Wave barriers for the reduction of railway induced vibrations. Analysis in tracks with geometric restrictions

J. J. Real1, C. Zamorano2, C. Hernández3, F. Ribes4
1, 3, 4Department of Transportation Engineering and Infrastructures, School of Civil Engineering, Technical University of Valencia, 14 Camino de Vera, 46022 Valencia, Spain
2Foundation for the Research and Engineering in Railways, 160 Serrano, 28002 Madrid, Spain
1Corresponding author
E-mail: 1jureaher@tra.upv.es, 2claraz@fundacioncdh.com, 3cehergra@cam.upv.es, 4frarilla@cam.upv.es

Abstract. Railway-induced vibrations mitigation has become a priority issue in recent years. Among all the existing alternatives, wave barriers stand out because they can be implemented in any moment of the railway life span without interfering in the correct operation. However, limitations imposed by the track environment usually exist and may affect to the wave barriers design. In this paper the mitigation power of different types of trenches is studied using a 3D FEM model validated with real data. For this purpose, different scenarios are defined in order to assess the influence on the final vibration results of the location and the filling material, if exists. In any case, geometric limitations imposed by the track surrounding elements are taken into account. These limitations significantly hinder the search of the optimal solution.

Keywords: wave barriers, finite element method, railway vibrations, urban areas.

References


