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Abstract

This paper proposes the concept of bodyprints to perform re-identification of people in surveil-

lance videos. Bodyprints are obtained using calibrated depth-color cameras such as kinect. Our re-

sults on a database of 40 people show that bodyprints are very robust to changes of pose, point of view

and illumination. Potential applications include tracking people with networks of non-overlapping

cameras.

1 Introduction

The use of camera networks has widespread in many different domains such as surveillance in large

facilities (airports, bus/train stations), sports/conference venues and retail stores, just to enumerate a few.

According to a recent survey [17], only a small fraction of these videos is ever watched or analyzed. This

fact raises the need of developing high level video analysis tools to obtain relevant information.

For example, in the context of retail, information about the statistical analysis of people behaviors is

very useful for marketing purposes. Aspects such as frequent paths, locations where people tend to stop,



people flow at certain locations etc. are examples of the kind of information that is interesting for a shop

manager in order to measure the impact of his decisions.

An important problem that appears in multi-camera systems is to re-identify people that leave one

camera and enter in another or in the same camera after a period of time. Re-identification is a key

aspect for tracking applications in non-overlapping cameras scenarios. One possible application of re-

identification, and the one that motivated our research, is to determine how much time do people spend

in a shop by analyzing images of their entry and departure taken by one or more cameras.

The recent appearance of low cost RGB-Depth (RGB-d) cameras, such as Microsoft Kinect offers

the opportunity to explore the use of many three-dimensional computer vision techniques in surveillance

scenarios at an affordable cost. In RGB-d cameras, each pixel has an associated depth, apart from its

RGB color value. This information allows to segment objects more easily, even in presence of severe

occlusions, using only the spatial coordinates of each pixel. In fact, a new trend of processing RGB-d

images using point clouds rather than regularly arranged pixels has just emerged [1].

In this paper, we will concentrate in the re-identification problem using Kinect cameras. The key

idea is to take advantage of the available spatial information to obtain a feature vector per person, which

we call bodyprint. Bodyprints can be matched across different cameras or the same camera at a later

time to solve the re-identification problem.

The rest of the paper is organized as follows. Section 2 reviews the state of the art on video re-

identification. In section 3.1 we will briefly describe the sensor. In section 3.2 the scenario calibration

procedure that has been used is presented. People segmentation and tracking are presented in sections 3.3

- 3.5. Bodyprints, the characteristic signatures that will allow to match people are described in sec-

tion 4.1. Section 4.2 will address the metric used to compare bodyprints. Finally we will provide results

and some conclusions about what can be expected from the technique presented in this paper.

2



2 Related research

The basic assumption of most people re-identification approaches is that people are wearing the same

clothes in all the views. With this assumption, the problem is how to model the global appearance

of individuals when large variations in pose, point of view and illumination are expected. The use of

traditional biometric modalities such as face is generally limited because it is quite common that cameras

are set up to cover a relatively large area and generally there is not enough resolution to perform face

recognition. One of the few approaches that uses faces is presented in [14]. In this work the cameras are

set up to cover a narrow area in corridors. This particular configuration allows to increase the resolution

of faces and extract face tracks which can be matched against a database. Another example that uses

faces is presented in [15]. In this work the face modality, if available, is combined with other global

appearance modalities, however the face modality is only available in 5% of the matches.

Gait has been also proposed by several authors as a promising cue for people re-identification [29, 15,

13]. In this case, the difficulty of extracting reliable gait features in unconstrained multicamera scenarios

may explain why this modality has not been widely used for people re-identification.

Appearance methods for people re-identification are commonly grouped into single or multiple-

shot [9]. Single-shot methods use only one image to perform identification, while multiple-shot methods

use different images of the same person obtained by tracking. Images from each individual are usually

taken using one camera, although in [20] a multiple camera configuration that allows to simultaneously

capture individuals from several points of view is proposed.

The models used to describe people appearance can be also classified into holistic and part-based.

The key difference between these methods is that part-based algorithms extract different features for

each body part, such as legs, trunk and head, and feature comparison is done accordingly to this body

segmentation. Although part-based methods are very promising, holistic methods are still more robust

in challenging scenarios [19]. A couple of representative part-based methods are [10, 28].

One common approach to describe color appearance is to use color histograms. For instance, in [9]

the color global histogram is combined with recurrent local patterns, that characterize texture, after
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epitomic analysis. Raw color features are not very robust because they highly depend on the illumination

conditions and different camera color sensitivity. For this reason, it is very important to use some sort

of color normalization. An example of color normalization is found in [8]. In this work, colors are

quantized to create a palette of just eleven basic colors.

The problem associated with color histograms is that spatial information is discarded. To avoid this

problem, in [18] the image is divided into a grid of fixed cells and then, color histograms are obtained

for each cell. A different option is to divide the image of the pedestrian into horizontal stripes [12] and

then obtain color features for each stripe.

In addition to color information, there are many systems that also use texture information to identify

people. It is quite common that texture is obtained around interest points. For instance, in [16] SURF

points are used to match people and in [24], interest points are extracted using a combination of SIFT

and SURF algorithms. A different approach to extract local features is presented in [22] where machine

learning is used to extract the most discriminative feature set.

Fair comparison of different person identification approaches requires using a common data. Two of

the most widely datasets used in the literature include the ViPER and i-Lids datasets. The ViPER [21]

database is specifically designed for single-shot identification, and contains images of many individuals

under large variations of illumination and pose. The i-Lids database [25] was recorded in an airport

arrival halls at busy hours. In this real scenario, occlusions are a common problem that was not present

in the ViPER dataset. Unfortunately, none of the public datasets contains depth information and for this

reason we have created a new dataset which contains RGB-d images and made it publicly available [2].

3 System description

Figure 1 shows the block diagram of the proposed system. Using kinect depth information and scene

calibration, the height map block creates a virtual cenital view of the scene. This particular point of view

greatly simplifies the segmentation and allows to deal with situations of severe occlusions. Segmented

objects are tracked in the scene to obtain as much information as possible. This is important because due
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Figure 1: Block diagram of the overall system.

to occlusions, not all body parts are observed in all the frames. Finally, bodyprints are obtained for each

person using RGB information. Bodyprints can be matched against previously recorded bodyprints in

the same or a different location. Next subsections will describe each of these blocks in detail.

3.1 The kinect sensor

The kinect sensor was introduced by Microsoft as an input device for its game console Xbox-360. When

used for gaming, it segments people and is able to estimate their pose and actions in order to command

games. Shortly after its commercialization, PrimeSense [3] (the company that developed Kinect) released

a library called OpenNI [4] to ease the development of interective applications. OpenNI provides an

easy API to get access to RGB and depth information and now, it is also used by other well known open

source projects such as OpenCV (starting at version 2.2) [5], ROS [6] and PCL [1]. Recently, Microsoft

Research released an SDK with identical functionality as OpenNI [7].

The kinect sensor has a color RGB and an infrared (IR) cameras. It also has an IR pattern generator,

that jointly with the infrared camera is able to determine the depth. A limitation of this sensor is that it

can only work in indoors environments under normal illumination conditions. In outdoors, the IR pattern

has not enough contrast to measure distance.

The device can be configured to align both images (RGB and depth). This is required because both

cameras have a different focal length and are located at slightly different positions. An example of RGB

image and its associated depth is shown in Fig. 2. For a number of reasons, depth information may not

be available for all pixels. In that figure, locations where no depth information is available are shown

in black. RGB and depth images are aligned taking the RGB as reference. The sensor has a minimum
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Figure 2: Examples of aligned RGB and depth images obtained with kinect.

distance to measure depth of around one meter, and a maximum distance of about 10 m. These values

do not represent any problem for many indoor surveillance scenarios.

3.2 Camera calibration

Using depth information and intrinsic kinect parameters, the spatial camera coordinates of the i-th pixel

can be determined using the following equations:

zicam = di

xicam = (xi − x̄) zicam/f

yicam = (yi − ȳ) zicam/f

where f is the focal length (in pixels), xi and yi are the pixel coordinates in the image (in pixels), di is the

depth associated with the pixel, and x̄ and ȳ are the coordinates of the image center. Previous equations

provide 3D coordinates in a coordinate system that has the origin at the optical center of the camera, and

that it is aligned with the camera axis (see figure 3).

The goal of camera calibration is to extract the transformation parameters that allow to change from

camera coordinates to world coordinates. We are seeking a coordinate system where the Ẑworld axis is
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Figure 3: Relation between camera and world coordinates.

aligned with the true vertical axis and with its origin located on the ground plane. This way, the zworld

coordinate represents the height with respect to the ground plane. Figure 3 shows the camera and world

coordinate systems.

The rigid transformation that maps both coordinate systems can be written as:


xworld

yworld

zworld

 = R


xcam

ycam

zcam

+ T (1)

Some full automatic methods exist to determine the ground plane [27]. However, we have used a

simple approach that only requires to manually select a portion of the RGB-d image that corresponds to

the ground plane (see Fig. 4).

The method starts by computing the camera coordinates of every point under the mask (for which

depth data is available). The ground points are assumed to be on a plane in space, therefore the eigen-

vector associated to the smallest eigenvalue of the covariance matrix of the ground points will give the

direction corresponding to the normal of the plane. Let’s call this direction Ẑworld. At this point, we

only know that Ẑworld is normal to the ground plane, but we do not know yet if it is pointing upwards

or downwards. To resolve this ambiguity, we compute the projection of each ground point to the Ẑworld

direction:

ziworld = ~P i
cam · Ẑworld (2)

where ~P i
cam = (xicam, y

i
cam, z

i
cam)t and ’·’ denotes the dot product. We are interested in getting a unit

vector Ẑworld that points upwards. The mean value of ziworld of the pixels under the ground mask is
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Figure 4: Portion of ground used for calibration.

the relative height of ground with respect to camera. If this value is negative, it means that ground is

lower than camera. This is the normal situation as shown in Figure 3, and in this case Ẑworld is actually

pointing upwards. In the opposite case, we just change its direction, Ẑworld ← −Ẑworld.

The choice of the X̂world and Ŷworld axis is somewhat arbitrary (it does not affect the segmentation),

provided that they are orthogonal to Ẑworld and between them. Without loss of generality, we have

chosen X̂world to be approximately aligned to X̂cam and orthogonal to Ẑworld:

X̂world = (1, 0, 0)T − ((1, 0, 0)T · Ẑworld) Ẑworld

and then normalizing for unit norm:

X̂world ← X̂world/|X̂world|

For Ŷworld we simply compute the cross product between Ẑworld and X̂world

Ŷworld = Ẑworld × X̂world

The unit column vectors X̂world, Ŷworld and Ẑworld determine the rotation matrix as:

R =


X̂T

world

Ŷ T
world

ẐT
world


Finally, we need to determine the components of the translation vector T. The tx and ty components are

irrelevant for the segmentation process, and we have set them to be zero (the world coordinate origin lies

8



Figure 5: Height Map example and corresponding image and depth.

just under the camera as shown in Fig 3). To value of tz has been chosen so that ground points have a

height of around zero:

tz = −mean
{
ziworld

}

T =


0

0

tz


3.3 Height Maps

The previous calibration allows to create a virtual cenital view of the scene which we call height maps.

Height maps are images where the pixel values represent the height with respect to the ground. The use

of height maps makes the segmentation of the scene much simpler. This idea has also been proposed in

other works [30].

The process used to obtain height maps starts by representing all pixels for which depth information is

available with world coordinates using the transformation of eq. 1. Then, the plane XYworld is quantized

in small bins of size 5× 5 cm. Pixel i is assigned to a bin according to its xiworld and yiworld coordinates.

Finally, each bin is represented with the maximum height (max. ziworld) of its assigned points. Figure 5

shows an example of height map. The origin (position of the camera) is at the bottom center of the height

map. Upwards in the map means getting further from the camera (Ŷworld axis). Horizontal axis on the

map corresponds to X̂world. On the map, black means a bin for which there has been no point falling

into it (mostly due to occlusions). Dark grey means a height around zero (ground plane) while brighter

intensity means higher with respect to the ground.
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3.4 Segmentation

From the example in Fig. 5, it can be seen that people appear as clearly separated bright blobs in the

height map. Thresholding the height map followed by connected component analysis would yield an

almost perfect discrimination of people except in the case that two people are in contact. To cope with

this situation the following segmentation algorithm has been used:

1. Mask out the location of walls and other fixed furniture.

2. Threshold the height map at an appropriate level. We have used 120 cm. above the ground plane

as a threshold.

3. Group the pixels in thresholded height map into connected components.

4. Each connected component (blob) may correspond to one or more people. If the blob is large

enough we try to split it. To do so we observe that heads are local maxima of the height map. To

prevent over-segmentation, the idea of contrast of a local maximum is borrowed from mathematical

morphology [23, 26]. We remind that the contrast of a regional maximum is the minimum descent

in order to reach a higher maximum. Figure 6 shows a detail of a blob corresponding to two people

where two contrasted maxima are clearly visible. For each connected component determine the

contrast of the regional maxima and select those that have a contrast of at least 20 cm.

5. If more than one regional maximum with enough contrast is found within a blob, we will subdivide

it using the watershed algorithm using the valid maxima as markers [11].

6. The number of image pixels associated with each local maxima is computed and those that do not

contain enough (50 in all our tests) image pixels are discarded. This is to avoid spurious small

objects created by distance noise.

7. Finally, pixels are labelled according to the label of their corresponding bin in height map.

An example of segmentation result is depicted in Fig. 7. A few remarks are pertinent at this point:
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• Segmentation provides us information of which pixels in the original image belong to each partic-

ular person.

• Remember that for each pixel in the original image we know its height (ziworld) and its RGB value.

• An estimate of the height of each person is readily available from the segmentation as the maxi-

mum value with a given label in the height map. This can be useful as a first clue in the process of

matching people at entry and exit (only people of similar height will be tested).

• The position of the i-th person on the height map, pi, will be the center of gravity of the blob.

3.5 Tracking

Tracking is the process of linking the segmentation results from several frames. Henceforth, a track will

denote a thread of linked objects corresponding to the same person. Since quality of the segmentation is

very good and the frame rate is relatively high compared to the motion of people, a quite simple tracking

algorithm has been used.

Let’s assume that Nt people are detected at t, and that in t − 1 we had Nt−1 tracks. For each track

in t− 1, we predict its position in t assuming that the displacement on the XY plane between t− 1 and

t will be the same as between t− 2 and t− 1.

Then, we compute aNt−1×Nt distance matrix in which the elements contains the euclidean distances

between the people positions of instant t and the Nt−1 predicted track positions. Using the distance

matrix, we track objects by repeatedly:

• Find the position of the minimum of the distance matrix.

Figure 6: Portion of height map showing the presence of two contrasted maxima due to two heads.
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Figure 7: Segmentation results of example in Fig. 5.

• If this distance is below a suitable threshold, the corresponding object and track are linked and the

corresponding row and column removed. Notice that this maximum distance (in metres) is related

to frame rate and the typical walking speed of a person.

• When no more objects can be linked the loop ends and we start a new track for each un-matched

object, and terminate all the un-matched tracks.

A few tracking examples can be viewed in [2]. In the video, it is possible to see the label assigned to

each person and the height map used for segmentation.

4 Bodyprints

In order to match people, we extract a feature vector per track which we call bodyprint. Bodyprints act in

a similar way to fingerprints. They are a sufficiently distinctive set of features that allow to discriminate

people.

4.1 Extraction

The key idea of bodyprints is that each of its elements summarizes the color appearance at a different

height for a track. Our algorithm is similar to [12] that also divides a person into stripes at different

heights. However, our approach takes advantage of the good precision of the kinect sensor and the scene

calibration that allows to precisely compute the height of all the pixels associated to a person track. The

use of all the pixels associated to a track is important because, due to occlusions, not all body parts are

visible in all frames.

Height h is discretized at steps of 2cm. At time t, we compute the mean RGB value, for each given
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height, of the pixels that belong to the k-th track and are at Zworld = h:

RGBk(t, h)

Fig 8 shows a few examples of temporal signatures RGBk(t, h) where the horizontal axis represents

time and the vertical height. Black values indicate that no pixels were found at that particular height and

instant. Note that in these examples people are walking downwards and for this reason the feet are the

first part that leaves the image (right portion of temporal signature). Notice also that the width of the

signatures varies because it depends on the time that a particular person was visible (which in turn may

depend on the person walking speed). The temporal signatures exhibit a small ripple caused by variations

of height while walking. This ripple can be easily compensated, however our experiments show that the

impact of this artifact in the final performance is almost negligible. The count of pixels that contribute to

each value of RGBk(t, h) will be denoted as Ck(t, h).

Finally, we obtain bodyprints by averaging the temporal signatures along time:

RGBk(h) =
1

Ck(h)

∑
t

RGBk(t, h) Ck(t, h) (3)

Ck(h) =
∑
t

Ck(t, h) (4)

It can be seen that all the information from a person has been compacted into a bodyprint vector,

RGBk(h), and a count vector, Ck(h). The bodyprint vector describes the appearance of the person.

The count vector is a measure of the reliability of the values in the bodyprint.

Just to illustrate what happens in the case of a temporary occlusion, in Fig. 9 we can see a temporal

signature containing a brief occlusion. Notice the missing information during the occlusion. However,

thanks to the tracking, it is possible to build the whole bodyprint merging the information of several

instants. In Fig. 9 another kind of occlusion is also shown. The man with the blue shirt is partially

occluded all the time but since we have information for every height, the bodyprint is fully formed.

On the same scene, the lady closer to the camera is only visible in her upper part. This would yield a

bodyprint with some missing portions (the lower part). Matching bodyprints containing missing portions

is possible as it will be explained in next section.
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Figure 8: Left: camera view of a frame containing a person. Center: temporal signatures, RGBk(t, h).

Right: Bodyprints.

4.2 Matching Metric

In order to compare bodyprints we propose a normalized weighted correlation coefficient. Assume that

we want to compare the j and k bodyprints. First, we compute a weight factor for each height that is

related to the joint confidence on the elements of both bodyprints:

W(h) = min (Cj(h), Ck(h)) (5)

The use ofW(h) allows to compare bodyprints with missing values (due to occlusions), and to put more

emphasis in the bodyprint portions that have been visible for more time.
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Figure 9: Example of track with temporary occlusion. Above: frames at different times. Below: temporal

signature and bodyprint.

Next, we compute a weighted mean for each track which is used to compensate changes in brightness:

Mj =

(∑
h

W(h)
Rj(h) +Gj(h) +Bj(h)

3

)
/

(∑
h

W(h)

)
(6)

where Rj(h), Gj(h) and Bj(h) are each of the color components of RGBj(h). Many authors obtain

different mean values for each color component and compensate each channel independently. However,

we think that using a single mean value is useful to distinguish among colors (green vs. red for instance).

Finally, the normalized correlation coefficient is computed as:

ρ(j, k) =
Sjk√
Sjj Skk

(7)

Sjk =
∑
h

W (h)(Rj(h)−Mj) (Rk(h)−Mk) +

+
∑
h

W (h)(Gj(h)−Mj) (Gk(h)−Mk) + (8)

+
∑
h

W (h)(Bj(h)−Mj) (Bk(h)−Mk)
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Notice that ρ(j, k) is between -1 and 1. Maximum similarity corresponds to 1. The proposed measure

of similarity is robust to:

• Differences in contrast.

• Differences in brightness.

• Differences in saturation

On the other hand it is sensitive to:

• Differences in colour scheme. (dark in the upper part and bright on the lower or viceversa)

• Differences in color (red vs. blue)

• For the same color scheme, for instance light in the upper part of the body and dark on the lower,

differences of the height at which light becomes dark.

The proposed measure can even discriminate between people with similar clothing as long as their height

is different because height information (through h) is implicit in the measure.

5 Results and discussion

This section presents the re-identification results that we have obtained in videos recorded using two

kinect cameras. Each video contains more than 40 different people and the whole data set has been

made publicly available (color, depth and groundtruth information) [2]. To our knowledge, this is the

first public database for re-identification that includes depth information. Next subsection describes the

dataset; Section 5.2 presents the evaluation methodology and the obtained results; Section 5.3 shows the

system performance on more challenging scenarios, with different camera perspective and illumination.

5.1 Data set description

In this work, we have used two kinect cameras (camera 1 and camera 2) located approximately at the

same location but pointing at opposite directions. Since people in the videos can approach or recede

from the cameras, frontal and rear views of people were obtained.
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We recorded four video sequences with each camera at a frame rate of approx. 15 images per second

and image resolution of 320x240 pixels. In two of them, people are only approaching to the camera and

in the other two, people are only receding. So that a total of eight sequences were obtained using both

cameras. Each video is named using following the convention: C1F1 means camera 1, front view and

pass 1; C2R1 means camera 2, rear view and pass 1 and so on. So that the eight combinations are: C1F1,

C1F2, C1R1, C1R2, C2F1, C2F2, C2R1 and C2R2.

One problem that we have found when recording the sequences is that the automatic gain control of

the RGB sensor produces large color variations. Sample videos that illustrate this point can be down-

loaded from [2].

5.2 Tests description and results

All the videos were processed and the corresponding bodyprints stored in separate databases. In order

to evaluate the re-identification performance of the method presented in this paper, we conducted two

experiments that are described next.

Experiment 1

In this experiment, people recorded by camera 1 is searched across some videos recorded by camera

2. In this experiment, it is assumed that query and target bodyprints are both from frontal or both from

rear views. This situation is common in many surveillance scenarios. For instance, one camera captures

people entering into a shop and another one captures people at the exit. In the experiment, frontal

bodyprints from sequences C1F1 and C1F2 are used as query and then searched in each of the two target

databases:

• C2F1

• C2F2

Also, every rear bodyprint from C1R1, C1R2 has been used as query in each of the following two

databases:
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Figure 10: Samples of the front-front matches found by the system with bodyprints obtained from cam-

eras 1 and 2.

• C2R1

• C2R2

This makes a total of 40 × 2 × 2 × 2 = 320 different queries on databases of 40 people. The average

correct re-identification performance that we have obtained is 93%. Examples of correct matches found

by the system are shown in figures 10 and 11 (for images with several people, the person matched is the

one with an attached label on his/her head).

An example of incorrect match is shown in Fig. 12. In this case, the correct match had the second

highest correlation coefficient and it was very similar to the highest (0.87345 and 0.87212).
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Figure 11: Samples of the rear-rear matching results with bodyprints obtained from cameras 1 and 2.

Figure 12: Example of wrong match.
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Experiment 2

In this experiment, people are re-identified using the same camera. The key difference compared to the

previous experiment is that frontal and rear views are now compared. This situation is also common in

two-way surveillance scenarios where only one camera is installed.

In this experiment, bodyprints from sequences C1F1, C1F2 are used as query and then searched in

each of the two target databases:

• C1R1

• C1R2

Also, every bodyprint from sequences C2R1, C2R2 is searched in each of the following target databases:

• C2F1

• C2F2

This makes a total of 40×2×2×2 = 320 different queries on databases of size 40. The average correct

re-identification obtained in this experiment drops to 55%. Examples of correct and incorrect matches

are shown in Fig. 13. The main causes of error in this experiment are the presence of logos on T-Shirts,

backpacks, long hair in the case of some girls and opened jackets. All these situations greatly change the

appearance between frontal and rear views. Examples of all these situations are depicted in Fig. 13.

5.3 Performance on different scenarios

In this section we are presenting results obtained in two additional scenarios that illustrate the robustness

of the proposed approach.

The first one is an office environment with two cameras located at different heights in different

locations with different illuminations. The number of people working in the office is 25. Examples of re-

identifications can be seen in Fig. 14. Despite the variations in illumination, distance to the camera, and

orientation with respect to the camera every person in this scenario was correctly re-identified. Probably
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Figure 13: Example of mixed view matches. The two first ones are correct. The last one was incorrect

due to the backpack that obviously created a very different bodyprint from the front and from the back.

the fact that people do not wear backpacks or open coats while working and the smaller number of people

helped to achieve this result even in the presence of large illumination and point of view variations.

The second additional scenario was a small supermarket, where two cameras were placed at different

locations: entrance, and exit.

In this case each person detected at the exit was compared against the people that entered the shop in

the previous 30 minutes. The number of candidate people for each query was between 15 and 50 depend-

ing on the moment of the day. The total number of queries was over 200. A correct re-identification ratio

above 90% was obtained. Figure 15 illustrates one example of correct re-identification in this scenario.

6 Conclusions

In this paper a method to match people using RGB-d videos has been presented. The obtained results are

very promising using a medium size database. The size of this database is very representative for many

re-identification scenarios, like retail.
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a)

b)

c)

d)

Figure 14: Examples of re-identification in an office environment.

The method has proved to be robust against differences in illumination, point of view, and momentary

partial occlusions. The errors are due mainly for the following reasons:

• Very similar appearance of two different people. (example Fig. 12)

• Very different appearance of the same person from the point of view of each camera. (people with

open jackets, backpacks, etc.) (example Fig. 13-bottom)

In order to cope with the first problem more complex models can be used. These models would allow

to be more discriminative among different people. Some of the models on which we are working are:

• Use both color mean and variance as a function of height in the bodyprints. Variance could be used
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Figure 15: Example of re-identification in a supermarket environment. Left: entrance. Right: exit.

as a feature itself or as a confidence weight for comparing means. Variance based features would

allow to differentiate between unimodal histograms and bimodal histograms with the same mean

at each height.

• Features based on histograms of gradient orientations such as SIFT or SURF, could be used to

recognize interest points (such as logos on T-shirts). Since the distance and orientation to the

camera is known, the scale and rotation invariance could be disabled in these descriptors to be

more distinctive.

To solve the second problem, in scenarios where matching between frontal and rear views is required,

we are working on models that take into account not only the height of each point but its relative angu-

lar position with respect to the person axis. This way we could compare colors of points that belong

approximately to the same location on the person such as the shoulders and sides of the person.

In our opinion, the key aspects of the performance of the method presented in this paper are:

• The high precision of depth measurements that allows to place each pixel in the right position in

space.

• The use of all the information of one person in different times along the track. This makes the

approach robust to occlusions.

• The matching metric, that is not sensitive to global changes in illumination and captures well

differences in the pattern of intensity-color as a function of height.

Finally, since one of the problems in computer vision is to have common data sets for fair comparison,

we have made publicly available the main dataset used in this work (the first one that includes depth
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information to our knowledge). It should be pointed out that depth information can always be ignored so

that existing approaches that only use RGB information can be compared too.
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