STUDY and CONSTRUCTIVE ANALYSIS of an OFFICE BUILDING

BACHELOR FINAL PROJECT

AUTOR: Paula Cort Azcárraga
ACADEMIC TUTOR: Frank Verplanken

Home University: Universidad Politécnica de Valencia (Spain)
Host University: Kaho Sint-Lieven (Belgium)
My name is Paula Cort Azcárraga and I am from Valencia, Spain. For the last four years I have been studying building-construction at the Universidad Politéctica, sited in Valencia. I chose to go with building construction because it is what I have a passion for. I grew up with my father as a construction worker, and I was always fascinated by it at a young age. Construction offers people the opportunity to see the fruits of their labor on a day to day basis. I also think of construction as a classical trade in that you constantly learn and improve your ability over time.

My school offered me the opportunity to study abroad through an Erasmus Exchange program and I didn’t hesitate to accept it. I chose Belgium because of its gorgeous historic monuments, castles, cobblestone architecture and beautiful art work. I thought it is one of the best countries to learn about building construction. Moreover, the people here are very fluent in English and this could help me to improve this language. Belgium is widely known as the heart of Europe and a hub for international networking.

Studying in a different country has provided me a huge expertise and knowledge about a variety of subjects in more depth and from a different cultural perspective. The way of learning in Belgium varies considerably from the way I used to study in Spain. Here, practical learning is much
more emphasized than theoretical. I personally think that the way used here is more useful and provides more knowledge that I will need in my future.

Moreover, I have learnt several ways to built, specifically the prefabricated technique, which is very used in Belgium, in Spain most of construction is made is situ and not usual to move from a different place.
Appreciation

First of all, I would like to thank Frank and Steve for their time and dedication on my project. I would not have been able to do it without their help and patience, not only at class but also at the work. Their knowledge and expertise is very much appreciated.

I also wish to thank all the members of the Kaho Sint-Lieven for being always willing to help and for making things easier.

It was a pleasant experience and without their support it wouldn’t have been possible.
PART 1. Site installation plan

- Present the building and its distribution
- Implanting. PLANE 1
- Crane characteristics. PLANE 2
- Facades. PLANE 3
- Structure. PLANE 4

PART 2. Principal section

- Longitudinal section. PLANE 5

PART 3. Detailed drawings

- Detail 1. PLANE 6
- Detail 2. PLANE 7
- Detail 3. PLANE 8
- Detail 4. PLANE 9
- Detail 5. PLANE 10
- Detail 6. PLANE 11
- Detail 7. PLANE 12
- Detail 8. PLANE 13
- Detail 9. PLANE 14
- Detail 10. PLANE 15
PART 4. Technical study.

- Precast stairs
- Stairs details PLANE 16
- Step by step PLANE 17

PART 5. Comparative study

- Propos the comparative
- Comparative table
- Details PLANE 18, PLANE 19
- Step by step PLANE 20/21/22/24

PART 6. Scheduling and pricing

- Schedule work. GANTT
This is a building for office use, has 4 level + basement. The structure is with prefabricated concrete, excluding the basement slab, this is in situ.
BASEMENT GROUND, FIRST AND SECOND FLOOR

The use of ceramic brick and concrete brick is also combined.

Concrete block has more resistance than ceramic, but the last is cheaper.
When I arrive at work, hollow core slab was placed. There are two types.

1 type: Thickness 0.15 m + 0.05
2 type: Thickness 0.24 m + 0.05
3 type: Thickness 0.40 m + 0.05
Insulation: recticel, polyurethane.
Brick facade
Facane brick: 5 x 9 x 12 cm

Insulation: polyurethane, 8 cm (depends on the site of placement)

Ceramic brick: 11 x 12 x 24 cm
Prefabricated stairs
Windows
Cantilever

HEB 180 anchored floor using steel sheet.
When I get to the work they were completing the structure. I could see how the structure is finished, the facade was performed using a scaffold; placement of windows, electrical installation, sanitary and air conditioning. The cantilever construction and removal of the tower crane.
STUDY and CONSTRUCTIVE ANALYSIS of an OFFICE BUILDING located in Ghent

PART 1
Site installation plan

IMPLANTATION

STUDENT
Paula Cort Azcárraga

SCALE
1 / 500

DATE
16 / JUNE / 2014
LOCATION OF THE CONSTRUCTION CRANE
The tower crane is placed outside the future building, just in the middle in front the principal facade.

In this way we need a radius of 50 meters to reach the stockpile area and the debris area.

Secondly, we need at least 20 m height, because our building have 16 m. since the foundation of the crane, to the most elevated point of the building.

Finally, we need to know the lifting capacity and the lift capacity, as we work with precast elements. So LM1=3150 kg. is enough for us.

About the adjacent buildings and their protection, there aren’t any problem.
STUDY and CONSTRUCTIVE ANALYSIS of an OFFICE BUILDING located in Ghent

PART 1
Site installation plan

FACADES

PLANE Nº: 3

STUDENT
Paula Cort Azcárraga

SCALE
1 / 250

DATE
16 / JUNE / 2014
STUDY and CONSTRUCTIVE ANALYSIS of an OFFICE BUILDING located in Ghent

FINAL BACHELOR PROJECT

PART 1
Site installation plan

DESCRIPTION

STRUCTURE

PLANE NO.: 4

STUDENT
Pau Gort Azárraga

SCALE
1 / 200

DATE
16 / JUNE / 2014
Part 2. Principal section
Part 3.

Details
- Plant 5cm
- Substrate 6cm
- Foil
- Drainage 4 cm
- Moisture film
- Flameproof insulation 12 cm
- Polyethylene film
- Concrete ramp 4cm, 1.5%
- Hollow core slab 40+5+3 cm
- Hollow 30 cm
- Ceiling 5cm
Cobblestone
Stabilized sand 10 cm
Foundation 20 cm
Gravel 10 cm
Stabilized sand

Concrete mortar
Polyethylene film
L-profile

Facade brick
(5x9x24 cm)
Air chamber 2 cm
Insulation 8 cm
Ceramic brick
(20x45 cm)

Support raised floor

Carpet 1 cm
Raised floor support
Raised floor 16 cm
Hollow core slab 15+4 cm

Insulation 8 cm
Prefabricated concrete wall 30 cm

STUDY and CONSTRUCTIVE ANALYSIS of an OFFICE BUILDING located in Ghent

PART 3
Detailed drawings
DETAIL 3

UNIVERSIDAD POLITÉCNICA DE VALENCIA
KAHO Sint-Lieven

STUDENT
Paula Cort Azcárraga

SCALE
1 / 10

DATE
16 / JUNE / 2014
Plant 5cm
Substrate 6cm
Foil
Drainage 4 cm
Moisture film
Flameproof insulation 5 cm
Insulation 8 cm
Aluminium corrugated sheet
Steel profile HEB180
Hollow 7 cm
Ceiling 5 cm

Backsheet
Zinc plate 5mm
Finish aluminium plate
Steel L-profile
Insulate
Shutter box
Aluminium window

SCALE 1/5
- Raised floor 12 cm
- Raised floor support
- Plywood 3 cm
- Steel profile HEB 180
- Insulation 12 cm
- Plywood 3 cm
- Finish trespa 4 cm

Steel hollow section
Aluminium window
Steel L-profile
Polyethylene film
Finish aluminium plate
Raised floor 16 cm
Steel plate
Hollow core slab 24+4 cm
Hollow 47 cm
Ceiling 5 cm

Steel sheet
Angular metal
Distance screw
Vapor permeable hydrophobic insulation
Air sealing foil
Multiplex window frame
Vapor permeable insulation
Passive window

Prefabricated beam (20x70 cm)
- Insulate 8 cm
- Air chamber 2 cm
- Facade brick (5x9x24 cm)

Open butt joint
Moisture film
L-profile
Concrete mortar
Silicone

- Raised floor 12 cm
- Raised floor support
- Plywood 3 cm
- Steel profile HEB 180
- Insulation 12 cm
- Plywood 3 cm
- Finish trespa 4 cm

STUDENT
Paula Cort Azcárraga

SCALE
1 / 10

DATE
16 / JUNE / 2014
Railing
Gravel
Polyethylene film
Flameproof insulation 5 cm
Moisture fil
Concrete ramp. < 4 cm
Hollow core slab 40+5 cm
Hollow 15 cm
Ceiling 5 cm

Stone gutter
Aluminium window
Multiplex plate
Concrete mortar
Ceramic brick

Carpet 1 cm
Raised floor 12 cm
Raised floor support
Hollow core slab 40+5 cm

Reinforce rebar
Prefabricated beam 20x60 cm
STUDY and CONSTRUCTIVE ANALYSIS of an OFFICE BUILDING located in Ghent

FINAL BACHELOR PROJECT

DESCRIPTION

PART 3
Detailed drawings
DETAIL 8

PLANE Nº: 13

STUDENT
Paula Cort Azcárraga

SCALE
1 / 10

DATE
16 / JUNE / 2014

Facade brick (5x9x24 cm)
Air chamber 2 cm
Insulation 8 cm
Prefabricated wall 20 cm
Insulation 8 cm
Air chamber
Facade brick (5x9x24 cm)
Emergency stairs

Drain
Prefabricated beam 20x70 cm
Concrete mortar
Ceramic brick (11x12x24 cm)

Railing
Gravel
Polyethylene film
Flameproof insulation 5 cm
Moisture fil
Concrete ramp. < 4 cm
Hollow core slab 40+5 cm
Hollow 15 cm
Ceiling 5 cm
Aluminium window
L-profile
Multiplex plate
Vapor permeable hydrophobic insulation
Stone gutter
Open butt joint
Moisture film
L-profile
Concrete mortar
Silicone
Prefabricated beam (20x70 cm)
Insulate 8 cm
Air chamber 2 cm
Facade brick (5x9x24 cm)
Air sealing foil
Vapor permeable hydrophobic insulation
Multiplex window frame
Distance screw
Vapor permeable insulation
Aluminium window

Carpet 1 cm
Screed 7 cm
Insulation 8 cm
Hollow core slab 24+4 cm
Hollow 30 cm
Ceiling 5 cm

Metal structure:
HEB 280
HEB 140

STUDENT
Paula Cort Azcárraga

DATE
16 / JUNE / 2014
- Steel hollow section, 10 cm diam.
- Aluminium window
- Multiplex window frame
- Insulate
- L-Profile
- Insulate
- HEB 180
- Finish trespa
- Brick facade
Part 4.

Technical study

1 PRECAST STAIRS

The prefabricated concrete stairs are custom manufactured for each project. Prefabricated stairs can be designed to adapt at the structural, dimensional and esthetics characteristics, for each type of building. In this way, it possible to reduce the problems that affects with the time and the cost.

2 INSTALLATION AND NECESSARY EQUIPMENTS

Indications to install precast elements:

1. Location plan
2. Structural plan
3. Ground plan, sections and levels.
4. Relationship and specifications for precast
Also, must to know:

- To analyze the characteristics and peculiarities of work.
- To know all spaces and facilities available.
- Check the access, maneuvering areas and slopes.

Choose the correct crane and equipment, it’s the most important thing, so it is decisive for the good ending work.

Should be analyzed, height, weight, dimensions, etc..
For this work will be use a Tower Crane: LIEBHERR, 180 E-CH-10. (More information in plane 2)
To transport:

In general, precast elements, small and slightly weighed, as the stairs, are move with very basic equipment: conventional truck, trailer...
Should be avoid restock the material at the work, so there are actions than increase the total cost and complicate the ejecution.

To acces:

Supply of the precast elements must be continuous and safe, for that reason, ways and access must be positioned parallel to the stock area.

The auxiliary resources more common in the lifting to mounting prefabricated elements, are:

1. Lifting hook
2. Pins
3. Stirrup
4. Brands and steel wire
To install:

Should not begin to do the mounting without these conditions:

a) Concrete must have enough resistance.

b) Prepare all areas necessary for ease of assembly.

c) Ensure a supply of items, continuous and completely to prevent the execution stops for lack of precast.

d) Check the features and suitability of auxiliary resources and equipment so as to ensure maximum safety of assembly.

2.1 Assembly sequence:

Assembly should be done, when possible, for levels, avoiding crane movements.

Will be a good view between laborers at stockpiles and collocation area. When the sight is not possible, a code will be established among laborers.

Stockpile prefabricated elements it is recommended to do inside the building, when the building only have one level, and outside the building, when this have more levels. For this way is easier not disrupting at others activities.
3 ADVANTAGES AND DISADVANTAGES

Advantages

Easy to install: It is not necessary use formwork.

Stockpiles: Stairs normally come from the factory to truck and are placed directly from this.

Quick access: Instant access between levels, increasing efficiency and security.

Cost reduction: Because is faster to install, need less laborer and without formwork.

Maintenance: Low maintenance cost

Quality: Stairs with industrial quality. The surfaces have a high quality finish.

Disadvantages

The only disadvantage is the cost. Prefabricated elements are designed specifically for this work and are industrial built so always is necessary to move them until the work. So these reasons can be increase the total cost, but in almost occasions, these costs are counteracted with others, and is better choose precast
4 CONSTRUCTION METHOD: STEP BY STEP
STUDY and CONSTRUCTIVE ANALYSIS of an OFFICE BUILDING located in Ghent

FINAL BACHELOR PROJECT

DESCRIPTION

PART 4
Technical study: Prefabricated stairs.

STEP BY STEP

STUDENT
Paula Cort Azcárraga

SCALE
1 / 250

DATE
16 / JUNE / 2014
Steel rebar, diam 10 cm
Steel rebar, diam 16 cm

STUDY and CONSTRUCTIVE ANALYSIS of an OFFICE BUILDING located in Ghent

FINAL BACHELOR PROJECT

DESCRIPTION

PART 4
Technical study.
Details about precast stairs

PLANE N°: 18

STUDENT
Paula Cort Azcárraga

SCALE 1 / 70

DATE 16 / JUNE / 2014
Part 5.

Comparative study

The topic chosen for comparative study is the different between two ways to build a very interesting element at the work: the cantilever. It proposes a new way to build, comparing time, cost and performance.

When the architect designed this structure, he thought to move the first floor 5 metres to the right. And became these level a very diaphanous place, to get more light, space and, of course, beauty.
The purpose is to change the mechanical anchorage by a spatial structure. It works as a single structure, also reduced material and cost, increasing the strength and safety.

Now, beams are put with the floor through steel sheet. It are anchored with screw and the beams are welded at sheets. Thus, the welding is working perpendicular at the floor direction, a really dangerous situation. Because the direction about the welding must be the same at its work.

To improve this situation could add a metal plate over the existing ones. Welding them to these, so that for welding this in the same direction as the work.

The new construction is to replace every HEB 180, place from 70 cm, by HEB 240. Just 5 beams this time, combined with another diagonal beam, which will be anchored to the upper beam is placed. Created a work triangle.
COMPARATIVE STUDY

CANTILEVER PROJECT

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 HEB 180</td>
<td>Crane</td>
</tr>
<tr>
<td>4 IPE 180</td>
<td>Lifting platform</td>
</tr>
<tr>
<td>21 HEA 140</td>
<td></td>
</tr>
<tr>
<td>2 HEA 140</td>
<td></td>
</tr>
<tr>
<td>6 Steel hollow profile</td>
<td></td>
</tr>
</tbody>
</table>

SPATIAL STRUCTURE

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete (2.89 m³)</td>
<td>Crane</td>
</tr>
<tr>
<td>Rebar</td>
<td>Lifting platform</td>
</tr>
<tr>
<td>Shutter</td>
<td></td>
</tr>
<tr>
<td>Ceramic block</td>
<td></td>
</tr>
<tr>
<td>15 HEB 240</td>
<td></td>
</tr>
<tr>
<td>5 Steel hollow profile</td>
<td></td>
</tr>
<tr>
<td>8 Hollow core slab (1x0.15m)</td>
<td></td>
</tr>
<tr>
<td>8 Hollow core slab (0.7x0.15m)</td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL AND EQUIPMENT

<table>
<thead>
<tr>
<th>No</th>
<th>MATERIAL</th>
<th>QUANTITY</th>
<th>UNIT PRICE</th>
<th>TOTAL PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.01</td>
<td>HEB 180 (kg)</td>
<td>3978,24</td>
<td>1,67 €</td>
<td>6436,66 €</td>
</tr>
<tr>
<td>1.02</td>
<td>IPE 180 (kg)</td>
<td>6,64</td>
<td>1,66 €</td>
<td>1102 €</td>
</tr>
<tr>
<td>1.03</td>
<td>HEA 140 (kg)</td>
<td>2968,98</td>
<td>1,71 €</td>
<td>5076,96 €</td>
</tr>
<tr>
<td>1.04</td>
<td>HEA 140 (kg)</td>
<td>49,4</td>
<td>1,71 €</td>
<td>84,47 €</td>
</tr>
<tr>
<td>1.05</td>
<td>Steel hollow profile (kg)</td>
<td>72</td>
<td>1,64 €</td>
<td>118,08 €</td>
</tr>
</tbody>
</table>

TOTAL = 11.934.19€

<table>
<thead>
<tr>
<th>No</th>
<th>MATERIAL</th>
<th>QUANTITY</th>
<th>UNIT PRICE</th>
<th>TOTAL PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.01</td>
<td>HEB 240 (kg)</td>
<td>4534,4</td>
<td>1,67 €</td>
<td>7572,45 €</td>
</tr>
<tr>
<td>2.02</td>
<td>Steel hollow profile (kg)</td>
<td>142,35</td>
<td>1,81 €</td>
<td>257,65 €</td>
</tr>
<tr>
<td>2.03</td>
<td>Ceramic block</td>
<td>200</td>
<td>0,1</td>
<td>20,00 €</td>
</tr>
<tr>
<td>2.04</td>
<td>Floor hollow core slab +</td>
<td>57,72</td>
<td>62,35</td>
<td>3598,84 €</td>
</tr>
<tr>
<td></td>
<td>concrete + rebar</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL = 11.448,94€

SCHEDULING AND PRICING

PROS AND CONS

PROS:
- Less time of execution

CONS:
- Dangerous structure
- Future repairs

PROS:
- Save steel profiles
- Increased security
- The structure works better

CONS:
- More time of execution

CONCLUSION

Keeping in mind all the information obtained before, there aren’t a lot differences about the price or time to execute. But, studying the structure, how it works, and all the forces origin, the second option is better, so with more or less the same price, you attend a most security option.
STUDY and CONSTRUCTIVE ANALYSIS of an OFFICE BUILDING located in Ghent

FINAL BACHELOR PROJECT

DESCRIPTION

PART 5
Comparative study.
New construction for the cantilever.
Spatial structure

PLANE N°:
18

UNIVERSIDAD POLITÉCNICA DE VALÉNCIA

KAHO Sint-Lieven

STUDENT
Paula Cort Azcárraga

SCALE
1 / 20

DATE
16 / JUNE / 2014
The metal structure soars with crane. Another laborer, placed on the lifting platform, guide the structure and fixed.

Then, still on the platform placed end profiles.
Put wooden boards on the steel profile, on them, the operator can move and place the hollow core. It shall be protected with a lifeline.

When they are placed all hollow core slabs, the slab is concreted.
With the same procedure, the operator places the window

Raised floor, and ceilings.
After, the laborer finish the roof.

All structure are finish
Part 6.

Scheduling and pricing
<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>5.1 Concrete and prefabricated walls</td>
<td>7 days</td>
<td>Fri 29/11/13</td>
<td>Mon 09/12/13</td>
</tr>
<tr>
<td>34</td>
<td>5.2 Place the scaffold</td>
<td>1 day</td>
<td>Tue 10/12/13</td>
<td>Tue 10/12/13</td>
</tr>
<tr>
<td>35</td>
<td>5.3 Brickwork facade GF</td>
<td>3 days</td>
<td>Wed 11/12/13</td>
<td>Fri 13/12/13</td>
</tr>
<tr>
<td>36</td>
<td>5.4 Prefabricated stairs + platforms stabbing</td>
<td>1 day</td>
<td>Tue 10/12/13</td>
<td>Tue 10/12/13</td>
</tr>
<tr>
<td>37</td>
<td>5.5 Cover GF</td>
<td>4 days</td>
<td>Wed 11/12/13</td>
<td>Mon 16/12/13</td>
</tr>
<tr>
<td>38</td>
<td>5.6 Electrical installation, plumbing and sanitation</td>
<td>2 days</td>
<td>Tue 17/12/13</td>
<td>Wed 18/12/13</td>
</tr>
<tr>
<td>39</td>
<td>6 First Floor</td>
<td>15 days</td>
<td>Thu 19/12/13</td>
<td>Wed 08/01/14</td>
</tr>
<tr>
<td>40</td>
<td>6.1 Final reinforcement plans and cover</td>
<td>2 days</td>
<td>Thu 19/12/13</td>
<td>Fri 20/12/13</td>
</tr>
<tr>
<td>41</td>
<td>6.2 Concrete and prefabricated walls</td>
<td>7 days</td>
<td>Mon 23/12/13</td>
<td>Thu 31/12/13</td>
</tr>
<tr>
<td>42</td>
<td>6.3 Prefabricated stairs + platforms stabbing</td>
<td>1 day</td>
<td>Mon 23/12/13</td>
<td>Mon 23/12/13</td>
</tr>
<tr>
<td>43</td>
<td>6.4 Cover F1</td>
<td>4 days</td>
<td>Wed 01/01/14</td>
<td>Mon 06/01/14</td>
</tr>
<tr>
<td>44</td>
<td>6.5 Electrical installation, plumbing and sanitation</td>
<td>2 days</td>
<td>Tue 07/01/14</td>
<td>Wed 08/01/14</td>
</tr>
<tr>
<td>45</td>
<td>7 Second Floor</td>
<td>15 days</td>
<td>Thu 09/01/14</td>
<td>Wed 29/01/14</td>
</tr>
<tr>
<td>46</td>
<td>7.1 Final reinforcement plans and cover</td>
<td>2 days</td>
<td>Thu 09/01/14</td>
<td>Fri 10/01/14</td>
</tr>
<tr>
<td>47</td>
<td>7.2 Concrete and prefabricated walls</td>
<td>7 days</td>
<td>Mon 13/01/14</td>
<td>Tue 21/01/14</td>
</tr>
<tr>
<td>48</td>
<td>7.3 Place the scaffold</td>
<td>1 day</td>
<td>Wed 22/01/14</td>
<td>Wed 22/01/14</td>
</tr>
<tr>
<td>49</td>
<td>7.4 Brickwork facade 2F</td>
<td>3 days</td>
<td>Thu 23/01/14</td>
<td>Mon 27/01/14</td>
</tr>
<tr>
<td>50</td>
<td>7.5 Prefabricated stairs + platforms stabbing</td>
<td>1 day</td>
<td>Mon 13/01/14</td>
<td>Mon 13/01/14</td>
</tr>
<tr>
<td>51</td>
<td>7.6 Cover F2</td>
<td>4 days</td>
<td>Wed 22/01/14</td>
<td>Mon 27/01/14</td>
</tr>
<tr>
<td>52</td>
<td>7.7 Electrical installation, plumbing and sanitation</td>
<td>2 days</td>
<td>Tue 28/01/14</td>
<td>Wed 29/01/14</td>
</tr>
<tr>
<td>53</td>
<td>8 Third Floor</td>
<td>15 days</td>
<td>Thu 30/01/14</td>
<td>Wed 19/02/14</td>
</tr>
<tr>
<td>54</td>
<td>8.1 Final reinforcement plans and cover</td>
<td>2 days</td>
<td>Thu 30/01/14</td>
<td>Fri 31/01/14</td>
</tr>
<tr>
<td>55</td>
<td>8.2 Concrete and prefabricated walls</td>
<td>7 days</td>
<td>Mon 03/02/14</td>
<td>Tue 11/02/14</td>
</tr>
<tr>
<td>56</td>
<td>8.3 Place the scaffold</td>
<td>1 day</td>
<td>Wed 12/02/14</td>
<td>Wed 12/02/14</td>
</tr>
<tr>
<td>57</td>
<td>8.4 Brickwork facade 3F</td>
<td>3 days</td>
<td>Thu 13/02/14</td>
<td>Mon 17/02/14</td>
</tr>
<tr>
<td>58</td>
<td>8.5 Prefabricated stairs + platforms stabbing</td>
<td>1 day</td>
<td>Mon 03/02/14</td>
<td>Mon 03/02/14</td>
</tr>
<tr>
<td>59</td>
<td>8.6 Cover 3F</td>
<td>4 days</td>
<td>Wed 12/02/14</td>
<td>Mon 17/02/14</td>
</tr>
<tr>
<td>60</td>
<td>8.7 Electrical installation, plumbing and sanitation</td>
<td>2 days</td>
<td>Tue 18/02/14</td>
<td>Wed 19/02/14</td>
</tr>
<tr>
<td>61</td>
<td>9. Roof</td>
<td>25 days</td>
<td>Thu 20/02/14</td>
<td>Wed 26/03/14</td>
</tr>
<tr>
<td>62</td>
<td>9.1 Formwork cover</td>
<td>2 days</td>
<td>Thu 20/02/14</td>
<td>Fri 21/02/14</td>
</tr>
<tr>
<td>63</td>
<td>9.2 Eaves bricklaying</td>
<td>3 days</td>
<td>Mon 24/02/14</td>
<td>Wed 26/02/14</td>
</tr>
<tr>
<td>64</td>
<td>9.3 Prefabricated architectural concrete</td>
<td>6 days</td>
<td>Thu 27/02/14</td>
<td>Thu 06/03/14</td>
</tr>
<tr>
<td>65</td>
<td>9.4 Waterproofing and tests</td>
<td>4 days</td>
<td>Fri 07/03/14</td>
<td>Wed 12/03/14</td>
</tr>
<tr>
<td>66</td>
<td>9.5 Finishing cover</td>
<td>10 days</td>
<td>Thu 13/03/14</td>
<td>Wed 26/03/14</td>
</tr>
</tbody>
</table>
Some photos of the current state of the work: