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Abstract: This paper is focused on the necessity to improve the performance of the affine projection (AP)

algorithm for active noise control (ANC) applications. The proposed algorithms are evaluated regarding their

steady-state behavior, their convergence speed and their computational complexity. To this end, different

strategies recently applied to the AP for channel identification are proposed for multichannel ANC. These

strategies are based either on a variable step size, an evolving projection order, or the combination of both

strategies. The developed efficient versions of the AP algorithm use the modified filtered-x structure, which

exhibits faster convergence than other filtering schemes. Simulation results show that the proposed approaches

exhibit better performance than the conventional AP algorithm and represent a meaningful choice for practical

multichannel ANC applications.
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I. Introduction

The Affine Projection (AP) algorithm [1] is a versatile adaptive strategy that improves the speed of con-

vergence of the well know Least Mean Squares (LMS) algorithm, while maintaining its good properties of

robustness and stability. The speed of convergence of the AP algorithm increases when an integer parameter

called projection order (N) is also increased. However its computational cost and its final residual error (fi-

nal misadjustment) get worse at same time. Variable step-size affine projection algorithms have already been

proposed [2] [3] [4] [5] to overcome this duality and get better performance at steady state without penalizing

the convergence speed of the algorithm. Although these strategies achieve better final error in steady state,

their computational cost remains invariant through the algorithm execution since it mainly depends on its

projection order. Moreover, since the final steady-state error depends also on the projection order [6], it could

be improved even more. Therefore, an AP algorithm with a projection order that evolves (evolving projection

order AP algorithm) [7],[8] has been proposed in order to adjust the computational burden to the algorithm

convergence stage and achieve both a low final error and computational cost at steady state. Other type of AP

that dynamically adjusts the update interval for the adaptive filter coefficients has been recently proposed [9].

This kind of algorithms try to improve the AP algorithm performance also reducing its computational cost.

In this paper, we introduce some of those variants of the AP algorithm for multichannel active noise control

(ANC) systems and analyze their performances in terms of convergence properties, computational cost and

final residual error.

The application of the AP algorithm to ANC requires the inclusion of a suitable filtering scheme to com-

pensate the secondary path between the adaptive filer output and the error sensor. To this end, the modified

filtered-x structure [10] has been used as adaptive filtering scheme. In Section II, a brief description of the mul-

tichannel modified filtered-x AP algorithm is presented. The previously commented efficient strategies for the

AP algorithm are introduced for ANC applications in Section III. In Section IV, the computational complexity
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of the algorithms in terms of the number of multiplications required at each iteration is reported. Simulations

results obtained in a multichannel ANC system are presented in Section V allowing the performance comparison

among the different AP approaches. Finally, conclusions are summarized in Section VI.

II. The affine projection algorithm for multichannel active noise control

In order to apply the AP algorithm to ANC, there are some fundamental issues to consider. First, the error

signal e(n) is obtained as the acoustical combination of the desired signal d(n) (which represents the undesired

signal or disturbance signal to be cancelled) and the adaptive filter output filtered through the secondary

acoustic path between the adaptive filter output and the error sensor, instead of the subtraction of an electrical

signal. This point causes a sign change in the coefficient update equation and also implies to filter the reference

signal through an estimate of the secondary path. Second, due to the unavailability of the disturbance signal

d(n) that is needed to calculate the error signal vector, e(n), in the coefficient update equation, an adaptive

filter requires to use a filtering structure to compensate for the secondary path. The AP algorithms are mainly

implemented using the modified filtered-x scheme [11], [12]. This scheme allows the recovery of an estimate

of d(n). Finally, a multichannel ANC system is comprised of several secondary sources, several error sensors,

and even several reference sensors, which involves a set of coefficient update equations. The multichannel

transducer configuration requires a considerable computational burden that constrains the kind of algorithms

to be implemented on the controller.

Fig. 1 shows a block diagram of a single channel AP algorithm based on the modified filtered-x structure.

Block h represents the secondary path meanwhile ĥ is an FIR filter that models h. x(n) is the reference signal,

y(n) is the adaptive filter output and d(n) is the disturbance signal (unavailable in practice). e(n) results from

the acoustic sum of d(n) and y(n) filtered through the secondary path. Moreover, v̂(n), d̂(n) and ê(n) are

internal signals that represent respectively the reference signal filtered through ĥ, an estimate of d(n) and a

new error signal that is used in the algorithm to update the filter coefficients. A generic multichannel ANC
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system has I reference signals, xi(n), K error sensors that produce K error signals, ek(n), from the disturbance

signals dk(n), and J secondary sources that generate the yj(n) signals. Thus IJ adaptive filters, wij(n), have

to be updated at each iteration. Furthermore, the following signals are needed: IJK filtered reference signals,

v̂ijk(n), obtained from the reference signal xi(n) filtered through the estimate of the secondary path ĥjk that

links the jth actuator with the kth error sensor, and the K estimates of the error signals and the disturbance

signals (êk(n) and d̂k(n), respectively).

The multichannel AP algorithm for ANC with the modified filtered-x scheme embedded is described by

Algorithm 1 according to the notation shown in Table 1.

III. Efficient strategies for the modified filtered-x AP algorithm

III.1 Variable step size affine projection algorithms

A high step size speeds up the convergence but worsens the final error, thus a time variable step size that

decreases its value when the algorithm is closer to the steady state is advisable. An AP algorithm with variable

step size was presented in [2]. We propose an AP algorithm for multichannel ANC systems based on the

strategy introduced in [2], which will be named throughout this paper as VSSAP.

The considered strategy computes an estimation of the mean squared value of the auxiliary error vector,

ϵij(n), to adjust the convergence step size. The proposed variation rule for the variable step-size parameters is

given by

µij(n) = µmax
∥pij(n)∥2

∥pij(n)∥2 + C
, (1)

where pij(n) is an estimation of the mean value of ϵij(n), which is obtained from an exponential weighting of

its instantaneous value as pij(n) = αpij(n− 1) + (1−α)ϵij(n) (with 0 < α < 1), and C is a positive parameter

that depends on the algorithm projection order. It should be noted that this parameter is approximated by

N
SNR in [2] (SNR is the signal to noise ratio), thus it has to be adjusted following the projection order values.
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The maximum step-size parameter µmax in (1) is chosen to guarantee both fast convergence speed and filter

stability and ideally should be less than 1 [4]. Furthermore, the adaptive filter coefficients are updated by the

following equation

wij(n+ 1) = wij(n)− µij(n)ϵij(n). (2)

Note that this is the expression used instead of the step 7 in Algorithm 1. It can be shown that this variation

rule guarantees that the mean square deviation of the filter weights undergoes the largest decrease between

algorithm iterations.

III.2 Evolving projection order affine projection algorithms

The variable order affine projection algorithms follow the step 7 equation in Algorithm 1, but their

projection order can dynamically change between iterations. This projection order varies in order to speed up

the convergence speed and minimize the computational cost and residual error depending on certain conditions

that can differ slightly between different variable order AP approaches. A first version of these algorithms was

proposed in [7] where the number of input data vectors to update the filter coefficients were selected within

each algorithm iteration. Other examples of this kind of algorithms are given by [8] and [13],[14]. Recently, a

similar algorithm is proposed in [15] that changes the projection order in accordance with the adaptation stage

and states a linear dependence of the projection order on the logarithm of the filter output error variance. All

these strategies guarantee a good behavior at both steady and transient states, but mainly they try to optimize

the computational cost when the algorithm stage does not require high projection orders. If we apply a variable

order strategy to a multichannel ANC system, different available approaches arise. Generally speaking, each of

the IJ adaptive filters may use a different projection order. Nevertheless we proposed a simplified algorithm

with the same projection order for all the filters. Therefore, this multichannel algorithm uses the instantaneous

residual error power at each error sensor to update the single projection order and keep a single step-size
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parameter. Thus,

N(n) =



min {N(n− 1) + 1,Nmax} ,
K∑
k=1

e2k(n) > η(n)

N(n− 1), θ(n) <

K∑
k=1

e2k(n) ≤ η(n)

max {N(n− 1)− 1, 1} ,
K∑
k=1

e2k(n) ≤ θ(n)

(3)

The thresholds θ(n) and η(n) are derived from [8] and adjusted to a multichannel system by

η(n) = Kσ2
v

µN(n− 1) + 2

2− µ
, (4)

and

θ(n) = Kσ2
v

µ[N(n− 1)− 1] + 2

2− µ
, (5)

where σ2
v is the power of an additive noise uncorrelated with the disturbance signal in the ANC system, and

Nmax is the maximum projection order. We refer to the AP with the time-varying projection order given by (3)

as the evolving order AP algorithm (Evolving AP).

III.3 Variable projection order and step size affine projection algorithms

The AP approaches described in the previous subsections aim to optimize either the final residual error, or

the computational complexity or the convergence speed. Thus, the different algorithms adapt the projection

order or the step-size parameter. However, since the residual error at steady state and the convergence speed at

transient state depend on both the step size and the projection order, algorithms that simultaneously self-adjust

both parameters can get profit from both strategies [16][17].

Different strategies can be performed to change both parameters, and some of them are summarized as

follows:

• The first approach is a mixture of the two previous strategies, thereby allowing the change in both step

size and projection order. In this case, a single evolving projection order for all the adaptive filters is used
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and a variable step-size parameter for each filter is needed. The thresholds to adjust the projection order

proposed in (4) and (5) should be modified by considering the mean value of the whole set of step-size

parameter. Thus, the µ parameter in (4) and (5) is replaced by
1

IJ

I∑
i=1

J∑
j=1

µij(n).

• A second approach considers the two previous strategies, but a different projection order is used at each

adaptive filter. In this case, the thresholds are given by:

ηij(n) = Kσ2
v

µij(n)Nij(n− 1) + 2

2− µij(n)
, (6)

θij(n) = Kσ2
v

µij(n)[Nij(n− 1)− 1] + 2

2− µij(n)
, (7)

what leads to the following projection orders at each iteration

Nij(n) =



min {Nij(n− 1) + 1, Nmax} ,
K∑
k=1

e2k(n) > ηij(n),

Nij(n− 1), θij(n) <

K∑
k=1

e2k(n) ≤ ηij(n),

max {Nij(n− 1)− 1, 1} ,
K∑
k=1

e2k(n) ≤ θij(n).

(8)

• Finally, by using the strategy described in [17], the projection order is modified depending on the variable

step size. In this case the step size µij(n) in (1) is compared with appropriate thresholds to adjust the

projection order. This algorithm will be called throughout this paper as Evolving VSSAP. The main

difficulty of this method is the threshold tuning.

IV. Computational complexity of the algorithms

The computational burden of the AP algorithms for ANC depends on, among other factors: the number of

taps of both the adaptive filters (L) and the FIR secondary path models (M), the dimensions of the ANC system

(I,J and K) and strongly on the projection order (N). The number of multiplications needed at each iteration

of the AP algorithm presented in section II is (2IJL+JKM + IJKM + IJKLN + IJK(LN +N2+O(N3))).
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It should be noted that algorithms that change their projection order add a few computational complexity

to check the conditions of change. However they save an appreciable computational burden if the projection

order decreases. For instance, the VSSAP requires 2IJ multiplications more than the AP described in Section

II at each iteration. Nevertheless, the projection order remains constant, which means the computational cost

does not decrease when the steady-state is reached. Regarding the evolving AP and the Evolving VSSAP, 5IJ

and 6IJ additional multiplications at each iteration, respectively, are needed. These extra multiplications allow

to determine if the projection order should be decreased and thus the computational cost will be eventually

reduced.

Table 2 shows the multiplications required for AP order N = 10, VSSAP, Evolving AP and Evolving VSSAP

during the first 10, 000 iterations of the experiments for different ANC configurations. The configuration

parameters have been chosen in order to guarantee the convergence of the algorithms. Adaptive filters of 150

coefficients and FIR filters of order 199 modelling the secondary paths have been used.

It can be observed that the variable order algorithms exhibit lower computational cost than the algorithms

that do not change the order. Moreover, the Evolving AP is computationally less costly in comparison with

the Evolving VSSAP. But the last algorithm achieves a better final residual error at steady state as it can be

observed in the next section.

V. Simulation Results

In this section, we carry out a series of experiments in an ANC setup to illustrate the performance of

the different proposed algorithms. In order to evaluate the new approaches for practical applications, three

performance parameters are considered: computational complexity, convergence speed and final residual error.

V.1. Convergence performance

Convergence is defined herein as the ratio between the sum of the instantaneous estimated power at each
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error sensor and its mean value without active noise control. An average of 3, 000 independent runs was done

to reduce the variance of the different curves. The reference signal was Gaussian noise of zero mean and unit

variance.

The first experiment analyzes a single-channel ANC system. To evaluate the efficiency of the algorithms

within a non-stationary environment, the coefficients of the plant were changed after 500, 000 iterations. Thus

the adaptive system had to readjust its working parameters from its input signals. The primary and secondary

paths have 250 and 232 coefficients, respectively, whereas the adaptive filter has 150 taps. Figure 2 shows the

corresponding curves for the AP algorithm when N = 1 and N = 10, for the VSSAP when N = 10, for the

Evolving AP and for the Evolving VSSAP with an initial projection order N = 10. The step-size parameter

was set to µ = 0.1. For the variable step size algorithms it was only the starting µ value. Overall, the proposed

Evolving VSSAP outperforms the algorithms analyzed in terms of final residual error and convergence rate.

Regarding the residual error at steady state, it achieves the lower values of the AP with N = 1. However, it

shows a slightly slower convergence behavior than faster algorithms, the AP and the VSSAP with N = 10.

Furthermore, it is clearly seen that the VSSAP performs similarly to the AP with N = 10. The only algorithm

with different behavior through the simulation is the Evolving AP. This algorithm behaves similarly to both

the AP and the VSSAP with N = 10 in the first part of the simulation. However, during the last iterations

when the primary path changes, its evolving order is not able to achieve higher values in order to speed up

the convergence, so it performs worst than the other algorithms analyzed. This drawback could be improved

simply by better adjusting the threshold levels of the projection order changes for automatically switching to

the highest projection order when a fast transient is detected.

The second experiment has been carried out in a multichannel system (1:2:2 ANC system). The lenght

of the different FIR filters was the same as in previous experiment but with a stationary environment. The

different attenuation curves are shown in Figure 3. Equivalent conclusions as the first experiment can be given.
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It is noteworthy that the experiments carried out serve to illustrate how effective can be the process of

switching both the step size and the projection order, or only one of these, in the different algorithms proposed.

V.2. Computational performance

The computational requirements of the different algorithms in terms of the number of flops has been also

investigated. Fig. 4 shows the computational cost evolution for one realization. The configuration parameter

setting is I = 1, J = 1, K = 1, L = 150 and M = 232. It can be appreciated that the AP (N = 10) and the

VSSAP (N = 10) have a high and constant computational cost due to their time-invariant projection order.

The Evolving VSSAP alleviates the computational load dramatically since it decreases the projection order

as soon as it reaches the steady-state where high projection orders are not required. Moreover, Fig. 4 shows

that the computational cost of the Evolving AP also switches as a result of changes in the projection order.

However, the computational cost of the Evolving AP irregularly changes due to the dependency between the

projection order and the instantaneous error signal.

In summary, the main features of the analyzed algorithms analyzed are summarized in Table 3.

VI. Conclusions

In this paper, several efficient strategies for the AP algorithm have been proposed and developed for single

channel and multichannel ANC systems. Some of these approaches self adjust the step-size parameter and/or

the projection order, in order to improve simultaneously the convergence speed, the final residual error and

even the computational cost, with respect the approaches that set constant these parameters. The main aim

of this contribution has been the development of efficient AP strategies for multichannel ANC systems based

on the modified filtered-x scheme. It has been shown by simulations that the strategies that simultaneously

adjust the step size and projection order are a recommended choice for ANC multichannel systems. They

exhibit the robustness and good convergence properties of AP algorithm together with low complexity at every
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convergence stage and low mean squared error at steady state.
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Figure 1: Block diagram of an ANC system using the AP algorithm with the modified filtered-x scheme.
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Figure 3: Convergence curves for different AP strategies in a stationary ANC multichannel system.
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Table 1: Notation of the multichannel modified filtered-x affine projection algorithm.

I Number of reference sensors

J Number of actuators

K Number of error sensors

L Length of the adaptive filters

N Projection order

xi(n) ith reference signal at time n

yj(n) jth actuator signal at time n

ek(n) kth error sensor signal at time n

ĥj,k Estimated FIR filter modelling the acoustic plant hj,k

that links the kth error sensor and the jth actuator

ϵij(n) auxiliary error vector

wij(n) [wij1(n)wij2(n) . . . wijL(n)]
T

xLi(n) [xi(n)xi(n− 1) . . . xi(n− L+ 1)]T

xMi(n) [xi(n)xi(n− 1) . . . xi(n−M + 1)]T

yj(n) [yj(n)yj(n− 1) . . . yj(n−M + 1)]T

v̂ijk(n) [v̂ijk(n)v̂ijk(n− 1) . . . v̂ijk(n− L+ 1)]T

d̂k(n) [d̂k(n)d̂k(n− 1) . . . d̂k(n−N + 1)]T

V̂ijk(n) [v̂ijk(n)v̂ijk(n− 1) . . . v̂ijk(n−N + 1)]
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Algorithm I = 1, J = 1,K = 1 I = 1, J = 2,K = 2 I = 1, J = 2,K = 4 I = 1, J = 4,K = 4

AP (N=10) 46.50 181.50 361.50 721.50

VSSAP 46.52 181.54 361.54 721.58

Evolving AP 8.82 30.63 59.71 117.87

Evolving VSSAP 8.83 30.70 59.78 118.06

Table 2: Comparison of the total number of multiplications (in millions of operations) required for the different

algorithms in a single channel ANC system and three multichannel ANC configurations.

Algorithm Transient Steady-State Computational cost Tuning parameters

AP (high N) very good bad very expensive simple

AP (low N) bad very good low simple

VSSAP (high N) very good good very expensive difficult

VSSAP (low N) bad excellent low difficult

Evolving AP good good medium difficult

Evolving VSSAP very good excellent low-medium very difficult

Table 3: Qualitative performance comparison of different algorithms in terms of steady-state and transient-state

behavior, together with the computational complexity and tuning parameters.
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Algorithm 1 Multichannel modified filtered-x AP algorithm.

Require: Reference signals xi(n) and error signals ek(n)

Ensure: Output of the adaptive filter yj(n)

1: Update the vectors xLi(n) and xMi(n)

2: yj(n) =
I∑

i=1

wT
ij(n)xLi(n) J × LI multiplications

3: d̂k(n) = ek(n)−
J∑

j=1

yT
j (n)ĥjk K ×MJ multiplications

4: v̂ijk(n) = xT
Mi(n)ĥjk IJK ×M multiplications

5: êk(n) = d̂k(n) +
I∑

i=1

J∑
j=1

V̂T
ijk(n)wij(n) K × IJNL multiplications

6: ϵij(n) =
K∑

k=1

V̂ijk(n)[V̂
T
ijk(n)V̂ijk(n)]

−1êk(n) IJ ×K(LN +N2 +O(N3)) multiplications

7: wij(n+ 1) = wij(n)− µϵij(n) IJ × L multiplications
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