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Abstract

In this paper we introduce and analyze new classes of cooperative games related to facility

location models defined on general metric spaces. The players are the customers (demand

points) in the location problem and the characteristic value of a coalition is the cost of serving

its members. Specifically, the cost in our games is the service radius of the coalition.

We study the existence of core allocations and the existence of polynomial representations

of the cores of these games, focusing on network spaces, i.e., finite metric spaces induced by

undirected graphs and positive edge lengths, and on the ℓp metric spaces defined over R
d.

Keywords: Cooperative combinatorial games, core solutions, radius, diameter.

1 Introduction

Let X be a metric space and let N0 = {v0, v1, . . . , vk} be a finite set of points in X. The

subset N = {v1, . . . , vk} is identified as the set of k players, and we refer to these points as

existing facilities, or demand points. There is also a distinguished point v0, representing the

location of a server that provides services to the players, that can be viewed as an essential

element in the system, e.g., each demand point must have access to v0. Note that v0 is not a

player. For motivation purposes, assume that the demand points represent patients, and v0
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1 INTRODUCTION 2

is the location of a repairman or a medical doctor who provides assistance or health services,

respectively.

Our study is motivated by location models, where the time elapsed till the service is

provided (response time) is critical. Moreover, referring to the above example, the service of

the doctor is not necessarily provided at his home base. Instead, the coalition of patients S

can optimally select the location of the center, (e.g., clinic or hospital), where the service will

be provided. When there is a call for service, both, a patient and the doctor will travel to

the clinic. The cost of service is assumed to be the service radius, defined as the maximum

distance travelled by a patient or the doctor to the service facility (center). Using location

theory terminology, the cost of a coalition S is the solution value of the 1-center problem for

the set S ∪ {v0}.
In the rest of the paper we will use the concepts of diameter and radius. Given a finite

subset of points Y ⊆ X, its diameter D(Y ), is defined by

D(Y ) = max
y1,y2∈Y

d(y1, y2).

A pair of points y1, y2 ∈ Y , satisfying D(Y ) = d(y1, y2) is called a diametrical pair. The

radius of Y is defined by

R(Y ) = inf
x∈X

max
y∈Y

d(x, y).

A point x ∈ X satisfying R(Y ) = maxy∈Y d(x, y) is called a 1-center of Y . Note that by the

triangle inequality

R(Y ) ≤ D(Y ) ≤ 2R(Y ). (1)

We now formally define the class of cooperative cost games based on the above facil-

ity location problems that we study in this paper: The Minimum Radius Location Game

(MRLG).

First recall that a generic finite cooperative game is a pair (N, v), where N is a finite set

of players and v is the characteristic function defined from 2N to R, which satisfies v(∅) = 0,

and assigns to each coalition S ⊆ N a real value (it can be a benefit or a cost). The game

(N, v) is called monotone if for any pair of subsets S1 ⊆ S2 ⊆ N , v(S1) ≤ v(S2). It is called

subadditive if for any pair of subsets S1, S2 ⊆ N , v(s1 ∪ S2) ≤ v(S1) + v(S2), and it is called

submodular if for any pair of subsets S1, S2 ⊆ N , v(s1 ∪ S2) + v(S1 ∩ S2) ≤ v(S1) + v(S2).

The core of (N, v) (in the case of a cost game) is the set

C(N, v) = {x ∈ R
k : x(N) = v(N), x(S) ≤ v(S),∀ S ⊆ N}, (2)

where x(S) =
∑

j:vj∈S xj, for any S ⊆ N .

The first game, which we have studied in a companion paper, Puerto et al. (2010), is the
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Minimum Diameter Location Game (MDLG), (N, vI), with respect to the metric space X

and the set of points N0. Its characteristic function is defined by

vI(S) = D(S ∪ {v0}).

The second game, which we study in this paper, is the Minimum Radius Location Game

(MRLG), (N, vII), with respect to the metric space X and the set of points N0. Its charac-

teristic function is defined by

vII(S) = 2R(S ∪ {v0}).

(The factor 2 in the above definition is used for convenience and comparison purposes only.)

It directly follows from the definitions that both games are monotone. Also, from (1), for

any S ⊆ N ,

vI(S) ≤ vII(S) ≤ 2vI(S).

In our companion paper we have shown that C(N, vI), the core of the MDLG, (N, vI), is

always nonempty. Moreover, there is a vector in C(N, vI) where at most 2 of its components

are positive and the rest are zero. We have also proved that recognizing whether a given

vector x is in C(N, vI) is NP-hard.

In contrast, in this paper we will demonstrate that C(N, vII), the core of the MRLG,

can be empty. In view of this result we will prove that for several important metric spaces

the core, which by definition is a polyhedral set in R
k, is nonempty and/or has a polyhedral

representation by O(kc) linear inequalities (c is independent of the number of players k, and

depends only on some parameters of the space X.) Such a representation is usually called

efficient or compact. One of these metric spaces is the network metric space induced by a

connected undirected graph and its positive edge lengths. It is defined as follows:

Suppose G = (V,E) is a connected undirected graph with positive edge lengths {le}, e ∈
E, where V = {v0, v1, . . . , vn}. When e = (vi, vj), we will also use the notation l(vi, vj) = le.

Each edge in E is assumed to be rectifiable. We refer to interior points on an edge by their

distances (along the edge) from the two nodes of the edge. A(G) is the continuum set of

points on the edges of G. For any pair of points x, y ∈ A(G), we let d(x, y) denote the length

of a shortest path in A(G) connecting x and y. We refer to A(G) as the metric space induced

by G and the edge lengths.

The paper is structured as follows. In Section 2, we demonstrate that in general the

core of the MRLG can be empty, even for a geometric planar road network where the edges

are straight lines and their lengths are the respective Euclidean distances. We observe that

for discrete spaces the MRLG may not even be subadditive, and we then prove that in the

case of geodesic spaces it is always subadditive. We also provide sufficient conditions for the

existence of core allocations, based on the relationship between the MRLG and the MDLG.
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This relationship is then used to show that even when the core of the MRLG may be empty,

any core allocation of the MDLG is a {1/2}-budget balanced allocation of the MRLG.

Section 3 is devoted to network metric spaces A(G). For such spaces we assume without

loss of generality that the set of players N is a subset of V . When N = V \ {v0} we call the

game a complete game. We present two interesting classes of graphs for which the core of

the MRLG is nonempty: median and long-diameter graphs. For any graph G, we provide a

representation of C(N, vII) by O(m|N |2) linear constraints, where m is the number of edges

of G. Such a representation implies that emptiness of the core can be efficiently checked with

linear programming methods.

A similar efficient representation having O(|X|2) constraints for a general discrete metric

space X, is given in Section 4. The special case in which N = X − {v0} will be called a

complete discrete game.

In Section 5 we study the case in which the underlying space is the ℓp metric space over

R
d, and give an efficient representation of C(N, vII), for the case where the dimension d is

fixed. We show that in the case of the infinity norm the core is always nonempty. In the

case of other norms, the emptiness is still an open question, with the exception of the planar

Euclidean case. For the latter case, which is of great importance from the application point

of view, we constructively generate a core allocation where the total cost is assigned to the

(at most) three demand points defining the smallest circle enclosing all the demand points

and the service point. The proof of this result is given in the Appendix. (This is in contrast

with the example in Section 2 which shows that the core can be empty for a geometric planar

road network where the edges are straight lines and their lengths are the respective Euclidean

distance.)

The paper ends with some conclusions and open problems. Specifically, it is still unclear

what general properties of the radius game will at least unify all the non-emptiness results

presented in this paper. Table 1 summarizes the main results in the paper.

2 Emptiness of the core C(N, vII)

We have already noted that by definition the characteristic function vII is monotone. How-

ever, when the metric space X is discrete, i.e., |X| is finite, the radius location game, (N, vII)

may not exhibit the subadditivity property. As a result players may have no incentive to

cooperate and the core can be empty, as shown in the next example.

Example 2.1 Consider a 5-node path with edge set E = {(v1, v2), (v2, v0), (v0, v3), (v3, v4)}.
The respective edge lengths are 1, 1, 2 and 2, as shown in Figure 1.

The finite (discrete) space X consists of the 5 nodes (points) with the distance function

induced by the edge lengths. X can also be viewed as a set of 5 points on the real line.
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Complete
Radius Game

Radius Game

Discrete Spaces
Empty

(3-players)
Empty (2-players)

Core’s polynomial representation

Spaces
with

continuum

General
Empty

(3-players)

Space
A(G)

Open
(nonempty
3-players)

Empty
(3-players)

Core’s polynomial representation

Space
A(T )

Nonempty
(submodular)

Nonempty
(submodular)

Core’s polynomial representation
(Rd, ℓp) Core’s polynomial representation

(Rd, ℓ1)
nonempty, d = 1, 2

open, d ≥ 3
Core’s polynomial representation

(Rd, ℓ2)
nonempty, d = 1, 2

open, d ≥ 3
Core’s polynomial representation

(Rd, ℓ∞)
nonempty, d ≥ 1
(2 players pay)

Core’s polynomial representation

Table 1: Summary of results on the core C(N, vII).

v1 v2 v0 v3 v4
1 1 2 2

Figure 1: Graph in Example 2.1.

Consider first the 2-player game on X defined by N = {v1, v4}. It is not subadditive since

vII({v1, v4}) > vII({v1}) + vII({v4}).
The above example can easily be modified to show that subadditivity may not hold even

for complete discrete games, i.e., when N = X \ {v0}. Specifically, consider the complete

4-player radius game defined on the above set X, and let N = X \ {v0} = {v1, v2, v3, v4}.
The smallest discrete neighborhood covering all nodes has radius 4, while the smallest

(discrete) neighborhoods covering {v1, v2, v0} and {v3, v4, v0} have radii 1 and 2, respec-

tively. Hence, vII({v1, v2, v3, v4}) = 8, vII({v1, v2}) = 2, vII({v3, v4}) = 4, and therefore

vII({v1, v2, v3, v4}) > vII({v1, v2}) + vII({v3, v4}). �

It is easy to check that unlike the above 2-player radius game defined on a discrete

metric space, every complete 2-player game, defined on a 3 point discrete metric space has a

nonempty core. The last example illustrates that a complete 4-player radius game, defined

on a 5 point discrete metric space may not be subadditive, and therefore can have an empty



2 EMPTINESS OF THE CORE C(N,VII) 6

core. The next example shows that a complete 3-player game, defined on a 4 point discrete

metric space may be subadditive, and still has an empty core.

Example 2.2 Consider the discrete space defined by X = {v0, v1, v2, v3}, d(v0, v1) = d(v2, v3)

= 2 and d(v0, v2) = d(v0, v3) = d(v1, v2) = d(v1, v3) = 1. Let N = {v1, v2, v3}, and consider

the (discrete) radius game (N, vII). We have vII(N) = 4 and vII(S) = 2, for any coalition S,

with |S| ≤ 2. It is easy to see that there is no vector x = (x1, x2, x3) satisfying x1+x2+x3 = 4,

x1 + x2 ≤ 2, x2 + x3 ≤ 2, and x1 + x3 ≤ 2. �

When the metric space X consists of a continuum set of points C(N, vII) can also be

empty for a 3-player game, as illustrated by the next example of a network metric space

A(G). This example corresponds to a very simple geometric planar road network, where the

edges are line segments and their lengths are the respective Euclidean distances.

Example 2.3 Consider the graph G = (V,E) where V = {v0, v1, . . . , v6} and E = {(v0, v4),

(v0, v5), (v0, v6), (v1, v4), (v1, v6), (v2, v4), (v2, v5), (v3, v5), (v3, v6)}. All edges are of unit length,

see Figure 2.

v0

v1

v2

v3

v4

v5

v6

Figure 2: Graph in Example 2.3.

Set X = A(G). Consider the game (N, vII), defined on X, with N0 = {v0, v1, v2, v3} and

N = {v1, v2, v3}. It is easy to check that for each coalition S ⊆ N with |S| ≤ 2 we have

vII(S) = 2, and vII(N) = 4.

By symmetry, if the core was not empty the symmetric allocation x = (4/3, 4/3, 4/3)

would be in the core contradicting the constraint x1 + x2 ≤ vII({v1, v2}) = 2. �

For any metric space X, the definition of vII ensures the monotonicity of the game

(N, vII), whereas subadditivity is proved in the next proposition, under the following conti-

nuity assumption:

Definition 2.1 Let X be a metric space such that for any pair of points x, y ∈ X, and a real

0 ≤ α ≤ 1, there is a point z ∈ X such that d(x, z) + d(z, y) = d(x, y) and d(x, z) = αd(x, y).

Then X is called a “geodesic metric space”, Papadopoulos (2005).
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Proposition 2.1 If X is a geodesic metric space, then the radius game (N, vII) over X is

subadditive.

Proof. Consider a pair of coalitions, S1 and S2. We need to show that

vII(S1 ∪ S2) ≤ vII(S1) + vII(S2).

For j = 1, 2, let cj and rj be the 1-center and 1-radius of the smallest ball enclosing the

points in Sj ∪ {v0}, respectively.

Let P (c1, c2) be a shortest path in X, connecting c1 and c2. Let d(c1, c2) denote the

length of P (c1, c2). Then, d(c1, c2) ≤ d(c1, v0) + d(v0, c2) ≤ r1 + r2.

Suppose without loss of generality that r2 ≥ r1. If r2 ≥ r1 + d(c1, c2), then a center

established at c2 will ensure a covering radius of r2 to all nodes in S1 ∪ S2 ∪ {v0}. Hence,

vII(S1 ∪ S2) ≤ 2r2 = vII(S2).

If r1 ≤ r2 ≤ r1 + d(c1, c2), then consider a center established at the point c∗, such that

d(c1, c
∗) = (d(c1, c2) + r2 − r1)/2, and d(c2, c

∗) = (d(c1, c2) − r2 + r1)/2. It is easy to check

that this center will ensure a covering radius of (d(c1, c2) + r1 + r2)/2 ≤ r1 + r2 to all nodes

in S1 ∪S2 ∪{v0}. (Note that v0 is in the intersection of the smallest balls enclosing S1 ∪{v0}
and S2 ∪ {v0}.) Therefore, vII(S1 ∪ S2) ≤ vII(S1) + vII(S2).

�

2.1 1/2-budget balanced allocations

As illustrated in previous examples, the core of the radius game can be empty even for subad-

ditive games. To address games with empty core, various cost shares have been defined. One

of them is the concept of γ-budget balanced cost allocation defined in Caprara and Letchford

(2010). Given a real γ, a vector x is a γ-budget balanced allocation of the radius game

(N, vII) if

∑

j:vj∈S

xj ≤ vII(S),∀S ⊆ N

and
∑

j:vj∈N

xj ≥ γvII(N).

It is noted in Caprara and Letchford (2010) that recently, researchers have devoted some

attention to the problem of finding an allocation which is γ-budget balanced for the maximum

possible γ. This problem is called the optimal cost share problem (OCSP).

The relationship between the MRLG and the MDLG implies that every vector in C(N, vI)

is also a 1/2-budget balanced allocation of the radius game (N, vII). Specifically, the inequal-
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ity vI(S) ≤ vII(S) ≤ 2vI(S) (based on (1)) implies that if x ∈ C(N, vI) then, for any S ⊆ N ,

∑

j:vj∈S

xj ≤ vI(S) ≤ vII(S),

and
∑

j:vj∈N

xj = vI(N) ≥ (1/2)vII (N).

Another 1/2-budget balanced allocation, which may not be in C(N, vI), can be obtained

as follows:

In general, vII(N) is bounded below by D(N0), and therefore also by the maximum

distance from v0 to the points of N . It is bounded above by the sum of the two largest

entries in {d(vi, v0)}, vi ∈ N . Hence,

max
vi∈N

d(vi, v0) ≤ vII(N) ≤ 2 max
vi∈N

d(vi, v0).

Suppose that d(vq, v0) = maxvi∈N d(vi, v0). Then, clearly, the allocation x defined by xq =

d(vq, v0) and xi = 0, for any vi ∈ N , i 6= q, is 1/2-budget balanced.

Given an arbitrary radius game with an empty core, the value γ = 1/2 is not always an

optimal solution to the respective OCSP. (See examples 2.1, 2.2 and 2.3 , where the optimal

value for OCSP is γ = 3/4.) Nevertheless, the results in Sections 3-5 about the polynomial

representation of the core imply that if a radius game is defined on a discrete metric space,

the ℓp metric space defined over R
d, or the network metric space A(G), the solution to OCSP

can be found in polynomial time by solving a single linear program with |N | variables and a

polynomial number of constraints.

3 Network metric spaces

We now consider some specific metric spaces that are frequently studied in location analysis

and show that in these cases the core can be represented by a polynomial number of linear

inequalities. Note that in general we need an exponential number of linear inequalities to

represent the core of a game, (2).

Consider first the case where X = A(G), the metric space induced by an undirected

connected graph G = (V,E), V = {v0, v1, ..., vn}, and its positive edge lengths.

Assume that the set of players N satisfies N ⊆ V \ {v0}. Moreover, to be consistent with

the notation introduced above, suppose without loss of generality, that N = {v1, v2, ..., vk},
where k = |N |.

We will show that in this case, there is an efficient representation of the core of the radius

game (N, vII), involving O(m|N |2) constraints, where m = |E|. Such a representation implies
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that membership in the core, as well as its nonemptiness can be tested in strongly polynomial

time by the algorithm in Tardos (1986).

Proposition 3.1 Consider the radius game (N, vII), defined on a network metric space

A(G), induced by a graph G = (V,E) and its positive edge lengths. Then, there is a col-

lection of subsets of N , {Si,j
p,q}, (vi, vj) ∈ E, vp, vq ∈ N ∪ {v0}, (i, j, p, q) ∈ I, such that

|I| = O(m|N |2) and

C(N, vII) = {x ∈ R
N
+ : x(N) = vII(N), x(Si,j

p,q) ≤ vII(S
i,j
p,q), ∀ (i, j, p, q) ∈ I}.

As a result, membership in the core, as well as nonemptiness of the core, can be tested in

strongly polynomial time.

Proof. First we note that, if N = {v1, ..., vn}, vII(N) is equal to the diameter of a minimum

diameter spanning tree of V , (Handler (1973) and Hassin and Tamir (1995)). This spanning

tree, say T ∗, solves the continuous (or absolute) 1-center problem on G, and it can be found

in O(mn + n2 log n) time.

More generally, when N ⊆ V \{v0}, vII(S) is defined as the diameter length of a minimum

diameter spanning tree of S ∪ {v0}, ∀ S ⊆ N . Such a tree, say T ∗(S), solves the continuous

1-center problem for the subset of nodes S ∪ {v0}, and it can be found in O(mn + n2 log n)

time, (Hassin and Tamir (1995)). Recall that the continuous 1-center problem for some subset

V ′ ⊆ V , defines the smallest radius neighborhood in the metric space A(G), which covers V ′.

Moreover, T ∗(S) has the following property. There is an edge of G, say (vi, vj), such that

the 1-center of T ∗(S) is on this edge, see Hassin and Tamir (1995), and

vII(S) = d(vp, vi) + l(vi, vj) + d(vj , vq),

for some nodes vp, vq ∈ S ∪ {v0}.
In total there are at most O(|N |2) centers of minimum diameter trees on the edge (vi, vj).

Each such center ci,j
p,q is associated with a radius of the form

ri,j
p,q = (d(vp, vi) + l(vi, vj) + d(vj , vq))/2.

Next, for each center ci,j
p,q such that d(v0, c

i,j
p,q) ≤ ri,j

p,q, define the maximal coalition

Si,j
p,q = {u ∈ N : d(u, ci,j

p,q) ≤ ri,j
p,q}.

Let

I = {(i, j, p, q) : (vi, vj) ∈ E, vp, vq ∈ N ∪ {v0}, d(v0, c
i,j
p,q) ≤ ri,j

p,q}.
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Next consider a coalition S ⊆ N . Then, from the above discussion it follows that there

is some center ci,j
p,q and radius ri,j

p,q, such that vII(S) = 2ri,j
p,q, and S ⊆ Si,j

p,q. Hence, the

monotonicity of the game implies that the core constraint x(S) ≤ vII(S) is implied by the

constraint x(Si,j
p,q) ≤ vII(S

i,j
p,q). This validates the efficient representation of the core stated in

the proposition. Finally, note that using the above algorithms for solving 1-center problems, it

takes polynomial time to construct the entire collection {Si,j
p,q}, (vi, vj) ∈ E, vp, vq ∈ N∪{v0},

(i, j, p, q) ∈ I. In particular, membership in the core, as well as its nonemptiness can be tested

in strongly polynomial time by the algorithm in Tardos (1986). This completes the proof.

�

Remark 3.1 Dealing with MRLG defined on a network metric space we can assume without

loss of generality that the underlying graph G = (V,E) is a complete graph, and its edge

lengths satisfy the triangle inequality. Otherwise, we can always introduce an edge between

any pair of nodes and set its length equal to the distance in A(G) between the pair. Consider

a coalition S. We note that in this case each simple path of T ∗(S) has at most 3 edges.

However, even in this case T ∗(S) is not necessarily a subtree of Gv0
(S), the subgraph of G

induced by the node set S ∪ {v0}. As an example consider the complete graph with node set

V = {v0, v1, v2, v3}. Let the length of the edges (v3, v0), (v3, v1), (v3, v2) be equal to 1, and

the length of the other 3 edges equal to 2. When S = {v1, v2}, T ∗(S) is the star centered at

v3, which is not in Gv0
(S).

Corollary 3.1 If G is a tree, there is a collection of subsets of N , {Sp,q}, vp, vq ∈ N ∪{v0},
p, q ∈ I ′, such that |I ′| = O(|N |2), and the core of the game (N, vII) is defined by

C(N, vII) = {x ∈ R
N
+ : x(N) = vII(N), x(Sp,q) ≤ vII(Sp,q) ∀ p, q ∈ I ′}.

Proof. If G is a tree the total number of centers of relevant minimum diameter spanning

subtrees is only O(|N |2). In this case each pair of nodes, vp, vq contributes one candidate

center, denoted by cp,q, the midpoint of the unique simple path connecting vp with vq. If

d(v0, cp,q) ≤ d(vp, vq)/2, the respective maximal coalition is then defined by

Sp,q = {u ∈ N : d(u, cp,q) ≤ d(vp, vq)/2}.

Set I ′ = {(p, q) : d(v0, cp,q) ≤ d(vp, vq)/2}. Then, the general result in Proposition 3.1

leads to the simpler description of C(N, vII) stated in the corollary. �

Also, when G is a tree the radius and the diameter games coincide, i.e., vI(S) = vII(S)

for any S ⊆ N . As shown in our companion paper, Puerto et al. (2010), the radius game is

submodular in this case, its core is always nonempty, and both its Shapley value and nucleolus

can be computed in polynomial time.
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Remark 3.2 Given an undirected connected graph G = (V,E), with V = {v0, v1, ..., vn},
we observe that the respective metric space X = A(G), induced by G and its positive edge

lengths, is geodesic. Example 2.3 illustrates that when the set of players N is a proper subset

of V \ {v0} = {v1, ..., vn}, the core of the radius location game can be empty. However, we

still do not know whether the core of the game (N, vII) defined on the space X = A(G) is

always nonempty in the case where G = (V,E) is a general connected undirected graph and

N = {v1, ..., vn}. We will refer to this case as the Complete Minimum Radius Location game

(CMRLG) on networks.

We now focus on some observations and special cases of the complete radius game, CM-

RLG. First we note that the function vII may not be submodular if the graph G contains a

cycle.

Example 3.1 Consider a 4-cycle with unit edge lengths, and V = {v0, v1, v2, v3}, see Figure

3.
v0

v1

v2

v3

1 1

11

Figure 3: Graph in Example 3.1

Let S1 = {v1, v2} and S2 = {v3, v2}. Then, vII(S1) = vII(S2) = 2, vII(S1 ∪ S2) = 3,

vII(S1 ∩ S2) = 2, and therefore vII(S1 ∪ S2) + vII(S1 ∩ S2) > vII(S1) + vII(S2). �

We have noted in the Introduction that there is a core allocation for the diameter game

(N, vI) splitting vI(N) between a pair of players corresponding to the diameter of V . In

contrast, the core of the complete radius location game (N, vII) may not in general contain an

allocation where only 2 players pay a positive cost. For instance, in Example 3.1 d(v0, v2) = 2,

and d(v0, v1) = d(v0, v3) = 1. However the unique core allocation is the vector (1, 1, 1).

We also note in passing that in our attempts to prove that the core of the CMRLG is

nonempty, we have produced more involved examples, indicating that in general there is no

fixed number c, such that for any n, there is a core allocation, where the number of players

paying a positive cost is bounded by c.

To summarize, we still do not know whether the core of the MRLG is always nonempty

for the case where X = A(G) and N = V \ {v0}.
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We have proven the nonemptiness of the core only for the case where G = K4, i.e., when

there are 3 players. (Our proof, based on a tedious case analysis, can be obtained from the

authors upon request.)

Next we consider two families of graphs for which the respective radius games have

nonempty cores. We use the following observation.

Remark 3.3 Given the metric space X and the set of points N0, consider the games (N, vI)

and (N, vII). For each subset S ⊆ N , vI(S) ≤ vII(S). Therefore, if vI(N) = vII(N),

C(N, vI) ⊆ C(N, vII). For example, for any graph G = (V,E), if X = A(G) and V satisfies

D(V ) = 2R(V ), then C(N, vII) is nonempty. This holds for the class of median graphs (which

includes all tree graphs), and the class of graphs with “long diameters”.

3.1 Median graphs

A median graph G = (V,E) is defined by the following property, (Mulder (1978, 1980)). For

any triplet of nodes, {x, y, z}, there is a unique node, v = m(x, y, z), called the median of

{x, y, z}, which is in the intersection of the node sets of all shortest paths connecting distinct

pairs of nodes from the triplet {x, y, z}.

Lemma 3.1 Let G = (V,E) be a median graph with positive edge lengths. Then, vI(N) =

D(V ) = 2R(V ) = vII(N) in the metric space X = A(G).

Proof. To prove that for a median graph G = (V,E), D(V ) = 2R(V ), consider P (x, y) to

be a longest path in a minimum diameter spanning tree T ∗ of G. From the triangle inequality

D(V ) ≤ dT ∗(x, y) = 2R(V ). It is therefore sufficient to show that dG(x, y), the distance from

x to y in A(G) is equal to 2R(V ).

Let z be the 1-center defined as the middle point of P (x, y), (Hassin and Tamir (1995)).

Suppose without loss of generality that z is a node. (Otherwise, augment it to the node set

of G. The new graph is still median, and its diameter is equal to that of G.)

Now apply the median property to the triplet {x, y, z}. From the definition of z as a

center, the two subpaths of P (x, y) in T ∗, connecting z with x, and z with y are in fact,

respectively, shortest paths in G, between z and x, and between z and y. Since z is the only

node which is in both subpaths, z must be the median of {x, y, z}. Hence, z must be on every

shortest path in G, connecting x and y. Therefore, dG(x, z) + dG(z, y) = dG(x, y). But the

right hand side of the latter equation is, by definition, equal to 2R(V ). �

3.2 Long-diameter graphs

Let G = (V,E) be an undirected and connected graph with positive edge lengths {le}, e ∈ E.

For each node v ∈ V define f(v) to be the maximum of the lengths of all edges which are
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incident to v. G is called a long-diameter graph if D(V ) ≥ (2/3)
∑

v∈V f(v). For example, if

all edges are of unit length, G is such a graph if D(V ) ≥ 2|V |/3. It has been recently proved

by Liu and Huang (2009), that for a long-diameter graph G = (V,E), D(V ) = 2R(V ).

Hence, from the above discussion we can conclude that for long-diameter graphs, the core of

the minimum radius location game is nonempty.

3.3 MSTG and MRLG

In the case of a network metric space it is interesting to compare the MRLG with the related

minimum length spanning tree game (MSTG), Megiddo (1978) and Granot and Huberman

(1981, 1984). As we noted above, in the MRLG (N, vII) the characteristic function is defined

by the minimum diameter spanning Steiner subtree while in the MSTG, which we denote by

(N, v′), the characteristic function v′(S) is defined by the minimum length Steiner subtree

spanning S ∪ {v0}. By definition, we have vII(S) ≤ v′(S) for any coalition S. Therefore,

if vII(N) = v′(N), the core of the MRLG is contained in the core of the minimum length

spanning tree game. Specifically, the latter holds if the minimum diameter spanning tree of

V is a spanning path.

In general, it is known that when N is a proper subset of V \ {v0}, C(N, v′), the core

of the MSTG can be empty, see Tamir (1991). Moreover, testing membership in C(N, v′) is

NP-hard, see Faigle et al., (1997).

Consider the complete case, i.e., N = V \ {v0}. Then, given some minimum length

spanning tree T ∗∗ of N ∪ v0, there is a natural allocation in C(N, v′) that does not depend

on the edges outside T ∗∗. In this core allocation, the cost allocated to node vi is the length

of the unique edge incident to vi which is on the (unique) path of T ∗∗, connecting vi to v0,

Bird (1976), Granot and Huberman (1981, 1984).

This is not the case for the MRLG. All core allocations may depend on edges outside T ∗,

as shown in the following example.

Example 3.2 Consider the graph G = (V,E) where

V = {v0, v1, v2, v3}, E = {(v0, v1), (v0, v3), (v1, v2), (v1, v3), (v2, v3)}.

The edge lengths are l(v0, v1) = 0.5, l(v0, v3) = l(v2, v3) = 4, l(v1, v2) = 7, l(v1, v3) = 4 + ǫ,

see Figure 4.

The unique minimum diameter spanning tree of G, T ∗, is defined by the star centered at

v3. The diameter of G is attained by the pair of nodes v0 and v2. Any core allocation cannot

charge v1 more than 0.5. Hence, if a core allocation ignores the edges outside T ∗, and assigns

charges which are distances on T ∗, v1 will have to be charged 0. But then v2 and v3 together

cannot be charged more than 8, which is less than D(T ∗) = 8 + ǫ.
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v0

v1

v2

v3

7

4

4 + ǫ

0.5
4

Figure 4: Graph in Example 3.2.

One extreme allocation in the core is defined by the vector (x1, x2, x3) = (ǫ, 4, 4). The

other three core extreme points are (ǫ, 7.5 − ǫ, 0.5 + ǫ), (0.5, 7, .5 + ǫ), (0.5, 3.5 − ǫ, 4). �

4 Discrete metric spaces

We have already noted above that when the underlying metric space X consists of a finite

number of points, the respective MRLG may not even be subadditive and players may not

have incentives to cooperate, e.g., the core C(N, vII) can be empty. Nevertheless, in the

discrete finite case C(N, vII) has a compact representation, as shown in the next proposition,

and therefore its nonemptiness can be tested efficiently.

Proposition 4.1 Suppose that X = {v0, v1, ..., vn} is a finite metric space, and let N ⊆
X \ {v0}. For each i = 0, 1, ..., n, and vp ∈ N ∪ {v0}, define ri

p = d(vi, vp). If d(v0, vi) ≤ ri
p,

define

Si
p = {u ∈ N : d(u, vi) ≤ ri

p}.

Let I = {(i, p) : d(v0, vi) ≤ ri
p}. Then,

C(N, vII) = {x ∈ RN
+ : x(N) = vII(N), x(Si

p) ≤ vII(S), ∀ (i, p) ∈ I}.

Proof. Consider a coalition S ⊆ N . Then, there is some vi ∈ X, and vp ∈ N ∪ {v0},
such that vII(S) = 2d(vi, vp) = 2ri

p. By definition S ⊆ Si
p. Using the monotonicity of the

game, we conclude that the core constraint x(S) ≤ vII(S) is dominated by the constraint

x(Si
p) ≤ vII(S

i
p). This completes the proof.

�
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5 ℓp metric spaces over R
d

In this section we focus on the case in which the MRLG (N, vII) is defined on the ℓp metric

space over R
d. Again, we let N0 = V = {v0, v1, ..., vn} be a set of points in R

d, and set

N = V \ {v0}.
The following examples show that in general the MRLG is not submodular, and that with

the exception of the case p = ∞, vI(N) = D(V ) 6= 2R(V ) = vII(N). Hence, the existence of

core allocations is not clear in the case where p 6= ∞.

Example 5.1 Consider the planar ℓp normed case with V = {v0, v1, v2, v3}, where, v0 =

(0, 0), v1 = (0, 1), v2 = (1, 0) and v3 = (−1, 0).

We have vII({v1, v2, v3}) = 2, vII({v1}) = 1, and vII({v1, v2}) = vII({v1, v3}) = 21/p.

Thus, vII is not submodular in this example for any p such that 21/p < 3/2, which in

particular applies to 2 ≤ p ≤ ∞. �

Example 5.2 Consider the planar ℓ1 case with V = {v0, v1, v2, v3}, where, v0 = (0, 0),

v1 = (1,−1), v2 = (1, 1) and v3 = (−1,−1). We have vII({v1, v2, v3}) = 4, vII({v1}) = 2, and

vII({v1, v2}) = vII({v1, v3}) = 2. Thus, vII is not submodular in this case. �

The next two examples show that for any 1 < p < ∞ in the planar case, and for the

rectilinear norm ℓ1, even in R
3, vII(N) = 2R(N ∪ {v0}) can be strictly larger than vI(N) =

D(N ∪ {v0}). (In R
2 the ℓ1 norm is equivalent to the ℓ∞ norm.)

Example 5.3 Consider the set of points V = {v0, v1, v2, v3} where v1 = (a, b), v2 = (−a, b),

v3 = (0,−1), and v0 = (0, 0). For 1 < p < ∞, let a = b = 2−1/p. Then, the ℓp diameter

of V is (ap + (b + 1)p)1/p whereas the ℓ1 radius is 1 and the 1-center is (0, 0). Hence,

vI(N) = D(V ) < b + 1 < 2 = 2R(V ) = vII(N). �

Example 5.4 Consider the set of points V = {v0, v1, v2, v3} where v1 = (1, 1, 1), v2 =

(−1,−1, 1), v3 = (−1, 1,−1), and v0 = (1,−1,−1). The ℓ1 diameter of V is 4 whereas

the ℓ1 radius is 3 and the 1-center is (0, 0, 0). Hence, vI(N) = D(V ) < 2R(V ) = vII(N). �

We first show that for any p ≥ 1, the core of the game (N, vII), defined on the ℓp

metric space over R
d, can be represented as a set described by a polynomial number of linear

inequalities, for any fixed d.

Consider first the case where 1 < p < ∞.

Theorem 5.1 Let 1 < p < ∞, and consider the game (N, vII), defined on the ℓp metric

space over R
d. Let {Sj}, j ∈ J , be the collection of all subsets S ⊆ N with |S| ≤ d + 1. For
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each j ∈ J , let B(Sj), be the smallest enclosing ball containing Sj ∪ {v0}, and let S′

j be the

subset of all points in N , contained in B(Sj). Then the core of the game is given by,

C(N, vII) = {x ∈ R
n
+ : x(S′

j) ≤ vII(Sj), ∀ j ∈ J, and x(N) = vII(N)}.

Proof. For any subset S ⊆ N , vII(S) is the diameter of B(S), a smallest enclosing ball

containing S ∪ {v0}. (Since 1 < p < ∞, B(S) is unique, Zurcher (2007).)

By the Helly property there is a subset Sj ⊆ S, j ∈ J , such that vII(S) = vII(Sj). Then,

by definition S ⊆ S′

j . Moreover, by the monotonicity of the game each vector in the core is

nonnegative, and therefore x(S) ≤ x(S′

j). Hence, the constraint x(S) ≤ vII(S) is dominated

by the constraint x(S′

j) ≤ vII(Sj). This completes the proof. �

Next, consider the case where p = ∞. As above, let {Sj}, j ∈ J , be the collection of all

subsets S ⊆ N with |S| ≤ d + 1.

Theorem 5.2 Consider the game (N, vII), defined on the ℓ∞ metric space over R
d. Then

there is a collection of subsets of N , {S∞

j (k)}, j ∈ J , k = 1, ..., c∞j (n,d), such that c∞j (n,d) =

O(2dn(d−1)), and the core of the game is given by,

C(N, vII) = {x ∈ R
n
+ : x(S∞

j (k)) ≤ vII(Sj), ∀ j ∈ J, k = 1, ..., c∞j (n,d) and x(N) = vII(N)}.

Proof. For each subset S the problem of finding the smallest ℓ∞ ball enclosing S is reduced

to finding a smallest hypercube containing S. Such a hypercube is not unique. The set of

centers of all optimal hypercubes is itself a hypercube of dimension less than or equal to d−1.

For j ∈ J consider an optimal hypercube H(Sj) enclosing Sj ∪{v0} and let P (H(Sj)) be the

maximal subset of N , contained in H(Sj). We can shift H(Sj) along the axes and obtain

an optimal hypercube H ′(Sj) such that P (H ′(Sj)) = P (H(Sj)), and for each coordinate

i = 1, ..., d, one of the two faces of H ′(Sj) corresponding to the ith coordinate contains a point

in N . Thus, there is only c∞j (n,d) = O(2dn(d−1)) such maximal subsets of N , associated with

a given subset Sj, j ∈ J . Denote this collection of subsets by {S∞

j (k)}, k = 1, ..., c∞j (n,d).

Using the monotonicity of the game and following the arguments used in the previ-

ous proof, we observe that for each subset S ⊆ N , there is a subset Sj , j ∈ J , and

k = 1, ..., c∞j (n,d), such that the constraint x(S) ≤ vII(S), is dominated by the constraint

x(S∞

j (k)) ≤ vII(Sj). This completes the proof. �

A similar analysis applies to the rectilinear case when p = 1.

Theorem 5.3 Consider the game (N, vII), defined on the ℓ1 metric space over R
d. Then

there is a collection of subsets of N , {S1
j (k)}, j ∈ J , k = 1, ..., c1

j (n,d), such that c1
j (n,d) =

O(2d2

nd−1), and the core of the game is given by,

C(N, vII) = {x ∈ R
n
+ : x(S1

j (k)) ≤ vII(Sj), ∀ j ∈ J, k = 1, ..., c1
j (n,d) and x(N) = vII(N)}.
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Proof. The proof goes along the lines of the previous proof and is therefore outlined only.

In this case an ℓ1 enclosing ball is a polyhedron with 2d faces. Again, by shifting an enclosing

ball of a subset Sj, j ∈ J , along the normals to the facets, each given subset Sj, j ∈ J , is

associated with c1
j (n,d) maximal subsets of N , where c1

j(n,d) = O(2d2

nd−1). Denote this

collection of subsets by {S1
j (k)}, k = 1, ..., c1

j (n,d).

As above, we observe that for each subset S ⊆ N , there is a subset Sj, j ∈ J , and

k = 1, ..., c1
j (n,d), such that the constraint x(S) ≤ vII(S), is dominated by the constraint

x(S1
j (k)) ≤ vII(Sj). This completes the proof. �

With the exception of the case p = ∞, we do not know yet whether C(N, vII) is nonempty

for all ℓp metric spaces over R
d. We assume without loss of generality that vi 6= v0 for all

i = 1, ..., n.

Theorem 5.4 The core of the game (N, vII), defined on the ℓ∞ metric space over R
d, is

nonempty. Specifically, C(N, vI) = C(N, vII).

Moreover, if D(N0) = d(v0, vj), for some vj ∈ N , the dimension of C(N, vII) is n − 1,

and there is x∗ ∈ C(N, vII) such that x∗

t > 0, for any vt ∈ N . Also, if D(N0) = d(vi, vj),

for some vi, vj ∈ N , and d(vi, vj) < d(vi, v0) + d(vj , v0), then the dimension of C(N, vII) is

n − 1, and there is x∗ ∈ C(N, vII) such that x∗

t > 0, for any vt ∈ N .

Proof. When p = ∞, it is easy to see that for any set S we have vI(S) = D(S ∪ {v0}) =

2R(S∪{v0}) = vII(S). Thus, C(N, vI) = C(N, vII), and the nonemptiness of the core follows

from Remark 3.3.

Suppose without loss of generality that D(N0) = d(v0, v1). Let α = (α1, α2, ..., αn) be

an arbitrary real vector satisfying 0 ≤ α1 ≤ mint=1,...,n d(v0, vt), α1 =
∑n

j=2 αj and αj ≥ 0,

j = 2, ..., n.

We show that the allocation xα = (d(v0, v1) − α1, α2, ..., αn) is in C(N, vII). First, by

definition xα(N) = d(v0, v1) = D(N0) = vII(N). Next consider a coalition S ⊆ N . If v1 ∈ S,

then xα(S) ≤ d(v0, v1) ≤ vII(S). If v1 6= S, then xα(S) ≤ α1 ≤ mint=1,...,n d(v0, vt) ≤ vII(S).

To see that the dimension of C(N, vII) in this case is n − 1, let ǫ be a sufficiently small

positive real, and consider the n− 1 independent core allocations {xα(q)}, q = 2, ..., n, where

α(q) is the vector defined by α1(q) = ǫ, αq(q) = ǫ, and αt(q) = 0, for any t = 2, ..., n; t 6= q.

The allocation x∗ =
∑n

q=2 xα(q)/(n − 1) is in the core and has strictly positive components.

Next, suppose without loss of generality that D(N0) = d(v1, v2) and d(v1, v2) < d(v0, v1)+

d(v0, v2). Let δ1, δ2 be a pair of positive reals satisfying 0 < δ1 < d(v0, v1), 0 < δ2 < d(v0, v2),

and δ1 + δ2 = d(v1, v0) + d(v2, v0) − d(v1, v2).

Let α = (α1, α2, ..., αn) be an arbitrary real vector satisfying α1 ≤ d(v1, v0) − δ1, α2 ≤
d(v2, v0)−δ2, 0 ≤ α1+α2 ≤ mint=1,...,n d(v0, vt), 0 ≤ α1+α2 ≤ min{δ1, δ2}, α1+α2 =

∑n
j=3 αj

and αj ≥ 0, j = 1, ..., n.
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We show that the allocation

xα = (d(v0, v1) − δ1 − α1, d(v0, v2) − δ2 − α2, α3, ..., αn)

is in C(N, vII). First, by definition xα(N) = d(v1, v2) = D(N0) = vII(N). Next consider a

coalition S ⊆ N . If v1, v2 ∈ S, then xα(S) ≤ d(v1, v2) = vII(S). If v1 ∈ S, v2 6= S, then

xα(S) ≤ d(v1, v0)− δ1 − α1 +
∑n

q=3 αq ≤ d(v1, v0)− α2 − α1 +
∑n

q=3 αq ≤ d(v1, v0) ≤ vII(S).

Similarly, if v1 6= S, v2 ∈ S, we obtain xα(S) ≤ d(v2, v0) ≤ vII(S). Finally, suppose that

v1, v2 6= S. Then, xα(S) ≤ α1 + α2 ≤ mint=1,...,n d(v0, vt) ≤ vII(S).

To see that the dimension of C(N, vII) in this case is n − 1, let ǫ be a sufficiently small

positive real, and consider the collection of n − 2 independent core allocations {xα(q)}, q =

3, ..., n, where α(q) is the vector defined by α1(q) = ǫ, αq(q) = ǫ, and αt(q) = 0, for any

t = 2, ..., n; t 6= q. Add to this collection the allocation xα(2), where α(2) is the vector

defined by α2(q) = ǫ, α3(q) = ǫ, and αt(q) = 0, for any t = 1, ..., n, t 6= 2, 3. The allocation

x∗ =
∑n

q=2 xα(q)/(n − 1) is in the core and has strictly positive components. This completes

the proof. �

Augmenting the result in the last theorem, the next example illustrates that when the

conditions in the theorem are not satisfied, the dimension of the core can even be zero.

Specifically, for any number of players, even in the ℓ∞ planar case, the core can be a singleton

where only two players share the total cost, in spite of the fact that the distance from each

player to the server v0 is positive.

Example 5.5 Consider the set of points N0 = {v0, v1, ..., vk} where v0 = (0, 0), v1 = (0, 1),

v2 = (0,−1), v3 = (1, 0) and vi = (ai, 0), 0 < ai < 1, for i = 4, 5, ..., k. Since vI(S) = 2,

if {v1, v2} ⊆ N , and vI(S) ≤ 1, otherwise, it is easy to see that C(N, vI) = C(N, vII) =

{(1, 1, 0, ..., 0)}. �

Corollary 5.1 The core of the game (N, vII), defined on the ℓ1 metric plane is nonempty.

Specifically, C(N, vI) = C(N, vII).

Proof. Since the rectilinear norm, ℓ1, is equivalent to the ℓ∞ norm on the plane, for any

subset S, D(S ∪ {v0}) = 2R(S ∪ {v0}) for the rectilinear planar case. Therefore, the core of

the respective minimum radius game in the plane is nonempty. �

5.1 Euclidean spaces

Turning to the Euclidean case, in general, the equality vI(N) = vII(N) may not hold even

in the planar case. From Proposition 2.1 it follows that the characteristic function vII(S)

is subadditive also for the Euclidean model. However, it does not follow from the general

analysis in previous sections that the core of the Euclidean planar game is nonempty.
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In spite of that, we will prove that C(N, vII) is nonempty for the Euclidean planar case.

More specifically, there is a core allocation where at most 3 players (points) pay positive

amounts. These are points defining C(V ), the minimal circle in the plane enclosing the set

V .

Theorem 5.5 The core C(N, vII) of the minimal radius location game (N, vII) in the Eu-

clidean planar case is non-empty.

Proof. See the Appendix. �

Remark 5.1 In the minimum radius location game (N, vII), for each coalition S, vII is

defined as twice the solution value to the 1-center problem for the set of nodes S ∪ {v0}.
Similarly we can consider location games defined by other common optimization criteria often

used in facility location models. For example, consider the minimum median location game,

(N, vIII), where for each coalition S, vIII is defined as the solution value to the 1-median

problem for the set of nodes S ∪ {v0}.
We note that from the cooperative point of view the above definition does not even induce

the desirable property of subadditivity. Thus, players may not even have the incentive to

cooperate, as shown in the following example.

Example 5.6 Consider a 4-node path with the edge set E = {(v1, v0), (v0, v2), (v2, v3)}.
Edges are of unit length. It is easy to see that vIII(N) = 4, vIII({v1}) = 1 and vIII({v2, v3}) =

2. Hence, vIII({v1}) + vIII({v2, v3}) = 3 < 4 = vIII(N). The core is empty in this example

since the set of constraints, x1 ≤ 1, x2 + x3 ≤ 2 and x1 + x2 + x3 = 4 is inconsistent. �

Two different median related cooperative games where subadditivity is ensured by intro-

ducing set up costs can be found in Puerto et al. (2001) and Mallozi (2011).

6 Conclusions and open problems

In this paper we have introduced a new class of cooperative location games, the Minimum

Radius Location Game (MRLG). In such a game the characteristic function is defined as the

radius of each coalition, including a distinguished point that can be viewed as a server. Mo-

tivated by potential applications, we have focused mainly on the important cases of network

metric spaces and the ℓp-normed spaces over R
d. For these spaces we give complete polyhe-

dral characterizations of the core of the MRLG by using only a polynomial number of linear

inequalities. Using these characterizations, emptiness of the core can be tested efficiently by

linear programming algorithms.

We have shown that, in general, the core of the MRLG might be empty even for geometric

planar road networks with Euclidean distances. In contrast, we have proved that for the
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Euclidean normed plane the core is always nonempty. Moreover, we have constructed a core

allocation in which at most three players pay positive costs. These players correspond to the

demand points defining the minimal circle enclosing all the demand points and the server.

With the exception of the planar Euclidean case and the ℓ∞ space, for any d ≥ 1, it is

still unknown whether the MRLG has a nonempty core for any ℓp space.

We have also given some sufficient conditions for the core to be nonempty. These con-

ditions are based on the relationship between the MRLG and the MDLG, which always has

some core allocation. Similar to the Euclidean planar case, in the core allocations that we

construct only a pair of players share the total cost. Although practically allocations where

only a very small number of players pay some positive cost, may not be easy to implement,

their main role is just to establish the nonemptiness of the core. As illustrated in Section 5,

in some cases the core itself is a singleton, where only two players share the total cost. If

the core is not a singleton of the above type, then to get an allocation in the core which is

more “acceptable”, one can use linear programming methods on the aforementioned efficient

characterizations of the core. For example, to find a core allocation where each player vi,

vi 6= v0, shares some positive part of vII(N), we can consider the problem of finding a core

allocation which will maximize the minimum pay over all these players. The latter can be

formulated as a linear program over the core.

We conclude with a few more open questions. First, it is still unclear what general

properties of the radius game will at least unify the nonemptiness results presented here, e.g.,

for median graphs and the Euclidean plane. Second, we have demonstrated that the core can

be empty for simple geometric network spaces, where several nodes, different from the server,

are not players. Is the core always nonempty when there are no such nodes, i.e., when the

game is complete? Finally, in spite of our efforts we have not been able to find a shorter and

more elegant proof of the nonemptiness of the core of the MRLG in the planar Euclidean

case, using general tools from cooperative game theory, e.g., Bondareva-Shapley conditions,

or equivalently linear programming duality. Is there such a proof?
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7 Appendix: Proof of Theorem 5.5

First of all, note that we have not been able to produce a short existence proof of core

allocations, based on known general theorems in cooperative game theory. Instead, our proof

is based on a long case analysis.

We divide the proof analyzing three exhaustive cases depending on the relative position

of C(V ) (the minimum circle in the plane enclosing V ):

i) C(V ) is determined by two points of V (Proposition 7.1).

ii) C(V ) is determined by three points of V and v0 is one of them (Proposition 7.2).

iii) C(V ) is determined by three points and v0 is not among them (Proposition 7.3).

Remark 7.1 Our proof is based on showing that the core of the subgame defined by at most

three players, say {v1, v2, v3}, corresponding to the points defining C(V ) is nonempty. Of

course, the latter subgame can be viewed as a 3-player game on a complete graph G with at

most eight nodes. The four extra nodes, augmenting {v0, v1, v2, v3}, are those representing

the centers of the minimal circles enclosing the four triplets {(v0, v1, v2), (v0, v1, v3),

(v0, v2, v3), (v1, v2, v3)}, respectively. The edge lengths of G, inducing the respective space

A(G), are the Euclidean distances between the respective pairs of points representing the

edges.

Proposition 7.1 If the minimal circle enclosing V is determined by two points in V , then

C(N, vII) 6= ∅.

Proof. We observe that in this case, D(V ) = 2R(V ) since the two points are diametrical.

Hence, vI(N) = vII(N), and the result follows from Remark 3.3. �

Next, suppose that C(V ) is determined by the points in V ′ = {vi1 , vi2 , vi3}. Specifically,

if r∗ = R(V ) is the radius of this circle, then the radius of C(V ′), the minimal circle enclosing

V ′ is also r∗. Without loss of generality assume that V ′ = {v1, v2, vi3}, where vi3 = v0 or

vi3 = v3, depending on cases (ii) and (iii) above.

Proposition 7.2 Suppose that C(V ) is determined by the points V ′ = {v1, v2, vi3}, vi3 = v0,

and d(v1, v0) ≥ d(v2, v0). Then, the allocation defined by x1 = d(v1, v0), x2 = 2r∗ − d(v1, v0),

and xi = 0, for i 6= 1, 2, is in C(N, vII), where r∗ = R(V ).

Proof. Let vII(N) = 2R(V ) = 2r∗ and

r′ = (d(v1, v0) + d(v2, v0))/2. (3)

We claim that r∗ ≤ r′. Indeed, consider a point x′ on the segment [v1, v0] satisfying

d(x′, v1) = r′. Then, from the triangle inequality, d(x′, v2) ≤ d(x′, v0)+d(v0, v2) = d(v1, v0)−
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(d(v1, v0) + d(v2, v0))/2 + d(v2, v0) = r′. Hence, a circle of radius r′, centered at the point

x′ on the segment connecting v1 and v0 and satisfying d(x′, v1) = r′, encloses the 3 points

{v0, v1, v2}. Therefore, r∗, the radius of the minimal circle is at most r′, and we have x1 =

d(v1, v0) = vII({v1}), and x2 = 2r∗−d(v1, v0) ≤ 2r′−d(v1, v0) = d(v2, v0) = vII({v2}). Thus,

setting xi = 0, for i 6= 1, 2, we obtain an allocation in the core C(N, vII). �

Next we turn to the allocation of vII(N) when the three points spanning the minimal

circle C(V ) are {v1, v2, v3}, and v0 is inside the circle.

We will need to use some properties of the optimal circle, and the fact that v0 is inside.

Assume without loss of generality that

d(v1, v0) ≥ d(v2, v0) ≥ d(v3, v0). (4)

Remark 7.2 We note that when v0 is inside the circle, and no pair of the triplet is diamet-

rical, then in every core allocation for the 3 player game, each player will have to pay some

positive amount. (For each pair, S = {vi, vj} ⊆ {v1, v2, v3}, we have xi + xj ≤ vII(S) < 2r∗,

implying xk = 2r∗ − (xi + xj) > 0, for k 6= i, j.)

Next, since the radius of the circle centered at v0, and covering the set {v1, v2, v3} is at

least r∗, we must have d(v1, v0) = max(d(v1, v0), d(v2, v0), d(v3, v0)) ≥ r∗. In fact, a stronger

inequality holds.

Remark 7.3 Under the assumption on the relative position of the points given in (4), the

following inequalities hold:

4r∗ ≥ d(v1, v0) + d(v2, v0) ≥ 2r∗,

for each point v0 in the circle. The left inequality is obvious. To prove the right inequality

suppose by contradiction that 2r′ = d(v1, v0)+ d(v2, v0) < 2r∗ for some point v0 in the circle.

(Recall that r′ was defined in (3).) Then, a circle of radius r′, centered at the point x′ on the

segment connecting v1 and v0 and satisfying d(x′, v1) = r′, encloses the 4 points {v0, v1, v2, v3}
(d(v1, x

′) = r′ and for i = 2, 3, d(vi, x
′) ≤ d(x′, v0) + d(v0, vi) ≤ d(x′, v0) + d(v0, v2) = r′.)

Hence, we have contradicted the minimality of r∗.

Remark 7.4 By maximizing the convex function d(y, v1)+d(y, v2)+d(y, v3), it can be shown

that for any point v0 inside the enclosing circle we have

2r∗ ≤ d(v1, v0) + d(v2, v0) ≤ d(v1, v0) + d(v2, v0) + d(v3, v0) ≤ (2 + 2
√

2)r∗.

Both, the 2r∗ uniform lower bound and the (2 + 2
√

2)r∗ uniform upper bound are asymp-

totically tight. (For the lower bound consider the case where d(v1, v0) = 2r∗, and v2 and
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v3 are arbitrarily close to v0. For the upper bound consider the case where v1 and v0 are

the end points of some diameter, say d1, and v2 and v3 are the end points of the diameter

perpendicular to d1.)

Another useful observation is that for any triplet {v0, vi, vj}, vII({vi, vj}) is bounded

below by the longest edge of the triangle formed by the triplet,

vII({vi, vj}) ≥ max(d(vi, vj), d(vi, v0), d(vj , v0)).

Moreover, if the longest edge is not the diameter, then vII({vi, vj}) = 2r, where

r = abc/4
√

k(k − a)(k − b)(k − c),

k = (a + b + c)/2, a = d(vi, v0), b = d(vj , v0), c = d(vi, vj).

We will need the following lemma.

Lemma 7.1 Given a triplet of points v′1, v
′

2, v
′

3, let r∗ be the radius of the minimal disk

enclosing the triplet, and suppose that 2r∗ > d(v′i, v
′

j), for all i, j = 1, 2, 3. Given a positive

real number r′, such that d(v′3, (v
′

1 + v′2)/2) ≥ r′, let u′ be a point in the above disk satisfying

d(v′3, u
′) = r′. Then, v1,2(u′, r′), the diameter of the smallest circle enclosing v′1, v

′

2 and u′,

satisfies v1,2(u′, r′) ≥ 2r∗ − r′.

Proof. We assume without loss of generality that r∗ = 1 and d(v′1, v
′

3) ≥ d(v′2, v
′

3). There-

fore, the three points admit a representation as v′1 = (− cos α,− sin α), v′2 = (cos α,− sin α)

and v′3 = (cos β, sin β) with 0 ≤ α ≤ β ≤ π/2.

The supposition 2r∗ = 2 > d(v′i, v
′

j), for all i, j = 1, 2, 3, also implies that α < β.

With this configuration, (0, 0) is the center of the ball that spans v′1, v
′

2, v
′

3. (Note that

r∗ = 1 = ‖v′i‖, i = 1, 2, 3.)

Define B(v′3, r
′) to be the ball centered at v′3 with radius r′. Let B∗ = B∗(v′1, v

′

2, r
′) be the

ball of smallest radius which contains v′1, v
′

2 and intersects the boundary of B(v′3, r
′). r(B∗)

denotes the radius of B∗. See Figure 5 for a graphical instance of this situation. It is clearly

sufficient to show that 2r(B∗) ≥ 2 − r′.

We first prove that c′, the center of B∗, satisfies c′ = (0, c), (i.e., c′ is on the bisector

of v′1 and v′2) with c < 0. Since r′ > 0 it follows that r(B∗) < r∗ = 1. Thus, if

c′ = (0, c), then clearly c < 0.

If the edge [v′1, v
′

2] intersects B(v′3, r
′), then c′ is the midpoint of [v′1, v

′

2] and c′ = (0,− sin α).

Hence, suppose that B(v′3, r
′) does not intersect [v′1, v

′

2]. For i = 1, 2, let ui be the point on

the edge [v′3, v
′

i] such that d(ui, v
′

3) = r′. The ball B∗ is determined by the triplet {v′1, v′2, u},
where u is some point on the arc of B(v′3, r

′), connecting u1 with u2.
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v′1

c′

v′2

v′3

u′

r(B∗)

r′

r∗

Figure 5: An instance of the situation expressed in Lemma 7.1.

From the minimality of B∗, if all the three points are on the boundary of B∗, then clearly

c′ is on the bisector of v′1 and v′2 with c < 0. The same result holds when [v′1, v
′

2] is a diameter

of B∗.

Hence, suppose that either [u, v′2] is a diameter of B∗, and v′1 is strictly inside B∗, or

[u, v′1] is a diameter of B∗, and v′2 is strictly inside B∗.

In the former case we must have u = u2, otherwise, by replacing u by u”, sufficiently close

to u, on the arc of B(v′3, r
′), connecting u and u2, we would obtain a ball containing v′1, v

′

2

and u”, whose radius is smaller than r(B∗). But, [v′2, u2] cannot be a diameter of B∗, since

d(v′1, u2) > d(v′2, u2).

Finally, suppose that [u, v′1] is a diameter of B∗, and v′2 is strictly inside B∗. Again, by

the above argument we must have u = u1. We will show that the midpoint of [v′1, u1] cannot

be the center of B∗.

Let cu = (c1, c2) be the midpoint of [v′1, u1]. Define c̄ = (0, c2). Note that c1 ≤
−cosα+cos β

2 < 0, since α < β. Then, it is easy to see that

r(B∗) = d(v′1, c
u) < d(v′1, c̄) = d(v′2, c̄) < d(v′2, c

u).

In particular, we obtain the contradiction that v′2 is outside B∗.

This concludes the proof that c′ = (0, c) for some c < 0.

Claim.

d(v′3, c
′) + d(c′, v′2) > d(v′3, 0) + d(0, v′2) = 2. (5)
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Proving the claim will conclude the proof of the lemma since

2r∗ − r′ = 2 − r′ = d(v′3, 0) + d(0, v′2) − r′ < d(v′3, c
′) + d(c′, v′2) − r′ ≤ v1,2(u, r′).

(The last inequality follows from the triangle inequality d(v′3, c
′) ≤ d(v′3, u) + d(u, c′) =

r′ + d(u, c′), and the fact that d(c′, u) = d(c′, v′2) = v1,2(u, r′)/2.)

Proof of claim. Consider the function f(z) = ‖z − v′2‖+ ‖z − v′3‖ when z moves on the line

{z ∈ R
2 : z1 = 0}. Parametrizing the function on its unique variable, say λ, results in:

f(λ) =
√

cos2 α + (λ + sin α)2 +
√

cos2 β + (λ − sin β)2

=
√

1 + λ2 + 2λ sin α +
√

1 + λ2 − 2λ sin β, λ ≤ 0.

Proving (5) is equivalent to showing that f(c) > f(0). Then, observe that f is a real

value convex function and thus if the function is decreasing at 0 the claim is true.

To this end, we compute the derivative of f at 0.

f ′(λ) =
λ + sin α√

1 + λ2 + 2λ sin α
+

λ − sin β
√

1 + λ2 − 2λ sin β
,

and substituting at 0, we get

f ′(0) = sinα − sin β < 0,

since α < β. This concludes the proof of the claim.

�

One can give necessary conditions for the existence of a core allocation x = (x1, x2, x3).

For example, since x1 + x2 + x3 = 2r∗, and x3 ≤ d(v3, v0) = vII({v3}), we must have

vII({v1, v2}) ≥ x1 + x2 = 2r∗ − x3 ≥ 2r∗ − d(v3, v0). The next lemma gives a sharper

condition.

Lemma 7.2 Given a triplet of points v′1, v
′

2, v
′

3, let r∗ be the radius of the minimal circle

enclosing the triplet. Let v0 be a point inside this minimal circle. Suppose that 2r∗ > d(v′i, v
′

j),

for all i, j = 1, 2, 3.

Then, d(v′3, (v
′

1 + v′2)/2) > d(v′1, v
′

2)/2, and vII({v′1, v′2)}, defined as the diameter of the

minimal circle containing {v0, v
′

1, v
′

2}, satisfies 2r∗ − d(v0, v
′

3) ≤ vII({v′1, v′2)}.

Proof.

Suppose without loss of generality that r∗ = 1 and d(v′1, v
′

3) ≥ d(v′2, v
′

3). We introduce a

reference system of coordinates with the origin (0, 0) at C, the center of the circle spanned

by v′1, v
′

2, v
′

3. Then, v′1 = (− cos α,− sin α), v′2 = (cos α,− sin α) and v′3 = (cos β, sin β) with

0 < α < β ≤ π/2.
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For any feasible v′3(β) = (cos β, sin β), π/2 ≥ β > α > 0, we have

d((v′1 + v′2)/2, v
′

3(β)) =

√

1 + sin2 α + 2 sin β sin α ≥
√

1 + 3 sin2 α > 1 > d(v′1, v
′

2)/2.

v′1

(v′1 + v′2)/2

v′2

v′3

y

r∗

Figure 6: An instance of the situation expressed in Lemma 7.2.

Let r′′ = d(v′3, (v
′

1 +v′2)/2))−d(v′1, v
′

2)/2. (r′′ is well defined since d(v′1, v
′

2)/2 ≤ d(v′3, (v
′

1 +

v′2)/2)).) Let y be the point on the line segment [v′3, (v
′

1 + v′2)/2)], satisfying d(y, v′3) = r′′.

Note that the minimal circle enclosing {y, v′1, v
′

2} is centered at the point (v′1 + v′2)/2, and

its diameter is d(v′1, v
′

2).

Applying Lemma 7.1 with r′ = r′′ and u = y, we obtain

2 − d(v′3, y) = 2 − r′′ ≤ v12(y, r′′) = d(v′1, v
′

2). (6)

We consider two cases:

i) d(v′3, v0) ≤ d(y, v′3).

In this case we apply Lemma 7.1 with r′ = d(v′3, v0) and u = v0. (Note that in this case

r′ ≤ d(v′3, y) ≤ d(v′3, (v
′

1 + v′2)/2).) Thus,

2 − r′ = 2 − d(v′3, v0) ≤ v12(v0, r
′) = vII({v′1, v′2}).

ii) d(v′3, v0) > d(y, v′3).

In this case we have 2 − d(v′3, v0) < 2 − d(y, v′3). Applying (6) we obtain

2 − d(v′3, v0) < 2 − d(y, v′3) ≤ d(v′1, v
′

2) ≤ vII({v′1, v′2}).
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�

We now continue the proof of the nonemptiness of the core when the minimal circle is

defined by the points {v1, v2, v3} and vi 6= v0 for all i = 1, 2, 3.

Condition Allocation

Case I d(vi, vj) ≥
√

2, ∀i, j, i 6= j, (d(v3, v0) ≤ d(v2, v0) ≤ d(v1, v0))

(a) d(v3, v0) ≥ 2 −
√

2 (2
√

2 − 2, 2 −
√

2, 2 −
√

2)

(b) d(v3, v0) ≤ 2 −
√

2 (1 − d(v3, v0)/2, 1 − d(v3, v0)/2, d(v3, v0))

Case II d(v1, v2) <
√

2 ≤ d(v2, v3) ≤ d(v1, v3)

(c) d(v3, v0) ≤
√

2 +
√

2 +
√

2 − 2 (1 − γd(v3, v0), 1 − (1 − γ)d(v3, v0), d(v3, v0))

(d) d(v3, v0) ≥
√

2 +
√

2 +
√

2 − 2
(d.1) d(v3, v0) ≥ d(v3, (v1 + v2)/2) − d(v1, v2)/2
(d1.i) d(v1, v0) ≤ d(v2, v0) (m, d(v1, v2) − m, 2 − d(v1, v2))
(d1.ii) d(v1, v0) ≥ d(v2, v0) (d(v1, v2) − m′, m′, 2 − d(v1, v2))

(d.2)
√

2 +
√

2 +
√

2 − 2 ≤ d(v3, v0) ≤ d(v3, (v1 + v2)/2) − d(v1, v2)/2
(d2.1) d(v1, v2) ≥ 2 − d(v0, v3)
(d2.1.i) d(v1, v0) ≤ d(v2, v0) (m, d(v1, v2) − m, 2 − d(v1, v2))
(d2.1.ii) d(v1, v0) ≥ d(v2, v0) (d(v1, v2) − m′, m′, 2 − d(v1, v2))

(d2.2) d(v1, v2) ≤ 2 − d(v0, v3) ≤ 4 −
√

2 −
√

2 +
√

2
(d2.2.i) d(v0, v2) ≥ 0.4 (1 − d(v0, v3)/2, 1 − d(v0, v3)/2, d(v0, v3))
(d2.2.ii) d(v0, v2) ≤ 0.4 (1 − d(v0, v3)/2, 1 − d(v0, v3)/2, d(v0, v3))

Table 2: Different allocations for the planar Euclidean radius game

Proposition 7.3 If the minimal circle enclosing V is determined by three points {v1, v2, v3},
and v0 is inside this circle, then C(N, vII) 6= ∅.

Let m = min(d(v1, v0), d(v1, v2)/2) and m′ = min(d(v2, v0), d(v1, v2)/2). Table 2 shows

allocations in C(N, vII) depending on the different cases.

Proof.

We consider the subgame with the player set {v1, v2, v3}. In the proof we distinguish

between two cases depending on the angles that the three points form with the center of

the circle. We assume without loss of generality that the minimal enclosing circle is of unit

length, i.e., r∗ = 1.

Case I: d(vi, vj) ≥
√

2, i, j = 1, 2, 3, i 6= j.

In this case the angle that the center of the minimal circle forms with each one of the

pairs of the three points is at least π/2. See Figure 7 for a graphical description of this

situation. A lower bound on the length of each edge connecting such a pair is
√

2. In fact,

a lower bound on the longer of the above 3 edges is
√

3, since the largest of the respective 3

angles is at least 2π/3. In this case we also have d(v2, v0) + d(v3, v0) ≥ d(v3, v2) ≥
√

2. Since
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v1

v2

v3

&%
'$

α3

α2

α1

Figure 7: Three points as in Case I of Proposition 7.3, αj ≥ π/2, j = 1, 2, 3..

by assumption, d(v2, v0) ≥ d(v3, v0), we obtain d(v2, v0) ≥
√

2/2. To conclude, in this case

we have

d(v1, v0) ≥ 1, d(v2, v0) ≥
√

2

2
, d(vi, vj) ≥

√
2, i, j = 1, 2, 3, i 6= j.

We consider two subcases:

Subcase (a): d(v3, v0) ≥ (2 −
√

2).

In this subcase, since vII(S) ≥
√

2, when |S| = 2, it is sufficient to show that there is a

solution to the system x1 +x2 +x3 = 2, xi +xj ≤
√

2, i, j = 1, 2, 3, i 6= j, 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤√
2/2, and 0 ≤ x3 ≤ (2 −

√
2). One solution is given by x1 = (2

√
2 − 2), x2 = x3 = (2 −

√
2).

Subcase (b): d(v3, v0) ≤ (2 −
√

2).

We will show that in this subcase, i.e., when d(v3, v0) is “small”, there is a core allocation

where x3 = d(v3, v0). Specifically, we will prove that the allocation (1 − d(v3, v0)/2, 1 −
d(v3, v0)/2, d(v3, v0)) is in the core.

First, since for i = 1, 2,

√
2 − d(v3, v0) ≤ d(vi, v3) − d(v3, v0) ≤ d(vi, v0), i = 1, 2,

it will suffice to show that xi = 1 − d(v3, v0)/2 ≤
√

2 − d(v3, v0).

Similarly, since

√
2 ≤ min(d(v1, v3), d(v2, v3)) ≤ min(vII({v1, v3}), vII({v2, v3)}),

it will suffice to show that x1 + x3 = x1 + x2 = 1 + d(v3, v0)/2 ≤
√

2.

Thus, to satisfy the above we need to show that d(v3, v0) ≤ 2(
√

2− 1). Indeed, using the

condition in this subcase, we obtain d(v3, v0) ≤ (2 −
√

2) < 2(
√

2 − 1).

It remains to show that x1 + x2 = 2− d(v3, v0) ≤ vII({v1, v2}). Indeed, the above follows
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from Lemma 7.2 by setting v′i = vi, for i = 1, 2, 3.

We have now concluded Case I.

Case II: d(v1, v2) <
√

2, d(v1, v3), d(v2, v3) ≥
√

2.

In the second case there is (exactly) one angle that the center of the minimal circle forms

with one of the pairs of the 3 points which is smaller than π/2. Therefore, the largest angle

is at least (2π − π/2)/2 = 3π/4, and the second largest is at least π/2. Without loss of

generality, suppose that d(v3, v1) ≥ d(v3, v2) > d(v1, v2). (We do not assume anymore that

d(v0, v1) ≥ d(v0, v2) > d(v0, v3).) Therefore,

d(v3, v1) ≥
√

2 +
√

2, d(v1, v2) <
√

2, d(v3, v2) ≥
√

4 − (d(v1, v2))2 ≥
√

2, (7)

√

4 − (d(v1, v2)2 ≥ 2 − d(v1, v2)

2
, whenever d(v1, v2) ≤ 8/5 = 1.6 . (8)

We introduce a reference system of coordinates with the origin (0, 0) at C, the center

of the ball spanned by v1, v2, v3. Then, v1 = (− cos α,− sin α), v2 = (cos α,− sin α) and

v3 = (cos β, sin β) with π/4 < α < β ≤ π/2, as depicted in Figure 8.

v1 v2

v3

&%
'$

α1
α2

α3

Figure 8: Three points as in Case II of Proposition 7.3, with α3 < π/2 and α1, α2 ≥ π/2.

Define d(v1, v2)/2 = a = cos α. We first prove several useful inequalities.

For any feasible v3(β) = (cos β, sin β), π/2 ≥ β > α ≥ π/4,

d(v1, v3(β)) ≥
√

2 + 2 sin α ≥
√

2 + 2
√

2 ≥ d(v2, v3(β))

≥
√

4 − (d(v1, v2))2 ≥
√

2 > d(v1, v2), (9)

d((v1 + v2)/2, v3(β)) =

√

1 + sin2 α + 2 sin β sin α ≥
√

1 + 3 sin2 α
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>
√

5/2 ≥ 2a, (10)

d((v2 + v3(β))/2, v1) =
1

2

√

2 + 8 cos2 α + 6cos β cos α + 2 sin β sin α

≥ 1

2

√

2 + 8 cos2 α + 2 sin2 α > 1 > a. (11)

We also have

d((v1 + v3(β))/2, v2) =
1

2

√

2 + 8 cos2 α − 6 cos β cos α + 2 sin β sin α.

Since,

−6 cos β cos α + 2 sin α sinβ ≥ 2 sin2 α − 6 cos2 α,

we conclude that

d((v1 + v3(β))/2, v2) ≥
1

2

√

2 + 2 cos2 α + 2 sin2 α ≥ 1 > a. (12)

We consider two subcases.

Subcase (c): d(v3, v0) ≤ (
√

2 +
√

2 +
√

2 − 2) .

In this subcase we claim that the allocation

(1 − γd(v3, v0), 1 − (1 − γ)d(v3, v0), d(v3, v0)),

where γ = (
√

2 − 1)/(
√

2 +
√

2 +
√

2 − 2) < 1, is in the core.

First, setting v′i = vi, for i = 1, 2, 3, and applying Lemma 7.2, we note that in this case

we have x1 + x2 = 2 − d(v3, v0) ≤ vII(v1, v2).

Thus, it is sufficient to show that

x1 = 1 − γd(v3, v0) ≤
√

2 +
√

2 − d(v3, v0) ≤ d(v1, v3) − d(v3, v0) ≤ d(v1, v0),

x1 + x3 = 1 + (1 − γ)d(v3, v0) ≤
√

2 +
√

2 ≤ d(v1, v3),

and

x2 = 1 − (1 − γ)d(v3, v0) ≤
√

2 − d(v3, v0) ≤ d(v2, v3) − d(v3, v0) ≤ d(v2, v0),

x2 + x3 = 1 + γd(v3, v0) ≤
√

2 ≤ d(v2, v3).
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The first two conditions are satisfied whenever,

d(v3, v0) ≤ (

√

2 +
√

2 − 1)/(1 − γ) = (
√

2 +

√

2 +
√

2 − 2).

Similarly, the last two conditions are satisfied whenever,

d(v3, v0) ≤ (
√

2 − 1)/γ = (
√

2 +

√

2 +
√

2 − 2).

Indeed, this is the condition in Subcase (c).

Subcase (d): d(v3, v0) ≥ (
√

2 +
√

2 +
√

2 − 2)

Subsubcase (d1): d(v3, v0) ≥ d(v3, (v1 + v2)/2) − a.

(d1.i): d(v1, v0) ≤ d(v2, v0).

We show that the allocation (m, 2a − m, 2 − 2a), where m = min(a, d(v1, v0)) is in the

core. (Recall that a = d(v1, v2)/2, as defined in page 30.) Indeed, the inequalities defining

the core are satisfied:

• x1 + x2 = 2a = d(v1, v2) ≤ vII({v1, v2}).

• x1 = m ≤ d(v1, v0).

• x2 = 2a − m. Hence, it suffices to prove that 2a ≤ m + d(v2, v0). If m = a, we have

a ≤ d(v0, v1) and under our assumption, a ≤ d(v0, v1) ≤ d(v0, v2).

When m = d(v0, v1) we need to prove that 2a = d(v1, v2) ≤ d(v0, v1) + d(v0, v2). The

latter clearly holds by the triangle inequality.

• x3 = 2 − 2a, and we have to prove that 2 − 2a ≤ d(v0, v3). Now, since d(v0, v3) ≥
d(v3, (v1 + v2)/2) − a, it is sufficient to verify that d(v3, (v1 + v2)/2) − a ≥ 2 − 2a, or

equivalently that d(v3, (v1 + v2)/2) + a ≥ 2.

Indeed, using the inequality (5), we obtain that:

d(v3,
v1 + v2

2
)+a = d(v3,

v1 + v2

2
)+d(

v1 + v2

2
, v1) ≥ d(v3, c)+d(v1, c), ∀c ∈ [

v1 + v2

2
, C],

where C = (0, 0) is the center of the circle spanning v1, v2, v3.

Applying the inequality for c = C, we obtain d(v3, (v1 + v2)/2) + a ≥ 2.

• x1+x3 = 2−2a+m. It is sufficient to prove that 2−(2a−m) ≤ d(v1, v3) ≤ vII({v1, v3}).
We prove that x1+x3 = 2−2a+m ≤ d(v1, v3). Moreover, since d(v1, v3) ≥ d(v1, (0, 1)) =√

2 + 2 sin α, it will suffice to show that

2 − 2a + m ≤ 2 − a = 2 − cos α ≤
√

2 + 2 sin α.
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Equivalently, we will show that for π/4 ≤ α ≤ π/2, f(α) = cos α +
√

2 + 2 sin α ≥ 2.

Define the function g(x) =
√

1 − x2 +
√

2 + 2x, for
√

2/2 ≤ x ≤ 1. Since g(x) is concave

its minimum is given by min(g(
√

2/2), g(1)) = g(1) = 2.

• x2 + x3 = 2 − m.

Suppose first that m = a. In this case we prove that 2−cos α ≤ d(v2, v3) ≤ vII({v2, v3}).
Let u2 = (cos α, sin α). Since d(v2, v3) ≥ d(u2, v2) = 2 sin α, it will suffice to show that

2 − a = 2 − cos α ≤ 2 sin α.

Equivalently we will show that for π/4 ≤ α ≤ π/2, f(α) = cos α + 2 sin α ≥ 2.

Define the function g(x) =
√

1 − x2 + 2x, for
√

2/2 ≤ x ≤ 1. Since g(x) is concave its

minimum is given by min(g(
√

2/2), g(1)) = g(1) = 2.

Next, suppose that m = d(v1, v0). We apply Lemma 7.2 with v′1 = v2, v
′

2 = v3, v
′

3 = v1

to obtain

x2 + x3 = 2 − d(v1, v0) ≤ vII({v2, v3}).

(d1.ii): d(v1, v0) ≥ d(v2, v0).

We show that the allocation (2a − m′,m′, 2 − 2a), where m′ = min(a, d(v2, v0)) is in the

core. Indeed, the core inequalities are satisfied:

• x1 + x2 = 2a = d(v1, v2) ≤ vII({v1, v2}).

• x2 = m′ ≤ d(v2, v0).

• x1 = 2a − m′. Hence, it suffices to prove that 2a ≤ m′ + d(v1, v0). If m′ = a, we have

a ≤ d(v0, v2) and under our assumption, a ≤ d(v0, v2) ≤ d(v0, v1).

When m′ = d(v0, v2) we need to prove that 2a = d(v1, v2) ≤ d(v0, v1) + d(v0, v2). The

latter clearly holds by the triangle inequality.

• x3 = 2 − 2a, and we have to prove that 2 − 2a ≤ d(v0, v3). The proof is the same as in

the previous case (d1.i).

• x2+x3 = 2−2a+m′, and it is sufficient to prove that 2−(2a−m′) ≤ 2−a ≤ d(v2, v3) ≤
vII({v2, v3}).
Indeed, the inequality 2 − a ≤ d(v2, v3) is proven for the respective item in (d1.i).
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• x1 + x3 = 2 − m′. Suppose first that m′ = d(v2, v0). In this case we apply Lemma 7.2

with v′1 = v1, v
′

2 = v3, v
′

3 = v2 to obtain

x1 + x3 = 2 − m′ ≤ vII({v1, v3}).

Next suppose that m′ = a. It is sufficient to prove that 2−a ≤ d(v1, (0, 1)) ≤ d(v1, v3) ≤
vII({v1, v3}).
Indeed, these inequalities are proven for the respective item in (d1.i).

Subsubcase (d2): d(v3, (v1 + v2)/2) − a ≥ d(v3, v0) ≥
√

2 +
√

2 +
√

2 − 2.

We will first prove the following inequality:

d(v1, v3) − d(v0, v3)/2 ≥ 1. (13)

The left hand side of inequality (13) satisfies:

d(v1, v3) −
d(v0, v3)

2
≥

√

(cos β + cos α)2 + (sin β + sin α)2

−(
√

cos2 β + (sin β + sin α)2 − cos α)/2

=
√

2
√

1 + cos(β − α)

−1/2

√

1 + sin2 α + 2 sin β sin α + 1/2 cos α

≥
√

2
√

1 + sin α − 1/2
√

1 + sin2 α + 2 sin α

+1/2 cos α. (14)

The last inequality follows from the fact that the respective expression is a monotone

decreasing function of β, for any fixed α. Define the function f(x) =
√

2
√

1 + x− (1+x)/2+√
1 − x2/2. (Note that the right hand side of (14) is f(sinα).) The function f(x) is concave

and therefore its minimum is attained at one extreme point of the interval
√

2/2 ≤ x ≤ 1.

Evaluating, we obtain: f(
√

2/2) = 1/2
√

2
√

4 + 2
√

2−1/2 = 1.3477 and f(1) = 1. Therefore,

inequality (13) holds.

(d2.1): d(v1, v2) ≥ 2 − d(v0, v3).

(Note that in Subcase (d), since d(v0, v3) ≥
√

2 +
√

2 +
√

2 − 2, the above is satisfied if

d(v1, v2) ≥ 4 −
√

2 −
√

2 +
√

2).

(d2.1.i): d(v1, v0) ≤ d(v2, v0).

Set x1 = m,x2 = d(v1, v2) − m,x3 = 2 − d(v1, v2), where m = min(d(v1, v0), d(v1, v2)/2).

We will show that this allocation is in the core.
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We have x1 ≤ d(v1, v0). Also, if x1 = d(v1, v2)/2, then x2 = d(v1, v2)/2 ≤ d(v1, v0) ≤
d(v2, v0). Otherwise, from the triangle inequality x2 = d(v1, v2) − d(v1, v0) ≤ d(v2, v0). Also,

from (d2.1) we obtain x3 ≤ d(v3, v0).

We have x1 + x2 = d(v1, v2) ≤ vII({v1, v2}).
Suppose first that x1 = d(v1, v2)/2. Then, x1 + x3 = x2 + x3 = 2 − d(v1, v2)/2. Since

d(v2, v3) ≤ d(v1, v3), and d(vj , v3) ≤ vII({vj , v3}), for j = 1, 2, it will suffice to show that

2 − d(v1, v2)/2 ≤ d(v2, v3).

If x1 = d(v1, v0), then x2 + x3 = 2− d(v1, v0). Applying Lemma 7.2 with v′1 = v2, v
′

2 = v3

and v′3 = v1, we obtain x2 + x3 ≤ vII({v2, v3}). In this case we have x1 + x3 ≤ d(v1, v2)/2 +

2 − d(v1, v2) = 2 − d(v1, v2)/2. Again, it will suffice to show that 2 − d(v1, v2)/2 ≤ d(v2, v3).

Indeed, the latter holds since applying inequalities (7), d(v2, v3) ≥
√

4 − (d(v1, v2))2 and

applying inequality (8),
√

4 − (d(v1, v2))2 ≥ 2 − d(v1, v2)/2, whenever d(v1, v2) ≤ 8/5 = 1.6.

(Recall that in Case II d(v1, v2) <
√

2.)

(d2.1.ii): d(v1, v0) ≥ d(v2, v0).

Set x2 = m′, x1 = d(v1, v2)−m′, x3 = 2−d(v1, v2), where m′ = min(d(v2, v0), d(v1, v2)/2).

We will show that this allocation is in the core.

Then, x2 ≤ d(v1, v0). Also, if x2 = d(v1, v2)/2, then x1 = d(v1, v2)/2 ≤ d(v2, v0) ≤
d(v1, v0). Otherwise, from the triangle inequality x1 = d(v1, v2) − d(v2, v0) ≤ d(v1, v0). Also,

from (d2.1) we obtain x3 ≤ d(v3, v0).

We have x1 + x2 = d(v1, v2) ≤ vII({v1, v2}).
Suppose first that x2 = d(v1, v2)/2. Then, x1 + x3 = x2 + x3 = 2 − d(v1, v2)/2. Since

d(v2, v3) ≤ d(v1, v3), and d(vj , v3) ≤ vII({vj , v3}) for j = 1, 2, it will suffice to show that

2 − d(v1, v2)/2 ≤ d(v2, v3).

If x2 = d(v2, v0), then x1 +x3 = 2− d(v1, v0). Applying Lemma 7.2 with v′1 = v1, v
′

2 = v3,

and v′3 = v2, we obtain x2 + x3 ≤ vII({v2, v3}). In this case we have x2 + x3 ≤ d(v1, v2)/2 +

2 − d(v1, v2) = 2 − d(v1, v2)/2. Again, it will suffice to show that 2 − d(v1, v2)/2 ≤ d(v2, v3).

Indeed, the latter holds since applying first inequality (7) and then (8), it holds d(v2, v3) ≥
√

4 − (d(v1, v2))2 ≥ 2 − d(v1, v2)/2, whenever d(v1, v2) ≤ 8/5 = 1.6.

(d2.2): d(v1, v2) ≤ 2 − d(v0, v3) ≤ 4 −
√

2 −
√

2 +
√

2.

(d2.2.i): d(v0, v2) ≥ 0.4.

We prove that the allocation (1− d(v0, v3)/2, 1− d(v0, v3)/2, d(v0, v3)) is in the core. The

inequalities defining the core are:

• x1 = 1−d(v0, v3)/2 ≤ d(v1, v0). Thus, we have to prove that 1 ≤ d(v1, v0)+d(v0, v3)/2.

From the triangle inequality and inequality (13) we have d(v1, v0) + d(v0, v3)/2 ≥
d(v1, v3) − d(v0, v3)/2 ≥ 1.

• x2 = 1 − d(v3, v0)/2 ≤ d(v2, v0). Indeed, x2 = 1 − d(v3, v0)/2 < 1 − 1.2/2 = 0.4 ≤
d(v2, v0).
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• The inequality x1 + x2 ≤ vII({v1, v2}) follows from Lemma 7.2, setting v′i = vi, for

i = 1, 2, 3.

• x1 + x3 = 1 + d(v0, v3)/2. From inequality (13) we obtain 1 + d(v0, v3)/2 ≤ d(v1, v3).

Thus, since d(v1, v3) ≤ vII({v1, v3}), we have x1 + x3 ≤ vII({v1, v3}).

• Finally, we have to prove the inequality x2 + x3 = 1 + d(v0, v3)/2 ≤ vII({v2, v3}).
Using (d2.2) we obtain

1 + d(v0, v3)/2 ≤ 1 + (2 − d(v1, v2))/2 = 2 − d(v1, v2)/2.

We showed above in the previous case that 2−d(v1, v2)/2 ≤ d(v2, v3). Hence, x2 +x3 ≤
d(v2, v3) ≤ vII({v2, v3}).

(d2.2.ii): d(v2, v0) ≤ 0.4.

Recall that in (d2.2) we already have d(v1, v2)/2 ≤ (2 − d(v0, v3))/2 ≤ 2 − (
√

2 +
√

2 +
√

2)/2.

Again, like in the previous case, we prove that the allocation (1−d(v0, v3)/2, 1−d(v0 , v3)/2,

d(v0, v3)) is in the core. Indeed, the inequalities that define the core are:

• x1 = 1− d(v0, v3)/2 ≤ d(v1, v0). Again, from the triangle inequality and equations (13)

and (14) we have d(v1, v0) + d(v0, v3)/2 ≥ d(v1, v3) − d(v0, v3)/2 ≥ 1.

• x2 = 1 − d(v3, v0)/2 ≤ d(v2, v0).

Here we will use the fact that a = cos α = d(v1, v2)/2 ≤ 2 − (
√

2 +
√

2 +
√

2)/2 < 0.6,

and use the function

f(x, y) =
√

(cos y − cos x)2 + (sin y + sin x)2

−1/2(
√

cos2 y + (sin x + sin y)2 − cos x),

with arccos(0.6) ≤ x ≤ π/2, x ≤ y ≤ π/2,

Note that

f(x, y) =
√

2 − 2 cos(x + y) − 1/2

√

1 + sin2 x + 2 sin x sin y + 1/2 cos x

≥
√

2 − 2 cos 2x − 1/2(1 + sin x) +
cos x

2
.

Consider the function

g(z) =
√

4 − 4z2 − 1/2(1 +
√

1 − z2) + z/2 = (3
√

1 − z2 + z − 1)/2,
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for 0 ≤ z ≤ 0.6. This function is the right-hand side of the above inequality at z = cos x.

Clearly g(z) is concave since its second derivative is g′′(z) = −3/2z2/(1 − z2)(3/2) −
3/21/

√
1 − z2. Therefore, its minimum is attained at one of the extreme points, hence

g(z) ≥ min{g(0), g(0.6)} = 1.

Now, since d(v2, v3) − d(v0, v3)/2 = f(α, β), we have that d(v2, v3) − d(v0, v3)/2 ≥ 1,

which in turn, by the triangle inequality implies

x2 = 1 − d(v3, v0)/2 ≤ d(v2, v3) − d(v0, v3) ≤ d(v2, v0).

• The inequality x1 + x2 = 2 − d(v0, v3) ≤ vII({v1, v2}) follows from Lemma 7.2 while

setting v′i = vi, for i = 1, 2, 3.

• x1 + x3 = 1 + d(v0, v3)/2. From inequality (13) we obtain 1 + d(v0, v3)/2 ≤ d(v1, v3).

Thus, since d(v1, v3) ≤ vII({v1, v3}), we have x1 + x3 ≤ vII({v1, v3}).

• Finally, we have to prove the inequality x2 + x3 = 1 + d(v0, v3)/2 ≤ vII({v2, v3}).
However, the proof is the same as for the previous case (d2.2.i).

�

Propositions 7.1, 7.2 and 7.3, all together, conclude the proof of Theorem 5.5.


