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Abstract

This paper carries further the study of core partial order initiated by
O.M. Baksalary and G. Trenkler in [Core inverse of matrices, Linear and
Multilinear Algebra 58 (2010), 681–697]. We have extensively studied the
core partial order and some new characterizations are obtained in this
paper. In addition, simple expressions for the already known characteri-
zations of the minus, the star (and one-sided star), the sharp (and one-
sided sharp) and the diamond partial orders are also obtained by using a
Hartwig-Spindelböck decomposition.

Keywords: Minus partial order; core partial order; core inverse; matrix de-
composition.
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1 Introduction and Preliminaries

The symbol Cm×n stands for the set of m × n complex matrices. The symbols
A∗, R(A), and rk(A) will denote the conjugate transpose, the range and the
rank of a matrix A ∈ Cm×n, respectively. Moreover, In will denote the identity
matrix of order n × n.

A square matrix A is said to have index at most 1 if rk(A2) = rk(A). This
condition characterizes the existence of a matrix X that satisfies AXA = A,
XAX = X, and AX = XA. This (unique) matrix is called the group inverse
of A and denoted by X = A#. If A ∈ Cm×n, a matrix X ∈ Cn×m that only
satisfies the equation AXA = A is called a {1}-inverse of A. If X satisfies
AXA = A, XAX = X and moreover AX and XA are hermitian, X is called
the Moore-Penrose of A. The Moore-Penrose of A always exists, it is unique
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and will be denoted by X = A†. For further properties of these inverses we refer
the reader to [6, 7].

It is well known that (see, for example, [15, 2, 11]), for A,B ∈ Cn×n,

• the minus partial order is defined as: A
−

≤ B if and only if there exists a
{1}-inverse A− of A such that A−A = A−B and AA− = BA−;

• the star partial order as: A
∗

≤ B if and only if A∗A = A∗B and AA∗ =
BA∗;

• the sharp partial order as: if A,B have index at most 1 then A
#

≤ B if
and only if A#A = A#B and AA# = BA#;

• the diamond partial order as: A
♦

≤ B if and only if R(A) ⊆ R(B), R(A∗) ⊆
R(B∗), and AA∗A = AB∗A.

For each of partial orders that we work in this article (e.g., minus, star,
sharp, etc.) it is easy to see that if the upper matrix is the zero matrix, the

lower is also zero. That is, if
?

≤ represents any of these partial orders, A
?

≤ B

with B = O implies A = O. So, we will assume in the rest of the paper that
the upper matrix is non-zero.

In [4], O.M. Baksalary and G. Trenkler introduced and studied in detail a
generalized inverse called the core inverse. For A ∈ Cn×n, the core inverse of A

is the matrix X ∈ Cn×n satisfying the relations AX = AA† and R(X) ⊆ R(A),

and is denoted by X = A
©#

. The authors proved that the core inverse of A

exists if and only if A has index at most 1 and, whenever it exists, is unique.
In the literature there are several papers which study properties of the matrix

orders defined above and the involved generalized inverses among others. For
instance, [1, 8, 16, 17, 18, 19] are a few references where some properties can be
found.

In what follows, we will consider a Hartwig-Spindelböck decomposition of a
square matrix [10, 3]. For any matrix B ∈ Cn×n of rank r > 0 this decomposi-
tion is given by

B = U

[

ΣK ΣL

O O

]

U∗, (1)

where U ∈ Cn×n is unitary, Σ ∈ Cr×r is a diagonal positive definite matrix and
K ∈ Cr×r, L ∈ Cr×(n−r) satisfy the condition KK∗ + LL∗ = Ir. Specifically,
Σ = diag(σ1Ir1

, . . . , σtIrt
) is a diagonal matrix, the diagonal entries σi being

singular values of B, σ1 > σ2 > . . . > σt > 0, r1 + r2 + . . . + rt = r, however
this last information about σi will be not relevant in our investigation.

By using decomposition (1), the successors of a given matrix under the core
partial order were found in [4, Lemma 3] in the set of matrices possessing core
inverse. Our main aim is to exploit this decomposition to analyze predecessors
for a fixed element under the core partial order in the set of matrices that
have core inverse. Furthermore, a similar technique is used to study the other
aforementioned partial orders and the one-sided ones.
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This paper is organized as follows. In Section 2, we first characterize matrices
below a given matrix under the four major partial orders namely the minus, the
star, the sharp and the diamond partial orders, using the Hartwig-Spindelböck
decomposition of the upper matrix. Section 3 deals with studying one-sided
star and one-sided sharp partial orders. Here we give simple expressions for
their already known characterizations. In Section 4, we study in detail the core
partial order. Some characterizations are developed as well as the case of EP

matrices and the reverse order law. Finally, it is well known for the minus, the
star, and the sharp orders that A is below B if and only if B − A is below B.
In general this property is not possessed by core partial order. In Section 5, we
give some conditions under which each one of them implies the other one.

2 Minus, star, sharp and diamond partial orders

We recall that it is well known [9] that the minus partial order is characterized
as follows: if A,B ∈ Cn×n then

A
−

≤ B ⇐⇒ rk(B − A) = rk(B) − rk(A). (2)

Next result characterizes predecessors of a given matrix under the minus

partial order, that is, for a given matrix B we find matrices A such that A
−

≤ B.

Theorem 1 Let B ∈ Cn×n be a non-zero matrix written as in (1). The follow-
ing conditions are equivalent.

(a) There exists a matrix A ∈ Cn×n such that A
−

≤ B.

(b) There exists an idempotent matrix T ∈ Cr×r such that

A = U

[

TΣK TΣL

O O

]

U∗. (3)

Proof. (a) =⇒ (b) Let A ∈ Cn×n be such that A
−

≤ B. It is easy to check that
expression (1) of B can be re-written as

B = U

[

Ir O

O O

] [

ΣK ΣL

O O

]

U∗.

We denote

P = U

[

Ir O

O O

]

, Q =

[

ΣK ΣL

O O

]

U∗ (4)

and partition

P =
[

P1 O
]

, Q =

[

Q1

O

]

,
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with P1 ∈ Cn×r and Q1 ∈ Cr×n. So, matrix B can be expressed as

B =
[

P1 O
]

[

Q1

O

]

= P1Q1

where rk(P1) = r = rk(B), and since KK∗ + LL∗ = Ir,

rk(Q1) = rk(Q) = rk
([

ΣK ΣL
])

= rk
(

[

K L
] [

K L
]∗

)

= r.

Thus, B = P1Q1 is a full rank factorization of the matrix B. Since A
−

≤ B and
B 6= O, Theorem 3.4.6 in [15] asserts that there exists an idempotent matrix
T ∈ Cr×r such that A = P1TQ1. Using (4), simple computations lead to

A =
[

P1 O
]

[

T O

O O

] [

Q1

O

]

= U

[

TΣK TΣL

O O

]

U∗.

(b) =⇒ (a) From (1) and (3) we obtain

U∗(B − A)U =

[

(Ir − T )ΣK (Ir − T )ΣL

O O

]

.

Since KK∗ + LL∗ = Ir, we have that

rk(Σ
[

K L
]

) = rk(
[

K L
] [

K L
]∗

) = r,

from where it is easy to see that

U∗(B − A)U =

[

Ir − T O

O O

] [

ΣK ΣL

R S

]

,

for some R ∈ C(n−r)×r and S ∈ C(n−r)×(n−r) such that the matrix

[

ΣK ΣL

R S

]

is nonsingular. Thus, rk(B−A) = rk(Ir −T ) = r−rk(T ) because of T is idem-
potent.

On the other hand, one has

rk(A) = rk

(

U

[

T O

O O

] [

ΣK ΣL

R S

]

U∗

)

= rk(T ).

Then, rk(B) − rk(A) = r − rk(T ). Hence, equivalence (2) guarantees that

A
−

≤ B.

Remark 2 For every matrix A ∈ Cn×n such that A
−

≤ B in (a) of Theorem 1,
there exists only one matrix T ∈ Cr×r in the conditions indicated in (b). Indeed,
in order to show the uniqueness of T , suppose that T1 is also an idempotent
matrix such that

A = U

[

T1ΣK T1ΣL

O O

]

U∗.

So, TΣK = T1ΣK and TΣL = T1ΣL. Post-multiplying these last equalities by
K∗ and L∗, respectively, and then adding we get T = T1 because Σ is nonsin-
gular.
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The form for the matrix A obtained in Theorem 1 will play an important
role in the whole paper and so, we will label it as follows. Let A ∈ Cn×n be a
matrix given by

A = U

[

TΣK TΣL

O O

]

U∗ (5)

where U ∈ Cn×n is unitary, Σ ∈ Cr×r is diagonal positive definite, T ∈ Cr×r,
and moreover K ∈ Cr×r and L ∈ Cr×(n−r) satisfy KK∗ + LL∗ = Ir.

Next result provides the Moore-Penrose and group inverse of a matrix A as
in (5).

Lemma 3 Let A ∈ Cn×n be a matrix as in (5). Then

(a) the Moore-Penrose inverse of A is given by

A† = U

[

K∗(TΣ)† O

L∗(TΣ)† O

]

U∗. (6)

(b) if K is nonsingular and TΣK has index at most 1 then there exists the
group inverse of A and is given by

A# = U

[

(TΣK)# (TΣK)#K−1L

O O

]

U∗. (7)

In particular, if T 2 = T and TΣK = ΣKT then TΣK has index at most 1
and (TΣK)# = (ΣK)−1T .

Proof. (a) It is easy to check that AA†A = A, A†AA† = A†, (AA†)∗ = AA†,
and (A†A)∗ = A†A hold.

(b) Since R(TΣL) ⊆ R(T ) = R(TΣK(TΣK)#), we have that the range
of TΣL is included into the null space of Ir − TΣK(TΣK)#, that is (Ir −
TΣK(TΣK)#)TΣL = O.

Now, it follows from [7, Theorem 7.7.3, pp. 143] that the group inverse of A

is given by

U∗A#U =

[

(TΣK)# ((TΣK)#)2TΣL

O O

]

=

[

(TΣK)# (TΣK)#K−1L

O O

]

because ((TΣK)#)2TΣK = (TΣK)#TΣK(TΣK)# = (TΣK)#. The proof
of (TΣK)# = (ΣK)−1T in the mentioned particular case follows directly by
definition.

We recall that the star partial order is characterized as follows: if A,B ∈
Cn×n then

A
∗

≤ B ⇐⇒ A†A = A†B and AA† = BA†.

Now, we characterize predecessors under the star partial order.

Theorem 4 Let B ∈ Cn×n be a non-zero matrix written as in (1). The follow-
ing conditions are equivalent.
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(a) There exists a matrix A ∈ Cn×n such that A
∗

≤ B.

(b) There exists an idempotent matrix T ∈ Cr×r such that A has the form (5)
and, moreover, one of the following equivalent conditions holds:

(i) TΣ2 = Σ2T and T is hermitian.

(ii) (TΣ)† = Σ−1T .

(iii) ((Ir − T )Σ)† = Σ−1(Ir − T ).

Proof. We first prove the equivalence of (a) and (b) when (ii) in (b) holds.

(a) =⇒ (b) (ii) Suppose that A
∗

≤ B. By Theorem 5.2.10 in [15] A
−

≤ B and
BA†B = A. By Theorem 1, there exists an idempotent matrix T ∈ Cr×r such
that

A = U

[

TΣK TΣL

O O

]

U∗.

By Lemma 3,

A† = U

[

K∗(TΣ)† O

L∗(TΣ)† O

]

U∗.

Substituting these expressions in BA†B = A we have

Σ(TΣ)†ΣK = TΣK (8)

Σ(TΣ)†ΣL = TΣL. (9)

Post-multiplying (8) and (9) by K∗ and L∗, respectively, and then adding we
have Σ(TΣ)† = T and therefore, (TΣ)† = Σ−1T .

(b) (ii) =⇒ (a) Using Lemma 3 (a), it is easy to verify that A†A = A†B and
AA† = BA†.

(b) (i) =⇒ (b) (ii) It follows from the definition of Moore-Penrose inverse.
(b) (ii) =⇒ (b) (i) Pre-multiplying (TΣ)† = Σ−1T by TΣ and using that T

is idempotent we get TΣ(TΣ)† = T , so T is hermitian.
On the other hand, post-multiplying (TΣ)† = Σ−1T by TΣ we get (TΣ)†TΣ =

Σ−1TΣ from where ΣT ∗Σ−1 = Σ−1TΣ and thus TΣ2 = Σ2T .
The proof of the equivalence of (a) and (b) when (iii) in (b) holds follows on

similar lines in view of the following equivalence: A
∗

≤ B if and only if B−A
∗

≤ B

(see [15, Theorem 5.2.3]).
We close this section with a result analogous to Theorem 1 and Theorem 4

related to the sharp partial order and other characterizing the diamond partial
order.

Theorem 5 Let B ∈ Cn×n be a non-zero matrix written as in (1) with K

nonsingular. The following conditions are equivalent.

(a) There exists a matrix A ∈ Cn×n of index at most 1 such that A
#

≤ B.

(b) There exists an idempotent matrix T ∈ Cr×r that commutes with ΣK and
A has the form (5).
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Proof. By [15, Corollary 6.3.14], A
#

≤ B if and only if A
−

≤ B and AB = BA

provided that A and B have index at most 1. Now, a direct application of

Theorem 1 gives the equivalence of A
−

≤ B and the expression (5) for A and
simple computations show the equivalence of AB = BA and TΣK = ΣKT .
Notice that in (b) =⇒ (a) the existence of A# is guaranteed by Lemma 3 (b).

Theorem 6 Let B ∈ Cn×n be a non-zero matrix written as in (1). The follow-
ing conditions are equivalent.

(a) There exists a matrix A ∈ Cn×n such that A
♦

≤ B.

(b) There exists an idempotent matrix T ∈ Cr×r such that

A = U

[

(Σ−1T )†K (Σ−1T )†L
O O

]

U∗. (10)

Proof. By Theorem 2 in [2], A
♦

≤ B if and only if A†
−

≤ B†, which is equivalent

to (A†)∗
−

≤ (B†)∗ by (2). By Theorem 1, there exists an idempotent matrix T ∗ ∈

Cr×r such that (A†)∗ = U

[

T ∗Σ−1K T ∗Σ−1L

O O

]

U∗. Taking into account the

equalities (A†)∗ = (A∗)† and ((A∗)†)† = A∗, by Lemma 3, we have that

A∗ = U

[

K∗(T ∗Σ−1)† O

L∗(T ∗Σ−1)† O

]

U∗,

which gives the form (10).

3 One-sided star and one-sided sharp partial or-

ders

We recall that right and left star partial orders are respectively defined in [15]
as follows: if A,B ∈ Cn×n then

A ≤∗B ⇐⇒ AA∗ = BA∗ and R(A∗) ⊆ R(B∗)

and
A ∗≤ B ⇐⇒ A∗A = A∗B and R(A) ⊆ R(B).

Theorem 7 Let B ∈ Cn×n be a non-zero matrix written as in (1). The follow-
ing conditions are equivalent.

(a) There exists a matrix A ∈ Cn×n such that A ≤∗B.

(b) There exists an idempotent matrix T ∈ Cr×r such that A has the form (5)
and TΣ2 = Σ2T ∗.
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Proof. By Theorem 6.5.25 in [15], A ≤∗B if and only if A
−

≤ B and B†A is
hermitian. By Theorem 1, there exists an idempotent matrix T ∈ Cr×r such
that A has the form (5) required in item (b) and, by [4, expression (1.13)],

B† = U

[

K∗Σ−1 O

L∗Σ−1 O

]

U∗.

Since B†A is hermitian if and only if

[

K∗Σ−1TΣK K∗Σ−1TΣL

L∗Σ−1TΣK L∗Σ−1TΣL

]

=

[

K∗ΣT ∗Σ−1K K∗ΣT ∗Σ−1L

L∗ΣT ∗Σ−1K L∗ΣT ∗Σ−1L

]

,

we obtain the following system

K∗Σ−1TΣK = K∗ΣT ∗Σ−1K, (11)

K∗Σ−1TΣL = K∗ΣT ∗Σ−1L, (12)

L∗Σ−1TΣK = L∗ΣT ∗Σ−1K, (13)

L∗Σ−1TΣL = L∗ΣT ∗Σ−1L. (14)

Post-multiplying (11) and (12) by K∗ and L∗, respectively, and then adding we
have

K∗Σ−1TΣ = K∗ΣT ∗Σ−1. (15)

Similarly, from (13) and (14) we obtain

L∗Σ−1TΣ = L∗ΣT ∗Σ−1. (16)

Pre-multiplying (15) and (16) by K and L respectively, and then adding we
have Σ−1TΣ = ΣT ∗Σ−1 or equivalently TΣ2 = Σ2T ∗.

Similarly,

Theorem 8 Let B ∈ Cn×n be a non-zero matrix written as in (1). The follow-
ing conditions are equivalent.

(a) There exists a matrix A ∈ Cn×n such that A ∗≤ B.

(b) There exists an idempotent hermitian matrix T ∈ Cr×r such that A has the
form (5).

Proof. By Remark 6.5.13 in [15], A ∗≤ B if and only if A∗ ≤∗B∗, which is

equivalent to A∗
−

≤ B∗ and (B∗)†A∗ is hermitian. Since A∗
−

≤ B∗ is equivalent

to A
−

≤ B, and (B∗)† = (B†)∗, we have A ∗≤ B if and only if A
−

≤ B and AB†

is hermitian. By Theorem 1, A
−

≤ B if and only if there exists an idempotent
matrix T ∈ Cr×r such that A has the form required in item (b), and we can
easily obtain that AB† is hermitian if and only if T is hermitian.
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Now, we recall that it is well known [15] that right and left sharp partial
orders are respectively defined as follows: if A,B ∈ Cn×n are matrices of index
at most 1 then

A ≤#B ⇐⇒ AA# = BA# and R(A∗) ⊆ R(B∗)

and
A#≤ B ⇐⇒ A#A = A#B and R(A) ⊆ R(B).

Theorem 9 Let B ∈ Cn×n be a non-zero matrix written as in (1) with K a
nonsingular matrix. The following conditions are equivalent.

(a) There exists a matrix A ∈ Cn×n of index at most 1 and A ≤#B.

(b) There exists an idempotent matrix T ∈ Cr×r such that A has the form (5)
and TΣKT = ΣKT .

Proof. By Theorem 6.3.13 in [15] and taking into account that AA# = BA#

is equivalent to A2 = BA we can show that A ≤#B if and only if A
−

≤ B and

A2 = BA. Now, Theorem 1 shows that A
−

≤ B is equivalent to the existence of
an idempotent matrix T ∈ Cr×r such that A has the form given in (5). Since ΣK

is nonsingular, easy computations show that condition A2 = BA is equivalent
to TΣKT = ΣKT . Moreover, by Lemma 3, this last condition assures the
existence of the group inverse of A.

Remark 10 A simple fact of matrix analysis assures that if X,Y are con-
formable for multiplication matrices such that X is idempotent, Y is nonsingu-
lar, and XY X = Y X then XY −1X = Y −1X. Under the conditions of Theorem
9, this fact assures that T (ΣK)−1T = (ΣK)−1T . So, if A ≤#B then the def-
inition of the group inverse allows us to check that (TΣK)# = (ΣK)−2TΣK

and, in this case, we can write

A# = U

[

(ΣK)−2TΣK (ΣK)−2TΣL

O O

]

U∗.

We can prove on similar lines the following:

Theorem 11 Let B ∈ Cn×n be a non-zero matrix written as in (1) with K a
nonsingular matrix. The following conditions are equivalent.

(a) There exists a matrix A ∈ Cn×n of index at most 1 such that A#≤ B.

(b) There exists an idempotent matrix T ∈ Cr×r such that A has the form (5)
and TΣKT = TΣK.

Similarly to Remark 10, in this case we get

A# = U

[

T (ΣK)−1 T (ΣK)−1K−1L

O O

]

U∗.
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4 The core partial order

Throughout this section, all the matrices will have index at most 1, that is we
will consider matrices B ∈ Cn×n such that rk(B2) = rk(B). Thus, if B has
the Hartwig–Spindelböck decomposition (1) then K is a nonsingular matrix as
shown in [4] and the core inverse of B exists.

Lemma 12 Let A be a matrix as in (5) of index at most 1 with K a nonsingular
matrix. Then A has core inverse given by

A
©#

= U

[

(TΣK)#TΣ(TΣ)† O

O O

]

U∗. (17)

Proof. By Theorem 1 (i) in [4] we have that A
©#

= A#AA†. Notice that the
assumption that A has index at most 1 means that TΣK has group inverse.

Now, Lemma 3 yields

A
©#

= A#AA† = U

[

(TΣK)#TΣ(TΣ)† O

O O

]

U∗

as desired.

Remark 13 Notice that the condition that A has index at most 1 in Lemma 12,
(or, in other words, rk(TΣKT ) = rk(T )) is trivially equivalent to R(TΣKT ) =
R(T ). Moreover, a sufficient condition to obtain the equality rk(TΣKT ) =
rk(T ) is T = ΣK(TΣK)#T . In fact, pre-multiplying T = ΣK(TΣK)#T by
ΣKT and post-multiplying by ΣK we have ΣKTΣK = (ΣK(TΣK)#T )ΣKTΣK.
Then, ΣKT = TΣKT , which implies that rk(TΣKT ) = rk(T ) holds.

We need the following properties concerning the Moore-Penrose inverse.

Lemma 14 Let X ∈ Cm×m. Then the following statements hold:

(a) X is an idempotent hermitian matrix if and only if X = XY (XY )† for
every nonsingular matrix Y ∈ Cm×m.

(b) X is an idempotent hermitian matrix if and only if (XY )† = (XY )†X for
every nonsingular matrix Y ∈ Cm×m.

Proof.

(a) Assume that X is an idempotent hermitian matrix. It is known that
PX = XX† is an orthogonal projector onto R(X). If Y ∈ Cm×m is nonsingular
then R(X) = R(XY ) = R(XY (XY )†); thus XY (XY )† is an orthogonal pro-
jector onto R(X). Then, we have PX = XY (XY )†. Using that X = X2 = X∗,
we have X† = X, so PX = XX† = XX = X. Hence, X = XY (XY )†. The
converse is trivial.

(b) Assume that (XY )† = (XY )†X. If we pre-multiply this equality by XY ,
we get XY (XY )†X = XY (XY )†, so X∗XY (XY )† = XY (XY )†. Now, post-
multiplying by XY and using that Y is nonsingular we obtain X∗X = X, hence

10



X is an idempotent hermitian matrix. The converse follows pre-multiplying by
(XY )† the condition X = XY (XY )† in (a).

We recall that the core partial order is defined as follows [4]: if A,B ∈ Cn×n

have index at most 1 then

A
©#

≤ B ⇐⇒ A
©#

A = A
©#

B and AA
©#

= BA
©#

,

where A
©#

= A#AA† is the core inverse of A.
As a first remark we present some direct characterizations of the core partial

order in terms of the whole matrices. Let A,B ∈ Cn×n be two matrices that
have core inverse. Then the following conditions are equivalent:

(a) A
©#

≤ B.

(b) AA†B = BA#A = A.

(c) A†A = A†B and AA# = BA#.

(d) A∗A = A∗B and AA# = BA#.

All the above equivalences can be easily obtained.
Comparing this last remark to Theorem 2.4 in [12] we observe that actually

conditions on the column spaces in the one-side partial orders ≤# and ∗≤ in
that theorem can be dropped out. Item (b) above was included in Lemma 2 in
[14] and that lemma also contains an equivalent form of (d).

On the other hand, next result shows that core partial order implies diamond
partial order.

Theorem 15 Let A,B ∈ Cn×n such that A has core inverse. If A
©#

≤ B then

A
♦

≤ B.

Proof. Since A
©#

≤ B, the equalities A†A = A†B, AA# = BA#, and A∗A =
A∗B hold. Then, A = AA#A = BA#A implies R(A) ⊆ R(B). From A†A =
A†B = B∗(A†)∗ we get A† = A†AA† = B∗(A†)∗A†. Thus, R(A∗) = R(A†) ⊆
R(B∗). Finally, from A∗A = A∗B it is clear that AA∗A = AB∗A. Hence,

A
♦

≤ B.
Note that the converse is not true as the following matrices shown:

A =

[

1 0
0 0

]

and B =

[

1 1
1 0

]

.

In this example, A
♦

≤ B but A
©#

≤ B does not hold.
We now characterize predecessors of a fixed matrix under the core partial

order.

Theorem 16 Let B ∈ Cn×n be a non-zero matrix written as in (1) such that
B has core inverse. Then the following statements are equivalent.

11



(a) There exists a matrix A ∈ Cn×n that has a core inverse such that A
©#

≤ B.

(b) There exists a matrix T ∈ Cr×r such that A has the form (5) and, moreover,
one of the following equivalent conditions holds:

(i) T is an idempotent hermitian matrix and T = ΣK(TΣK)#T .

(ii) TΣKT = ΣKT and (TΣ)†T = (TΣ)†.

(iii) T is an idempotent hermitian matrix and TΣKT = ΣKT .

Proof. (a) =⇒ (b) (i) Suppose that A
©#

≤ B for some matrix A such that A
©#

exists. By Theorem 8 in [4], A
−

≤ B. Since B 6= O, Theorem 1 asserts that there
is an idempotent matrix T ∈ Cr×r such that A has the form (5). By Lemma 14
(a), TΣ(TΣ)† = T , so T is hermitian and Lemma 12 leads

A
©#

= U

[

(TΣK)#TΣ(TΣ)† O

O O

]

U∗ = U

[

(TΣK)#T O

O O

]

U∗. (18)

Since A
©#

≤ B, by definition we have A
©#

A = A
©#

B and AA
©#

= BA
©#

. Using
(18), (5), and (1) these last two equalities are equivalent to

TΣK(TΣK)#T = ΣK(TΣK)#T. (19)

Post-multiplying (19) by ΣK, the definition of the group inverse yields T =
ΣK(TΣK)#T .

(b) (i) =⇒ (b) (ii) As we have shown in Remark 13, T = ΣK(TΣK)#T leads
to ΣKT = TΣKT . On the other hand, since T is an idempotent hermitian
matrix, by Lemma 14, T = TΣ(TΣ)†. Now, pre-multiplying this last equality
by (TΣ)†, we get (TΣ)†T = (TΣ)†.

(b) (ii) =⇒ (a) The existence of the core inverse of A is guaranteed by Lemma
12. Taking into account that TΣKT = ΣKT and (TΣ)†T = (TΣ)†, from
expressions (5) and (6) easy computations show that A2 = BA and A†A = A†B.

Hence, by equivalence (3.21) in [4] we arrive at A
©#

≤ B.
The equivalence of (ii) and (iii) in (b) follows from Lemma 14. Note that

this equivalence can be also deduced from the fact A
©#

≤ B ⇐⇒ A ≤∗B, A ≤#B

(see [14, Proposition 5]) and Theorems 8 and 9.

Theorem 17 Let A,B ∈ Cn×n be two matrices that have core inverses with
B 6= O. Then the following statements are equivalent:

(a) A
©#

≤ B.

(b) There is an idempotent hermitian matrix Q ∈ Cn×n such that A = QB with
AQ = BQ and rk(A) = rk(Q).

12



Proof. (a) =⇒ (b) Suppose that B is written as in (1). By Theorem 16, matrix
A can be expressed as A = QB with

Q = U

[

T O

O O

]

U∗

where T is an idempotent hermitian matrix such that TΣKT = ΣKT . Then
Q2 = Q = Q∗ and a simple computation allows us to verify that QBQ = BQ.
Moreover,

rk(A) = rk

([

TΣK TΣL

O O

])

= rk

([

T O

O O

] [

ΣK ΣL

O In−r

])

.

Since ΣK is nonsingular, rk(A) = rk(T ) = rk(Q).
(b) =⇒ (a) Suppose that there exists a unique idempotent hermitian matrix

Q such that A = QB, AQ = BQ and rk(QB) = rk(Q). Then A2 = AQB =
BQB = BA. It remains to show that A = AA†B holds. Since R(A) ⊆ R(Q)
and rk(A) = rk(Q), it follows that R(A) = R(Q), so QB(QB)† = QQ† = Q

because Q is an orthogonal projector. Thus AA†B = QB(QB)†B = QB = A

and hence A†A = A†B. Now, applying characterization (3.21) in [4] we arrive

at A
©#

≤ B.

Remark 18 The matrix Q indicated in Theorem 17 is shown to be unique.
Indeed, in order to show it, let us assume that

Q1 = U

[

X Y

Z S

]

U∗

satisfies the same properties as Q. So, from
[

TΣK TΣL

O O

]

=

[

X Y

Z S

] [

ΣK ΣL

O O

]

,

we have the following system

TΣK = XΣK, (20)

TΣL = XΣL, (21)

O = ZΣK, (22)

O = ZΣL. (23)

By (20), X = T , and by (22), Z = O. Since Q1 is hermitian, we obtain Y = O,
and since rk(A) = rk(T ) = rk(Q1), we get S = O. Hence, Q1 = Q.

The condition A2
©#

≤ B2 has been studied in [4]. More information about the
remaining powers is obtained in the next result.

Lemma 19 Let A,B ∈ Cn×n matrices of indices at most 1 such that A
©#

≤ B.
Then the following conditions are equivalent.

13



(a) AB = BA.

(b) A2
©#

≤ B2.

(c) Aj
©#

≤ Bj for every integer j ≥ 2.

Proof. (a) ⇐⇒ (b) It was given in [4, Theorem 9].
(c) =⇒ (b) It is trivial.
(a) =⇒ (c) The B = O case is trivial. Assume B 6= O with B written as

in (1). By Theorem 16, there exists an idempotent hermitian matrix T ∈ Cr×r

such that A has the form (5) and TΣKT = TΣK. Simple computations show
that from AB = BA we can deduce TΣK = ΣKT . So, for every positive integer
j, we have

Aj = U

[

T (ΣK)j T (ΣK)j−1ΣL

O O

]

U∗.

Taking

Q = U

[

T O

O O

]

U∗

we get Q2 = Q = Q∗, Aj = QBj , AjQ = BjQ, and rk(Aj) = rk(Q). Now,

Theorem 17 leads to Aj
©#

≤ Bj .
When A is an EP matrix the following result is obtained.

Proposition 20 Let B ∈ Cn×n be a non-zero matrix written as in (1) that has
core inverse. The following conditions are equivalent:

(a) There exists an EP matrix A ∈ Cn×n such that A
©#

≤ B.

(b) There is an idempotent hermitian matrix T ∈ Cr×r such that

A = U

[

TΣK O

O O

]

U∗

with ΣKT = TΣK.

Proof. (a) =⇒ (b) Applying Theorem 16 we have that there exists an idempo-
tent hermitian matrix T ∈ Cr×r such that A has the form (5) with TΣKT =

ΣKT . Since A is EP , by Theorem 2 in [4] we have A
©#

= A#. Equating the

expressions for A# and A
©#

given in Lemma 3 and Lemma 12, respectively, we
get

(TΣK)#TΣ(TΣ)† = (TΣK)# (24)

(TΣK)#K−1L = O. (25)

It is clear that (25) reduces to TΣL = O and then A has the required form.
By Lemma 14, TΣ(TΣ)† = T . Then, from (24) we get (TΣK)#T = (TΣK)#.

14



Pre-multiplying this last equation by (TΣK)2 we obtain TΣKT = TΣK. Since
TΣKT = ΣKT , the equality ΣKT = TΣK holds.

(b) =⇒ (a) It follows applying Theorem 16 and using the fact that (TΣK)# =
(ΣK)−1T = (TΣK)† (see Lemma 3).

In [14], it was proved that A
©#

≤ B =⇒ A
−

≤ B and A ≤s B (where A ≤s B

indicates the space pre-order given by R(A) ⊆ R(B) and R(A∗) ⊆ R(B∗)).
However, the converse is not valid as we can check, for example, by means of
the following matrices

A =

[

1 1
0 0

]

, B = I2.

It is easy to see that A
−

≤ B, A ≤s B but A
©#

≤ B does not hold.
We have the following:

Theorem 21 Let A,B ∈ Cn×n be matrices of indices at most 1. If A ≤s B

and A
©#

= B
©#

then A
©#

≤ B.

Proof. It can be shown that A ≤s B is equivalent to A = AB
©#

B = BB
©#

A.

So, AA
©#

= AB
©#

implies AA
©#

B = AB
©#

B = A. Now pre-multiplying by A
©#

,

we have A
©#

B = A
©#

A. Similarly, A
©#

A = B
©#

A implies BA
©#

A = BB
©#

A = A.

Now post-multiplying by A
©#

, we have BA
©#

= AA
©#

.

Example 22 Consider

A =

[

1 1
0 0

]

and B =

[

1 1
0 1

]

.

Then

A
©#

=

[

1 0
0 0

]

and B
©#

=

[

1 −1
0 1

]

.

It can be seen that A
©#

≤ B but A
©#

6= B
©#

, even A ≤s B holds. Thus, the
converse in Theorem 21 is not true.

The following example shows that if A
©#

= B
©#

; it may not follow that A
©#

≤ B.

Example 23 Consider

A =

[

1 1
0 0

]

and B =

[

1 0
0 0

]

.

It can be seen that

A
©#

=

[

1 0
0 0

]

= B
©#

but the inequality A
©#

≤ B does not hold. Therefore, A
©#

= B
©#

does not imply

A
©#

≤ B.

15



When the converse in Theorem 15 is valid? Next result gives some informa-
tion.

Theorem 24 Let A,B ∈ Cn×n be matrices of indices at most 1 such that

A
♦

≤ B. Then A
©#

≤ B if any of the following two items (a) or (b) holds:

(a) A is EP and BA†B = A.

(b) B∗A is hermitian and A2 = BA.

Proof. (a) By Theorem 2 in [2], A
♦

≤ B if and only if A†
−

≤ B†. So, by Theorem

5.2.10 in [15], A†
∗

≤ B†. Now, Corollary 5.2.9 in [15] assures that A
∗

≤ B. Since

A is EP , A
©#

≤ B holds.
(b) Premultiplying AA∗A = AB∗A by A† and taking conjugate transpose

we get A∗AA†A = B∗AA†A, that is A∗A = B∗A = A∗B, which yields A ∗≤ B.

Now, A2 = BA implies A
©#

≤ B.
We close this section studying the reverse order law for the core generalized

inverse. It was shown that this law does not hold in general [5]. Some previous
results were given in [12] in the setting of EP matrices.

Theorem 25 Let A,B ∈ Cn×n be matrices of indices at most 1 with A
©#

≤ B.
Suppose that A, B and T satisfy the conditions given in Theorem 16. Then the
following equivalences hold.

(a) (AB)
©#

= B
©#

A
©#

if and only if (T (ΣK)2)#T = (ΣK)−2T .

(b) (BA)
©#

= A
©#

B
©#

if and only if T = ΣK(ΣKTΣK)#ΣKTΣ(ΣKTΣ)†ΣK.

Proof. By Theorem 16, there exists an idempotent hermitian matrix T ∈ Cr×r

such that A has the form (5) with T = ΣK(TΣK)#T . By Lemma 12, Lemma
14 and Lemma 2 in [4] we have

A
©#

= U

[

(TΣK)#T O

O O

]

U∗ and B
©#

= U

[

(ΣK)−1 O

O O

]

U∗.

Now, condition T = ΣK(TΣK)#T yields

B
©#

A
©#

= U

[

(ΣK)−1(TΣK)#T O

O O

]

U∗ = U

[

(ΣK)−2T O

O O

]

U∗. (26)

On the other hand, applying again Lemma 12 to

AB = U

[

(TΣK)(ΣK) (TΣK)(ΣL)
O O

]

U∗

and using that Lemma 14 leads to TΣKΣ(TΣKΣ)† = T , we have

(AB)
©#

= U

[

(T (ΣK)2)#T O

O O

]

U∗. (27)
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Now, the equivalence in (a) follows immediately from (26) and (27). Similar
computations yield (b).

Corollary 26 Let A,B ∈ Cn×n be matrices of indices at most 1. If A
©#

≤ B and

AB2 = B2A then (AB)
©#

= B
©#

A
©#

.

Proof. Following the notation used in Theorem 25, we can observe that

AB2 = U

[

T (ΣK)3 T (ΣK)2ΣL

O O

]

U∗

and

B2A = U

[

(ΣK)2TΣK (ΣK)2TΣL

O O

]

U∗.

Since ΣK is nonsingular, AB2 = B2A if and only if T (ΣK)2 = (ΣK)2T . Then,

it can be proved that (T (ΣK)2)# = (ΣK)−2T holds and so (AB)
©#

= B
©#

A
©#

.

Notice that the converse in Corollary 26 is false. Matrices A and B exhibid
in Examples 22 and 23 provide two counterexamples. While in the first case,

condition A
©#

≤ B is fulfilled, in the second one it does not hold.

Notice that, in particular, if A
©#

≤ B and AB = BA then A
©#

B
©#

= B
©#

A
©#

.

5 When is the property B − A
©#

≤ B valid?

A property that was studied under minus, star, and sharp partial orders is the
following: A is below B under one of these partial orders if and only if B − A

is below B under the same order. In [4], the authors showed that A
©#

≤ B ;

B−A
©#

≤ B for the core partial order. It is also easy to see that B−A
©#

≤ B does

not imply A
©#

≤ B as it can be checked if we take, for example,

A =

[

0 0
0 1

]

and B =

[

1 1
0 1

]

.

We can still give some more information.

Proposition 27 Let A,B ∈ Cn×n be two matrices such that A,B, and B − A

have core inverses and let B be a non-zero matrix written as in (1) that satisfies

A
©#

≤ B where

A = U

[

TAΣK TAΣL

O O

]

U∗

and the idempotent hermitian matrix TA satisfies TAΣKTA = ΣKTA as Theo-
rem 16 asserts. Then the following statements are equivalent.
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(a) B − A
©#

≤ B.

(b) TAΣK = ΣKTA.

Proof. Under the assumptions and the above notations it is clear that

B − A = U

[

(I − TA)ΣK (I − TA)ΣL

O O

]

U∗. (28)

On the other hand, by Theorem 16, the condition B − A
©#

≤ B is equivalent to
the existence of an idempotent hermitian matrix TB−A ∈ Cr×r such that

B − A = U

[

TB−AΣK TB−AΣL

O O

]

U∗ (29)

and TB−AΣKTB−A = ΣKTB−A. Comparing expressions (28) and (29) we
obtain TB−A = I − TA. So, (I − TA)ΣK(I − TA) = ΣK(I − TA), which is
equivalent to TAΣKTA = TAΣK. Since TAΣKTA = ΣKTA, we have shown

that B − A
©#

≤ B is equivalent to TAΣK = ΣKTA.
Taking into account that A = B − (B − A) we can immediately state the

following result.

Proposition 28 Let A,B ∈ Cn×n be two matrices such that A,B and B − A

have core inverses and let B be a non-zero matrix written as in (1) that satisfies

B − A
©#

≤ B where

B − A = U

[

TB−AΣK TB−AΣL

O O

]

U∗

and the idempotent hermitian matrix TB−A satisfies TB−AΣKTB−A = ΣKTB−A

as Theorem 16 asserts. Then the following statements are equivalent.

(a) A
©#

≤ B.

(b) TB−AΣK = ΣKTB−A.

Let A,B ∈ Cn×n be two matrices that have core inverse such that A
©#

≤ B.
Without loss of generality, we can assume that A is written as

A = UA

[

ΣAKA ΣALA

O O

]

U∗
A (30)

where UA,ΣA,KA, and LA satisfy the conditions in the Hartwig-Spindelböck
decomposition. Then, applying Lemma 3 in [4] we have

B = UA

[

ΣAKA ΣALA

O Z

]

U∗
A, (31)

for some matrix Z which has a core inverse. Notice that this matrix Z is unique.
Under this notation we can state the following result.
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Lemma 29 Let A,B ∈ Cn×n be two matrices that have core inverse such that

A
©#

≤ B written as in (30) and (31), respectively. Then B − A
©#

≤ B if and only
if LAZ = O.

Proof. Under the above notation, we get

B − A = UA

[

O O

O Z

]

U∗
A.

Since (B − A)
©#

= (B − A)#(B − A)(B − A)†, we have

(B − A)
©#

= UA

[

O O

O Z#ZZ†

]

U∗
A = UA

[

O O

O Z
©#

]

U∗
A.

Now, it is easy to see that the equalities (B − A)
©#

(B − A) = (B − A)
©#

B,

(B−A)(B−A)
©#

= B(B−A)
©#

are equivalent to LAZ
©#

= O, that is LAZ# = O.
Hence, B − A ≤ ©#B if and only if LAZ = O.

We remark that if A is EP (that is LA = O) then A
©#

≤ B implies B−A
©#

≤ B.

Lemma 30 Let A,B ∈ Cn×n be such that A and B−A are EP matrices. Then

A
©#

≤ B if and only if B − A
©#

≤ B.

Proof. By Theorem 7 in [4], A
©#

≤ B if and only if A
∗

≤ B since A is EP . Now,

Theorem 5.2.3 in [15] asserts the equivalence of A
∗

≤ B and B −A
∗

≤ B. Again,

taking into account that B −A is EP , B −A
∗

≤ B is equivalent to B −A
©#

≤ B.

In [4], it is seen that neither A
©#

≤ B implies A
#

≤ B nor A
#

≤ B implies A
©#

≤ B

are valid in general. Despite this, from Theorem 4, Theorem 5, Theorem 16,
Proposition 27 and Proposition 28, the following result is true.

Lemma 31 Let A,B ∈ Cn×n be matrices such that A and B − A have indices
at most 1. The following statements hold.

(a) A
©#

≤ B and AB = BA if and only if A
#

≤ B and A∗A = A∗B.

(b) A
©#

≤ B and AB∗ hermitian if and only if A
∗

≤ B and A2 = BA.

(c) If A
©#

≤ B then B − A
©#

≤ B is equivalent to A
#

≤ B.

(d) If B − A
©#

≤ B then A
©#

≤ B is equivalent to B − A
#

≤ B.

Even more, for EP matrices we can state the following result.

Corollary 32 Let A,B ∈ Cn×n be two matrices such that A and B − A are
EP . Then the following statements are equivalent.
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(a) A
©#

≤ B.

(b) A
∗

≤ B.

(c) A
#

≤ B.

(d) B − A
©#

≤ B.

(e) B − A
∗

≤ B.

(f) B − A
#

≤ B.

If any of the equivalent conditions (a)-(f) holds then A
♦

≤ B.

Proof. It is a direct consequence of Lemma 30 and Theorem 7 in [4].
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