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Abstract

We introduce a survey, including the historical back-
ground, on di�erent techniques that have recently been
issued in the search for a characterization of the represen-
tability of semiordered structures, in the sense of Scott and
Suppes, by means of a real-valued function and a strictly
positive threshold of discrimination.
1. Introduction

Interval orders are perhaps the best class of ordered
structures to build models of uncertainty or to represent
and manipulate vague or imperfectly described pieces of
knowledge. Dealing with di�erent classes of orderings ≺
de�ned on a nonempty set X, the concept of an interval
order was introduced1 by Peter C. Fishburn (see [36]) in
contexts coming from Mathematical Psychology (Measu-
rement Theory) and Economics (Utility Theory), in order
to study models of preference or measurement orderings
whose associated indi�erence may fail to be transitive. See
also2 [72, 66, 35, 40, 55, 56], or [14]. As pointed out in [40],
intransitive preferences may occur in a wide variety of de-
cisional contexts that include economic consumer theory,
multiattribute utility theory, game theory, preference be-
tween time streams, and decision making under risk and
uncertainty. In Fishburn's own words (see [40]):

<<Intransitive preferences have been a topic of cu-
riosity, study, and debate over the past 40 years. Ma-
ny economists and decision theorists insist on tran-
sitivity as the cornerstone of rational choice, and
even in behavioral decision theory intransitivities are
often attributed to faulty experiments, random or
sloppy choices, poor judgment, or unexamined bia-
ses. But others see intransitive preferences and po-
tential truths of reasoned comparisons and propo-
se representations of preferences that accommodate
intransitivities>>.

Obviously, a key point in the analysis of the aforementio-
ned problem (�representations of preferences that accom-
modate intransitivities) consists in the search of numerical
representations (see e.g. [41]) to deal with one of the most
classical structures that have been built to model non-
transitive assessments, namely, that of interval ordered
structures.

The representability of an interval order R de�ned on
a nonempty set X by means of two real valued functions
F,G : X → R such that xRy ⇐⇒ G(x) < F (y) (x, y ∈
X) leads us in a natural way to use interval methods to
deal with this kind of orderings, namely an element x ∈ X
would be assigned an interval [F (x), G(x)] (that may even-
tually collapse into a point if F (x) = G(x)) of real num-
bers. This use of interval-valued correspondences to re-
present the imprecise or uncertain has many motivations
(see e.g. [9, 26]). An appealing particular case of repre-
sentable interval orders requires all the image intervals to
have the same length, with problems of inexact measure-
ment in mind. This will correspond to semiorders that are
representable in the Scott and Suppes sense. This concept
of a representable semiorder will be the subject matter of
the present paper3. In this context, we may observe that
one of the main functions of a computer is �data proces-
sing. The set of data usually comes from measurement,
so that we try to know the characteristics of the physi-
cal quantities that characterize our world. But, in many
processes, the data we are dealing with are not absolutely
precise. This leads to the inaccuracy in the result of data
processing.

The concept of a semiorder was introduced in [53] to
deal with innacuracies in measurements where a nonne-
gative threshold of discrimination is involved. The ori-
ginal idea was that of presenting a mathematical model
of preferences enable to capture situations of �intransitive
indi�erence with a threshold of discrimination:

<<Suppose, for instance, that a man is not able
to declare di�erent two quantities of a same thing
when such two quantities do not di�er more than a
threshold of discrimination or perception, α. This
threshold is a non-negative real number, and it is
supposed to be the same for every individual. That
is, if a ≺ b means here �a man is able to realize
that the quantity a is smaller than b, then we have
a ≺ b ⇐⇒ a+ α < b.

A classical example, attributed to Armstrong ([6]),
considers a man that prefers a cup of co�ee with a
whole portion of sugar, to a cup of co�ee with no
sugar at all. If such man is forced to declare his

1Under a di�erent name, the concept of an interval order was already implicit much earlier, in the work of Norbert Wiener. (See e.g.
[74]).

2All these studies are framed in the crisp setting. Possible extensions to the fuzzy setting have recently been studied in [28, 27, 49].
3This paper is an extended version, now incorporating our most recent results (see [17, 21, 2, 13, 22, 27, 49, 1, 32, 20]), of a previous

work (namely, [48]) that was communicated at the congress FLINS 2008 held in Madrid, Spain. A former, more elementary version, was
presented at the congress on Ordinal and Symbolic Data Analysis (OSDA 2007), held in Ghent, Belgium.
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preference between a cup with no sugar at all and a
cup with only one molecule of sugar, he will declare
them indi�erent. The same will occur if he compares
a cup with n molecules and a cup with n+1 molecu-
les of sugar. However, after a very large number of
intermediate comparisons we would �nally confront
him with a cup that has a whole portion of sugar
that he is able to discriminate from the cup with no
sugar at all. Here, we observe a clear intransitivity
of indi�erences.>>

In this model, the threshold is constant (the same for all
agents or ways of measure). Consequently, di�erent fea-
tures can only be distinguished if they di�er in a quan-
tity bigger than the corresponding threshold. Otherwise
they are declared indi�erent, so giving rise to intransitivi-
ty of this associated indi�erence as in the previous classi-
cal example. Classical studies on semiorders appeared in
[34, 35, 37, 38, 39, 54, 42, 43, 44, 62, 63, 8, 14, 45], or [64].
In some of those studies were obtained either necessary or
else su�cient conditions for the existence of a numerical
representation of a semiorder ≺ de�ned on a nonempty set
X by means of a real-valued function f : X → R and a
non-negative constant or discrimination threshold λ ≥ 0
such that a ≺ b ⇐⇒ f(a) + λ < f(b) (a, b ∈ X). Some
characterizations of the existence of those representations
appeared in [24]. This kind of numerical representations of
semiordered structures is also encountered in a wide range
of applications, not only in data processing coming main-
ly from Computer Theory or Arti�cial Intelligence, but
also in extensive measurement in Mathematical Psycholo-
gy (see [52]), choice theory under risk (see [33]), decision-
making under risk (see [67]), modellization of choice with
errors (see [4]), social welfare theory (see [59]), general
equilibrium theory in Economics (see [50]), and expected
utility theory in mixture spaces (see [73]).

The structure of the paper goes as follows:
After the Introduction (Section 1), the necessary nota-

tions and background de�nitions are introduced in Section
2 (preliminaries). Section 3 is a guided tour to the history
of the numerical representability of semiorders, in which
we revise the most important achievements arising in this
literature. Section 4 is devoted to show the main results
about the characterization of the numerical representabili-
ty of semiorders by means of a real-valued utility function
and a strictly positive threshold of discrimination, in the
sense of Scott and Suppes. An account of the main te-
chniques that have been introduced to get the key results
is presented and discussed in Section 5. The relationship
between the numerical representability of semiorders and
the solution of certain functional equations is analyzed in
Section 6. Semiorders with special properties of algebraic
or topological nature are considered in Section 7. A re-
lationship between representable semiorders and a parti-
cular case of fuzzy numbers is shown in Section 8. The
possibility of extending the concept of a semiorder to the
fuzzy setting is discussed in Section 9. A short list of open
questions (Section 10) closes the paper.

2. Preliminaries

Let X be a nonempty set. Let ≺ be an asymme-
tric binary relation de�ned on X. Associated to ≺ we

de�ne the reflexive and total binary relation - given
by x - y ⇐⇒ ¬(y ≺ x) (x, y ∈ X), the sym-
metric binary relation ∼, called indi�erence, given by
x ∼ y ⇐⇒ [(¬(x ≺ y)) ∧ (¬(y ≺ x))] (x, y ∈ X), and the
dual relation ≺d de�ned by x ≺d y ⇐⇒ y ≺ x for all
x, y ∈ X.

An interval order ≺ is an asymmetric binary relation
such that [(x ≺ y) and (z ≺ t)] ⇒ [(x ≺ t) or
(z ≺ y)] (x, y, z, t ∈ X). An interval order ≺ is said to
be a semiorder if [(x ≺ y) and (y ≺ z)]⇒ [(x ≺ w) or
(w ≺ z)] for every x, y, z, w ∈ X. An interval order ≺ de�-
ned on X is said to be representable (as an interval order)
if there exist two real valued functions u, v : X −→ R such
that x ≺ y ⇐⇒ v(x) < u(y) (x, y ∈ X). Also, a semior-
der ≺ de�ned on X is said to be representable (now, as a
semiorder!) in the sense of Scott and Suppes (see [68]) if
there exist a real-valued function u : X → R and a non-
negative constant or �discrimination threshold λ ≥ 0 such
that x ≺ y ⇐⇒ λ < u(y)− u(x) (x, y ∈ X). (Obviously,
if such a representation exists with λ = 0, the associated
indi�erence ∼ is transitive). There exist interval orders
that fail to be representable (as interval orders). Also, the-
re exist semiorders that are not representable in the sense
of Scott and Suppes. (See [61, 24] for further details). Let
us recall that a preorder - on an arbitrary nonempty set
X is a binary relation on X which is reflexive and transiti-
ve. If - is a preorder on X, then the pair (X,-) is said to
be a preordered set. An antisymmetric preorder is said to
be an order . A total preorder - on a set X is a preorder
such that if x, y ∈ X then [x - y] or [y - x]. If (X,-) is
a preordered set then a real-valued function u : X → R:
is said to be an order-monomorphism for - if, for every
x, y ∈ X, it holds that [x - y ⇐⇒ u(x) ≤ u(y)]. A
total preorder - on X is called representable if there is an
order-monomorphism for -. Following [34, 36], associated
with an interval order ≺ de�ned on a nonempty set X, we
shall consider two new binary relations ≺∗ and ≺∗∗ given
by x ≺∗ y ⇐⇒ x ≺ z - y for some z ∈ X (x, y ∈ X),
and, similarly, x ≺∗∗ y ⇐⇒ x - z ≺ y for some
z ∈ X (x, y ∈ X). We denote x -∗ y ⇐⇒ ¬(y ≺∗ x),
x ∼∗ y ⇐⇒ x -∗ y -∗ x , x -∗∗ y ⇐⇒ ¬(y ≺∗∗ x)
and x ∼∗∗ y ⇐⇒ x -∗∗ y -∗∗ x (x, y ∈ X). As
a matter of fact, both the binary relations -∗ and -∗∗

are total preorders on X. Moreover, the indi�erence re-
lation ∼ associated with the interval order ≺ is transitive
if and only if -∗, -∗∗ and the binary relation - associa-
ted with the interval order ≺ coincide. In particular, in
this case - is also a total preorder on X. (See [58] for
more details). Moreover, a new binary relation -0 is de�-
ned on X with the help of ≺∗ and ≺∗∗, by declaring that
x -0 y ⇐⇒ [(x -∗ y) ∧ (x -∗∗ y)] (x, y ∈ X). This
new binary relation -0 allows us to characterize semior-
ders among interval orders, as proved in [34, 35], namely,
if X is a nonempty set and ≺ an interval order on X, then
≺ is indeed a semiorder if and only if -0 is a total preorder
on X. To conclude this section, we point out that certain
sets of fuzzy numbers can actually be considered as al-
ternative codomains (instead of the almost universal use
of real numbers) to represent interval orders and semior-
ders de�ned on a set. This easy fact consists in a natural
translation of real intervals as symmetric triangular fuzzy
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numbers, so that intervals of the same length correspond
to symmetric triangular fuzzy numbers of unitary base.
A suitable lexicographic ordering is de�ned on the set of
symmetric triangular fuzzy numbers, so that representable
interval orders (respectively, semiorders that are represen-
table in the sense of Scott and Suppes) can be identi�ed to
a subset of symmetric triangular fuzzy numbers (respecti-
vely, symmetric triangular fuzzy numbers of unitary base)
ordered in that way. (See [16, 9, 21, 13, 32] for a further
account).

3. Historical background: a revision of the
literature on semiorders

In this section we provide a revision of the key papers
in the literature of semiorders, with an special interest in
the problem of the numerical representation.

The pioneer work that introduced the concept of a se-
miorder is [53]. As mentioned in the introduction in that
paper the main idea was to introduce a model to cope
with intransitivities in preferences that depend on a con-
stant threshold of discrimination. In [68] the problem of
the numerical representability of a semiorder is conside-
red from a theoretical point of view. It is shown that
any semiorder de�ned on a �nite nonempty set admits a
representation through a real-valued function and a non-
negative constant threshold of perception or discrimina-
tion. In [37] they appear important results that study se-
miorders as a particular class of interval orders. General
representation theorems for interval orders appear there
for the �rst time. In [58] semiorders and interval orders
are considered as particular classes or subclasses of Fer-
rers relations, where a Ferrers relation Q on a nonempty
set X accomplishes that (xQy ∧ zQt)⇒ (xQt∨ zQy), for
every x, y, z, t ∈ X. They were introduced in [65]. (With
our notation, an interval order is an asymmetric Ferrers
relation). An axiomatic study is made for this kind of bi-
nary relations when they are de�ned on a nonempty �nite
set. In [54] it is characterized the numerical representabi-
lity of semiorders (in the sense of Scott and Suppes) for
the case of semiorders de�ned on in�nite, but countable
sets. In [37] further results on semiorders considered as a
particular class of interval orders are stated for the case of
binary relations de�ned on a nonempty �nite set. In [29],
it is introduced the key concept of a biorder4 understood
as a correspondence R from a nonempty set A to a no-
nempty set B such that A and B are disjoint (A∩B = ∅)
and (aRb ∧ cRd) ⇒ (aRd ∨ cRb), for every a, c ∈ A and
b, d ∈ B. It is shown that an interval order ≺ de�ned on a
set X can be interpreted as a suitable biorder de�ned from
X to a copy X+ of X such that X+ ∩X = ∅. Using bior-
ders, new techniques are introduced that allow us to �nd
a new general theorem on the representability of interval
orders. (See also [10]). In [42, 43, 44] the problem of the
continuous representability of interval orders and semior-
ders de�ned on a nonempty set X (�nite or not!) endowed
with a topology τ is studied in detail, and new techniques
to represent semiorders are introduced. Basically, the idea
is to modify representations, but just as an interval order,

of a given semiorder ≺ de�ned on a nonempty set X, in
order to �nd new representations but now as a semiorder,
in the sense of Scott and Suppes, of the binary relation ≺.
The use of some classical functional equation is implicit. In
[67] we �nd some results that can be used to analyze the
Scott-Suppes representability of semiorders in particular
cases. The concept of predecessor and successor5 elements
is implicit. These kind of questions concerning continuity
of the representations have also been studied more recen-
tly in [17], using di�erent techniques. In [62, 63] and [64]
they appear several classical studies on semiorders, but
mainly devoted to the �nite case, using techniques based
on Combinatorics and Discrete Mathematics. In [8] the
concept of a generalized numerical representation is intro-
duced. A generalized numerical representation consists of
a real-valued function and an associated subset of the real
plane of a certain type. Some applications to the Scott-
Suppes representability of semiorders can be obtained in
terms of these generalized numerical representations. A
new characterization of the Scott-Suppes separability of
semiorders de�ned on countable in�nite sets, alternative
to that in [54] is also included. In [24] some characteri-
zations of the Scott-Suppes representability of semiorders
are obtained for the general case in terms of suitable exten-
sions of the given semiordered structure. In [2] there is an
attempt to �nd new characterizations of the Scott-Suppes
representability of semiorders based only on internal con-
ditions, that is, avoiding the use of extensions of the given
structure. Some results in this direction are obtained for
particular cases.

Finally, the main problem of �nding an internal charac-
terization of the Scott-Suppes representability of semior-
ders valid for the general case was solved in [22]. (See also
[20]).

4. Characterizing the Scott-Suppes
representability of semiorders

Any attempt to characterize the Scott-Suppes repre-
sentability of a semiorder would obviously compare this
structure to other well-known structures where a charac-
terization of the representability is already known, as it
is the case of total preorders and interval orders. We re-
call that a total preorder R de�ned on a nonempty set
X is representable if and only if X is perfectly separable,
that is, there exists a countable subset D ⊆ X such that
for given x, y ∈ X for which ¬(yRx) holds, there exists
d ∈ D such that (xRd) ∧ (dRy). (See the �rst chapters
in [15] for details). Moreover, an interval order ≺ de�ned
on a nonempty set X is representable if and only if it is
interval-order separable, that is, there exists a countable
subset D ⊆ X such that for given x, y ∈ X with x ≺ y,
there exists d ∈ D such that x ≺ d -∗∗ y. (See e.g. [61]
for further details).

About semiorders, until the recent solution obtained in
[22] was at hand, no �internal characterization was known
for the general case. As a matter of fact, previously to [22]
some characterizations of the Scott-Suppes representabili-
ty of semiorders for the general case were already obtained,

4Under a di�erent name, this concept was already implicit in [31].
5The concept of predecessor and successor elements is a clue to �nd a characterization of the Scott-Suppes representability of semiorders,

as proved in [24].
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but all of them needed to consider suitable extensions of
the semiordered structure. The schema of these �old cha-
racterizations is the following: given a semiorder ≺ on a
nonempty set X, the semiorder ≺ admits a Scott-Suppes
representation if and only if there exists some suitable ex-
tension (X

′
,≺′

) of the semiordered structure (i.e.: X
′
is a

superset of X, and ≺′
is a semiorder on X

′
whose restric-

tion to X coincides with ≺), accomplishing a list of condi-
tions. (See [24] for details). In this direction, one of these
characterizations can be stated as follows (see [24, 2]):

Theorem 5 The Generalized Scott-Suppes Representabi-
lity Theorem: Let X be a nonempty set endowed with a
semiorder ≺. The semiorder ≺ is representable through a
function u : X → R and a strictly positive threshold K
such that x ≺ y ⇐⇒ u(x) + K < u(y) for all x, y ∈ X
if and only if there exists a Dedekind complete6, without
jumps7 and neither minimal nor maximal elements, ex-

tension (X̄, -̄
0
) of the totally preordered structure (X,-0)

that satis�es the following properties:

1. Let Z = X̄/∼̄0. Then for a given z ∈ Z there
exist two elements8 S(z) and P (z) in Z such that
P (S(z)) = z = S(P (z)), and for every a, b ∈ Z it
holds that S(a)≺̄0b ⇐⇒ a≺̄0P (b).

2. For every z ∈ Z the family Fz = {z} ∪ {Sk(z) :
k ∈ N, k > 0} ∪ {Pk(z) : k ∈ N, k > 0} is coinitial
and co�nal9 with respect to the totally ordered struc-
ture (Z, ≺̄0), (where P0(z) = z = S0(z), Sk+1(z) =
S(Sk(z)), Pk+1(z) = P (Pk(z)) for all k ∈ N).

3. For every p, q ∈ X, let p̄ and q̄ be their respective
equivalent classes in Z = X̄/∼̄0. Then it holds that
p ≺ q ⇐⇒ S(p̄)≺̄0q̄.

4. The totally preordered structure (X̄, -̄
0
) is represen-

table. (In particular, we can extend ≺ to a represen-
table semiorder ≺̄ on Z = X̄/∼̄0 by declaring that
z1≺̄z2 ⇐⇒ S(z1)≺̄0z2 for all z1, z2 ∈ Z).

Before having achieved in [22] the solution to the general
case, the problem of searching for internal characteriza-
tions of the Scott-Suppes representability of semiorders
for a large class of semiordered structures was addressed
in [2]. To quote here, for the sake of completeness, one
of the main results in the last reference ([2]) we shall in-
troduce now some previous concepts and de�nitions. A
semiorder ≺ de�ned on a nonempty set X is said to be
typical if it does not coincide with the asymmetric part of
a total preorder, or equivalently, if - fails to be transitive.
Let ≺ be a typical semiorder de�ned on a nonempty set
X. Then the semiorder ≺ is said to be irreducible (see
e.g. [8]) if -0 is a total order on X. Henceforth we shall
consider a typical semiorder ≺ that is irreducible, de�ned
on a nonempty set X.

Let (Y,-Y ) be a Dedekind completion of (X,-0), cha-
racterized by the following properties: (Y,-Y ) is totally
ordered and Dedekind-complete, X ⊆ Y , the restriction of
-Y is -0, and no proper subset Z ( Y such that X ⊆ Z
is Dedekind complete with respect to the restriction of -Y
to Z. Every element in Y \ X is determined by a Dede-
kind cut of X. (See p. 3 in [46] for further details). It
may still happen that in (Y,-Y ) there are jumps, where a
jump is a pair of elements y1, y2 ∈ Y such that y1 ≺Y y2
and there is no z ∈ Y such that y1 ≺Y z ≺Y y2. We
enlarge again Y by inserting a copy of the open unit in-
terval U = {x ∈ R : 0 < x < 1} between the elements
that de�ne each jump. It may also occur that Y has a
smallest element m and/or a greatest element M with re-
spect to -Y . In this case we put a copy of U just before
m and/or a copy of U just after M . Taking the newly
added elements into account, the total order -Y is ex-
tended in the obvious way to the enlarged set. All this
standard procedure leads to a particular Dedekind com-
pletion (without jumps and neither minimal nor maximal
elements) of the totally preordered structure (X,-0). Let
(T,-T ) denote that extension, that we will consider from
now on. We look for special features of (T,-T ) that gi-
ve rise to conditions for the Scott-Suppes representation
of (X,≺). To do so, associated with each x ∈ X that is
not maximal with respect to ≺, we consider the elements
S+(x) and S−(x) in (T,-T ), de�ned as follows: S+(x) =
inf (with respect to -T ) {y ∈ X : x ≺ y}. S−(x) =
sup (with respect to -T ) {y ∈ X : y - x}. Observe
that these elements S+(x), S−(x) are well de�ned becau-
se -T is Dedekind complete. On the one hand, the set
Ax = {y ∈ X : x ≺ y} is nonempty by hypothesis becau-
se x is not maximal. Moreover x ≺T y for every y ∈ Ax, so
that Ax is bounded by below with respect to -T and con-
sequently S+(x) = inf (with respect to -T ) Ax exists.
On the other hand, given the set Bx = {y ∈ X : y - x}
we immediately observe that x ∈ Bx. Thus Bx 6= ∅. Since
x is not maximal, there exists a ∈ X such that x ≺ a
from which we get y - x ≺ a ⇒ x ≺0 a ⇒ x ≺T a for
every y ∈ Bx. Therefore Bx is bounded by above, and
S−(x) = sup (with respect to -T ) Bx exists.

In addition S+(x) and S−(x) may eventually coinci-
de. Dually, if x ∈ X is not minimal with respect to ≺,
let P+(x), P−(x) be the following elements in (T,-T ) :
P+(x) = sup (with respect to -T ) {z ∈ X : z ≺
x}. P−(x) = inf (with respect to -T ) {z ∈ X : x - z}.
As above, the elements P−(x), P+(x) are well de�ned and
may eventually coincide. Let ≺ be a typical semiorder de-
�ned on a nonempty set X. We say that ≺ is regular if for
any x, y ∈ X such that x ≺ y, there is no in�nite sequence
(xn)n∈N ⊂ X such that x ≺ xn ≺ xn+1 ≺ y for all n ∈ N
and, dually, there is no in�nite sequence (zn)n∈N ⊂ X such
that x ≺ zn+1 ≺ zn ≺ y for all n ∈ N. A condition that is
equivalent to regularity was introduced in Axiom A1 on p.
435 of [8]. Other alternative condition was introduced in

6A totally preordered structure (A,-) is said to be Dedekind-complete if each nonempty subset F ⊆ A that has an upper bound has a
least upper bound.

7A jump of a totally preordered structure (X,-) is a pair of elements a, b ∈ X such that a ≺ b and there is no c ∈ X such that a ≺ c ≺ b.
8These elements are respectively called sucessor S(z) of z and predecessor P (z) of z. As aforementioned, the concept of predecessor

and sucessor elements was already implicit in [67].
9Let (X,-) be a totally preordered set. A subset Z ⊆ X is said to be coinitial (respectively, co�nal) in X if for every x ∈ X there

exists some z ∈ Z such that z - x (respectively, such that x - z).
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[54]. A semiorder ≺ de�ned on a nonempty set X is said
to be connected if the totally preordered structure (X,-0)
is Dedekind complete and without jumps.

The statement of the key result in [2] is in order now:

Theorem 6 Let ≺ be a connected irreducible typical se-
miorder de�ned on a nonempty set X. Assume also that
the following conditions are satis�ed:

1. The semiorder ≺ is regular.

2. If x ∈ X is not maximal with respect to ≺, then
x 6= S+(x) and S+(x) - x. Dually, if x ∈ X is
not minimal with respect to ≺, then P+(x) 6= x and
x - P+(x).

3. If x ∈ X is not maximal with respect to ≺, then
P−(S+(x)) is well de�ned and P−(S+(x)) = x.
Dually, if x ∈ X is not minimal with respect to ≺,
then S−(P+(x)) is well de�ned and S−(P+(x)) = x.

4. The totally ordered structure (X,-0) is representa-
ble.

Then the semiorder ≺ admits a Scott-Suppes repre-
sentation through a real-valued function, with threshold
1.

In [22] the problem of �nding an internal characteriza-
tion, valid for the general case, of the Scott-Suppes repre-
sentability of semiorders was �nally solved10. The main
result reads as follows:

Theorem 7 Let ≺ be a typical semiorder de�ned on a
nonempty set X. Then ≺ is representable in the sense of
Scott and Suppes if and only if it is regular and, in addi-
tion, there exists a countable subset D ⊆ X such that for
every x, y ∈ X with x ≺ y there exist a, b ∈ D such that
x -0 a ≺ y and also x ≺ b -0 y.

In addition, in the still unpublished paper [20] many
other characterizations of the Scott-Suppes representabi-
lity of a semiorders have been obtained, so completing the
panorama.

Theorem 8 Let ≺ be a typical semiorder de�ned on a
nonempty set X. Then ≺ is representable in the sense of
Scott and Suppes if and only if it is regular and, considered
as an interval order, it is interval-order separable.

Remark 1 At least ten other alternative conditions are
equivalent to the interval-order-separability of an interval
order. (See Theorem 3.7 in [20]).

5. Scott-Suppes representability of
semiorders. Main techniques

Perhaps the main di�culty to get a characterization of
the numerical representability of semiorders is due to the
following remarkable fact: the known characterizations of
the representability of other classical ordered structures

such as total preorders (see e.g. the �rst chapter in [15])
and interval orders (see [34, 29, 61, 11, 25]) are given in
terms of the existence of suitable countable subsets. A
consequence is that countable total preorders and coun-
table interval orders are (trivially) representable. But an
analogous fact is no longer true for semiorders: there exist
countable semiorders that are not representable (see e.g.
[68, 54, 24]). Till [22] was published, another di�culty
found in the search for characterizations of the represen-
tability of semiorders was due to the necessity of conside-
ring suitable extensions of the totally preordered structure
(X,-0) related to the semiordered structure (X,≺), in-
stead of working directly with the given semiordered struc-
ture. (See [24, 2]). Historically, the �rst key result on the
Scott-Suppes representability of semiorders was proved in
[68], and concerns the �nite case, proving that any ty-
pical semiorder ≺ de�ned on a �nite nonempty set X is
representable through a real valued function F : X → R
satisfying that a ≺ b ⇐⇒ F (a) + 1 < F (b) (a, b ∈ X).
To prove this, the technique used in Scott-Suppes goes as
follows: Consider the associated withtal order -0. Choose
a representative element x ∈ X of each equivalence class
that ∼0 de�nes on X. Let Y = {x0, . . . , xk} ⊆ X be
the resulting set of representatives, ordered by ≺0 so that
xi ≺0 xi+1 (i = 0, . . . , k) Associated to Y , we consider
a set of rational numbers {a0, a1, . . . , ak} whose elements
are de�ned as follows by induction on i as follows: a0 = 0;
ai = i

i+1 if xi - x0; ai = i
i+1aj + i

i+1aj−1 + 1 if xi - xj
and xj−1 ≺ xi (j ≤ i). Finally de�ne F : X → R by
F (x) = ai, where xi is a representative of the equivalen-
ce class of x with respect to ∼ 0. A �nal checking to
the construction shows that this provides a Scott-Suppes
representation with positive threshold 1, for the semiorde-
red structure (X,≺). The next step here would consist,
obviously, in analyzing the Scott-Suppes semiorders de-
�ned on in�nite sets. A former question that we could
ask ourselves at this stage is: Can we extend in a na-
tural way the original Scott-Suppes technique and con-
struction (see [68]) in order to represent in�nite semior-
ders? The answer is �yes, but only for particular ca-
ses. Indeed, a direct strengthening of the above techni-
que shows that every semiorder ≺ de�ned on an in�nite
set X such that the order topology that -0 induces on
X is the discrete one, can be represented with threshold
1 through a real valued function F : X → R such that
a ≺ b ⇐⇒ F (a) + 1 < F (b) (a, b ∈ X). There are
many situations of in�nite semiorders that do not accom-
plish the above restriction (to put an example, consider
the set Q of rational numbers endowed with the semior-
der ≺ given by p ≺ q ⇐⇒ p + 1 < q (p, q ∈ Q), that
is obviously representable through the identity function
and the threshold 1). A key related question is: Is there
some �germ11 of non-representability for semiorders? Ba-
sed on the concept of regularity already introduced, it is
clear that the set Y = {0} ∪ {2−n : n ∈ N} of real num-
bers endowed with the usual strict order �< on R, is an
example of a germ of non-representability for typical ir-

10A similar result was pointed out to us (but not published) by our colleague Esteban Olóriz, early in 2000.
11For a germ of non-representability we mean a semiordered structure (Z,≺Z) such that if a semiordered structure (X,≺) contains either

a copy of (Z,≺Z) or a copy of its dual structure (Z,≺d) where a ≺d b ⇐⇒ b ≺Z a (a, b ∈ Z), then, a fortiori, (X,≺) does not admit a
Scott-Suppes representation.
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reducible semiorders. (Notice that < is in particular a
semiorder on Y ). Another example of a germ is the set
Y = {x ∈ R : 0 < x < 2} endowed with the semiorder ≺Y
given by x ≺Y y ⇐⇒ x + 1 ≤ y for all x, y ∈ Y . Since
by de�nition a typical irreducible semiordered superstruc-
ture of a germ is also a germ of non-representability for
typical irreducible semiorders, the most important germs
are obviously the minimal ones. A germ (Y,≺Y ) is said to
be minimal if, for every semiordered substructure (Z,≺Z)
that is not semiorder-isomorphic to (Y,≺Y ), there exist
a Scott-Suppes representation by means of a real-valued
function uZ de�ned on Z, and threshold 1. We immediate-
ly observe that a catalogue of all possible minimal germs of
non-representability induces a characterization theorem,
saying that a typical irreducible semiorder ≺ de�ned on a
set X admits a Scott-Suppes representation if and only if
it does not contain a substructure semiorder-isomorphic to
a minimal germ. For the case of interval orders, the idea
of studying possible minimal germs of non-representability
appears implicitly in [57] by means of the concept of a �for-
bidden suborder. For several other ordered structures and
di�erent kinds of representations this problem has been
completely solved. (See e.g. [18] for the case of commu-
tative totally ordered semigroups using representations by
means of real-valued order-preserving monomorphisms of
semigroups. See also [7] for the case of the representa-
tion of totally ordered sets through a real-valued order-
preserving function). The obtention of an exhaustive list
of minimal germs of non-representability for irreducible
typical semiorders constitutes an open problem.

We may introduce here some result in this direction,
recently proved in [20].

Theorem 9 Let ≺ be an irreducible typical semiorder
de�ned on a nonempty set X. Suppose that ≺ admi-
ts a representation as an interval order. Then ≺ admi-
ts a Scott-Suppes representation with threshold 1 if and
only if neither it, nor its dual structure (X,≺d), con-
tains a substructure semiorder-isomorphic to (Y,<), where
Y = {0} ∪ {2−n : n ∈ N} and �< denotes the usual strict
order on real numbers.

We immediately observe that regularity is a necessa-
ry condition for the Scott-Suppes representability of a se-
miorder, so that an in�nite sequence of any of the two
kinds that appear in the de�nition of regularity constitu-
tes a germ of non-representability (in the sense of Scott
and Suppes) for semiorders. Actually, for the particu-
lar case of semiorders de�ned on a countable in�nite set,
the germ of non-representability that we have just intro-
duced in the previous Theorem 9, namely (Y,<), where
Y = {0} ∪ {2−n : n ∈ N} and �< is the usual strict order
on the real line R is actually minimal. The reason is that
the Scott-Suppes representability of typical semiorders de-
�ned on countable in�nite sets was characterized in [54],
through the following key result:

Theorem 10 Let ≺ denote a typical semiorder de�ned on
a countable in�nite set X. Then ≺ is representable in the
sense of Scott and Suppes if and only if it is regular.

Remark 2 Indeed, we may observe that this Theorem 10
is a direct consequence of Theorem 9. However, it is of
capital importance to say that the �nal solution to the pro-
blem of �nding an internal characterization of the Scott-
Suppes representability of semiorders, obtained in [22] (see
Theorem 7 above) was got through a subtle and ingenious
modi�cation of the ideas expressed in Theorem 10.

At this point, it is noticeable that the techniques used
now to represent typical semiorders on countable in�nite
sets may considerably di�er from the Scott-Suppes original
construction to represent �nite semiorders. Thus, the key
result stated in Theorem 5.1 is also proved in [8] through
more than twelve pages full of previous lemmas, whereas
the original proof in [54] is based on a deep result coming
from Mathematical Logic. For instance, if we want to ap-
ply Theorem 5.1 to get a Scott-Suppes representation of
the semiorder ≺ de�ned on the set Q of rational numbers
by declaring a ≺ b ⇐⇒ a + 1 ≤ b (a, b ∈ Q), a te-
chnique outlined in [54] is based on a deep classical result
of Real Analysis that states that there exist an increasing
real function, too hard to visualize, F : R → R that is
continuous on each irrational number, and discontinuous
on each rational number. The result introduced in the
above Theorem 5.1 is only stated for the countable case.
About the general in�nite case, if we are dealing with a
semiorder ≺ de�ned on an in�nite set X that may or may
not be countable, and we try to �nd characterizations of
the Scott-Suppes representability of ≺, we arrive indeed,
in our opinion, to the most di�cult problem of the Scott-
Suppes representability theory for semiorders. We have
already mentioned that, despite a general characterization
had already been obtained in [24], the solution achieved
was not easy to be checked directly on a given semiorder
≺ de�ned on a set X, since it leans on the existence of sui-
table extensions of the semiordered structure (X,≺) and
the associated withtally ordered structure (X,-0). The
problem here is that it is not easy to imagine which could
be the suitable extensions (if any) that lead to the existen-
ce of a Scott-Suppes representation for ≺. By the way, in
particular cases mainly related to topological properties
of the order topology that -0 induces on X, there appear
several characterizations that are much easier to handle:
see [42, 43, 44, 17].

Moreover, several authors had already debated upon
the di�culties that carries the analysis of the uncounta-
ble case (see e.g. Section 4 in [8]), sometimes avoiding the
consideration of a Scott-Suppes representation (that could
be very restrictive in the general case, as textually said on
p. 126 of [71]), and substituting it by milder forms of re-
presentations (e.g., through di�erent kinds of interval re-
presentations) easier to be characterized. However, the ex-
istence of a Scott-Suppes representation immediately im-
plies the existence of many other kinds of representations
analyzed in the literature (e.g.: interval representations in
the sense of [37], generalized numerical representations12

in the sense of [8]), so that it is important to get a cha-
racterization of it (as in [24]), or at least provide a set of
su�cient conditions for particular cases, as in [2].

12Basically, a generalized numerical representation for a binary relation R de�ned on a nonempty set X consists of a function u : X → R
an a suitable subset S of the real plane R2 such that xRy ⇔ (u(x), u(y)) ∈ S, (x, y ∈ X).
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Working in the direction of Theorem 5.1, we may won-
der what else should be added to regularity to get a
necessary and su�cient condition, so characterizing the
Scott-Suppes representability of semiorders. Moreover, we
should compare the di�erent conditions that other authors
have used to get characterizations of the existence of some
particular kind of representation of semiorders in order
to guess which could be the �extra condition that, ad-
ded to regularity, could �nally characterize the existence
of a Scott-Suppes representation of a typical irreducible
semiorder in the general (uncountable) case.

Fortunately, the key problem has recently been solved,
as aforementioned through Theorem 7, Theorem 8 and
Theorem 9. (See [22, 20] for further details).

Remark 3 To complete the panorama stated by Theorem
5.1, observe that there exist semiorders that are de�ned on
a countable set (so that they are representable as interval
orders) but fail to be regular (so that they cannot admit a
Scott-Suppes representation. An example is the semiorder
≺ de�ned on the real line R by x ≺ y ⇐⇒ 3|x| < 2|y|,
for all x, y ∈ R. Let u, v : R → R be the functions de-
�ned by u(x) = 2|x|, v(x) = 3|x| for all x ∈ R. It is
clear that the pair (u, v) is a representation of ≺ as an
interval order. Nevertheless, ≺ is not representable as a
semiorder. Observe that the sequence (2−n)n∈N satis�es
that 0 ≺ 2−(n+1) ≺ 2−n for all n ∈ N, so that ≺ is not
regular.

Another classical technique is based in the comparison
of interval orders and semiorders (see [54, 38, 43, 8, 24,
16, 17]). Obviously, a semiorder is a particular case of an
interval order, and a semiorder representable in the sense
of Scott and Suppes is, in particular, representable as an
interval order. Regrettably, the converse is not true in ge-
neral as shown in the previous example (see also [24]). The
technique consists on �rst considering a given semiorder
≺ as an interval order, then representing it as an inter-
val order (when possible), and �nally try to modify that
representation (as an interval order) to get a new repre-
sentation (now, as a semiorder) in the sense of Scott and
Suppes. This technique has been used, mainly, to deal
with continuous representations of semiorders de�ned on
a topological space. See e.g. [42, 43, 44] and [17]. Thus,
given a nonempty set X endowed with a topology τ , and
a typical semiorder ≺ de�ned on X, a continuous Scott-
Suppes representation for ≺ can be de�ned as a function
u : X → R that is continuous with respect to the topology
τ on X and the usual Euclidean topology on the real line
R, such that x ≺ y ⇐⇒ u(x) + 1 < u(y) (x, y ∈ X).
For the sake of completeness we quote here a result proved
in [17] concerning the continuous Scott-Suppes represen-
tability of a particular class of semiorders. This result was
obtained through the technique of modifying suitable re-
presentations of a semiordered structure, but considered
�rst as an interval order, to get a new representation (now
as a semiorder) in the sense of Scott and Suppes.

Theorem 11 Let ≺ be a continuous semiorder without
extremal elements, de�ned on a connected topological space

(X, τ). Then there exists a continuous function u : X → R
such that x ≺ y ⇐⇒ u(x) + 1 < u(y) (x, y ∈ X) if and
only if the following conditions hold:

1. There exists a widely dense countable subset D ⊆ X
for the binary relation ≺ considered as an interval
order on X.

2. The associated relations ≺∗ and ≺∗∗ coincide.

3. The binary relation ≺ has no singular13 points.

As commented before, the technique of transformation of
representations as an interval order of a semiordered struc-
ture into Scott-Suppes representations, has been used to
deal with representations that involve continuity or se-
micontinuity. However, the use of similar techniques to
get Scott-Suppes representations (continuous or not) of
semiorders, in the general case (that is, when the set X
where the semiorder ≺ is de�ned is uncountable and we
do not take care of continuity or semicontinuity) is not
common in the literature, despite there are several pa-
pers that study semiorders among interval orders (see e.g.
[58, 38, 5]), most of them in the �nite case. This technique
could be, in our opinion, closely related to other impor-
tant technique that leans on the consideration of suita-
ble functional equations directly associated with a given
semiordered structure.

6. Functional equations associated with the
representability of semiorders

Somewhat related to the technique of modifying repre-
sentations as an interval order of a semiordered structure
to get new representations in the sense of Scott and Sup-
pes, other appealing technique, already considered in [17]
(see also [1]), that can be used to represent interval orders
is based on �nding special solutions of some functional
equations in several variables. Thus, the representability
of an interval order is also characterized by means of the
existence of solutions of a particular kind for a functio-
nal equation in two variables, known as the separability
equation. As analyzed in [61, 11] an interval order ≺ de-
�ned on a nonempty set X is representable if and only if
there exists a bivariate function F : X × X −→ R sati-
sfying F (x, y) +F (y, z) = F (x, z) +F (y, y) (x, y, z ∈ X)
and x ≺ y ⇐⇒ F (x, y) > 0 (x, y ∈ X). He-
re the functional equation in two variables satis�ed by
the function F is usually called the separability equation
(see p. 122 in [3]) because it is equivalent to say that
F (x, y) = G(x) + H(y) (x, y ∈ X), for some functions
G,H : X → R that depend of only one variable. In the
same way, with respect to the representability of semior-
ders in the sense of Scott and Suppes, an analogous result
is available, see [23, 24, 1]:

Theorem 12 Let X be a nonempty set endowed with a
semiorder ≺. The following conditions are equivalent:

1. The semiordered structure (X,≺) is representable in
the sense of Scott and Suppes.

13Given an interval order ≺ de�ned on a nonempty set X, an element x ∈ X is said to be a singular point with respect to ≺ if for every
y, z ∈ X it holds that [(x ∼ y) ∧ (x ∼ z)]⇒ y ∼ z.
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2. There exists a bivariate function G : X × X → R
such that x ≺ y ⇐⇒ G(x, y) > 0 (x, y ∈ X) and,
in addition, G(x, y) +G(y, z) = G(x, z) +G(t, t) for
every x, y, z, t ∈ X.

3. There exists a function G : X × X → R such that
x ≺ y ⇐⇒ G(x, y) > 0 (x, y ∈ X) and, in addi-
tion, G(x, y) + G(y, z) = G(x, t) + G(t, z) for every
x, y, z, t ∈ X.

The main problem here is that although in the case of
interval orders we know (see [61]) how to construct (if
there is any) those bivariate functions that are special
solutions of the separability equation, and furnish a re-
presentation, it is still an open problem to do the same
for the functional equations related to the Scott-Suppes
representability of semiorders. Regrettably, no general
way to �nd such suitable solutions to represent semior-
ders is known up-to-date. Related to this question, in
[17, 1] another classical functional equation (in only one
variable, in this case) has been used to characterize, in
certain particular cases, the existence of Scott-Suppes re-
presentations of semiorders. An old result, obtained by
the Norwegian mathematician Niels Heinrik Abel early
in 1824, shows that given an open real interval I and a
continuous and strictly increasing function G : I → I,
there exists a continuous and strictly increasing function
F : I → R that satis�es the so-called Abel equation (see
e.g. p. 145 and �. in [70], or pp. 64 and �. in [69]) given
by F (G(x)) = F (x)+1 (x ∈ I). A glance to this equation
immediately shows that the asymmetric binary relation ≺
de�ned on I by a ≺ b ⇐⇒ F (a) + 1 < F (b) (a, b ∈ I)
is a semiorder representable through the function F , with
threshold 1. We may guess that the Scott-Suppes repre-
sentability of a typical semiorder ≺ de�ned on a nonempty
set X is directly related to the existence of suitable solu-
tions of a generalized Abel equation F (G(z)) = F (z) + 1,
where now Z is a superset of X (i.e.: X ⊆ Z), G : Z → Z
is a map with no cycles, and F : Z → R is a real-valued
function. The map G is known a priori, and F is the unk-
nown function, i.e., the solution of the equation. This kind
of questions have been studied in [1]. Certain generalized
Abel equations give rise to special bivariate functions that
solve a separability equation and furnish a Scott-Suppes
representability of a semiorder, as above. Conversely, so-
me of those bivariate functions also give rise to generalized
Abel equations. For the sake of completeness, we introdu-
ce here some ideas and results in this direction. LetX be a
nonempty set, and h : X → X a (�xed) map. We say that
a real-valued function f : X → R satis�es the generalized
Abel equation if it holds that f(h(x)) = f(x)+1, for every
x ∈ X. (Observe that for a solution f to exist, a necessary
condition is that the map h : X → X is �xed point free,
that is h(x) 6= x (x ∈ X). Actually for every strictly po-
sitve natural number k ∈ N\{0}, the k-th iterate hk of the
function h must also be �xed point free since, otherwise,
there exists z ∈ X such that f(z) = f(hk(z)) = f(z) + k,
which is a contradiction. In other words, the map h has
no cycles. Let us see now how can we generate total

preorders, interval orders, and semiorders from particular
solutions of the functional equations mentioned before.

Proposition 1 Let X be a nonempty set.

1. If F : X × X → R satis�es the Sincov equa-
tion14, then the binary relation - de�ned on X by
x - y ⇐⇒ F (y, x) ≤ 0 (x, y ∈ X) is a total
preorder.

2. If F : X ×X → R satis�es the separability equation
and, in addition F (t, t) ≤ 0 (t ∈ X), then the bina-
ry relation de�ned on X by x ≺ y ⇐⇒ F (x, y) >
0 (x, y ∈ X) is an interval order.

3. If F : X ×X → R satis�es the separability equation
and, in addition, there exists a non-positive real con-
stant K ≤ 0 such that F (t, t) = K (t ∈ X), then
the binary relation de�ned on X by x ≺ y ⇐⇒
F (x, y) > 0 (x, y ∈ X) is a semiorder.

4. If h : X → X is a map, and f : X → R is a
solution of the generalized Abel equation f(h(x)) =
f(x)+1, then the binary relation ≺ de�ned on X by
x ≺ y ⇐⇒ 1 < f(y)− f(x) is a semiorder. Moreo-
ver, this semiorder is representable in the sense of
Scott and Suppes, through the real-valued function f
and the positive threshold 1.

Let us point out some relationship between the se-
parability equation and the generalized Abel equation.

Remark 4 Let X be a nonempty set. Suppose that F :
X × X → R satis�es the separability equation and the-
re exists a strictly negative K < 0 such that F (t, t) =
K (t ∈ X). Fix an element a ∈ X. We observe that
F (x, a) + F (a, x) = F (x, x) + F (a, a) = 2K (x ∈ X).

Dividing by 2K we obtain F (x.a)
2K = −F (a,x)

2K + 1 (x ∈ X).
Assume, in addition, that for every t ∈ X there exists
an element h(t) ∈ X, unique, such that F (a, h(t)) =
−F (t, a) (t ∈ X). Under this hypothesis, if we de�ne

f : X → R by f(t) = −F (a,t)
2K (t ∈ R) we immedia-

tely check that f satis�es the generalized Abel equation:
f(h(x)) = f(x) + 1 (x ∈ X). Let now h : X → X
be a map, and f : X → R a solution of the generali-
zed Abel equation f(h(x)) = f(x) + 1 (x ∈ X). Con-
sider now the bivariate function F : X × X → R given
by F (x, y) = f(x) − f(h(y)) (x, y ∈ X). It follows that:
F (x, y)+F (y, z) = f(x)−f(h(y))+f(y)−f(h(z)) = f(x)−
f(h(z))+f(y)−f(h(y)) = F (x, z)+F (y, y) (x, y, z ∈ X).
Thus F satis�es the separability equation. Moreover,
F (t, t) = f(t)− f(h(t)) = −1 (t ∈ X), by hypothesis.

Now, let us show how the problem of the representability
in the sense of Scott and Suppes of semiordered structu-
res is very close to that of de�ning and solving certain
generalized Abel equations. To start with, consider a se-
miorder ≺ de�ned on a nonempty set. Suppose in addi-
tion that ≺ is a typical semiorder, that is, the associa-
ted binary relation - is not transitive (equivalently, -
is not a total preorder). Thus, in case that ≺ admits a

14The Sincov functional equation is: F (x, y) + F (y, z) = F (x, z) (x, y, z ∈ X). See e.g. [47] for further details.
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representation in the sense of Scott and Suppes throu-
gh a real-valued function u and a non-negative threshold
λ, we have a fortiori that λ is indeed strictly positive
(λ > 0). Thus, let us consider now a typical semiorder
≺ de�ned on a nonempty set X, and assume that ≺ ad-
mits a representation in the sense of Scott and Suppes
by means of a real-valued function u : X → R such that
x ≺ y ⇐⇒ 1 < u(y)−u(x) (x, y ∈ X). In the particular
case in which u is a bijection between X and R, we observe
given x ∈ X the element u−1(u(x)+1) ∈ X is well-de�ned
(i.e.: such element exists and it is unique). Let h : X → X
be de�ned by h(x) = u−1(u(x) + 1) (x ∈ X). It is ob-
vious that h is �xed point free and without cycles since,
by de�nition of h, we have u(h(x)) = u(x) + 1 (x ∈ X).
Notice also that, as a matter of fact, the function u sati-
s�es a suitable generalized Abel equation. If u is surjective
(i.e. u(X) = R) but it is not injective, an equivalence re-
lation R can be immediately de�ned on X by declaring
aRb ⇐⇒ u(a) = u(b) (a, b ∈ X).
Let XR denote the quotient set X/R. Denote by xR
the equivalence class corresponding to a given element
x ∈ X. De�ne on XR the binary relation ≺R given by
xR ≺R yR ⇐⇒ x ≺ y ⇐⇒ 1 < u(y)− u(x) (x, y ∈ R)
and the real-valued function uR : XR → R given by
uR(xR) = u(x) (x ∈ X). It is straightforward to see
now that ≺R is a typical semiorder on XR such that
xR ≺R yR ⇐⇒ 1 < uR(yR) − uR(xR) (x, y ∈ R).
Moreover, uR is a bijection. Let hR : XR → XR be de-
�ned by hR(x) = u−1R (uR(xR) + 1) (x ∈ X). We get
uR(hR(xR)) = uR(xR) + 1 (xR ∈ XR), so that uR al-
so satis�es a generalized Abel equation. If u is injective
but it is not surjective (i.e: u(X) ( R) we enlarge the
set X in the following way: for every α ∈ R \ u(X) we
add an extra element xα to X. Let X̄ denote the en-
larged set X ∪ {xα : α ∈ R \ u(X)}. Consider now the
real-valued function ū : X̄ → R given, for every t ∈ X̄,
by ū(t) = u(t) if t ∈ X; ū(t) = α if t = xα for some
α ∈ R \ u(X). Now it is plain that ū is a bijection. Fi-
nally, de�ne a binary relation ≺̄ on X̄ by declaring that
s≺̄t ⇐⇒ 1 < ū(t)− ū(s) (s, t ∈ X̄). We may easily che-
ck that ≺̄ is a semiorder whose restriction to X is ≺. Let
h̄ : X̄ → X̄ be de�ned by h̄(t) = ū−1(ū(t) + 1) (t ∈ X̄).
It follows that ū(h̄(t)) = ū(t) + 1 (t ∈ X̄), so that ū
satis�es another generalized Abel equation. When u is
neither injective nor surjective, �rst we enlarge the set X
to a set X̄ obtained by adding an extra element xα for ea-
ch α ∈ R \ u(X). De�ne ū and ≺̄ as in the previous case,
and observe that ū is now surjective but not yet injective.
Consequently, we consider the quotient set X̄R = X̄/R
through the equivalence R that ū de�nes on X̄. As befo-
re, in the quotient set X̄R we may de�ne in the natural
way a real-valued function ūR and a map h̄R : X̄R → X̄R
such that ūR(h̄R(t)) = ūR(t) + 1 (t ∈ X̄R) getting again
a solution of a generalized Abel equation.

7. Other techniques: Scott-Suppes re-
presentability of semiorders with special
properties

Another related question concerns the Scott-Suppes re-
presentability of typical semiorders de�ned on a set with
special properties. Among the special properties, we may

consider two important classes, namely topological pro-
perties (e.g.: continuity) and algebraic properties (e.g.:
semiorders de�ned on some kind of algebraic structure as,
for instance, a semigroup, a group, or a vector space).
In these situations, we will be looking for representations
that also feature special characteristics (e.g: continuity,
in the topological case, or preservation of the algebraic
structure through some homomorphism, in the algebraic
case). About the topological case, up-to-date no general
characterization of the continuous representability of a se-
miorder is known yet. However, some partial results have
been obtained, mainly for the case of semiorders de�ned
on connected topological spaces. See [42, 43, 44, 17] for
a further account. About the algebraic case, there are
some classical works that consider semiorders de�ned on
a nonempty set endowed with some algebraic structure
(see e.g. [73], where semiorders on mixture spaces have
been considered). However, in our opinion, no systematic
study of the Scott-Suppes representability of semiorders
de�ned on classical algebraic structures (e.g.: semigroups,
monoids, groups) has been made yet in the specialized li-
terature. To put an example, we could consider a typical
semiorder ≺ de�ned on a nonempty set X endowed wi-
th, say, an associative binary operation +̄ (i.e.: (X, +̄) is
a semigroup) and try to �nd a Scott-Suppes representa-
tion through a real-valued function u : X → R such that
x ≺ y ⇐⇒ u(x)+1 < u(y) (x, y ∈ X) and, in addition, u
is an algebraic homomorphism of semigroups from (X, +̄)
into the additive group of real numbers (R,+), that is:
u(x+̄y) = u(x) + u(y) for every x, y ∈ X. Studies on the
algebraic representability of other classical ordered struc-
tures (e.g.: total preorders on semigoups or interval orders
on cones) have already appeared in the literature (see e.g.
[18, 19]). But for the case of semiorders this is a line of
research to be explored in next future.

8. Semiorders and fuzzy numbers

We can think on representations of binary relations
through functions that take values on some set of fuzzy
numbers, instead of real-valued functions (see e.g. [16]).
In this sense, we may understand the Scott-Suppes re-
presentability of semiorders by means of a di�erent kind
of representations that involve functions on a suitable set
of fuzzy numbers. Basically a fuzzy real number can be
understood as a function F : R −→ [0, 1] satisfying so-
me �axioms or properties imposed a priori. However, the
precise de�nitions may vary. (See e.g. [51, 30, 60]). In
what concerns fuzzy sets and fuzzy numbers we shall fol-
low the de�nitions and notations of [60]. Thus, U being
a set (usually called universe) and L being a lattice wi-
th greatest element 1̄ and smallest element 0̄, a fuzzy set
is a function A : U −→ L. The support of A is the
set Supp(A) = {x ∈ U : A(x) 6= 0̄}, and the kernel is
ker(A) = {x ∈ U : A(x) = 1̄}. A fuzzy set A is said to be
normal if it has nonempty kernel. Given α ∈ L, the α-cut
of the fuzzy set A is the set Aα = {x ∈ U : A(x)∧α = α},
where ∧ denotes the latticial operation in L. In the
particular case in which U = R, L = [0, 1] ⊂ R and
x∧y = min{x, y}, the fuzzy set A is said to be convex if for
every α ∈ [0, 1] the α-cut Aα is a convex subset of R. In
this case, a fuzzy number is a normal convex fuzzy set such
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that the function A : R −→ [0, 1] is piecewise continuous,
and there exist points a1 ≤ a0 ≤ b0 ≤ b1 ∈ R∪{−∞,+∞}
with the following properties:

1. a1 ∈ R ∪ {−∞} and b1 ∈ R ∪ {+∞},

2. a0, b0 ∈ R,

3. Supp(A) ⊆ [a1, b1] ∩ R,

4. the function A is increasing on [a1, a0] ∩ R and
decreasing on [b0, b1] ∩ R,

5. a1 ∈ R ⇒ A(a1) = 0 and, similarly, b1 ∈ R ⇒
A(b1) = 0,

6. [a0, b0] ⊆ ker(A).

Particular cases of fuzzy numbers are:

(i) The ordinary (or �non-fuzzyÕÕ) real numbers, whe-
re a real number r ∈ R is interpreted in the ob-
vious way by means of its characteristic function
Ar : R → [0, 1] where Ar(s) = 0 if r 6= s and
Ar(r) = 1.

(ii) The triangular fuzzy numbers that are those for whi-
ch a1, b1 ∈ R, a0 = b0, A(ta1 + (1− t)a0) = 1− t and
also A(ta0 + (1− t)b1) = t for every t ∈ [0, 1].

A triangular fuzzy number is said to be symmetric if
a0 = a1+b1

2 . An element of the set ST of symmetric trian-
gular fuzzy numbers can be identi�ed by the numbers a0
and a1 that appearing in its de�nition, so that we can
denote an element of ST as {a0, a1}. We can identify a
symmetric triangular fuzzy number {a0, a1} ∈ ST , where
b1 = 2a0 − a1, with the interval [a1, b1] of real numbers,
and, accordingly, de�ne a binary relation RI on ST as
follows: {a0, a1}RI{a′0, a′1} ⇐⇒ a1 ≤ b′1. It is strai-
ghtforward to see now that RI is an interval order on ST .
Obviously the structure (ST ,RI) is representable as an in-
terval order through the pair of functions F,G : ST −→ R
given by F ({a0, a1}) = a1; G({a0, a1}) = b1 = 2a0 − a1,
for every {a0, a1} ∈ ST . Thus we can easily obtain the
following result on representability of interval orders (see
[16] for further details).

Proposition 2 Let X be a nonempty set endowed with
an interval order R. Then, the following statements are
equivalent:

(i) R is representable.

(ii) The structure (X,R) is representable in (ST ,RI) in
the sense that there exists a function H : X → ST
such that xRy ⇐⇒ H(x)RIH(y) (x, y ∈ X).

Consider now the following particular subset of ST , whi-
ch we call the set of symmetric triangular fuzzy numbers
of unitary base, which we denote by ST U and consists of
all the elements {a0, a0 − 1

2}. We endow ST U with the
ordering RI as above. The corresponding result on the
Scott-Suppes representability of semiorders follows now,
interpreted in this new context.

Proposition 3 The following assertions are equivalent
for a set X endowed with a semiorder R that is not a
total preorder:

(i) (X,R) is representable (as a semiorder) through a
function U : X → R and a strictly positive threshold
K > 0, such that xRy ⇐⇒ U(x) ≤ U(y) + K, for
every x, y ∈ X,

(ii) (X,R) is representable in (ST U ,RI) in the sense
that there exists a function H : X → ST U such that
xRy ⇐⇒ H(x)RIH(y), for every x, y ∈ X.

9. Towards fuzzy semiorders

Till this point, all the analysis made in the present ma-
nuscript is understood in the crisp setting. However, we
could think on possible extensions to the fuzzy setting of
the concept of a semiorder. This is also a new line for futu-
re research, that has very recently been introduced in the
specialyzed literature (see e.g. [27, 49]). At this stage, it is
important to say that the same question had already been
considered for interval orders in [28], trying to introduce
the concept of a fuzzy interval order. In that interesting
work, it was proved that several equivalent de�nitions of
the concept of an interval order (in the crisp setting) may
fail to be equivalent in the fuzzy setting. In [28] the au-
thors considered �ve equivalent de�nitions of the (crisp)
concept of an interval order, as well as their generaliza-
tions to the fuzzy setting, where it is proved that they are
not equivalent, in general. A similar study for semiorders
has recently started (see [27]). As in the case of interval
orders analyzed in [28], it also happens that many equiva-
lent de�nitions of the concept of a semiorder (in the crisp
case) are no longer equivalent when extended to the fuzzy
setting. The hierarchy among this possible de�nitions (at
least twelve) has also been studied in [49]. Consequently,
moving towards fuzzy semiorders we could adopt several
possible non-equivalent de�nitions, so giving origin to dif-
ferent theories of fuzzy semiorders that would obviously
depend on the de�nitions adopted.

10. Open questions

To conclude the survey, we recall several of the main
open problems related to the Scott-Suppes representability
of semiorders.

1. Find a characterization (for the general case) of the
continuous representability of semiorders de�ned on
topological spaces.

2. Determine to what extent the Scott-Suppes repre-
sentability of a semiorder is related to the existence
of solutions of generalized Abel equations.

3. Analyze the numerical representabiity of semiorders
on algebraic structures.

4. Study the numerical representability of suitable
classes of fuzzy semiorders.
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