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Abstract 
 
The feedback mode of scanning electrochemical microscope (SECM) was applied to 

study differences in the reactivity of a highly alloyed austenitic stainless steel, Alloy 

926 (UNS N08926), in its unsensitised and sensitised state. Alloy 926 was heated at 825 

ºC for 1 hour in an inert atmosphere in order to produce a sensitised metallurgical 

condition. Sensitisation was due to chromium carbide formation at the grain boundaries. 

The oxygen reduction reaction was used as an indicator to monitor the effect of the 

sensitisation process on the corrosion activity of the Alloy 926 surface in a 35 g l-1 NaCl 

solution. Higher oxygen consumption was observed above the sensitised sample than 

above the unsensitised sample due to differences in the oxide films of the two alloy 

conditions.  
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1. Introduction 

 

Stainless steels offer good corrosion resistance, being primarily due to the 

presence of a low conductivity, surface bilayer structure which maintains the alloy in a 

metastable state of passivity therein providing corrosion resistance to the alloy. With 

respect to the composition of the bilayer formed on stainless steels, this consists of an 

inner layer of iron (III) and chromium (III) oxides enriched in chromium and an outer 
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layer composed essentially of chromium hydroxide (Cr(OH)3) [1, 2]. When austenitic 

stainless steels are incorrectly heat treated, in the temperature range between 500 and 

900 ºC, chromium and carbon combine at the grain boundaries to form chromium 

carbides (typically Cr23C6), whilst simultaneously as these carbides form, chromium 

depletion occurs at the adjacent zones. This process is called sensitisation and leads to a 

decrease in the corrosion resistance of stainless steels, notably resistance to 

intergranular corrosion, being due to the depleted regions becoming anodic in the 

presence of an electrolyte [3-10].  

In previous work [11], a highly alloyed austenitic stainless steel, Alloy 926 

(UNS N08926), in the unsensitised and sensitised states, was tested in highly 

concentrated LiBr solutions1 in order to study the influence of the sensitisation process 

on the corrosion resistance of this steel. Despite the fact that the carbon content of this 

alloy is low, the high nickel content decreases the solubility of carbon leading to 

possible sensitisation and subsequent intergranular corrosion when improper heat 

treatments are carried out.   

Conventional electrochemical techniques, such as electrochemical reactivation 

tests or cyclic potentiodynamic curves, have been widely used to study sensitisation and 

provide important information about the sensitisation processes [4, 6-10, 12-17]. Recent 

advances in the field of localised microelectrochemical techniques have provided the 

facility to acquire spatially resolved information about the corrosion processes occurring 

on the surface of the metal. Scanning Electrochemical Microscopy (SECM) is one such 

in-situ method that couples electrochemistry with scanning probe microscopy [18, 19]. 

This technique consists of the movement of an ultramicroelectrode tip (UME) parallel 

to the surface of the sample, configured as an electrochemical cell in order to 

characterise the redox activity of the solid/liquid interface via the use of a selected 

mediator.  Therefore, by using the SECM it is possible to analyse the passivity of the 

steel surface in its different metallurgical conditions (sensitised and unsensitised state) 

and the evolution of this passive film at a given working electrode potential, e.g., open 

circuit potential, in order to determine the evolution of the passive film with time.  

The aim of this work was therefore to study the differences in the 

electrochemical activity of an Alloy 926 electrode surface in both the unsensitised and 

sensitised condition, under open circuit conditions in a naturally aerated aqueous 

                                                 
1 LiBr is used for applications such as refrigeration absorption machines (where LiBr 
can be used as the absorbent). 
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chloride environment (35 g l-1 NaCl) at 25 ºC. The following experiments were 

conducted, open circuit measurements, cathodic polarisation curves, cyclic 

voltammogram curves, and SECM line and area scans.  

 

2. Experimental Procedure 

 

2.1. Materials 

 

A highly alloyed austenitic stainless steel, Alloy 926 (UNS N08926) supplied by 

Krupp VDM, was used for this study. The chemical composition (wt %) of the alloy 

was: 20.8 % Cr, 24.90 % Ni, 0.90 % Mn, 0.35 % Si, 6.45 % Mo, 0.94 % Cu, 45.16 % 

Fe, 0.02 % P, 0.01 % C, and 0.18 % N. The electrodes were machined and shaped as 

rectangular prisms 30 mm high with a base surface of 0.36 cm2. Specimens were 

introduced into a silica tube in a furnace under an argon atmosphere, where they were 

heated to induce sensitisation by heat treating them at 825 ºC for a period of 1 hour. 

These conditions were selected based upon a previous study [9]. After heat treatment, 

an electrical connection was made to the specimen in order to allow electrochemical 

measurements to be made.    

Individual unsensitised and sensitised samples were then mounted in epoxy resin 

as shown in Figure 1.  Before every test, samples were wet abraded with silicon carbide 

paper up to #1200, and then polished with alumina of 1 micron, before being finally 

rinsed with water and ethanol and dried with hot air.    

 

2.2. Open circuit measurements, cathodic curves, and potentiodynamic curves 

 

Electrochemical measurements were performed using a three electrode cell 

arrangement, with a saturated calomel electrode (SCE) as the reference electrode and 

the counter electrode made of platinum. Open circuit potential, cathodic polarisation 

curves and potentiodynamic curve measurements  were obtained  from both the 

unsensitised and sensitised samples in a 35 g l-1 NaCl solution at 25 ºC using a 

multipotentiostat Uniscan PG 580 RM. All tests were carried out in naturally aerated 

solutions. 

Open circuit potential measurements of Alloy 926 samples in the two tested 

states  were made over a 10 hour period.  
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In addition, cathodic and potentiodynamic curves were obtained with the open 

circuit potential being measured for 1 hour prior to the start of scans. Using the 

measured value of the OCP, cathodic curves were carried out from OCP to – 1 VSCE at a 

sweep rate of 0.1667 mV s-1. In the case of the potentiodynamic curves, scans were 

made from -0.7 V vs SCE to 1 V vs SCE at 0.1667 mV s-1 sweep rate. 

 

2.3. SECM measurements 

 

SECM tests were performed using a Uniscan 370 workstation. The SECM was 

operated in “feedback mode”. This technique measures a faradaic current at the 

microdisk, while the tip is rastered over the specimen surface. A gold microelectrode tip 

of 10 µm diameter, a sheet of platinum as counter-electrode, and a saturated SCE 

reference electrode were used. Samples were immersed in a 35 g l-1 NaCl solution at 25 

ºC. All the tests were carried out in natural aerated solutions.  Oxygen was used as the 

electrochemical mediator at the tip. The reduction of oxygen on the microelectrode was 

used to establish the height of the tip over the sample, and also to image the reactivity of 

the surface during the test. Oxygen reduction in aqueous solutions involves 

heterogeneous charge transfer processes coupled with homogeneous chemical reactions 

[20, 21]. The cyclic voltammogram was recorded at a scan rate of 0.05 V s-1 from 0 V 

vs SCE to -1 V vs SCE. Analysis of this data was then used in order to choose the 

polarisation potential of the tip.  

The establishment of the operating distance of the tip to the sample surface was 

performed in relation to the different areas of the sample, notably (a) the resin close to 

the unsensitised alloy, (b) the unsensitised alloy, (c) the sensitised alloy and (d) the resin 

close to the sensitised alloy.  

SECM scans were obtained by rastering the surface at steps of 75 microns in the 

X direction and 5 microns in the Y direction. The scanned area dimensions were 17200 

µm x 50 µm in X and Y directions, respectively. Scans were repeated three times over 

the same area during the test in order to assess any changes in the reactivity of the 

surface with the immersion time. Each scan was recorded by shifting the microelectrode 

tip from left to right. Hence, current maps were built as a composition of X line scans, 

which were stepwise moved in the Y direction. The time spent in each 

scan was two hours, and the total duration of the test was 6 hours. 
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3. Results and discussion   

 

3.1. Open circuit measurements  

 

Figure 2 shows the open circuit potential measurements of Alloy 926 in its 

unsensitised and sensitised state. The potential of both samples shifts towards the 

positive direction, eventually stabilising with immersion time due to the formation of a 

passive film on the steel surface. This increase, often termed  ‘ennoblement’, is 

generally associated with an increase of the cathodic reaction rate (O2 reduction in 

aerated water, that favours oxide film formation) [22-24]. The cathodic reaction 

decreases as a result of the formation of a passive film which in turn increases the 

resistance to electron transfer through the film and decreases the electrochemical 

activity of the surface. The oxygen reduction reaction plays an important role during the 

passivation process, by producing a local current, which polarises the metal into the 

passive region [25-27].  

The open circuit potential becomes more positive as a consequence of the 

sensitisation process and, consequently, the sensitised sample presents a higher cathodic 

activity. This increased activity is suggested to be related to metallurgical changes 

(Chromium carbides formation) that occur in the steel as a consequence of the heat 

treatment.   

 

3.2. Cathodic and potentiodynamic curves 

 

Figure 3 and Figure 4 present the cathodic polarisation and potentiodynamic 

curves of the unsensitised and sensitised samples. The results of the cathodic 

polarisation curves are in agreement with OCP measurements, because the cathodic 

activity is higher in the sensitised sample, being  between 1.5 and 2 times higher than in 

the unheated sample. In the potential range where oxygen reduction occurs, the oxide 

film is partly reduced but an oxide film remains on the steel surface. According to the 

literature [28], oxygen reduction on polished surfaces is limited by the mass transport in 

the solution; however, on passivated surfaces, the oxygen reduction is limited by access 

of the oxygen to the metal surface and the electronic conductivity of the oxide film [28, 

29]. Therefore, this result is indicative of the formation of a different passive film on the 

sensitised sample as opposed to that on the unsensitised sample.  
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Furthermore, according to the potentiodynamic polarisation curves, the 

passivation current density is higher in the case of the sensitised sample (around 1.5 

times higher than in the unsensitised sample), as shown in Figure 4. A higher 

passivation current density indicates a ‘less-protective’ passive film with higher 

electronic conductivity, this being due to the presence of areas depleted in alloying 

elements, notably chromium. This result was also observed in aqueous concentrated 

LiBr solutions in a previous study [11], where the sensitised Alloy 926 showed less 

corrosion resistance due to the sensitisation process.   

 

3.3. SECM tests 

The main cathodic reaction occurring during corrosion in aerated solutions is the 

reduction of dissolved oxygen:  

 

O2 + 2H2O + 4e-  4 OH-                                                     (1) 

 

The progress of this reaction can be followed by setting the tip at – 0.7 V vs 

SCE. In these conditions the amperometric detection of oxygen is under the limiting 

current of reduction of oxygen, as confirmed by the cyclic voltammogram depicted in 

Figure 5. Therefore, with the tip polarised at – 0.7 V vs SCE it is possible to monitor, in 

solution, the consumption of oxygen with time at the surface of the alloy in either its 

sensitised or unsensitised condition. 

Once the polarisation potential of the tip was selected, approach curves were 

carried out in order to choose the operating distance where the tip would raster above 

the specimen. The zero position of the tip, that is, where the approach curves begin, was 

an arbitrary position such that the influence of the specimen on the probe’s response 

was not significant. From this zero position the tip was moved down towards the 

specimen; therefore, the approach curves record how the proximity of the tip to the 

specimen affects the diffusion of oxygen to the tip and hence the magnitude of the 

current. Figure 6 shows approach curves acquired at different locations, notably, over 

the resin close to the unsensitised alloy, over the unsensitised alloy, over the sensitised 

alloy, and over the resin close to the sensitised alloy. According to the approach curves 

the drop in the current measured at the tip occurs at a greater distance above the metal 

surface than above the resin as a consequence of cathodic reactions (oxygen reduction) 

that occur on the steel surface. Then, there is a competitive reaction in the consumption 
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of oxygen, notably between the tip and the metal surface. In addition, based on the 

approach curves, the oxygen reduction is the highest over the surface of Alloy 926 in its 

sensitised state. Therefore, the selected operating distance of the microelectrode above 

the specimen was the distance where differences in the current among the registered 

approach curves were greatest, as shown in Figure 6.  

Once the operating distance of the tip was selected, area scans of the sample 

were conducted, as shown in Figure 7. As described in the experimental procedure, 

scans were repeated three times over the sample surface in order to monitor changes in 

surface reactivity with immersion time. The magnitude of oxygen reduction occurring at 

the tip, when it was above the steel surface, is comparatively low compared to that 

above the epoxy resin. Furthermore, the amount of oxygen reduction on the tip 

increases when it passes from the sensitised sample to  the unsensitised sample. 

Therefore, the consumption of oxygen is greater over the sensitised specimen, the 

increased consumption being associated with a higher cathodic activity. This result is in 

agreement with the higher cathodic current density observed in the sensitised sample 

obtained from the cathodic polarisation curve data. The higher cathodic activity 

indicates a greater electronic conductivity of the passive film formed on the sensitised 

sample. Several authors [28, 30-32], proposed that the reduction pathway is influenced 

by the surface composition of the electrode and oxides have an important role to play in 

the oxygen reduction kinetics. A homogeneous mixture of chromium oxide and 

hydroxide constitutes a barrier to oxygen reduction, whereas no diffusion barrier is 

observed when the surface is only partially covered with a non-reducible chromium 

oxide [33]. Therefore, any chromium depleted areas formed in the sensitised alloy can 

lead to the formation of a more conductive passive film that promotes higher oxygen 

reduction on the electrode surface. This observation confirms the results obtained from 

the cathodic (Figure 3) and potentiodynamic curves (Figure 4), where the cathodic 

current density and the passivation current density were higher in the the sensitised 

sample than in the unsensitised sample. Additionally, the presence of chromium 

carbides, which have a higher cathodic activity than the surrounding area [34, 35], may 

enhance the cathodic reduction of oxygen on the sensitised sample.  

Line scans extracted from different points of the area scans are shown in Figure 

8. At the beginning of the test, the minimum current registered at the tip over the 

sensitised sample is 2.30 nA lower than over the unsensitised sample, after 230 minutes, 

this difference is only 0.15 nA. As explained previously, a lower current registered at 
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the tip indicates higher consumption of oxygen on the metal surface. Therefore, the 

difference in the oxygen consumption between the heated and the unheated sample 

decreases with the time exposed to the electrolyte. Furthermore, there is a general 

decrease in the tip current with time, which may be due to a change in the oxygen 

content of the electrolyte. A small amount of electrolyte evaporation was noted during 

the test, which would lead to a corresponding increase in NaCl concentration and 

subsequent decrease in oxygen solubility in the electrolyte. Therefore, it is reasonable to 

normalise the values of the current registered in the tip to isolate the effect of the 

passive film formation in the evolution of the oxygen consumption. In order to do this, 

values of the current registered in the tip over the sensitised and unsensitised sample 

were divided by the current registered over the resin, eg, Itip (metal)/Itip (resin).  

Figure 9 presents the evolution of the open circuit potential and the normalised 

current measured above the unsensitised and sensitised samples. The normalised current 

measured at the tip over both samples increases with the immersion time, being 

indicative of a decrease of the consumption of oxygen on both samples. This decrease is 

possibly due to the passive film formation (inner chromium oxides and outer chromium 

hydroxide) that inhibits oxygen reduction and decreases electron transfer throughout it. 

This passive film formation is favoured by oxygen reduction and when the passive film 

grows it leads to a drop in the surface activity and oxygen consumption. Additionally, 

OCP values for both materials increase and this increase diminishes with immersion 

time due to the passive film formation. According to the literature [22-24], an increase 

in OCP is associated with an increase in the rate of the cathodic reaction. Therefore, 

when the passive film grows and diminishes the cathodic activity of the electrode 

surface, the rate of change of the OCP would also be expected to diminish.  

 With the formation of the oxide film on the sensitised sample, differences in the 

oxygen consumption between both materials decrease due to the inhibition of the 

oxygen reduction reaction. At the end of the test, values of oxygen consumption of the 

sensitised and unsensitised Alloy 926 are quite similar due to the formation of a film of 

chromium oxides and hydroxides that diminishes the electronic conductivity and 

decreases the oxygen diffusion.  

Hence, oxide film formation becomes slower as a consequence of the 

sensitisation process, leading to a higher oxygen reduction reaction rate during 

immersion in an aerated 35 g l-1 NaCl solution. 
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4. Conclusions 

 Sensitised Alloy 926 presents higher OCP values than the unsensitised Alloy 

926, the OCP increase being associated with an increase of the rate of the 

cathodic reaction and formation of a passive film.  

 The oxygen reduction depends on the properties of the electrode surface, which 

are governed by the composition of the Alloy 926 and any heat treatments 

(sensitisation processes).  

 According to the SECM data, the oxygen reduction rate becomes greater on 

Alloy 926 as a consequence of the heat treatment. This is due to the formation of 

a more conductive passive film on the sensitised Alloy 926. 

 OCP enoblement and oxygen reduction rate decrease with immersion time as a 

consequence of the formation of an oxide film, this decrease being faster in the 

unsensitised Alloy 926.  

 Therefore, according to the results obtained from this work, the sensitisation 

process of Alloy 926 produces morphological changes that lead to differences in 

the passive film formation of Alloy 926 before and after the heat treatment.   
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Figure 5. Cyclic voltammogram measured at the SECM tip immersed in the 35 g l
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solution at 25 ºC.  
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Figure 6. Approach curves carried out over the different areas of the specimen in the 35 
g l-1 NaCl solution at 25 ºC.  
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      As-received Alloy 926                     Sensitised Alloy 926  
  
Figure 7. SECM area scans of oxygen reduction current measured above the specimen 
in the 35 g l-1 NaCl solution at 25 ºC.   
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Figure 8. Line scans above different lines of the scanned specimen surface obtained at 

every scan in the 35 g l
-1

 NaCl solution at 25 ºC.  
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Figure 9. Evolution of the normalised current measured in the tip above the different 

areas of the specimen with immersion time and register of the open circuit potential of 

the as-received and sensitised Alloy 926 in the 35 g l
-1

 NaCl solution at 25 ºC.  

 


