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Vera s/n, 46022 Valencia, Spain

(Received 12 February 2011; accepted 10 May 2011; published online 6 July 2011)

The physical properties of a periodic distribution of absorbent resonators is used in this work to

design a tunable wideband bandstop acoustic filter. Analytical and numerical simulations as well as

experimental validations show that the control of the resonances and the absorption of the

scatterers along with their periodic arrangement in air introduce high technological possibilities to

control noise. Sound manipulation is perhaps the most obvious application of the structures

presented in this work. We apply this methodology to develop a device as an alternative to the

conventional acoustic barriers with several properties from the acoustical point of view but also

with additional esthetic and constructive characteristics. VC 2011 American Institute of Physics.

[doi:10.1063/1.3599886]

I. INTRODUCTION

The interesting propagation properties of electromag-

netic waves inside an inhomogeneous medium with periodic

modulation of its dielectric properties, were simultaneously

emphasized by Yablonovitch1 and John.2 These periodic sys-

tems exhibit ranges of frequencies, related to the periodicity

of the structure, where there is no wave propagation. In anal-

ogy with the electronic bandgap in semiconductor crystals,

these ranges of frequencies were called bandgaps (BGs).

Motivated by these results, an increasing interest in the

comparable process of acoustic wave propagation in inhomo-

geneous periodic acoustic medium appeared. Several theo-

retical works started the analysis of periodic arrays made of

isotropic solids embedded in an elastic background which

was also isotropic.3,4 By analogy with the electromagnetic

case, these periodic arrangements present BGs for elastic

waves and they were called phononic crystals (PCs). It is

said that if one of the elastic materials in the PCs is a fluid

medium, then PCs are called sonic crystals (SCs). Several

studies discuss the similarities and differences between

them.5,6 Since the acoustical properties of SCs were meas-

ured in a minimalist sculpture,7 much research interest, both

experimental and theoretical, has been focused on the exis-

tence of complete elastic/acoustic BGs, opening possibilities

to interesting applications such as elastic/acoustic filters,

noise control, improvements in the design of transducers, as

well as for the study of pure physics phenomena.

The possibility to manipulate the sound by means of

SCs motivated the idea of using these periodic acoustic

media as attenuation devices as, for example, an alternative

to noise barriers.8 However, from the acoustical point of

view, the mere existence of the BGs is not sufficient to use

SCs as noise barriers because both the size and position of

these BGs depend on several factors such as the angle of

incidence of the wave or the arrangement of the scatterers.

To avoid these problems, some strategies to increase the

acoustical properties of SCs have been developed in the last

few years. First, some authors have studied new and more ef-

ficient arrangements of scatterers out of the classical crystal-

line ones, such as quasicrystals,9 quasiordered structures10,11

or quasifractal arrangements.12 Another strategy is the use of

scatterers with additional properties. This last one can reduce

the angular dependence of the attenuation achieved by the

periodic arrangement and increases both the level and the

range of the attenuated frequencies. In this sense, some

authors have designed rigid scatterers combined with absorb-

ent materials in which both the multiple scattering and the

absorption effects appear in the periodic arrangement.13

Moreover the study of SCs built with scatterers with resonant

effects has been done, obtaining good results especially at

frequencies below the BGs.14,15 Several works have been

very recently developed mixing these effects in order to

increase the properties of the SCs as noise barriers.16,17

In this work we present a wideband bandstop acoustic fil-

ter for the range of the audible frequencies based on the com-

bination of scattering, resonances and absorption in a 2D

periodic array of scatterers in air. The building blocks of these

systems are scatterers made of a combination of rigid, absorb-

ent, and resonant cavities. Figure 1(a) shows the transversal

section of the scatterer considered in this work. A cylindrical

rigid wall is covered by a porous material. A slit is made all

along the cylinder in such a way the shape of the scatterer

presents a resonant cavity, thus these scatterers are based on

the concept of split ring resonator (SRR) introduced by Pendry

et al. in 1999 (Ref. 18) in the context of the electromagnetism.

The square periodicity of the 2D system is shown in Fig.

1(b). This SC is characterized by two parameters: the lattice
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constant a, separation between scatterers, and the filling fraction

ff, the volume occupied by the scatterers in the SC. For this pe-

riodicity, the main directions of symmetry are CX (0�) and CM
(45�). In this system, the periodic distribution of the rigid prop-

erties of the scatterers leads to the phenomenon of the BG, the

absorbent material of each scatterer gives a threshold of attenu-

ation in the audible frequencies, and finally the resonant cav-

ities introduce attenuation in relation with the resonances. But

all these effects can be fitted by introducing high technology

procedures in the design of devices to control the noise. We

have progressively studied both theoretically and experimen-

tally the acoustic effect of each component of the scatterer on

the frequency response of the whole system. From the theoreti-

cal point of view we analyze the effect of each phenomenon by

means of several theoretical and numerical techniques.

Thus, the infinite periodic distribution of an array of

rigid scatterers is analyzed by means of the dispersion rela-

tion using the plane wave expansion (PWE) method. This

method uses the periodicity of the system and the Bloch the-

orem to solve the wave equation, obtaining a simple eigen-

value problem relating to the wave vector and the frequency

of the incident wave. PWE allows us to understand the trans-

mission properties of the wave inside the crystalline systems.

However, in the real situations the finite sample effects have

to be taken into account. In this sense, the multiple scattering

theory (MST) is introduced as a methodology to study the

scattering in a finite distribution of cylindrical scatterers. The

methodology is developed and used for two cases, rigid and

absorbent scatterers, in order to compare and separate the

contributions of both the absorbent material and the effect of

the periodicity of the array in the total attenuation obtained.

The results are compared with those obtained using PWE.

The case of the resonant effect, due to the complexity of the

shape of the scatterers because of the existence of the split

all along the cylinders, has been analyzed numerically using

the finite elements method (FEM). The combined effect of

scattering, resonances and absorption in the definitive SC de-

vice is studied both numerically and experimentally. Finally,

the main applications of such a structures and the main con-

clusions of the work are summarized in the last sections.

II. THEORETICAL METHODS

A wide range of mathematical techniques are now avail-

able for the resolution of problems involving the interaction

of waves with arrays of scatterers. This section draws to-

gether the methods used in this work: PWE, MST, and FEM.

In order to show the main results obtained by each theo-

retical method explained in this section, we have applied

them to study the propagation properties of a SC made of

rigid or absorbent cylindrical scatterers with r ¼ 0:1 m, simi-

lar to that shown in Fig. 1(a) but with L¼ 0. These scatterers

are arranged in a square array with a ¼ 0:33 m. The filling

fraction of the array is ff ¼ pr2=a2 ¼ 0:2885 (28.85%). This

preliminary study allow us to understand the acoustic proper-

ties of the definitive designed device.

Propagation of sound is described by the equation

1

qc2

@2p

@t2
¼ r 1

q
rp

� �
; (1)

where c is the sound velocity, q is the density of the medium,

and p is the pressure. In this work we consider harmonic

temporal dependence to solve for both scattering and eigen-

value problems.

A. Eigenvalue problem: Dispersion relation

The dispersion relation of a 2D SC made of rigid cylin-

drical scatterers can be obtained by means of the solution of

the eigenvalue problem using the PWE. These bands struc-

tures are a good representation to understand the dispersion

of waves inside such crystalline systems. This method is

valid only for infinite periodic crystals.

In analogy to electron waves in a crystal, waves trans-

mission inside periodic systems should be described using

the bands theory. This idea was first introduced in 1987

(Refs. 1, 2) and then the concepts of Bloch waves, dispersion

relations, Brillouin zones and so on, can be applied to the

case of all kind of periodic systems: photonic, phononic and

sonic crystals.6,19–21 Very recent works have shown exten-

sions of the PWE to solve the inverse complex value prob-

lem kðxÞ (Refs. 22, 23, 27) as well as to introduce effects of

damping in the calculation of the dispersion relation.24–26

1. Plane wave expansion (PWE)

In this section, an array of straight, infinite cylinders

made of an isotropic solid A, embedded in an acoustic iso-

tropic background B has been considered. There is transla-

tional invariance in the direction z parallel to the cylinders

and the system has 2D periodicity in the transverse plane.

Thus, this assumption implies an infinite medium in order to

obtain its propagation properties. By using this periodicity, it

is possible to expand the properties of the medium in Fourier

series,

r ¼ 1

qð~r Þ ¼
X
~G

r~kð~GÞe
ı~G~r; (2)

g ¼ 1

bð~r Þ ¼
X
~G

g~kð~GÞe
ı~G~r; (3)

FIG. 1. (Color online) (a),(b) Schematic view of both the scatterer and the

SC configurations of the device presented. (a) The transversal view of the 1

m long scatterer considered. The inner radius is rint ¼ 0:095 m, the exterior

radius is rext ¼ 0:14 m, the aperture L ¼ 0:02 m, the rigid wall thickness

Dr ¼ 0:005 m and the absorbent covering thickness Da ¼ 0:04 m. (b) The

size of the designed device is 4a� 4a. The scatterers are arranged in a

square array with lattice constant a ¼ 0:33 m. For this square periodicity the

main directions of symmetry of the SC are CX (0�) and CM (45�).
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where ~G is the 2D reciprocal-lattice vector, ~G ¼ ðG1;G2;
G3Þ ¼ ð2pm=a1; 2pn=a2; 0Þ for square periodicity, and

bð~r Þ ¼ qð~r Þcð~r Þ2 is the bulk modulus. The pressure p can

be obtained by applying the Bloch theorem and harmonic

temporal dependence,

pð~r; tÞ ¼ eıð~k~r�xtÞ
X
~G

pkð~GÞeı~G~r: (4)

Using Eqs. (2), (3), (4), and (1) we obtain21

X
~G0

ð~kþ ~GÞrkð~G� ~G0Þð~kþ ~G0Þ�x2g~k ð~G� ~G
0Þ

h i
p~k ð~G

0Þ ¼ 0:

(5)

For ~G taking all the possible values, Eq. (5) constitutes a set

of linear, homogeneous equations for the eigenvectors p~kð~GÞ
and the eigenfrequencies xð~kÞ.

By solving the system given in Eq. (5) for each Bloch

vector in the irreducible area of the first Brillouin, zone the

eigenvalues x2 are obtained, and they can be used to repre-

sent the band structures or dispersion relation xð~k Þ in the

periodic system. Table I shows the directions of incidence,

ranges of ~k, and ranges of phase changes, ~k � ~R1 and ~k � ~R2,

for each of the segments required to traverse the boundary of

the irreducible first Brillouin zone for the square lattice.

In Fig. 2(a) one can observe the bands structure of the

selected SC. For the calculations we have used 841 plane

waves showing a good convergence of the PWE. The fre-

quencies are represented versus the Bloch vector in the first

Brillouin zone which is in relation with the incident direction

of the wave. Each black line represents a propagating band,

i.e., allowed modes inside the periodic structure. Note that

for the CX direction there is a range of frequencies (marked

with horizontal dashed lines) in which there is no propaga-

tion. This forbidden frequency range for a specific incident

direction is known as a pseudogap. In this angle of incidence

and for this frequencies the SC works as an acoustic filter.

2. Finite element methods, bounded problem, rigid
scatterers

For solving the problem using FEM, it is necessary to

define the symmetry, discretize the domain and consider the

boundary conditions. In the boundary of each scatterer both

the continuity of the pressure and the velocity are consid-

ered. As we have explained before, for rigid scatterers we

can use both the Neumann boundary condition and Bloch

theorem due to the translational symmetry. The properties of

the Bloch states constrain the solution to a unit cell with

Bloch vectors in the first Brillouin zone. These features

transform the unit cell in a bounded domain to solve the

problem with the next boundary condition at the borders of

the unit cell,

pð~r þ ~RÞ ¼ pð~rÞeı~k~R; (6)

where k is the Bloch vector and it scans the first irreducible

Brillouin zone (see Table I for square periodicity).

The red circles in Fig. 2(a) show the bands structure pre-

dicted using FEM. The unit cell has been discretized using

15� 103 elements. One can compare the very good agreement

between the FEM results with the ones obtained using PWE.

TABLE I. Directions of incidence, ranges of ~k, and ranges of phase changes
~k � ~R1 and ~k � ~R2, for each of the segments required to traverse the boundary

of the irreducible first Brillouin zone for square lattice.

Square lattice

Direction ~k ~k � ~R1
~k � ~R2

CX ½ð0; 0Þð0;p=aÞ� ½0;p=a� ½0; 0�
XM ½ðp=a; 0Þðp=a;p=aÞ� ½p=a;p=a� ½0;p=a�
MC ½ðp=a; p=aÞð0; 0Þ� ½p=a; 0� ½p=a; 0�

FIG. 2. (Color online) Theoretical propagation properties of a SC made of rigid or absorbent scatters obtained with the three methods used in this work. (a)

Bands structure (or dispersion relation) of a SC made of rigid scatterers with a ¼ 0:33 m and r ¼ 0:1 m. Black lines represent the analytical predictions calcu-

lated using PWE. Red dots show the numerical predictions calculated using FEM. Horizontal dashed lines represent a pseudogap. (b) and (c): corresponding

scattering problem calculated for a SC of size 4a� 4a made of rigid or absorbent scatterers, respectively. The SC is placed at 0.4 m from the source and cen-

tered with respect to the source-receiver line. The site of the receiver is ð2:49; 0Þ m. Blue continuous line (blue dots) represents the attenuation spectrum for

the CX direction predicted by MST (FEM). Red dashed line (red open circles) represents the attenuation spectrum for the CM direction predicted by MST

(FEM).
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B. Scattering problem

1. Multiple scattering theory (MST)

In real situations the finite sample effects have to be

taken into account. Multiple scattering Theory gives the pos-

sibility to study the scattering problem in these finite struc-

tures. Motivated by the work of Tournat et al.,28 in which

scatterers with a mesoscopic scale much larger than the mi-

croscopic scale are placed in a porous medium as host mate-

rial, we briefly present here the multiple scattering of a 2D

array of scatterers made of a rigid core covered with a layer

of absorbing materials. The inner rigid core is a cylinder

with radius rin, and the covering of the absorbing material

has a thickness t, so that the external radius is rext ¼ rin þ t.
Other works13 show similar methodology as in this section.

Absorbing materials usually present a complex imped-

ance, ZcðxÞ, and complex propagation constant, kcðxÞ, both

being frequency dependent. Therefore we will consider two

different boundary conditions: one corresponding to the rigid

core and the other across the interface between the absorbing

covering of the scatterer and the surrounding medium. The

formalism developed in this section shows a general proce-

dure, independently from the expressions of Zc and kc used

to model the absorbing material. The porous material will be

described by means of the Delany–Bazely model, then

Zcð�Þ ¼ 1þ 0:0571
q0�

R

� �0:754

�ı0:087
q0�

R

� ��0:732

; (7)

kcð�Þ ¼ k0 1þ 0:0928
q0�

R

� ��0:7

þı0:189
q0�

R

� ��0:597
� �

; (8)

where q0, c0 represent the density and the sound velocity of

the air, respectively; k0 is the wave number of the wave prop-

agating in air; R is the flow resistivity; and � is the frequency

of sound (x ¼ 2p�). Here R¼ 23 000 Pa s m�2 corresponds

to the woolen felt covering. In order to avoid nonphysical

results the signs of the imaginary part of Zc and kc have been

properly selected. This improves the results shown in previ-

ous works.13 This model presents some ranges of applicabil-

ity dependent on both the resistivity of flow and the

frequency. For the range of values of these parameters, the

Delany–Bazley model works properly in the range of fre-

quencies 186 < � < 18700 Hz, which is basically the range

of frequencies in the audible range (20–22 000 Hz).

An acoustic source transmitting white noise is placed at

point~rs, located at some distance from the system of scatter-

ers. For the sake of simplicity, without compromising gener-

ality, we approximate the acoustic source as a line source

located at origin, i.e., ~rs ¼~0. The acoustic wave emitted by

such a source follows the equation in cylindrical coordinates:

P0ð~rÞ ¼ ıpH0ðkrÞ; (9)

where H0 is the zeroth order Hankel function of the first

kind. The solution represents a line source located at origin.

We consider N straight scatterers located at ~ri ¼ ðri; hiÞ
with i ¼ 1; 2;…;N to form either a regular lattice or a ran-

dom array perpendicular to the x-y plane. The scatterers are

parallel to the z-axis, then since the boundary conditions and

the geometry do not change with z, the problem can be

reduced to two uncoupled problems for the scalar Helmholtz

equation. The final wave reaches a receiver located at~rr and

it is formed by the sum of the direct wave from the source

and the scattered waves from all the scatterers.

The incident wave over ith scatterer at a point ~r outside

the scatterer is

Pi
inð~r Þ ¼

X1
n¼�1

Bi
nJnðkj~r �~rijÞeın/~r�~ri : (10)

On the other hand, the scattered wave produced by the ith
scatterer at a point~r outside the scatterer is

Pi
scð~r;~riÞ ¼

X1
n¼�1

ıpAi
nHð1Þn ðkj~r �~rijÞeın/~r�~ri ; (11)

where Hn is the nth order Hankel function of the first kind,

and Jn is the nth order Bessel function of the first kind.

The wave transmitted within the absorbing material of

the ith scatterer at a point~r inside the absorbing layer is

Pi
intð~r;~riÞ ¼

X1
n¼�1

Ai
n Xi

nHð1Þn ðkcðxÞj~r �~rijÞ
n

þYi
nJn kcðxÞj~r �~rijð Þeın/~r�~ri ; (12)

where Xi
n and Yi

n are two coefficients to be calculated later

with appropriate boundary conditions. Then, the external wave

outside the ith scatterer at a point~r outside the scatterer is

Pextð~r;~riÞ¼
X1

n¼�1
Bi

nJnðkj~r�~rijÞþ ıpAi
nHð1Þn ðkj~r�~rijÞ

h i
eın/~r�~ri :

(13)

Due to the scatterers considered in this Section, the problem

presents two different kinds of boundary conditions. In the

walls of the rigid core, one can consider Neumann boundary

conditions. However, in the absorbing material-host medium

interface, one should consider the continuity of the pressure

and the velocity. Thus, the boundary condition in the rigid

wall, Ci, inside ith scatterer is

@Pi
int

@n
jCi
¼ 0 (14)

and the boundary conditions in the external interface, Xi, of

the scatterer are

pi
extj@Xi

¼ pi
intj@Xi

; (15)

ZcðxÞkcðxÞ
k0

@pext

@n
j@Xi
¼ @pint

@n
j@Xi

; (16)

where @Xi is the boundary of the ith scatterer, k0 is the wave

number in the host medium, kcðxÞ and ZcðxÞ are the propa-

gation constant and the impedance of the absorbing material

of the scatterer i.
By applying the boundary condition [Eq. (14)] in Ci, we

can obtain a simple relation between coefficients Xi
n and Yi

n:
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Yi
n ¼ Xi

nTi
n; (17)

Ti
n ¼ �

H0n kcðxÞri
in

� 	
J0n kcðxÞri

in

� 	 ; (18)

where the prime as superscript represents the derivative with

respect to the normal of the surface

Finally, applying the boundary condition [Eq. (16)] at

the @Xi interfaces, we get

Bi
n ¼ ıpZi

nAi
n; (19)

where

Zi
n ¼ �

f ðxÞH0nðkri
outÞ � Hnðkri

outÞ
f ðxÞJ0nðkri

outÞ � Jnðkri
outÞ

;

f ðxÞ ¼ ZcðxÞkcðxÞ
k

;

(20)

Hn kcðxÞri
out

� 	
þ Ti

nJn kcðxÞri
out

� 	
H0n kcðxÞri

out

� 	
þ Ti

nJ0n kcðxÞri
out

� 	 : (21)

Note that the previous equations also reproduce the case of

rigid scatterers. If the absorbing cover is not considered, then

rout ¼ rin, ZcðxÞ ¼ 1, and kcðxÞ ¼ k and the equations

obtained are the same as the ones previously obtained by

several authors.29

The attenuation spectrum of an arrangement of scatter-

ers is obtained by the representation of the insertion loss (IL)

which is the difference between the sound level recorded

with and without the sample. Note that throughout this work

the IL is calculated as

IL ¼ 20 log10

jP0j
jPj ; (22)

where P is calculated as

Pð~r Þ ¼ ıpH0ðkrÞ

þ
XN

i¼1

X1
n¼�1

ıpAi
nHð1Þn ðkj~r �~rijÞeın/~r�~ri ;

(23)

N being the total number of scatterers

Figures 2(b) and 2(c) show the MST predictions for the

SC defined above and for the case of rigid and absorbing

scatterers. The blue continuous line represents the attenua-

tion spectrum for the CX direction and red dashed line rep-

resents the attenuation spectrum for the CM direction. For

the case of the rigid scatterers one can see the effect of the

periodicity of the structure: The blue line shows the pseudo-

gap in the CX direction between 350 and 630 Hz. This pseu-

dogap disappears for the CM direction. These results are in

completely agreement with the predictions of PWE shown

in Fig. 2(a). In this structure only the scattering due to the

rigidity of the scatterers is playing a role in the attenuation

process producing a low and angle dependent attenuation

level. In the case of the absorbent scatterers one can observe

the acoustic effect of the absorbent material: the average of

the IL increases in the whole range of the considered

frequencies.

2. Finite element methods: Unbounded problem

Considering the wave propagation in free space

(unbounded acoustic domain) the assumption that no waves

are reflected from infinity is taken. This is known as the

Sommerfeld condition. The solutions of exterior Helmholtz

problems that satisfy the Sommerfeld conditions are called

radiating solutions. Using FEM it is only possible to obtain

some approximation of the radiating solutions in

unbounded domains by applying some artificial boundaries

in the numerical domain. Several techniques can be used

for this purpose.30 One of them, the perfectly matched

layers (PML) technique, will be briefly presented in this

section.

The PML method was introduced by Berenger31 and it is

an efficient alternative for emulating the Sommerfeld radia-

tion condition in the numerical solution of wave radiation and

scattering problems. The method was immediately applied to

different cases based on the scalar Helmholtz equation:32

acoustics,33 elasticity,34 poroelastic media,35 shallow water

waves,36 other hyperbolic problems,37 etc. Here, the interest

is focused on the wave propagation time-harmonic scattering

problems in linear acoustics, i.e., on the scalar Helmholtz

equation.

PML consists of a coordinate transformation.38 The

transformation is a scaling to complex coordinates so that

the new medium becomes selectively dissipative in the direc-

tion perpendicular to the interface between the PML and the

physical domain. In this work, the PML domain absorbs

waves in the coordinate direction d following the next coor-

dinate transformation inside the PML:

d0 ¼ sgnðd � d0Þjd � d0jn
L

dDn
ð1� ıÞ; (24)

where L is the scaled PML width, d0 is the coordinate of the

inner PML boundary, the width of the PML is D, and n is the

scaling exponent. This coordinate transformation is provided

in COMSOL 3.5.

In practice, since the PML have to be truncated at a fi-

nite distance of the domain of interest, its external boundary

produces artificial reflections. Theoretically, these reflec-

tions have minor importance due to the exponential decay

of the acoustic waves inside the PML. In fact, for Helmholtz-

type scattering problems, it was proven that the approxi-

mate solution obtained using the PML method exponen-

tially converges to the exact solution in the computational

domain as the thickness of the layer goes to infinity.39 This

result was generalized using techniques based on the pole

condition.40

Figures 2(b) and 2(c) show the FEM predictions for the

considered SC made of rigid or absorbing scatterers respec-

tively. For the FEM calculations a point source has been con-

sidered and the insertion loss has been calculated following

Eq. (22). The solution domain has been discretized using

3:5� 105 elements. Blue dots (red open circles) represent

the attenuation spectrum for the CX (CM) direction. The
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difference to the results obtained with MST at high frequen-

cies could be due to the low number of elements in the mesh

of FEM.

III. LABORATORY EXPERIMENT

All the experimental results shown in this work have

been measured under controlled conditions in an anechoic

chamber. A picture of the designed definite scatterers and a

scheme of the anechoic chamber are shown in Fig. 3. In Fig.

3(b) pictures of both the periodic array of these scatterers

and of the robotized acquisition hardware are also shown.

All the acoustic measurements were received in a prepo-

larized free-field microphone 1/2 in. type 4189 B&K. This

microphone is controlled by a 3D Robotized e-Acoustic Mea-

surement System (3DReAMS), which is a Cartesian robot with

three axes (X, Y, Z) installed in the ceiling of the anechoic

chamber. The robot was designed to sweep the microphone

through a 3D grid of measuring points located at any trajectory

inside the echo-free chamber. The robot includes a rotatory

column installed on the ceiling of the anechoic chamber, where

the periodic arrays are hung in a frame.

The National Instruments cards PCI-4474 and NI PCI-

7334 were used together with the Sound and Vibration Tool-

kit and the Order Analysis Toolkit for LABVIEW for both the

data acquisition and the motion of the robot. Once the robo-

tized system is turned off and the acoustic source and the

microphone are turned on, the microphone acquires the tem-

poral signal. From this temporal signal, one can obtain the

power spectra, the frequency response or the sound-level

measurement.

IV. RESULTS AND DISCUSSION

Recently some authors have specifically constructed

acoustic applications using split ring resonators (SRRs)15

motivated by the fact that these devices introduce ranges of

frequencies related to the resonant frequency where waves

cannot propagate through the system.14 Although authors

have usually considered the SRRs as 2D Helmholtz resona-

tors, this approximation needs some special geometrical

restrictions.41 The thickness of the walls or both the length

and the aperture of the neck of the resonator have to follow

some approximations to be considered as a Helmholtz reso-

nator. Otherwise, one should solve the scattering problem of

the isolated resonator in order to know the resonant fre-

quency of the SRRs, as we have done in this work. So, once

the resonant frequency of the SRRs is known, they could be

used to create periodic arrays with attenuation bands due to

resonance in the range of frequencies below the BG of the

array, i.e., in the range of low frequencies. Thus, the reso-

nance mechanism is used in our devices to create attenuation

peaks in the most difficult range of frequencies, adding to

both the scattering and the absorption effects.

In this section, we analyze first the propagating proper-

ties of square periodic arrays (a ¼ 0:33 m) of rigid SRRs

(RSRRs) in order to analyze the behavior of the resonances in

a periodic system, and afterwards we will analyze the com-

bined effect scattering-resonances-absorption with absorbing

SRRs (ASRRs). The size of the finite structures considered

here is 4a� 4a and the source is placed at the origin of coor-

dinates. The SC has been placed symmetrically to the source-

receiver line 1.5 m away from the source. The IL has been

calculated at a point located 3 m from the origin of coordi-

nates in the direction of wave propagation. The numerical

predictions have been tested using experimental measure-

ments. The RSRRs for the experimental setup have been con-

structed from split ring tubes of PVC (rigid) cylinders.

A. Rigid split ring resonators (RSRR)

The RSRRs analyzed in this section have been designed

with the following parameters: external radius r ¼ 0:1 m, inner

radius r ¼ 0:095 m, and aperture width L ¼ 0:02 m. First, we

have analyzed the scattering problem of an isolated RSRR in

order to observe the behavior of the resonant frequency.

A wave impinging the RSRR from the left is considered,

presenting the RSRR its aperture in this side, as one can see

in the inset of Fig. 4. The IL produced by an isolated RSRR

has been numerically obtained using FEM. Figure 4(a)

shows a clear resonance peak around 220 Hz. The open blue

circles represent the experimental measurements of the IL in

good agreement with the numerical predictions. Also, the

localization of the pressure inside the cavity for this resonant

frequency can be observed in the inset of Fig. 4(b). We note

that, if the usual formula of the 2D Helmholtz resonator42 is

used for the RSRRs presented here, the first resonant mode

should appear at a frequency of 610 Hz, which is far away

from the obtained in our analysis. This fact shows that the

FIG. 3. (Color online) Experimental

setup. (a) Picture of the single designed

scatterer. (b) Scheme of the anechoic

chamber, and pictures of both the experi-

mental device designed and the robo-

tized system 3DReAMS.
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considered RSRR does not behave as a 2D Helmholtz

resonator.

The band structure of the square array formed by the

designed RSRR has also been numerically calculated and

represented in Fig. 4(c). This diagram shows the existence of

an attenuation band in the range of low frequencies (around

220 Hz) due to the resonance effect of the RSRRs, independ-

ent of the BG of the array (centered at 515 Hz). The numeri-

cal IL results are presented in Fig. 4(b) with the blue line

(red dashed line) representing the IL at CX (CM) direction.

The scattering problem reproduces both the first pseudogap

in the CX direction and the resonance of the RSRR. On the

other hand, note that these results predict the nonexistence of

a pseudogap in the CM direction. This fact shows the de-

pendence of the array effects on the incidence direction.

However, one also can see that the resonance effect is inde-

pendent of the incidence direction: both red (45�) and blue

(0�) lines show the same peak at low frequencies.

Figure 4(d) shows in blue open circles (red open

squares) the experimental measurements of the IL for the

considered device in the CX (CM) direction. The good agree-

ment with the theoretical predictions allow us to validate the

results and demonstrates the appropriate choice of the theo-

retical tools to analyze this problem.

B. Absorbent split ring resonators (ASRR)

The last step of our study is the analysis of the periodic

distribution of ASRRs shown in Fig. 1. In this case the three

attenuation phenomena named at the beginning are consid-

ered. So, the scatterers are RSRR covered with a layer of ab-

sorbent material with a thickness t ¼ 0:04 m, and the

designed device consist of a set of ASRRs arranged in the

square array defined previously.

The study of the propagating properties of this SC is

shown in Fig. 5. First of all, we have analyzed both the array

and the resonant effects using the PWE method. Figure 5(b)

shows the bands structure of the previous SC made of

RSRRs with r ¼ 0:1 m (blue dotted lines). Although the

bands structure is only valid for the case of rigid cylinders

(RSRRs), we have calculated the dispersion relation for the

ASRR case (red continuous line) supposing this device

formed by rigid scatterers (rext ¼ 0:14 m, being the inner ra-

dius rint ¼ 0:095 m). This strategy allows us to predict the

variation of the attenuation produces in the array due to an

increasing of the radius of the scatterers. If we compare both

cases, the bands structure for the ASRR device predicts a

complete BG centered in 515 Hz, due to the increasing of the

ff, that does not appear in the case of the RSRR SC. So, in

FIG. 4. (Color online) Acoustic proper-

ties of both a single and a periodic array

of RSRR. (a) Numerical (blue continu-

ous line) and experimental (blue open

circles) IL produced by an isolated

RSRR. (c) Dispersion relation of a

square periodic array with a ¼ 0:33 m

made of RSRR. Strong gray area repre-

sents the attenuation band due to the res-

onance and weak gray area represents

the pseudogap at CX direction. (b) and

(d) are the numerical and experimental

IL of a SC made of RSRR, respectively.

Blue continuous and red dashed lines in

(b) [open blue circles and open red

squares in (d)] are the IL in the CX and

CM directions, respectively.

FIG. 5. (Color online) Study of the

acoustical properties of a ASRR SC. (b)

Dispersion relation of an square periodic

array with a ¼ 0:33 m made of SRR

with both r ¼ 0:1 m (black dashed lines)

and r ¼ 0:14 m (red continuous line).

Strong gray area represents the attenua-

tion band due to the resonance, and

weak gray area represents the pseudogap

at CX direction. (a) and (c) represent the

numerical and experimental IL of a SC

made of ASRR, respectively. Blue con-

tinuous and red dashed lines in (a) [open

blue circles and open red squares in (c)]

represent the IL at CX and CM direc-

tions, respectively. In all cases, the dot-

dashed black line represents the attenua-

tion level predicted using Maekawa’s

model for a classical barrier.
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the ASRR case there is no propagation at any direction for

this range of frequencies.

On the other hand, as we have shown before, the reso-

nant effect in the RSRR SC introduces an attenuation band

in the low frequency range below the BG [� ¼ 220 Hz, see

Fig. 4(c)]. However, the corresponding attenuation band for

the ASRR SC case (red continuous line) shown in Fig. 5(b)

is shifted in frequency to the lower frequencies. This inter-

esting effect is produced because the absorbent covering

becomes part of the resonator, increasing the wall thickness

and producing a shifting of the resonance frequency. This

result can be used as a design tool that could be exploited to

attenuate other near ranges of frequencies.

To determine the effect of the absorbent covering we

have calculated numerically the IL of the ASRR SC. Com-

paring the IL levels in Figs. 5(a) and 4(b), one can observe

that the average IL produced here is increased by the absorb-

ing covering practically in the whole range of frequencies

and for both CX and CM directions. Thus, the absorbing ma-

terial introduces a baseline of attenuation independent of the

angle of incidence of the wave. Although the scattering prob-

lem has been solved for the ASRR case and the bands struc-

ture is only valid for the case of rigid scatterers, one can

compare both results to observe whether or not the absorbent

covering destroys both the scattering and the resonance

effects. Thus, in Fig. 5(a) one can observe two attenuation

peaks due to both the multiple scattering at CX and CM
directions and the resonance effect over the baseline of

attenuation produced by the absorbing covering. Both peaks

have been predicted by the bands structure. The experimen-

tal results are shown in Fig. 5(c). One can again observe the

good agreement between the theoretical and experimental

results.

Finally note that, as in the case of RSRR SCs, the

attenuation level depends on the number of scatterers. We

have observed that the greater the number of rows, the higher

the IL. Obviously, this result is in agreement with the mass

law. However, it does not seem obvious that both the multi-

ple scattering and the resonance phenomena continue to

present the same properties as in the RSRR case when the

absorbent material is introduced. We have also observed that

these both attenuation effects are also increased with the

number of ASRR. Of course, the attenuation peak due to the

resonant effect is independent of the incident direction as in

the RSRR case.

V. APPLICATIONS

The IL of a SC made of ASRR is characterized mainly

by three acoustical properties: (i) a high attenuation baseline;

(ii) the structure preserve the properties of the periodicity,

meaning that, it preserves the BG although the absorbing

covering is surrounding the scatterers; (iii) the resonances of

each scatterer are also preserved in the structure. Then, mul-

tiple scattering, resonances, and absorption coexist in the

same structure without negative interference between them.

Thus, the frequency response of the system in the audible

acoustic frequencies is similar to a wideband bandstop filter

that allows the transmission of some frequency ranges but

prevent others, attenuated to very low levels.

Sound manipulation is perhaps the most obvious appli-

cation of the structures presented in this work. Recently,

increasing interest in such systems has motivated several

works showing valuable technological applications for such

an SC as acoustic filters. One can built natural SCs made of

periodic arrangement of trees43 or one can even use the evan-

escent behavior of waves inside the SC to obtain an effective

width to attenuate waves.23,44 On the other hand, one can

apply optimization algorithms as, for example, evolutionary

algorithms to look for the best distribution of scatterers to

attenuate predetermined frequencies.10 Taking into account

that bandstop filters are commonly used to eliminate particu-

lar frequencies of noise, we apply this system to develop a

device as an alternative to the conventional acoustic barriers

with several properties from the acoustical point of view but

also with additional esthetic and constructive characteristics.

The IL of the designed device is comparable with that

predicted by Maekawa for classical barriers, as one can see

in Figs. 5(a) and 5(c): there are ranges of frequencies in

which the SC produces better attenuation and ranges in

which the SC works worse than the classical barriers. Thus,

SCs made of ASRRs are suitable to be used as acoustic bar-

riers in certain ranges of frequencies. The many technologi-

cal possibilities because of the control of the multiple

scattering, resonances, and absorption phenomena, as well as

the nondependence of the IL with the incident angle gives

additional different properties than conventional acoustic

barriers.

In Fig. 6 we show two pictures of both a conventional

acoustic barrier and a possible acoustic barrier based on

SCs. Although the acoustic barrier based on SCs could be

wider and more expensive (depending on the materials)

FIG. 6. (Color online) (a) Picture of a

conventional acoustic barrier. (b) Simu-

lated acoustic barrier based on SC.

014904-8 Romero-Garcı́a, Sánchez-Pérez, and Garcia-Raffi J. Appl. Phys. 110, 014904 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



than the conventional barriers they can be attractive for

some purposes because they are transparent to water and

wind, presenting tunable acoustical properties, and they

seem to be esthetically and constructively better than the

classical ones.

VI. CONCLUSIONS

Scatterers made of rigid walls presenting resonant cav-

ities and covered with absorbent materials are used in this

work to design a periodic distribution of ASRRs. This SC

shows a constructive superposition of three physical phe-

nomena and its attenuation properties are tunable in a wide-

band of frequencies by changing the parameters of the array,

the characteristics of the resonant cavity, or the thickness

and acoustical properties of the absorbent material. Multiple

scattering theory, plane wave expansion, and finite element

methods are used to theoretically study the physical behavior

of the structure. Experimental results obtained in an anechoic

chamber are in good agreement with both the analytical and

numerical predictions. The many possibilities to control the

audible noise by means of scattering, resonances, and

absorption give the possibility to design a wideband band-

stop acoustic filter specifically indicated to attenuate audible

noise. The designed structures produces attenuation levels

large enough to compete with the conventional acoustic bar-

riers introducing high technological procedures in their

design and opening the possibility to fabricate custom-tai-

lored bandstop acoustic filters based on ASRR SCs.
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44V. Romero-Garcı́a, J. V. Sánchez-Pérez, S. Castiñeira-Ibáñez, and L.M.

Garcia-Raffi, Appl. Phys. Lett. 96, 124102 (2010).
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