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Abstract 

The calculation of electricity consumption forecast a few days ahead is a complicated issue and 
studies about this matter are continually being performed. Advances in this field allow obtaining 
consumption forecasts increasingly accurate. These consumption forecasts aim to improve the 
knowledge of the facilities, the planning and control of consumption and the measurement and 
verification of energy saving measures, among others. In this study the authors present several 
advances related to consumption forecast using end-uses (EUs). The methodology described enables 
an easy disaggregation of each EU in a facility and it also enables calculating a good forecast for 
each of them. For the disaggregation process, the correlation between energy and external variables, 
such as mean temperature, degree days or daylight, is studied. Additionally, an extrapolation method 
to obtain a total consumption forecast from forecasted EUs that cover approximately 60% of total 
consumption is developed. With this procedure, total consumption forecasts with high accuracy can 
be obtained without the need of classifying more than the 60% of the consumption of a facility. The 
higher accuracy in each end-use, the better results are obtained in the total consumption forecast. For 
this reason, the study is focused in the end-uses disaggregation and its forecast calculation. The 
entire methodology is illustrated and contrasted using the consumption of the Universitat Politècnica 
de València. 

1. Introduction 

The energy consumption may be related to the search of different benefits. However, quantifying the 
benefit provided by consuming a certain amount of energy is often difficult. The best way to do this is 
to divide the consumption into EUs or processes to assign a benefit to each kWh of each process. 
This will also permit estimating the advantage of achieving a certain energy saving on an EU more 
accurately. But the definition of EU must allow its identification and calculation with simplicity and it 
must simplify, as far as possible, the forecast of that consumption to carry out the measurement and 
verification of energy efficiency and energy management measures. Accurate consumption forecasts 
are important to measurement and verification as well as to participate in the demand response 
programs, as it has been previously discussed in other publications of the authors [1-4]. To sum up, 
each consumption fraction can be dependent on external variables in a different way and these 
fractions are what we call EUs. 

The consumption of a building or a large and complex facility can be divided, according to this 
criterion, into different EUs. For each EU, the forecasting process should consist of two clearly distinct 
steps. The first of these steps is the process of selecting the most similar days to the day of prevision 
(DOP). That means finding days in which external variables that affect the EU consumption have 
similar values to the DOP conditions. The second step is the actual forecasting process. This process 
can be accomplished in many different ways. In previous study made by the authors, the methodology 
consisted of selecting training days to use artificial neural networks to calculate the forecast. In this 
new study the selection process is improved and a much easier and faster extrapolation methodology 
that achieves very good accuracy is developed. This process calculates a forecast for each EU and 
the total consumption for each moment of the day using the conditions of the DOP and the conditions 
and consumption of selected days. 

As previously discussed in other papers of the authors, the number of selected days must be 
reduced, near 4 days are needed [1, 2]. So four days must be selected for each EU in which the 
variables that affect the consumer are as close as possible to the DOP. 

The division of the total consumption into the different EUs provides several advantages, such as 
making different fractions of the consumption independent on the external variables that do not affect 
them. It also allows greater control and understanding of how energy is consumed. In addition, it 
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simplifies the process of purchasing energy in the spot markets [5]. Furthermore, some applications 
oriented to specific EUs such as measurement and verification of energy efficiency and energy 
management actions applied on different EUs are allowed [6-8]. In conclusion, the decomposition of 
consumption into EUs helps the consumption forecast step in the sense that it allows the use of 
different input variables for the prediction of each EU, providing a series of additional benefits already 
discussed. A possible EUs classification is analyzed below. 

The paper is organised as follows. Section 2 explains the whole methodology, introducing the 
necessary concepts and showing the information available related to EUs. Section 3 describes how to 
classify EUs. Section 4 explains how to make the consumption forecast and how to extrapolate the 
EUs consumption in order to calculate the total consumption forecast for the facility. Section 5 shows 
the results of the forecasts made to real consumption of the Universitat Politècnica de València. 
Finally, in Section 6 some conclusions from the study and the obtained results are drawn. 

2. Methodology 

The proposed methodology to carry out the forecast consumption of a facility consists of two stages. 
The first stage is the selection of days similar to the DOP. The second stage is the consumption 
forecast. 

To carry out the days selection, a thorough analysis of the EUs of the facility is first performed. All 
variables that influence the consumption profile of each EU are analysed. Then, individual weights are 
assigned to each variable that affects the consumption of each EU. This will establish how each 
selection criterion affects each EU. This is necessary in order to decide which days are more similar 
to the DOP. The process consists of assigning qualifications to each criterion of each day depending 
on the similarity of each variable with the value it has for the DOP. Then, using the weights assigned 
to the criteria, a mark is given to each day calculated as a weighted average of the criteria 
qualifications. This allows ordering the days by mark to carry out the selection of four days among 
those which obtained the highest mark. All the days whose consumption or whose variables are 
considered anomalous must be removed before the days selection is made. 

The criteria to be considered are external variables that affect consumption. For each EU a unique 
relationship between consumption and external variables can be studied. That is why the study of this 
relationship must be first done and different weights must be assigned to each criterion for each EU. 
There is a common criterion to all EUs, proximity. It has been proven over time the need to choose 
days surrounding the DOP to calculate an accurate consumption forecast, so this criterion must 
always have an important weight. 

To carry out the prevision of EUs, the heuristic method described in [1] is used. Finally, an algorithm 
to obtain the total consumption forecast using the EUs consumption on selected days and the EUs 
forecast previously obtained for the DOP is applied. This algorithm performs a linear interpolation (or 
extrapolation if applicable) to obtain the total consumption forecast of the DOP. 

The entire forecasting process is outlined in Figure 1. 

The criteria that have been selected to study their relationship with the energy consumption are the 
following: 

The average temperature (Tavg), the Cooling Degree Days (CDD), the Heating Degree Days (HDD), 
the maximum temperature (Tmax), minimum temperature (Tmin), the proximity to the DOP (n) and the 
daylight factor (DLF), a parameter that quantifies the need for artificial light of a day from its 
cloudiness. 

The UPV has an Energy Management and Control System (EMCS) which has a total of 300 
measuring points distributed along its 90 buildings. With these measuring points, consumption is 
measured every fifteen minutes and it is stored in a database since 2005. To classify the EUs of these 
facilities some of these measuring points have been classified into groups according to the type of 
loads connected and the behaviour in relation to external variables. Therefore, the EUs consumption 
curves in the UPV are the result of adding a large amount of consumption measuring points, providing 
a reasonably high stability to the daily consumption of each EU. 
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Figure 1. General diagram of the consumption forecast process. 

Table 1 shows the number of measuring points that make up each EU and the main external variable 
that affects the consumption of each EU. 

Table 1. Measuring points of EUs. 

EU Description 
Number of measuring 
points 

Main external variable that 
depends 

SS 
Split systems 
consumption 

25 Tª 

HP Heat pumps consumption 36 Tª 

OC Only cold production 2 Tª 

OH Only heat production 4 Tª 

PL Public lighting 15 Day number 

IL Internal lighting 18 External light 

GA General appliances 16 Occupancy 

TC Total consumption 1 All 

 

The consumption formed by the addition of the identified EUs is what is called the end-uses 
consumption (EUC), which represents around 60% of the UPV’s total consumption (TC). This 
percentage is being constantly revised and improved by identifying and classifying the type of 
consumption measured by new measurement points installed in the UPV. An accurate prediction of 
the EUC results in a good prediction of the TC simply by using a fast and easy extrapolation method 
explained below. Therefore, it is important to improve the selection and classification of EUs so as to 
get a reliable and strict relationship between consumption and external variables. This will permit 
finding a good days selection, similar to the DOP, in both the input variables and consumption for 
each EU, improving the forecast accuracy. 
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3. EUs 

First, the temperature-dependent consumption can be classified into four groups. On the one hand, 
the temperature-dependent consumption that has a unique behaviour for all seasons, Split Systems 
(SS). This is because this EU includes machines whose operation mode is automatically selected 
depending on the desired temperature and the external temperature. Secondly, consumptions with 
seasonal behaviour, such as heat pumps (HP), which operate differently depending on whether they 
are in heating or cooling mode and that mode switching occurs manually at a certain moment of the 
year. Furthermore, there is an important consumption, different from the previous ones, due to those 
machines that produce cold at any time of year, the only chillers systems (OC). Thus, this is a 
refrigeration consumption, which is only affected by high temperatures, but for low values this 
consumption remains at a small value (residual consumption). This consumption is formed by all the 
equipment refrigeration machines. Finally, the last temperature-dependent consumption is the 
consumption of radiators, heaters, etc., that is the only heat systems (OH). This consumption is 
always producing heat, so it is only affected by temperatures lower than a certain value, and above 
this thermal limit the consumption of this EU is a low consumption. 

Besides temperature-dependent EUs, there are other EUs, such us lighting consumption that can be 
separated in public lighting (PL), which is dependent on the length of the daylight hours and the 
interior lighting (IL), which depends on the cloudiness and the time of the day. 

Finally, another EU of force can be identified, which mainly depends on the facilities occupancy, the 
general appliances (GA). 

The behaviour of each EU in relation to a significant variable which affects its consumption is 
analysed below to explain the way to leverage the separation of the consumption of each EU. A 
relationship between daily energy of each EU and the selected external variable has been obtained 
for all the weekdays (Tuesday, Wednesday and Thursday) of 2010 for those EUs that have a 
dependency on the working patterns. This relationship has been studied in detail to produce the table 
of weights of the criteria used for selecting the days similar to the DOP. Every day whose behaviour is 
anomalous for any reason (measurement errors, specific events, reduced work time, etc.) has been 
removed in this study. The figures below show the correlation between the daily energy and a 
significant variable that is related to the consumption of each EU. The energy has been normalized to 
the energy value of the 25% percentile. 

3.1 SS 

Figure 2 shows the relationship between the daily energy of the MP EU and the average temperature 
of the day, for weekdays (Tuesday, Wednesday and Thursday). 

y = 0,0093x2 - 0,3099x + 3,6139
R² = 0,5312
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Figure 2. Relationship between the daily energy and the average temperature for weekdays for 
the MP EU. 
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It can be seen that at low and high temperatures there is a higher consumption, with a saturation 
value determined by the power of the equipment, its performance and the acclimatization conditions 
of the facility. In this case, the average temperature has a great importance, as well as the CDD (or 
the HDD according to the trend of the DOP) to establish a correlation with the consumption. 
Furthermore, with deeper studies it is observed that the relationship between the consumption and 
the maximum temperature is better than the correlation between the consumption and the minimum 
temperature throughout the year. All this is reflected in the weights assigned to each criterion for this 
EU. 

3.2 HP 

The following EU, HP, composed of heat pumps and air conditioning machines with manual mode 
switch is studied below. Figure 3 shows the correlation between the EU and the average temperature 
of the day. 

y = 0,0141x2 - 0,4259x + 4,273
R² = 0,7958
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Figure 3. Correlation between the daily energy consumption and the average temperature for 
the HP EU. 

In this EU there is a fairly good correlation, which is an important advantage of the disaggregation, 
since some consumption fractions are identified with a great accuracy correlation with certain input 
variables. However, due to the manual operation mode switch, there are two different correlations that 
can be separated to improve the forecast results. These correlations must be done by separating the 
days in which the machines operate in heating mode and the days in which they operate in cooling 
mode. This permits having two curves, one showing a tendency to increase at low temperatures and 
another one that increases at high temperatures. Figure 4 shows these two correlations. 

As clearly seen, the behaviour of these machines in cooling mode is much more related to the 
average temperature of the day than the opposite behaviour. Therefore, due to the difference 
between these correlations, using days with the same operating mode than the DOP is always 
needed to calculate an accurate consumption forecast for this EU. Indeed, the behaviour of this EU is 
similar to previous one, thus, the weights are also similar, although there is slight increase in the 
weight of the average temperature while the maximum and minimum temperature weights are 
reduced. 
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y = 0,0039x2 - 0,1888x + 3,1176
R² = 0,7241
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y = -0,0043x2 + 0,3228x - 3,4766
R² = 0,8442
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Figure 4. Correlation between the daily energy consumption and the average temperature for 
HP EU in both operation modes. 

3.3 OC 

The two following EUs have similar behaviours to the previous figures that showed HP EU in each 
operating mode. This is because its consumption is used to produce only heat or only cool. Figure 5 
belongs to the OC EU. 

There is a good correlation between the average temperature of the day and the consumption of this 
EU. It can be noted that below a certain temperature the consumption remains practically constant. 
The relevant variables are the maximum, minimum and average temperature, as well as the CDD. 
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y = 0,0036x2 - 0,0715x + 1,3303
R² = 0,8827
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Figure 5. Correlation between the daily energy consumption and the average temperature for 
OC EU. 

3.4 OH 

The OH EU presents the behaviour shown in Figure 6. 

y = -0,0017x2 + 0,03x + 1,101
R² = 0,4215
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Figure 6. Correlation between the daily energy consumption and the average temperature for 
OH EU. 

It can be seen that the average temperature is much more related to the consumption of cold 
production machines than with the heat production consumption. The OH EU presents a rather erratic 
behaviour, which leads to the need to ensure the use of days close to the DOP to minimize the error 
in the forecasts by taking close and presumably similar consumptions. The weight assigned to the 
thermal variables is considerably reduced as a result of the study carried out for this EU. Among these 
variables, the most interesting one is the HDD that indicates with better accuracy how cold a day has 
been. 
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3.5 PL 

The other EUs that are not temperature-dependent can be correlated with the day number of the year, 
since this consumption usually has a smooth evolution along the time. Thus, the resemblance 
between the consumption of a certain day and those around it can be noted. In the case of public 
lighting, the consumption is not dependent on the working patterns. The only thing that affects this 
consumption is the duration of the night (or equivalently the daylight length), since this lighting turns 
on automatically when daylight falls below 100 lux as PLCs used to control lighting lines have been 
programmed. The following graph shows a whole year for this EU. 
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Figure 7. Consumption evolution for PL EU. 

The evolution of this EU is sinusoidal, like the evolution of the daylight hours throughout the year. 
Therefore, in this EU, the only criterion that is taken into account is the day of the year, since the 
consumption is very similar for consecutive days. 

3.6 IL 

The internal lighting is similar to public lighting, but it has two important differences: it is affected by 
the working patterns and the consumption is high when a day is very cloudy, but is fairly constant on 
clear days. Figure 8 shows the behaviour of this EU. 

The days show an evolution with a slight sinusoidal tendency in which each day consumes similarly to 
those around it. In this graph, the dependence of the consumption of this EU on natural light can be 
seen, since the four days with the higher cloudiness have been marked and they have interpolated 
with a sine curve higher than curve used to interpolate the other days of the year. 

It is therefore important to choose a cloudy day if the DOP is cloudy. Otherwise, it will be needed to 
use the days closest to the DOP with the same LAP. 

To take into account the cloudiness of a day, the daylight factor (DLF) is defined. This factor is a value 
calculated from the formula presented below. The DLF represents the need of artificial light 
depending on the measurement of radiation throughout the day. Therefore, the cloudiness of a day is 
defined as a value from 0 (clear) to 4,000 (totally cloudy). This value is 4000 minus the average of all 
values below 4.000 lux during the day from 9 am to 5 pm: 

  







 

i000,4lux,0

000,4lux:i,luxavg000,4
DLF

i

i000,4luxi
i  



 9 

0,50

0,70

0,90

1,10

1,30

1,50

1,70

0 50 100 150 200 250 300 350 400

D
ai

ly
 E

n
e

rg
y 

fa
ct

o
r

Day Number

IL

Sunny Days Cloudy Days

y = 1.08 + 0.26 · cos(0.0199 · (x - 30))

R2 = 0.82

y = 1.21 + 0.26 · cos(0.0199 · (x - 20))

R2 = 1.00

 

Figure 8. Consumption evolution for IL EU in cloudy and sunny days. 

Therefore, lux values must be recorded every 5-15 minutes in order to obtain a good accuracy in the 
calculation of the DLF. 

3.7 GA 

Finally, the consumption of the general appliances depends on the occupancy of the facilities. In this 
consumption that exist only when staff is present on site, the most important thing is to select a day 
with the same LAP and as close as possible to the DOP. In Figure 9 this EU is analysed. 
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Figure 9. Consumption evolution for GA EU. 

As can be seen, the correlation shown in the previous figure is very good, although in this EU large 
loads can be disconnected in a certain day or vice versa and so, there may be isolated consumption 
points with anomalous behaviours. The best option to prevent this variability from producing a 
significant influence in the forecast is not to use these anomalous days for future forecasts after 
identifying that the consumption of these days is unjustified. Moreover it is appreciated that the days 
surrounding a certain area usually have a similar consumption. Therefore, four days will be selected 
from the available days closest to the DOP to calculate a rigorous forecast of this EU. 
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4. Consumption forecast 

The criteria used to carry out the days selection has a different influence on the consumption of each 
EU. Due to this fact, different weights are assigned to each criterion for each EU in order to qualify 
dates for historical data when carrying out the selection of the most appropriate training days. This is 
the result of the previous study of EUs. 

In addition to the criteria, the LAP can influence the consumption of a day. To take into account for 
this criterion this parameter is defined for each day. A labour affinity table is created to assign a labour 
affinity parameter to each pair of LAP values. This labour affinity parameter is a value between 0 and 
1 to indicate the affinity between these two values of LAP. Thus, an affinity value of 0 implies that 
these are very different LAP and an affinity value of 1 means that both LAP values are considered 
almost identical. Intermediate values quantify the similarity between the two LAP values. The mark 
obtained by each day is multiplied by the affinity between the LAP of that day and the LAP of the 
DOP. This step can penalize or even cancel the mark of days with a working pattern different to DOP. 
This takes place whenever the end use consumption is affected by LAP, thereby correcting the notes 
assigned to each day. As a result of this step, only days with the same working patterns as the DOP 
will be selected. If there are no days with the same LAP, then the days with the most similar LAP 
values will be selected. 

All the information related to the weights of the criteria, quantified according to this study is shown in 
Table 2. 

Note that when the weights assigned to CDD and HDD are not null for an EU these values are right 
assuming that in the DOP CDD>HDD (it is a hot day). Otherwise, the weights should be exchanged, 
and if the values of CDD and HDD were very similar (e.g. |CDD-HDD|<10), then each weight should 
be the average of both values (the weights would be divided into two equal parts). 

Thus, in each end use, the selection of the four days more similar to the DOP is carried out by 
assigning a mark to each day and choosing the top four. These marks are calculated as the weighted 
average of the notes on each of the criteria. That is, for each end use, the obtained mark is: 

factor

N

j

jjii LabWMM
criteria














 

1

,  

Where i represents each of the possible days to be selected, j is each of the criteria; Ncriteria is the 
total number of criteria (7 in this study); Mi, j is the mark from 0 to 1 obtained by the day i in the 
criterion j, it can be 1 if the day is identical to the DOP for this criterion or 0 if this criterion is the least 
similar among all the possible days, and it may be any intermediate decimal value; Wj is the weight of 
the criterion j for the current EU, that is shown in Table 2, and Labfactor is a factor with a value of 1 if 
the LAP for the day i is the same as for the DOP or if the LAP does not affect the consumption of the 
current EU, and a value between 0 and 1 in other cases, the value of the labour affinity parameter is 
used in these cases (a null affinity cancels the mark of this day, avoiding the selection of days with 
working patterns not related to the DOP). 

The extrapolation method that has been developed and that is described below is based on linear 
interpolation and extrapolation with constant limits. To carry out the calculation of TC for a specific 
instant the EUC at that moment for the four selected days and the expected EUC for the DOP at that 
moment are used. Among the four chosen values only the two nearest to the expected value for the 
DOP are used, one above and one below. If it is not possible to select a value above and one below, 
the closest values will be used. 

With these two values of EUC and the expected TC values for that moment, a line is drawn to do the 
extrapolation (if needed) allowing 15% above and below the value of maximum and minimum TC. 
Once these limits are reached, two horizontal lines are used to continue the extrapolation function. 
This dashed function will result in the value of the forecasted TC for the DOP at the given time from 
the forecast of EUC for the same moment. 

Figure 10 shows the extrapolation process described above. 
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As shown, this is a simplification of a sigmoid function. This function provides linear values in the 
intermediate zone and it avoids excessively high extrapolations (limited to 15% of the total variation 
between both selected days). 

Table 2. Weights for each EU and TC. 

 Tavg (°C) CDD HDD n (day number) DLF Tmax (°C) Tmin (°C) LAP 

SS 1.95 1.30 0.26 3.90 0.00 1.95 0.65 Yes 

HP 2.63 1.89 0.21 3.16 0.00 1.58 0.53 Yes 

OC 1.50 0.50 0.00 6.00 0.00 1.00 1.00 Yes 

OH 0.52 0.00 0.61 8.70 0.00 0.13 0.04 Yes 

PL 0.00 0.00 0.00 10.00 0.00 0.00 0.00 No 

IL 0.00 0.00 0.00 0.91 9.09 0.00 0.00 Yes 

GA 0.00 0.00 0.00 10.00 0.00 0.00 0.00 Yes 

TC 2.16 0.43 0.07 4.32 0.14 2.16 0.72 Yes 

 

5. Application and results 

The composition of EU in the Universitat Politècnica de València is shown below. It can be seen that 
the greater part of them is represented by thermal EUs. 

The forecast for each EU is obtained using the described methodology with the appropriate weights of 
the criteria to select days and applying the heuristic method to perform the calculation of the forecast, 
commented in section 2. 

The sum of all EUs curves results in the EUC curve. This EUC forecasted curve is extrapolated to 
obtain the TC forecasted curve for the facility. 
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Figure 10. Function used to calculate the extrapolation of the TC from the forecasted EUC for 
each moment of the DOP. 

Figure 12 shows the forecasted consumption of a full week for TC and EUC in the UPV. It can be 
seen how the errors obtained in the EUC forecast are translated into similar errors in the TC curve. 
From another point of view, the accuracy achieved in the calculation of the EUC forecast remains at 
the same level in the TC forecast. 
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In the previous figure, the curves "Actual EUC" and "Actual TC" are the actual consumption curves for 
EUs and TC of the facility and the curves called "Forecasted EUC" and "Forecasted TC" are the 
forecasted curves for EUC and TC respectively. 

The results for this week have an average MAPE of 3.39%. The individual MAPE for each day are 
shown in Table 3. 

Table 3. MAPE values obtained in the forecasts made for the week from 2012/3/26 to 2012/4/1. 

Date 3/26/2012 3/27/2012 3/28/2012 3/29/2012 3/30/2012 3/31/2012 4/1/2012 Avg 

MAPE 3.38% 1.97% 1.68% 5.32% 2.33% 4.63% 4.44% 3.39% 
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Figure 11. Composition of the addition of EUs from thermal and non-thermal EUs. 

Over a whole year (from July 2011 to June 2012), the results obtained with this methodology have an 
average MAPE of 5.15%. 
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Figure 12. TC and EUC forecasts for a whole week. 

6. Conclusions 

A classifying methodology has been developed in order to disaggregate the EUs of a facility. A 
forecast methodology to calculate a forecast for EUC and TC has been developed and proved. The 
described methodology has a high accuracy in the TC forecast and it allows the calculation of the TC 
from a previously calculated forecast of the EUC that represents about 60% of the TC. 

Each EU consists of the sum of many measuring points with similar consumption behaviour and 
similar energy use. This facilitates the EUs classification task and it gives them a high stability in their 
behaviour, which allows obtaining accurate forecasts for each of them, using the methodology 
described above. 

The final step of the forecasting process permits the extrapolation of the EUC to the TC while 
maintaining a similar precision, therefore, a good precision of the forecast of about 60% of the TC will 
result in an accurate forecast of the TC. Thus, future work to improve these forecasts should focus on 
partial forecasts of each EU, in order to get highly accurate forecasts of the actual consumption. 
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