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Abstract. A structured cylindrical scatterer with low-frequency resonances in
both the effective bulk modulus and the dynamical mass density is designed
and characterized. The proposed scattering unit is made of a rigid cylinder
surrounded by a fluid-like shell embedded in a two-dimensional waveguide of
height less than the length of the cylindrical scatterer. It is demonstrated that
the acoustic metamaterials based on this building unit have negative acoustic
parameters in a broad range of frequencies. It is also shown that double-negative
behavior can be tailored by adjusting the dimensions and properties of the
materials forming the structured scattering unit.
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1. Introduction

Acoustic metamaterials have become a topic of intensive research within the last few years [1].
These artificial structures are essentially periodic composites of sonic scatterers such that,
for wavelengths larger than the periodicity of the building blocks, they behave like effective
media with unusual acoustic parameters, such as anisotropic mass density [2–5], negative bulk
modulus [6–8], negative mass density [9, 10] or both of them simultaneously [11–15]. There
are many potential applications of these extraordinary materials, such as acoustic cloaking
shells [16, 17], radial wave crystals [18, 19], subwavelength resonators [5], hyperlenses [20],
gradient index lenses [21, 22], superlenses [23] and many other devices proposed within the
framework of transformation-based solutions [24, 25].

For airborne propagation, it has been shown that anisotropic fluid-like metamaterials
are relatively easy to fabricate [3–5]. Metamaterials with negative bulk modulus have also
been experimentally characterized [6–8]. However, the fabrication of negative mass density
metamaterials is not as simple, since negative mass is obtained by using complex structures,
most of them containing membranes [9, 10, 26]. Consequently, structures exhibiting double-
negative behavior are still scarce although the conditions for making them are relatively well
established.

It was recently shown that an effective medium with negative mass density can be obtained
using a cluster of scatterers or shells softer than the background [27], i.e. with both a mass
density and a speed of sound smaller than that of the background. These properties are
easy to obtain for an aqueous background, since many natural materials are acoustically soft
when embedded in water. However, in the case of an air environment, where almost all the
solid materials are acoustically rigid, the required properties are difficult to obtain and robust
solutions are still needed.

The aim of this work is to demonstrate that metamaterials with negative mass or double-
negative behavior for airborne sound propagation can be engineered by simple scatterers not
involving membranes. On the one hand, the metamaterials proposed here make use of fluid-
like metamaterials which have a speed of sound smaller than that in air but a larger effective
mass. These properties are unusual for natural fluids but can be engineered at subwavelength
frequencies by using lattices of rigid rods in air [28–30]. On the other hand, metamaterials with
an effective mass density smaller than that of air can be obtained by considering the case of
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sound propagation inside two-dimensional (2D) waveguides. Effectively, it has been shown that
a step discontinuity or a cavity in a 2D waveguide behaves as a scatterer with a mass density
smaller than that of the background. This effect has recently been used for the realization of
anisotropic fluid-like metamaterials [3, 5].

The two effects mentioned above are combined in an acoustically soft scatterer consisting
of a cavity drilled in a 2D waveguide where a rigid core is surrounded by a shell made of a
cluster of small rigid cylinders. Note that this shell acts as a metamaterial with a sound speed
smaller than air, while the cavity produces a dynamical density smaller than air. It is found that
this complex scatterer can be used as a building block for realization of double-negative acoustic
metamaterials for airborne propagation.

This paper is organized as follows. In section 2 the scattering unit is studied in the low-
frequency limit and the effective parameters are obtained by solving the scattering problem
of an isolated unit embedded in a 2D waveguide. Although the scattering problem is strictly
three dimensional, we name it ‘quasi-2D’ because we only consider waves with wavevectors
contained in the XY-plane. In spite of this, the third direction (the z-axis) is taken into account
since the unit penetrates one of the surfaces defining the waveguide. Afterwards, in section 3,
the problem for a lattice of scattering units is solved. Also, the effective parameters of the
resulting quasi-2D metamaterial are studied as a function of the geometrical dimensions of the
structured units in order to find the dimensions where both the bulk modulus and the density
are simultaneously negative. Finally, the results are summarized in section 4. The appendix
describes the procedure to obtain the T matrix of the structured unit proposed here.

2. Effective parameters of the structured scatterer: Ba(ω) and ρa(ω)

The structures under study are schematically depicted in figure 1(a). They consist of arrays of
cylindrical scatterers embedded in a 2D waveguide with height h and the cylinders penetrate a
length L into the upper surface of the waveguide. Each individual scatterer has an inner structure
that is described in figure 1(b). Each scatterer is made by drilling a cylindrical cavity of radius
Rb and depth L in one of the two acoustically rigid surfaces defining a 2D waveguide. The cavity
is then filled with a rigid cylinder of radius Ra < Rb and surrounded by a fluid-like shell that
must have a mass density ρs > ρb and sound speed cs < cb, where ρb and cb are the static mass
density and speed of sound, respectively, of the background (air in this work). It is interesting to
stress that there are six parameters that can be adjusted in order to tailor the acoustic properties
of the designed unit: Ra, Rb, L , h, cs and ρb.

The wavelength inside the proposed shell is shorter than that of the background since
cs < cb. Then, although outside the scatterer the sound wavelength can be much larger than Ra,
the pressure field inside the shell can exhibit oscillatory behavior, leading to a set of resonances
responsible for the metamaterial behavior, as has already been discussed in [27, 31].

If the cavity in figure 1 does not exist (i.e. L = 0) the effective density of the structured
unit is larger than that of the background, but can be made smaller just using L > 0 as explained
below.

The possibility of engineering mass densities smaller than that of air has been proved
in [3, 5], where it was shown that a hole with depth L in a 2D air waveguide behaves like a
sound scatterer with an equal speed of sound and mass density given by ρhole ≈ h/(h + L)ρ0,
h being the height of the waveguide and L the hole depth. So, if the cavity is filled with a fluid
of density ρs and a speed of sound cs, the full system will behave as a scatterer with mass density
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Figure 1. (a) Schematic view of the structures under study. They consist of
an array of cylindrical scatterers embedded in a 2D waveguide. Note that the
scatterer units penetrate the upper part of the waveguide. (b) Scheme of an
individual scatterer. It is made of a cylindrical cavity of length L and radius
Rb that is drilled into the 2D waveguide with height h (region I). An acoustically
rigid cylinder of radius Ra (black cylinder) with length L + h is placed at the
center of the cavity and is surrounded by a fluid-like shell (region II) with
dynamical mass density ρs > ρb and effective speed of sound cs < cb, where
ρb and cb are the static density and the phase velocity, respectively, of the
background fluid in region I.

given by

ρa ≈
h

h + L
ρs. (1)

This expression indicates that increasing L reduces the effective density of the fluid, obtaining
then a sound scatterer for airborne propagation in which both the speed of sound and the
density are smaller than those of the background. Therefore, this structure is a good candidate
for showing double-negative parameters. This model for the effective density of the proposed
scatterer unit is only qualitative and should be supported with better predictions involving the
solution of the complete scattering problem as is shown below.

In the framework of multiple scattering theory, the T matrix has a complex magnitude
that is frequency dependent and relates the scattered field by the sonic scatterer to the incident
acoustic field. It was shown in [27] that for the case of a cylindrical scatterer with subwavelength
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Figure 2. Frequency dependence (in reduced units) of the effective bulk modulus
(left panel) and the dynamical mass density (right panel) of the shell depicted in
figure 1 with parameters h = Rb, L = Rb, Ra = 0, 5Rb, ρs = 4ρb and cs = 0.3cb.
The colored bands define the frequencies with negative values.

dimension, this matrix allows derivation of the frequency-dependent bulk modulus Ba and mass
density ρa, which take the following expressions:

Ba(ω)/Bb =
k2

b R2
b

2
ln kb Rb −

1

2
kb Rbχ0, (2a)

ρa(ω)/ρb =
χ1

kb Rb
, (2b)

where Bb and ρb are the parameters of the background, kb = ω/cb is the background’s
wavenumber and Rb is the scatterer’s external radius. Finally, χ0 and χ1 are quantities whose
explicit expressions are obtained from the T matrix and are displayed in the appendix.

The typical behavior of the effective parameters Ba(ω) and ρa(ω) is depicted in figure 2 for
the scattering unit depicted in figure 1 with L = h = Rb, ρs = 4ρb and cs = 0.3cb. Note how the
parameters, which are given in normalized units, exhibit a complex frequency response due to
the fact that inside the fluid-like shell (region II) the pressure field oscillates and, consequently,
resonant processes take place. For example, figure 3(a) shows the pressure pattern calculated
at the equatorial plane of the waveguide for the frequency 0.06 (in reduced units), where the
bulk modulus is negative. This field represents a monopolar resonance that is responsible for
the negative value [11]. On the other hand, figure 3(b) represents the pressure pattern calculated
at the frequency 0.12, where the density takes a negative value. In this case the field pattern has
the shape of a dipolar resonance, which explains the negative value of the effective density [11].

If these scattering units are employed as building blocks of lattices with subwavelength
separation, the resulting effective medium will present negative acoustic parameters and,
therefore, it represents a type of quasi-2D acoustic metamaterial. The metamaterial is called
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Figure 3. (a) Pressure map calculated at the frequency 0.06 (in reduced units)
giving a negative value of the bulk modulus (see the left panel in figure 2).
(b) Pressure map calculated at the frequency 0.12 (in reduced units) giving a
negative dynamical mass density (see the right panel in figure 2). The opening of
the cavity is centered at (0, 0) and has a radius of 1 cm.

quasi-2D because its building unit contains a cavity of length L drilled in one of the boundary
surfaces defining the 2D waveguide. The parameters depend on the different dimensions of
the structured unit (Rb, Ra, h and L) as well as the material parameters of the shell (ρs, cs).
Analytical expressions of metamaterial parameters are not easy to obtain, but the next section
shows that the results can be depicted in phase diagram plots where the conditions in which
negative values appear are clearly shown.

3. Effective parameters of the acoustic metamaterial: B∗(ω) and ρ∗(ω)

The effective parameters Ba(ω) and ρa(ω) of the structured unit studied above are employed
here to derive the effective parameters for the metamaterials based on lattices using this unit as
the building block.

Let us consider a 2D isotropic lattice (i.e. a hexagonal or square lattice) in which the
fraction of volume occupied by the cylinders is f . Following the procedure described in [27],
the effective parameters can be derived using the following expressions:

1

B∗(ω)
=

1 − f

Bb
+

f

Ba(ω)
, (3a)

ρ∗(ω) =
(1 + f )ρb + (1 − f )ρa(ω)

(1 − f )ρb + (1 + f )ρa(ω)
, (3b)
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where the terms of multiple scattering have not been included since we will consider
metamaterials based on isotropic lattices with low f . More complicated arrangements, such
as non-isotropic lattices and large f , can also be studied but these effects are beyond the scope
of this work. For a detailed discussion of these effects on the acoustic parameters, see [27].

The resonances within the cavity shell generate effective acoustic parameters showing a
strong oscillation passing through zero, between very negative values and very positive values.
In this work, we are interested only in regions where the parameters change sign, since the
sign defines the propagation regime in the metamaterial (see figure 3 in [27]). Note that the
propagation is controlled by the phase velocity, which is given by

c∗(ω) = ±

√
B∗(ω)

ρ∗(ω)
. (4)

For example, when both the parameters, B∗(ω) and ρ∗(ω), are simultaneously positive or
negative, the speed of sound is positive, or negative, respectively. However, when just one
parameter is negative and the other is positive the resulting effective sound speed is purely
imaginary, i.e. evanescent, and there is no propagation.

To study the sign of the effective parameters, we present the results in phase diagram plots,
where the changes in sign of the effective parameters are deployed as a function of the frequency
and a selected physical dimension of the structured scatterer (see figure 1). This form of data
representation is especially useful when the magnitudes of interest depend on many parameters.
See [30, 32] showing examples of how phase diagrams are already employed in acoustics to
characterize magnitudes depending on several parameters.

In particular, we report two examples of phase diagrams: one in which Rb and Ra are kept
constant, and we look for changes in sign as a function of the ratio L/h; and another in which
this ratio is fixed and we look for changes in sign as a function of Ra/Rb. In both examples
the waveguide height is set to h = 0.44a, where a is the lattice constant of the hexagonal array
in which the metamaterial units are distributed. This small value of h is necessary in order to
enhance the scattering effects of the fluid-like shell, and reinforces the quasi-2D nature of the
system analyzed. Also, the external radius of the cavity is the same in the two cases, being
Rb = 0.44a = h. This value of Rb is chosen so that f is large enough to observe scattering
effects, but small enough to neglect the multiple scattering correction to the effective parameters.

In the two examples the cavity shell is filled with a fluid-like material of acoustic mass
density cs = 0.3cb and ρs = 4ρb. These values are not chosen at random; they correspond to
the effective parameters that can be achieved by considering subwavelength arrangements of
cylindrical scatterers [28, 29, 32, 33]. Thus, it can be said that the fluid-like shell is, in fact, an
acoustic metafluid that can be engineered using a cluster of small cylindrical rods.

3.1. Phase diagrams in the plane ω–L/h

Figure 4 shows the phase diagrams for the effective bulk modulus (left panel) and density (right
panel) for the case when the radius of the central rigid cylinder is Ra = 0.5Rb. The sweep is
made in the L/h ratio and the colored regions represent the values at which acoustic parameters
have negative signs.

The left panel of figure 4 demonstrates that negative bulk modulus can be obtained above
the cutoff value L/h & 0.5, since above this cutoff the cavity acts as a Helmholtz resonator [8].
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Figure 4. Colored regions give the values ω–L/h where the effective bulk
modulus (left panel) and the effective mass density (right panel) are negative.
Dashed lines enclose the regions with negative bulk modulus for comparison
purposes; the overlaps with the negative mass density regions define the
conditions where both parameters are negative simultaneously.

Figure 5. Effective bulk modulus (left panel) and effective mass density (right
panel) as a function of the frequency for the structure analyzed in figure 4. These
results correspond to a cut through the line L = 3h in the phase diagram seen in
figure 4. The horizontal dashed lines define the level zero of the corresponding
acoustic parameter.

It is also observed that the frequency band at which this negative sign appears gets smaller as
we increase the length L , and additional bands with negative modulus appear. This is due to the
resonances of the cavity, whose number increases as we extend its length, acting as a tube [8].
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The right panel of figure 4 shows that the negative mass density also appears above a certain
cutoff value of L/h, which is smaller now. The negative behavior is due to the fact that the cavity
is filled with a metafluid with phase velocity cs = 0.3cb, which in principle would be enough to
present negative mass density by itself. However, the coupling between the shell cavity and the
outside sound is not efficient since the mass density of the fluid shell is ρs = 4ρb, which is too
high. The coupling is possible because the effect of L is to decrease the apparent mass density
of the metafluid without changing the speed of sound. So, for small values of L/h we quickly
have an efficient coupling and therefore a negative effective mass density. In comparison with
the case of effective modulus, it can be observed that now the regions with negative values are
narrower in frequency. However, as we increase the depth L , more resonances appear and more
regions of negative inertia are evolving as in the case of the effective modulus.

The right panel of figure 4 also shows a dashed line that encloses the region with negative
bulk modulus depicted in the right panel. The overlap with the red regions defines the conditions
in which we expect double-negative behavior, which is easily determined from these phase
diagram plots. Note that a relatively broad frequency region with double-negative parameters
should be obtained by using cavities with 0.636 L/h 6 1.03. Double-negative parameters
within a narrow frequency region should be obtained by using 3.006 L/h 6 3.50.

Figure 5 shows the frequency-dependent effective bulk modulus (left panel) and mass
density (right panel) extracted from figure 4 at L/h = 3, which is defined by the vertical red
line in the phase diagram. We see that the effective parameters present regions of negativity
according to the calculated phase diagram.

3.2. Phase diagrams in the plane ω–Ra/Rb

Figure 6 shows the phase diagrams for the effective bulk modulus (left panel) and density (right
panel) for the same metamaterial studied in figure 4 but now the length is fixed at L = h, and the
sweeping is done in the ratio Ra/Rb. Now the effective medium is more stable, since the number
of resonances is only one and does not increase (note that this number is essentially a function
of L). We can observe that as the ratio Ra/Rb →1, which means that the structured scatterer
is becoming just a rigid cylinder, the negative behavior of the effective medium disappears, as
is expected. We can also see that, although the frequency region of negative modulus varies
slowly as a function of Ra/Rb, the region of negative density appears at a lower frequency
for Ra/Rb ≈ 0.7. This should be the appropriate working region since the lower the frequency
where the metamaterial behavior appears, the better the effective medium approximation works.
The overlap between the region with negative modulus (which is represented by the dashed line
in the right panel) and that with negative density is obtained for values 0.45 6 Ra/Rb 6 0.88,
which should be used to construct the sample exhibiting negative refraction.

Figure 7 shows the effective parameters for the system described in figure 6 but at
Ra = 0.7Rb, showing perfect agreement between the region of negative behavior for the bulk
modulus and the mass density. In both plots some sharp resonances are observed at the
reduced frequency of 0.134 (in the left panel) and at 0.218, 0.226 and a few more above
(in the right panel). These peaks correspond to resonances of higher order that appear in the
computation of the T matrix, but they are too sharp to be observed in actual structures due to
dissipation.

It is important to remark that more phase diagrams can be generated by changing the
acoustic parameters (mass density and modulus) of the shell, as well as its filling fraction, radius
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Figure 6. Colored regions define the values ω–Ra/Rb where the effective bulk
modulus (blue region in the left panel) and the effective mass density (green
region in the right panel) are negative. Dashed lines in the right panel enclose
the region with negative bulk modulus for comparison purposes; the overlapping
regions define the conditions in which double-negative parameters are expected.

Figure 7. Frequency dependence of the effective bulk modulus (left panel) and
dynamical mass density (right panel) for the structure studied in figure 6. These
results correspond to a cut of the phase diagram along the line Ra = 0.7Rb. The
horizontal dashed lines are a guide to the eyes, indicating the value zero for the
corresponding acoustic parameter.

of the rigid cylinder, height of the cavity, etc. The degrees of freedom of this apparently simple
scattering unit make it possible to design many types of 2D acoustic metamaterials. However,
at the same time, this large number of degrees of freedom is the reason why these structures are
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difficult to study. At any rate, we have shown that using this phase-diagram representation is a
useful tool for determining the physical dimensions required to obtain the desired behavior.

4. Summary

In summary, we have introduced a new type of scattering unit for airborne sound propagating
in a 2D waveguide that can be used for the design of either single- or double-negative
acoustic metamaterials. The scatterer consists of a cavity drilled in a waveguide with a rigid
cylinder inside it, with the rest of the cavity filled with a fluid-like material having a phase
velocity smaller than air. This structured scatterer is especially suitable for designing acoustic
metamaterials with negative parameters for airborne sound, but it can also be used as a building
block feasible for underwater acoustics.

It has been reported that acoustic parameters can be tailored with a large number of degrees
of freedom, such as the filling fraction, waveguide’s height, cavity depth, etc, which makes the
problem difficult to analyze. To overcome this difficulty, the results have been displayed in
phase-diagram plots, which have become an extremely helpful tool for the design of negative
metamaterials based on building units with many variables.

Although the practical realization of single- or double-negative acoustic metamaterials
with low losses is challenging for airborne sound, the structured scattering unit proposed here
is a good candidate for achieving that goal. We expect that the work presented here will
motivate further experimental research supporting its predictions either for airborne sound or
for underwater acoustics using similar units.
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Appendix. The T matrix of a cylindrical scatterer consisting of a fluid shell surrounding
a central rigid cylinder

This appendix is devoted to solving the scattering problem defined by the scattering unit
depicted schematically in figure 1.

The pressure field in region I, which corresponds to the air surrounding the cylindrical
scatterer (i.e. r > Rb), can be expanded as a linear combination of the solutions for the empty
cavity, 8I

n(z), as follows:

P I(r, θ, z; ω) =

∞∑
n=0

∞∑
q=−∞

[Aqn Jq(k
I
nr) + Bqn Hq(k

I
nr)] eiqθ8I

n(z), (A.1)

where the coefficients Aqn and Bqn represent the incident and scattered fields, respectively. On
the other hand, 8I

n(z) are normalized functions accomplishing the condition that the normal
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velocity is zero at the bottom and upper surface walls, i.e. ∂8I
n(z)
∂z = 0, ∞ at z = 0 and h,

respectively. In other words,

8I
n(z) =

√
εn

h
cos

(nπ

h
z
)

, εn =

{
1 if n = 0,

2 if n 6= 0.
(A.2)

Finally, kI
n in equation (A.1) is the transverse wavenumber given by

kI
n =

√(
ω

cb

)2

−

(nπ

h

)2
, (A.3)

where n is an integer that can take values n =0, 1, . . . , ∞. We are interested here in the single-
mode propagation regime, i.e. when kI

n has only a real part and therefore n = 0. Note that
kI

n with only an imaginary part corresponds to evanescent solutions, which do not propagate
through the waveguide but that must be considered for the efficient computation of the scattering
coefficients.

For region II, where Ra 6 r 6 Rb, the field inside the fluid shell can be expanded as

P II(r, θ, z) =

∞∑
m=0

∞∑
q=−∞

Cqm

[
Jq(k

II
mr) −

J̇ q(kII
m Ra)

Ẏ q(kII
m Ra)

Yq(k
II
mr)

]
eiqθ8II

m(z), (A.4)

where the normalized functions 8II
m(z) are now

8II
m(z) =

√
εm

h + L
cos

( mπ

h + L
z
)

, (A.5)

which satisfies the boundary condition ∂ P II/∂r = 0 at z =0, h + L . The function P II also verified
the boundary condition at the surface of the rigid cylinder r = Ra.

The transverse wavenumber is now

kII
m =

√(
ω

cs

)2

−

( mπ

h + L

)2
, m = 0, 1, . . . ,∞. (A.6)

Now, we impose the continuity conditions of fields P I P II at the surface r = Rb. The
pressure continuity is obtained by projecting first on the waveguide modes and afterwards
integrating from z = 0 to h:∫ h

0
P I(r, θ, z)|r=Rb8

I
k(z) dz =

∫ h

0
P II(r, θ, z)|r=Rb8

I
k(z) dz. (A.7)

For the continuity of the normal component of the particle velocity, we project with the modes
in the cavity and integrate from z = 0 to h + L , leading to

1

ρb

∫ h+L

0

∂ P I(r, θ, z)

∂r

∣∣∣∣
r=Rb

8II
k (z) dz =

1

ρs

∫ h+L

0

∂ P II(r, θ, z)

∂r

∣∣∣∣
r=Rb

8II
k (z) dz. (A.8)

After integrating the fields and using the orthogonality properties of the angular functions,
equations (A.7) and (A.8) become, respectively,

Aqk Jq(k
I
k Rb) + Bqk Hq(k

I
k Rb) =

∞∑
m=0

Cqm

[
Jq(k

II
m Rb) −

J̇ q(kII
m Ra)

Ẏ q(kII
m Ra)

Yq(k
II
m Rb)

]
Gkm (A.9)
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and

1

ρb

∞∑
n=0

[
Aqn J̇ q(k

I
n Rb) + Bqn Ḣ q(k

I
n Rb)

]
Gnk =

1

ρs
Cqk

[
J̇ q(k

II
k Rb) −

J̇ q(kII
k Ra)

Ẏ q(kII
k Ra)

Ẏ q(k
II
k Rb)

]
.

(A.10)

The coefficients Cqk obtained from equation (A.10) as follows:

Cqk =
ρs

ρb

∞∑
n=0

 J̇ q(kI
n Rb)Gnk[

J̇ q(kII
k Rb) −

J̇ q (kII
k Ra)

Ẏ q (kII
k Ra)

Ẏ q(kII
k Rb)

] Aqn +
Ḣ q(kI

n Rb)Gnk[
J̇ q(kII

k Rb) −
J̇ q (kII

k Ra)

Ẏ q (kII
k Ra)

Ẏ q(kII
k Rb)

] Bqn

(A.11)

and are inserted into equation (A.9) to obtain, after some tedious algebra, the following relation:

Aqk Jq(k
I
k Rb) −

∞∑
m=0

ρs

ρb

∞∑
n=0

 J̇ q(kI
n Rb)Jq(kII

m Rb)GkmGnm[
J̇ q(kII

m Rb) −
J̇ q (kII

m Ra)

Ẏ q (kII
m Ra)

Ẏ q(kII
m Rb)

] Aqn

= −[Bqk Hq(k
I
k Rb)−

∞∑
m=0

ρs

ρb

∞∑
n=0

 Ḣ q(kI
n Rb)Jq(kII

m Rb)GkmGnm[
J̇ q(kII

m Rb)−
J̇ q (kII

m Ra)

Ẏ q (kII
m Ra)

Ẏ q(kII
m Rb)

] Bqn

. (A.12)

This equation can be cast in matrix form as∑
m

(Hq)km Bqm =

∑
n

(Jq)kn Aqn (A.13)

with

(Jq)kn ≡ Jq(k
I
n Rb)δkn −

ρs

ρb

∑
m

J̇q(kI
n Rb)GkmGnm Jq(kII

m Rb)

J̇ q(kII
m Rb) −

J̇ q (kII
m Ra)

Ẏ q (kII
m Ra)

Ẏq(kII
m Rb)

, (A.14)

(Hq)kn ≡ −

Hq(k
I
n Rb)δkn −

ρs

ρb

∑
m

Ḣq(kI
n Rb)GkmGnm Jq(kII

m Rb)

J̇ q(kII
m Rb) −

J̇ q (kII
m Ra)

Ẏ q (kII
m Ra)

Ẏq(kII
m Rb)

 , (A.15)

where

Gnm =

√
h

h + L
εnεm

1

2
(sinc((kI

zn + kII
zm)h) + sinc((kI

zn − kII
zm)h)). (A.16)

Now, recall that the T matrix relates the coefficients Aqn and Bqn and is defined as

Bqm =

∑
n

(Tq)mn Aqn. (A.17)

Once the T matrix is known the scattering problem is solved. The T matrix is also used to obtain
the effective acoustic parameters of the scatterer [27].

Then, the T matrix can be derived from equations (A.13) and (A.17):

(Tq)mn ≡

∑
k

(Hq)
−1
mk(Jq)kn. (A.18)
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We are interested here in the single-mode operation, that is, when the mode n = 0 in
equation (A.2) is the only one excited. This condition implies that the propagating sound does
not oscillate in the vertical direction and, consequently, its wavevector is strictly confined in the
XY -plane. The matrix elements characterizing the equivalent medium are Tq ≡ (Tq)00.

It was shown in [27] that the relationship between the T matrix and the χq factor is given,
for q = 0, by

T0 ≈
iπ R2

bk2
b

4

1 + 1
2kb Rbχ0

k2
b R2

b
2 ln kb Rb −

1
2kb Rbχ0

, (A.19)

where the term k2
b R2

b
2 ln kb Rb in the denominator can, in general, be neglected.

For the case q = 1,

T1 ≈
iπ R2

b

4

χ1/kb Rb − 1

χ1/kb Rb + 1
k2

b. (A.20)

Note that matrix elements T0 and T1 are obtained from equation (A.18) by calculating the
terms given in equations (A.14) and (A.15). Afterwards, the resulting values are inserted into
equations (A.19) and (A.20) to extract χ0 and χ1. These magnitudes are finally introduced in
equations (2a) and (2b) to calculate Ba(ω) and ρa(ω), respectively.
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