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Abstract

In this paper we report on the experimental demonstra-
tion of a Silicon-on-Insulator opto-electronic wavelength
tracker for the optical telecommunication C-band. The
device consist of a 2x3 Mach-Zehnder Interferometer
(MZI) with 10 pm resolution and photo-detectors inte-
grated on the same chip. The MZl is built interconnecting
two Multimode Interference (MMI) couplers with two
waveguides whose length difference is 56 mm. The first
MM has a coupling ratio of 95:05 to compensate for the
propagation loss difference corresponding to the 56 mm.
The wavelength tracker design provides three comple-
mentary, with 1200 phase relations, responses. The MZI
optical responses exhibit rejection as good as 15 dB,
thanks to asymmetric design for the input coupler. Syn-
chronized recorded DC electronic responses for the three
photo-detector outputs reproduce the MZI de-phased
characteristic, allowing for monitoring wavelength changes
with sign.

1 Introduction

Wavelength tracking (WVLT) devices are of application
in the fields of optical communications, instrumenta-
tion and sensing. These devices allow for monitoring
changes in the wavelength of an optical signal caused
by different phenomena, such as strain, temperature
and humidity, among other, as illustrated in Fig. 1- (a).
There have been a significant number of WVLT imple-
mentations with discrete components, [1] [2] are good
examples, and most of the commercial implementa-
tions use such assemblies. A versatile well known lay-

out for a WVLT makes use of an imbalanced Mach-
Zehnder interferometer (MZI), where each arm of the
interferometer has a different length, as shown in Fig.
1-(b).

The imbalanced MZI has a periodic power spectral res-
ponse that follows a cosine square expression (see theo-
ry in [3]). The spectral period, commonly named free
spectral range (FSR) is inversely proportional to the
length difference between the two arms of the MZI. To
be precise, FSR :AZ/(ngAL), where is the operating
wavelength, ng is the group index for, and AL is the
length difference between, the arm waveguides. Fur-
thermore the MZI can be integrated on a photonic chip,
with photo-detectors. MZI based WVLTs can make use
either of 2 or 3 complementary outputs. The former
usually provides outputs with a phase relation of 180°,
whereas the latter are commonly designed for the op-
tical outputs to have phase relations of {-120°, 0°,
120°}. While both configuration allow for monitoring
the change in wavelength through the relative power
change between the output signals, the 3 output port
configuration enables to determine the sign of change
as well. Integrated WVLT MZIs based on Multimode In-
terference (MMI) couplers have been reported in di-
fferent technologies, and a remarkable layout for
Silicon-on-Insulator (SOI) technology is proposed in [4],
where Harmsma and co-workers made a 2x3 MZI SOI
device with 0.55 nm FSR.

In this paper we report on the experimental demons-
tration of a WVLT photonic chip based on a 2x3 MZI
with integrated photo-detectors (PDs) in SOI technolo-
gy. The device has a FSR of 10 pm and a footprint of
2.5x0.5 mm2.
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Figure 1. Wavelength tracker concept (a) and sketch of a 2x3 Mach-Zehnder Interferometer based on Multimode

Interference couplers (b).

The paper is structured as follows. Section 2 reviews the
design and fabrication of the MMIs. Section 3 describes
the design and experimental demonstration of the WVLT.
The conclusion and outlook are given in Section 4.

2 Multimode Interference couplers

The MMI couplers can be designed for an arbitrary cou-
pling ratios following the design rules by Besse and co-
workers [5], and supported by Beam Propagation
Method (BPM) commercial software optimizations [6].
Full details are given in our previous work [7].

The design of all the MMIs was carried out in three steps:
i) cross-section analysis and 2D reduction, ii) analytical
approach and iii) numerical BPM optimization. The cross
section consists of a buried oxide layer of 2 microns
height, capped with a 220 nm Si layer and a SiO, over-
cladding. Rib waveguides, with 130 nm etch depth from
top of the Si layer, were used in the design stage.

Firstly, for the cross-section analysis a film-mode mat-
ching mode solver was used [6]. For a given MMI width,
the first and second mode propagation constants, 39 and
1 respectively, were found for a wavelength of 1.55 pm
for TE polarization, and the beat length L, = /Bo—1)
was computed from these. For the case of all the MMls
subject to design, the body width was set to 10 pm. The
effective indices for the first and second mode given by
the solver are n,0=2.84849 and n,, 1 =2.84548. There-
fore the beat length results into L=257.61 pm. Secondly,
analytic design rules for canonical [8] and arbitrary cou-
pling ratio [5] MMIs were used. These rules provide, for
a given MMI width, an analytic approximation for the
MMI body length, named L9, from the previously calcu-
lated L, and for the case of arbitrary ratio, the width
variation and body geometry (named type A, B, B sym-
metrized, C and D in [5]). The analytic approximations for
the 95:05 MMI lengths is:

ol
L0 = Owa (3L,r) 1)

where 3L is the distance for the first direct (not mi-
rrored) image [8] and 8W = 1 — 2AW/W, with W the
MMI body width and AW the MMI body widening/na-
rrowing.

The final step consists of using BPM for a MMI having
input/output tapered waveguides. Tapers are required
to minimize the MMI excess loss, imbalance and reflec-
tions as described in [9] [10]. Hence, BPM is used to
find iteratively both the MMI length and the input/out-
put tapers width. The optimization process has as tar-
get to minimize the coupler imbalance, i.e. that the
ratios at both outputs match the target, and to maxi-
mize the overall optical power with respect to the
input, i.e. to minimize the excess loss. The optimization
process starts with a fixed set of taper width and MMI
length. The starting taper width was set to 3 pm. The
taper length was set to 50.0 um, which is sufficiently
large for adiabatic linear tapering as per [?]. The MMI
length was set to the values obtained through the
aforementioned analytic formulas. They provide an
MMI length that does not account the tapering of the
input/outputs, which in turn modifies the propagation
conditions in the multimode waveguide. Therefore, for
the initial guess of taper width, the length of the MMI
is solved numerically in a first step. Next, the width of
the taper is varied. Both parameters are iteratively
changed following update and minimization numerical
methods commonly now, until a solution is found for
the coupling ratios, having as stop condition a tole-
rance of 0.01. The optimization was performed firstly
for A= 1.55 pm, and finally cross-checked for the de-
sign wavelength interval, 1.525-1.575 pm.

The MMI devices were fabricated in a multi-project
wafer technology at the Institute of Microelectronics of
Singapore [11]. A photograph of the fabricated devices
is given in Fig. 2-(a). The coupling ratio for the 95:05
device is plotted in Fig. 2-(b).The results show good
agreement with target coupling ratios, where deviations
are approximately in the range of £0.01. Further details
on fabrication reproducibility between dies and wafers
is supplied in [7].
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Figure 2. Multimode Interference coupler fabricated
devices (a) and C-band characterization of the 95:05 cou-
pler (b).

3 MZl wavelength tracker

The WVLT was designed for, and fabricated in, a multi-
project wafer technology by the OpSIS platform at IME
Singapore as the MMls. The process allows for passive

and opto-electronic active areas, as p-n junction modu-
lators and photo-detectors. An optical microscope picture
of the device is given in Fig. 4-(a). The device is composed
of a 2x2 MMI input coupler and a 3x3 MMI output cou-
pler. The couplers are designed in a shallowly etched
areas, and designed following the rules in [8]. The output
coupler has a 33:33:33 coupling ratio. The inputs/out-
puts to the couplers are tapered and all the dimensions
were numerically optimized using a Beam Propagation
Method (BPM) commercial software [6]. The two outputs
of the first coupler are connected to the top and bottom
inputs of the output coupler with strip waveguides of
450 nm width. One of the connections is a straight wave-
guide, whereas the other is a spiral waveguide of 56 mm,
which for a group index of 4.25 corresponds to a FSR of
10 pm. The input coupler is designed to have a 95:05
coupling ratio, so as to compensate the large loss imbal-
ance between the short and long arm, in order to attain
the maximum rejection in the MZl spectral response. The
output coupler outputs are connected to Y-branches.
One output of each Y-branch is connected to a PD, and
the other is used as test optical output. Focusing grating
couplers (FGCs) are used as light input/output structures.

The chip was held in a vacuum chuck, whose temperature
was kept to 25° C using a temperature controller (TEC).
Fibers, at angle of 74° from the chip normal, were aligned
to the input/output FGCs using motorized translation
stages, as shown in the photograph of Fig. 3-(a). Firstly,
the spectral response of the MZI was measured. A tunable
laser source synced with an an Optical Spectrum Analyzer
(OSA) was used to acquire traces with 1 pm resolution.
The traces, normalized with respect of a straight wave-
guide, are shown in Fig. 4- (b) for a wavelength interval
around 1549.83 nm for the three outputs labeled 0, 1 and
2 in the figure. The spectral displacement between the
traces correspond approximately to one third of the FSR,
in agreement with the designed phase relations for the
output MMI coupler. Despite the chip temperature was
controlled, we observed spectral drifts of £1 pm in the
measurements from a nominal position, in the scale of se-

Figure 3. Vertical fiber characterization setup (a) and tunable laser, optical spectrum analyzer and data acquisition

module (b) photographs.
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Figure 4. Optical microscope image of the fabricated device (a) MZI I/O spectral traces with respect of 1549.83 nm
(b) and synchronized electronic traces (c) for the three WVLT channels.

veral tens of seconds, which we attributed to the limited
resolution of the TEC. The rejection ratio attained in all the
responses, defined as the difference between maximum
and minimum value in a period, is at least around of 15
dB, thanks to the asymmetric input MMI coupler.

Secondly, the setup was conditioned to measure the opto-
electronic response of the WVLT. Probes were used to con-
tact the PD pads, Fig. 4-(a) lower right corner. Each probe
was then loaded with a 10 k resistor, and the PDs were
biased at -2V. In absence of optical input we observed a
dark current of 2 PA. The three resistors where then
probed and connected to three channels of a data acqui-
sition (DAQ) card, which allows for recording simultane-
ously the voltage corresponding to the current change in
the three PDs. A tunable laser (TL) was then used as input,
to be swept in steps of 1 pm. A photograph of the setup
is shown in Fig. 3-(b). Furthermore, LabViewTM programs
were deployed to control simultaneously the TL sweep and
the DAQ recording, in order to obtain synchronized data
at all the outputs. The results are shown in Fig. 4-(c). They
correspond to smoothed data using a moving average of
10 points. The TL start and end wavelengths were set to
1550 nm and 1550.090 nm respectively, and the sweep
was started iteratively. The traces in (c) are shown in a
given time where, on the left hand side, the currents ac-
quired have random value, since the TL is returning to the
start wavelength. After this period of time (around 2.3 s
in the figure) the sweep starts and the voltages recorded
reproduce the sinusoidal variation of (b), with a one third

period de-phased relation as well. Panel (c) top axis shows
the sweep time translated into wavelength change from
1550 nm (negative values are arbitrarily labeled to repre-
sent the TL return time).

4 Conclusion and outlook

In conclusion, we have reported the experimental demons-
tration of a SOI opto-electronic wavelength tracker. The
device is based in a 2x3 Mach-Zehnder interferometer,
with 10 pm resolution, equipped with photodetectors. The
optical transfer function exhibits the phase relations of one
third of the FSR, as expected from the design of the output
MM coupler. The optical rejection attained is at least as
good as 15 dB. The opto-electronic transfer functions,
recorded synchronously at the photo-detectors, reproduce
the targeted tracking responses.
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