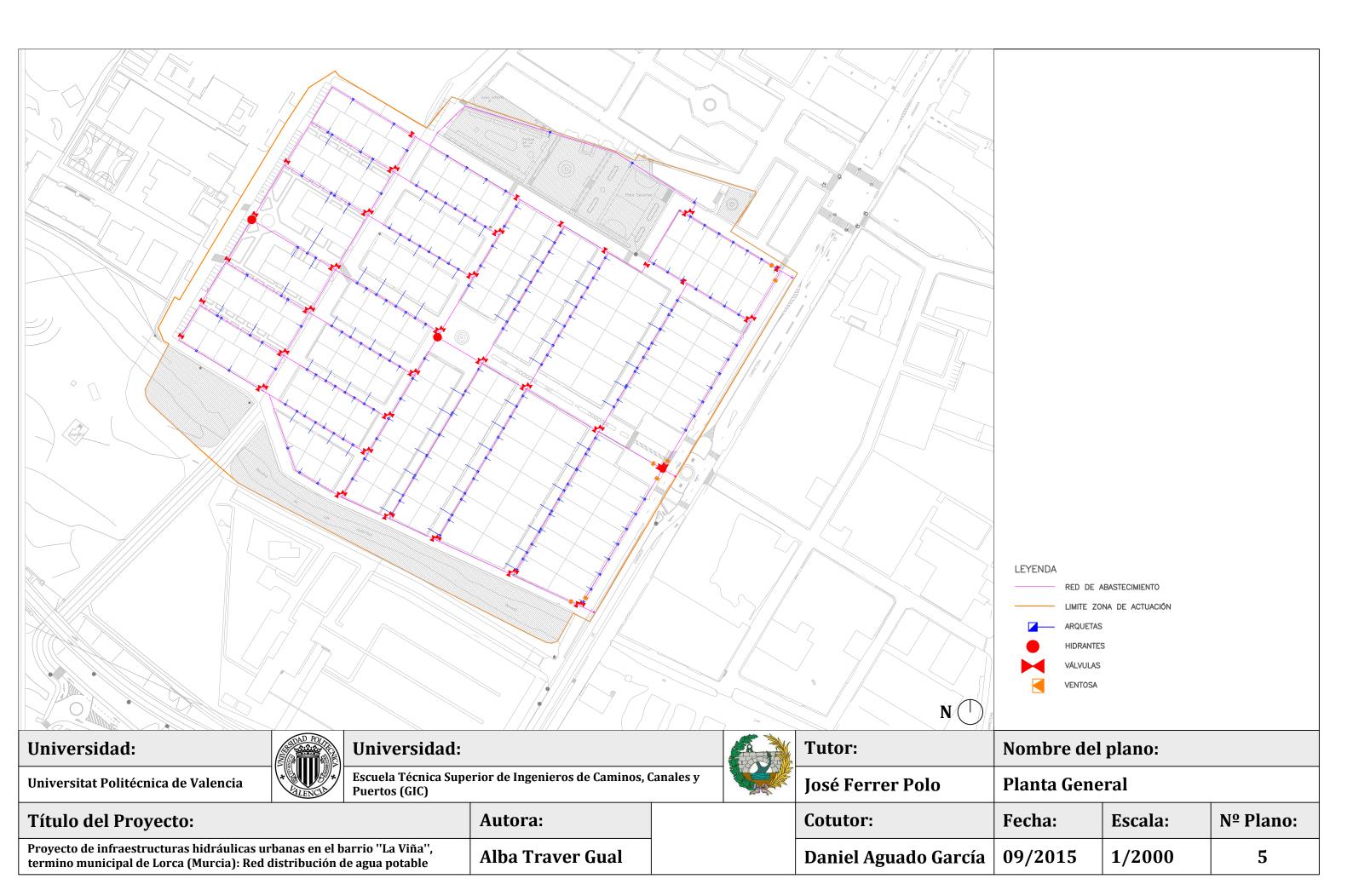

Universidad Politécnica de Valencia (UPV) Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos (ETSICCP)


Grado en Ingeniería Civil Tutor: José Ferrer Polo Cotutor: Daniel Aguado García Autora: Alba Traver Gual

Universitat Politécnica de Valencia

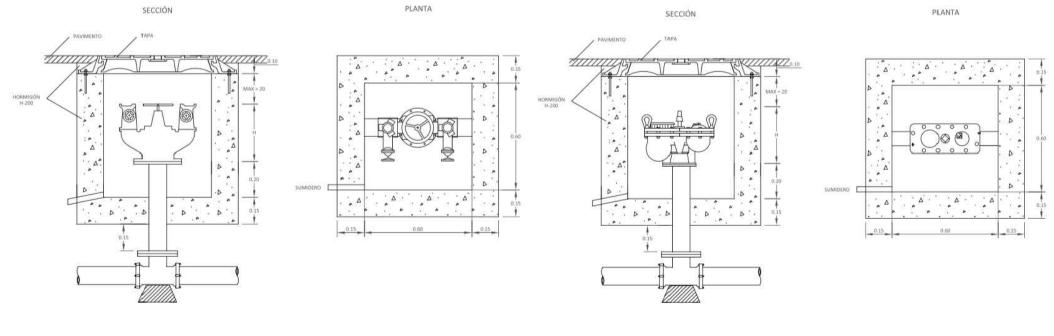
Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos (GIC)

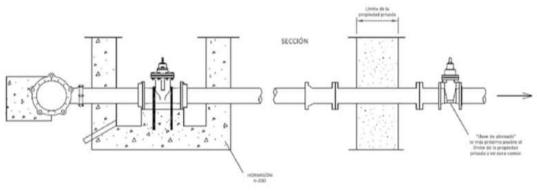

|--|

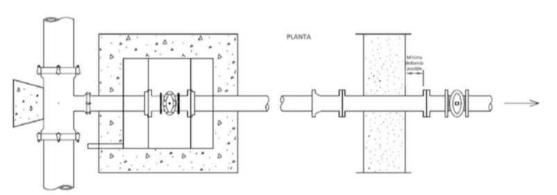

José Ferrer Polo Planta topográfica

Título del Proyecto:	Autora:
Proyecto de infraestructuras hidráulicas urbanas en el barrio "La Viña", termino municipal de Lorca (Murcia): Red distribución de agua potable	Alba Traver Gual

Cotutor:	Fecha:	Escala:	Nº Plano:
Daniel Aguado García	09/2015	1/2000	3

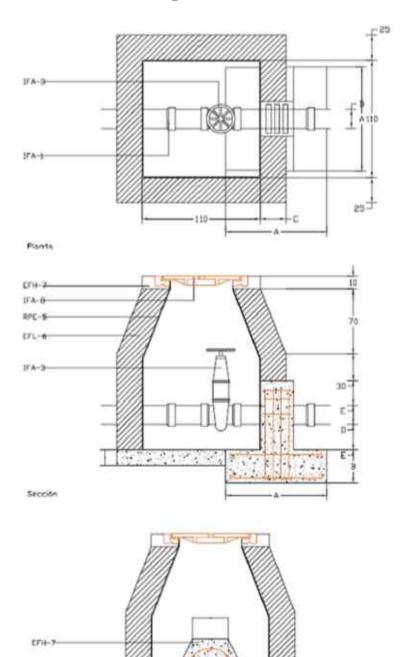






Arqueta con hidrante tipo 100

Arqueta con válvula de ventosa



Acometida

Válvula de compuerta

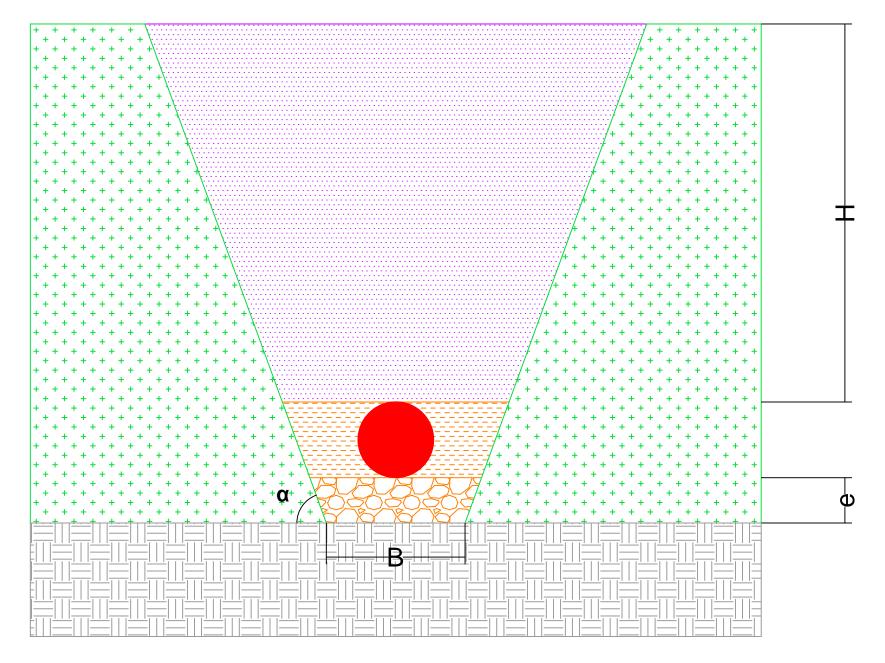
cotes en co-

	Universidad:
--	--------------

Universitat Politécnica de Valencia

Universidad:

Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos (GIC)



osé Ferrer Polo	Detalle elementos de red

RSS-3-

Título del Proyecto:	Autora:
Proyecto de infraestructuras hidráulicas urbanas en el barrio "La Viña", termino municipal de Lorca (Murcia): Red distribución de agua potable	Alba Traver Gual

Cotutor:	Fecha:	Escala:	Nº Plano:
Daniel Aguado García	09/2015		6

H: 1.00 DEBAJO DE CALZADA / .60 DEBAJO DE ACERA

α: 70°

DN	В	e
90	0.495	0.109
110	0.517	0.111
125	0.532	0.113
160	0.570	0.116
180	0.591	0.118
200	0.612	0.120
225	0.638	0.123
250	0.665	0.125
280	0.697	0.128
315	0.736	0.132

ZONAS DE ORDENANZA

ZONA E1 - TERRENO NATURAL CRIBADO Y COMPACTADO

ZONA E2 - TERRENO NATURAL CRIBADO Y COMPACTADO ZONA E3 - ARENA LAVADA

ZONA E4 - TERRENO NATURAL

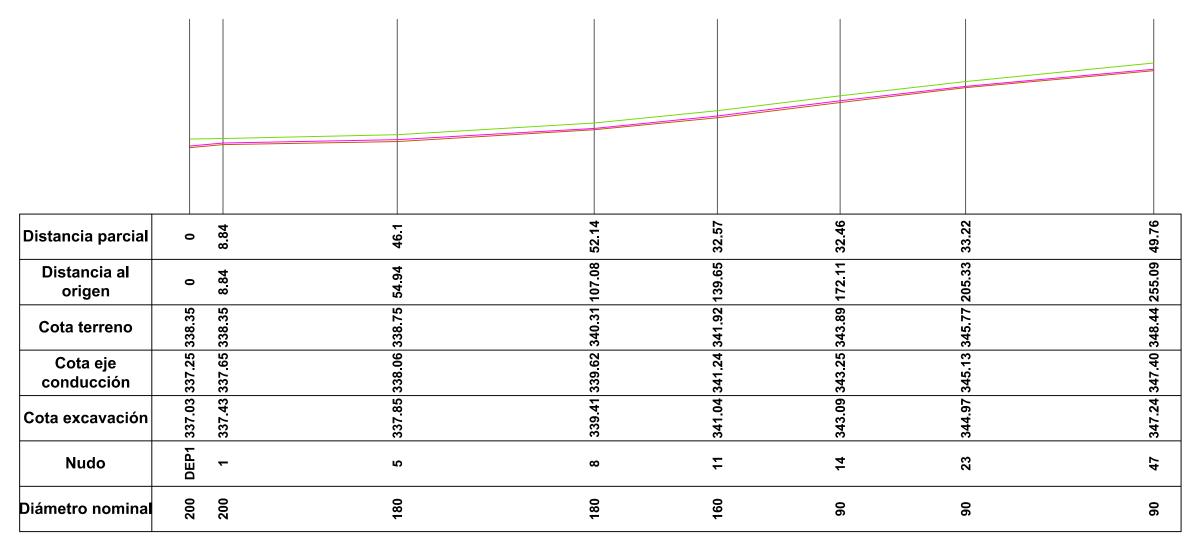
ZONA E5 - TERRENO NATURAL

Universidad:	Į	Jn	iv	er	sic	da	d:
--------------	---	----	----	----	-----	----	----

Universitat Politécnica de Valencia

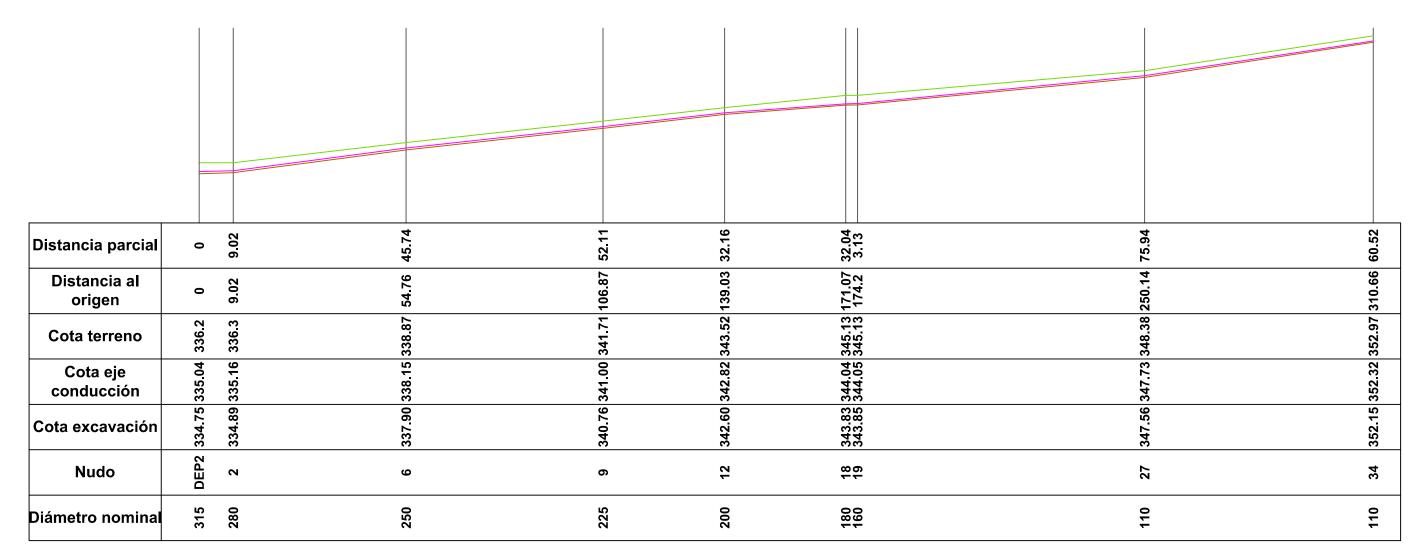
Universidad:

Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos (GIC)

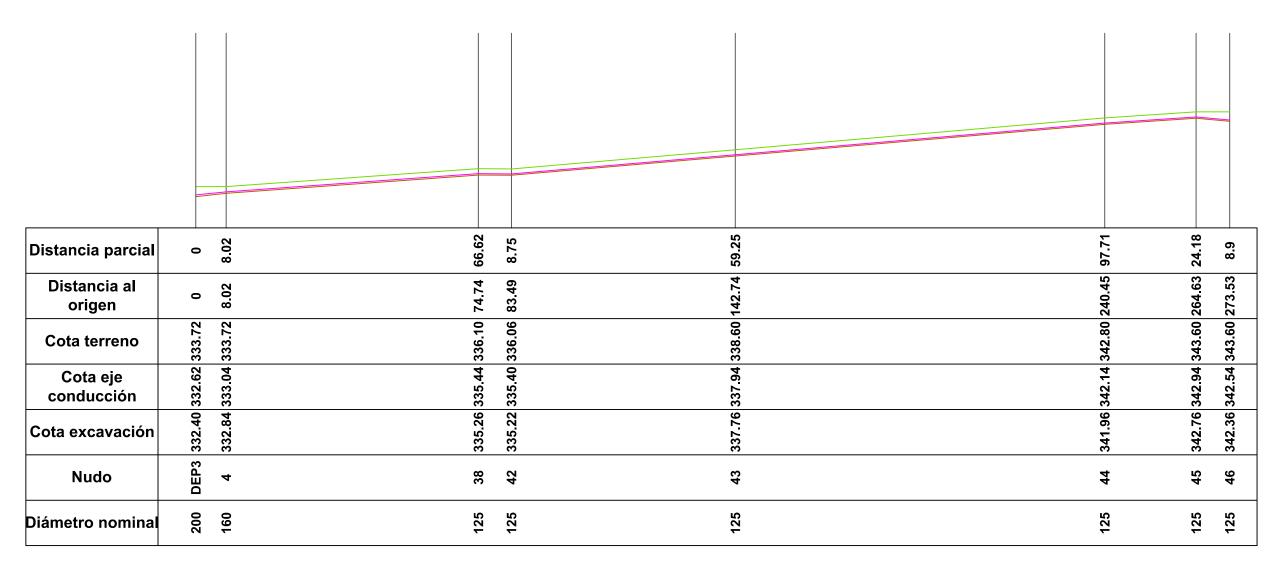


Tutor: Nombre del plano:

José Ferrer Polo Sección detalle zanja

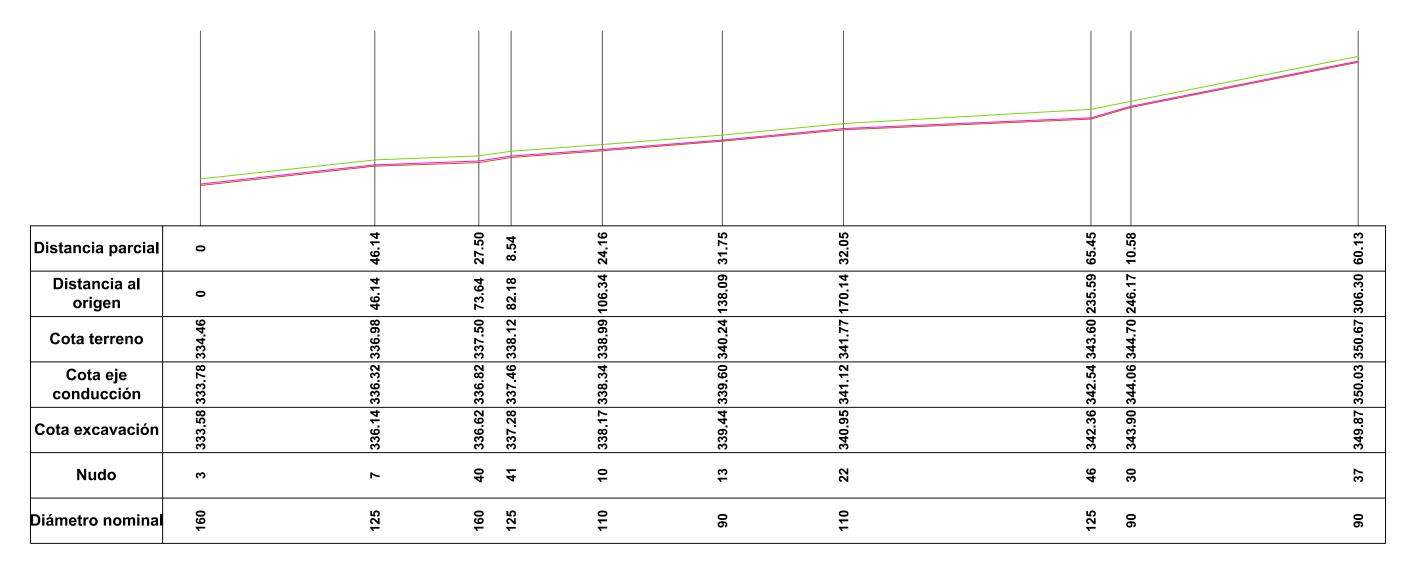

Autora: **Título del Proyecto:** Proyecto de infraestructuras hidráulicas urbanas en el barrio "La Viña", **Alba Traver Gual** termino municipal de Lorca (Murcia): Red distribución de agua potable

Cotutor:	Fecha:	Escala:	Nº Plano:
Daniel Aguado García	09/2015		7



Tramo 1

Universidad: Universidad: Universidad: Escuela Técnica Super Puertos (GIC)				Tutor: Nombre del plano:			
		erior de Ingenieros de Caminos, (Canales y	José Ferrer Polo	Perfiles longitudinales		
Título del Proyecto:		Autora:		Cotutor:	Fecha:	Escala:	Nº Plano:
Proyecto de infraestructuras hidráulicas urbanas en el barrio "La Viña", termino municipal de Lorca (Murcia): Red distribución de agua potable		Alba Traver Gual		Daniel Aguado García	09/2015		8

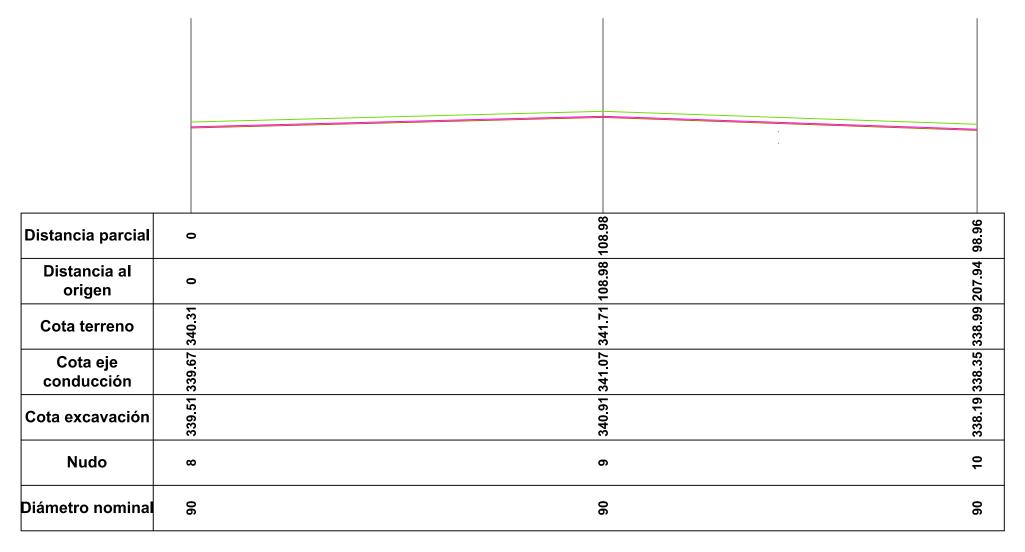


Universidad:	PO PO	Universidad:	niversidad:			Tutor: Nombre del plan		plano:	
Universitat Politécnica de Valencia	* ALENCE	Escuela Técnica Supe Puertos (GIC)	erior de Ingenieros de Caminos, (Canales y		José Ferrer Polo	Perfiles longitudinales		
Título del Proyecto:			Autora:			Cotutor:	Fecha:	Escala:	Nº Plano:
Proyecto de infraestructuras hidráulicas un termino municipal de Lorca (Murcia): Red		-	Alba Traver Gual			Daniel Aguado García	09/2015		9

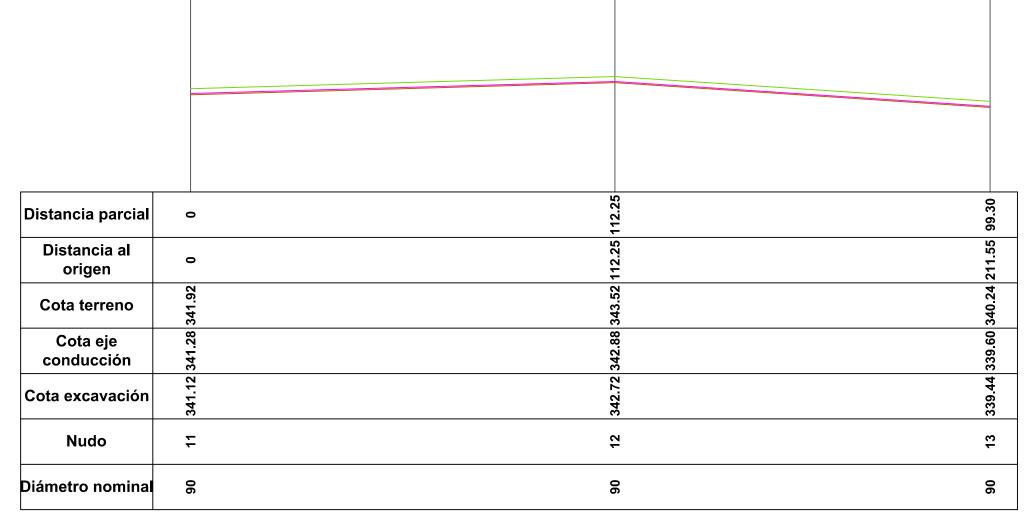
Tramo 3

Universidad:	OND POLY	Universidad:	iversidad:			Tutor: Nombre del plano:			
Universitat Politécnica de Valencia	A LINUX	Escuela Técnica Supe Puertos (GIC)	erior de Ingenieros de Caminos, (Canales y		José Ferrer Polo	Perfiles longitudinales		
Título del Proyecto:			Autora:			Cotutor:	Fecha:	Escala:	Nº Plano:
Proyecto de infraestructuras hidráulicas un termino municipal de Lorca (Murcia): Red			Alba Traver Gual			Daniel Aguado García	09/2015		10

Universidad:	PO PO	Universidad:				Tutor: Nombre del plano:			
Universitat Politécnica de Valencia	* LENCK	Escuela Técnica Supo Puertos (GIC)	erior de Ingenieros de Caminos, (Canales y		José Ferrer Polo	Perfiles longitudinales		
Título del Proyecto:			Autora:			Cotutor:	Fecha:	Escala:	Nº Plano:
Proyecto de infraestructuras hidráulicas un termino municipal de Lorca (Murcia): Red			Alba Traver Gual			Daniel Aguado García	09/2015		11

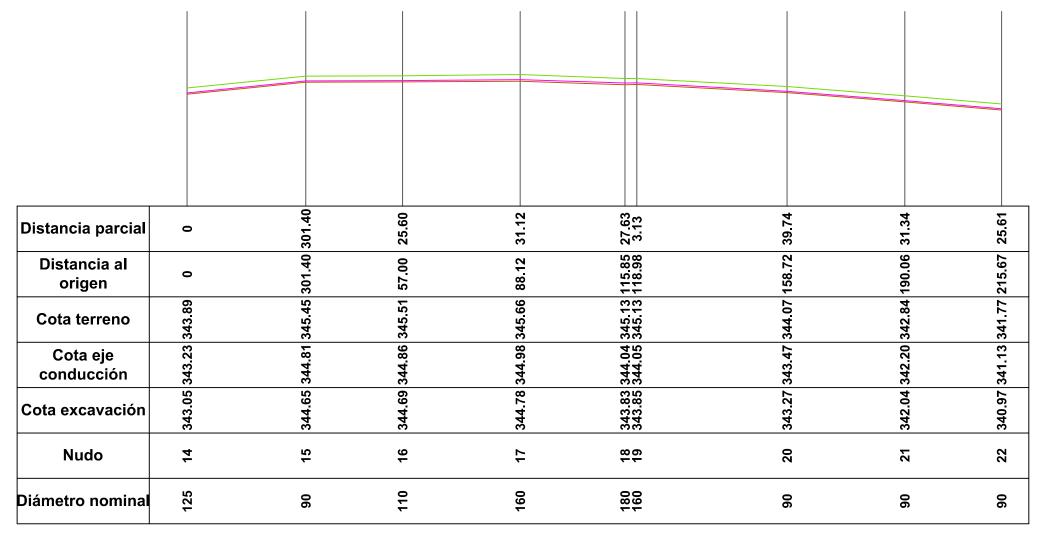

Distancia parcial	0	99.12	106.64	36.69
Distancia al origen	0	99.12	205.76	242.45
Cota terreno	338.35	336.20	334.46	333.72
Cota eje conducción	337.70	335.12	333.78	333.04
Cota excavación	337.53	334.92	333.58	332.84
Nudo	~	8	ო	4
Diámetro nominal	110	160	160	160

Tramo 5

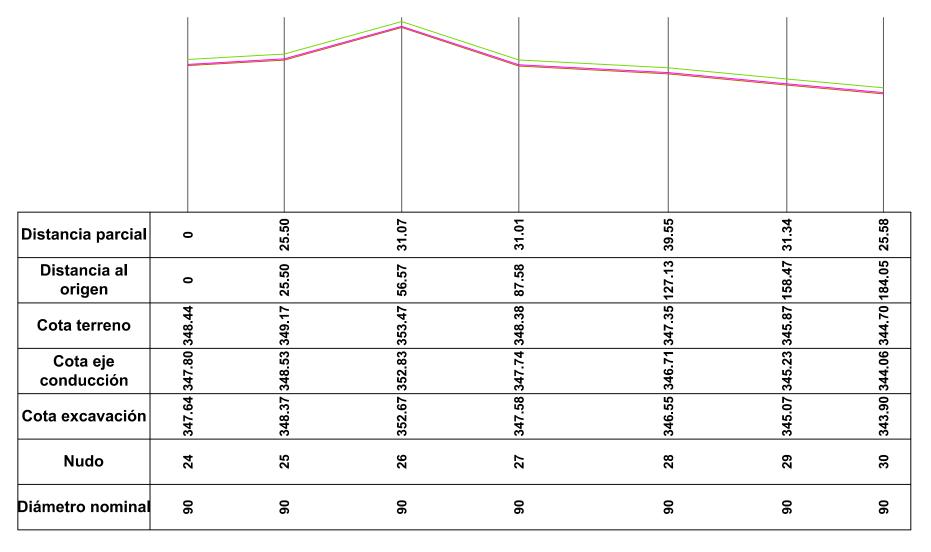

Universidad:	Universidad:			Tutor:	Nombre del plano:		
Universidad: Universitat Politécnica de Valencia	Escuela Técnica Sup Puertos (GIC)	erior de Ingenieros de Caminos, Canal	les y	José Ferrer Polo	Perfiles lon	gitudinales	
Título del Proyecto:		Autora:		Cotutor:	Fecha:	Escala:	Nº Plano:
Proyecto de infraestructuras hidráulicas urbanas e termino municipal de Lorca (Murcia): Red distribu	•	Alba Traver Gual		Daniel Aguado García	09/2015		12

Distancia parcial	0	103.75	107.02
Distancia al origen	0	103.75	210.77
Cota terreno	338.75	338.87	336.98
Cota eje conducción	338.11	337.82	336.36
Cota excavación	337.95	337.65	336.16
Nudo	ro	ဖ	7
Diámetro nominal	06	110	110

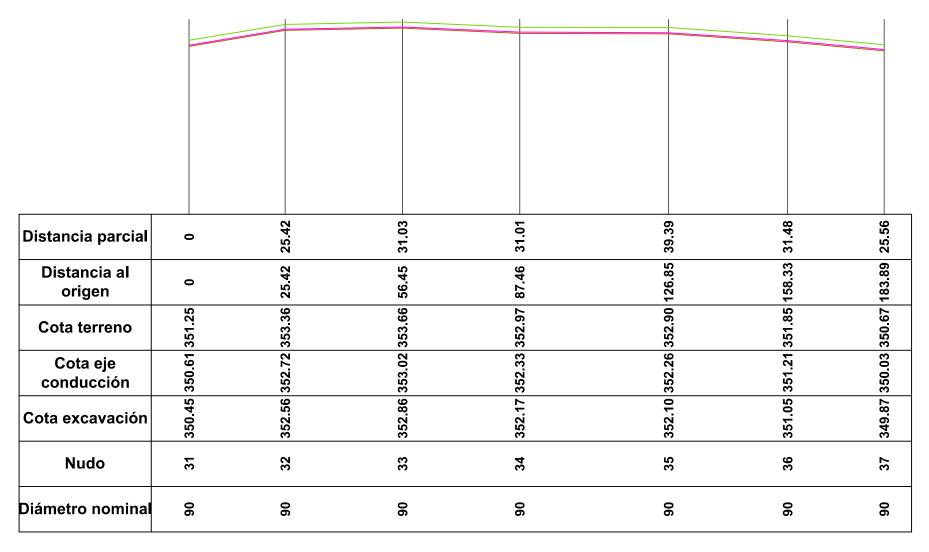
Universidad:		Universidad:			Tutor:	Nombre del	plano:	
Universitat Politécnica de Valencia	* LENCE	Escuela Técnica Supo Puertos (GIC)	erior de Ingenieros de Caminos, (Canales y	José Ferrer Polo	Perfiles lon	gitudinales	
Título del Proyecto:			Autora:		Cotutor:	Fecha:	Escala:	Nº Plano:
Proyecto de infraestructuras hidráulicas un termino municipal de Lorca (Murcia): Red		·	Alba Traver Gual		Daniel Aguado García	09/2015		13



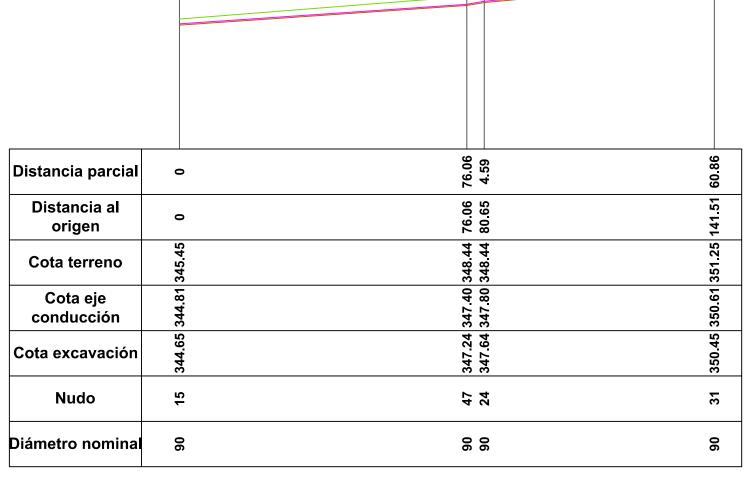
Universidad:		Universidad:				Tutor:	Nombre del	plano:	
Universitat Politécnica de Valencia	A LENCIP	Escuela Técnica Supe Puertos (GIC)	scuela Técnica Superior de Ingenieros de Caminos, Canales y uertos (GIC)			José Ferrer Polo	Perfiles longitudinales		
Título del Proyecto:			Autora:			Cotutor:	Fecha:	Escala:	Nº Plano:
Proyecto de infraestructuras hidráulicas u termino municipal de Lorca (Murcia): Red			Alba Traver Gual			Daniel Aguado García	09/2015		14


Tramo 8

Universidad:	A POLICE OF THE PROPERTY OF TH	Universidad:			Tutor:	Nombre del plano:		
Universitat Politécnica de Valencia	A LENCK	Escuela Técnica Supe Puertos (GIC)	erior de Ingenieros de Caminos, (Canales y	José Ferrer Polo	Perfiles lon	gitudinales	
Título del Proyecto:			Autora:		Cotutor:	Fecha:	Escala:	Nº Plano:
Proyecto de infraestructuras hidráulicas un termino municipal de Lorca (Murcia): Red		-	Alba Traver Gual		Daniel Aguado García	09/2015		15

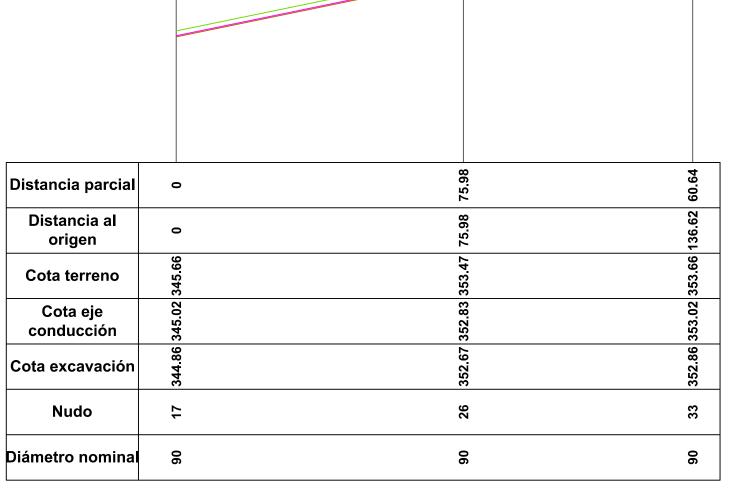

Tramo 9

Universidad:	AD POUR	Universidad:				Tutor: Nombre del plano:			
Universitat Politécnica de Valencia	* LENCH	Escuela Técnica Supe Puertos (GIC)	erior de Ingenieros de Caminos, (Canales y		José Ferrer Polo	Perfiles lon	gitudinales	
Título del Proyecto:			Autora:			Cotutor:	Fecha:	Escala:	Nº Plano:
Proyecto de infraestructuras hidráulicas u termino municipal de Lorca (Murcia): Red		•	Alba Traver Gual			Daniel Aguado García	09/2015		16


Tramo 10

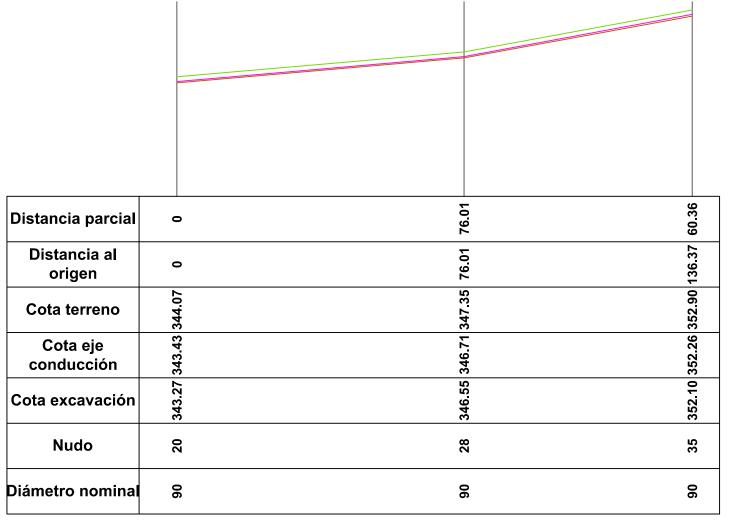
Universidad:		Universidad:				Tutor:	Nombre del	plano:	
Universitat Politécnica de Valencia	ALENCIA *	Escuela Técnica Supo Puertos (GIC)	ela Técnica Superior de Ingenieros de Caminos, Canales y tos (GIC)			José Ferrer Polo	Perfiles longitudinales		
Título del Proyecto:			Autora:			Cotutor:	Fecha:	Escala:	Nº Plano:
Proyecto de infraestructuras hidráulicas u termino municipal de Lorca (Murcia): Red		·	Alba Traver Gual			Daniel Aguado García	09/2015		17

Tramo 11


Universidad:		Universidad:			a de la companya de l	Tutor:	Nombre del	plano:	
Universitat Politécnica de Valencia	A DILENCIA	Escuela Técnica Supo Puertos (GIC)	ela Técnica Superior de Ingenieros de Caminos, Canales y cos (GIC)			José Ferrer Polo	Perfiles long		
Título del Proyecto:			Autora:			Cotutor:	Fecha:	Escala:	Nº Plano:
Proyecto de infraestructuras hidráulicas u termino municipal de Lorca (Murcia): Red			Alba Traver Gual			Daniel Aguado García	09/2015		18

0	76.03	(1 0
	22	Č
	8	
0	76.03	Ç
5.5	7.	(
345.51	348.37 348.53 349.17	Ĺ
344.71 344.87		
44	8,	Ç
<u> </u>	<u></u>	
2.4		ì
34,	34.	ì
16	25	
06	06	
o	6	

Tramo 12 Tramo 13


Universidad:	ALENCIA	Universidad:			7	Tutor:	Nombre del plano:		
Universitat Politécnica de Valencia	* ALENCIA	Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos (GIC)				José Ferrer Polo	Perfiles long	gitudinales	
Título del Proyecto:		Autora:			Cotutor:	Fecha:	Escala:	Nº Plano:	
Proyecto de infraestructuras hidráulicas urbanas en el barrio "La Viña", termino municipal de Lorca (Murcia): Red distribución de agua potable		Alba Traver Gual			Daniel Aguado García	09/2015		19	

160 19 344.25 344.45 345.13 0 0 0 110 27 347.56 347.73 348.38 75.94 75.94 75.94 136.46 60.52			
19 344.25 344.45 345.13 0 27 347.56 347.73 348.38 75.94 34 352.15 352.32 352.97 136.46			
19 344.25 344.45 345.13 0 27 347.56 347.73 348.38 75.94 34 352.15 352.32 352.97 136.46			
19 344.25 344.45 345.13 0 27 347.56 347.73 348.38 75.94 34 352.15 352.32 352.97 136.46			
19 344.25 344.45 345.13 0 27 347.56 347.73 348.38 75.94 34 352.15 352.32 352.97 136.46			
19 344.25 344.45 345.13 0 27 347.56 347.73 348.38 75.94 34 352.15 352.32 352.97 136.46			
19 344.25 344.45 345.13 0 27 347.56 347.73 348.38 75.94 34 352.15 352.32 352.97 136.46			
19 344.25 344.45 345.13 0 27 347.56 347.73 348.38 75.94 34 352.15 352.32 352.97 136.46			
19 344.25 344.45 345.13 0 27 347.56 347.73 348.38 75.94 34 352.15 352.32 352.97 136.46			
19 344.25 344.45 345.13 0 27 347.56 347.73 348.38 75.94 34 352.15 352.32 352.97 136.46			
19 344.25 344.45 345.13 0 27 347.56 347.73 348.38 75.94 34 352.15 352.32 352.97 136.46		46	52
19 344.25 344.45 345.13 0 27 347.56 347.73 348.38 75.94 34 352.15 352.32 352.97 136.46	0	5.0). 00.
19 344.25 344.45 345.13 27 347.56 347.73 348.38 34 352.15			
19 344.25 344.45 345.13 27 347.56 347.73 348.38 34 352.15		<u> </u>	46
19 344.25 344.45 345.13 27 347.56 347.73 348.38 34 352.15 352.32 352.97	3	75	136
19 344.25 344.45 27 347.56 347.73 34 352.15	က		
19 344.25 344.45 27 347.56 347.73 34 352.15	7.	<u>ဗ</u>	2.9
19 344.25 344.45 27 347.56 347.73 34 352.15 352.32	345	34.	35,
27 23 34	5		22
27 23 34	4,	7.7	8
27 23 34	34	34	35
27 23 34	25	26	15
27 23 34	4	2.	22.
	7 8	8	
	6	_	₹
110	-	2	ကိ
110			
-	09	2	2
	•	·	•

Tramo 14 Tramo 15

	Universidad: Universidad: Universidad: Universidad: Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos (GIC)					Tutor:	Nombre del plano:			
				José Ferrer Polo	Perfiles long	gitudinales				
	Título del Proyecto:			Autora:			Cotutor:	Fecha:	Escala:	Nº Plano:
	Proyecto de infraestructuras hidráulicas un termino municipal de Lorca (Murcia): Red			Alba Traver Gual			Daniel Aguado García	09/2015		20

0	76.02	60.23
0	76.02	136.25
342.84		351.85
342.20	345.23	351.21 351.85 136.25
342.04 342.20 342.84	345.07 345.23 345.87	351.05
21	29	36
06	06	06

Tramo 16 Tramo 17

•	Jnive	4010	\sim	-

Universitat Politécnica de Valencia

Universidad:

Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos (GIC)

150	
	原

	Tutor:
ř.	

José Ferrer Polo	Perfiles longitudinales
JUSC 1 C11 C1 1 U1U	i crines longitudinales

Título del Proyecto:	Autora:		
Proyecto de infraestructuras hidráulicas urbanas en el barrio "La Viña", termino municipal de Lorca (Murcia): Red distribución de agua potable	Alba Traver Gual		

Cotutor:	Fecha:	Escala:	Nº Plano:
Daniel Aguado García	09/2015		21

Nombre del plano:

PRESUPUESTO

Curso: 2014/2015

Universidad Politécnica de Valencia (UPV) Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos (ETSICCP)

Grado en Ingeniería Civil Tutor: José Ferrer Polo Cotutor: Daniel Aguado García Autora: Alba Traver Gual

Índice

1.	Cuadro de Precios Nº 1	. 3
2.	Cuadro de Precios Nº 2	. 4
3.	Presupuesto General	. 5
	3.1. Presupuestos parciales	
	3.2. Presupuesto Total	

Presupuesto Página 2 de 5

1. Cuadro de precios Nº 1

Presupuesto Página 3 de 5

E03

CÓDIGO UD RESUMEN PRECIO

CAPÍTULO 01 MOVIMIENTO DE TIERRAS

CAPITULO UT MICVIMIENTO DE TIERRAS

E01 M3 EXCAVACIÓN DE ZANJA EN CUALQUIER TIPO DE TERRENO

M3 EXCAVACIÓN DE ZANJA EN CUALQUIER TIPO DE TERRENO, CON EQUIPOS

MECÁNICOS, CARGA Y TRANSPORTE A VERTEDERO

VEINTE EUROS con NOVENTA Y SEIS CÉNTIMOS

E02 M3 CAMA DE ARENA LAVADA 19.68

M3 CAMA DE ARENA LAVADA, INCLUSO TRANSPORTE, VERTIDO EN ZANJA,

COMPACTACIÓN Y CONTROL DE LA COMPACTACIÓN

DIECINUEVE EUROS con SESENTA Y OCHO CÉNTIMOS

20.96

10.93

M3 RELLENO DE ZANJA CON MATERIAL
M3 RELLENO DE ZANJA CON MATERIAL DE PRESTAMO, INCLUSO TRANSPORTE,

VERTIDO EN ZANJA, COMPACTACIÓN Y CONTROL DE LA COMPACTACIÓN

DIEZ EUROS con NOVENTA Y TRES CÉNTIMOS

CAPÍTULO 02	MATERIAL	ES CONTROL OF THE CON	
:04		JBERÍA PE100 BANDA AZUL CON PN10 Y DN90	10.56
		BERÍA PE100 BANDA AZUL CON PN10 Y DN90, INCLUSO REDUCCIÓN,	
	TRANSP	ORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA	
		DIEZ EUROS con CINCUENTA Y SEIS CÉNTIMOS	
:05		JBERÍA PE100 BANDA AZUL CON PN10 Y DN110	12.34
		BERÍA PE100 BANDA AZUL CON PN10 Y DN110, INCLUSO REDUCCIÓN,	
	IRANSP	ORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA	
		DOCE EUROS con TREINTA Y CUATRO CÉNTIMOS	
06		JBERÍA PE100 BANDA AZUL CON PN10 Y DN125	14.01
		BERÍA PE100 BANDA AZUL CON PN10 Y DN125, INCLUSO REDUCCIÓN,	
	IRANSP	ORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA	
		CATORCE EUROS con UN CÉNTIMOS	
07		JBERÍA PE100 BANDA AZUL CON PN10 Y DN160	18.52
		BERÍA PE100 BANDA AZUL CON PN10 Y DN160, INCLUSO REDUCCIÓN,	
	IRANSP	ORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA	
		DIECIOCHO EUROS con CINCUENTA Y DOS CÉNT	
08		JBERÍA PE100 BANDA AZUL CON PN10 Y DN180	22.02
		BERÍA PE100 BANDA AZUL CON PN10 Y DN90, INCLUSO REDUCCIÓN, PORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA	
	IRANSP		
		VEINTIDOS EUROS con DOS CÉNTIMOS	
09		JBERÍA PE100 BANDA AZUL CON PN10 Y DN200	25.20
		BERÍA PE100 BANDA AZUL CON PN10 Y DN200, INCLUSO REDUCCIÓN, PORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA	
	INANSE		
40	M. T.	VEINTICINCO EUROS con VEINTE CÉNTIMOS	00.04
10		JBERÍA PE100 BANDA AZUL CON PN10 Y DN225 BERÍA PE100 BANDA AZUL CON PN10 Y DN225, INCLUSO REDUCCIÓN,	30.31
		PORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA	
	11041401		
44	M. T.	TREINTA EUROS con TREINTA Y UN CÉNTIMOS	25 74
11		JBERÍA PE100 BANDA AZUL CON PN10 Y DN250 BERÍA PE100 BANDA AZUL CON PN10 Y DN250, INCLUSO REDUCCIÓN.	35.71
		PORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA	
	11011101	TREINTA Y CINCO EUROS con SETENTA Y UN	
		CÉNTIMOS	
12	ML TL	JBERÍA PE100 BANDA AZUL CON PN10 Y DN280	43.60
		BERÍA PE100 BANDA AZUL CON PN10 Y DN280, INCLUSO REDUCCIÓN,	10.00
		ORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA	
		CUARENTA Y TRES. FUROS con SESENTA CÉNTIMO	OS
13	ML TU	JBERÍA PE100 BANDA AZUL CON PN10 Y DN315	53.34
-		BERÍA PE100 BANDA AZUL CON PN10 Y DN315, INCLUSO REDUCCIÓN,	-2.51
		ORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA	
		CINCUENTA Y TRES EUROS con TREINTA Y CUATF	30

CÓDIGO UD RESUMEN **PRECIO** CAPÍTULO 03 ACCESORIOS E14 **HIDRANTE TIPO 100** 554.14 U HIDRANTE ENTERRADO DOBLE SALIDA DE COLUMNA SECA DN100 Y PN16, IN-CLUIDO TRANSPORTE, COLOCACIÓN, UNIÓN Y PRUEBA QUINIENTOS CINCUENTA Y CUATRO EUROS con CATORCE CÉNTIMOS **VÁLVULA DE CORTE DN90** E15 1,425.01 U VÁLVULA DE CORTE DE COMPUERTA PARA DN90, INCLUSO TRANSPORTE, COLOCACIÓN, UNIÓN Y PRUEBA. MIL CUATROCIENTOS VEINTICINCO EUROS con UN CÉNTIMOS **VÁLVULA DE CORTE DN110** E16 1,478.01 U VÁLVULA DE CORTE DE COMPUERTA PARA D110, INCLUSO TRANSPORTE, CO-LOCACIÓN, UNIÓN Y PRUEBA. MIL CUATROCIENTOS SETENTA Y OCHO EUROS con UN CÉNTIMOS **VÁLVULA DE CORTE DN125** E17 1,667.75 U VÁLVULA DE CORTE DE COMPUERTA PARA DN125, INCLUSO TRANSPORTE, COLOCACIÓN, UNIÓN Y PRUEBA. MIL SEISCIENTOS SESENTA Y SIETE EUROS con SETENTA Y CINCO CÉNTIMOS E18 **VÁLVULA DE CORTE DN160** 1.743.01 U VÁLVULA DE CORTE DE COMPUERTA PARA DN160, INCLUSO TRANSPORTE, COLOCACIÓN, UNIÓN Y PRUEBA. MIL SETECIENTOS CUARENTA Y TRES EUROS con UN CÉNTIMOS **VÁLVULA DE CORTE DN180** E19 1.807.67 U VÁLVULA DE CORTE DE COMPUERTA PARA DN180, INCLUSO TRANSPORTE, COLOCACIÓN. UNIÓN Y PRUEBA. MIL OCHOCIENTOS SIETE EUROS con SESENTA Y SIETE CÉNTIMOS E20 **VÁLVULA DE CORTE DN200** 1,860.67 U VÁLVULA DE CORTE DE COMPUERTA PARA DN200, INCLUSO TRANSPORTE, COLOCACIÓN, UNIÓN Y PRUEBA. MIL OCHOCIENTOS SESENTA EUROS con SESENTA Y SIETE CÉNTIMOS E21 **VÁLVULA DE CORTE DN225** 2,851.77 U VÁLVULA DE CORTE DE COMPUERTA PARA DN225, INCLUSO TRANSPORTE, COLOCACIÓN, UNIÓN Y PRUEBA. DOS MIL OCHOCIENTOS CINCUENTA Y UN EUROS con SETENTA Y SIETE CÉNTIMOS E22 **VÁLVULA DE CORTE DN250** 3.025.61 U VÁLVULA DE CORTE DE COMPUERTA PARA DN250, INCLUSO TRANSPORTE, COLOCACIÓN, UNIÓN Y PRUEBA. TRES MIL VEINTICINCO EUROS con SESENTA Y UN CÉNTIMOS E23 **VÁLVULA DE CORTE DN280** 3,180.37 U VÁLVULA DE CORTE DE COMPUERTA PARA DN280, INCLUSO TRANSPORTE, COLOCACIÓN, UNIÓN Y PRUEBA. TRES MIL CIENTO OCHENTA EUROS con TREINTA Y SIETE CÉNTIMOS E24 VENTOSA PARA CUALQUIER DIÁMETRO 2,515.24 U VENTOSA PARA CUALQUIER DIÁMETRO, INCLUIDO TRANSPORTE, COLOCA-CIÓN, UNIÓN Y PRUEBA. DOS MIL QUINIENTOS QUINCE EUROS con VEINTICUATRO CÉNTIMOS E25 **CODO DE POLIETILENO DN90** 78.90 U CODO DE POLIETILENO DN 90 DE CUALQUIER ÁNGULO, INCLUIDO TRANS-PORTE, COLOCACIÓN, SOLDADURA Y PRUEBA SETENTA Y OCHO EUROS con NOVENTA CÉNTIMOS

ÓDIGO	UD RESUMEN	PREC	10
26	U CODO DE POLIETILENO DN110	105.	72
	U CODO DE POLIETILENO DN 110 DE CUALQUIER ÁNGULO, INCLU PORTE, COLOCACIÓN, SOLDADURA Y PRUEBA	IDO TRANS-	
		CIENTO CINCO EUROS con SETENTA Y DOS CÉNTIMO	S
7	U CODO DE POLIETILENO DN125 U CODO DE POLIETILENO DN 125 DE CUALQUIER ÁNGULO, INCLU PORTE, COLOCACIÓN, SOLDADURA Y PRUEBA	IDO TRANS-	53
	TORRE, GOLGONOION, GOLDABOTH THROUBA	CIENTO DIECINUEVE EUROS con CINCUENTA Y TRES CÉNTIMOS	
8	U CODO DE POLIETILENO DN160 U CODO DE POLIETILENO DN 160 DE CUALQUIER ÁNGULO, INCLU PORTE, COLOCACIÓN, SOLDADURA Y PRUEBA	IDO TRANS-	11
		CIENTO CINCUENTA Y SEIS EUROS con ONCE CÉNTIMOS	
9	U "T" DE POLIETILENO DN90 U "T" DE POLIETILENO DN 90, INCLUIDO TRANSPORTE, COLOCACI DURA Y PRUEBA.	ÓN, SOLDA-	55
	DUKA I PROEDA.	NOVENTA Y CINCO EUROS con CINCUENTA Y CINCO CÉNTIMOS	
0	U "T" DE POLIETILENO DN110 U "T" DE POLIETILENO DN 110, INCLUIDO TRANSPORTE, COLOCAC DURA Y PRUEBA.	103.4 IÓN, SOLDA-	44
	DOIN I HOLDA.	CIENTO TRES EUROS con CUARENTA Y CUATRO CÉNTIMOS	
1	U "T" DE POLIETILENO DN125 U "T" DE POLIETILENO DN 125, INCLUIDO TRANSPORTE, COLOCAC DURA Y PRUEBA.	ÓN, SOLDA-	20
2	U "T" DE POLIETILENO DN160	CIENTO VEINTINUEVE EUROS con VEINTE CÉNTIMOS 156.	
	U "T" DE POLIETILENO DN 160, INCLUIDO TRANSPORTE, COLOCAC DURA Y PRUEBA.		, ,
2	U ITUDE DOLIETUENO DAVOS	CIENTO CINCUENTA Y SEIS EUROS con SETENTA Y UI CÉNTIMOS	
3	U "T" DE POLIETILENO DN 180, INCLUIDO TRANSPORTE, COLOCAC DURA Y PRUEBA.	ÓN, SOLDA-	23
		CIENTO OCHENTA Y TRES EUROS con VEINTITRES CÉNTIMOS	
4	U "T" DE POLIETILENO DN200 U "T" DE POLIETILENO DN 200, INCLUIDO TRANSPORTE, COLOCAC DURA Y PRUEBA.	208. IÓN, SOLDA-	81
		DOSCIENTOS OCHO EUROS con OCHENTA Y UN CÉNTIMOS	
5	U "T" DE POLIETILENO DN225 U "T" DE POLIETILENO DN 225, INCLUIDO TRANSPORTE, COLOCAC DURA Y PRUEBA.	ÓN, SOLDA-	42
		DOSCIENTOS VEINTIDOS EUROS con CUARENTA Y DO CÉNTIMOS)S
6	U "T" DE POLIETILENO DN250 U "T" DE POLIETILENO DN 250, INCLUIDO TRANSPORTE, COLOCAC DURA Y PRUEBA.	229.	70
		DOSCIENTOS VEINTINUEVE EUROS con SETENTA CÉNTIMOS	
7	U "T" DE POLIETILENO DN280 U "T" DE POLIETILENO DN 280, INCLUIDO TRANSPORTE, COLOCAC DURA Y PRUEBA.	250.	30
		DOSCIENTOS CINCUENTA EUROS con TREINTA CÉNTIMOS	

CUADRO DE PRECIOS 1

CÓDIGO	UD RESUMEN	PRECIO
E38	U "T" DE POLIETILENO DN315	282.90
	U "T" DE POLIETILENO DN 315, INCLUIDO TRANSPORTE, (DURA Y PRUEBA.	COLOCACIÓN, SOLDA-
		DOSCIENTOS OCHENTA Y DOS EUROS con NOVENTA CÉNTIMOS
E39	U ACOMETIDA DE ABASTECIMIENTO DE AGUA	649.07
	U ACOMETIDA DE ABASTECIMIENTO DE AGUA POTABLE	DESDE LA RED GENE-
	RAL DE DIÁMETRO 90-250, A UNA DISTANCIA MÁXIMA DE 5	METROS, Y LLAVE DE
	COMPUERTA MANUAL EN ARQUETA 55X55X55 CM CON TA	PA PVC. INCLUSO AC-
	CESORIOS Y MONTAJE, INSTALADA Y COMPROBADA	
		SEISCIENTOS CUARENTA Y NUEVE EUROS con SIETE

CÉNTIMOS

2. Cuadro de precios Nº 2

Presupuesto Página 4 de 5

UD

RESUMEN

CÓDIGO

CAPÍTULO 01 MOVIMIENTO DE TIERRAS EXCAVACIÓN DE ZANJA EN CUALQUIER TIPO DE TERRENO E01 M3 EXCAVACIÓN DE ZANJA EN CUALQUIER TIPO DE TERRENO, CON EQUIPOS MECÁNICOS, CARGA Y TRANSPORTE A VERTEDERO Mano de obra..... 3.69 Maquinaria..... 16.08 Resto de obra y materiales..... 1.19 TOTAL PARTIDA..... 20.96 E02 CAMA DE ARENA LAVADA M3 CAMA DE ARENA LAVADA, INCLUSO TRANSPORTE, VERTIDO EN ZANJA, COMPACTACIÓN Y CONTROL DE LA COMPACTACIÓN 3.08 Mano de obra..... 1.89 Maquinaria..... 14.71 Resto de obra y materiales..... TOTAL PARTIDA..... 19.68 E03 **RELLENO DE ZANJA CON MATERIAL** M3 RELLENO DE ZANJA CON MATERIAL DE PRESTAMO, INCLUSO TRANSPORTE, VERTIDO EN ZANJA, COMPACTACIÓN Y CONTROL DE LA COMPACTACIÓN 3.08 Mano de obra..... Maquinaria..... 1.04 Resto de obra y materiales..... 6.81

TOTAL PARTIDA.....

PRECIO

10.93

UD

RESUMEN

CÓDIGO

CAPÍTULO 02 MATERIALES TUBERÍA PE100 BANDA AZUL CON PN10 Y DN90 E04 ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN90, INCLUSO REDUCCIÓN, TRANSPORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA Mano de obra..... 5.09 Maquinaria..... 1.10 4.37 Resto de obra y materiales..... TOTAL PARTIDA..... 10.56 E05 TUBERÍA PE100 BANDA AZUL CON PN10 Y DN110 ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN110, INCLUSO REDUCCIÓN, TRANSPORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA Mano de obra..... 5.09 Maquinaria..... 1.10 Resto de obra y materiales..... 6.15 TOTAL PARTIDA..... 12.34 TUBERÍA PE100 BANDA AZUL CON PN10 Y DN125 E06 ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN125, INCLUSO REDUCCIÓN, TRANSPORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA 5.09 Mano de obra..... 1.10 Maguinaria..... Resto de obra y materiales..... 7.82 TOTAL PARTIDA..... 14.01 TUBERÍA PE100 BANDA AZUL CON PN10 Y DN160 E07 ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN160, INCLUSO REDUCCIÓN, TRANSPORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA 5.09 Mano de obra..... 1.10 Maquinaria..... Resto de obra y materiales.... 12.33 18.52 TOTAL PARTIDA..... TUBERÍA PE100 BANDA AZUL CON PN10 Y DN180 E08 ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN90, INCLUSO REDUCCIÓN, TRANSPORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA Mano de obra..... 5 09 1 10 Maquinaria..... Resto de obra y materiales..... 15.83 TOTAL PARTIDA..... 22.02 E09 TUBERÍA PE100 BANDA AZUL CON PN10 Y DN200 ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN200, INCLUSO REDUCCIÓN, TRANSPORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA Mano de obra..... 5.09 Maquinaria..... 1.10 Resto de obra y materiales..... 19.01 TOTAL PARTIDA..... 25.20 TUBERÍA PE100 BANDA AZUL CON PN10 Y DN225 E10 ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN225. INCLUSO REDUCCIÓN. TRANSPORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA 5.09 1.10 Maguinaria..... Resto de obra y materiales..... 24.12 TOTAL PARTIDA..... 30.31 TUBERÍA PE100 BANDA AZUL CON PN10 Y DN250 E11 ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN250, INCLUSO REDUCCIÓN, TRANSPORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA 5.09 Maquinaria..... 1.10 29.52 Resto de obra y materiales..... TOTAL PARTIDA..... 35.71

PRECIO

CUADRO DE PRECIOS 2

UD

RESUMEN

CÓDIGO

		TOTAL PARTIDA	53.34
		Resto de obra y materiales	47.15
		Maquinaria	1.10
		Mano de obra	5.09
	TRANSPORTE, COLOCACIÓN, SOLDADURA POR ELECTROF	USIÓN Y PRUEBA	
	ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN315, IN		
E13	ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN315		
		TOTAL PARTIDA	43.60
		Resto de obra y materiales	37.41
		Maquinaria	1.10
		Mano de obra	5.09
	TRANSPORTE, COLOCACIÓN, SOLDADURA POR ELECTROF		
E12	ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN280 ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN280, IN	ICIUSO REDUCCIÓN	

PRECIO

CÓDIGO	UD RESUMEN		PRECIO
CAPÍTULO 0	03 ACCESORIOS		
E14	U HIDRANTE TIPO 100 U HIDRANTE ENTERRADO DOBLE SALIDA DE COLUMNA SECA CLUIDO TRANSPORTE, COLOCACIÓN, UNIÓN Y PRUEBA	A DN100 Y PN16, IN-	
	, , , , , , , , , , , , , , , , , , , ,	Mano de obraResto de obra y materiales	15.27 538.87
		TOTAL PARTIDA	554.14
E15	U VÁLVULA DE CORTE DN90 U VÁLVULA DE CORTE DE COMPUERTA PARA DN90, INCLI COLOCACIÓN, UNIÓN Y PRUEBA.	JSO TRANSPORTE,	
		Mano de obra	20.35
		Resto de obra y materiales	1,404.66
E16	U VÁLVULA DE CORTE DN110	TOTAL PARTIDA	1,425.01
210	U VÁLVULA DE CORTE DE COMPUERTA PARA D110, INCLUSO LOCACIÓN, UNIÓN Y PRUEBA.	TRANSPORTE, CO-	
		Mano de obra	20.35
		Resto de obra y materiales	1,457.66
F47	II. VÁLVIII A DE CODTE DIVAS	TOTAL PARTIDA	1,478.01
E17	U VÁLVULA DE CORTE DN125 U VÁLVULA DE CORTE DE COMPUERTA PARA DN125, INCL COLOCACIÓN, UNIÓN Y PRUEBA.	USO TRANSPORTE,	
	00_00.00.00.00.00.00.00.00.00.00.00.00.0	Mano de obra	20.35
		Resto de obra y materiales	1,647.40
		TOTAL PARTIDA	1,667.75
E18	U VÁLVULA DE CORTE DN160 U VÁLVULA DE CORTE DE COMPUERTA PARA DN160, INCL COLOCACIÓN, UNIÓN Y PRUEBA.	USO TRANSPORTE,	
	,	Mano de obra	20.35
		Resto de obra y materiales	1,722.66
		TOTAL PARTIDA	1,743.01
E19	U VÁLVULA DE CORTE DN 180 U VÁLVULA DE CORTE DE COMPUERTA PARA DN 180, INCL COLOCACIÓN, UNIÓN Y PRUEBA.	USO TRANSPORTE,	
		Mano de obra	20.35
		Resto de obra y materiales	1,787.32
E20	U VÁLVULA DE CORTE DN200 U VÁLVULA DE CORTE DE COMPUERTA PARA DN200, INCL	TOTAL PARTIDA	1,807.67
	COLOCACIÓN, UNIÓN Y PRUEBA.		
		Mano de obra	20.35
		Resto de obra y materiales	1,840.32
E21	U VÁLVULA DE CORTE DN225	TOTAL PARTIDA	1,860.67
	U VÁLVULA DE CORTE DE COMPUERTA PARA DN225, INCL COLOCACIÓN, UNIÓN Y PRUEBA.	USO TRANSPORTE,	
		Mano de obra Resto de obra y materiales	20.35 2,831.42
		TOTAL PARTIDA	2,851.77
E22	U VÁLVULA DE CORTE DN250 U VÁLVULA DE CORTE DE COMPUERTA PARA DN250, INCL COLOCACIÓN, UNIÓN Y PRUEBA.	USO TRANSPORTE,	·
	00_00.00.00.00.00.00.00.00.00.00.00.00.0	Mano de obra	20.35
		Resto de obra y materiales	3,005.26
		TOTAL PARTIDA	3,025.61
E23	U VÁLVULA DE CORTE DN280 U VÁLVULA DE CORTE DE COMPUERTA PARA DN280, INCL COLOCACIÓN, UNIÓN Y PRUEBA.	USO TRANSPORTE,	
	Colonial, and Tribesi.	Mano de obra	20.35
		Resto de obra y materiales	3,160.02
		TOTAL PARTIDA	3,180.37

UD

RESUMEN

CÓDIGO

CODIGO	UD KESUMEN		PRECIO
E24	U VENTOSA PARA CUALQUIER DIÁMETRO U VENTOSA PARA CUALQUIER DIÁMETRO, INCLUIDO TR CIÓN, UNIÓN Y PRUEBA.	ANSPORTE, COLOCA-	
		Mano de obra	15.27
		Resto de obra y materiales	2,499.97
		TOTAL PARTIDA	2,515.24
E25	U CODO DE POLIETILENO DN90	101121111111111111111111111111111111111	2,010121
	U CODO DE POLIETILENO DN 90 DE CUALQUIER ÁNGUI PORTE, COLOCACIÓN, SOLDADURA Y PRUEBA	O, INCLUIDO TRANS-	
		Mano de obra	10.18
		Resto de obra y materiales	68.72
		TOTAL PARTIDA	78.90
E26	U CODO DE POLIETILENO DN110 U CODO DE POLIETILENO DN 110 DE CUALQUIER ÁNGUI PORTE, COLOCACIÓN, SOLDADURA Y PRUEBA	LO, INCLUIDO TRANS-	
	TOTAL, OCCOMOTOR, OCCOMOTOR THOUSAN	Mano de obra	10.18
		Resto de obra y materiales	95.54
		TOTAL PARTIDA	105.72
E27	U CODO DE POLIETILENO DN125	TOTAL PARTIDA	103.72
LZI	U CODO DE POLIETILENO DN 125 DE CUALQUIER ÁNGUI PORTE, COLOCACIÓN, SOLDADURA Y PRUEBA	LO, INCLUIDO TRANS-	
		Mano de obra	10.18
		Resto de obra y materiales	109.35
		TOTAL PARTIDA	119.53
E28	U CODO DE POLIETILENO DN160		
	U CODO DE POLIETILENO DN 160 DE CUALQUIER ÁNGUI PORTE, COLOCACIÓN, SOLDADURA Y PRUEBA		
		Mano de obra	10.18
		Resto de obra y materiales	145.93
		TOTAL PARTIDA	156.11
E29	U "T" DE POLIETILENO DN90 U "T" DE POLIETILENO DN 90, INCLUIDO TRANSPORTE, C DURA Y PRUEBA.	COLOCACIÓN, SOLDA-	
		Mano de obra	20.35
		Resto de obra y materiales	75.20
		TOTAL PARTIDA	95.55
E30	U "T" DE POLIETILENO DN110		
	U "T" DE POLIETILENO DN 110, INCLUIDO TRANSPORTE, O DURA Y PRUEBA.	COLOCACIÓN, SOLDA-	
		Mano de obra	20.35
		Resto de obra y materiales	83.09
		TOTAL PARTIDA	103.44
E31	U "T" DE POLIETILENO DN 125 U "T" DE POLIETILENO DN 125, INCLUIDO TRANSPORTE, C DURA Y PRUEBA.	COLOCACIÓN, SOLDA-	
		Mano de obra	20.35
		Resto de obra y materiales	108.85
		TOTAL PARTIDA	129.20
E32	U "T" DE POLIETILENO DN 160 U "T" DE POLIETILENO DN 160, INCLUIDO TRANSPORTE, C		123.20
	DURA Y PRUEBA.	Mana da abra	20.25
		Mano de obraResto de obra y materiales	20.35 136.36
		<u> </u>	
F22	II IITI DE DOLIETU ENO DAVOS	TOTAL PARTIDA	156.71
E33	U "T" DE POLIETILENO DN 180 U "T" DE POLIETILENO DN 180, INCLUIDO TRANSPORTE, C DURA Y PRUEBA.	COLOCACIÓN, SOLDA-	
	-	Mano de obra	20.35
		Resto de obra y materiales	162.88
		TOTAL PARTIDA	183.23
			100.20

PRECIO

CUADRO DE PRECIOS 2

UD

RESUMEN

CÓDIGO

		TOTAL PARTIDA	649.07
		Resto de obra y materiales	411.28
		Maquinaria	6.57
		Mano de obra	231.22
	COMPUERTA MANUAL EN ARQUETA 55X55X55 CM CON CESORIOS Y MONTAJE, INSTALADA Y COMPROBADA	IAPA PVC. INCLUSO AC-	
	RAL DE DIÁMETRO 90-250, A UNA DISTANCIA MÁXIMA DE	·	
	U ACOMETIDA DE ABASTECIMIENTO DE AGUA POTABL		
E39	U ACOMETIDA DE ABASTECIMIENTO DE AGUA		
		TOTAL PARTIDA	282.90
		Resto de obra y materiales	262.55
		Mano de obra	20.35
	DURA Y PRUEBA.		•• •-
	U "T" DE POLIETILENO DN 315, INCLUIDO TRANSPORTE	E, COLOCACION, SOLDA-	
E38	U "T" DE POLIETILENO DN315	,	
		TOTAL PARTIDA	250.30
		Resto de obra y materiales	229.95
		Mano de obra	20.35
	DURA Y PRUEBA.	,	
	U "T" DE POLIETILENO DN 280, INCLUIDO TRANSPORTE	E, COLOCACIÓN, SOLDA-	
E37	U "T" DE POLIETILENO DN280	TVIAE I AKTIDA	220.70
		TOTAL PARTIDA	229.70
		Resto de obra y materiales	20.35
	DOIN I FINDEDA.	Mano de obra	20.35
	U "T" DE POLIETILENO DN 250, INCLUIDO TRANSPORTE DURA Y PRUEBA.	-, COLOGACION, SOLDA-	
E36	U "T" DE POLIETILENO DN250	- 001004016N 001D4	
	II ITI DE DOLIETI ENO DASS	TOTAL PARTIDA	222.42
		· —	
		Mano de obra Resto de obra y materiales	20.35 202.07
	DURA Y PRUEBA.	Mana da akra	00.05
	U "T" DE POLIETILENO DN 225, INCLUIDO TRANSPORTE	E, COLOCACION, SOLDA-	
E35	U "T" DE POLIETILENO DN225		
		TOTAL PARTIDA	208.81
		Resto de obra y materiales	188.46
		Mano de obra	20.35
	DURA Y PRUEBA.		
	U "T" DE POLIETILENO DN 200, INCLUIDO TRANSPORTE	E, COLOCACIÓN, SOLDA-	
E34	U "T" DE POLIETILENO DN200		

PRECIO

3. Presupuesto general

Presupuesto Página 5 de 5

PRESUPUESTO

RESUMEN

CÓDIGO

	CAPÍTULO 01 MOVIMIENTO DE TIERRAS			
E01	M3 EXCAVACIÓN DE ZANJA EN CUALQUIER TIPO DE TERRENO			
	M3 EXCAVACIÓN DE ZANJA EN CUALQUIER TIPO DE TERRENO, CON EQUIPOS MECÁNICOS, CARGA Y TRANSPORTE A VERTEDERO			
		2,270.87	20.96	47,597.44
E02	M3 CAMA DE ARENA LAVADA			
	M3 CAMA DE ARENA LAVADA, INCLUSO TRANSPORTE, VERTIDO EN ZANJA, COMPACTACIÓN Y CONTROL DE LA COMPACTACIÓN			
		207.45	19.68	4,082.62
E03	M3 RELLENO DE ZANJA CON MATERIAL			
	M3 RELLENO DE ZANJA CON MATERIAL DE PRESTAMO, INCLUSO TRANSPORTE, VERTIDO EN ZANJA, COMPACTACIÓN Y CONTROL DE LA COMPACTACIÓN			
		2,071.21	10.93	22,638.33
	TOTAL CAPÍTULO 01 MOVIMIENTO DE TIERRAS			74,318.39

CANTIDAD

PRECIO

IMPORTE

	CAPÍTULO 02 MATERIALES ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN90			
=	ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN90			
E04	1022 2100 2111.2111			
	ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN90, INCLUSO REDUCCIÓN, TRANS- PORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA			
		1,836.24	10.56	19,390.69
E05	ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN110			
	ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN110, INCLUSO REDUCCIÓN, TRANSPORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA			
		438.70	12.34	5,413.56
E06	ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN125			
	ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN125, INCLUSO REDUCCIÓN, TRANSPORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA			
		292.43	14.01	4,096.94
E07	ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN160			
	ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN160, INCLUSO REDUCCIÓN, TRANSPORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA			
		373.88	18.52	6,924.26
E08	ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN180			
	ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN90, INCLUSO REDUCCIÓN, TRANS- PORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA			
		67.84	22.02	1,493.84
E09	ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN200			
	ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN200, INCLUSO REDUCCIÓN, TRANSPORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA			
		95.00	25.20	2,394.00
E10	ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN225			
	ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN225, INCLUSO REDUCCIÓN, TRANSPORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA			
		32.16	30.31	974.77
E11	ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN250			
	ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN250, INCLUSO REDUCCIÓN, TRANSPORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA			
		52.14	35.71	1,861.92
E12	ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN280			
	ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN280, INCLUSO REDUCCIÓN, TRANSPORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA			
		45.74	43.60	1,994.26
E13	ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN315			
	ML TUBERÍA PE100 BANDA AZUL CON PN10 Y DN315, INCLUSO REDUCCIÓN, TRANSPORTE, COLOCACIÓN, SOLDADURA POR ELECTROFUSIÓN Y PRUEBA			
		9.02	53.34	481.13
	TOTAL CAPÍTULO 02 MATERIALES			45,025.37

CÓDIGO	RESUMEN	CANTIDAD	PRECIO	IMPORTE
	CAPÍTULO 03 ACCESORIOS			
E14	U HIDRANTE TIPO 100			
	U HIDRANTE ENTERRADO DOBLE SALIDA DE COLUMNA SECA DN100 Y PN16, IN- CLUIDO TRANSPORTE, COLOCACIÓN, UNIÓN Y PRUEBA			
		3.00	554.14	1,662.42
E15	U VÁLVULA DE CORTE DN90 U VÁLVULA DE CORTE DE COMPUERTA PARA DN90, INCLUSO TRANSPORTE, COLO-CACIÓN, UNIÓN Y PRUEBA.			
		32.00	1,425.01	45,600.32
E16	U VÁLVULA DE CORTE DN110			
	U VÁLVULA DE CORTE DE COMPUERTA PARA D110, INCLUSO TRANSPORTE, COLO-CACIÓN, UNIÓN Y PRUEBA.			
		7.00	1,478.01	10,346.07
E17	U VÁLVULA DE CORTE DN125 U VÁLVULA DE CORTE DE COMPUERTA PARA DN125, INCLUSO TRANSPORTE, CO-			
l	LOCACIÓN, UNIÓN Y PRUEBA.	3.00	1 667 75	E 002 0E
E18	U VÁLVULA DE CORTE DN160	3.00	1,667.75	5,003.25
	U VÁLVULA DE CORTE DE COMPUERTA PARA DN160, INCLUSO TRANSPORTE, CO- LOCACIÓN, UNIÓN Y PRUEBA.			
		9.00	1,743.01	15,687.09
E19	U VÁLVULA DE CORTE DN180			
İ	U VÁLVULA DE CORTE DE COMPUERTA PARA DN180, INCLUSO TRANSPORTE, CO-LOCACIÓN, UNIÓN Y PRUEBA.			
		2.00	1,807.67	3,615.34
E20	U VÁLVULA DE CORTE DN200 U VÁLVULA DE CORTE DE COMPUERTA PARA DN200, INCLUSO TRANSPORTE, CO-			
	LOCACIÓN, UNIÓN Y PRUEBA.			
F04	U VÁLVULA DE CORTE DN225	2.00	1,860.67	3,721.34
E21	U VÁLVULA DE CORTE DR225 U VÁLVULA DE CORTE DE COMPUERTA PARA DN225, INCLUSO TRANSPORTE, CO-LOCACIÓN, UNIÓN Y PRUEBA.			
		1.00	2,851.77	2,851.77
E22	U VÁLVULA DE CORTE DN250		,	,
	U VÁLVULA DE CORTE DE COMPUERTA PARA DN250, INCLUSO TRANSPORTE, CO-LOCACIÓN, UNIÓN Y PRUEBA.			
		1.00	3,025.61	3,025.61
E23	U VÁLVULA DE CORTE DN280			
	U VÁLVULA DE CORTE DE COMPUERTA PARA DN280, INCLUSO TRANSPORTE, CO- LOCACIÓN, UNIÓN Y PRUEBA.			
F04	U VENTOCA DADA CUALQUED DIÁMETDO	1.00	3,180.37	3,180.37
E24	U VENTOSA PARA CUALQUIER DIÁMETRO U VENTOSA PARA CUALQUIER DIÁMETRO, INCLUIDO TRANSPORTE, COLOCA- CIÓN, UNIÓN Y PRUEBA.			
	CION, UNION I PROCESA.	7.00	2 515 24	17,606.68
E25	U CODO DE POLIETILENO DN90	7.00	2,515.24	17,000.00
	U CODO DE POLIETILENO DN 90 DE CUALQUIER ÁNGULO, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA			
		3.00	78.90	236.70
E26	U CODO DE POLIETILENO DN110			
1	U CODO DE POLIETILENO DN 110 DE CUALQUIER ÁNGULO, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA			

U CODO DE POLIETILENO DN125 U CODO DE POLIETILENO DN 125 DE CUALQUIER ÁNGULO, INCLUIDO TRANSPOR- TE, COLOCACIÓN, SOLDADURA Y PRUEBA	1.00	105.72	105.72
U CODO DE POLIETILENO DN 125 DE CUALQUIER ÁNGULO, INCLUIDO TRANSPOR-			
	4.00	119.53	478.12
U CODO DE POLIETILENO DN160			
U CODO DE POLIETILENO DN 160 DE CUALQUIER ÁNGULO, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA			
	1.00	156.11	156.11
U "T" DE POLIETILENO DN90			
U "T" DE POLIETILENO DN 90, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA.			
	11.00	95.55	1,051.05
U "T" DE POLIETILENO DN110			
U "T" DE POLIETILENO DN 110, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADU-RA Y PRUEBA.			
	1.00	103.44	103.44
U "T" DE POLIETILENO DN125			
U "T" DE POLIETILENO DN 125, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADU-RA Y PRUEBA.			
	4.00	129.20	516.80
U "T" DE POLIETILENO DN160			
U "T" DE POLIETILENO DN 160, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADU-RA Y PRUEBA.			
	7.00	156.71	1,096.97
U "T" DE POLIETILENO DN180			
U "T" DE POLIETILENO DN 180, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA.			
	1.00	183.23	183.23
U "T" DE POLIETILENO DN200			
U "T" DE POLIETILENO DN 200, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADU-RA Y PRUEBA.			
	4.00	208.81	835.24
U "T" DE POLIETILENO DN225			
U "T" DE POLIETILENO DN 225, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADU-RA Y PRUEBA.			
	1.00	222.42	222.42
U "T" DE POLIETILENO DN250			
U "T" DE POLIETILENO DN 250, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADU-RA Y PRUEBA.			
	1.00	229.70	229.70
U "T" DE POLIETILENO DN280			
U "T" DE POLIETILENO DN 280, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADU-RA Y PRUEBA.			
	1.00	250.30	250.30
U "T" DE POLIETILENO DN315			
U "T" DE POLIETILENO DN 315, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADU-RA Y PRUEBA.			
	1.00	282.90	282.90
	U "T" DE POLIETILENO DN 90, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. U "T" DE POLIETILENO DN 110, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. U "T" DE POLIETILENO DN 125, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. U "T" DE POLIETILENO DN 160, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. U "T" DE POLIETILENO DN 160, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. U "T" DE POLIETILENO DN 180, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. U "T" DE POLIETILENO DN 200, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. U "T" DE POLIETILENO DN 200, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. U "T" DE POLIETILENO DN 225, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. U "T" DE POLIETILENO DN 225, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. U "T" DE POLIETILENO DN 250, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. U "T" DE POLIETILENO DN 280, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. U "T" DE POLIETILENO DN 280, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. U "T" DE POLIETILENO DN 280, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. U "T" DE POLIETILENO DN 280, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA.	U "T" DE POLIETILENO DN90 U "T" DE POLIETILENO DN 90, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. 11.00 U "T" DE POLIETILENO DN110 U "T" DE POLIETILENO DN 110, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. 1.00 U "T" DE POLIETILENO DN 125, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. 4.00 U "T" DE POLIETILENO DN 160, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. 7.00 U "T" DE POLIETILENO DN 180, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. 7.00 U "T" DE POLIETILENO DN 180, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. 1.00 U "T" DE POLIETILENO DN 200, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. 1.00 U "T" DE POLIETILENO DN 225, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. 1.00 U "T" DE POLIETILENO DN 225, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. 1.00 U "T" DE POLIETILENO DN 250, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. 1.00 U "T" DE POLIETILENO DN 250, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. 1.00 U "T" DE POLIETILENO DN 250, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. 1.00 U "T" DE POLIETILENO DN 280, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. 1.00 U "T" DE POLIETILENO DN 280, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA.	U TT DE POLIETILENO DN 90, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA TT DE POLIETILENO DN 90, INCLUIDO TRANSPORTE, COLOCACIÓN, SOLDADURA Y PRUEBA. 1,00

PRESUPUESTO

CÓDIGO	RESUMEN	CANTIDAD	PRECIO	IMPORTE
E39	U ACOMETIDA DE ABASTECIMIENTO DE AGUA			
	U ACOMETIDA DE ABASTECIMIENTO DE AGUA POTABLE DESDE LA RED GENERAL DE DIÁMETRO 90-250, A UNA DISTANCIA MÁXIMA DE 5 METROS, Y LLAVE DE COMPUERTA MANUAL EN ARQUETA 55X55X55 CM CON TAPA PVC. INCLUSO ACCESORIOS Y MONTAJE, INSTALADA Y COMPROBADA			
		156.00	649.07	101,254.92
	TOTAL CAPÍTULO 03 ACCESORIOS		—	219,303.88
ı	TOTAL			338,647.64

RESUMEN DE PRESUPUESTO

RESUMEN			EUROS	%
MOVIMIENTO DE TIERRAS			74,318.39	21.95
MATERIALES			45,025.37	13.30
ACCESORIOS			219,303.88	64.76
	TOTAL EJECUCI	ÓN MATERIAL	338,647.64	
13.00% Ga	astos generales	44,024.19		
6.00% Be	eneficio industrial	20,318.86		
	SUMA	DE G.G. y B.I.	64,343.05	
21.00% I.V.A TOTAL PRESUPUESTO CONTRATA		84,628.04		
		487,618.73		
	TOTAL PRESUPUES	STO GENERAL	487,618.73	
	MOVIMIENTO DE TIERRAS	MOVIMIENTO DE TIERRAS. MATERIALES. ACCESORIOS TOTAL EJECUCI 13.00% Gastos generales. 6.00% Beneficio industrial. SUMA 21.00% I.V.A. TOTAL PRESUPUES	MOVIMIENTO DE TIERRAS. MATERIALES. ACCESORIOS. TOTAL EJECUCIÓN MATERIAL 13.00% Gastos generales. 44,024.19 6.00% Beneficio industrial 20,318.86 SUMA DE G.G. y B.I. 21.00% I.V.A.	MOVIMIENTO DE TIERRAS. 74,318.39 MATERIALES. 45,025.37 ACCESORIOS. 219,303.88 TOTAL EJECUCIÓN MATERIAL 338,647.64 13.00% Gastos generales. 44,024.19 6.00% Beneficio industrial. 20,318.86 SUMA DE G.G. y B.I. 64,343.05 21.00% I.V.A. 84,628.04 TOTAL PRESUPUESTO CONTRATA 487,618.73

Asciende el presupuesto general a la expresada cantidad de CUATROCIENTOS OCHENTA Y SIETE MIL SEISCIENTOS DIECIOCHO EUROS con SE-TENTA Y TRES CÉNTIMOS

, a 10 de junio de 2015.

El promotor

La dirección facultativa