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Abstract: 
 
Polymer blends based on poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene 

oxide), P(VDF-TrFE)/PEO for Li-ion battery separators applications have been 

prepared through solvent casting technique.  The microstructure, hidrophilicity and 

electrolyte uptake strongly depend on PEO content within the blend. The best value of 

ionic conductivity at room temperature was 0.25 mS.cm-1 for the 60/40 membrane. The 

membranes are electrochemically stable. 
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1. Introduction 
 
Solid polymer electrolytes (SPE) can be used in solid state batteries [1] and other 

electrochemical devices [2] due to their high energy density, high ionic conductivity, 

and electrochemical stability [3, 4].  

In solid state batteries, SPE are used as separators, the main parameters determining the 

performance of SPE being their thickness, permeability, porosity/pore size, wettability, 

electrolyte absorption and retention, chemical, dimensional and thermal stability [3]. 

Different host polymers have been used for SPE, among which stand out poly(ethylene) 

(PE) [5], poly(propylene) (PP) [6], poly(ethylene oxide (PEO) [7], poly(acrylonitrile) 

(PAN) [8], poly(vinylidene fluoride) and its copolymers  [9]. One of the most used host 

polymer in SPE is PEO [10]. It shows high ionic conductivity of the order of 10-8 to 10-4 

S.cm-1 at temperatures from 40 to 100ºC in some complexes systems, nevertheless 

presents poor flexibility [10]. Strategies for increasing the ionic conductivity of PEO 

include the incorporation of plasticizers and the production of polymer blends that 

reduce the crystalline fraction and increase the polymer segmental mobility [11].	
  

An interesting polymer for battery applications are also PVDF and its copolymers such 

as poly(vinylidene fluoride-trifluoroethylene), P(VDF-TrFE), due to their high polarity, 

excellent thermal and mechanical properties, controllable porosity and wettability by 

organic solvents, being also chemically inert and stable in cathodic environment [12]. 

PVDF allows a favorable pore wetting in comparison to nonpolar commercial battery 

separators [13].  

Polymer blends of the aforementioned polymers have been scarcely investigated and 

just for applications as electrochromic devices [14].  

The main goal of this work consist in the evaluation of the performance of P(VDF-

TrFE)/PEO polymer blends as potential battery separator membrane. Blends with and 



without electrolyte solution (1M LiClO4.3H2O-PC) were prepared and their 

morphology and electrochemical properties and stability evaluated. 

 
 
 

2. Material and Methods 
 

2.1.  Blend Preparation 

P(VDF-TrFE) (Mw = 350 000) and PEO (Mw = 100 000) were acquired from Solvay and 

Polysciences, respectively. P(VDF-TrFE)/PEO blends were prepared by dissolving the 

appropriate amounts of each component in N,N-dimethylformamide (DMF) at 60ºC 

with the help of a magnetic stirrer until a homogeneous and transparent solution was 

obtained (after around 4 hours). The polymer/solvent volume ratio was 15/85.  

P(VDF-TrFE)/PEO blends were prepared with compositions of 100/0, 80/20, 60/40, 

50/50, 40/60 and 20/80 in weight ratio. P(VDF-TrFE)/PEO dissolutions were deposited 

on a clean glass substrates and the solvent was allowed to evaporate at 70ºC for 2 h. 

Complete removal of the solvent was achieved by placing the sample at 10-2 mm Hg for 

another 3 h at 70 ºC. 

 

2.2.  Electrolyte Solution and Uptake 

The membranes were immersed in the liquid electrolyte, consisting of a 1 M solution of 

LiClO4.3H2O in propylene carbonate (PC), for 24 h. The uptake was evaluated after 

equation 1: 

  ,                                          (1) 

where ε is the uptake of the electrolyte solution, M0 is the mass of the membrane and M 

is the mass of the membrane after immersion in the electrolyte solution. 



 

2.3.  Characterization Methods 

The microstructure of the membranes was examined by scanning electron microscopy 

(Leica Cambridge apparatus). Samples were cryofractured and the cross section was 

observed after deposition of a conductive layer of sputtered gold. Crystallinity of the 

PEO phase in the blend was calculated from the area of the melting peak appearing 

between 20 and 70ºC in a heating thermogram performed at 10ºC min-1 in a Pyris1 

Perkin-Elmer DSC. Calculation of the crystalline fraction was based on the value of the 

melting enthalpy of 100% crystalline PEO: ΔHsl= 203 J.g-1 [15]  

Contact angle measurements (sessile drop in dynamic mode) were performed at room 

temperature in a Data Physics OCA20 device using ultrapure water (3 mL droplets) as 

the test liquid. At least 3 measurements on each sample were performed in different 

sample locations and the average contact angle was calculated. 

The ionic conductivity was evaluated with an Autolab PGSTAT-12 (Eco Chemie) set-

up for frequencies between 500 mHz and 65 kHz, using a constant volume support 

equipped with gold blocking electrodes located within a Buchi TO 50 oven. The sample 

temperature variation ranged from 20 to 140 oC and was measured by means of a type K 

thermocouple placed close to the films. The ionic conductivity was measured during the 

heating cycles. Then, the ionic conductivity was determined by  

                                                         (2) 

where  is the thickness,  is the area of the samples and is the bulk resistance 

obtained from the intercept of the imaginary impedance (minimum value of Z’’) with 

the slanted line in the real impedance (Z’) through the Randles circuit [16]. 



Evaluation of the electrochemical stability of the polymer blends was carried out within 

a dry argon-filled glovebox using a two-electrode cell configuration with a gold 

microelectrode as working electrode. The preparation of the 25 µm diameter gold 

microelectrode surface by a conventional polishing routine was completed outside the 

glovebox. The microelectrode was then washed with Tetrahydrofuran (THF), dried with 

a hot-air blower and transferred into the glovebox. Cell assembly was initiated by 

locating a freshly-cleaned lithium disk counter electrode (10 mm diameter, 1mm thick, 

Aldrich, 99.9% purity) on a stainless steel current collector. A thin-film sample of the 

electrolyte was centered over the counter electrode and the cell assembly completed by 

locating and supporting the microelectrode in the centre of the sample disk. The 

assembly was held together firmly with a clamp and electrical contacts were made to an 

Autolab PGSTAT-12 (Eco Chemie) apparatus used to record voltammograms at a scan 

rate of 100 mVs-1. Measurements were conducted at room temperature within a Faraday 

cage located inside the glovebox. 

 

 
3. Results and Discussion 

 
P(VDF-TrFE) and PEO are semicrystalline polymers and  the microstructure of the 

P(VDF-TrFE)/PEO blends is determined in large extent by the crystallization process 

during film formation. The conductivity of P(VDF-TrFE)/PEO based litium salt 

complexes is in large extent governed by the continuity and ionic mobility in the PEO 

phase. Since the melting temperature of PEO is around 60ºC, it was decided to prepare 

the films by solvent casting at 70ºC, temperature at which PEO is melted. Therefore, 

P(VDF-TrFE) crystallize from the solution and after solvent evaporation the film 

consists in semicrystalline  P(VDF-TrFE) whose amorphous phase is blended with 

amorphous PEO chains. Subsequent cooling to room temperature produces PEO 



crystallization in the confined spaces left by P(VDF-TrFE) crystals. As a consequence, 

the crystalline fraction of PEO  rapidly decreases with decreasing PEO content (see 

Table 1).  This feature is important for the behaviour of the blend as a solid polymer 

electrolyte.  The microstructure of cross-sections of the blends can be observed in the  

SEM images of Figure 1.   

Cross section of P(VDF-TrFE) (Figure 1a) does not reveal any texture. This copolymer 

crystallizes in the all trans β phase [17, 18] forming lamellar structures. On the contrary 

PEO forms large spherulites when crystallizes from the melt. The roughness of the 

cross-sections of cryo-fractured samples allows detecting the presence of PEO crystals 

for PEO contents above 40% by weight (Figure 1b); in addition SEM images reveal 

some porosity in these samples.  

Electrolyte uptake (figure 1 d) is higher in blends containing 40 or 50% PEO than in 

pure PEO or pure P(VDF-TrFE) copolymer. A significant drop of electrolyte uptake is 

produced by increasing PEO content from 50 to 60%. Crystallization of P(VDF-TrFE) 

from the DMF solution segregates the solvent, in previous works [18]  we have shown 

that a porous structure is produced by liquid-liquid or solid-liquid spinodal 

decomposition during solvent evaporation. It is not determined in what extent the same 

process is produced when PEO is present in the solution at 70ºC, i.e., in what extent 

after P(VDF-TrFE) crystallization the evaporation of the solvent remaining in the 

amorphous phase containing PEO leaves some porosity in what at the end of the process 

will be the PEO phase of the blend. 

With respect to the electrolyte uptake (figure 1 d), the main results is the synergism in 

blend properties. Electrolyte uptake is higher in blends containing 40 or 50% PEO than 

in pure PEO or pure P(VDF-TrFE) copolymer. On the other hand a significant drop of 

electrolyte uptake is produced when going from 50 to 60% PEO in the blend. 



Electrolyte uptake is the result of the influence of different factors. PEO is a water 

soluble polymer, in the blend with P(VDF-TrFE) its capacity of swelling in the liquid 

electrolyte is in large extent governed by the confinement produced by P(VDF-TrFE) 

whose shape is only slightly changed by swelling since electrolyte absorption in pure 

P(VDF-TrFE) is quite modest (Figure 1d). When the amount of PEO in the blend is 

small it is dispersed in small domains or blended with the amorphous P(VDF-TrFE). In 

this conditions the hydrophilic character of PEO only increases slightly electrolyte 

uptake. As the amount of PEO increases and PEO domains grow, uptake also does. 

Porosity is another important factor since micropores can store more liquid than the 

same volume of PEO. But the other factor controlling uptake is PEO crystallinity. From 

50 to 60% PEO content in the blend, the crystallinity of PEO nearly doubles while 

electrolyte uptake suddenly drops. Confinement of PEO in the spaces allowed by 

P(VDF-TrFE) does not allow the dissolution of PEO crystals and the electrolyte must be 

absorbed by the amorphous PEO chains. The 20/80 blend do not disintegrade when 

immersed in the LiClO4.3H2O in PC. This probes that just a 20% of P(VDF-TrFE) is 

enough to form a continuous phase in the blend. On the other hand, absorption of 

LiClO4.3H2O in PC might produce changes in the microstructure of P(VDF-TrFE) [19] 

which can have an influence of the lithium salts uptake capacity of the blends.     
  

 

 

 

 
 
 

The heterogeneous microstructure and different relative polymer contents lead to 

variations in the hydrophilic degree of the blends (figure 1 (e)). Pure P(VDF-TrFE) has 

a higher contact angle as compared to the other samples in the blend systems with the 

exception of the 80% PEO content membrane. The differences in contact angle are fully 

ascribed to the surface topography, the hydrophilic degree being lower for the compact 

samples and higher for the porous ones (figure 1).  



The room temperature ionic conductivity of the blends (Table 1) increases with the 

inclusion of PEO due the higher d.c. conductivity contribution and the dipole-

orientation relaxation process of PEO [20]. Without electrolyte uptake, the conductivity 

is larger for the blend samples with lower PEO contents due to the dispersion of ill-

crystallized PEO within the PVDF-TrFE matrix. The conductivity of the blend 

containing 20% PEO is three orders of magnitude higher than that of P(VDF-TrFE).  

Increasing PEO content leads to a well formed phase separated microstructure of the 

two polymers, leading to a decrease of the conductivity. At low temperature the effect 

of PEO crystallinity is clear (figure 2a).  Increasing temperature increases free volume 

and polymers segmental mobility and charge mobility, increasing ionic conductivity [3]. 

Around 60ºC (1/T=0.003 K-1) the conductivity versus reciprocal temperature plot shows 

a change of slope due to melting of PEO crystals (Figure 3a), but at temperatures above 

melting the conductivity of the blends containing 40% or more PEO is still one order of 

magnitude lower than in the 80/20 blend. One can hypothesize that homogeneous 

mixing of amorphous PEO with amorphous P(VDF-TrFE) chains  produce a continuous 

conductive phase improving ion conductivity of the blend.  

After electrolyte uptake (Figure 2 b) and for PEO contents above 40%, polymer blends 

exhibits high conductivity > 10-4 S.cm-1 at room temperature due to the larger 

concentration of ionic charge carriers and their mobility [21]. The conductivity is 

practically independent of blend composition. The ionic conductivity of the membrane 

depends strongly on the inclusion of PEO but not so much on its content. It is observed 

(figure 2 b) that inclusion of PEO increases thermal stability of the ionic conductivity of 

the samples with respect to the PVDF-TrFE and that the thermal stability is independent 

of the PEO content. 



The electrochemical stability of for the membranes was measured by microelectrode 

cyclic voltammetry over the potential range -2V to 6V with electrolyte solution. 

Figure 3 c shows the cycle voltammogram for the 50/50 membrane as it is one of the 

samples with the highest conductivity after electrolyte uptake separators.  The sample 

shows good electrochemical stability independently of the scanning rate, with anodic 

potentials higher than 4V versus Li/Li+ and an oxidation peak around 1.0V. The anodic 

current onset is associated to the decomposition of the polymer electrolyte and increases 

with increasing the scanning rate.  

Increasing potential sweeping rate shifts the cathodic peak potential in the negative 

direction. Several small peaks between 0.0V at 1.0 V can be observed, which are 

ascribed to reduction of the low levels of water present in polymer electrolyte or to 

oxygen impurities and this behavior has been observed for other systems based on PEO 

blends with lithium salt as well [22]. 

 

4. Conclusion: 

Novel polymer blends based on poly(vinylidene fluoride-

trifluoroethylene)/poly(ethylene oxide) has been produced by solvent casting for Li-ion 

battery separator applications. Solvent evaporation at 70ºC, a temperature higher than 

the melting point of PEO, confines melted PEO in the P(VDF-TrFE) semicrystalline 

phase. Then on cooling to room temperature only a limited fraction of PEO crystallizes. 

Ionic conductivity has a maximum in the sample containing 60% PEO reaching a value 

of 0.25 mS.cm-1. The temperature behaviour of the conductivity and the cyclic 

voltammetry confirm that the polymeric blends have adequate stability for lithium-ion 

battery applications. 
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Figure and Table Captions 
 
 
 
Figure 1: Cross-section SEM images of P(VDF-TrFE)/PEO blends: a) 100/0, b) 50/50and c) 

20/80. Inserts in the figure (a), (b) and (d) exhibits micrograph of the static contact angle.  

d) Uptake and e) contact angle as a function of PEO content for P(VDF-TrFE)/PEO blends. 

 

 

Figure 2: Log σ as function of 1000/T for P(VDF-TrFE)/PEO blend without electrolyte (a),  

after electrolyte solution uptake (b) and c) Cycle voltammogram of 50/50 P(VDF-

TrFE)/PEO blend at different scanning rates 

 
 
	
  
Table 1 – Effective conductivity of separator membrane with electrolyte solution and σ0 

(S/cm)=9.8mS cm-1 at 25ºC, conductivity of 1M LiClO4.3H2O-PC 



 

 
Table 1 – Effective conductivity of separator membrane with electrolyte solution and σ0 

(S/cm)=9.8mS cm-1 at 25ºC, conductivity of 1M LiClO4.3H2O-PC 

Sample PEO crystalline 
fraction  

σeff (mS.cm-1),   
without uptake 

σeff (mS.cm-1), 
with uptake 

100/0 - 4.7*10-10 8.7*10-5 
80/20 10 2.2*10-6 0.08 
60/40 27.5 3.2*10-7 0.25 
50/50 34 2.2*10-7 0.56 
40/60 62.5 2.8*10-8 0.68 
20/80 56.3 9*10-9 0.44 
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