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Los dioses nos han revelado todas las cosas desde el principio. Pero el

hombre busca y con el tiempo encuentra. Supongamos que esas cosas son

como si fueran verdades. Porque, seguramente, ningún hombre conoce ni
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Funciones Semi-Lipschitz, Mejor
Aproximación e Hiperespacios Casi-Métricos

Fuzzy

José Manuel Sánchez Álvarez

En los últimos años se ha desarrollado una teoŕıa matemática que permite

generalizar algunas teoŕıas matemáticas clásicas: hiperespacios, espacios de

funciones, topoloǵıa algebraica, etc. Este hecho viene motivado, en parte, por

ciertos problemas de análisis funcional, concentración de medidas, sistemas

dinámicos, teoŕıa de las ciencias de la computación, matemática económica,

etc.

Esta tesis doctoral está dedicada al estudio de algunas de estas generaliza-

ciones desde un punto de vista no simetrico. En la primera parte, estudiamos

el conjunto de funciones semi-Lipschitz; mostramos que este conjunto admite

una estructura de cono normado. Estudiaremos diversos tipos de completitud

(bicompletitud, right k-completitud, D-completitud, etc), y también analiza-

remos cuando la casi-distancia correspondiente es balancea-

da. Además presentamos un modelo adecuado para el computo de la com-

plejidad de ciertos algoritmos mediante el uso de normas relativas. Esto se

consigue seleccionando un espacio de funciones semi-Lipschitz apropiado. Por

otra parte, mostraremos que estos espacios proporcionan un contexto ade-

cuado en el que caracterizar los puntos de mejor aproximación en espacios

casi-métricos.

El hecho de que varias hipertopoloǵıas hayan sido aplicadas con éxito en

diversas áreas de Ciencias de la Computación ha contribuido a un conside-

rable aumento del interés en el estudio de los hiperespacios desde un punto

de vista no simétrico. Aśı, en la segunda parte de la tesis, estudiamos al-

gunas condiciones de mejor aproximación en el contexto de hiperespacios
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casi-métricos. Por otro lado, caracterizamos la completitud de un espa-

cio uniforme usando la completitud de Sieber-Pervin, la de Smyth y la D-

completitud de su casi-uniformidad superior de Hausdorff-Bourbaki, definida

en los subconjuntos compactos no vaćıos.

Finalmente, introducimos dos nociones de hiperespacio casi-métrico fuzzy

que generalizan las correspondientes nociones de espacio métrico fuzzy de

Kramosil y Michalek, y de George y Veeramani respectivamente al contexto

de hiperespacios casi-métricos. Presentamos diversas nociones básicas de

completitud, precompacidad y compacidad. Aplicamos esta teoŕıa a varios

ejemplos y ponemos de manifiesto las ventajas del uso de casi-métricas fuzzy

en lugar de las métricas y casi-métricas clásicas.
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Funcions semi-Lipschitz, Millor Aproximaciò
i Hiperespai Quasi-Mètrics Fuzzy

José Manuel Sánchez Álvarez

En els darrers anys s’ha desenvolupat una teoria matemàtica que permet

generalitzar algunes teories matemàtiques clàssiques: hiperespais, espais de

funcions, topologia algebraica, etc. Aquest fet ve motivat,en part, per certs

problemes de anàlisi funcional, concentració de mesures, sistemes dinàmic,

teoria de les Ciències de la Computació, matemàtica econòmica, etc.

Aquesta tesi doctoral està dedicada a l’estudi d’algunes d’aquestes genera-

litzacions des d’un punt de vista no simètric. A la primera part, estudiem

el conjunt de funcions semi-Lipschitz; mostrem que aquest conjunt admet

una estructura de con normand. Estudiarem diversos tipus de completesa

(bicompletesa, right k-completesa, D-completesa, etc), i també analitzarem

quan la quasi-distància correspondent és balanceada. A més presentem un

model adequat per al comput de la complexitat de certs algorismes mit-

jançant l’ùs de normes relatives. Això és aconsegueix seleccionant un espai

de funcions semi-Lipschitz apropiat. D’altra banda, mostrarem que aquests

espais proporcionen un context adequat en que caracteritzar els punts de

millor aproximaciò en espais quasi-mètrics.

El fet de que varies hipertopologies aixen segut aplicades amb exit a

diferents arees de Ciència de la Computació, ha contribuit a un considerable

aument del interés en l’estudi d’estos hiperespais des de un punt de vista

no simètric. Aix́ı, a la segona part de la tesi, estudiem algunes condicions

de millor aproximaciò en el context de hiperespai quasi-mètrics. D’altra

banda, caracteritzem la completesa d’un espai uniforme usant la completesa

de Sieber-Pervin, la d’Smyth o la D-completesa de la seva quasi-uniformitat

superior d’ Hausdorff-Bourbaki definida en els subconjunts compactes no
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buits.

Finalment introdüım dues nocions de hiperespai quasi-mètric fuzzy que

generalitzen les corresponents nocions d’espai mètric fuzzy de Kramosil i

Michalek, i de George i Veeramani respectivament al context de hiperespais

quasi-mètrics. Presentem diverses nocions bàsics de completesa, precompa-

citat i compatacitat. Apliquem aquesta teoria a alguns exemples i posem

de manifest els avantatges de l’ús de quasi-mètriques fuzzy en lloc de les

mètriques i quasi-mètriques clàsiques.
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Semi-Lipschitz Functions, Best
Approximation, and Fuzzy Quasi-Metric

Hyperspaces

José Manuel Sánchez Álvarez

Motivated, in part, by some problems from functional analysis, concen-

tration of measures, dynamical systems, theoretical computer science, mat-

hematical economics, etc, in the last years a mathematical theory has been

developed in order to generalize classical mathematical theories: hyperspa-

ces, function spaces, topological algebra, etc.

This doctoral thesis is devoted to study some of these generalizations

from a nonsymmetric point of view. In the first part, we study the set of

semi-Lipschitz functions, we show that this set can be endowed with the

structure of normed cone. We also study different types of completeness, (bi-

completeness, right k-completeness, D-completeness), and we explore when

the corresponding quasi-distance is balanced. Using relativized norms we

present a model for computing the complexity of certain algorithms, which

is done with the help of a suitable space of semi-Lipschitz functions. On the

other hand, we show that our approach provides an appropriate setting to

characterize the points of best approximation of quasi-metric spaces.

The fact that some hypertopologies have been successfully applied to

several areas of Computer Science has contributed to increase the interest

of a nonsymmetric study of hypertopologies. Thus, in a second part, we

study some conditions on best approximation in the realm of quasi-metric

hyperspaces. By other hand, we characterize completeness of a uniform space

using Sieber-Pervin completeness, Smyth completeness and D-completeness

of its upper Hausdorff-Bourbaki quasi-uniformity, on the collection of its

nonempty compact subsets.
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Finally we introduce two notions of fuzzy quasi-metric hyperspace that

generalize the corresponding notions of fuzzy metric space by Kramosil and

Michalek, and by George and Veeramani respectively, to the quasi-metric hy-

perspace context. Several basic properties of completeness, precompactness,

and compactness of these spaces are obtained. We apply this theory to some

examples and we point out some advantages of the use of fuzzy quasi-metrics

instead of classical metrics and quasi-metrics.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

We begin with a short summary of the history of some concepts and we give

some references. The concept of a metric space was defined by Fréchet in

[36]. Sierpinski’s book ([125]) and Kuratowski’s book ([68]) contain general

results on these spaces. On the other hand, asymmetric distance functions

had already been considered by Hausdorff in the beginning of the last cen-

tury when in his classical book on set-theory ([49]) he discussed the Hausdorff

metric of a metric space. Although the notion of quasi-metric was formally

introduced in 1931 by Niemytzki ([85]) and Wilson ([138]), Niemytzki explo-

red the interplay of the various assumptions in the usual axiomatization of

a metric space. Kelly in [56] noticed that given a quasi-pseudo-metric d we

can associate its conjugate quasi-pseudo-metric d−1.

The notion of quasi-norm that we are using was introduced in ([28]). By
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6 Chapter 1. Introduction and Preliminaries

other hand Alegre, Ferrer and Gregori introduced this concept to the study

of functional analysis from a non symmetric point of view ([3, 4]).

The theory of uniformities was introduced by Weil. He wanted to develop

a tool which, in contrast to metrics, could be applied to spaces not necessarily

satisfying the axioms of countability. Bourbaki ([14]) developed the theory

of uniform spaces presenting an axiomatic theory parallel to the theory of

topological spaces.

The beginning of quasi-uniformities is due to Nachbin ([84]) in 1948, mo-

tivated by the study of the uniform preordered spaces. He called the studied

nonsymmetric structures semi-uniformities. The term quasi-uniformity was

lather suggested by Császár in [20]. Krishnan ([58]) showed that every to-

pological space is quasi-uniformizable; subsequently, a proof of this result

were obtained by Császár ([20]) in terms of syntopogenous structures, and

by Pervin ([87]), in a direct fashion.

Hausdorff started the study of topologies defined over a collection of sub-

sets of a topological space. In [49] he defined a metric on the space of all

nonempty closed subsets of a bounded metric space, called the Hausdorff

metric. If we extend this metric to every nonempty set we obtain the so-

called Hausdorff pseudo-metric. Later on, Bourbaki introduced in [13] the

so-called Bourbaki or Hausdorff uniformity, which generates a T1 topology

over the collection of all nonempty closed subsets of a uniform space. Other

authors (see [55, 135]) also studied these topologies which started to be called

hypertopologies and whose corresponding spaces were called hyperspaces.

On other hand, the best studied hypertopology from a nonsymmetric

point of view is the Hausdorff quasi-uniform topology. Levine and Stager

([69]) as well as Berthiaume ([12]) noticed that it can be defined, in the set of

all nonempty subsets of a set in the same way as it is done with the Hausdorff



1.1. Introduction 7

uniformity. The study of the Hausdorff quasi-uniformity was continued by

Cao, Künzi, Ryser, Reilly, Romaguera, etc ([16, 17, 64, 66, 67]).

Recently, the study of nonsymmetric structures has received a new drive

as consequence of their applications to Computer Science. This theory began

with Smyth (see [128, 129]). He tried to find a convenient category for

computation. The two main spaces used in semantics are Scott domains

([119]) and metric spaces. He wanted to unify these spaces and obtain their

advantages. He asserted that the more suitable structures are the quasi-

metric spaces and the quasi-uniform spaces.

Schellekens introduced in [116] a quasi-pseudo-metric on function spaces

which is suitable for the study of complexity analysis of programs, which is

called the complexity distance. He showed that the complexity distance is

weightable. Using this theory, he also proved that each Divide & Conquer

algorithm induces a contraction map on a complexity space (the sequential

Smyth completion of the complexity spaces). The complexity of such an

algorithm then is represented via the fixed point of the map obtained by the

Banach Fixed Point Theorem. As an application of this theory, he gave a new

proof showing that the mergesort program has optimal asymptotic average

time.

This work is continued by Romaguera and Schellekens ([108]). They in-

troduced the dual complexity space which is isometric to the complexity

space and put their interest in this space rather than the complexity space

as the dual space admits a structure of quasi-normed semilinear space, so the

presentations of the proofs becomes somewhat more elegant. They proved

that the dual complexity space is a Smyth-complete Baire quasi-metric space

and that the complexity subspaces having lower bound are totally boun-

ded. Furthermore, the dual complexity space has the advantage that it res-

pects the interpretation usually given to the minimum in semantic domains.
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Investigation in this topic is being developed by Garćıa-Raffi, Romaguera,

Sánchez-Pérez and Schellekens ([38, 106, 109]).

In 1965, the concept of fuzzy set was introduced by Zadeh ([139]). Many

authors have introduced and discussed several notions of fuzzy metric space

from different points of view ([32, 42, 43, 45, 47]). Kramosil and Michalek

introduced and studied in [57] an interesting notion of fuzzy metric space

which makes use of the concept of continuous t-norm ([118]); this notion of

fuzzy metric space is closely related to a class of probabilistic metric spaces,

the so-called (generalized) Menger spaces. Later on, George and Veeramani

started, in [42] (see also [43]), the study of a stronger form of metric fuzziness.

In [47] Gregori and Romaguera introduced two notions of fuzzy quasi-metric

space that generalize the corresponding notions of fuzzy metric space by

Kramosil and Michalek, and by George and Veeramani, to the quasi-metric

context, and in [92], a suitable definition for the Hausdorff fuzzy metric of a

fuzzy metric space in the sense of George and Veeramani is introduced.

This doctoral thesis is devoted to study some generalizations, from a

nonsymmetric point of view, of classical mathematical theories. We summa-

rize the whole investigation:

In Chapter 1, we comment on the origins of the asymmetric topology

and we briefly present the main results which will be developed in the thesis.

Notions and concepts which are used, will be defined in section 1.2 below.

In [103], S. Romaguera and M. Sanchis discussed several properties of real

valued semi-Lipschitz functions. In Chapter 2 we extend their study to the

space of semi-Lipschitz functions that are valued in a quasi-normed linear

space. Our approach is motivated, in part, by the fact that this structure

can be applied to study some processes in the theory of complexity spaces.

We show that the set of semi-Lipschitz functions can be endowed whit
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structure of a normed cone we also study different types of completeness,

(bicompleteness, right k-completeness, D-completeness)

We show that if (X, d) is a T1 quasi-metric space and (Y, q) is a quasi-

normed linear space, then the normed cone of semi-Lipschitz functions from

(X, d) to (Y, q) that vanish at a point x0 ∈ X, is balanced. Moreover, it is

complete in the sense of D. Doitchinov whenever (Y, q) is a biBanach space.

Let T be the recurrence equation on N associated to a given algorithm.

If we denote by f the complexity function which is the solution of such a

recurrence equation, then f constitutes a total mapping defined recursively

that is, at the same time, the limit of a sequence {fn}n∈N of partial mappings

also defined recursively. In Chapter 3 we present a model to compute the

complexity represented by f, by means of the values that take a certain

relativized norm on the sequence {fn}n∈N and its initial segments. This is

done with the help of a suitable space of semi-Lipschitz functions which is

constructed here.

In Chapter 4 we show that the set of semi-Lipschitz functions, defined on

a quasi-metric space (X, d) with values in a quasi-normed linear space (Y, q),

that vanish at a fixed point x0 ∈ X with the structure of a quasi-normed

semilinear space provides an appropriate setting in which to characterize the

points of best approximation of quasi-metric spaces. And apply our methods

to obtain some conditions on best approximation in the realm of quasi-metric

hyperspaces.

A celebrated theorem due to Morita states that a separated uniform space

(X,U) is complete if and only if its Hausdorff-Bourbaki uniformity is com-

plete on the collection of its nonempty compact subsets. In Chapter 5, we

show that completeness of (X,U) can be also characterized, among others,

by Sieber-Pervin completeness, Smyth completeness or D-completeness of its
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upper Bourbaki quasi-uniformity on the collection of its nonempty compact

subsets.

Finally in Chapter 6, we construct and discuss a notion of Hausdorff

fuzzy quasi-metric, based on the notion of fuzzy (quasi-)metric of Kramosil

and Michalek. We show that this new concept has several nice properties of

completeness, precompactness and compactness. We also consider a notion

of Hausdorff fuzzy quasi-metric, based on the notion of fuzzy (quasi-)metric

in the sense of George and Veeramani. Finally we apply the developed theory

to the domain of words and we point out some advantages of the use of fuzzy

quasi-metrics instead of classical metrics and quasi-metrics.
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1.2 Preliminaries

Next we recall some pertinent concepts. In what follows X will always denote

a nonempty set.

A quasi-pseudo-metric on a set X is a nonnegative real-valued function

d on X ×X such that for all x, y, z ∈ X:

(i) d(x, x) = 0

(ii) d(x, y) ≤ d(x, z) + d(z, y).

If, in addition, d satisfies the condition:

(iii) d(x, y) = d(y, x) = 0 ⇔ x = y,

then d is said to be a quasi-metric on X.

By other hand, if d can take the value ∞ then it is called an extended

quasi (-pseudo)-metric on X. In the case that d is an extended quasi-metric

we also refer to it as a quasi-distance.

A(n extended) quasi-(pseudo-) metric space is a pair (X, d) such that d is

a (n extended) quasi-(pseudo-)metric on X.

If d is a(n extended) quasi-(pseudo-)metric on X, then the function d−1

defined on X × X by d−1(x, y) = d(y, x) for all x, y ∈ X, is also a(n ex-

tended) quasi-(pseudo-)metric on X, called the conjugate (extended) quasi-

(pseudo-)metric of d, and the function ds defined on X × X by ds(x, y) =

max{d(x, y), d−1(x, y)} for all x, y ∈ X, is a(n extended) (pseudo-)metric on

X.
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The following is a simple but paradigmatic example of a quasi-metric

space.

Example 1.1. Let ` be the real-valued function defined on R×R by `(x, y) =

max{x − y, 0}. Then ` is a quasi-metric on R such that `s is the Euclidean

metric on R.

Each extended quasi-pseudo-metric d on X generates a topology Td on

X which has as a base the family of balls of the form Bd(x, r) = {y ∈ X :

d(x, y) < r}, where x ∈ X and r > 0. Note that if d is a quasi-metric, then

Td is a T0 topology on X. Moreover, if condition (iii) above is replaced by

(iii’) d(x, y) = 0 ⇔ x = y,

then Td is a T1 topology.

A topological space (X, T ) is said to be quasi-(pseudo-)metrizable if there

is a quasi-(pseudo-)metric d on X such that T = T (d).

A subset A of a quasi-(pseudo-)metric space (X, d) is called bounded if

A is bounded in the (pseudo-)metric space (X, ds).

A quasi-metric d is said to be bicomplete if ds is a complete metric.

An extended quasi-(pseudo-)metric d is said to be bicomplete if ds is a

complete extended (pseudo-)metric.

If d is an extended quasi-pseudo-metric on a set X, then the relation ≤d

on X given by x ≤d y if and only if d(x, y) = 0, is a preorder on X (i.e., ≤d

is reflexive and transitive).
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It is clear that d is an extended quasi-metric on a set X if and only if

≤d is a (partial) order on X (i.e., the preorder ≤d is antisymmetric, which

means that x ≤d y and y ≤d x, implies x = y). In this case, ≤d is called the

specialization order.

Note that in Example 1.1 the specialization order coincides with the usual

order on R.

Remark 1.1. The natural connection between asymmetric distances and

order, described above, provides some advantages in certain settings, if one

works with quasi-metrics instead of metrics. Thus, in modeling a computatio-

nal process on a collection X of elements (for example, chains of information,

words of an alphabet in a programming language, complexity functions in

analysis of algorithms, etc.) we can define an order ≤ on X given by x ≤ y

if and only if the element y contains all the information provided by the

element x, and then it is possible, in many cases, to construct a suitable

(extended) quasi-metric d on X such that the order ≤ is exactly the specia-

lization order of d, transmitting in this way the information provided by ≤
to the quasi-metric space (X, d) (see, for instance, [76, 116]).

For more information about quasi-metric spaces see [35] and [62].

Let us recall that a quasi-uniformity on X is a filter U on X × X such

that:

(i) for each U ∈ U , ∆ ⊆ U, where ∆ = {(x, x) : x ∈ X};

(ii) for each U ∈ U there is V ∈ U such that V 2 ⊆ U, where V 2 = {(x, y) ∈
X ×X : there is z ∈ X with (x, z) ∈ V and (z, y) ∈ V }.

By a quasi-uniform space we mean a pair (X,U) such that U is a quasi-

uniformity on X. The members of U are called entourages.
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Each quasi-uniformity U on X generates a topology TU on X such that a

neighborhood base for each point x ∈ X is given by {U(x) : U ∈ U}, where

U(x) = {y ∈ X : (x, y) ∈ U}.

If (X, T ) is a topological space, and U is a quasi-uniformity (resp. d is a

quasi-pseudo-metric) on X such that TU = T (resp. Td = T ) , we say that U
is a quasi-uniformity (resp. d is a quasi-pseudo-metric) compatible with T .

The filter U−1, formed by all sets of the form U−1 = {(x, y) ∈ X × X :

(y, x) ∈ U} where U ∈ U , is a quasi-uniformity on X called the conjugate

quasi-uniformity of U .

If U is a quasi-uniformity on X, then the family {U s = U ∩U−1 : U ∈ U}
is a base for a quasi-uniformity U s (in fact, it is a uniformity), which is the

coarsest uniformity containing both U and U−1. Hence this uniformity is the

supremum of the quasi-uniformities U and U−1, i.e. U s = U ∨ U−1.

Of course, a quasi-uniformity U on X is a uniformity on X if and only if

U = U−1.

Each (extended) quasi-pseudo-metric d on X induces a quasi-uniformity

Ud on X which has as a base the countable family

{{(x, y) ∈ X ×X : d(x, y) < 2−n} : n ∈ N}
.

In connection with this fact we have the following useful result which can be

found, for instance, in ([35, Theorem 1.5]).

Proposition 1.1. Let (X,U) be a quasi-uniform space. U has a countable

base if and only if there exists a quasi-pseudo-metric d on X such that Ud = U .
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On the other hand, one problem which arises when working with nonsym-

metric structures is that there are several theories about completion. Since

Reilly, Subrahmanyam and Vamanamurthy [89] began a systematized study

of several definitions of Cauchy sequence in quasi-pseudo-metric spaces, va-

rious authors have investigated different notions of completeness for these

spaces. We recall the notions of left K -Cauchy and right K -Cauchy sequence

respectively.

According to [89] a sequence {xn}n∈N in a quasi-pseudo-metric space

(X, d) is called right K-Cauchy if for each ε > 0 there is k ∈ N such that

d(xn, xm) < ε for n ≥ m ≥ k, and {xn}n∈N is called left K-Cauchy if for each

ε > 0 there is k ∈ N such that d(xm, xn) < ε for n ≥ m ≥ k. (X, d) is said to

be left K-sequentially complete (resp. right K-sequentially complete) if each

left K-Cauchy (resp. right K-Cauchy) sequence is Td-convergent.

The corresponding notions for filters were studied by Romaguera [98].

If (X,T ) is a topological space, we denote by P0(X), C0(X) and K0(X),

the collection of all nonempty subsets of X, the collection of all nonempty

closed subsets of X and the collection of all nonempty compact subsets of X.

It is well known ([12, 67, 69]) that, similarly to the theory of uniform

spaces ([78]), given a quasi-uniform space (X,U) we can construct three

quasi-uniformities U+
H , U−H and UH on P0(X), as follows:

For each U ∈ U , put

U+
H = {(A,B) ∈ P0(X)× P0(X) : B ⊆ U(A)} ,

and

U−
H =

{
(A, B) ∈ P0(X)×P0(X) : A ⊆ U−1(B)

}
.
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Then the collection {U+
H : U ∈ U} is a base for a quasi-uniformity U+

H on

P0(X), called the upper Bourbaki (or Hausdorff) quasi-uniformity of (X,U)

on P0(X), and the collection {U−
H : U ∈ U} is a base for a quasi-uniformity

U−H on P0(X), called the lower Bourbaki (or Hausdorff) quasi-uniformity of

(X,U) on P0(X).

The quasi-uniformity UH = U+
H ∨ U−H is said to be the Bourbaki (or

Hausdorff) quasi-uniformity of (X,U) on P0(X).

Obviously, if (X,U) is a uniform space then UH is exactly the Bourbaki

(or Hausdorff) uniformity on P0(X) of (X,U). It is interesting to note that

in this case, both U+
H and U−H are quasi-uniformities but not uniformities on

P0(X) unless |X| = 1 ([69]).

Remark 1.2. Observe that for a uniform space (X,U), we have (U+
H)−1 = U−H

on P0(X). Therefore (U+
H)s = (U−H)s = UH on P0(X).

Given a uniform space (X,U), the restrictions of U+
H , U−H and UH to

K0(X)×K0(X), will be also denoted by U+
H , U−H and UH , respectively.

In the sequel the letters R, R+, N and ω will denote the set of real

numbers, the set of nonnegative real numbers, the set of positive integers

numbers and the set of nonnegative integers, respectively.

The notion of a cone will be also useful.

As usual by a monoid we mean a semigroup (X, +) with neutral element.

Similarly to [54], by a cone we mean a triple (X, +, ·) such that (X, +) is

an Abelian monoid, and · is a function from R+ ×X to X such that for all

x, y ∈ X and r, s ∈ R+:

(i) r · (s · x) = (rs) · x;



1.2. Preliminaries 17

(ii) r · (x + y) = (r · x) + (r · y);

(iii) (r + s) · x = (r · x) + (s · x);

(iv) 1 · x = x.

A quasi-norm on a cone (X, +, ·) [102, 103] is a function q : X → R+

such that for all x, y ∈ X and r ∈ R+:

(i) x = 0 if and only if there is −x ∈ X and q(x) = 0 = q(−x),

(ii) q(r · x) = rq(x),

(iii) q(x + y) ≤ q(x) + q(y).

If the quasi-norm q satisfies:

(i’) q(x) = 0 if and only if x = 0,

then q is called a norm on the cone (X, +, ·).

A (quasi-)normed cone is a pair (X, q) such that X is a cone and q is a

(quasi-)norm on X.

If (X, +, ·) is a linear space and q is a quasi-norm on X, then the pair

(X, q) is called a quasi-normed (linear) space (asymmetric normed linear

space in [38]). Note that in this case, the function q−1 : X → R+ given by

q−1(x) = q(−x) is also a quasi-norm on X and the function qs : X → R+

given by qs(x) = q(x)∨ q−1(x) is a norm on X. As in [39], we say that (X, q)

is a biBanach space if (X, qs) is a Banach space.

A simple but crucial example of a biBanach space is the pair (R, u), where

u is the quasi-norm on R given by u(x) = max{x, 0} for all x ∈ R. Note that

us(x) = |x| for all x ∈ R, so (R, u) is a biBanach space.
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It is well known that each quasi-norm q on a linear space X induces a

quasi-metric dq on X defined as:

dq(x, y) = q(x− y) for all x, y ∈ X.

The complexity (quasi-metric) space was introduced by M. Schellekens ([116])

to obtain a topological foundation to the complexity analysis of programs and

algorithms. This space consists of the pair (C, dC), where

C =
{

f : ω −→ (0,∞] :
∞∑

n=0

2−n 1

f(n)
< ∞

}
,

and dC is the quasi-metric on C given by

dC(f, g) =
∞∑

n=0

2−n
[
(

1

g(n)
− 1

f(n)
) ∨ 0

]
,

for all f, g ∈ C, where we adopt the convention that 1/∞ = 0. The elements

of C are called complexity functions.

It is well known that C is a cone when it is equipped with the pointwise

operations.

Following [116] the intuition behind the complexity distance dC(f, g) is

that it measures relative progress made in lowering the complexity by repla-

cing the complexity function f by the complexity function g. Thus dC(f, g) =

0 if and only if f ≤ g, and, thus, condition dC(f, g) = 0, with f 6= g, can be

interpreted as f is more efficient than g on all inputs. Observe that the above

information is not provided by using the metric (dC)s because from the value

(dC)s(f, g) is not possible to determine which complexity function would be

more efficient.

If (X, d) is a quasi-pseudo-metric space given A is a subset of X we denote

by A
T

the closure of A with respect to T, we define

C∩(X) =
{
A

Td ∩ A
Td−1

: A ∈ P0(X)
}
.
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Remark 1.3. In a quasi-pseudo-metric space (X, d) the following inclusions

are obvious: C0(X) ⊆ C∩(X) ⊆ P0(X). Moreover, if (X, d) is a metric space,

then K0(X) ⊆ C0(X) and C0(X) = C∩(X). It is well known (see Example 1.2

below) that the situation is quite different for quasi-metric spaces).

Now, for each A,B ∈ P0(X) let

H−
d (A,B) = sup

a∈A
d(a, B), H+

d (A, B) = sup
b∈B

d(A, b),

and

Hd(A,B) = max{H−
d (A, B), H+

d (A,B)}.
Then H−

d , H+
d and Hd are extended quasi-pseudo-metrics on P0(X) (see, for

instance, [12, 67, 93, 94, etc]). Moreover Hd is an extended quasi-metric on

C∩(X) (compare [67, Lemma 2]), and it is a quasi-metric on the set of all

bounded subsets of X that are in C∩(X). In this case we say that Hd is the

Hausdorff quasi-metric of d. Note that if (X, d) is a metric space, then Hd is

the extended Hausdorff metric of d (on C0(X)).

Example 1.2. Let X = {a, b, c} and let d be the quasi-metric on X given

by d(b, a) = d(c, b) = d(c, a) = 1, and d(x, y) = 0 otherwise. Let F = {a, c}.
Then F

Td ∩ F
Td−1

= X, because d(b, c) = d(a, b) = 0. Therefore F /∈ C∩(X),

and hence K0(X) * C∩(X).
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Chapter 2

Semi-Lipschitz Functions that

are Valued in a Quasi-Normed

Linear Space

2.1 Introduction

Motivated, in part, by some problems from computer science and their ap-

plications (see for instance [38, 40, 101, 106, 116, 129]), the theory of com-

pleteness has received a certain attention in the recent years (see, among

other contributions, [24, 26, 34, 61, 97, 127, 132]). These advances have also

permitted the development of generalizations, to the nonsymmetric case, of

classical mathematical theories: hyperspaces, function spaces, topological

algebra, etc.

Let us recall that in [102] it was shown that the set of real-valued semi-

Lipschitz functions defined on a quasi-metric space (X, d) that vanish at a

21
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point x0 ∈ X can be structured as a normed cone. Applications of semi-

Lipschitz functions to questions on best approximation, global attractors on

dynamical systems, and concentration of measure can be found in [83, 102],

[101] and [130], respectively.

In [112], semi-Lipschitz functions that are valued in a quasi-normed linear

space have been discussed. This study was motivated, in great part, by the

fact that quasi-normed linear spaces provide suitable mathematical models

in the theory of computational complexity (see [38, 40, 106]).

The complexity quasi-metric space was introduced in [116] to study com-

plexity analysis of programs and algorithms. Later on, it was introduced in

[108] the dual complexity space. Several quasi-metric properties of the com-

plexity space were obtained via the analysis of the dual complexity space. In

[106] Romaguera and Schellekens show that the structure of a quasi-normed

semilinear space provides a suitable setting to carry out an analysis of the

dual complexity space.

This chapter is a contribution to the study of the set of semi-Lipschitz

functions from a nonsymmetric point of view. We show that this set can be

endowed with structure of a quasi-normed linear space when they are defined

on a quasi-metric space taking values in a quasi-normed space. We show that

this space is bicomplete and we also study other types of completeness.

Moreover we prove the somewhat surprising fact that when the quasi-

metric space is T1 this space is balanced in the sense of Doitchinov ([26]).

We also prove that it is complete in the sense of Doitchinov whenever (Y, q) is

a biBanach space. As an application of these results to asymmetric functional

analysis, we deduce that the dual space of a T1 quasi-normed linear space

is balanced and Doitchinov complete (see [99]). It is interesting to recall

that the study of balanced quasi-metric spaces from a fuzzy point of view
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has been recently discussed in [46, 105], and that, on the other hand, some

applications of balanced (extended) quasi-metrics to theoretical computer

science have been given in [96, 100].
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2.2 The Structure of the Set of Semi-Lipschitz

Functions

In this section we show a new concept of semi-Lipschitz functions, we are

going to define a quasi-distance and a quasi-norm on this set. Some internal

and external composition operations are defined, this operations give the

structure of normed cone. It will be interesting to know when this space has

the structure of normed cone it will be showed in some results in this chapter.

Definition 2.1. Let (X, d) and (Y, q) be a quasi-metric space and a quasi-

normed space, respectively. A function f : X −→ Y is said to be a semi-

Lipschitz function if there exists k ≥ 0 such that

q(f(x)− f(y)) ≤ kd(x, y)

for all x, y ∈ X. The number k is called a semi-Lipschitz constant for f .

Another interesting set could be the following:

Definition 2.2. A function f on a quasi-metric space (X, d) with values in

a quasi-normed linear space (Y, q) is called ≤(d,q)-increasing if

q(f(x)− f(y)) = 0 whenever d(x, y) = 0.

By Y X
(d,q) we shall denote the set of all ≤(d,q)-increasing functions from (X, d)

to (Y, q).

It is clear that if (X, d) is a T1 quasi-metric space, then every function

from X to Y is ≤(d,q) -increasing.
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If for each f, g ∈ Y X
(d,q) and a ∈ R + we define f + g and af in the usual

way; then it is a routine to show that (Y X
(d,q), +, ·) is a cone.

This example shows that the set of ≤(d,q)-increasing functions is not ne-

cessarily a linear space:

Example 2.1. Let X = Z3, where, as usual, by Z3 we denote the quotient

field between the set Z integer numbers and 3Z multiples of 3. Let d be the

quasi-metric on X given by

d(x, y) =





1 if x > y,

0 if x ≤ y.

Let Y = R, q(x) = x ∨ 0 and take f such that f(0) = 0, f(1) = 1 and

f(−1) = −2. It is easy to see that f ∈ Y X
(d,q) but −f /∈ Y X

(d,q). Thus Y X
(d,q) is

not a linear space.

A simple but interesting example of a semi-Lipschitz function is the fo-

llowing:

Example 2.2. Let (N, d) be a quasi-metric space where:

d(x, y) =





1 if y > x,

0 if y ≤ x.

Then, the dual complexity space, is the quasi-normed space (B∗, q), with

B∗ = {f : ω → R :
∞∑

n=0

2−n(f(n) ∨ 0) < ∞}
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and

q(f) =
∞∑

n=0

2−n(f(n) ∨ 0).

Let now F : (N, d) → (B∗, q) be the function defined by F (0) = 0 and

F (n) = fn for all n > 0 (where {fn}n∈N is any strictly decreasing sequence

of functions in (B∗, q), for the usual order, i.e, g > h ⇐⇒ g(x) > h(x)for all

x ∈ ω).

It is easy to check that F is a semi-Lipschitz function, let see it:

Case 1: If x ≥ y then d(x, y) = 0 and we have that q(F (x)−F (y)) = q(fx−fy) =

0 because F is a decreasing function, thus

q(F (x)− F (y)) ≤ kd(x, y).

Case 2: If x < y, then d(x, y) = 1 and we have that

q(F (x)− F (y)) = q(fx − fy) =
∞∑

n=0

2−n(fx(n)− fy(n) ∨ 0) ≤

∞∑
n=0

2−n(fx(n) ∨ 0) ≤
∞∑

n=0

2−n(f1(n) ∨ 0).

Since f ∈ B∗, then

∞∑
n=0

2−n(f1(n) ∨ 0) = k < ∞

so that

q(F (x)− F (y)) ≤ q(F (1)) < k = kd(x, y).
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Given a quasi-metric space (X, d) and a quasi-normed space (Y, q), fix

x0 ∈ X and put

SL0(d, q) =
{
f ∈ Y X

(d,q) : sup
d(x,y)6=0

q(f(x)− f(y))

d(x, y)
< ∞ , f(x0) = 0

}
.

Then SL0(d, q) is exactly the set of all semi-Lipschitz functions that

vanishes at x0, and it is clear that (SL0(d, q), +, ·) is a subcone of (Y X
(d,q), +, ·).

Now let ρ(d,q) : SL0(d, q)× SL0(d, q) −→ [0,∞] defined by

ρ(d,q)(f, g) = sup
d(x,y)6=0

q((f − g)(x)− (f − g)(y))

d(x, y)

for all f, g ∈ SL0(d, q). Then ρ(d,q) is a quasi-distance on SL0(d, q). However

ρ(d,q) is not a quasi-metric in general, as Example 2.3 below shows.

Furthermore, it is clear that for each f, g, h ∈ SL0(d, q) and each r > 0,

ρ(d,q)(f + h, g + h) = ρ(d,q)(f, g)

and

ρ(d,q)(rf, rg) = rρ(d,q)(f, g)

i.e., ρ(d,q) is an invariant quasi-distance. Moreover, it is easy to check that

ρ(d,q)(f,0) = 0 if and only if f = 0, where by 0 we denote the function that

vanishes at every x ∈ X.

Consequently, the nonnegative function ‖ · ‖(d,q) defined on SL0(d, q) by

‖f‖(d,q) = ρ(d,q)(f,0)

is a norm on SL0(d, q). Therefore (SL0(d, q), ‖ · ‖(d,q)) is a normed cone.
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Example 2.3. ([103]) Let d be the T1 quasi-metric defined on R by d(x, y) =

x− y if x ≥ y and d(x, y) = 1 otherwise. Then Td is the Sorgenfrey topology

on R. Now, let q be the quasi-norm defined on R by q(x) = x∨0. Let x0 = 0.

If we denote the identity function on R by id and 0 denotes the function on

R that vanishes at every x ∈ R, then ρ(d,q)(0, id) = ∞.

Note that the above example shows that there exists f ∈ SL0(d, q) such

that ρ(d,q)(0, f) = 0 but f 6= 0.

This example also provides an instance of a T1 quasi-metric space (X, d)

such that (SL0(d, q), +) is not a group for some x0 ∈ X, which suggests the

question of characterizing when (SL0(d, q), +) is a group. In order to give

an answer to this question note that if x0 is a point in the quasi-metric space

(X, d), then the set

SL0(d
−1, q) =

{
f ∈ Y X

(d−1,q) : sup
d(y,x)6=0

q(f(x)− f(y))

d(y, x)
< ∞ , f(x0) = 0

}

has also a structure of a cone and (SL0(d
−1, q), ‖ · ‖(d−1,q)) is a normed cone,

where ‖f‖(d−1,q) = ρ(d−1,q)(f,0), i.e.,

‖f‖(d−1,q) = sup
d(y,x)6=0

q(f(x)− f(y))

d(y, x)

for all f ∈ SL0(d
−1, q).

Proposition 2.1. Let (X, d) and (Y, q) be a quasi-metric space and a quasi-

normed space, respectively. Then

f ∈ SL0(d, q) ⇐⇒ −f ∈ SL0(d
−1, q).

Proof. Let f ∈ SL0(d, q) then there exists k ∈ R+ such that

q(f(x)− f(y)) ≤ kd(x, y)
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for all x, y ∈ X. We change x by y and hence

q(f(y)− f(x)) ≤ kd(y, x)

and

q(−f(x)− (−f(y))) ≤ kd−1(x, y)

then −f ∈ SL0(d
−1, q). The converse is analogous.

This is the reason why we can say that the biggest set with group structure

in (SL0(d, q), +) is the intersection set.

Corollary 2.1. Let (X, d) and (Y, q) be a quasi-metric space and a quasi-

normed space, respectively.Then (SL0(d, q) ∩ SL0(d
−1, q), +, ·) is a linear

space.

Proof. It follows from Proposition 2.1 that f ∈ SL0(d, q)∩SL0(d
−1, q) if and

only if −f ∈ SL0(d, q) ∩ SL0(d
−1, q).

Remark 2.1. Note that for each f ∈ SL0(d, q), ‖f‖(d,q) = ‖ − f‖(d−1,q).

Thus the normed cones (SL0(d, q), ‖ · ‖(d,q)) and (SL0(d
−1, q), ‖ · ‖(d−1,q)) are

isometrically isomorphic by the bijective map

φ : SL0(d, q) −→ SL0(d
−1, q)

defined by φ(f) = −f .

Furthermore, we have

SL0(d, q) ∩ SL0(d
−1, q) =
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{
f ∈ Y X

(d,q)∩ Y X
(d−1,q) : sup

d(x,y)6=0

q(f(x)− f(y)) ∨ q(f(y)− f(x))

d(x, y)
< ∞, f(x0) = 0

}
.

Hence (SL0(d, q) ∩ SL0(d
−1, q), ‖ · ‖B) is a normed linear space, where

‖ · ‖B is the norm defined by

‖f‖B = sup
d(x,y)6=0

q(f(x)− f(y)) ∨ q(f(y)− f(x))

d(x, y)
,

for all f ∈ SL0(d, q) ∩ SL0(d
−1, q).

Observe that ‖ · ‖B = ‖ · ‖(d,q) ∨ ‖ · ‖(d−1,q) on SL0(d, q) ∩ SL0(d
−1, q).

The next result, whose proof is very easy, provides a characterization that

will be useful, later on.

Proposition 2.2. Let (X, d) and (Y, q) be a quasi-metric space and a quasi-

normed space, respectively. Then f ∈ SL0(d, q) ∩ SL0(d
−1, q) if and only if

f(x0) = 0 and there exists k ≥ 0 such that qs(f(x)− f(y)) ≤ kd(x, y).

Remark 2.2. It is straightforward to see that f : (X, d) −→ (Y, q) belongs

to Y X
(d,q) ∩ Y X

(d−1,q) if and only if f(x) = f(y) whenever d(x, y) = 0.

The next example shows that the intersection set is not “always interes-

ting”.

Example 2.4. Let (X, d) and (Y, q) be a quasi-metric and a quasi-normed

space, respectively, such that there is x0 ∈ X satisfying d(x, x0)∧d(x0, x) = 0

for all x ∈ X. Then SL0(d, q) ∩ SL0(d
−1, q) = {0}.
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Now we see another example using a classical quasi-metric:

Example 2.5. Let X = [0, 1] and let d be the quasi-metric on X given

by d(x, y) = y − x if x ≤ y and d(x, y) = 1 otherwise. Clearly Td is the

restriction of the Sorgenfrey topology to [0, 1]. Let (Y, q) be a quasi-normed

space and put x0 = 0. Then, a function f : X −→ Y satisfies f ∈ SL0(d, q)∩
SL0(d

−1, q) if and only if there is k ≥ 0 such that

q(f(x)− f(y)) ∨ q(f(y)− f(x)) ≤ k(d(x, y) ∧ d(y, x))

for all x, y ∈ X.

The next result characterizes when the semi-Lipschitz function space with

the internal composition law defined is a group.

Theorem 2.1. Let (X, d) and (Y, q) be a quasi-metric space and a quasi-

normed space, respectively. Then the following assertions are equivalent:

(1) SL0(d, q) = SL0(d
−1, q).

(2) SL0(d, q) is a group.

(3) SL0(d
−1, q) is a group.

(4) SL0(d, q) ⊂ SL0(d
−1, q).

(5) SL0(d
−1, q) ⊂ SL0(d, q).

Proof. (1) ⇒ (2) By Corollary 2.1 (SL0(d, q) ∩ SL0(d
−1, q), +, ·) is a linear

space. If SL0(d, q) = SL0(d
−1, q) then (SL0(d, q), +) is a group.

(2) ⇒ (3) Let f ∈ SL0(d
−1, q). By Proposition 2.1 −f ∈ SL0(d, q), since

SL0(d, q) is a group, f ∈ SL0(d, q), by Proposition 2.1 −f ∈ SL0(d
−1, q).
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(3) ⇒ (4) The proof is similar to the proof of (2) ⇒ (3).

(4) ⇒ (5) Let f ∈ SL0(d
−1, q). Then −f ∈ SL0(d, q) ⊂ SL0(d

−1, q)

hence −f ∈ SL0(d
−1, q).Thus f ∈ SL0(d, q).

(5) ⇒ (1) Is the same that (4) ⇒ (5).

Let see that all this does not depend on the x0 chosen:

Proposition 2.3. Let (X, d) and (Y, q) be a quasi-metric space and a quasi-

normed space, respectively. If there exists x0 ∈ X such that SL0(d, q) =

SL0(d
−1, q), then SL1(d, q) = SL1(d

−1, q) for each x1 ∈ X.

Proof. Let f ∈ SL1(d, q). Define a function g on X by g(x) = f(x)−f(x0) for

all x ∈ X. It easy to check that g ∈ SL0(d, q). Thus, g ∈ SL0(d
−1, q). Since

g(x)−g(y) = f(x)−f(y) for all x, y ∈ X we obtain that f ∈ SL1(d
−1, q).
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2.3 Completeness Properties

In this section, we discuss the completeness properties of the semi-Lipschitz

function space.

Theorem 2.2. Let (X, d) and (Y, q) be a quasi-metric space and a biBanach

space, respectively. Consider the following conditions:

(1) (X, d) is a metric space.

(2) SL0(d, q) = SL0(d
−1, q) and ‖ · ‖(d,q) = ‖ · ‖(d−1,q).

(3) (SL0(d, q), ‖ · ‖(d,q)) is a Banach space.

Then: (1) ⇒ (2), and (2) ⇔ (3).

Proof. (1) ⇒ (2) Obvious.

(2) ⇒ (3) From (2) SL0(d, q) = SL0(d
−1, q), thus SL0(d, q)∩SL0(d

−1, q) =

SL0(d, q) is a linear space, by other hand ‖ · ‖(d,q) = ‖ · ‖(d−1,q) therefore

‖ · ‖(d,q) = ‖ · ‖B from Theorem 2.3 (SL0(d, q), ‖ · ‖(d,q)) is a Banach space.

(3) ⇒ (2) Suppose that (SL0(d, q), ‖ · ‖(d,q)) is a Banach space. Then

SL0(d, q) is a group, so SL0(d, q) = SL0(d
−1, q). Moreover ‖ · ‖(d,q) is a

norm on SL0(d, q), so that ‖f‖(d,q) = ‖ − f‖(d,q) for all f ∈ SL0(d, q). Since

−f ∈ SL0(d, q) it follows that ‖ − f‖(d,q) = ‖f‖(d−1,q). We conclude that

‖ · ‖(d,q) = ‖ · ‖(d−1,q) on SL0(d, q).

To see that in general (3) ⇒ (1) is not true we take Y = 0 for any

quasi-metric space (X, d) that is not a metric space.
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The following result allows us to prove that if (Y, q) is a biBanach space

then (SL0(d, q), ρ(d,q)) is a bicomplete space:

Theorem 2.3. Let (X, d) and (Y, q) be a quasi-metric space and a biBanach

space, respectively. Then ρ(d,q) is a bicomplete quasi-distance on SL0(d, q).

Proof. Let {fn}n∈N be a Cauchy sequence in (SL0(d, q), ρ(d,q)). Then, given

ε > 0 there is n0 ∈ N such that

sup
d(x,y)6=0

q((fn − fm)(x)− (fn − fm)(y))

d(x, y)
< ε (∗)

for all n, m ≥ n0.

If x = x0 then fn(x) = 0 for all n ∈ N.

Let x 6= x0.We consider the following cases.

Case 1. d(x, x0) 6= 0. Then, we deduce from (∗) that given ε > 0 there

exists n′0 ∈ N such that if n,m ≥ n′0 then q(fn(x) − fm(x)) < ε and if we

change n and m, then q(fm(x)− fn(x)) < ε. Therefore, {fn(x)} is a Cauchy

sequence in (Y, qs).

Case 2. d(x, x0) = 0. Then d(x0, x) 6= 0 so q(fm(x) − fn(x)) < ε and

q(fn(x)− fm(x)) < ε.

Consequently, {fn(x)}n∈N is a Cauchy sequence in (Y, qs), thus {fn(x)}n∈N
converges in (Y, qs) and we define f as the function pointwise limit of {fn(x)}n∈N
in (Y, q) for all x ∈ X. We shall prove that {fn}n∈N converges to f in

(SL0(d, q), ρ(d,q)).

Indeed, given ε > 0, since {fn(x)}n∈N converges to f(x) in (Y, q), for all
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x ∈ X, then for each x, y there exists n′ such that if m′ ≥ n′ then

qs(f(x)− fm′(x)− (f(y)− fm′(y)))

d(x, y)
<

ε

2

and since {fn}n∈N is a Cauchy sequence, we can also find n0 such that if

m′, n ≥ n0 then

qs(fm′(x)− fn(x)− (fm′(y)− fn(y)))

d(x, y)
<

ε

2

for all x, y ∈ X.

Thus we have

ε

2
>

qs(f(x)− fm′(x)− (f(y)− fm′(y)))

d(x, y)

≥ qs(f(x)− fn(x)− (f(y)− fn(y)))

d(x, y)
− qs(f ′m(x)− fn(x)− (f ′m(y)− fn(y)))

d(x, y)

and hence

qs(f(x)− fn(x)− (f(y)− fn(y)))

d(x, y)
<

ε

2
+

ε

2
= ε.

Since n0 is independent from x and y, we obtain

sup
d(x,y)6=0

qs(f(x)− fn(x)− (f(y)− fn(y)))

d(x, y)
< ε,

for all n ≥ n0. Consequently ρ(d,q) is a bicomplete quasi-distance on (SL0(d, q).
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Corollary 2.2. Let {fn}n∈N be a Cauchy sequence in (SL0(d, q), ‖ · ‖(d,q))

then there exists a convergent sequence {kn}n∈N in (R, TE) such that kn is a

semi-Lipschitz constant for fn.

The following result allows us to prove that if (Y, q) is a biBanach space

then (SL0(d, q) ∩ SL0(d
−1, q), ‖ · ‖B) is a Banach space.

Corollary 2.3. Let (X, d) and (Y, q) be a quasi-metric space and a biBanach

space, respectively. Then (SL0(d, q)∩ SL0(d
−1, q), ‖ · ‖B) is a Banach space.

Proof. Given {fn}n∈N ∈ SL0(d, q) ∩ SL0(d
−1, q) a convergent sequence, let

f be the limit of {fn}n∈N respect to ‖ · ‖B. Given ε > 0 there exists n0 such

that if n ≥ n0 :

sup
d(x,y)6=0

qs(f(x)− fn(x)− (f(y)− fn(y)))

d(x, y)
< ε,

then let see that f ∈ SL0(d, q) ∩ SL0(d
−1, q) :

sup
d(x,y)6=0

qs(f(x)− f(y))

d(x, y)

≤ sup
d(x,y) 6=0

qs(f(x)− fn(x)− (f(y)− fn(y)))

d(x, y)
+ sup

d(x,y)6=0

qs(fn(x)− fn(y))

d(x, y)

< ε + ‖f‖B < ∞.

Thus (SL0(d, q)∩SL0(d
−1, q), ‖·‖) is a closed subset of (SL0(d, q), ρs

(d,q)),

by Theorem 2.3 is complete.
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2.4 Other Completeness Properties

In this section, we discuss other completeness properties of the semi-Lipschitz

function space.

Let us recall that right K-completeness and left K-completeness constitute

very useful extensions of the notion of completeness to the nonsymmetric

context.

In fact, they have been successfully applied to different fields like hy-

perspaces and function spaces, topological algebra and theoretical computer

science.

Definition 2.3. Let (X, d) be a quasi-pseudo-metric space. A net {xδ}δ∈Λ in

X, is called left K-Cauchy provided that for each ε > 0 there is δ0 such that

d(xδ1 , xδ2) < ε for all δ2 ≥ δ1 ≥ δ0, and {xδ}δ∈Λ in X is called right K-Cauchy

provided that for each ε > 0 there exists δ0 such that d(xδ2 , xδ1) < ε for all

δ2 ≥ δ1 ≥ δ0.

Definition 2.4. A quasi-pseudo-metric space (X, d) is called left K-complete

(resp. right K-complete) space if each left K-Cauchy net (resp. right K-

Cauchy net) is Td-convergent. (Compare with [65, Section 2]).

Remark 2.3. ([5, Remark 2]) It is clear that each right K-complete quasi-

metric space is right K-sequentially complete. However, the converse does not

hold even for quasi-metric spaces. In fact, in [131, Example 2.4], Stoltenberg

presented an example of a right K-sequentially complete quasi-metric space

that is not right K-complete. The space of this example fails to be regular.
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The following theorem allows us to prove that if (Y, q) is a biBanach finite

dimensional space then (SL0(d, q), ρ(d,q)) is right K-complete. We will need

an auxiliary lemma.

Lemma 2.1. Let (X, d) a quasi-metric space. If {xδ}δ∈Λ is a right k-Cauchy

net with a cluster point x in (X, ds), then {xδ}δ∈Λ converges to x in (X, ds).

Theorem 2.4. Let (X, d) and (Y, q) be a quasi-metric space and a biBa-

nach finite dimensional space, respectively. Then ρ(d,q) is right K-complete

on SL0(d, q).

Proof. Let {fδ}δ∈Λ be a right K-Cauchy net in (SL0(d, q), ρ(d,q)). Then, given

ε > 0 there is δ0 ∈ Λ such that

sup
d(x,y)6=0

q((fδ2 − fδ1)(x)− (fδ2 − fδ1)(y))

d(x, y)
< ε (∗∗)

for all δ2 ≥ δ1 ≥ δ0.

Let x 6= x0. We consider the following cases.

Case 1. d(x, x0) 6= 0 and d(x0, x) 6= 0. Then, we deduce from (∗∗) that

given ε > 0 there exists δ′0 such that if δ2 ≥ δ1 ≥ δ′0 then qs(fδ2(x)−fδ1(x)) <

ε. Therefore{fδ(x)}δ∈Λ is a Cauchy net in (Y, qs).

Case 2. d(x0, x) = 0 and d(x, x0) 6= 0. Then

q(fδ2(x))− q(fδ1(x)) ≤ q(fδ2(x)− fδ1(x)) < εd(x, x0)
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for all δ2 ≥ δ1 ≥ δ0. Since q(−fδ(x)) = 0 for all δ ∈ Λ, it follows that

qs(fδ2(x)) < εd(x, x0) + q(fδ0(x)) for all δ2 ≥ δ0. Thus {fδ(x)}δ≥δ0 is a boun-

ded net in the finite dimensional space (Y, qs), so it has a cluster point in

(Y, qs). Hence, by Lemma 2.1, {fδ(x)}δ∈Λ converges in (Y, qs).

Case 3. d(x0, x) 6= 0 and d(x, x0) = 0. A slight modification of Case 2

shows that {fδ(x)}δ∈Λ converges in (Y, qs).

We define f such that {fδ(x)}δ∈Λ converges to f(x) for each x ∈ X. We

first note that f is ≤(d,q)-increasing.

Next we see that the net

{q(fδ(x)− fδ(y))

d(x, y)

}
δ∈Λ

converges to
q(f(x)− f(y))

d(x, y)

for all x, y ∈ X such that d(x, y) 6= 0.

For ε > 0, for δ1 ≥ δ0 and x, y ∈ X such that d(x, y) 6= 0 we take δ2 ∈ Λ,

with δ2 ≥ δ1 such that

qs(f(x)− fδ2(x)− (f(y)− fδ2(y)))

d(x, y)
<

ε

2
.

so that

q(f(x)− fδ1(x)− (f(y)− fδ1(y)))

d(x, y)

=
q(f(x)− fδ1(x)− fδ2(x) + fδ2(x)− (f(y)− fδ1(y)− fδ2(y) + fδ2(y)))

d(x, y)
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≤ q(f(x)− fδ2(x)− (f(y)− fδ2(y)))

d(x, y)

+
q(fδ2(x)− fδ1(x)− (fδ2(y)− fδ1(y)))

d(x, y)
< ε.

We conclude that

sup
d(x,y) 6=0

q(f(x)− fδ′(x)− (f(y)− fδ′(y)))

d(x, y)
< ε.

The proof is finished.

Corollary 2.4. Let (X, d) and (Y, q) be a quasi-metric space and a quasi-

normed space respectively. Let {fδ}δ∈Λ be a right K-Cauchy net in (SL0(d, q), ρ(d,q)).

If for each x ∈ X {fδ(x)}δ∈Λ converges to f(x) in (Y, qs) then {fδ}δ∈Λ con-

verges to f in (SL0(d, q), ρ(d,q)).

Theorem 2.5. Let (X, d) and (Y, q) be a T1 quasi-metric space and a biBa-

nach space respectively. Then ρ(d,q) is right K-complete.

Proof. Let {fδ}δ∈Λ be a right K-Cauchy net in (SL0(d, q), ρ(d,q)). Then, given

ε ≥ 0 there is δ0 such that

sup
d(x,y) 6=0

q((fδ2 − fδ1)(x)− (fδ2 − fδ1)(y)))

d(x, y)
< ε

for all δ2 ≥ δ1 ≥ δ0.

Let x 6= x0.
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Since (X, d) is T1, d(x, x0) 6= 0 and d(x0, x) 6= 0 then, we deduce from

(∗∗) that given ε
d(x,x0)

and ε
d(x0,x)

there exists δ′0 such that if δ2 ≥ δ1 ≥ δ′0
then qs(fδ2(x)− fδ1(x)) < ε. Therefore {fδ(x)}δ∈Λ is a Cauchy net in (Y, q)

for all x ∈ X. Thus {fδ(x)}δ∈Λ is a convergent net in (Y, qs) and we define f

such that {fδ(x)}δ∈Λ converges to f(x) for each x ∈ X. Let {fδ}δ∈Λ a right

K-Cauchy net in (SL0(d, q), ρ(d,q)).

Let us see that the net

{q(fδ(x)− fδ(y))

d(x, y)
}δ∈Λ

converges to
q(f(x)− f(y))

d(x, y)

for all x, y ∈ X such that d(x, y) 6= 0.

Since {fδ}δ∈Λ is a right K-Cauchy net, given ε > 0 there exists δ0 such

that if δ2 ≥ δ1 ≥ δ0 then

sup
d(x,y)6=0

q((fδ2 − fδ1)(x)− (fδ2 − fδ1)(y))

d(x, y)
<

ε

2
.

Since {fδ(x)}δ∈Λ converges to f(x) for all x ∈ X, then for each x, y ∈ X

there exists δ′0 such that if δ′1 ≥ δ′0 then

qs(f(x)− fδ′1(x)− (f(y)− fδ′1(y)))

d(x, y)
<

ε

2
.

Thus given ε > 0, for all δ′ ≥ δ0 and for each x, y ∈ X such that d(x, y) 6=
0 and we take δ1 ≥ δ′ and δ1 ≥ δ′0 then

q(f(x)− fδ′(x)− (f(y)− fδ′(y)))

d(x, y)
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=
q(f(x)− fδ′(x)− fδ1(x) + fδ1(x)− (f(y)− fδ′(y)− fδ1(y) + fδ1(y)))

d(x, y)

≤ q(f(x)− fδ1(x)− (f(y) + fδ1(y)))

d(x, y)
+

q(fδ1(x)− fδ′(x)− (fδ′(y) + fδ1(y)))

d(x, y)
< ε

for all x, y ∈ X such that d(x, y) 6= 0

sup
d(x,y) 6=0

q(f(x)− fδ′(x)− (f(y)− fδ′(y)))

d(x, y)
< ε,

for all δ′n ≥ δ0.
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2.5 On Balancedness and D-Completeness of

the Space of Semi-Lipschitz Functions

In this section we suppose that all quasi-metrics are T1 quasi-metrics.

In [26] Doitchinov introduced an important property of symmetry in

quasi-metric spaces, namely balancedness, in order to develop a satisfactory

theory of completion. He observed that paradigmatic examples of quasi-

metric spaces, as the Sorgenfrey line, the Kofner plane and the Pixley-Roy

spaces are balanced, and proved that every balanced quasi-metric generates

a Hausdorff and completely regular topology.

Recall that a(n extended) quasi-metric space (X, d) is balanced if for each

pair of sequences {yn}n∈N, {xn}n∈N in X such that lim
n,m→∞

d(ym, xn) = 0, and

each x, y ∈ X and r1, r2 ∈ R+ satisfying d(x, xn) ≤ r1 and d(yn, y) ≤ r2 for

all n ∈ N, it follows that d(x, y) ≤ r1 + r2. In this case, d is called a balanced

quasi-metric.

We say that the normed cone (SL0(d, q), ‖ · ‖d,q) is a balanced normed

cone if the extended quasi-metric ρd,q is balanced on SL0(d, q).

According to [26], by a Cauchy sequence in the sense of Doitchinov in a

quasi-metric space (X, d) we mean a sequence {xn}n∈N in X for which there

is a sequence {yn}n∈N in X satisfying lim
n,m→∞

d(ym, xn) = 0. The quasi-metric

space (X, d) is said to be complete in the sense of Doitchinov if every Cauchy

sequence is convergent with respect to T (d).

Later on, Doitchinov proved that each balanced quasi-metric space (X, d)

is isometrically isomorphic to a T (d) and T (d−1)-dense subspace of a balanced

complete quasi-metric space.
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Following the modern terminology of [62], Cauchy sequences in the sense

of Doitchinov will be called, in the sequel, D-Cauchy sequences and complete

quasi-metric spaces will be called D-(sequentially) complete quasi-metric

spaces.

Theorem 2.6. Let (X, d) be a quasi-metric space, (Y, q) be a quasi-normed

linear space and x0 ∈ X. Then (SL0(d, q), ‖·‖d,q) is a balanced normed cone.

Proof. Let {fn}n∈N, {gn}n∈N be sequences in SL0(d, q) with lim
n,m→∞

ρd,q(gm, fn)

= 0, and let f, g ∈ SL0(d, q) and r1, r2 ∈ R+ such that ρd,q(f, fn) ≤ r1 and

ρd,q(gn, g) ≤ r2 for all n ∈ N. Choose x, y ∈ X with x 6= y.

Then

q((f − fn)(x)− (f − fn)(y)) ≤ r1d(x, y),

and

q((gn − g)(x)− (gn − g)(y)) ≤ r2d(x, y),

for all n ∈ N. Moreover, for an arbitrary ε > 0 there is n0 ∈ N such that

q((gn − fn)(y)− (gn − fn)(x)) < εd(y, x),

for all n ≥ n0. Consequently

q((f − g)(x)− (f − g)(y))

≤ q((f − fn0)(x)− (f − fn0)(y)) + q((fn0 − gn0)(x)− (fn0 − gn0)(y))

+q((gn0 − g)(x)− (gn0 − g)(y))

< r1d(x, y) + εd(y, x) + r2d(x, y).
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Since ε is arbitrary, it follows that

q((f − g)(x)− (f − g)(y)) ≤ r1d(x, y) + r2d(x, y).

Therefore

ρd,q(f, g) ≤ r1 + r2.

We conclude that (SL0(d, q), ‖ · ‖d,q) is balanced.

Corollary 2.5. Let (X, d) be a quasi-metric space, (Y, q) be a quasi-normed

linear space and x0 ∈ X. Then (SL0(d, q), T (ρd,q)) is a Hausdorff and com-

pletely regular topological space.

Theorem 2.7. Let (X, d) be a quasi-metric space, (Y, q) be a biBanach space

and x0 ∈ X.Then (SL0(d, q), ‖ · ‖d,q) is D-complete.

Proof. Let {fn}n∈N be a D-Cauchy sequence in SL0(d, q). Then, there is a

sequence {gn}n∈N in SL0(d, q) such that

lim
n,m→∞

ρd,q(gm, fn) = 0.

Thus, given ε > 0 there is n0 ∈ N such that ρd,q(gm, fn) < ε for all

n,m ≥ n0.

Now fix x ∈ X. Then

q((gm − fn)(x)) < εd(x, x0) and q((fn − gm)(x)) < εd(x0, x),

so,

qs((gm−fn)(x)) < εds(x, x0) for all n,m ≥ n0. (∗)



46 Chapter 2. Semi-Lipschitz Functions

Therefore, for each n,m ≥ n0,

qs((fn − fm)(x)) ≤ qs((fn − gn0)(x)) + qs((gn0 − fm)(x)) < 2εds(x, x0),

and, since (Y, q) is a biBanach space, the sequence {fn(x)}n∈N is convergent

in (Y, qs). Then, we can construct a function f : X → Y such that {fn}n∈N
is pointwise convergent to f with respect to the norm qs. Observe that, by

condition (∗), the sequence {gn}n∈N is also pointwise convergent to f with

respect to qs.

We shall prove that f ∈ SL0(d) and that lim
n→∞

ρd,q(f, fn) = 0. Indeed, we

first note that f(x0) = 0 because fn(x0) = 0 for all n ∈ N. Now, for the given

ε > 0, for n ≥ n0 and for x, y ∈ X with x 6= y, there exists m ≥ n such that

qs((f − gm)(x)) < εd(x, y) and qs((f − gm)(y)) < εd(x, y).

Hence
q((f − fn)(x)− (f − fn)(y))

d(x, y)

≤ q((f − gm)(x)− (f − gm)(y))

d(x, y)
+

q((gm − fn)(x))− (gm − fn)(y))

d(x, y)

<
qs((f − gm)(x)) + qs((f − gm)(y))

d(x, y)
+ ε < 3ε.

It then follows that

sup
x6=y

q(f(x)− f(y))

d(x, y)
≤ 3ε + sup

x 6=y

q(fn0(x)− fn0(y))

d(x, y)
.

Thus, we have shown that f ∈ SL0(d, q) and ρd,q(f, fn) ≤ 3ε for all

n ≥ n0. Consequently (SL0(d, q), ‖ · ‖d,q) is D-complete.
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As an application of the previous results we next show that if (X, p) is

a T1 quasi-normed linear space (i.e. the quasi-pseudo-metric dp induced by

the quasi-norm p is actually a quasi-metric), then the dual space (X∗, p∗) of

(X, p) is balanced and D-complete in the natural sense that we explain in

the following.

Let us recall ([2, 39]) that if (X, p) is a quasi-normed linear space then

the so-called algebraic dual of (X, p) is the cone X∗ consisting of all linear

real-valued functions on X that are upper semicontinuous on (X, T ((dp)
−1)).

Equivalently, X∗ consists of all linear real-valued functions on X that are

lower semicontinuous on (X,T (dp)) ([103, p. 58]). It immediately follows

([83, 103]) that X∗ = L(X) ∩ SL0(dp, u
−1), where L(X) denotes the space

of all linear real-valued functions on X and SL0(dp, u
−1) denotes the space

of all semi-Lipschitz functions from (X, dp) to the quasi-normed linear space

(R, u−1) that vanish at 0. Note that in this case we have

ρdp,u−1(f, g) = sup
d(x,y) 6=0

((f − g)(x)− (f − g)(y)) ∨ 0

p(x− y)
,

for all f, g ∈ SL0(dp, u
−1).

Let us also recall that p∗ is the function from X∗ to R+ defined by p∗(f) =

sup{f(x) : p(x) ≤ 1} for all f ∈ X∗ ([2, 39]), and thus (X∗, p∗) is a normed

cone which is said to be the dual space of (X, p).

It is routine to see that X∗ is a closed subspace of the metrizable space

(SL0(dp, u
−1), (ρdp,u−1)s).

From the preceding facts and Theorems 2.6 and 2.7 we immediately de-

duce the following.

Theorem 2.8. Let (X, p) be a T1 quasi-normed linear space. Then (X∗, dp∗)

is a balanced D-complete extended quasi-metric space.
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In the light of Theorem 2.8 it seems interesting to recall that there exist T1

(actually Hausdorff) quasi-normed nonnormable linear spaces in abundance.

See for instance:

Example 2.6. ([37, Example 1]) Consider the linear lattice (E0,≤) defined

by all the sequences of real numbers that are different from zero only in a finite

set of indexes endowed with its natural order, and the function q0 : E0 −→ R+

defined by:

q0(x) = ‖x ∨ 0‖1 + ‖x ∧ 0‖2.

We prove that this function is in fact an asymmetric norm. Since x =

x ∨ 0 + x ∧ 0 for all x ∈ E0, we have that q(x) = 0 if and only if x = 0.

Furthermore, it is obviously positively homogeneous. We just need to show

that it satisfies the triangle inequality.

First note that for a pair of elements x, y ∈ E0, (x+y)∨0 ≤ x∨0+y∨0.

For each 1 ≤ p < ∞, the norm properties related to the order operations of

the normed lattices (E0, ‖ · ‖p,≤) (see Chapter I, Vol.II, in [70]) leads to the

inequality

‖(x + y) ∨ 0‖p ≤ ‖x ∨ 0‖p + ‖y ∨ 0‖p.

The following equalities are also satisfied for every x ∈ E0 and for each

1 ≤ p < ∞ (Chapter I, Vol. II, in [70]),

‖x ∧ 0‖p = ‖ − (x ∧ 0‖p = ‖ − (−((−x) ∨ 0))‖p = ‖ − x ∨ 0‖p.

Then

q0(x + y) = ‖(x + y) ∨ 0‖1 + ‖(x + y) ∧ 0‖2

= ‖(x + y) ∨ 0‖1 + ‖(−x− y) ∨ 0‖2

≤ ‖x ∨ 0‖1 + ‖y ∨ 0‖1 + ‖ − x ∨ 0‖2 + ‖ − y ∨ 0‖2 = q0(x) + q0(y).

Clearly (E0, q0) is and asymmetric normed linear space.



2.5. Balancedness and D-Completeness 49

Note that (E0, q0) is a Hausdorff space since for every x ∈ E0, the norm w,

given by w(x) := ‖x∨0‖2 +‖x∧0‖2 is equivalent to ‖ · ‖2, and w(x) ≤ q0(x).

This means that the open balls defined by q0 are contained in the open balls

defined by the norm w on E0, and then (E0, q0) is a Hausdorff space. The

proof of the fact that (E0, q0) is not isomorphic to any normed space is a

consequence of Theorem 7, [37]. Straightforward calculations show that in

this case

‖x‖q0 = inf
x1∈E0

{q0(x1 − x)}

= ‖x ∨ 0‖2 + ‖x ∧ 0‖2,

‖ · ‖q0 is equivalent to ‖ · ‖2, and qs
0(x) is exactly ‖ · ‖1. The condition for

(E0, q0) to be isomorphic to a normed space given in Theorem 7 of [37] would

imply that qs and ‖ · ‖q are equivalent. But this is not true, since ‖ · ‖1 and

‖ · ‖2 are not equivalent in E0. Note that the construction provides more

examples of the same situation just by replacing the norms ‖ · ‖1 and ‖ · ‖2

by ‖ · ‖r and ‖ · ‖s respectively for any 1 ≤ r < ∞ and 1 ≤ s < ∞, r 6= s.



50



Chapter 3

Norms on Semi-Lipschitz

Functions: An Approach to

Computing Complexity by

Partial Functions

3.1 Introduction

As we indicated in Chapter 2 the notion of a semi-Lipschitz function was

introduced and discussed in [102]. In particular, it was proved that the

set of semi-Lipschitz functions, defined on a quasi-metric space (X, d), that

vanish at a point x0 ∈ X can be structured as a normed cone. From then,

semi-Lipschitz functions have been successfully applied to some questions in

asymmetric functional analysis [81, 82, 103], concentration of measure [130],

global attractors on dynamical systems, and theoretical computer science

51
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[101].

In this chapter we show that semi-Lipschitz functions also provide an

efficient tool to compute the complexity of certain algorithms in the following

sense: If T is the recurrence equation on N associated to a given algorithm

(with T (n) > 0 for all n ∈ N) and denote by f the complexity function

which is the solution of this recurrence equation, then the complexity of

this algorithm is represented via f. Moreover, f constitutes a total mapping

defined recursively that is, at the same time, the limit of a sequence {fn}n∈N
of partial mappings also defined recursively.

Here, we present a model for computing the complexity represented by f

by means of the values that take a certain relativized norm and its induced

quasi-metric on the sequence {fn}n∈N and its initial segments. This is done

with the help of a suitable space of semi-Lipschitz functions which is cons-

tructed here; in particular, the induced quasi-metric will permit us to easily

measure progress made in lowering complexity when the sequence {fn}n∈N is

replaced by any initial segment of it.



3.2. Computing complexity by Partial Functions 53

3.2 Computing Complexity by Semi-Lipschitz

Functions and Partial Functions

Let (X, d) and (Y, d′) be two quasi-metric spaces and let f : (X, d) → (Y, d′);

then f is said to be a semi-Lipschitz function ([102]) if there exists k ≥ 0

such that d′(f(x), f(y)) ≤ kd(x, y) for all x, y ∈ X. The number k is called a

semi-Lipschitz constant for f.

A function f : (X, d) → (Y, d′) between two quasi-metrics spaces is ca-

lled ≤(d,d′)-increasing (compare ([103, 102])) if d′(f(x), f(y)) = 0 whenever

d(x, y) = 0. By Y X
(d,d′) we shall denote the set of all ≤(d,d′)-increasing functions

from (X, d) to (Y, d′).

It is clear that if Td is a T1 topology, then every function from X to Y is

≤(d,d′) -increasing.

If we denote by SL(d, d′) the set of all semi-Lipschitz functions from the

quasi-metric space (X, d) to the quasi-metric space (X, d′) then it is clear

that

SL(d, d′) = {f ∈ Y X
(d,d′) : sup

d(x,y)6=0

d′(f(x), f(y))

d(x, y)
< ∞}.

In the following, we shall apply the structure of the space SL(d, d′) of semi-

Lipschitz functions to the case that (Y, d′) is the complexity quasi-metric

space as defined above. To this end, we shall consider the quasi-metric space

(ω, dα) where α > 0, dα is the quasi-metric on ω, given by dα(n,m) = 0 if

n ≥ m, and dα(n, m) = α if n < m.

Thus

SL(dα, dC) = {F ∈ Cω
(dα,dC) :

1

α
sup
n<m

dC(F (n), F (m)) < ∞}.
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Next we observe that SL(dα, dC) can be structured as a relativized normed

cone, where by a relativized normed cone we mean a pair (C, ‖.‖) such that

C(= (C, +, ·)) is a cone and ‖.‖ is a nonnegative real-valued function on C

satisfying the following conditions for all x, y ∈ C and r > 0 :

(i) ‖r · x‖ = ‖x‖ /r,

(ii) ‖x + y‖ ≤ ‖x‖+ ‖y‖ .

In this case, we say that ‖.‖ is a relativized norm on C.

Indeed, given F,G ∈ SL(dα, dC) and r > 0, define (F + G)(n) = F (n) +

G(n) for all n ∈ ω, and (r ·F )(n) = r ·F (n) for all n ∈ ω, where F (n)+G(n)

and r · F (n) are pointwise defined.

We also define ‖ · ‖(dα,dC) : SL(dα, dC) → R+ by

‖F‖
(dα,dC)

=
1

α
sup
n<m

dC(F (n), F (m)),

for all F ∈ SL(dα, dC). Then we have the following result.

Theorem 3.1. (SL(dα, dC), ‖.‖(dα,dC)) is a relativized normed cone.

Furthermore, it is immediate to see that the nonnegative real valued

function D defined on SL(dα, dC)× SL(dα, dC) by

D(F, G) = ((‖G‖(dα,dC) − ‖F‖(dα,dC)) ∨ 0),

is a quasi-pseudo-metric on SL(dα, dC). It is called the quasi-pseudo-metric

induced by ‖.‖(dα,dC) .
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In the rest of the chapter we shall apply the relativized norm ‖.‖(dα,dC) and

the quasi-pseudo-metric D to analyze the complexity of algorithms having

an associated recurrence equation .

Let T be the recurrence equation on N associated to a given algorithm and

denote by f the complexity function which is the solution of this recurrence

equation (we assume that f(0) = ∞). Then f constitutes a total mapping

defined recursively.

Of course, the function f can be approximated by a sequence {pn}n∈N
of partial functions, where each pn : {0, 1, ..., n} → (0,∞] is defined by

pn(0) = ∞, pn(k) = T (k) for k = 1, ..., n.

It is clear that each function pn can be identified with a complexity fun-

ction fn defined as follows:

fn(0) = ∞, fn(k) = T (k) for k = 1, ..., n, and fn(k) = ∞ for k > n. (∗)

Then we have that f ≤ fn and fn+1 ≤ fn for all n ∈ N.

First we show that the sequence {fn}n∈N converges to f both with respect

to the quasi-metric dC and its conjugate, which agrees with the computational

interpretation of the partial functions pn.

Indeed, since f ≤ fn it immediately follows that dC(f, fn) = 0 for all

n ∈ N. On the other hand, since fn(k) = f(k) for k = 0, 1, ..., n, we obtain

dC(fn, f) =
∞∑

k=n+1

2−k 1

f(k)
≤ 1

T (1)

∞∑

k=n+1

2−k =
2−n

T (1)
.

Consequently dC(fn, f) → 0.

Next we show that the complexity represented by f can be derived by

computing the relativized norm ‖.‖(dα,dC) on certain semi-Lipschitz functions
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that take values on the sequence {fn}n∈N and its initial segments; thus we

obtain the advantage to calculate on finite sums (those that they come re-

presented by the initial segments of {fn}n∈N), avoiding to have to calculate

with infinite series.

Indeed, let F : ω → C given by F (n) = fn for all n ∈ N and F (0) = f∞
where f∞(n) = ∞ for all n ∈ ω.

Note that in certain sense F can be identified with {fn}n∈N and thus with

f. On the other hand, F ∈ SL(dα, dC) because dC(F (n), F (m)) = 0 whenever

dα(n,m) = 0, and

1

α
sup
n<m

dC(F (n), F (m)) =
1

α
lim

m→∞
dC(f∞, fm) =

1

α

∞∑

k=1

2−k 1

f(k)
< ∞.

We also obtain that

‖F‖(dα,dC) =
1

α

∞∑

k=1

2−k 1

f(k)
.

Now construct a sequence {Fj}j∈N of functions from ω to C as follows:

Fj(0) = f∞, Fj(n) = fn for 0 < n < j, and Fj(n) = fj otherwise. Observe

that F ≤ Fj and Fj+1 ≤ Fj for all j ∈ N. Moreover, it is easy to see that

Fj ∈ SL(dα, dC). In particular

‖Fj‖(dα,dC)
=

1

α

j∑

k=1

2−k 1

fj(k)
,

and consequently

lim
j→∞

‖Fj‖(dα,dC)
= ‖F‖(dα,dC) .

More exactly, we have

‖F‖(dα,dC) − ‖Fj‖(dα,dC)
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=
1

α

∞∑

k=j+1

2−k 1

f(k)
+

1

α

j∑

k=1

2−k(
1

f(k)
− 1

fj(k)
)

=
1

α

∞∑

k=j+1

2−k 1

f(k)
,

and thus

‖F‖(dα,dC) − ‖Fj‖(dα,dC)
=

1

α
dC(fj, f).

Hence

‖F‖(dα,dC) − ‖Fj‖(dα,dC)
≤ 1

α

2−j

T (1)
.

Finally, note that the use of the induced quasi-pseudo-metric D also pro-

vides a satisfactory interpretation in this context because the relations

D(F, Fj) = 0 and D(Fj+1, Fj) = 0

agree with the facts that F is more efficient than Fj and that Fj+1 is more

efficient than Fj for all j ∈ N.

We conclude the chapter with and example which illustrates the method

developed above.

Example 3.1. Consider the average case of Quicksort as discussed in ([59]),

where the following recurrence equation for this algorithm is obtained: T (1) =

1 and

T (n) =
n + 2

n + 1
T (n− 1) +

2n

n + 1

for all n ≥ 2.

It well know that there is f ∈ C which the unique solution for this recu-

rrence equation.
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Let {fn}n∈N defined as in (*).

Hence in this case we obtain for the three first terms F1, F2 and F3 :

‖F1‖ = 0, ‖F2‖ =
3

32α
and ‖F3‖ =

111

928
.

Then, the relativized norm ‖ · ‖(dα,dC) yields us a quantification of the

nearness of the algorithm to the solution in each step. Thus given an error

level we can obtain the number of steps that we must give to come near to

the real solution as much as we wish.

Therefore if we consider an error level ε = 0.003 we can obtain the number

of steps:
2−j

α
≤ 0.003

and then for α = 1 we obtain that j ≥ 9.



Chapter 4

Semi-Lipschitz Functions and

Best Approximation in

Quasi-Metric Spaces

4.1 Introduction

This chapter is a contribution to the study of semi-Lipschitz functions and

best approximation from a nonsymmetric point of view. We show how the

quasi-normed space structure provides an appropriate setting to characterize

the points of best approximation. In this way our results generalize the quasi-

metric theory of semi-Lipschitz functions and best approximation [102].
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4.2 Best Approximation in Quasi-Metric Spa-

ces

Let (X, d) be a quasi-metric space and let a ∈ X. We shall denote by cld{a}
the closure of the subset {a} in the topology Td, i. e., cld{a} = {x ∈ X :

d(x, a) = 0}. As usual, if A ⊂ X, by d(p,A) we shall denote the inf{d(p, a) :

a ∈ A} for each p ∈ X.

Definition 4.1. Let (X, d) be a quasi-metric space. Let A ⊂ X and p ∈ X.

An element a0 ∈ A such that d(p,A) = d(p, a0) is said to be an element of

best approximation to p by elements of A, it it exists.

Note that if d(p, a0) = 0 for some a0 ∈ A then a0 is obviously an element

of best approximation to p by elements of A. Therefore we focus our attention

on those points p /∈ ⋃{cld{a} : a ∈ A}.

Proposition 4.1. Let (X, d) be a quasi-metric space. Let A ⊂ X, x0 ∈ A

and p /∈ ⋃{cld{a} : a ∈ A}. Then a0 ∈ A is an element of best approximation

to p by elements of A if and only if for any quasi-normal space (Y, q) such that

there exists a e ∈ Y with q(e) = 1 and q(−e) = 0, then there is f ∈ SL0(d, q)

such that:

(1) ‖f‖(d,q) = 1

(2) f |A = 0

(3) d(p, a0) = q(f(p)− f(a0))

Proof. Suppose first that a0 ∈ A is an element of best approximation to p by

elements of A. Let (Y, q) be a quasi-normed space and let e ∈ Y such that
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q(e) = 1 and q(−e) = 0. Define f : (X, d) −→ (Y, q) by f(x) = d(x,A)e for

all x ∈ X.

Let see that f ∈ SL0(d, q) :

If x0 ∈ A then f(x0) = 0.

Now, given two points x, y ∈ X with d(x, y) = 0 the triangle inequality

say that d(x, a) ≤ d(y, a) for each a ∈ A, that is d(x,A) ≤ d(y,A). Thus

q(f(x)− f(y)) = q(d(x,A)e− d(y, A)e) = q((d(x,A)− d(y,A))e)

Then

q((d(x, A)− d(y, A))e) = (d(y,A)− d(x,A))q(−e) = 0.

Given x, y ∈ X such that d(x, y) 6= 0; we have:

• If d(x,A) ≤ d(y,A), then

q(f(x)− f(y))

d(x, y)
=

(d(y,A)− d(x,A))q(−e)

d(x, y)
= 0.

• If d(y, A) ≤ d(x,A), then

q(f(x)− f(y))

d(x, y)
=

(d(x,A)− d(y, A))q(e)

d(x, y)

but d(x,A)− d(y,A) ≤ d(x, y).

Thus
q(f(x)− f(y))

d(x, y)
≤ 1
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for all x, y ∈ X such that d(x, y) 6= 0 then

‖f‖(d,q) = sup
d(x,y)6=0

q(f(x)− f(y))

d(x, y)
≤ 1.

(1) Let see that ‖f‖(d,q) = 1. We know that ‖f‖(d,q) ≤ 1. On the other

hand d(p, a0) 6= 0. Then

‖f‖(d,q) ≥ q(f(p)− f(a0))

d(p, a0)
=

d(p,A)q(e)

d(p, a0)
= 1.

(2) By definition, f(a) = d(a,A)e, so f |A = 0.

(3) We know that
q(f(p)− f(a0))

d(p, a0)
= 1

Then q(f(p)− f(a0)) = d(p, a0).

Conversely, for each a ∈ A, d(p, a) 6= 0, and hence

d(p, a) = ‖f‖(d,q)d(p, a)

≥ q(f(p)− f(a))

d(p, a)
d(p, a) = q(f(p)− f(a))

= q(f(p)) = q(f(p)− f(a0)) = d(p, a0).

Therefore, for each a ∈ A, d(p, a) ≥ d(p, a0). Hence d(p,A) = d(p, a0),

which proves that a0 is an element of best approximation to p by elements

of A.

Let (X, d) and (Y, q) be a quasi-metric space and a quasi-normal space

respectively, let A ⊂ X and x0 ∈ A. Put

A0 = {f : X −→ Y : f ∈ SL0(d, q) and f |A = 0},
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and let us define for each x, y ∈ X such that d(x, y) 6= 0,

dA0(x, y) = sup{q(f(x)− f(y))

‖f‖(d,q)

: f ∈ A0 and ‖f‖(d,q) 6= 0}.

Given x, y ∈ X, for all f ∈ SL0(d, q), if d(x, y) 6= 0 then

q(f(x)− f(y)) ≤ ‖f‖(d,q)d(x, y).

Thus

dA0(x, y) ≤ sup{q(f(x)− f(y))

‖f‖(d,q)

: f ∈ SL0(d, q) and ‖f‖(d,q) 6= 0} ≤ d(x, y).

We now have the following result.

Proposition 4.2. Let (X, d) and (Y, q) be a quasi-metric space and a quasi-

normed space, respectively. Let A ⊂ X, a0 ∈ A and p /∈ ⋃{cld{a} : a ∈ A}.
Then a0, is an element of best approximation to p by elements of A if and

only if dA0(p, a0) = d(p, a0).

Proof. Suppose that a0 is an element of best approximation to p by elements

of A. By Proposition 4.1 there is f ∈ A0 such that ‖f‖(d,q) = 1 and d(p, a0) =

q(f(p)− f(a0)). Therefore

dA0(p, a0) = sup{q(h(p)− h(a0))

‖h‖(d,q)

: f ∈ A0 and ‖h‖(d,q) 6= 0}

≤ q(f(p)− f(a0))

‖f‖(d,q)

= d(p, a0).

Since dA0(p, a0) ≤ d(p, a0), we denote that dA0(p, a0) = d(p, a0).
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Conversely, for all a ∈ A, we have:

d(p, a0) = dA0(p, a0) = sup{q(f(x)− f(y))

‖f‖(d,q)

: f ∈ A0 and ‖f‖(d,q) 6= 0},

= sup{q(f(p)− f(a)

‖f‖(d,q)

: f ∈ A0, ‖f‖(d,q) 6= 0} = dA0(p, a) ≤ d(p, a),

so that a0 is an element of best approximation to p of A.

We shall denote by PA(p) the set of all point of best approximation to p

by elements of A, where A ⊂ X satisfies
⋂{cld{a} : a ∈ A} 6= ∅. Then A is

said to be semi-Chebyschev if cardPA(p) ≤ 1 for each p /∈ ⋂{clA{a} : a ∈ A}.

Proposition 4.3. Let (X, d) and (Y, q) be a quasi-metric space and a quasi-

normed space, respectively. Let A,M ⊂ X|∅. Then M ⊂ PA(p) if and only if

there is a f ∈ SL0(d, q) such that

(1) ‖f‖(d,q) = 1

(2) f |A = 0

(3) d(p, a) = q(f(p)− f(a)) for all a ∈ M.

Proof. Suppose M ⊂ PA(p). Fix a0 ∈ M. By Proposition 4.1 there exists

f ∈ SL0(d, q) satisfying (1) and (2) and d(p, a0) = q(f(p) − f(a0)). Let

a ∈ M. Then

d(p, a) = d(p,A) = d(p, a0),

so

d(p, y) = q(f(p)− f(a0)).
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Since f |A = 0 we obtain that d(p, a) = q(f(p)) = q(f(p)− f(y)).

Conversely, suppose that there exists f ∈ SL0(d, q) satisfying (1), (2) and

(3) and let a0 ∈ M. By Proposition 4.1, a0 ∈ PA(p). Hence M ⊂ PA(p).

From the Proposition 4.3 we obtain the next corollary:

Corollary 4.1. Let (X, d) and (Y, q) be a quasi-metric space and quasi-

normal space, respectively. Let A ⊂ X and a0 ∈ A. Then A is semi-

Chebyshev if and only if there does not exist f ∈ SL0(d, q), p1 ∈ X and

a1, a2 ∈ A, a1 6= a2, such that

(1) ‖f‖(d,q) = 1

(2) f |A = 0

(3) q(f(p1)) = d(p1, a1) = d(p1, a2).
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4.3 Best Approximation in Quasi-Metric Hy-

perspaces

In this section we apply our methods to obtain some conditions on best

approximation in the realm of quasi-metric hyperspaces.

Proposition 4.4. Let (X, d) a quasi-metric space, given An, A ∈ P0(X) if

there exist a sequence {an}n∈N in X and a in A
d
, such that {an}n∈N converges

to a in (X, d−1), the sequence {An}n∈N converges to A with respect to H−
d

and d(p, an) = d(p,An) then d(p, a) = d(p,A).

Proof. We first going to see that d(p,A) ≤ d(p, a). If a ∈ A
d

we obtain that

d(a,A) = 0 and d(p, A)− d(p, a) ≤ d(a,A) = 0 thus d(p,A) ≤ d(p, a).

By other hand, by the convergence of {an}n∈N to a in (X, d−1) we obtain

that for each ε > 0 there exist n0 ∈ N such that if n ≥ n0 then

d(p, a)− d(p, an) <
ε

2
.

If {An}n∈N converges to A with the H−
d quasi-metric and d(p, an) =

d(p,An) for each ε > 0 we can take the same n0 without loss of genera-

lity, and for each n ≥ n0 :

d(p, an)− d(p,A) = d(p,An)− d(p,A)

= H−
d (p,An)−H−

d (p,A) ≤ H−(A, An) <
ε

2
.

Thus

d(p, a)− d(p,A)

≤ d(p, a)− d(p, an) + d(p, an)− d(p,A)
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≤ d(an, a) + H−(A,An) = ε,

then d(p, a) ≤ d(p,A).

Corollary 4.2. If (X, d) a metric space, given An, A ∈ P0(X) if there exist

a sequence {an}n∈N in X and a in A, such that {an}n∈N converges to a, the

sequence {An}n∈N converges to A with respect to H−
d and d(p, an) = d(p,An)

then d(p, a) = d(p,A).
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Chapter 5

Completeness of the Upper

Bourbaki Quasi-Uniformity of a

Uniform Space

5.1 Introduction.

In [52, p. 31], Isbell gave an example of a complete uniform space whose

Bourbaki uniformity is not complete on P0(X). Answering a question posed

by Császár ([22, p. 199]), Burdick characterized in [15] those complete uni-

form spaces (X,U) for which the Bourbaki uniformity is complete on P0(X),

and Künzi and Ryser obtained in [67, Proposition 6] a nice quasi-uniform

version of Burdick’s theorem in terms of right K-completeness.

On the other hand, Morita proved in [79] that a separated uniform space

(X,U) is complete if and only if (K0(X),UH) is complete. Attempts of ob-

taining a satisfactory quasi-uniform extension of Morita’s theorem may be

69
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found in [17, 64, 113], where partial positive results were obtained for diffe-

rent notions of quasi-uniform completeness.

Here we show that a careful examination of the proof of Morita’s theorem

which is based on the analysis of the properties of the filter associated to a

Cauchy net in (K0(X),UH), allows us to characterize any separated complete

uniform space (X,U) in terms of many kinds of completeness of the quasi-

uniform space (K0(X),U+
H), like convergence completeness, Sieber-Pervin

completeness, Smyth completeness, left K-completeness, D-completeness and

half-completeness. In this way, we obtain an apparently unexpected link bet-

ween completeness of a (separated) uniform space (X,U) and several types

of quasi-uniform completeness of U+
H . We also give an example of a complete

uniform space (X,U) for which (K0(X),U+
H) is not right K-complete.
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5.2 The Results

In order to help the reader, we start this section by giving some pertinent

concepts.

Let (X,U) be a quasi-uniform space and let F be a filter on X. Then F
is said to be:

(i) SP-Cauchy (Cauchy in [35, 124]) if for each U ∈ U there is x ∈ X such

that U(x) ∈ F .

(ii) left K-Cauchy ([98]) if for each U ∈ U there is F ∈ F such that

U(x) ∈ F for all x ∈ F.

(iii) D-Cauchy ([27]) if there is a filter G on X such that for each U ∈ U
there are G ∈ G and F ∈ F with G× F ⊆ U.

Following [62] (see also [98]), a quasi-uniform space (X,U) is called con-

vergence complete (respectively, left K-complete, D-complete) if every SP-

Cauchy (respectively, left K-Cauchy, D-Cauchy) filter is convergent in

(X, T (U)). (X,U) is called Sieber-Pervin complete if every SP-Cauchy fil-

ter has a cluster point in (X,T (U)); it is called half-complete (respectively,

bicomplete) if every Cauchy filter on (X,U s) is convergent in (X,T (U)) (res-

pectively, in (X, T (U s)), and it is Smyth complete provided that every left

K-Cauchy filter on (X,U) converges (equivalently, has a cluster point) in

(X, T (U s)) (see, for instance, [62, 98]).

Convergence complete quasi-uniform spaces are called complete in [124]

and SP-complete in [19]. Sieber-Pervin complete quasi-uniform spaces are

called complete in [80] and MN-complete in [24], and bicomplete quasi-
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uniform spaces are called doubly complete in [21], pair complete in [71] and

L-complete in ([24]).

Remark 5.1. It is well known, and easy to see, that the above notions of

quasi-uniform completeness are related as follows:

(i) convergence complete ⇒ Sieber-Pervin complete ⇒ left K-complete ⇒
half-complete;

(ii) convergence complete ⇒ D-complete ⇒ half-complete;

(iii) Smyth complete ⇒ left K-complete;

(iv) Smyth complete ⇒ bicomplete ⇒ half-complete.

Moreover, none of the other possible implications are true (see, for ins-

tance, [98, Remark 3] for some counterexamples).

Since in the realm of the Bourbaki (quasi-)uniformity is convenient, in

many cases, working with nets instead of filters, we recall the notions of

Cauchy kind corresponding to nets.

Let (X,U) be a quasi-uniform space and let {xα}α∈Λ be a net in X. Then

{xα}α∈Λ is said to be:

(i) SP-Cauchy if for each U ∈ U there are x ∈ X and αU ∈ Λ such that

xα ∈ U(x) whenever α ≥ αU .

(ii) left K-Cauchy if for each U ∈ U there is αU ∈ Λ such that (xα, xβ) ∈ U

whenever β ≥ α ≥ αU .

(iii) D-Cauchy if there is a net {yβ}β∈∆ such that for each U ∈ U there are

βU ∈ ∆ and αU ∈ Λ with (yβ, xα) ∈ U whenever β ≥ βU and α ≥ αU .
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Then, the following facts are well known, and easy to shown (see, for

instance, [61, p. 325] for the left K- case).

A quasi-uniform space (X,U) is convergence complete (respectively, left

K-complete, D-complete, half-complete) if and only if every PS-Cauchy (res-

pectively, left K-Cauchy, D-Cauchy, Cauchy in (X,U s)) net is convergent in

(X, T (U)). Furthermore (X,U) is Sieber-Pervin complete if and only if every

SP-Cauchy net has a cluster point in (X, T (U)), and it is Smyth complete

if and only if every left K-Cauchy net converges (equivalently, has a cluster

point) in (X, T (U)s).

Note that in a first attempt to characterize completeness of a separa-

ted uniform space (X,U) in terms of completeness of (K0(X),U+
H), a direct

application of Morita’s theorem provides the following restatement of it.

Proposition 5.1. A separated uniform space (X,U) is complete if and only

if (K0(X),U+
H) is bicomplete.

Proof. By Remark 1.2, (U+
H)s = UH , so, we obviously have that (K0(X),UH)

is complete if and only (K0(X),U+
H) is bicomplete. Then, the result follows

from Morita’s theorem.

From the above Proposition we deduce that (K0(X),U+
H) is half-complete

whenever (X,U) is a separated complete uniform space.

Clearly, and contrarily to Proposition 5.1, it is not possible to deduce in a

straightforward way convergence completeness of (K0(X),U+
H) from comple-

teness of (X,U) via Morita’s theorem. In fact, it is easy to give examples of

SP-Cauchy (actually, convergent) nets in (K0(X),U+
H) which are not Cauchy

in (K0(X),UH), as we show below.
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Example 5.1. Denote by U the uniformity induced on R by the Euclidean

metric. Of course (R,U) is a separated complete uniform space. Let {An}n∈N
be the sequence in K0(R) defined by

A2n−1 = [0, 1/n] and A2n = [2, 2 + 1/n],

for all n ∈ N. Put B = [0, 3]. Since An ⊂ B for all n ∈ N, then {An}n∈N con-

verges to B in (K0(R), T (U+
H)), so, as a net, it is PS-Cauchy in (K0(R),U+

H).

However {An}n∈N does not converges in (K0(R), T (U−H)), because for each

n ∈ N, we have U(A2n) ∩ U(A2n−1) = ∅, where

U = {(x, y) ∈ R× R : |x− y| < 1/2}.

Therefore {An}n∈N does not converges in (K0(R), T (UH)), and hence, as a

net, it is not Cauchy in (K0(R),UH).

Given a (nonempty) set X and a net {Aα}α∈Λ in P0(X), then the filter

on X that has as a base the family {Fα : α ∈ Λ}, where for each α ∈ Λ,

Fα =
⋃

β≥α Aβ, is called the filter associated to {Aα}α∈Λ.

Recall ([22, 52]) that a filter on a uniform space (X,U) is semi-Cauchy

provided that for each U ∈ U there is a finite subset A of X such that

U(A) ∈ F .

Then, the proof of Morita’s theorem as given in [8] (see also [17, Theorem

3.5]) is obtained by showing the following facts:

Fact 1. If (X,U) is a uniform space and {Aα}α∈Λ is a Cauchy net in (K0(X),UH),

then the filter associated to {Aα}α∈Λ is semi-Cauchy on (X,U).

Fact 2. If, in addition, (X,U) is complete, then C :=
⋂

F∈F F belongs to

K0(X).
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Fact 3. If (X,U) is separated and complete, then {Aα}α∈Λ converges to C in

(K0(X), T (UH)).

Our main result will be deduced from the following lemmas which es-

sentially constitute the upper Bourbaki quasi-uniform counterparts of the

preceding statements.

Lemma 5.1. Let (X,U) be a uniform space. Then, for each PS-Cauchy net

in (K0(X),U+
H), its associated filter is semi-Cauchy on (X,U).

Proof. Let {Aα}α∈Λ be a Cauchy net in (K0(X),U+
H). Given U ∈ U choose

V ∈ U such that V 2 ⊆ U. Then, there exist BV ∈ K0(X) and αV ∈ Λ such

that Aα ⊆ V (BV ), for all α ≥ αV . Since BV is compact there exists a finite

subset B′
V of BV such that BV ⊆ V (B′

V ). Hence

⋃
α≥αV

Aα ⊆ V (BV ) ⊆ V 2(B′
V ) ⊆ U(B′

V ).

Therefore U(B′
V ) belongs to the filter associated to the net {Aα}α∈Λ, and

consequently it is a semi-Cauchy filter on (X,U).

In the proof of Fact 2 above, the quasi-uniformity U−H does not play a

relevant role. Thus we are able to prove the following result.

Lemma 5.2. Let (X,U) be a complete uniform space and let {Aα}α∈Λ be

a PS-Cauchy net in (K0(X),U+
H). If we denote by F the filter associated to

{Aα}α∈Λ, then C :=
⋂

F∈F F belongs to K0(X).
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Proof. By Lemma 5.1, F is a semi-Cauchy filter on (X,U) . Let F ′ be an

ultrafilter on X containing F . Then F ′ is clearly a Cauchy (ultra)filter on

(X,U), and thus it converges. Therefore F has a cluster point in (X, T (U)),

so that C 6= ∅.

Next we show that C is compact in (X, T (U)). Indeed, let G be a filter

on C and let

H = fil {U(G) ∩ F : G ∈ G, U ∈ U , F ∈ F} .

Clearly H is a filter on X because for each G ∈ G, G ⊆ C and thus

U(G) ∩ F 6= ∅ whenever U ∈ U and F ∈ F . Since F ⊆ H, it clearly follows

that H is a semi-Cauchy filter on (X,U). Let H′ be an ultrafilter on X

containing H. Then H′ is a Cauchy (ultra)filter on (X,U), and thus H has

a cluster point x0 ∈ X. Obviously x0 is also a cluster point of F , and thus

x0 ∈ C. In order to see that G clusters to x0, choose U ∈ U and G ∈ G.

Let V ∈ U symmetric, with V 2 ⊆ U. Since V (G) ∈ H, then there exists

y ∈ V (x0) ∩ V (G),so that V 2(x0) ∩G 6= ∅, i.e., U(x0) ∩G 6= ∅. Therefore x0

is a cluster point of G. We conclude that C ∈ K0(X).

Lemma 5.3. Under the conditions of Lemma 5.2 and if, in addition, (X,U)

is separated, then the net {Aα}α∈Λ converges to C in (K0(X), T (U+
H)).

Proof. Assume the contrary. Then there exists W ∈ U such that for each

α ∈ Λ we find γ(α) ∈ Λ with γ(α) ≥ α satisfying Aγ(α)\W (C) 6= ∅. For each

α ∈ Λ define

Eα = Aγ(α)\intW (C).

Then Eα 6= ∅. Moreover Eα is compact because it is a closed subset of the

compact (hence, closed) set Aγ(α). Thus Eα ∈ K0(X) for all α ∈ Λ. Denote



5.2. The Results 77

by L the filter on X associated to the net {Eα}α∈Λ. Since for each β ∈ Λ,

Eβ ⊂ Aγ(β) and γ(β) ≥ β, it follows that

⋃

β≥α

Eβ ⊆
⋃

β≥α

Aβ,

for all α ∈ Λ, so F ⊆ L. Let L′ be an ultrafilter on X containing L. Thus

L′ is a Cauchy (ultra)filter on (X,U) by Lemma 5.1. Hence L has a cluster

point x0 ∈ X. Since x0 is also a cluster point of F , we deduce that x0 ∈ C.

Therefore

Eα ⊆ Aγ(α)\intW (x0),

so that Eα ∩ intW (x0) = ∅ for all α ∈ Λ. This contradicts the fact that

x0 is a cluster point of L. We conclude that {Aα}α∈Λ converges to C in

(K0(X), T (U+
H)).

Theorem 5.1. For a separated uniform space (X,U) the following state-

ments are equivalent:

(1) (X,U) is complete.

(2) (K0(X),U+
H) is convergence complete.

(3) (K0(X),U+
H) is Sieber-Pervin complete.

(4) (K0(X),U+
H) is Smyth complete.

(5) (K0(X),U+
H) is left K-complete.

(6) (K0(X),U+
H) is D-complete.

(7) (K0(X),U+
H) is half-complete.
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Proof. (1) ⇒ (2). It follows from Lemmas 5.2 and 5.3.

(1) ⇒ (4). Let {Aα}α∈Λ be a left K-Cauchy net in (K0(X),U+
H). Then,

it is PS-Cauchy in (K0(X),U+
H), and hence it converges to C :=

⋂
F∈F F

in (K0(X), T (U+
H)), by Lemmas 5.2 and 5.3. We shall show that {Aα}α∈Λ

clusters to C in (K0(X), T (U−H)). Assume the contrary. Then, there exist U ∈
U , α0 ∈ Λ and a net {cα}α∈Λ in C such that cα ∈ X\U(Aα) for all α ≥ α0. Let

c ∈ C be a cluster point of {cα}α∈Λ. Choose V ∈ U symmetric, with V 3 ⊆ U.

Since {Aα}α∈Λ is left K-Cauchy in (K0(X),U+
H), there is αV ≥ α0 such that

Aβ ⊆ V (Aα) whenever β ≥ α ≥ αV . Let α ≥ αV such that cα ∈ V (c). Then,

there is β ≥ α such that V (c) ∩ Aβ 6= ∅. Thus V (c) ∩ V (Aα) 6= ∅, and hence

cα ∈ V 3(Aα), which contradicts the fact that cα ∈ X\U(Aα) for all α ≥ α0.

By Remark 1.2, we conclude that the net {Aα}α∈Λ clusters to C in

(K0(X), T (U+
H)s)). Consequently (K0(X),U+

H) is Smyth complete.

(2) ⇒ (3) ⇒ (5) ⇒ (7), (2) ⇒ (6) ⇒ (7), and (4) ⇒ (5) ⇒ (7) are

obvious (see Remark 5.1).

(7) ⇒ (1). Let {xα}α∈Λ be a Cauchy net in (X,U). Then, for each U ∈ U
there is αU ∈ Λ such that xα ∈ U(xβ) for all α, β ≥ αU . Hence {{xα}}α∈Λ

is a Cauchy net in the uniform space (K0(X),UH). Let K ∈ K0(X) be a

limit point of {{xα}}α∈Λ in (K0(X), T (U+
H)). Thus, for each U ∈ U there is

αU ∈ Λ such that

{xα : α ≥ αU} ⊆ U(K).

Therefore, for each U ∈ U and each α ≥ αU there exists yU,α ∈ K with

xα ∈ U(yU,α).

Now, define a directed relation ¹ on U × Λ by (U, α) ¹ (V, β) if (i)
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(U, α) = (V, β), or (ii) V ⊆ U, αU ≤ α, αV ≤ β, and α ≤ β.

Let y ∈ K be a cluster point of the net {yU,α}(U,α)∈(U×Λ). We shall show

that y is a cluster point of the net {xα}α∈Λ. Indeed, given U ∈ U and α ∈ Λ,

choose V ∈ U such that V 2 ⊆ U, and β ∈ Λ with β ≥ α and β ≥ αV . Then

xβ ∈ V (yV,β). Let (W, γ) º (V, β) such that yW,γ ∈ V (y). Then γ ≥ α and

xγ ∈ W (yW,γ) ⊆ V (yW,γ) ⊆ V 2(y) ⊆ U(y).

We conclude that y is a cluster point of the net {xα}α∈Λ in (X, T (U)), so

(X,U) is complete.

Remark 5.2. Morita’s theorem is now a consequence of Theorem 5.1 (4),

because every Cauchy net in (K0(X),UH) is obviously a left K-Cauchy net

in (K0(X),U+
H).

Remark 5.3. In the light of Theorem 5.1, it seems natural to ask for charac-

terizations of completeness of (X,U) in terms of completeness of (K0(X),U−H).

In this direction, first note that by Remark 1.2 and Proposition 5.1 we have

that a separated uniform space (X,U) is complete if and only if (K0(X),U−H)

is bicomplete. Hence, if (X,U) is complete, then (K0(X),U−H) is half-complete.

Now suppose that (K0(X),U−H) is half-complete and let {xα}α∈Λ be a Cau-

chy net in (X,U). Then {{xα}}α∈Λ is a Cauchy net in (K0(X),UH), i.e., in

((K0(X), (U−H)s), and thus {{xα}}α∈Λ converges to some C in (K0(X), T (U−H)).

Let c ∈ C; then it is obvious that {xα}α∈Λ converges to c in (X,T (U)). Thus,

we have shown that a separated uniform space (X,U) is complete if and only

if (K0(X),U−H) is half-complete.

Nevertheless, the situation is quite different for Smyth completeness as

the following example shows.
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Example 5.2. As in Example 5.1, let U be the uniformity on R induced

by the Euclidean metric. For each n ∈ N set An = [−n, n]. Since An ⊂
An+1, it follows that {An}n∈N is, as a net, left K-Cauchy in (K0(R),U−H).

Clearly {An}n∈N does not converges in (K0(R), T (U+
H)). Since UH = (U−H)s,

we conclude that (K0(R),U−H) is not Smyth complete.

As mentioned in Section 5.1, right K-completeness constitutes a suitable

notion of quasi-uniform completeness to generalize Burdick’s theorem to the

quasi-uniform setting. We conclude the chapter with a brief discussion of

this kind of completeness in our context.

Recall ([98]) that a filter on a quasi-uniform space (X,U) is right K-

Cauchy if it is a left K-Cauchy filter in (X,U−1). Similarly, a net in (X,U) is

said to be right K-Cauchy if it is left K-Cauchy in (X,U−1). A quasi-uniform

space (X,U) is called right K-complete if every right K-Cauchy filter (equi-

valently, net) converges in (X,T (U)) (see ([65, 98])). We have the following.

Proposition 5.2. A separated uniform space (X,U) is complete if and only

if (K0(X),U−H) is right K-complete.

Proof. Suppose that (X,U) is complete and let {Aα}α∈Λ be a right K-Cauchy

net in (K0(X),U−H). Since, by Remark 1.2, (U−H)−1 = U+
H , it follows that

{Aα}α∈Λ is left K-Cauchy in (X,U+
H), so, by Theorem 5.1 (4), it converges

in (K0(X), T (UH)), and hence in (K0(X), T (U−H)). Therefore (K0(X),U−H) is

right K-complete. The converse follows from Remark 5.3 because every right

K-complete quasi-uniform space is clearly half-complete.

Finally, observe that completeness of (X,U) cannot be characterized by

right K-completeness of (K0(X),U+
H) as Example 5.2 shows (indeed, it suffices

to note that {An}n∈N is right K-Cauchy in (K0(X),U+
H)).



Chapter 6

The Hausdorff Fuzzy

Quasi-Metric

6.1 Introduction.

It is well known that the Hausdorff distance has an undoubted importance

not only in general topology but also in other areas of Mathematics and

Computer Science, such as convex analysis and optimization [11, 74, 90],

dynamical systems [33, 86, 111, 136], mathematical morphology [123] , frac-

tals [7, 29], image processing [51, 73, 122, 140] , programming language and

semantics [9, 10], computational biology [48, 126], etc.

In [30], Egbert extended the classical construction of the Hausdorff dis-

tance of a metric space to Menger spaces. Later on, Tardiff [133] (see also

[117, 121]), generalized Egbert’s construction to probabilistic metric spaces,

obtaining in this way a suitable notion of a Hausdorff probabilistic distance.
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Since fuzzy metric spaces, in the sense of Kramosil and Michalek, are

closely related to Menger spaces [57], one can easily define, from Egbert-

Tardiff’s construction, a Hausdorff fuzzy distance for a given fuzzy metric

space. In connection with these constructions, a notion of Hausdorff fuzzy

metric for fuzzy metric spaces in the sense of George and Veeramani [42, 43]

was discussed in [92].

On the other hand, it is well known that several structures of asymmetric

topology like quasi-uniformities and (fuzzy) quasi-metrics, constitute efficient

tools to formulate and solve problems in hyperspaces, function spaces, topo-

logical algebra, asymmetric functional analysis, point-free geometry, com-

plexity of algorithms, theoretical computer science, etc. (see, for instance,

Chapters 11 and 12 of [62], Section 3 of [60], and also [1, 6, 25, 41, 44, 63,

75, 91, 96, 104, 110, 114, 120, 137, etc] for recent contributions).

In this chapter we introduce and study notions of Hausdorff fuzzy quasi-

metric (in the senses of Kramosil and Michalek, and George and Veeramani,

respectively) that generalize to the asymmetric setting the corresponding

notions of Hausdorff fuzzy metric. In this way, we partially reconcile the

theory of fuzzy metric hyperspaces with the theory of asymmetric topology.

Furthermore, we apply our approach to the domain of words a paradigmatic

example of a space that naturally appear in the theory of computation.
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6.2 Basic Notions and Preliminary Results

In this section we recall the concepts and results on fuzzy quasi-metric spaces

which we will need in the rest of the chapter. They are taken from [47]

(see also [18]). Moreover, we shall observe that the attractive relationship

between quasi-metrics and order, recalled in Remark 1.1, is preserved in this

framework.

According to [117], a binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a

continuous t-norm if ∗ satisfies the following conditions:

(i) ∗ is associative and commutative;

(ii) ∗ is continuous;

(iii) a ∗ 1 = a for every a ∈ [0, 1];

(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, with a, b, c, d ∈ [0, 1].

It is well known and easy to see that for each continuous t-norm ∗ one

has ∗ ≤ ∧, where ∧ is the continuous t-norm given by a ∧ b = min{a, b} for

all a, b ∈ [0, 1].

By a KM-fuzzy quasi-pseudo-metric on a set X we mean a pair (M, ∗)
such that ∗ is a continuous t-norm and M is a fuzzy set in X ×X × [0,∞)

such that for all x, y, z ∈ X :

(i) M(x, y, 0) = 0;

(ii) M(x, x, t) = 1 for all t > 0;

(iii) M(x, z, t + s) ≥ M(x, y, t) ∗M(y, z, s) for all t, s ≥ 0;
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(iv) M(x, y, ) : [0,∞) → [0, 1] is left continuous.

A KM-fuzzy quasi-metric on X is a KM-fuzzy quasi-pseudo-metric (M, ∗)
onX which satisfies the following condition: (ii’) x = y if and only if

M(x, y, t) = M(y, x, t) = 1 for all t > 0.

A KM-fuzzy (pseudo-)metric on X is a KM-fuzzy quasi-(pseudo-)metric

(M, ∗) on X such that for each x, y ∈ X : (v) M(x, y, t) = M(y, x, t) for all

t > 0.

A KM-fuzzy quasi-(pseudo-)metric space is a triple (X,M, ∗) such that

X is a (nonempty) set and (M, ∗) is a KM-fuzzy quasi-(pseudo-)metric on

X. The notion of a KM-fuzzy (pseudo-)metric space is defined in the obvious

manner. Note that the KM-fuzzy metric spaces are exactly the fuzzy metric

spaces in the sense of Kramosil and Michalek ([57]).

Each KM-fuzzy quasi-pseudo-metric (M, ∗) on X generates a topology

TM onX which has as a base the family of open balls {BM(x, ε, t) : x ∈ X,

ε ∈ (0, 1), t > 0}, where BM(x, ε, t) = {y ∈ X : M(x, y, t) > 1 − ε} for all

x ∈ X, ε ∈ (0, 1) and t > 0. Observe that if (M, ∗) is a quasi-metric on X,

then TM is a T0 topology on X.

It is obvious from the definition of TM that a sequence {xn}n∈N in a KM-

fuzzy quasi-pseudo-metric (X, M, ∗) converges to a point x ∈ X with respect

to TM if and only if limn M(x, xn, t) = 1 for all t > 0.

If (M, ∗) is a KM-fuzzy quasi-(pseudo-)metric on a set X, then (M−1, ∗)
is also a KM-fuzzy quasi-(pseudo-)metric on X, where M−1 is the fuzzy

set in X × X × [0,∞) defined by M−1(x, y, t) = M(y, x, t). Moreover, if

we denote by M i the fuzzy set in X × X × [0,∞) given by M i(x, y, t) =

min{M(x, y, t),M−1(x, y, t)}, then (M i, ∗) is, clearly, a KM-fuzzy (pseudo-

)metric on X.
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It is well known ([47, Proposition 1]) that if(X,M, ∗) is a KM-fuzzy quasi-

pseudo-metric space, then, for each x, y ∈ X the function M(x, y, ) is non-

decreasing.

In the rest of the chapter, KM-fuzzy quasi-(pseudo-)metrics and KM-

fuzzy quasi-(pseudo-)metric spaces will be simply called fuzzy quasi-(pseudo-

)metrics and fuzzy quasi-(pseudo-)metric spaces, respectively.

Remark 6.1. Notice that if (M, ∗) is a fuzzy quasi-pseudo-metric on a set

X, then the relation ≤M on X given by

x ≤M y ⇐⇒ M(x, y, t) = 1 for all t > 0,

is a preorder on X. Moreover, it is a (partial) order on X if and only if (M, ∗)
is a fuzzy quasi-metric on X. As in the quasi-metric case, ≤M is called the

specialization order of (M, ∗).

Example 6.1. (compare [47, Example 2.16]). Let d be a (n extended) quasi-

(pseudo-)metric on a set X and let Md be the function defined on X ×X ×
[0,∞) by M(x, y, 0) = 0 and

Md(x, y, t) =
t

t + d(x, y)
.

for all t > 0. Then, for each continuous t-norm ∗, (X,Md, ∗) is a fuzzy quasi-

(pseudo-)metric space called standard fuzzy quasi-(pseudo-)metric space and

(Md, ∗) is the standard fuzzy quasi-(pseudo-)metric of (X, d). Furthermore,

it is easy to check that (Md)
−1 = Md−1 and (Md)

i = Mds , and that the

topology Td, generated by d, coincides with the topology TMd
generated by

(Md, ∗).
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We say that a topological space (X, T ) admits a compatible fuzzy quasi-

(pseudo-)metric if there is a fuzzy quasi-(pseudo-)metric (M, ∗) on X such

that T = TM .

It follows from Example 6.1 that every quasi-(pseudo-)metrizable topolo-

gical space admits a compatible fuzzy quasi-(pseudo-)metric.

Conversely, we have:

Proposition 6.1. ([47, 105]). Let (X, M, ∗) be a fuzzy quasi-pseudo-metric

space. Then {Un : n ∈ N} is a base for a quasi-uniformity UM on X such

that TUM
= TM , where Un = {(x, y) ∈ X ×X : M(x, y, 1/n) > 1 − 1/n} for

all n ∈ N. Moreover the conjugate quasi-uniformity (UM)−1 coincides with

UM−1 and T(UM )−1 = TM−1 .

From Propositions 1.1 and 6.1 we deduce the following:

Corollary 6.1. Let (X, M, ∗) be a fuzzy quasi-(pseudo-)metric space. Then

there is a quasi-(pseudo-)metric d on X such that Ud = UM .
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6.3 Construction of the Hausdorff Fuzzy Quasi-

Metric

We start this section by recalling the construction of the Hausdorff fuzzy

metric of a fuzzy metric space (X, M, ∗). In fact, it is a simple adaptation to

the fuzzy setting of the definition of the Hausdorff probabilistic metric of a

probabilistic metric space ([30, 117, 121, 133]).

Given x ∈ X, A ∈ P0(X) and t > 0, set M(x, A, t) = supa∈A M(x, a, t).

Now, for each A,B ∈ P0(X) let

H−
M(A,B, 0) = H+

M(A,B, 0) = 0,

H−
M(A,B, t) = sup

0<s<t
inf
a∈A

M(a,B, s), H+
M(A, B, t) = sup

0<s<t
inf
b∈B

M(A, b, s),

for all t > 0, and

HM(A,B, t) = min{H−
M(A,B, t), H+

M(A,B, t)},

for all t ≥ 0.

Then H−
M , H+

M are fuzzy quasi-pseudo-metrics on P0(X) and HM is a

pseudo-metric on P0(X). Furthermore HM is a fuzzy metric on C0(X), called

the Hausdorff fuzzy pseudo-metric of (X,M, ∗).

In the light of the above notions and of the construction of Liu and Li

[72, p. 67] of a “Hausdorff fuzzy metric” in their recent study of coincidence

point theorems for multivalued maps in complete fuzzy metric spaces, one

can attempt to define the Hausdorff fuzzy metric in a more simplified way,

as follows:

HM(A,B, t) = min{ inf
a∈A

M(a,B, t), inf
b∈B

M(A, b, t)},
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for all A, B ∈ C0(X) and t > 0.

The following example shows that, for this alternative definition, HM is

not a fuzzy metric, in general.

Example 6.2. Let X = N ∪ {0}, and let consider the fuzzy set M in X ×
X × [0,∞) given by

M(x, y, 0) = 0 for all x, y ∈ X;

M(x, x, t) = 1 for all x ∈ x and t > 0;

M(x, y, t) = 0 whenever 2−(x∧y)− 2−(x∨y) ≥ t, with x 6= y and t > 0;

and

M(x, y, t) = 1 otherwise.

We shall show that (X,M,∧) is a fuzzy metric space.

Indeed, first note that if M(x, y, t) = 1 for all t > 0, then x = y, and

that, clearly, M(x, y, t) = M(y, x, t) for all x, y ∈ X and t > 0.

Let x, y, z ∈ X and t, s ≥ 0; if M(x, y, t) = 0 or M(y, z, s) = 0,

then, obviously, M(x, z, t + s) ≥ M(x, y, t) ∧M(y, z, s); otherwise, we have

M(x, y, t) = M(y, z, s) = 1, and we assume the nontrivial case x 6= z, x 6= y

and y 6= z; then, we have

2−(x∧y) − 2−(x∨y) < t and 2−(y∧z) − 2−(y∨z) < s.

On the other hand, an easy computation shows that

2−(x∧z) − 2−(x∨z) ≤ 2−(x∧y) − 2−(x∨y) + 2−(y∧z) − 2−(y∨z),
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and thus 2−(x∧z) − 2−(x∨z) < t + s, i.e., M(x, z, t + s) = 1.

Now, let x, y ∈ X, t > 0, and {tk}k∈N a sequence in R+ such that tk → t−.

We assume the nontrivial case x 6= y. If M(x, y, t) = 0, then 2−(x∧y) −
2−(x∨y) ≥ t, since t > tk eventually, there is k0 ∈ N such that 2−(x∧y) −
2−(x∨y) > tk for all k ≥ k0, i.e., M(x, y, tk) = 0 for all k ≥ k0. If M(x, y, t) = 1,

then 2−(x∧y)−2−(x∨y) < t, so there is k0 ∈ N such that 2−(x∧y)−2−(x∨y) < tk for

all k ≥ k0, i.e., M(x, y, tk) = 1 for all k ≥ k0. We have shown that M(x, y, )

is left continuous on (0,∞). Consequently (X, M,∧) (in fact (X, M, ∗) for

any continuous t-norm) is a fuzzy metric space.

Note also that TM is the discrete topology on X because for each x ∈ X

and ε ∈ (0, 1), we have BM(x, ε, 2−(x+1)) = {x}. Indeed, fix x ∈ X and let

y ∈ X with y 6= x. If y < x, we have

2−(x∧y) − 2−(x∨y) = 2−y − 2−x ≥ 2−(x−1) − 2−x = 2−x,

and if y > x, we have

2−(x∧y) − 2−(x∨y) = 2−x − 2−y ≥ 2−x − 2−(x+1) = 2−(x+1).

Therefore M(x, y, 2−(x+1)) = 0. Hence BM(x, ε, 2−(x+1)) = {x}, so TM is

the discrete topology on X.

Finally, consider the elements A,B of C0(X), where A = N and B = {0}.
Note that M(x, 0, 1) = 1 for all x ∈ N, and that for each t ∈ (0, 1), there is

xt ∈ N such that 1− 2−xt ≥ t, so M(xt, 0, t) = 0. Hence

min{ inf
a∈A

M(a,B, 1), inf
b∈B

M(A, b, 1)} = min{ inf
x∈N

M(x, {0}, 1),M(N, 0, 1)} = 1,

and, for each t ∈ (0, 1),

min{ inf
a∈A

M(a,B, t), inf
b∈B

M(A, b, t)} = min{ inf
x∈N

M(x, {0}, t),M(N, 0, t)} = 0.



90 Chapter 6. The Hausdorff Fuzzy Quasi-Metric

We conclude that HM(N, {0}, ) is not left continuous at t = 1, for the

alternative definition of HM ,suggested above, so it is not a fuzzy metric on

C0(X).

Next we shall construct the Hausdorff fuzzy quasi-metric of a fuzzy quasi-

metric space (X, M, ∗).

Let (X, M, ∗) be a fuzzy quasi-metric space. If A is a subset of X, the

sets A
TM

and A
TM−1

will be simply denoted by A
M

and A
M−1

, respectively.

The sets P0(X), C0(X), K0(X) and C∩(X) are defined in the obvious

manner, as in Section 6.1. In particular, we have

C∩(X) = {AM ∩ A
M−1

: A ∈ P0(X)}.

Remark 6.2. It is straightforward to show (compare [91]) that if A ∈ P0(X),

then A ∈ C∩(X) if and only if A = A
M ∩ A

M−1

.

As in the fuzzy metric case, given x ∈ X, A ∈ P0(X) and t > 0, put

M(x,A, t) = supa∈A M(x, a, t).

The following easy result will be useful later on.

Lemma 6.1. Let (X,M, ∗) be a fuzzy quasi-metric space. Then for each

x ∈ X and A ∈ P0(X), the following hold:

(1) M(x,A, s) ≤ M(x,A, t) whenever 0 ≤ s < t.

(2) x ∈ A
M ⇐⇒ M(x,A, t) = 1 for all t > 0.
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Now, for a given fuzzy quasi-metric space (X, M, ∗) and for each A, B ∈
P0(X), define

H−
M(A,B, 0) = H+

M(A,B, 0) = 0,

and

H−
M(A,B, t) = sup

0<s<t
inf
a∈A

M(a,B, s), H+
M(A, B, t) = sup

0<s<t
inf
b∈B

M(A, b, s),

for all t > 0. Then we obtain:

Lemma 6.2. For each A,B, C ∈ P0(X), the following hold:

(1a) A ⊆ B
M ⇐⇒ H−

M(A,B, t) = 1 for all t > 0.

(1b) B ⊆ A
M−1

⇐⇒ H+
M(A,B, t) = 1 for all t > 0.

(2a) H−
M(A,C, t + s) ≥ H−

M(A,B, t) ∗H−
M(B, C, s) for all t, s ≥ 0.

(2b) H+
M(A,C, t + s) ≥ H+

M(A,B, t) ∗H+
M(B, C, s) for all t, s ≥ 0.

(3a) H−
M(A,B, ) : [0,∞) → [0, 1] is left continuous.

(3b) H+
M(A,B, ) : [0,∞) → [0, 1] is left continuous.

Proof. (1a) Suppose that A ⊆ B
M

. Then for each a ∈ A and s > 0,

M(a,B, s) = 1 by Lemma 6.1 (2), so infa∈A M(a,B, s) = 1. Choose any

t > 0. Then

H−
M(A,B, t) = sup

0<s<t
inf
a∈A

M(a,B, s) = 1.

Conversely, choose t > 0. Then by hypothesis, there is a sequence {sk}k∈N,

with sk ∈ (0, t) for all k ∈ N, such that

inf
a∈A

M(a,B, sk) > 1− 1/k,
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for all k ∈ N. So, by Lemma 6.1 (1),

inf
a∈A

M(a,B, t) ≥ inf
a∈A

M(a,B, sk) > 1− 1/k,

for all k ∈ N. Consequently M(a,B, t) = 1 for all a ∈ A and t > 0. So, by

Lemma 6.1 (2), A ⊆ B
M

.

(1b) It follows similarly to the proof of (1a), so it is omitted.

(2a) Fix t, s ≥ 0. Since the inequality is obvious if t = 0 or s = 0, we

assume that t, s > 0. Let r ∈ (0, t), and r′ ∈ (0, s). Then, for each a ∈ A,

with M(a,B, r) > 0, and each ε ∈ (0,M(a,B, r)), there exists ba ∈ B such

that M(a,B, r)− ε ≤ M(a, ba, r). Hence

(M(a,B, r)−ε)∗ inf
b∈B

M(b, C, r′) ≤ M(a, ba, r)∗M(ba, C, r′) ≤ M(a, C, r+r′).

So, by the continuity of ∗, it follows

M(a,B, r) ∗ inf
b∈B

M(b, C, r′) ≤ M(a, C, r + r′),

for each a ∈ A with M(a,B, r) > 0 (Note that the preceding inequality

obviously holds if M(a, B, r) = 0). Therefore

inf
a∈A

M(a,B, r) ∗ inf
b∈B

M(b, C, r′) ≤ inf
a∈A

M(a, C, r + r′)

Consequently, by definition of “ sup ” and by the continuity of ∗, it follows

from standard arguments that

sup
0<r<t

inf
a∈A

M(a, B, r) ∗ sup
0<r′<s

inf
b∈B

M(b, C, r′)

≤ sup
0<r<t
0<r′<s

inf
a∈A

M(a, C, r + r′).
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Finally, since

sup
0<r<t
0<r′<s

inf
a∈A

M(a, C, r + r′) = sup
0<r′′<t+s

inf
a∈A

M(a, C, r′′),

we conclude that

H−
M(A,B, t) ∗H−

M(B, C, s) ≤ H−
M(A,C, t + s).

(2b) It follows similarly to the proof of (2a), so it is omitted.

(3a) Let A,B ∈ P0(X), t > 0 and let {tk}k∈N be a strictly increasing

sequence in R+ such that tk → t.

Since for each k ∈ N, tk < t, it immediately follows from Lemma 6.1 (1),

that

H−
M(A,B, tk) ≤ H−

M(A,B, t),

for all k ∈ N.

Now take an arbitrary ε ∈ (0, 1). Then there is sε ∈ (0, t) such that

H−
M(A,B, t) < ε + inf

a∈A
M(a,B, sε).

Let k0 ∈ N such that sε < tk − 1/k for all k ≥ k0. Then M(a,B, sε) ≤
M(a,B, tk − 1/k) for all a ∈ A and k ≥ k0, so

H−
M(A,B, t) < ε + inf

a∈A
M(a,B, tk − 1

k
),

for all k ≥ k0. Therefore

H−
M(A,B, t) < ε + sup

0<s<tk

(inf
a∈A

M(a, B, s)),



94 Chapter 6. The Hausdorff Fuzzy Quasi-Metric

for all k ≥ k0. We have proved that

H−
M(A,B, tk) ≤ H−

M(A,B, t) < ε + H−
M(A,B, tk),

for all k ≥ k0, and, consequently, H−
M(A,B, ) is left continuous at (0,∞).

(3b) It follows similarly to the proof of (3a), so it is omitted.

Now we define a fuzzy set HM on P0(X)×P0(X)× [0,∞), by:

HM(A,B, t) = min{H−
M(A,B, t), H+

M(A,B, t)},

for all A, B ∈ P0(X) and t ≥ 0.

From the above lemma we obtain the following result.

Theorem 6.1. For a fuzzy quasi-pseudo-metric space (X, M, ∗) the following

hold:

(1) (H−
M , ∗), (H+

M , ∗) and (HM , ∗) are fuzzy quasi-pseudo-metrics on P0(X).

(2) If (X, M, ∗) is a fuzzy quasi-metric space, then (HM , ∗) is a fuzzy quasi-

metric on C∩(X).

Proof. (1) From Lemma 6.2 (1a), (2a) and (3a), it follows that (H−
M , ∗) is a

fuzzy quasi-pseudo-metric on P0(X). Moreover, from Lemma 6.2 (1b), (2b)

and (3b), it follows that (H+
M , ∗) is a fuzzy quasi-pseudo-metric on P0(X).

From these facts and the definition of HM it immediately follows that (HM , ∗)
is also a fuzzy quasi-pseudo-metric on P0(X).
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(2) Since, by (1), (HM , ∗) is a fuzzy quasi-pseudo-metric on C∩(X), we

only need to show that for A,B ∈ C∩(X), we have A = B whenever

HM(A,B, t) = HM(B, A, t) = 1 for all t > 0.

Indeed, suppose that HM(A,B, t) = HM(B,A, t) = 1 for all t > 0. Then,

by Lemma 6.2 (1a), A ⊆ B
M

and B ⊆ A
M

, and by Lemma 6.2 (1b), B ⊆
A

M−1

and A ⊆ B
M−1

. Hence A ⊆ B
M∩B

M−1

= B, and B ⊆ A
M∩A

M−1

= A,

so A = B. We conclude that (HM , ∗) is a fuzzy quasi-metric on C∩(X).

The fuzzy quasi-metric (HM , ∗) of Theorem 6.1 is called the Hausdorff

fuzzy quasi-metric of (M, ∗) on C∩(X).

Example 6.3. Let (X, d) be a quasi-(pseudo-)metric space. Then HMd
=

MHd
on P0(X), i.e., the Hausdorff fuzzy quasi-pseudo-metric of the standard

fuzzy quasi-(pseudo-)metric (Md, ∗) coincides with the standard fuzzy quasi-

pseudo-metric of the Hausdorff quasi-pseudo-metric of d on P0(X).

Indeed, first note that MHd
= min{MH−

d
,MH+

d
}.

Now, given A,B ∈ P0(X) and s > 0, an easy computation shows (com-

pare [134, Result 2.6] or [92, Proposition 3]) that

Md(a,B, s) =
s

s + d(a,B)
,

and then

inf
a∈A

Md(a,B, s) =
s

s + supa∈A d(a,B)
.

Hence, for each t > 0,

H−
Md

(A,B, t) = sup
0<s<t

s

s + supa∈A d(a, B)
=

t

t + H−
d (A,B)

= MH−
d
(A,B, t).
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Similarly, we obtain that

H+
Md

(A,B, t) = MH+
d
(A,B, t),

and consequently

HMd
(A,B, t) = min{MH−

d
(A,B, t),MH+

d
(A,B, t)} = MHd

(A,B, t).

We conclude that HMd
= MHd

on P0(X).
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6.4 Some Properties of the Hausdorff Fuzzy

Quasi-Metric

In this section we study properties of completeness, precompactness and

compactness of the Hausdorff fuzzy quasi-metric.

In order to help the reader we first recall some pertinent concepts and

results.

Let (X,U) be a quasi-uniform space. For each U ∈ U put

H−
U = {(A,B) ∈ P0(X)× P0(X) : A ⊆ U−1(B)}

and

H+
U = {(A,B) ∈ P0(X)× P0(X) : B ⊆ U(A)}.

Then {H−
U : U ∈ U} is a base for a quasi-uniformity H−

U on P0(X) and

{H+
U : U ∈ U} is a base for a quasi-uniformity H+

U on P0(X) [12, 67]. The

quasi-uniformity HU = H−
U ∨H+

U is said to be the Hausdorff quasi-uniformity

of U on P0(X).

The following result was obtained by Berthiaume [12].

Theorem 6.2. Let (X, d) be a quasi-pseudo-metric space. Then UH−
d

= H−
Ud

,

UH+
d

= H+
Ud

and UHd
= HUd

on P0(X).

In our next result we present the analogue to this theorem for fuzzy quasi-

pseudo-metric spaces. Furthermore, and similarly to the fuzzy metric setting

(see [92, Theorem 2]), it will be the key to deduce in a direct way several
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properties of fuzzy quasi-pseudo-metric spaces from the corresponding well-

known properties for quasi-pseudo-metric and quasi-uniform spaces.

Theorem 6.3. Let (X,M, ∗) be a fuzzy quasi-pseudo-metric space. Then

UH−
M

= H−
UM

, UH+
M

= H+
UM

and UHM
= HUM

on P0(X).

Proof. Let n ∈ N. If A,B ∈ P0(X) verify A ⊆ U−1
n+1(B), then for each a ∈ A

there is ba ∈ B such that M(a, ba, 1/(n+1)) > 1−1/(n+1), Hence, for each

s ∈ (1/(n + 1), 1/n), we have

M(a,B, s) ≥ M(a, ba, s) ≥ M(a, ba, 1/(n + 1)) > 1− 1/(n + 1),

so

inf
a∈A

M(a,B, s) ≥ 1− 1/(n + 1) > 1− 1/n,

and consequently

H−
M(A,B, 1/n) > 1− 1/n.

Thus, we have shown that H−
UM

⊆ UH−
M

on P0(X).

On the other hand, if H−
M(A,B, 1/n) > 1−1/n, then there is s ∈ (0, 1/n)

such that M(a,B, s) > 1 − 1/n for all a ∈ A, and hence A ⊆ U−1
n (B).

Consequently UH−
M
⊆ H−

UM
on P0(X).

Similarly we prove that UH+
M

= H+
UM

on P0(X). Hence UHM
= HUM

on

P0(X).

In the sequel we discuss the completeness of the Hausdorff fuzzy quasi-

metric. We shall show that, in this context, right K-sequential completeness

provides a satisfactory notion of (fuzzy) quasi-metric completeness. It is in-

teresting to recall that right K-sequential completeness constitutes a suitable
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notion of quasi-metric completeness in the realm of spaces of functions and

hyperspaces, respectively (see [62, Chapter 9]).

In the fuzzy setting we propose the following notions.

Definition 6.1. A sequence {xn}n∈N in a fuzzy quasi-pseudo-metric space

(X, M, ∗) is called right K-Cauchy if for each t > 0 and each ε ∈ (0, 1) there

is n0 ∈ N such that M(xm, xn, t) > 1− ε whenever n0 ≤ n ≤ m.

Definition 6.2. A fuzzy quasi-pseudo-metric space (X, M, ∗) is called right

K-sequentially complete if every right K-Cauchy sequence is convergent with

respect to TM .

Probabilistic quasi-pseudo-metric versions of the above concepts may be

found in [18, p. 120].

The proof of the next result follows immediately from Proposition 6.1 and

its Corollary, so it is omitted.

Proposition 6.2. Let (X, M, ∗) be a fuzzy quasi-pseudo-metric space and let

d be a (n extended) quasi-pseudo-metric on X such that Ud = UM . Then:

(1) A sequence in X is right K-Cauchy in (X, M, ∗) if and only if it is right

K-Cauchy in (X, d).

(2) (X,M, ∗) is right K-sequentially complete if and only if (X, d) is right

K-sequentially complete.

Künzi and Ryser proved in [67] the following result (see also [113]).
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Theorem 6.4. Let (X, d) be quasi-pseudo-metric space. Then (P0(X), Hd)

is right K-sequentially complete if and only if (X, d) is right K-sequentially

complete.

The next result provides the fuzzy counterpart of the preceding theorem.

Theorem 6.5. Let (X,M, ∗) be a fuzzy quasi-pseudo-metric space. Then

(P0(X), HM , ∗) is right K-sequentially complete if and only if (X, M, ∗) is

right K-sequentially complete.

Proof. Let d be a quasi-pseudo-metric d on X such that Ud = UM . Then

HUd
= HUM

; so, by Theorems 6.2 and 6.3, UHd
= UHM

. It then follows from

Proposition 6.2 (2) that (P0(X), HM , ∗) is right K-sequentially complete if

and only if (P0(X), Hd) is right K-sequentially complete. Now the conclusion

follows from Theorem 6.4 and Proposition 6.2 (2).

It is interesting to obtain a version of Theorem 6.5 for C∩(X), because

in this case HM is a fuzzy quasi-metric. Such a version is established in the

next result.

Corollary 6.2. Let (X, M, ∗) be a fuzzy quasi-metric space. Then (C∩(X),

HM , ∗) is right K-sequentially complete if and only if (X, M, ∗) is right K-

sequentially complete.

Proof. Suppose that (C∩(X), HM , ∗) is right K-sequentially complete. Let

{xn}n∈N be a right K-Cauchy sequence in (X, M, ∗). Since xn = {xn}M ∩
{xn}M−1

for all n ∈ N, it follows that {{xn}}n∈N is a right K-Cauchy se-

quence in (C∩(X), HM , ∗), so it converges to some C ∈ C∩(X) with respect
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to THM
. Then, it is immediate to check that each c ∈ C is a cluster point of

the sequence {xn}n∈N with respect to TM . Since {xn}n∈N is right K-Cauchy

we deduce that it converges to each c ∈ C with respect to TM . Therefore

(X, M, ∗) is right K-sequentially complete.

Conversely, let {An}n∈N be a right K-Cauchy sequence in (C∩(X), HM , ∗).
By Theorem 5, {An}n∈N converges to some C ∈ P0(X) with respect to THM

.

We shall show that {An}n∈N converges to C
M

with respect to THM
. First note

that {An}n∈N converges to C
M

with respect to TH+
M

because C ⊆ C
M

. Now

choose x ∈ C
M

and U ∈ UM . Then there exist c ∈ C and n0 ∈ N such

that c ∈ U(x) and C ⊆ U−1(An) for all n ≥ n0. Hence x ∈ U−2(An) for all

n ≥ n0. Thus C
M ⊆ U−2(An) for all n ≥ n0, so {An}n∈N converges to C

M

with respect to TH−
M

. Since C
M ∈ C∩(X) we conclude that (C∩(X), HM , ∗) is

right K-sequentially complete.

We finish this section by analyzing precompactness, total boundedness

and compactness of the Hausdorff fuzzy quasi-metric.

Let us recall that a quasi-uniform space (X,U) is precompact ([35, Chap-

ter 3]) provided that for each U ∈ U there is a finite subset A of X such that

X =
⋃

a∈A U(a).

A quasi-uniform space (X,U) is totally bounded provided that the uni-

form space (X,U s) is totally bounded ([35, Chapter 3]).

It is well known that each totally bounded quasi-uniform space is pre-

compact and that, contrarily to the uniform case, there exist precompact

quasi-uniform spaces that are not totally bounded ([35, Chapter 3]).

In the fuzzy case, we have the following concepts (compare [105]):

A fuzzy quasi-pseudo-metric space (X,M, ∗) is precompact (respectively,



102 Chapter 6. The Hausdorff Fuzzy Quasi-Metric

totally bounded) provided that the quasi-uniform space (X,UM) is precom-

pact (respectively, totally bounded).

Theorem 6.6. [67]. Let (X,U) be a quasi-uniform space. Then:

(1) (P0(X), HU) is precompact if and only if (X,U) is precompact.

(2) (P0(X), HU) is totally bounded if and only if (X,U) is totally bounded.

(3) (P0(X), (HU)s) is compact if and only if (X,U s) is compact.

Related to the statement (3) of the above theorem, it is given in [67,

Example 1] an example of a compact quasi-uniform space (X,U) such that

(P0(X), HU) is not compact.

In the fuzzy setting we have the following:

Theorem 6.7. Let (X,M, ∗) be a fuzzy quasi-pseudo-metric space. Then:

(1) (P0(X), HM , ∗) is precompact if and only if (X,M, ∗) is precompact.

(2) (P0(X), HM , ∗) is totally bounded if and only if (X, M, ∗) is totally

bounded.

(3) (P0(X), (HM)i) is compact if and only if (X, M i, ∗) is compact.

Proof. We only show the statement (1), because (2) and (3) follow similarly.

Indeed, by Theorem 6.7 (1) we have that (P0(X), HUM
, ∗) is precompact if

and only if (X,UM) is precompact. Since, by Theorem 6.3, UHM
= HUM

on

P0(X), we deduce that (P0(X), HM , ∗) is precompact if and only if (X, M, ∗)
is precompact.
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6.5 The Hausdorff GV-Fuzzy Quasi-Metric

Following [47], by a GV-fuzzy quasi-pseudo-metric on a set X we mean a

pair (M, ∗) such that ∗ is a continuous t-norm and M is a fuzzy set in

X ×X × (0,∞) such that for all x, y, z ∈ X, t, s > 0 :

(i) M(x, y, t) > 0;

(ii) M(x, x, t) = 1;

(iii) M(x, z, t + s) ≥ M(x, y, t) ∗M(y, z, s);

(iv) M(x, y, ) : (0,∞) → (0, 1] is continuous.

A GV-fuzzy quasi-metric on X is a GV-fuzzy quasi-pseudo-metric (M, ∗)
onX which satisfies the following condition: (ii’) x = y ⇔ M(x, y, t) =

M(y, x, t) = 1 for some t > 0.

A GV-fuzzy (pseudo-)metric on X is a GV-fuzzy quasi-(pseudo-)metric

(M, ∗) on X such that for each x, y ∈ X : (v) M(x, y, t) = M(y, x, t) for all

t > 0.

The notion of a GV-fuzzy (pseudo-)metric space is defined in the obvious

manner. Note that the GV-fuzzy metric spaces are exactly the fuzzy metric

spaces in the sense of George and Veeramani [42].

If (M, ∗) is a GV-fuzzy quasi-(pseudo-)metric on X, then the fuzzy sets

in X × X × (0,∞), M−1 and M i given by M−1(x, y, t) = M(y, x, t) and

M i(x, y, t) = min{M(x, y, t),M−1(x, y, t)}, are, as in the KM-case, a GV-

fuzzy quasi-(pseudo-)metric and a GV-fuzzy (pseudo-)metric on X, respecti-

vely.
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Obviously, each GV-fuzzy quasi-(pseudo-)metric (M, ∗) can be considered

as a KM-fuzzy quasi-(pseudo-)metric by defining M(x, y, 0) = 0 for all x, y ∈
X. Hence, each GV-fuzzy quasi-pseudo-metric space generates a topology TM

defined as in the KM-case.

Therefore, if (X, M, ∗) is a GV-fuzzy quasi-pseudo-metric space, then

(H−
M , ∗), (H+

M , ∗) and (HM , ∗) are fuzzy quasi-pseudo-metrics on P0(X), and

(HM , ∗) is a fuzzy quasi-metric on C∩(X) whenever (X,M, ∗) is a GV-fuzzy

quasi-metric space.

The next example, given in [92], shows that, however, (HM , ∗) is not a

GV-fuzzy quasi-metric on C∩(X) even in the case that (X,M, ∗) is a GV-

fuzzy metric space.

Example 6.4. Denote by ∗L the Lukasiewicz t-norm, i.e., a∗L b = max{, a+

b− 1, 0},for all a, b ∈ [0, 1].

Now let {xn}n≥2 and {yn}n≥2 be two sequences of distinct points such

that A ∩B = ∅, where A = {xn : n ≥ 2} and B = {yn : n ≥ 2}.

Put X = A ∪B and define a fuzzy set M in X ×X × (0,∞) by:

M(xn, xm, t) = M(yn, ym, t) = 1−
[

1

n ∧m
− 1

n ∨m

]
,

M(xn, ym, t) = M(ym, xn, t) =
1

n
∧ 1

m
,

for all n, m ≥ 2.

Then (X, M, ∗L) is a GV-fuzzy metric space. Since TM is the discrete

topology on X, it follows that A, B ∈ C0(X). From the fact that for each

n ≥ 2 and each s > 0, M(xn, B, s) = M(A, yn, s) = 1/n, we deduce that
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H−
M(A,B, t) = H+

M(A,B, t) = 0 and thus HM(A,B, t) = 0 for all t > 0.

Consequently (HM , ∗L) is not a GV-fuzzy (quasi-)metric on C0(X).

Despite the above example, it is shown in [92] that the formula given

immediately before of Example 6.2 provides a suitable Hausdorff GV-fuzzy

metric on K0(X) for any GV-fuzzy metric space (X, M, ∗).

In the rest of this section we discuss the corresponding situation to GV-

fuzzy quasi-metric spaces.

We start this study with an example of a GV-fuzzy quasi-metric space

(X, M, ∗) whose induced topology is compact and metrizable, but for which

(HM , ∗) is not a GV-fuzzy quasi-pseudo-metric on K0(X).

Example 6.5. Let X = N ∪ {0} and let d be the quasi-metric on X given

by d(x, x) = 0 for all x ∈ X, d(0, n) = 1/n for all n ∈ N, and d(n, x) = n

for all n ∈ N and x ∈ X\{n}. Clearly (X, d) is a quasi-metric space such

that Td is a compact and metrizable topology. Consider the standard fuzzy

quasi-metric (Md, ∗) of (X, d) as given in Example 3, and denote also by

(Md, ∗) its restriction to X × X × (0,∞). It is clear such a restriction is a

GV-fuzzy quasi-metric on X.

Now put A = X\{1} and B = {1}. Then A,B ∈ K0(X), and, by one of

the formulas obtained in Example 5, we have that

H−
Md

(A,B, t) =
t

t + H−
d (A,B)

,

for all t > 0. Therefore

H−
Md

(A,B, t) =
t

t + supa∈A d(a, {1}) = 0,

for all t > 0, so that HMd
(A, B, t) = 0 for all t > 0. We conclude that (HMd

, ∗)
is not a GV-fuzzy quasi-pseudo-metric on K0(X) ∩ C∩(X).
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The next is an example of a GV-fuzzy quasi-metric space (X, M, ∗) for

which (HM , ∗) is not a GV-fuzzy quasi-pseudo-metric on KD(X), where

KD(X) denotes the collection of all nonempty subsets of X that are TM -

compact and TM−1-compact.

Example 6.6. Let X = N∪{0}∪ {∞} and let d be the function defined on

X ×X by d(x, x) = 0 for all x ∈ X, d(0,∞) = 1, d(0, n) = n for all n ∈ N,

d(x, 0) = 1 for all x ∈ X\{0}, d(x, y) = 0 whenever x ∈ N and x ≤ y, and

d(x, y) = y otherwise (we assume that ≤ is the usual order on X).

It is a routine to show that d is a quasi-metric on X. As in Example 6.5

let (Md, ∗) be the GV-fuzzy quasi-metric on X obtained by restricting the

standard fuzzy quasi-metric on (X, d) to X ×X × (0,∞).

Now observe that X ∈ KD(X). Indeed, since the only TMd
-open set

different from X that contains 1 is N ∪ {∞}, we obtain that X is TMd
-

compact, and since the only TMd−1 -open set different from X that contains

∞ is N ∪ {∞}, it follows that X is TMd−1 -compact.

Finally, put A = {0} and B = X. Then

H+
Md

(A,B, t) =
t

t + supb∈B d({0}, b) =
t

t + supn∈N n
= 0,

for all t > 0. So HMd
(A,B, t) = 0 for all t > 0. We conclude that (HMd

, ∗) is

not a GV-fuzzy quasi-pseudo-metric on KD(X).

The rest of the section is devoted to prove that for a GV-fuzzy quasi-

metric space (X, M, ∗), (HM , ∗) is a GV-fuzzy quasi-pseudo-metric on the

collection Ki
0 of all nonempty subsets of X that are compact in the GV-fuzzy

metric space (X,M i, ∗). In this way we extend the main result of [92] to the

fuzzy quasi-metric framework.
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To this end, we shall generalize the results of [92, Section 2] to GV-fuzzy

quasi-metric spaces as follows (although the proofs are almost identical to

the corresponding for GV-fuzzy metric spaces, we given them in order to help

to the readers).

Proposition 6.3. Let (X, M, ∗) be a GV-fuzzy quasi-metric space. Then

M is a continuous function on X × X × (0,∞) for the product topology

TM i × TM i × TE, where by TE we denote the Euclidean topology on (0,∞) .

Proof. Let x, y ∈ X and t > 0, and let {x′n, y′n, t′n}n′∈N be a sequence in

X ×X × (0,∞) that converges to (x, y, t) with respect to TM i × TM i × TE.

Since {M(x′n, y
′
n, t′n)}n′∈N is a sequence in (0, 1], there is a subsequence

{xn, yn, tn}n∈N of {x′n, y′n, t′n}n∈N such that the sequence {M(xn, yn, tn)}n∈N
converges to an element of [0, 1].

Fix δ > 0 such that δ < t/2. Then, there is n0 ∈ N such that |t− tn| < δ

for all n ≥ n0. Hence

M(xn, yn, tn) ≥ M(xn, x, δ/2) ∗M(x, y, t− 2δ) ∗M(y, yn, δ/2),

and

M(x, y, t + 2δ) ≥ M(x, xn, δ/2) ∗M(xn, yn, tn) ∗M(yn, y, δ/2),

for all n ≥ n0.

Since limn M i(x, xn, δ/2) = limn M i(y, yn, δ/2) = 1, we obtain, by taking

limits when n →∞, that

lim
n

M(xn, yn, tn) ≥ 1 ∗M(x, y, t− 2δ) ∗ 1 = M(x, y, t− 2δ),

and

M(x, y, t + 2δ) ≥ 1 ∗ lim
n

M(xn, yn, tn) ∗ 1 = lim
n

M(xn, yn, tn),
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respectively.

So, by continuity of the function t 7−→ M(x, y, t), we immediately deduce

that M(x, y, t) = limn M(xn, yn, tn). Therefore M is continuous for TM i ×
TM i × TE.

Lemma 6.3. Let (X,M, ∗) be a GV-fuzzy quasi-metric space. Then, for

each a ∈ X, B ∈ Ki
0(X) and t > 0, there is b0 ∈ B such that

M(a,B, t) = M(a, b0, t).

Proof. Let a ∈ X, B ∈ Ki
0(X) and t > 0. By Proposition 6.3, the function

y 7−→ M(a, y, t) is continuous on X for TM i . Thus, by compactness of B,

there exists b0 ∈ B such that supb∈B M(a, b, t) = M(a, b0, t), i.e., M(a,B, t) =

M(a, b0, t).

Lemma 6.4. Let (X,M, ∗) be a GV-fuzzy quasi-metric space. Then, for

each a ∈ X and B ∈ Ki
0(X) the function

t 7−→ M(a,B, t)

is continuous on (0,∞).

Proof. Since M(a,B, t) = supb∈B M(a, b, t) and for each b ∈ B the function

t 7−→ M(a, b, t) is continuous on (0,∞), it follows that the function t 7−→
M(a,B, t) is lower semicontinuous on (0,∞).

We shall prove that t 7−→ M(a,B, t) is upper semicontinuous on (0,∞).

To this end, let t > 0 and let {tn}n∈N be a sequence in (0,∞) that converges

to t. By Lemma 6.3, for each n ∈ N there is bn ∈ B such that M(a,B, tn) =
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M(a, bn, tn). Since B ∈ Ki
0(X), there exists a subsequence {bnk

}k∈N of {bn}n∈N
and a point b0 ∈ B such that bnk

→ b0 in (X,M i, ∗). Hence limk M(a, bnk
, tnk

) =

M(a, b0, t), by Proposition 6.3, and thus

lim
k

M(a,B, tnk
) = M(a, b0, t) ≤ M(a,B, t).

Consequently, the function t 7−→ M(a,B, t) is upper semicontinuous on

(0,∞). This concludes the proof.

Lemma 6.5. Let (X,M, ∗) be a GV-fuzzy quasi-metric space. Then, for

each A ∈ Ki
0(X), B ∈ P0(X) and t > 0, there is a0 ∈ A such that

inf
a∈A

M(a,B, t) = M(a0, B, t).

Proof. Put α = infa∈A M(a,B, t). Then, there is a sequence {an}n∈N in A

such that α+1/n > M(an, B, t) for all n ∈ N. Since A ∈ Ki
0(X), there exists

a subsequence {ank
}k∈N of {an}n∈N and a point a0 ∈ A such that ank

→ a0

in (X, M i, ∗).

Choose an arbitrary b ∈ B. By Proposition 6.3, limk M(ank
, b, t) = M(a0, b, t).

Since for each k ∈ N, α + 1/nk > M(ank
, b, t), it follows, taking limits when

k →∞, that α ≥ M(a0, b, t). We conclude that α = M(a0, B, t).

From Lemmas 6.3 and 6.5 we immediately deduce the following.

Corollary 6.3. Let (X, M, ∗) be a GV-fuzzy quasi-metric space and let A,B ∈
Ki

0(X) and t > 0. Then there exist a0 ∈ A and b− 0 ∈ B such that

inf
a∈A

M(a,B, t) = M(a0, b0, t).
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Proposition 6.4. Let (X, M, ∗) be a GV-fuzzy quasi-metric space. Then,

for each A,B ∈ Ki
0(X) the function

t 7−→ inf
a∈A

M(a,B, t)

is continuous on (0,∞).

Proof. By Lemma 6.4, the function t 7−→ M(a,B, t) is continuous on (0,∞).

Hence, the function t 7−→ infa∈A M(a,B, t) is upper semicontinuous on

(0,∞).

We shall prove that t 7−→ infa∈A M(a, B, t) is lower semicontinuous on

(0,∞). To this end, let t > 0 and let {tn}n∈N be a sequence in (0,∞) that

converges to t. By Lemma 6.5, for each n ∈ N there is an ∈ A such that

M(an, B, tn) = infa∈A M(a,B, tn). Since A ∈ Ki
0(X), there exists a subse-

quence {ank
}k∈N of {an}n∈N and a point a0 ∈ A such that ank

→ a0 in

(X, M i, ∗). Then, by Lemma 6.3, there is b0 ∈ B such that M(a0, b0, t) =

M(a0, B, t), and thus limk M(ank
, b0, tnk

) = M(a0, b0, t), by Proposition 6.3.

Therefore, given ε > 0 there exists k0 ∈ N such that for each k ≥ k0,

M(a0, b0, t) < ε + M(ank
, b0, tnk

). So

inf
a∈A

M(a,B, t) ≤ M(a0, b0, t) < ε + M(ank
, B, tnk

) = ε + inf
a∈A

M(a, B, tnk
),

for all k ≥ k0. Consequently, the function t 7−→ infa∈A M(a,B, t) is lower

semicontinuous on (0,∞). This concludes the proof.

Remark 6.3. Note that Proposition 6.4 also shows that for A,B ∈ Ki
0(X)

the function t 7−→ infb∈B M(A, b, t) is continuous on (0,∞).

Now let (X, M, ∗) be a GV-fuzzy quasi-metric and let (HM , ∗) be the

Hausdorff fuzzy quasi-pseudo-metric on P0(X) constructed in Section 6.3.
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In order to prove that (HM , ∗) is actually a GV-fuzzy quasi-pseudo-metric

on Ki
0(X), we first show that for each A,B ∈ Ki

0(X) and t > 0, we have

H−
M(A,B, t) = inf

a∈A
M(a,B, t).

Indeed, since

H−
M(A,B, t) = sup

0<s<t
inf
a∈A

M(a,B, s),

there exists an increasing sequence {sn}n∈N convergent to t such that

H−
M(A,B, t) = lim

n
inf
a∈A

M(a,B, sn).

So, by Proposition 6.4, H−
M(A,B, t) = infa∈A M(a,B, t).

Similarly, we obtain that

H+
M(A,B, t) = inf

b∈B
M(A, b, t).

Thus

HM(A,B, t) = min{ inf
a∈A

M(a,B, t), inf
b∈B

M(A, b, t)},
for all A, B ∈ Ki

0(X) and t > 0.

Since (M, ∗) is a GV-fuzzy quasi-metric, it follows from Lemma 6.5 that

H−
M(A,B, t) > 0 and H+

M(A,B, t) > 0, so HM(A,B, t) > 0 for all A,B ∈
Ki

0(X) and t > 0. Hence (HM , ∗) satisfies condition (i) of the definition of a

GV-fuzzy quasi-pseudo-metric.

It is also clear that HM(A,A, t) = 1 for all A ∈ Ki
0 and all t > 0.

Moreover, for each A,B, C ∈ Ki
0 and t, s ≥ 0, we have, by Lemma 6.2 (2a)

and (2b) that HM(A,C, t + s) ≥ HM(A,B, t) ∗HM(B,C, s).

Finally, given A,B ∈ Ki
0(X), continuity of HM(A,B, ) : (0,∞) → (0, 1]

is an immediate consequence of Proposition 6.4 and Remark 6.3.
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Thus, we have shown the following:

Theorem 6.8. Let (X, M, ∗) be a GV-fuzzy quasi-metric space. Then (HM , ∗)
is a GV-fuzzy quasi-pseudo-metric on Ki

0(X). Furthermore, we have

HM(A,B, t) = min{ inf
a∈A

M(a,B, t), inf
b∈B

M(A, b, t)},

for all A,B ∈ Ki
0(X) and t > 0.
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6.6 A fuzzy approach to the domain of words

In this section we apply the results obtained in the preceding sections to

modeling a typical example of theoretical computer science from a fuzzy

quasi-metric point of view. This will be done with the help of the parameter

t which provides a useful additional ingredient to construct such models.

Let us recall that the domain of words Σ∞ ([61, 76, 88, 107, 115, 128,

etc]) consists of all finite and infinite sequences (“words”) over a nonempty

set (“alphabet”) Σ, ordered by the so-called information order v on Σ∞ ([23,

Example 1.6]), i.e., x v y ⇔ x is a prefix of y, where we assume that the

empty sequence φ is an element of Σ∞. If x v y with x 6= y, we shall write

x @ y.

For each x, y ∈ Σ∞ denote by x u y the longest common prefix of x and

y, and for each x ∈ Σ∞ denote by `(x) the length of x. Thus `(x) ∈ [1,∞]

whenever x 6= φ, and `(φ) = 0.

In theory of computation the fact that x v y is interpreted as the element

y contains all the information provided by x, and thus the partially defined

objects (finite words) customary represent stages of a computational process

for which the totally defined objects (infinite words) contain exactly the

amount of information provided by

Given a nonempty alphabet Σ, Smyth introduced in [128] a quasi-metric

dv on Σ∞ given by dv(x, y) = 0 if x v y, and d(x, y) = 2−`(xuy) otherwise

(see also [61, 96, 104, etc]).

This quasi-metric has the advantage that its specialization order coincides

with the order v, and thus the quasi-metric space (Σ∞, d) the information
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provided by v (compare Remark 1). Moreover, the metric (dv)s is given by

(dv)s(x, y) = 0 if x = y, and (dv)s(x, y) = 2−`(xuy) otherwise; so that (dv)s

is exactly the celebrated Baire metric on Σ∞.

However, the quasi-metric dv is unable to give us information on the

degree of approximation to a word z from two different prefixes x, y of z.

For instance, if we consider the totally defined object π and the partially

defined ones x = 3.14 and y = 3.141, then it is clear that y contains more

information on π than x, but dv(x, π) = dv(y, π) = 0, so dv is not sensitive

to this amount of information.

Motivated by this fact, we shall construct a fuzzy quasi-metric on Σ∞

that preserves the advantages of dv and that, in addition, permits us to

measure, with the help of the parameter t, the degree of approximation to a

given word of each of its prefix. Finally, we shall apply this construction to

measure, in some representative cases, (fuzzy) distances between elements of

P0(Σ
∞) via the Hausdorff fuzzy quasi-(pseudo-)metric.

Define a fuzzy set M in Σ∞ × Σ∞ × [0,∞) by

M(x, y, 0) = 0 for all x, y ∈ Σ∞,

M(x, x, t) = 1 for all x ∈ Σ∞ and t > 0,

M(x, y, t) = 1 if x @ y and t > 2−`(x),

M(x, y, t) = 1− 2`(xuy) otherwise.

We wish to show that (M,∧) is a fuzzy quasi-metric on Σ∞. To this end

we only prove that for each x, y, z ∈ Σ∞ and t, s ≥ 0, one has M(x, z, t+s) ≥
M(x, y, t) ∧ M(y, z, s), because the rest of conditions in the definition of a

fuzzy quasi-metric are obviously true.
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Indeed, if M(x, z, t + s) = 1, the conclusion is obvious. Assume now that

M(x, z, t + s) = 1− 2−`(xuz). We distinguish two cases: (a) x is a prefix of z;

(b) x is not a prefixes of z. In case (a) we have M(x, z, t + s) = 1 − 2−`(x)

and t + s ≤ 2−`(x), and thus M(x, y, t) = 1 − 2−`(xuy) because t ≤ 2−`(x).

Since `(x) ≥ `(x u y), it follows that M(x, z, t + s) ≥ M(x, y, t). In case (b)

we have M(x, z, t+ s) = 1− 2−`(xuz), and the conclusion follows immediately

from the well-known facts that for each x, y, z ∈ Σ∞, one has: (i) `(x u z) ≥
min{`(x u y), `(y u z)}, and (ii) `(x u z) = `(y u z) whenever x is a prefix of

y but not a prefix of z.

We conclude that (M,∧) is a fuzzy quasi-metric on Σ∞.

Now, observe that if x, y are prefix of z, with x 6= y, and one obtains for

some t0 > 0, M(x, z, t0) > 1 and M(y, z, t0) = 1, then 2−`(y) < t0 ≤ 2−`(x), so

that `(x) ≤ `(y), i.e., x @ y; which shows that y is a better approximation

to z than x.

Then, for each z ∈ Σ∞\{φ}, and each x @ y we can define the degree of

approximation of x to z, associated to (M,∧), as the number DA(x, z) = 1/tx

where tx = inf{t > 0 : M(x, z, t) = 1}. It is clear that DA(x, z) = 2`(x).

In particular, for x = 3.14 and y = 3.141 as given above, one obtains for

each t ∈]2−4, 2−3], M(x, π, t) < 1 and M(y, π, t) = 1, which agrees with the

fact that y contains more information on π than x. Furthermore DA(x, π) =

23 and DA(y, π) = 24, which provides reasonable (and desirable) values on

the degree of approximation of x and y to π, respectively.

Finally, we apply this approach to compute the distance between some

interesting subsets of P0(Σ
∞) via the lower and upper Hausdorff fuzzy quasi-

pseudo-metrics of (Σ∞,M,∧).

Let z ∈ Σ∞ such that `(z) = ∞ and x be a prefix of z different from z,
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i.e., x @ z. Put x→ = {y ∈ Σ∞ : x v y @ z}. Since z ∈ x→M ∩ x→M−1
, it

follows from Lemma 6.2 (1a), (1b), that for each t > 0,

H−
M({z}, x→, t) = H+

M(x→, {z}, t) = 1.

Therefore (compare Remark 6.1), one has {z} ≤H−
M

x→ and x→ ≤H+
M

{z}. The second relation is not a surprise because it can be computationally

interpreted as that z contains at least the same amount of information of z

than x→. However, the first relation seems certainly interesting because it

can be computationally interpreted as that x→ contains at least the same

amount of information of z than z, which is true because actually x→ has

exactly the same amount of information of z than z.

Furthermore, it is easy to see that

H−
M(x→, {z}, t) = 1 ⇐⇒ t > 2−`(x),

so that HM(x→, {z}, t) = 1 ⇐⇒ t > 2−`(x).
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[22] Á. Császár, Strongly complete, supercomplete and ultracomplete spaces,

Mathematical Structures-Computational Mathematics-Mathematical

Modelling, Papers dedicated to Prof. L. Iliev’s 60th Anniversary, Sofia,

1975, 195–202.

[23] B.A. Davey and H.A. Priestley, Introduction to lattices and order, Cam-

bridge Univ. Press 1990.

[24] J. Deák, A bitopological view of quasi-uniform completeness, I, Studia

Sci. Math. Hungar. 30 (1995), 389–409; II 30 (1995), 411-431; 31

(1996), 385–404.

[25] A. Di Concilio, G. Gerla, Quasi-metric spaces and point-free geometry,

Math. Struct. Comput. Sci. 16 (2006), 115–137.

[26] D. Doitchinov, On completeness in quasi-metric spaces, Topology Appl.

30 (1988), 127–148.

[27] D. Doitchinov, On completeness of quasi-uniform spaces, C.R. Acad.

Bulg. Sci. (7) 41 (1988), 5–8.

[28] E.P. Dolzhenko and E.A. Sevast’yanov, Sign-sensitive approsimations,

the space of sign-sensitive weights. The rigidity and the freedom of a

system, Russian Acad. Sci. Dokl. Math., 48 (1994), 397–401.

[29] G.A. Edgar, Measure, Topology and Fractal Geometry, Springer, Ber-

lin, New York, 1992.



120 Bibliography

[30] R.J. Egbert, Products and quotients of probabilistic metric spaces, Pa-

cific J. Math. 24 (1968), 437–455.

[31] R. Engelking, General Topology, Polish. Sci. Publ., Warsaw, 1977.

[32] M. A. Erceg, Metric spaces and fuzzy set theory, J. Math. Anal. Appl.

69 (1979), 205–230.

[33] A. Fedeli, On chaotic set-valued discrete dynamical systems, Chaos,

Solitons and Fractals, 23 (2005), 1381–1384.

[34] P. Flecher and W. Hunsaker, Completeness using pairs of filters, To-

pology Appl. 44 (1992), 149–155.

[35] P. Fletcher and W. F. Lindgren, On quasi-uniform spaces, Marcel Dek-

ker, New York, (1982).
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[39] L.M. Garćıa-Raffi, S. Romaguera and E.A. Sánchez-Pérez, The dual

space of an asymmetric normed linear space, Quaestiones Math. 26

(2003), 83–96.
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[82] C. Mustăta, On the extremal semi-Lipschitz functions, Ann. Numer.

Theory Approx. 31 (2002), 103–108.
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