ÍNDICE GENERAL

1. INTRODUCCIÓN Y OBJETIVOS .. 1

2. ÁREA DE ESTUDIO .. 7

2.1. LOCALIZACIÓN ... 7

2.2. GEOLOGÍA Y GEOMORFOLOGÍA ... 9

2.2.1. Rasgos geológicos y estructurales ... 9

2.2.2. Geomorfología de las zonas adyacentes .. 11

2.2.3. Morfología de las laderas de la cuenca ... 13

2.3. EDAFOLOGÍA .. 14

2.4. CLIMATOLOGÍA .. 15

2.4.1. Datos climáticos de estaciones próximas a la zona de estudio 16

2.4.1.1. Temperaturas ... 16

2.4.1.2. Precipitaciones.. 17

2.4.1.3. Torrencialidad... 18

2.4.1.4. Clasificación climática de Thornthwaite... 19

2.4.1.5. Clasificación climática Soil Taxonomy .. 21

2.4.2. Datos climáticos de la estación experimental en Castell de Castells 21

2.4.2.1. Clasificación climática de Thornthwaite... 21

2.4.2.2. Temperaturas ... 22

2.4.2.3. Precipitaciones.. 23

2.4.2.4. Régimen de humedad del suelo... 23

2.5. VEGETACIÓN .. 24

2.5.1. Biogeografía y series de vegetación ... 24

2.5.2. Diversidad florística de los matorrales existentes en la zona de estudio 26

2.5.3. Descripción de la vegetación en los puntos de muestreo............................ 30

2.6. USOS DEL SUELO Y ANÁLISIS SOCIOECONÓMICO 35

2.6.1. Bancales de cultivo abandonados en la zona de estudio........................... 36
3. MATERIALES Y MÉTODOS ... 39
3.1. PLANIFICACIÓN DEL TRABAJO ... 39
3.2. FASE DE CAMPO .. 42
 3.2.1. Obtención de datos climáticos .. 42
 3.2.2. Toma de muestras de suelo .. 42
 3.2.2.1. Muestreo del suelo en los perfiles de suelo .. 42
 3.2.2.1.1. Muestreo de los horizontes de los perfiles de suelo 42
 3.2.2.1.2. Muestreo superficial de suelo inalterado en los perfiles de suelo: Determinación de la fauna edáfica ... 43
 3.2.2.1.3. Muestreo superficial y subsuperficial de suelo inalterado en los diferentes microambientes: Determinación de la humedad volumétrica, densidad aparente y porosidad del suelo ... 48
 3.2.2.2. Muestreo del suelo en los diferentes microambientes 44
 3.2.2.2.1. Muestreo superficial y subsuperficial de suelo inalterado en los diferentes microambientes: Determinación de la fauna edáfica 51
 3.2.2.2.2. Muestreo superficial y subsuperficial de suelo inalterado en los diferentes microambientes: Determinación de la humedad volumétrica, densidad aparente y porosidad del suelo (Richards, 1947) ... 57
 3.2.2.2.3. Muestreo superficial y subsuperficial de suelo inalterado en los diferentes microambientes: Determinación de la microagregación (Edwards y Bremner, 1967) ... 61
3.3. METODOLOGÍA DE LABORATORIO ... 52
 3.3.1. Preparación de las muestras de suelo alteradas en el laboratorio 52
 3.3.2. Determinaciones analíticas realizadas en las muestras de suelo en el laboratorio ... 52
 3.3.2.1. Métodos físicos .. 54
 3.3.2.1.1. Determinación del color de un suelo (Tabla de Munsell) 54
 3.3.2.1.2. Determinación de la humedad gravimétrica (Reynolds, 1970) 55
 3.3.2.1.3. Determinación de las curvas de retención hídrica (Richards, 1947) 55
 3.3.2.1.4. Determinación de la humedad volumétrica, densidad aparente y porosidad del suelo (Richards, 1947) ... 57
 3.3.2.1.5. Determinación de la textura (Equipo Coulter) 58
 3.3.2.1.6. Estabilidad estructural de macroagregados. Test de la gota (Imeson y Vis, 1984) ... 60
 3.3.2.1.7. Determinación de la microagregación (Edwards y Bremner, 1967) 61
3.3.2.2. Métodos químicos .. 62

3.3.2.2.1. Determinación del pH (Richards, 1954) ... 62

3.3.2.2.2. Determinación de la conductividad eléctrica (Richards, 1954) 62

3.3.2.2.3. Determinación de los carbonatos totales (Método del calcímetro de Bernard, 1965) ... 63

3.3.2.2.4. Determinación del nitrógeno total (Black, 1965) .. 64

3.3.2.2.5. Determinación del fósforo asimilable (Olsen y Dean, 1965) 65

3.3.2.2.6. Determinación de las bases de cambio y de la capacidad de intercambio catiónico (Peech, 1945) ... 66

3.3.2.2.7. Determinación de la materia orgánica total (Walkey y Black, 1934) 67

3.3.2.2.8. Determinación de ácidos húmicos, ácidos fúlvicos y huminas por oxidación (Lotti y Galoppini, 1986) ... 68

3.3.2.3. Métodos quimiométricos .. 69

3.3.2.3.1. Determinación de ácidos húmicos, ácidos fúlvicos y huminas por espectroscopía de infrarrojos (Stevenson, 1994) ... 69

3.3.2.3.2. Determinación de ácidos húmicos, ácidos fúlvicos y huminas por microscopía electrónica (Gimeno, 1990) ... 71

3.3.2.4. Métodos biológicos ... 72

3.3.2.4.1. Extracción de artrópodos (De Liñán, 1998) .. 72

3.4. ESTUDIO DE GABINETE ... 73

3.4.1. EuroSEM ... 73

3.4.1.1. Modelo Digital de Elevaciones (DEM) ... 73

3.4.1.2. Elección de las estaciones climáticas y elección de los datos de lluvia 74

3.4.1.3. Modelo de erosión .. 76

3.4.1.3.1. Elección del modelo de erosión: EuroSEM-2010 ... 76

3.4.1.3.2. Representación del paisaje con EuroSEM-2010... 76

3.4.1.3.3. Datos de Entrada y de Salida del programa EuroSEM-2010 77

3.4.1.3.3.1. Datos de Entrada de EuroSEM (Datos de Input).. 77

3.4.1.3.3.2. Archivos de Salida de EuroSEM (Datos de Output)...................................... 79

3.4.1.3.4. Componente dinámico implementado en la ecuación de infiltración del modelo EuroSEM-2010 ... 81
3.5. TRATAMIENTO DE LA INFORMACIÓN ... 82

3.5.1. Test estadísticos aplicados .. 82

4. RESULTADOS Y DISCUSIÓN ... 85

4.1. PROPIEDADES DE LOS SUELOS EN LOS PUNTOS DE MUESTREO 85

4.1.1. Propiedades físicas de los suelos en los puntos de muestreo 85

4.1.1.1. Descripción de los puntos de muestreo .. 85

4.1.1.1.1. Puntos de muestreo de la parcela Campo Arriba 86

4.1.1.1.2. Puntos de muestreo de la parcela Campo Abajo 87

4.1.1.2. Humedad del suelo .. 89

4.1.1.2.1. Humedad gravimétrica del suelo. Variabilidad temporal y espacial...... 89

4.1.1.2.1.1. Variación anual de la humedad gravimétrica del suelo 89

4.1.1.2.1.2. Humedad gravimétrica del suelo máxima, mínima y media, mensual y anual ... 91

4.1.1.2.2. Humedad volumétrica del suelo en las muestras inalteradas. Variabilidad temporal y espacial ... 94

4.1.1.2.2.1. Variación anual de la humedad volumétrica del suelo en las muestras inalteradas ... 94

4.1.1.2.2.2. Humedad volumétrica del suelo máxima, mínima y media, mensual y anual, en las muestras inalteradas ... 95

4.1.1.2.3. Humedad volumétrica del suelo en muestras alteradas sometidas a diferentes presiones. Variabilidad espacial ... 97

4.1.1.2.3.1. Humedad volumétrica del suelo en muestras alteradas a diferentes presiones. Curvas de humedad ... 97

4.1.1.2.3.2. Humedad volumétrica del suelo en muestras alteradas a diferentes presiones. Agua útil del suelo ... 98

4.1.1.3. Textura del suelo ... 98

4.1.1.3.1. Porcentajes de arena, limo y arcilla textural. Variabilidad espacial 98

4.1.1.3.2. Diámetro medio de las partículas (textural). Variabilidad espacial 99

4.1.1.4. Estructura del suelo .. 101

4.1.1.4.1. Macroagregación. Variabilidad temporal y espacial 101
4.1.1.4.1.1. Distribución del tamaño de los agregados.................................101

4.1.1.4.1.1.1. Variación anual de la distribución del tamaño de los agregados ...101

4.1.1.4.1.1.2. Valores máximos, mínimos y medios, mensuales y anuales, de la distribución del tamaño de los agregados..........................107

4.1.1.4.1.2. Estabilidad de los agregados. Test de la gota. Variabilidad temporal y espacial ..112

4.1.1.4.1.2.1. Variación anual de la estabilidad de los agregados112

4.1.1.4.1.2.2. Valores máximos, mínimos y medios, mensuales y anuales, de la media, la mediana y el 50% de agregados supervivientes........115

4.1.1.4.2. Microagregación. Variabilidad espacial..118

4.1.1.4.2.1. Distribución de los microagregados en tamaños.....................118

4.1.1.4.2.2. Diámetro medio de los microagregados.................................119

4.1.1.4.2.3. Modelo de agregación. Microagregados estables al agua120

4.1.1.4.2.4. Fracción fina microagregada ..121

4.1.1.4.2.5. Índice de agregación relativo (I.A.R.)...121

4.1.1.4.3. Densidad aparente del suelo. Variabilidad temporal y espacial..123

4.1.1.4.3.1. Variación anual de la densidad aparente del suelo123

4.1.1.4.3.2. Densidad aparente del suelo máxima, mínima y media, mensual y anual...123

4.1.1.4.4. Porosidad del suelo. Variabilidad temporal y espacial124

4.1.1.4.4.1. Variación anual de la porosidad del suelo124

4.1.1.4.4.2. Porosidad del suelo máxima, mínima y media, mensual y anual...125

4.1.2. Propiedades químicas de los suelos en los puntos de muestreo..............126

4.1.2.1. Acidez del suelo, conductividad eléctrica y carbonato cálcico. Variabilidad espacial...126

4.1.2.2. Macronutrientes: Nitrógeno y fósforo. Variabilidad temporal y espacial 129

4.1.2.2.1. Variación anual del nitrógeno y fósforo..................................129

4.1.2.2.2. Valores máximos, mínimos y medios, mensuales y anuales, de nitrógeno y fósforo ...130
4.1.2.3. Bases de cambio (potasio, sodio, magnesio y calcio) y C.I.C. Variabilidad temporal y espacial

4.1.2.3.1. Variación anual de las bases de cambio (potasio, sodio, magnesio y calcio) y de la capacidad de intercambio catiónico (C.I.C.)

4.1.2.3.2. Valores máximos, mínimos y medios, mensuales y anuales, de las bases de cambio (potasio, sodio, magnesio y calcio) y de la capacidad de intercambio catiónico (C.I.C.)

4.1.2.4. Materia orgánica total. Variabilidad temporal y espacial

4.1.2.4.1. Variación anual de la materia orgánica total

4.1.2.4.2. Valores máximos, mínimos y medios, mensuales y anuales, de la materia orgánica total

4.1.2.5. Relación C/N. Variabilidad temporal y espacial

4.1.2.5.1. Variación anual de la relación C/N

4.1.2.5.2. Valores máximos, mínimos y medios, mensuales y anuales, de la relación C/N

4.1.2.6. Composición de la materia orgánica del suelo mediante oxidación: ácidos húmicos, ácidos fúlvicos y huminas. Índices de la composición húmica. Variabilidad temporal y espacial

4.1.2.6.1. Variación anual de ácidos húmicos, ácidos fúlvicos, huminas determinados mediante oxidación y de los índices de la composición húmica

4.1.2.6.2. Valores máximos, mínimos y medios, mensuales y anuales, de ácidos húmicos, ácidos fúlvicos, huminas determinados mediante oxidación y de los índices de la composición húmica

4.1.2.7. Composición de la materia orgánica del suelo mediante espectroscopía de infrarrojos: ácidos húmicos, ácidos fúlvicos y huminas. Variabilidad temporal y espacial

4.1.2.8. Composición de la materia orgánica del suelo mediante microscopía electrónica y rayos X: ácidos húmicos, ácidos fúlvicos y huminas. Variabilidad temporal y espacial

4.1.2.8.1. Estudio del contenido y la naturaleza del C en las fracciones orgánicas mediante microscopía electrónica/RX

4.1.2.8.2. Representación gráfica y fotográfica de las distintas fracciones orgánicas obtenidas mediante microscopía electrónica/RX para los puntos de muestreo de ambas parcelas estudiadas

4.1.2.8.2.1. Representación gráfica y fotográfica (microscopía electrónica/RX) de ácidos húmicos. Puntos de muestreo de la parcela Campo Arriba
4.1.2.8.2.2. Representación gráfica y fotográfica (microscopía electrónica/RX) de ácidos húmicos. Puntos de muestreo de la parcela Campo Abajo 171

4.1.2.8.2.3. Representación gráfica y fotográfica (microscopía electrónica/RX) de ácidos fúlvicos. Puntos de muestreo de la parcela Campo Arriba 172

4.1.2.8.2.4. Representación gráfica y fotográfica (microscopía electrónica/RX) de ácidos fúlvicos. Puntos de muestreo de la parcela Campo Abajo 173

4.1.2.8.2.5. Representación gráfica y fotográfica (microscopía electrónica/RX) de huminas. Puntos de muestreo de la parcela Campo Arriba 174

4.1.2.8.2.6. Representación gráfica y fotográfica (microscopía electrónica/RX) de huminas. Puntos de muestreo de la parcela Campo Abajo 175

4.1.2.9. Comparación de contenidos de C en las fracciones orgánicas determinados por los distintos métodos utilizados: microscopía electrónica/RX, espectroscopía de infrarrojos y oxidación. Variabilidad temporal y espacial 176

4.1.3. Artrópodos como indicadores de la actividad biológica en los puntos de muestreo .. 182

4.1.3.1. Fauna edáfica. Variabilidad espacial ... 182

4.1.4. Relaciones entre parámetros en puntos de muestreo 194

4.2. ESTUDIO DE LOS SUELOS Y DE LA INFLUENCIA DE LA EDAD DE ABANDONO AGRÍCOLA EN LAS PROPIEDADES DE LOS SUELOS EN TERRAZAS MARGINALES DE LA CUENCA DE ESTUDIO .. 225

4.2.1. Caracterización de los perfiles de suelo de la cuenca 226

4.2.2. Propiedades físicas de los perfiles de suelo de la cuenca 240

4.2.2.1. Curvas de retención hídrica ... 240

4.2.2.2. Textura .. 242

4.2.2.3. Estructura. Macroagregación ... 244

4.2.2.3.1. Distribución de macroagregados por tamaños 244

4.2.2.3.2. Estabilidad de agregados (test de la gota) 245

4.2.2.4. Estructura. Microagregación .. 247

4.2.2.4.1. Textura de microagregados ... 247

4.2.2.4.2. Modelo de agregación. Microagregados estables al agua 248

4.2.2.4.3. Fracción fina microagregada ... 249

4.2.2.4.4. Índice de agregación relativo ... 251
4.2.3. Propiedades químicas de los perfiles de suelo de la cuenca

4.2.3.1. Acidez del suelo, conductividad eléctrica y carbonato cálcico

4.2.3.2. Macronutrientes (nitrógeno y fósforo)

4.2.3.3. Bases de cambio (potasio, sodio, magnesio y calcio) y C.I.C.

4.2.3.4. Materia orgánica total

4.2.3.5. Relación C/N

4.2.3.6. Ácidos húmicos, ácidos fúlvicos y huminas mediante oxidación. Índices de la composición húmica

4.2.3.6.1. Ácidos húmicos

4.2.3.6.2. Ácidos fúlvicos

4.2.3.6.3. Huminas

4.2.3.6.4. Composición de la materia orgánica

4.2.3.6.5. Índices de la composición húmica

4.2.4. Artrópodos como indicadores de la actividad biológica de los suelos de la cuenca

4.2.5. Estadística de los perfiles de suelo de la cuenca

4.2.5.1. Análisis del cluster o dendrograma

4.2.5.2. Matriz de correlación

4.2.5.3. Análisis de componentes principales (ACP)

4.2.6. Discusión de los resultados de los perfiles de suelo de la cuenca. Edad de abandono y su influencia en las propiedades de los suelos

4.3. APLICACIÓN DEL MODELO EUROSEM-2010 EN LA CUENCA DE ESTUDIO

4.3.1. Fragmentación de los eventos de precipitación. Base de datos de la precipitación

4.3.2. Escenarios de aplicación del modelo EuroSEM-2010 en la cuenca de estudio

4.3.2.1. Comparación de los resultados de la aplicación del modelo EuroSEM-2010 al escenario a y d: condiciones de humedad intermedia, infiltración verano/invierno, con eventos de lluvia Guadalest/Marina Baixa

4.3.2.2. Comparación de los resultados de la aplicación del modelo EuroSEM-2010 al escenario b y e: condiciones de humedad verano/invierno, infiltración verano/invierno, con eventos de lluvia Guadalest/Marina Baixa
4.3.2.3. Comparación de los resultados de la aplicación del modelo EuroSEM-2010 al escenario c y f: condiciones de humedad verano/invierno, infiltración verano/invierno, valores k hidrofobia variables para cada polígono, con eventos de lluvia Guadalest/Marina Baixa ...301

4.3.3. Resumen de los resultados en los escenarios de aplicación del modelo EuroSEM-2010 ...308

5. CONCLUSIONES ...313

6. BIBLIOGRAFÍA ...317
ÍNDICE DE FIGURAS

Figura 1.1. Esquema de las interacciones planta-suelo-abandono de cultivos..............4
Figura 2.1. Situación del municipio de Castell de Castells en el sureste de la Península Ibérica, en la comarca de la Marina Alta (Alicante)...7
Figura 2.2. Detalle del mapa topográfico nacional de España, escala 1:25.0008
Figura 2.3. Situación de la cuenca de estudio...8
Figura 2.4. Panorámica de la zona de estudio ...9
Figura 2.5. Mapa geológico de la zona de estudio...9
Figura 2.6. Mapa litológico de la zona de estudio...11
Figura 2.7. Esquema geomorfológico del área de estudio de Cocoll (Boix, 1999)12
Figura 2.8. Vista general de la cuenca de estudio ...13
Figura 2.9. Temperaturas máximas absolutas y mínimas absolutas (medias anuales) en las estaciones de estudio. Período 1980-2010..16
Figura 2.10. Temperaturas máximas, mínimas y medias (medias anuales) en las estaciones de estudio. Período 1980-2010...16
Figura 2.11. a) Precipitación total anual en las estaciones de estudio. b) Precipitación máxima anual en las estaciones de estudio. Período 1980-201018
Figura 2.12. Coeficiente de torrencialidad R para las estaciones de estudio19
Figura 2.13. Temperaturas máximas, mínimas y medias registradas en la estación experimental de Castell de Castell durante el período de estudio23
Figura 2.14. Precipitaciones registradas en la estación experimental de Castell de Castell durante el período de estudio ...23
Figura 2.15. Representación de las alturas medias (cm) de la vegetación en los subtransectos...23
Figura 2.16. a) Cobertura total de la vegetación en los subtransectos. b) Cobertura de los parámetros en los subtransectos: leñosas, herbáceas, hojarasca, piedra, restos vegetales, líquenes y musgos...27
Figura 2.17. a) Cobertura relativa de las especies leñosas más representativas en los subtransectos. b) Cobertura relativa de la especie herbácea más representativa Brachypodium retusum en los subtransectos...30
Figura 2.18. a) Especies leñosas más frecuentes en cada subtransecto. b) Especies herbáceas más frecuentes en cada subtransecto ...30
Figura 2.19. Mapa de usos y cultivos de la zona de estudio................................. 35
Figura 3.1. Organigrama general del trabajo realizado.. 41
Figura 3.2. Distribución de los 13 perfiles de suelo estudiados en las tres zonas de la cuenca ... 43
Figura 3.3. Medidas del cilindro extractor metálico utilizado en la toma de muestra de suelo inalterado para la determinación de la fauna edáfica............................... 44
Figura 3.4. Cilindro extractor metálico empleado en la toma de muestra de suelo inalterado para la determinación de la fauna edáfica ... 44
Figura 3.5. Parcelas seleccionadas Campo Arriba y Campo Abajo, situadas en las zonas sur y centro, respectivamente... 44
Figura 3.6. Puntos de muestreo superficiales y subsuperficiales de suelo alterado seleccionados en cada parcela. Agrupación de los puntos de muestreo según microambientes .. 45
Figura 3.7. Croquis de la parcela Campo Arriba con la ubicación de los distintos puntos de muestreo superficiales y subsuperficiales de suelo alterado 46
Figura 3.8. Croquis de la parcela Campo Abajo con la localización de cada uno de los puntos de muestreo superficiales y subsuperficiales de suelo alterado 47
Figura 3.9. Puntos de muestreo superficiales de suelo inalterado seleccionados en cada parcela, para la determinación de la humedad volumétrica, densidad aparente y porosidad del suelo ... 48
Figura 3.10. Croquis de la parcela Campo Arriba con la ubicación de los distintos puntos de muestreo superficiales de suelo inalterado, para la determinación de la humedad volumétrica, densidad aparente y porosidad del suelo 49
Figura 3.11. Croquis de la parcela Campo Abajo con la localización de cada uno de los puntos de muestreo superficiales de suelo inalterado, para la determinación de la humedad volumétrica, densidad aparente y porosidad del suelo 50
Figura 3.12. Puntos de muestreo superficiales y subsuperficiales de suelo inalterado seleccionados en cada parcela, para la determinación de la fauna edáfica 51
Figura 3.13. Algunos puntos de muestreo seleccionados en ambas parcelas, donde se han tomado muestras de suelo inalteradas superficiales y subsuperficiales para determinar la fauna edáfica existente ... 51
Figura 3.14. Batería de tamices utilizada en el tamizado en seco 52
Figura 3.15. Tablas Munsell para la determinación del color de un suelo................... 54
Figura 3.16. Representación del color de un suelo .. 54
Figura 3.17. Desecador .. 55
Figura 3.18. Anillos sobre placas porosas en las bandejas de humectación...........55

Figura 3.19. a) Estufa de aire. b) Desecador...56

Figura 3.20. Detalle de colocación de las muestras en la cámara de Richards56

Figura 3.21. a) Esquema general de la cámara de presión de Richards. b) Sección de la cámara de Richards...57

Figura 3.22. Batidoras...59

Figura 3.23. Equipo Coulter LS 130 (CIDE)..59

Figura 3.24. Gotero utilizado en el test de la gota. Detalle del tubo de polietileno, del tamiz y de los agregados...60

Figura 3.25. pHmetro ...62

Figura 3.27. Calcímetro de Bernard ..63

Figura 3.28. a) Digestor Kjeldahl. b) Destilador Tekator. c) Valoración de nitrógeno.64

Figura 3.29. Espectrofotómetro ...65

Figura 3.30. Absorción atómica..66

Figura 3.31. Fotómetro de llama ...66

Figura 3.32. Extractos húmicos ..68

Figura 3.34. Preparación de las muestras. Sputtering. Microscopio electrónico de barrido HITACHI mod. S-4100 con cañón de emisión de campo, detector BSE AUTRATA, sistema de captación de imágenes EMIP 3.0, y sistema de microanálisis RONTEC ..71

Figura 3.35. Embudo Berlesse utilizado en el laboratorio para la extracción de artrópodos..72

Figura 3.36. Lupa binocular empleada para realizar el conteo de artrópodos72

Figura 3.37. a) Imagen que muestra en negro las curvas de nivel originales y en rojo las curvas de nivel obtenidas como resultado del DEM. b) Ráster del Modelo Digital de Elevaciones (DEM) del Pico del Cocoll, término municipal de Castell de Castells (Alicante) ..73

Figura 3.38. a) Ráster obtenido del comando Basin en el ámbito de la zona de estudio del Pico del Cocoll, término municipal de Castell de Castells (Alicante). b) Imagen ráster de la pendiente de salida calculada en porcentaje.................................74

Figura 3.39. Mapa de las estaciones climáticas próximas a la zona de estudio........74
Figura 3.40. Representación de los datos de lluvia de la estación de a) la Marina Baixa y b) Guadalest, en intervalos de 6 horas para el período seleccionado. Fuente: web del MARM... 75

Figura 3.41. a) Diagrama de flujo de la componente hidrológica. b) Representación de movimiento de flujo sobre la superficie del suelo... 76

Figura 3.42. a) Representación geométrica del terreno mediante planos y canales con EuroSEM en una subcuenca. b) Representación geométrica de la superficie en planos y canales .. 77

Figura 3.43. Static output file. Parámetros de la cuenca y datos de los elementos ... 81

Figura 4.1. Variación de la humedad gravimétrica del suelo a lo largo del año en las muestras superficiales (horizonte A₁) y subsuperficiales (horizonte A₂) 89

Figura 4.2. Humedad gravimétrica del suelo obtenida en las muestras superficiales (horizonte A₁) y subsuperficiales (horizonte A₂), de cada punto de muestreo 90

Figura 4.3. Humedad gravimétrica del suelo máxima, mínima y media mensual, obtenida en las muestras superficiales (horizonte A₁) y subsuperficiales (horizonte A₂)... 92

Figura 4.4. Humedad gravimétrica del suelo máxima, mínima y media anual, obtenida en las muestras superficiales (horizonte A₁) y subsuperficiales (horizonte A₂) 92

Figura 4.5. Humedad gravimétrica del suelo media mensual y anual, obtenida en las muestras superficiales (horizonte A₁) y subsuperficiales (horizonte A₂) 93

Figura 4.6. Humedad gravimétrica del suelo media mensual obtenida en las muestras superficiales (A₁), relacionada con la precipitación media y con la temperatura media del aire, datos registrados a lo largo del año en la estación climatológica de la zona de estudio... 93

Figura 4.7. Variación de la humedad volumétrica del suelo a lo largo del año en las muestras superficiales (horizonte A₁)... 94

Figura 4.8. Humedad volumétrica del suelo máxima, mínima y media, mensual y anual, obtenida en las muestras superficiales (horizonte A₁)................................. 95

Figura 4.9. Humedad volumétrica del suelo media mensual, relacionada con la precipitación y con la temperatura media del aire, datos registrados a lo largo del año en la estación climatológica de la zona de estudio... 96

Figura 4.10. Curva característica de humedad obtenida en las muestras superficiales (horizonte A₁).. 97

Figura 4.11. Agua útil del suelo obtenida en las muestras superficiales (horizonte A₁). 98

Figura 4.12. Porcentajes de arena, limo y arcilla obtenidos en las muestras superficiales (horizonte A₁) .. 99
Figura 4.13. Diámetro medio de las partículas obtenido en las muestras superficiales (horizonte A1) ..100

Figura 4.15. Distribución de los agregados por fracciones en los suelos de los pasillos (desnudo y pedregoso), en las muestras superficiales (A1) y subsuperficiales (A2)103

Figura 4.16. Distribución de los agregados por fracciones en los suelos bajo especies aromáticas (Thymus vulgaris, Rosmarinus officinalis, Lavandula latifolia y Santolina chamaecyparissus), en las muestras superficiales (A1) y subsuperficiales (A2)104

Figura 4.17. Distribución de los agregados por fracciones en los suelos bajo especies leñosas (Juniperus oxycedrus, Cistus albidus y Ulex parviflorus), en las muestras superficiales (A1) y subsuperficiales (A2) ..106

Figura 4.18. Distribución de los agregados por fracciones en el suelo bajo especie herbácea (Brachypodium retusum), en las muestras superficiales (A1) y subsuperficiales (A2) ...107

Figura 4.19. Valores máximos, mínimos y medios, mensuales y anuales, obtenidos en cada fracción de tamaño en las muestras de suelo superficiales (A1)108

Figura 4.20. Valores medios mensuales de cada fracción de tamaño obtenidos en las muestras de suelo superficiales (A1) ..109

Figura 4.21. Valores medios mensuales de cada fracción de tamaño obtenidos en las muestras de suelo superficiales (A1) y subsuperficiales (A2)110

Figura 4.22. Valores medios anuales de cada fracción de tamaño obtenidos en las muestras de suelo superficiales (A1) y subsuperficiales (A2)110

Figura 4.23. Porcentaje de agregados supervivientes frente a nº impactos de gota, obtenidos en las muestras de suelo superficiales (A1) a pF 6,1 (en seco) en los meses de enero, abril, julio y octubre; y a pF 1 (en húmedo) en los meses de enero y julio.113

Figura 4.24. Valores de la media, la mediana y el 50% de agregados supervivientes, obtenidos tras el conteo de nº impactos gota en las muestras de suelo superficiales (A1), a pF 6,1 (en seco) y a pF 1 (en húmedo) ...115

Figura 4.25. Valores máximos, mínimos y medias, mensuales y anuales, de la media, la mediana y el 50% de agregados supervivientes, obtenidos tras el conteo de nº impactos gota en las muestras de suelo superficiales (A1) a pF 6,1 (en seco)116

Figura 4.26. Valores máximos, mínimos y medias, mensuales y anuales, de la media, la mediana y el 50% de agregados supervivientes, obtenidos tras el conteo de nº impactos gota en las muestras de suelo superficiales (A1) a pF 1 (en húmedo)117

Figura 4.27. Distribución de los microagregados en tamaños obtenida en las muestras de suelo superficiales (A1) de los puntos de muestreo ..119
Figura 4.44. Variación de los contenidos de materia orgánica total del suelo a lo largo del año en las muestras de suelo superficiales (horizonte A₁) y subsuperficiales (horizonte A₂). 139

Figura 4.45. Evolución de la materia orgánica total del suelo a lo largo del año en las muestras de suelo superficiales (horizonte A₁) y subsuperficiales (horizonte A₂) de cada punto de muestreo. 141

Figura 4.46. Valores medios mensuales y anuales de materia orgánica total obtenidos en las muestras de suelo superficiales (horizonte A₁) y subsuperficiales (horizonte A₂). 142

Figura 4.47. Valores máximos, mínimos y medios mensuales de materia orgánica total obtenidos en las muestras de suelo superficiales (horizonte A₁) y subsuperficiales (horizonte A₂). 142

Figura 4.48. Valores máximos, mínimos y medios anuales de materia orgánica obtenidos en las muestras de suelo superficiales (horizonte A₁) y subsuperficiales (horizonte A₂). 143

Figura 4.49. Contenidos medios de materia orgánica total del suelo por grupos de cobertura, obtenidos en las muestras superficiales (horizonte A₁) en los meses de enero y julio. 144

Figura 4.50. Evolución de la relación C/N a lo largo del año en las muestras de suelo superficiales (horizonte A₁). 145

Figura 4.51. Valores máximos, mínimos y medios, mensuales y anuales, obtenidos en la relación C/N de las muestras de suelo superficiales (horizonte A₁). 146

Figura 4.52. Variación de los contenidos de ácidos húmicos, ácidos fúlvicos y huminas a lo largo del año en las muestras de suelo superficiales (horizonte A₁). 147

Figura 4.53. Variación de los índices de la composición húmica (índice de polimerización, índice de estabilidad estructural y grado de humificación) a lo largo del año en las muestras de suelo superficiales (horizonte A₁). 149

Figura 4.54. Valores máximos, mínimos y medios, mensuales y anuales, de ácidos húmicos, ácidos fúlvicos y huminas obtenidos en las muestras de suelo superficiales (horizonte A₁). 152

Figura 4.55. Valores medios mensuales y anuales, de la composición de la materia orgánica total (ácidos húmicos, ácidos fúlvicos, huminas y no humificable) obtenidos en las muestras de suelo superficiales (horizonte A₁). 153

Figura 4.56. Valores máximos, mínimos y medios, mensuales y anuales, de los índices de la composición húmica (índice de polimerización, índice de estabilidad estructural y grado de humificación) obtenidos en las muestras de suelo superficiales (horizonte A₁). 154
Figura 4.57. Espectros de IR (medias) correspondientes a los ácidos húmicos del suelo de las muestras superficiales (horizonte A₁) en el mes de enero bajo distintas coberturas...157

Figura 4.58. Espectros de IR (medias) correspondientes a los ácidos húmicos del suelo de las muestras superficiales (horizonte A₁) en el mes de julio bajo distintas coberturas...157

Figura 4.59. Valores medios y desviaciones estándar de la concentración de C en ácidos húmicos de las muestras superficiales (horizonte A₁) correspondientes a los meses de enero y julio, para los distintos grupos de cobertura del suelo y los dos métodos de cuantificación utilizados (oxidación y espectroscopía de infrarrojos)........................158

Figura 4.60. Valores medios obtenidos entre los meses de enero y julio y desviaciones estándar de la concentración de C en ácidos húmicos de las muestras superficiales (horizonte A₁), para los distintos grupos de cobertura del suelo y los dos métodos de cuantificación utilizados (oxidación y espectroscopía de infrarrojos)..........................159

Figura 4.61. Espectros de IR (medias) correspondientes a los ácidos fúlvicos del suelo de las muestras superficiales (horizonte A₁) en el mes de enero bajo distintas coberturas...159

Figura 4.62. Espectros de IR (medias) correspondientes a los ácidos fúlvicos del suelo de las muestras superficiales (horizonte A₁) en el mes de julio bajo distintas coberturas...160

Figura 4.63. Valores medios y desviaciones estándar de la concentración de C en ácidos fúlvicos de las muestras superficiales (horizonte A₁) correspondientes a los meses enero y julio, para los distintos grupos de cobertura del suelo y para los dos métodos de cuantificación utilizados (oxidación y espectroscopía de infrarrojos)..........................161

Figura 4.64. Valores medios obtenidos entre los meses de enero y julio y desviaciones estándar de la concentración de C en ácidos fúlvicos de las muestras superficiales (horizonte A₁), para los distintos grupos de cobertura del suelo y los dos métodos de cuantificación utilizados (oxidación y espectroscopía de infrarrojos)..............................162

Figura 4.65. Espectros de IR (medias) correspondientes a las huminas del suelo de las muestras superficiales (horizonte A₁) en el mes de enero bajo distintas coberturas.162

Figura 4.66. Espectros de IR (medias) correspondientes a las huminas del suelo de las muestras superficiales (horizonte A₁) en el mes de julio bajo distintas coberturas ..163

Figura 4.67. Valores medios y desviaciones estándar de la concentración de C en huminas de las muestras superficiales (horizonte A₁) correspondientes a los meses de enero y julio, para los distintos grupos de cobertura del suelo y los dos métodos de cuantificación utilizados (oxidación y espectroscopía de infrarrojos)..............................164

Figura 4.68. Valores medios obtenidos entre los meses de enero y julio y desviaciones estándar de la concentración de C en huminas de las muestras superficiales (horizonte A₁), para los distintos grupos de cobertura del suelo y los dos métodos de cuantificación utilizados (oxidación y espectroscopía de infrarrojos)..............................164
Figura 4.69. Proporciones relativas de los elementos Si, Al y O en la fracción humina del suelo de las muestras superficiales (horizonte A1) ... 166

Figura 4.70. Contenidos de C en las distintas fracciones orgánicas de las muestras de suelo superficiales (horizonte A1) en los meses de enero y julio mediante el análisis de microscopía/RX ... 167

Figura 4.71. Contenidos medios de C (meses de enero y julio) en las distintas fracciones orgánicas de las muestras de suelo superficiales (horizonte A1) mediante el análisis de microscopía/RX ... 167

Figura 4.72. Contenidos de C respecto de la proporción de O determinados en el análisis de las fracciones orgánicas de las muestras de suelo superficiales (horizonte A1) en los meses de enero y julio mediante microscopía electrónica/RX 168

Figura 4.73. Contenidos medios de C (meses de enero y julio) respecto de la proporción de O, determinados en el análisis de las fracciones orgánicas de las muestras de suelo superficiales (horizonte A1) mediante microscopía electrónica/RX ... 168

Figura 4.74. Comparación de % de C en acidos húmicos, ácidos fúlvicos y huminas del suelo obtenidos por los tres métodos utilizados (microscopía electrónica, espectroscopía de infrarrojos y oxidación) en las muestras superficiales (A1), para los distintos grupos de cobertura en las dos épocas de muestreo (enero y julio)176

Figura 4.75. Contenidos de C en acidos húmicos del suelo obtenidos por los tres métodos utilizados (microscopía electrónica, espectroscopía de infrarrojos y oxidación) en las muestras superficiales (A1), para los distintos grupos de cobertura en las dos épocas de muestreo (enero y julio) ... 177

Figura 4.76. Comparación de % de C en acidos húmicos del suelo obtenidos por los tres métodos utilizados (microscopía electrónica, espectroscopía de infrarrojos y oxidación) en las muestras superficiales (A1), para los distintos grupos de cobertura en las dos épocas de muestreo (enero y julio) ... 177

Figura 4.77. Contenidos de C en acidos fúlvicos del suelo obtenidos por los tres métodos utilizados (microscopía electrónica, espectroscopía de infrarrojos y oxidación) en las muestras superficiales (A1), para los distintos grupos de cobertura en las dos épocas de muestreo (enero y julio) ... 178

Figura 4.78. Comparación de % de C en acidos fúlvicos del suelo obtenidos por los tres métodos utilizados (microscopía electrónica, espectroscopía de infrarrojos y oxidación) en las muestras superficiales (A1), para los distintos grupos de cobertura en las dos épocas de muestreo (enero y julio) ... 178

Figura 4.79. Contenidos de C en huminas del suelo obtenidos por los tres métodos utilizados (microscopía electrónica, espectroscopía de infrarrojos y oxidación) en las muestras superficiales (A1), para los distintos grupos de cobertura en las dos épocas de muestreo (enero y julio) .. 179
Figura 4.80. Comparación de % de C en huminas del suelo obtenidos por los tres métodos utilizados (microscopía electrónica, espectroscopía de infrarrojos y oxidación) en las muestras superficiales (A1), para los distintos grupos de cobertura en las dos épocas de muestreo (enero y julio)..180

Figura 4.81. Comparación de % de C medios (entre los meses de enero y julio) en acidos húmicos, ácidos fúlvicos y huminas del suelo obtenidos por los tres métodos utilizados (microscopía electrónica, espectroscopía de infrarrojos y oxidación) en las muestras superficiales (A1) para los distintos grupos de cobertura..................181

Figura 4.82. Individuos por m² capturados en cada horizonte A1 y A2, así como en ambos horizontes ..184

Figura 4.83. Individuos por m² capturados en los horizontes A1 y A2 de cada punto de muestreo ..184

Figura 4.84. Individuos por m² capturados en ambos horizontes de cada punto de muestreo ..185

Figura 4.85. Tipos de artrópodos y cantidad de individuos capturados por m² en los suelos de los pasillos (desnudo y pedregoso) en ambos horizontes (A1 y A2), ordenados de mayor a menor abundancia ..185

Figura 4.86. Tipos de artrópodos y cantidad de individuos capturados por m² en los suelos bajo especies aromáticas (*Thymus vulgaris*, *Rosmarinus officinalis*, *Lavandula latifolia* y *Santolina chamaecyparissus*) en ambos horizontes (A1 y A2), ordenados de mayor a menor abundancia ..186

Figura 4.87. Tipos de artrópodos y cantidad de individuos capturados por m² en los suelos bajo especies leñosas de mayor porte (*Juniperus oxycedrus*, *Cistus albidus* y *Ulex parviflorus*) en ambos horizontes (A1 y A2), ordenados de mayor a menor abundancia ..187

Figura 4.88. Tipos de artrópodos y cantidad de individuos capturados por m² en los suelos bajo la especie herbácea *Brachypodium retusum* en ambos horizontes (A1 y A2), ordenados de mayor a menor abundancia ..188

Figura 4.89. Tipos de artrópodos y cantidad de individuos capturados por m² en los suelos superficiales (horizonte A1) y subsuperficiales (horizonte A2), sin especificar el punto de muestreo, ordenados de mayor a menor abundancia ..188

Figura 4.90. Tipos de artrópodos y cantidad de individuos capturados por m² en ambos horizontes, sin especificar el punto de muestreo, ordenados de mayor a menor abundancia ..189

Figura 4.91. Colémbolos, ácaros oribátidos, ácaros gamásidos y larvas de coleópteros capturados por m² en ambos horizontes de las parcelas estudiadas, en los diferentes puntos de muestreo ..192

Figura 4.92. Zona de estudio ..194
Figura 4.93. Variación de la amplitud térmica a lo largo del año en distintos microambientes

Figura 4.94. Distribución de macroagregados en los diferentes puntos de muestreo. Valores medios anuales obtenidos en las muestras de suelo superficiales

Figura 4.95. Detalle de los macroagregados del suelo de la zona de estudio

Figura 4.96. Porcentajes de arena, limo y arcilla textural en los distintos puntos de muestreo

Figura 4.97. Cluster obtenido con los valores medios anuales

Figura 4.98. Gráfico de componentes principales

Figura 4.99. Humedad volumétrica en los diferentes horizontes correspondientes a cada uno de los perfiles estudiados en la cuenca, ubicados en las distintas zonas A) Zona sur, B) Zona centro, y C) Zona norte, tras someter dichas muestras a presiones de 0, 20 y 1.500 kPa

Figura 4.100. Contenidos medios de humedad volumétrica en capacidad de campo (a presión 20 kPa), en punto de marchitamiento (a presión 1500 kPa) y en agua útil, obtenidos en los diferentes perfiles analizados

Figura 4.101. Variación porcentual de las partículas de suelo (arena, limo y arcilla textural) en los perfiles de la cuenca de estudio

Figura 4.102. Distribución de macroagregados por tamaños de las muestras tomadas en los diferentes horizontes de los perfiles de la cuenca de estudio

Figura 4.103. Valores de la mediana y media en la estabilidad de agregados, obtenidos en los horizontes superficiales de los perfiles de la cuenca

Figura 4.104. Porcentaje de agregados supervivientes frente a nº impactos de gota, obtenidos en los horizontes superficiales de los perfiles de la cuenca

Figura 4.105. Porcentajes de arena, limo y arcilla de microagregados, obtenidos en los horizontes de los perfiles estudiados en la cuenca

Figura 4.106. Modelo de agregación obtenido en los horizontes de los perfiles de la cuenca. Microagregados estables al agua

Figura 4.107. Fracción fina microagregada obtenida en los horizontes de los perfiles de la cuenca

Figura 4.108. Valores medios de fracción fina microagregada, obtenidos en los perfiles de la cuenca

Figura 4.109. Índice de agregación relativo obtenido en los horizontes de los perfiles de la cuenca

Figura 4.110. Valores medios de índice de agregación relativo, obtenidos en los perfiles de la cuenca
Figura 4.111. Valores de acidez del suelo obtenidos en agua y en KCl en los horizontes de los perfiles de la cuenca ... 255

Figura 4.112. Niveles de conductividad eléctrica obtenidos en los horizontes de los perfiles de la cuenca ... 256

Figura 4.113. Contenidos de carbonato cálcico obtenidos en los horizontes de los perfiles de la cuenca .. 257

Figura 4.114. Valores medios de la acidez del suelo obtenidos en agua y en KCl en los perfiles de la cuenca ... 258

Figura 4.115. Valores medios obtenidos de la conductividad eléctrica y del carbonato cálcico del suelo en los perfiles de la cuenca .. 258

Figura 4.116. Contenidos de nitrógeno y fósforo obtenidos en los horizontes de los perfiles de la cuenca .. 259

Figura 4.117. Valores medios de nitrógeno y fósforo obtenidos en los perfiles de la cuenca .. 260

Figura 4.118. Contenidos de potasio y sodio obtenidos en los horizontes de los perfiles de la cuenca ... 261

Figura 4.119. Contenidos de magnesio y calcio obtenidos en los horizontes de los perfiles de la cuenca .. 262

Figura 4.120. Capacidad de intercambio catiónico (C.I.C.) obtenida en los horizontes de los perfiles de la cuenca ... 263

Figura 4.121. Valores medios obtenidos de bases de cambio (potasio, sodio, magnesio y calcio) y capacidad de intercambio catiónico (C.I.C.) en los perfiles de la cuenca ... 264

Figura 4.122. Valores medios de relación C/N obtenidos en los perfiles de la cuenca ... 265

Figura 4.123. Valores medios de ácidos húmicos obtenidos en cada zona y en los perfiles de la cuenca ... 267

Figura 4.124. Valores medios de ácidos fúlvicos obtenidos en cada zona y en los perfiles de la cuenca ... 268

Figura 4.125. Valores medios de huminas obtenidos en cada zona y en los perfiles de la cuenca ... 269

Figura 4.126. Valores medios de ácidos húmicos, ácidos fúlvicos, huminas, materia orgánica no humificable y materia orgánica total, obtenidos en las diferentes zonas de la cuenca .. 270

Figura 4.127. Valores medios de los índices de la composición húmica (índice de polimerización, índice de estabilidad estructural y grado de humificación), obtenidos en cada zona y en los perfiles de la cuenca .. 272
Figura 4.129. Artrópodos aislados en los perfiles de suelo..276

Figura 4.130. Análisis del cluster o dendrograma de los horizontes superficiales de los perfiles de la cuenca...277

Figura 4.131. Gráfico de componentes principales..281

Figura 4.132. Evolución de la cobertura vegetal del suelo agrícola en terrazas marginales con la edad de abandono ...282

Figura 4.133. Variaciones con la edad de abandono de las prácticas agrícolas del (a) contenido de materia orgánica del suelo; (b) relación C/N; (c) diámetro medio de microagregados (fracción de suelo <100 μm); y (d) % de agua a saturación........283

Figura 4.134. Mapa del Modelo Digital del Terreno de la zona de estudio286

Figura 4.135. Mapa que representa las características litológicas de la cuenca de estudio ...286

Figura 4.136. Mapa de pendientes de la cuenca de estudio..286

Figura 4.137. Mapa de las unidades de suelo de la cuenca de estudio287

Figura 4.138. Mapa de las unidades de vegetación de la cuenca de estudio287

Figura 4.139. Esquema de la cuenca resultado de la intersección de los distintos mapas...288

Figura 4.140. Esquema mostrando el orden de introducción de los polígonos de la cuenca en EuroSEM-2010 ..289

Figura 4.141. Lluvia acumulada en función del tiempo. Estación pluviométrica de la Marina Baixa (izquierda) y Guadalest (derecha)290

Figura 4.142. Representación cartográfica de los valores de erosión-sedimentación que se producen en la cuenca en las simulaciones realizadas con lluvia de Guadalest, escenarios a1: invierno y a2: verano..292

Figura 4.143. Representación cartográfica de los valores de escorrentía en las simulaciones realizadas con lluvia de Guadalest, escenarios a1: invierno y a2: verano.294

Figura 4.144. Representación cartográfica de los valores de erosión-sedimentación que se producen en la cuenca en las simulaciones realizadas con lluvia de Marina Baixa, escenarios d1: invierno y d2: verano...295

Figura 4.145. Representación cartográfica de los valores de escorrentía que se producen en la cuenca en las simulaciones realizadas con lluvia de Marina Baixa, escenarios d1: invierno y d2: verano ..296

Figura 4.146. Representación cartográfica de los valores de erosión-sedimentación que se producen en la cuenca en las simulaciones realizadas con lluvia de Guadalest, escenarios b1: invierno y b2: verano ...29
Figura 4.147. Representación cartográfica de los valores de escorrentía que se producen en la cuenca en las simulaciones realizadas con lluvia de Guadalest, escenarios b1: invierno y b2: verano...299

Figura 4.148. Representación cartográfica de los valores de erosión-sedimentación que se producen en la cuenca en las simulaciones realizadas con lluvia de Marina Baixa, escenarios e1: invierno y e2: verano...300

Figura 4.149. Representación cartográfica de los valores de escorrentía que se producen en la cuenca en las simulaciones realizadas con lluvia de Marina Baixa, escenarios e1: invierno y e2: verano...301

Figura 4.150. Representación cartográfica de los valores de erosión-sedimentación que se producen en la cuenca en las simulaciones realizadas con lluvia de Guadalest, escenarios c1: invierno y c2: verano ...303

Figura 4.151. Representación cartográfica de los valores de escorrentía que se producen en la cuenca en las simulaciones realizadas con lluvia de Guadalest, escenarios c1: invierno y c2: verano ...304

Figura 4.152. Representación cartográfica del tiempo necesario para que empiece la escorrentía en las simulaciones realizadas con lluvia de Guadalest, escenarios c1: invierno y c2: verano ...304

Figura 4.153. Representación cartográfica de los valores de erosión-sedimentación que se producen en la cuenca en las simulaciones realizadas con lluvia de Marina Baixa, escenarios f1: invierno y f2: verano ...306

Figura 4.154. Representación cartográfica de los valores de escorrentía que se producen en la cuenca en las simulaciones realizadas con lluvia de Marina Baixa, escenarios f1: invierno y f2: verano ...307

Figura 4.155. Representación cartográfica del tiempo necesario para que empiece la escorrentía en las simulaciones realizadas con lluvia de Marina Baixa, escenarios f1: invierno y f2: verano ...308

Figura 4.156. Bancales abandonados en la cuenca de estudio ..311
ÍNDICE DE TABLAS

Tabla 2.1. Temperaturas medias (tm) en las estaciones de estudio.................................17
Tabla 2.2. Precipitación máxima en las estaciones de estudio.......................................18
Tabla 2.3. Déficit y exceso de agua en el suelo en las estaciones de estudio según Thornthwaite ..19
Tabla 2.4. Clasificación climática de Thornthwaite ..20
Tabla 2.5. Clasificación climática Soil Taxonomy ...21
Tabla 2.6. Ficha climática de Thorthwaite de la estación experimental de Castell de Castells situada en la zona de estudio..22
Tabla 2.7. Régimen de humedad del suelo obtenido en la estación experimental de Castell de Castell durante el periodo de estudio...23
Tabla 2.8. Etapas de regresión y especies bioindicadoras de la serie de vegetación del territorio ..25
Tabla 2.9. Características de las especies vegetales seleccionadas en ambas parcelas, bajo las que se estudian las propiedades de los suelos ..31
Tabla 2.10. Principales usos del suelo en el pasado en el municipio de Castell de Castells ..35
Tabla 2.11. Edad de abandono de los bancales en la zona de estudio36
Tabla 2.12. Características de las tipologías de los bancales en los perfiles de estudio.37
Tabla 3.1. Organización del trabajo de campo y de laboratorio...40
Tabla 3.2. Determinaciones analíticas realizadas en las diferentes muestras de suelo en el laboratorio...53
Tabla 3.3. Datos de lluvia de la estación de a) la Marina Baixa y b) Guadalest, en intervalos de 15 minutos para el período seleccionado. Fuente: web del MARM......75
Tabla 3.4. Tipo de elemento y numeración, características del elemento, anchura, longitud, elementos contribuyentes...78
Tabla 3.5. Características hidráulicas del suelo ...78
Tabla 3.6 y 3.7. Parámetros relacionados con la superficie del suelo..............................78
Tabla 3.8. Características de vegetación y uso del suelo..79
Tabla 3.9. Darcy-Weisbach’s M rill (rangeland, cropland) ...79
Tabla 3.10. Static output file. Tipo de elemento y numeración, características del elemento, anchura, longitud, etc. ... 80
Tabla 3.11. Static output file. Erosión, lluvia, deposición total y escorrentía 80
Tabla 3.12. HYDSED. Escorrentía, infiltración, descarga y concentración de descarga de los sedimentos, para cada uno de los planos por unidad temporal 81
Tabla 4.1. Características morfológicas de las muestras de suelo tomadas en la parcela Campo Arriba ... 86
Tabla 4.2. Características morfológicas de las muestras de suelo tomadas en la parcela Campo Abajo .. 87
Tabla 4.3. Abundancia de carbonato cálcico en las muestras superficiales (A1) o subsuperficiales (A2), en los puntos de muestreo .. 128
Tabla 4.4. Microscopía electrónica/RX de ácidos húmicos. Puntos de muestreo de la parcela Campo Arriba .. 170
Tabla 4.5. Microscopía electrónica/RX de ácidos húmicos. Puntos de muestreo de la parcela Campo Abajo .. 171
Tabla 4.6. Microscopía electrónica/RX de ácidos fúlvicos. Puntos de muestreo de la parcela Campo Arriba .. 172
Tabla 4.7. Microscopía electrónica/RX de ácidos fúlvicos. Puntos de muestreo de la parcela Campo Abajo .. 173
Tabla 4.8. Microscopía electrónica/RX de huminas. Puntos de muestreo de la parcela Campo Arriba .. 174
Tabla 4.9. Microscopía electrónica/RX de huminas. Puntos de muestreo de la parcela Campo Abajo .. 175
Tabla 4.10. Artrópodos más abundantes en los suelos de las parcelas estudiadas .. 193
Tabla 4.11. Relaciones entre parámetros físicos (horizonte A1), textura y distribución de agregados con humedad, textura y densidad aparente 198
Tabla 4.12. Relaciones entre parámetros físicos (horizonte A1), estabilidad de agregados con humedad, textura, distribución de agregados y microagregación 200
Tabla 4.13. Relaciones entre parámetros físicos (horizonte A1), microagregación con humedad, textura y distribución de agregados ... 202
Tabla 4.14. Relaciones entre parámetros químicos (horizonte A1), macronutrientes, materia orgánica total y composición de la materia orgánica con carbonato cálcico, pH, macronutrientes, bases de cambio, materia orgánica total y composición de la materia orgánica ... 205
Tabla 4.15. Relaciones entre parámetros químicos (horizonte A1), bases de cambio y C.I.C con carbonato cálcico, conductividad eléctrica, bases de cambio y C.I.C 206
Tabla 4.16. Relaciones entre parámetros químicos (horizonte A₁), índices de composición húmica con carbonato cálcico, bases de cambio y C.I.C., composición de la materia orgánica e índices de composición húmica ... 207

Tabla 4.17. Relaciones entre parámetros físicos, químicos y biológicos (horizonte A₁), humedad con carbonato cálcico, macronutrientes, bases de cambio y C.I.C., materia orgánica total, composición de la materia orgánica y fauna edáfica 208

Tabla 4.18. Relaciones entre parámetros físicos y químicos (horizonte A₁), textura con carbonato cálcico, macronutrientes, bases de cambio y C.I.C., composición de la materia orgánica e índices de composición húmica ... 209

Tabla 4.19. Relaciones entre parámetros físicos y químicos (horizonte A₁), distribución de agregados con carbonato cálcico, conductividad eléctrica, macronutrientes, bases de cambio, materia orgánica total y composición de la materia orgánica ... 210

Tabla 4.20. Relaciones entre parámetros físicos y químicos (horizonte A₁), estabilidad de agregados con carbonato cálcico, materia orgánica total y composición de la materia orgánica ... 211

Tabla 4.21. Relaciones entre parámetros físicos y químicos (horizonte A₁), microagregación con carbonato cálcico, macronutrientes, materia orgánica total, composición de la materia orgánica e índices de composición húmica ... 213

Tabla 4.22. Relaciones entre parámetros físicos (horizonte A₂), distribución de agregados con humedad ... 213

Tabla 4.23. Relaciones entre parámetros físicos (horizonte A₁): humedad, textura y distribución de agregados; con parámetros físicos (horizonte A₂): humedad y distribución de agregados .. 214

Tabla 4.24. Relaciones entre parámetros físicos (horizonte A₁): estabilidad de agregados, microagregación y densidad aparente; con parámetros físicos (horizonte A₂): humedad y distribución de agregados .. 215

Tabla 4.25. Relaciones entre parámetros químicos (horizonte A₁): carbonato cálcico, macronutrientes, bases de cambio, materia orgánica total, composición de la materia orgánica e índices de composición húmica; con parámetros químicos (horizonte A₂): carbonato cálcico y materia orgánica total .. 216

Tabla 4.26. Relaciones entre parámetros físicos (horizonte A₁): humedad, textura y distribución de agregados; con parámetros químicos (horizonte A₂): carbonato cálcico y materia orgánica total .. 217

Tabla 4.27. Relaciones entre parámetros físicos (horizonte A₁): estabilidad de agregados y microagregación; con parámetros químicos (horizonte A₂): carbonato cálcico y materia orgánica total .. 219

Tabla 4.28. Análisis factorial y valores de la varianza explicada .. 222
Tabla 4.29. Análisis de componentes principales. Valores de comunidad entre parámetros y factores obtenidos

Tabla 4.30. Características macromorfológicas del perfil Entrada de la zona sur (SAC-S-P1)

Tabla 4.31. Características macromorfológicas del perfil Campo Arriba de la zona sur (SAC-S-P2)

Tabla 4.32. Características macromorfológicas del perfil Aliagas de la zona sur (SAC-S-P3)

Tabla 4.33. Características macromorfológicas del perfil Carrasca de la zona sur (SAC-S-P4)

Tabla 4.34. Características macromorfológicas del perfil Final de la zona centro (SAC-C-P1)

Tabla 4.35. Características macromorfológicas del perfil Almendros de la zona centro (SAC-C-P2)

Tabla 4.36. Características macromorfológicas del perfil Tarde de la zona centro (SAC-C-P3)

Tabla 4.37. Características macromorfológicas del perfil Campo Abajo de la zona centro (SAC-C-P4)

Tabla 4.38. Características macromorfológicas del perfil Bañeras de la zona centro (SAC-C-P5)

Tabla 4.39. Características macromorfológicas del perfil Grietas de la zona norte (SAC-N-P1)

Tabla 4.40. Características macromorfológicas del perfil Carrasca Alta de la zona norte (SAC-N-P2)

Tabla 4.41. Características macromorfológicas del perfil Carrasca Baja de la zona norte (SAC-N-P3)

Tabla 4.42. Características macromorfológicas del perfil Pinos de la zona norte (SAC-N-P4)

Tabla 4.43. Tipos de artrópodos encontrados en los perfiles de la cuenca

Tabla 4.44. Uso, litología, tipo de suelo, vegetación y número total de individuos/m² encontrados en los perfiles estudiados en la cuenca (valores medios)

Tabla 4.45. Matriz de correlación de las variables correspondientes a las propiedades físicas y químicas estudiadas de los perfiles de suelo de la cuenca

Tabla 4.46. Análisis factorial y valores de la varianza explicada

Tabla 4.47. Matriz de componentes principales
Tabla 4.48. Evolución de la vegetación y de la cobertura del suelo tras el abandono de las prácticas agrícolas. N = nº parcelas; D.E.= Desviación estándar. Letras distintas indican diferencias significativas al 95%..282

Tabla 4.49. Variaciones de la actividad biológica en el suelo con la edad de abandono de las prácticas agrícolas, utilizando la población de microartrópodos como indicador. N = nº parcelas; D.E.= Desviación estándar ..284

Tabla 4.50. Características del suelo natural de la zona de estudio285

Tabla 4.51. Datos de lluvia de la estación pluviométrica de la Marina Baixa (izquierda) y Guadalest (derecha), disgregados en intervalos de 5 minutos ..290

Tabla 4.52. Esquema de las condiciones aplicadas en cada uno de los escenarios de las distintas simulaciones realizadas en la cuenca de estudio.................................291

Tabla 4.53. Detalle de los datos de entrada aplicados en EuroSEM-2010 para las unidades de suelo de las laderas norte y sur para las simulaciones de invierno y verano, a1, a2: lluvia Guadalest y d1, d2: lluvia Marina Baixa ..293

Tabla 4.54. Detalle de los datos de entrada aplicados en EuroSEM-2010 para las unidades de suelo de las laderas norte y sur para las simulaciones de invierno y verano, b1, b2: lluvia Guadalest y e1, e2: lluvia Marina Baixa ..298

Tabla 4.55. Coeficiente de hidrofobia (k) aplicado en los escenarios c y f302

Tabla 4.56. Detalle de los datos de entrada aplicados en EuroSEM-2010 para las unidades de suelo de las laderas norte y sur para las simulaciones de invierno y verano, c1, c2: lluvia Guadalest y f1, f2: lluvia Marina Baixa..303

Tabla 4.57. Valores medios del coeficiente de hidrofobia (k) de las especies vegetales presentes en la cuenca de estudio, en condiciones de invierno y verano..............305