Improving speech intelligibility in hearing aids.
Part I: Signal processing algorithms
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Abstract

The improvement of speech intelligibility in hearing aids
is a traditional problem that still remains open and un-
solved. Modern devices may include signal processing al-
gorithms to improve intelligibility: automatic gain control,
automatic environmental classification or speech en-
hancement. However, the design of such algorithms is
strongly restricted by some engineering constraints
caused by the reduced dimensions of hearing aid devices.
In this paper, we discuss the application of state-of-the-
art signal processing algorithms to improve speech intel-
ligibility in digital hearing aids, with particular emphasis
on speech enhancement algorithms. Different alterna-
tives for both monaural and binaural speech enhance-
ment have been considered, arguing whether they are
suitable to be implemented in a commercial hearing aid
or not.

Index Terms: Speech enhancement, hearing aids, speech
intelligibility.

1. Introduction

Hearing aids are electronic devices worn by hearing-im-
paired people ideally to improve the reduced intelligibility
caused by hearing loss. Despite the fact that traditional
devices may improve speech quality or hearing comfort,
their capability to improve speech intelligibility has been
largely discussed. Simple devices often produce amplified
noises when the user is in a multi-source environment
(e.g. a crowded bar). Besides the automatic gain control
(AGCQ) system, modern devices include some type of en-
hancement schema to overcome this limitation, for in-

stance, directional microphones or speech enhancement
algorithms. However, in addition to the problems found
by current speech enhancement algorithms when im-
proving intelligibility, their application in hearing aids en-
tails three main additional problems: hearing-impaired
listeners have greater susceptibility to the distortions in-
troduced by signal processing algorithms, the small size
of hearing devices limits the number of microphones as-
sembled in the device, and the reduced life of the current
batteries constrains the computational cost of the imple-
mented algorithms.

Nowadays, the hearing aids market is still dominated by
monaural systems, which gradually have included several
microphones in each device. Nevertheless, the integra-
tion of wireless communications in high-end devices has
motivated the growing interest in binaural speech en-
hancement systems. Binaural systems theoretically allow
the user to listen more realistically by keeping the spatial
information. Unfortunately, the wireless data transmis-
sion required between devices originates two new prob-
lems: the increment of power consumption and the need
of synchronization between devices.

The objective of this paper is to discuss the application
of state-of-the-art signal processing algorithms to im-
prove speech intelligibility in digital hearing aids, with
particular emphasis on speech enhancement algorithms.
The remaining of this paper is organized as follows. Sec-
tion Il describes the hearing impairment problem and the
different auditory problems faced by hearing impaired
people. Section Il gives an overview of signal processing
algorithms in hearing aids and quantifies the available
computational resources in such devices. Section IV pro-
vides a thorough review of the state-of-the-art of speech

Waves - 2014 - year 6/ISSN 1889-8297

61



The number of people with hearing loss is increasing at
an alarming rate not only because of the aging of the
world’s population, but also because of the growing ex-
posure to noise in daily life.

enhancement algorithms, evaluating its application to
improve speech intelligibility in monaural and binaural
hearing aids. Finally, section V ends with a summary of
the conclusions obtained in this study.

2. Hearing impairment

The number of people with hearing loss is increasing at an
alarming rate not only because of the aging of the world’s
population, but also because of the growing exposure to
noise in daily life. Some figures confirming these facts are,
for instance, that about one-third of Americans between
the ages of 65 and 74, and about half the people who are
85 and older, have important hearing loss [1]. Or that about
16% of adult Europeans have hearing problems strong
enough to adversely affect their daily life. The royal national
institute for deaf people (RNID) has reported that there are
8.7 million deaf and hard of hearing people in the UK, and
that just one in four hearing-impaired Britons owns a hea-
ring aid [2]. All these facts compel scientists and engineers
to enhance hearing aids in the effort of making them more
accessible for people, especially the elderly.

Hearing loss is commonly represented by an audiogram,
which shows the auditory threshold in logarithmic units
(dB) of the sound pressure level (SPL) for standardized
frequencies measured by an audiometer. Hearing im-
pairment implies larger thresholds than normal hearing
but the level of loss among frequencies is not uniform
and depends on each person. The degree of hearing
loss is usually defined as the average hearing loss meas-
ured at a particular octave-band, and the level of loss is
usually classified into mild (up to 40 dB), moderate
(from 40 to 60 dB) and severe (over 60 dB). For hear-
ing-impaired people suffering from mild to moderate

hearing loss, a hearing aid is helpful, but in the case of
severe hearing loss, the use of hearing aids is of little
benefit, and some other solutions such as cochlear im-
plants may be considered. Additionally, hearing loss can
be unilateral, but in most cases it is bilateral, which
means that both ears are affected with either the same
or different degree of loss.

Hearing-impaired people face a variety of different audi-
tory problems that reduce their ability of understanding.
These problems are described below [3].

¢ Decreased level of audibility

Depending on the level of hearing loss, a person will
hear some sounds but miss some other sounds. In
general, the high-frequency components of speech
are weaker than the low-frequency components,
and hearing loss of elderly people is higher at high
frequencies. Consequently, hearing-impaired people
tend to miss high-frequency information, basically
consonants. This fact leads to miss essential parts of
some phonemes reducing the intelligibility.

¢ Reduced dynamic range

The dynamic range of the auditory system is de-
fined as the level difference between the auditory
threshold and the discomfort threshold (i.e. thresh-
old of pain). For hearing-impaired people, the au-
ditory threshold is increased in comparison to
normal hearing people, hence the dynamic range
is reduced. In order to avoid exceeding the discom-
fort threshold, hearing aids must amplify weak
sounds more than intense sounds.

¢ Reduced frequency resolution

Frequency resolution gradually decreases as the de-
gree of hearing loss increases, and hearing-im-
paired people find difficult to distinguish between
sounds of different frequencies simultaneously. This
is due to the loss of sensitivity of the hair cells of
the cochlea, which decreases the ability of discri-
minating frequencies.
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Figure 1. A simplified scheme of the typical structure of a digital hearing aid.
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¢ Decreased temporal resolution
In general, weaker sounds are sometimes masked
by intense sounds that immediately precede or fo-
llow them, which decreases the chances of intelli-
gibility. In addition, the ability to hear weak sounds
during short-time slots gradually decreases as the
degree of hearing loss increases, and hearing-im-
paired people usually experience decreased tempo-
ral resolution, which involves that the speech
intelligibility perceived by them is further decreased.

All the aforementioned problems combined together
cause significant reduction in the speech intelligibility per-
ceived by hearing-impaired people. The first two pro-
blems are commonly approached by a multiband
compression algorithm, which applies a frequency and
signal level dependent gain customized for each person.
The intelligibility decrease originated by the reduction in
the temporal and frequency resolutions can be compen-
sated by speech enhancement algorithms.

3. Signal processing in digital
hearing aids

The introduction of the digital signal processor (DSP) in
hearing aids opened a new era where these devices offer
their users a greater flexibility to compensate for their
hearing loss, providing a more natural sound quality than
the previous analog hearing aids. The typical structure of
a digital hearing aid is shown in figure 1. The device com-
prises the next elements:

e A single or multiple microphones that convert the
acoustic signal into an electric signal.

e An analog-to-digital converter (ADC) to transform
the continuous electric signal (analog) into a digital
signal.

e A DSP, the main part of the device, which includes
signal processing algorithms for different purposes.

¢ A digital-to-analog converter (DAC) to reconvert the
digital processed signal into an analog signal.

e A tiny loudspeaker that produces the output acoustic
signal from the processed analog electric signal.

o A small battery to supply power to the previous elec-
tronic devices.

The fact that hearing loss does not only result in sound
attenuation, but also in distortions that lead to a reduc-
tion in speech intelligibility, motivates that modern digital
hearing aids include a variety of signal processing algo-
rithms for different purposes:

e A multiband compression algorithm to compensate
hearing loss and fit the output level into the dynamic
range. The gain is automatically adjusted by the AGC
system according to the individual hearing loss and
the input level.

Speech enhancement algorithms that aim to improve
the speech intelligibility provided by hearing aids in
different noisy environments.

Automatic environmental classification in order to
adapt the amplification or processing program to di-
fferent listening conditions (e.g. a quiet room, a con-
ference hall, a noisy street, etc.). Both the multiband
compression and speech enhancement algorithms
can be adjusted depending on the environment.

Acoustic feedback cancellation to prevent the insta-
bility of the device due to the acoustic feedback that
appears when part of the amplified output signal
produced by the hearing aid returns through the ex-
ternal auditory canal and enters again the device,
thus being again amplified.

Figure 2 shows the different signal processing blocks in a
state-of-the-art hearing aid. All these algorithms must be
implemented in the DSP embedded in the hearing aid. Un-
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Figure 2. Signal processing algorithms in a state-of-the-art hearing aid.
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The introduction of the digital signal processor (DSP) in
hearing aids opened a new era where these devices offer
their users a greater flexibility to compensate for their
hearing loss, providing a more natural sound quality.

fortunately, the computational capability and the memory
available in the DSP of such devices are highly restricted:
the processor is forced to work at low-clock frequencies
in order to minimize the power consumption and thus to
maximize the battery life. The current batteries available
for hearing aids and the expectation of a minimum battery
life of one week entail that the DSPs found in state-of-the-
art commercial devices have on-chip processors with a se-
lective clock speed that usually goes from 5.12 MHz down
to 1.28 MHz, which is a relative low speed in comparison
to the current DSPs that can be used in other applications.
For instance, in the special case of a processor with a clock
speed of 5.12 MHz (5 MIPS), and working with a sampling
rate of 16 kHz, analysis window of 128 samples with 50%
of overlap, and 65 frequency bands, the number of ins-
tructions available to process each frequency band of a
frame is 308. These instructions are shared between the
aforementioned signal processing algorithms included in
the device. The time-frequency analysis is based on a DFT
filter bank and usually implemented in a specific processor,
hence it does not imply any extra consumption of compu-
tational resources.

The next section is focused on providing a review of the
state of the art of the application of speech enhancement
algorithms in hearing aids, which among the algorithms
included in hearing aids, are those directly included to in-
crease speech intelligibility.

4. Speech enhancement algorithms
for hearing aids

Imagine an elderly grandmother who wears a hearing aid
in one or both ears. She is in a room where her family is
celebrating her birthday. There are so many talks, music,
the TV, and background noise mixing with each other
that the old lady cannot understand what her grandson
is telling her. The solution to this problem would be that
the hearing aids themselves were able to enhance only
the voice of the grandson separately from the rest of the
sounds without interest. The inclusion of speech en-
hancement algorithms in modern devices aims to solve
this problem. However, the design and implementation
of this type of algorithms in digital hearing aids is strongly
limited by some engineering constraints, which are not
present in other speech enhancement applications such
as hands-free devices or automatic speech recognition
(ASR) systems. As mentioned before, there are several
signal processing algorithms running simultaneously in
the DSP of modern digital hearing aids, trying to solve
different problems. These algorithms demand a signifi-
cant part of the computational power of the device, and
at the same time, electrical power. Bearing in mind the

limited power of the processor, the computational cost
of the algorithms used for speech enhancement must be
very low, taking only a small part of the available com-
putational resources.

Many hearing-impaired people have bilateral hearing loss
and they are forced to wear two devices. Often, when
hearing aids are worn at both ears, these devices operate
independently. However, there is a new trend of binaural
hearing aids that connects both devices in order to ex-
change information between them. Binaural hearing pro-
vides considerable benefits over using only one ear, due to
the fact that the nature of the human auditory system is
binaural. Humans are able to separate and selectively at-
tend to individual sound sources in a cluttered acoustical
environment taking advantages of the so-called spatial
cues. Hence, it is fundamental that the hearing aid system
preserves these cues, which notably increments the ability
to localize sounds and consequently improves speech in-
telligibility. This obviously requires a communication link be-
tween both hearing devices. The simplest solution would
be to connect them using a wire. However, most users do
not like this approach because of the non-aesthetic aspect
of the wire linking both hearing aids from one ear to the
other. This enforces to use a wireless link between both de-
vices, what unavoidably increases the power consumption
and, consequently, reduces the battery life, one of the most
important limiting factors for implementing signal proce-
ssing algorithms on digital hearing aids. Roughly speaking,
the current technology demands as much power to com-
municate both hearing aids as that required for the signal
processing on a monaural device [3]. The reduction of the
data rate helps cut down the power consumption, but it is
done at the expenses of bringing down the performance
of the enhancement algorithms.

Directional microphones have been used in hearing aids
for over 25 years and have proved to significantly in-
crease speech intelligibility in various noisy environments
[4]. However, they are usually not applicable to small in-
the-canal (ITC) devices for reasons of size and the as-
sumption of a free sound field which is not met inside
the ear canal. Nevertheless, directional microphones are
not under the scope of this paper. A comprehensive re-
view is given in [5].

Besides directional microphones, modern hearing aids in-
clude one or several omnidirectional microphones com-
bined with speech enhancement algorithms to improve
intelligibility. Noise reduction and sound source separa-
tion are two different approaches that may be applied to
enhance speech. An exhaustive review of single-channel
and multichannel speech enhancement algorithms can
be found in [6]. The implementation of algorithms for
speech enhancement in hearing aids presents particular
challenges:

e The requirement of real-time processing limits the
processing delay to few milliseconds, which in turns
limits the algorithmic complexity. A delay between
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the direct sound and the amplified sound may be
perceived as degraded sound quality or the percep-
tion of an echo.

¢ The reduced battery life limits the clock speed of the
processor, which also limits the computational capa-
bility of the device.

e The number of microphones in multichannel systems
is reduced due to the dimensions of the device. For
instance, considering ITC devices, which have an
ample role in the market, their shape can be appro-
ximated by a cylinder 1.5 cm in length and 1 cm in
diameter. Common omnidirectional microphones
placed in these devices have a diameter of 0.25 cm,
hence, to be realistic, there cannot be more than 4
microphones assembled in each device.

e The number of frequency bands used for the analysis
of the input signal is relatively small (usually 64-128
bands).

e Hearing-impaired listeners have greater susceptibility
to interference from background noise than normal
listeners. They typically require a signal-to-interfe-
rence ratio (SIR) that is 5-10 dB higher than a normal
hearing person in order to achieve the same level of
speech understanding [7].

Bearing in mind the above limitations, the remainder of
this section discusses the suitability of the different
speech enhancement approaches for their implementa-
tion in hearing aids. The algorithms are divided into sin-
gle-channel and multichannel algorithms.

4.1 Single-channel speech enhancement

Single-channel noise reduction in hearing aids is even
more challenging than in the general case. Traditional
single-channel noise reduction algorithms tend to re-
duce noise introducing distortions in the signal. Im-
paired listeners are more sensitive to speech distortions
than normal listeners. Consequently, the effect that
these distortions have on intelligibility can be mini-
mized for normal listeners but it is magnified for hear-
ing-impaired listeners. Among the single-channel noise
reduction algorithms existing in the literature [6], those
based on the Wiener filter [8] and the Ephraim-Malah-
based approach [9] have been traditionally imple-
mented in hearing aids. Unfortunately, these methods
may improve the signal-to-noise ratio (SNR), but they
could not yet prove to enhance the speech intelligibility
[10]. One of the main reasons is that listeners are more
influenced by speech distortions than by background
noise. Despite their limitations, single-channel noise re-
duction systems are still implemented in modern hea-
ring aids.

Besides directional microphones, modern hearing aids in-
clude one or several omnidirectional microphones com-
bined with speech enhancement algorithms to improve

intelligibility.

Single-channel algorithms for speech separation are
dominated by the computational auditory scene analysis
(CASA) approach [11]. The separation of sound sources
in CASA systems is normally achieved by identifying and
grouping spectro-temporal regions in the mixture
belonging to the same source, which originates time-
frequency binary masks. The application of CASA to sin-
gle-channel noise reduction consists in generating
time-frequency masks to weight the different time-fre-
guency regions, emphasizing regions dominated by the
target speech and suppressing regions dominated by
noise. However, the proposed methods are either too
complex or the performance is too limited to be directly
applicable to practical hearing systems. These algo-
rithms typically involve complex operations for feature
extraction, segregation and grouping, which makes a
real-time implementation difficult. In addition, the per-
formance of such algorithms is not good enough for
the implementation in a hearing aid [12]. Nevertheless,
the application of time-frequency masking is a promis-
ing approach, as long as the mask computation is rela-
tively simple. A conceptually and computationally
simpler procedure than the original CASA approach is
to estimate the mask using machine learning tech-
nigues to identify time-frequency points as either
speech-dominated or noise-dominated [13].

Finally, an alternative to improve intelligibility in single-
channel devices is the design of enhancement algorithms
that optimize objective measures correlated with intelli-
gibility. The work in [14] examines different objective
measures for predicting the intelligibility of speech in
noisy conditions for normal listeners. Although those
measurements may probably correlate with the intelligi-
bility perceived by hearing impaired listeners, they are not
completely designed for them. For instance, the hearing-
aid speech quality index (HASQI) [15] has been designed
to measure intelligibility in both normal-hearing and
hearing impaired listeners.

4.2 Multichannel speech enhancement

Recently, high-end hearing aids including multiple micro-
phones have demonstrated to provide reasonable im-
provements in intelligibility and listening comfort.
Multichannel source separation algorithms, such as those
based on the independent component analysis (ICA) [16]
or clustering [17], have reduced application in hearing
aids due to their complexity. Hence, multichannel speech
enhancement in hearing aids has been dominated by
noise reduction techniques, which is achieved by means
of spatial filtering (i.e. beamforming).
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Beamforming techniques achieve speech enhancement
by using the principle of spatial filtering provided by a
microphone array, normally composed of omnidirectional
microphones, and assuming that the target source and
the unwanted sources are physically separated in space.
Spatial filtering aims to boost the signal coming from a
determined direction, attenuating the interfering signals
coming from different directions. In theory, a microphone
array allows reducing the noise without distorting much
the speech signal, in opposition to single-channel en-
hancement algorithms, which usually introduce distor-
tions. Beamforming techniques can be broadly grouped
into data-independent (fixed) and data-dependent (adap-
tive). Data-independent techniques use fixed parameters
during the processing of the input signal. On the other
hand, data-dependent techniques update their parame-
ters constantly depending on the input signal, adapting
to changing noise conditions. Both fixed and adaptive
beamformers have been successfully implemented in
modern hearing aids. Usually, the array is steered towards
the front (look) direction, but in some cases the filters are
designed to suppress the interferences coming from the
back direction.

The required processing time of fixed beamformers is rel-
atively low, as long as the filter coefficients that satisfy
the design constraints can be previously computed and
easily included as constant values in the embedded algo-
rithm. An additional advantage is that fixed beamformers
are more robust than adaptive beamformers to minor
steering errors and reflections correlated with the desired
signal. However, their performance is reduced when re-
jecting directional interferences. There are several works
that analyse the effects of the array geometry and the
number of microphones for several types of fixed beam-
forming techniques, evaluating the intelligibility improve-
ment introduced for hearing-impaired subjects. Some
remarkable works are [18], [19], [20], and [22]. A com-
mon and affordable approach is the use of independent
small endfire arrays, often integrated into behind-the-ear
devices, with low microphone distances of around 1-2
cm [22]. The use of external larger arrays has been also
proposed, for instance, with microphones placed in eye-
glasses [23], but this solution is not comfortable for hea-
ring aid users.

Adaptive beamforming requires higher computational
capability and it is more sensitive to steering direction
errors, but it has better performance rejecting interfe-
rences. However, the evaluation of the performance is
highly influenced by the acoustic environment, which
makes the measurement of the benefit obtained over
fixed beamforming difficult. An example that uses the
so-called minimum variance distortionless response
(MVDR) filter [24] is found in [25], where the filter is
used to implement a multichannel Wiener filter (MWF).
One promising approach is the application of a gener-
alized sidelobe canceller (GSC) structure [26]. Some
GSC-based algorithms for hearing aids are [27], [28],
[29], and [30].

4.3 Binaural speech enhancement

Hearing loss usually affects to both ears and the hearing-
impaired person is forced to wear a hearing device in
each side. Bilateral systems perform independent pro-
cessing in the left and right hearing aids, which originates
that the spatial cues are distorted, decreasing the local-
ization ability of the user. A recent trend motivated by
the availability of wireless data links between the right
and left hearing aids is the design of binaural speech en-
hancement algorithms, which are a special case of mul-
tichannel algorithms where the speech is enhanced by
combining the information from both ears.

Binaural systems work with dual-channel input-output sig-
nal, although more than one microphone could be placed
in each device. The main advantage of binaural processing
is the availability of spatial cues that can be used to sepa-
rate sounds. The interaural time differences (ITD) and in-
teraural level differences (ILD) are two of the most
important spatial cues for the estimation of the source azi-
muth angle, which is the main priority for hearing aid
users. However, these cues must be preserved in the bi-
naural output in order to maintain the original spatial in-
formation. A simple example of binaural noise reduction
is found in [31], where the ILD and ITD estimates are com-
pared with a reference value for the frontal direction.

Binaural fixed beamformers have low computational
complexity, but they only preserve the spatial cues of
speech (i.e. the target signal). The work in [32] designs a
dual-channel superdirective beamformer and obtains the
binaural output signal by applying adaptive spectral
weights to the beamformer input channels. The spectral
weights are computed from the monaural output of the
beamformer. The desired signal is passed unfiltered. The
performance is further increased applying a MWF.

Some examples of binaural adaptive beamforming based
on the GSC structure are [33], [34], which use two-micro-
phone subband adaptive GSC-like structure to adaptively
cancel out interfering sources. The binaural MWF produces
the minimum mean square error (MMSE) estimate of the
speech components in both ears, preserving the spatial
cues of speech, although the noise cues may be distorted.
The work in [35] introduces a binaural extension of a mo-
naural multichannel noise reduction algorithm for hearing
aids based on Wiener filtering. The algorithm preserves
the ITD cues of the filtered speech. The work is extended
in [36] to preserve both the ILD and ITD cues of speech
and noise. Beamforming combined with CASA techniques
allows preserving the binaural cues of speech and noise,
but the use of time-frequency masking introduces some
distortions. In [37], a binaural adaptive beamformer is
trained to form a null in the front direction. A single time-
frequency mask is then calculated comparing the re-
sponses from the front cardioid and the back cardioid. The
binary masking algorithm is very simple, making feasible
its implementation in a hearing aid. The system is designed
using real measurements obtained from a KEMAR
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manikin. In [38] an adaptation of the MVDR beamformer
is combined with monaural CASA attributes. The simulta-
neous and temporal grouping steps are performed with
clustering and Kalman filtering. Finally, the analysis of the
robustness of different binaural speech enhancement sys-
tems in hearing aids is carried out in [39], using objective
perceptual quality measures.

One problem associated to the design of spatial filters in
hearing aids is the next. The signals that arrive at each mi-
crophone of the array are affected by the well-known
head shadow effect, which implies that the impinging sig-
nals not only differ in time differences, which depend on
the relative position between the source and the micro-
phone, but it also undergo amplitude distortions. This ef-
fect must be considered in the computation of the filter
coefficients. The fact that this effect is highly dependent
on a person causes the design of an array customized
for a subject to need a correct measurement of such ef-
fect, which is not practical in real scenarios. The lack of
information about the head of the hearing aid user
causes directivity reduction and distortions. Many beam-
forming-based systems for hearing aids proposed in the
literature neglect this problem. Some examples are [40],
[22]. In other cases, the head shadow effect is consid-
ered in the design, assuming that it has been measured
or modelled somehow, for instance in [32], [33], [39].
The work in [41] proposes different approaches to opti-
mize the filter coefficients in case of unknown informa-
tion about the head of the user. The methods aim at
maximizing the average array gain while minimizing the
average distortions, using a design dataset of head
measurements. The authors also compare different mi-
crophone array configurations, including monaural and
binaural arrays.

Binaural hearing aids require the exchange of informa-
tion between the left and the right devices. Due to aes-
thetic reasons, the best solution is the use of a wireless
link for data transmission, which notably increases the
power consumption, one of the main limitations in
these devices. This fact opens a new area of research:
how to reduce the amount of information transmitted
(bit-rate) without altering the performance of the en-
hancement system. One of the first related works is
[42], which evaluates the gain provided by collaborating
hearing aids as a function of the communication rate,
using an information theoretic approach. In [43] the au-
thors evaluate the decrement of noise reduction
achieved by a binaural MWF when reducing the band-
width of the transmission link. The work in [44] pro-
poses two approaches to reduce data transmission. The
first approach is to transmit only an estimation of the
undesired signal at a determined bit rate, and the sec-
ond approach is to transmit the complete received sig-
nal at the determined bit rate. The second schema
transmits more information, but it requires higher trans-
mission rate. Furthermore, the authors evaluate the
transmission of only the low-frequency components.
Unfortunately, the performance of the algorithms in

A recent trend motivated by the availability of wireless
data links between the right and left hearing aids is the

design of binaural speech enhancement algorithms.

[42], [44] is notably reduced when the transmission rate
decreases (e.g. lower than 16 kbps). An additional prob-
lem associated to the use of beamforming techniques
for wireless-communicated binaural hearing aids is the
following. The output of the beamformer is obtained
by combining a weighted version of the input channels
from both devices. If one or several speech signals have
been quantized and transmitted to the other device, the
beamforming output is directly affected by quantization
noise.

The works in [45], [46] present a novel approach for the
design of energy-efficient speech enhancement algo-
rithms with low computational cost for wireless-commu-
nicated binaural hearing aids. Speech enhancement is
achieved by means of source separation, combining time-
frequency masking and supervised machine learning. In
order to increment the energy efficiency of the wireless-
communicated binaural hearing aids, it is proposed to
guantize some of the parameters to be transmitted,
avoiding the transmission of others found to be unnece-
ssary. The number of quantization bits assigned to each
parameter is computed by means of evolutionary com-
putation techniques aiming at finding a balance between
low bit rate and good speech enhancement.

5. Conclusions

The improvement of speech intelligibility in hearing aids
is a very complex task due to the fact that hearing im-
paired people are more affected by speech distortions
than normal listeners and that this type of devices pre-
sents important engineering limitations. This paper pro-
vides an overview of signal processing algorithms
included in hearing aids as well as a discussion about
which speech enhancement algorithms are suitable to be
implemented in such devices.

Regarding single-channel speech enhancement, the only
alternative to improve intelligibility is the design of algo-
rithms that optimize objective measures correlated with
speech intelligibility rather than with speech quality. In
the case of multichannel speech enhancement, spatial
filtering is a suitable solution, as long as the filter coeffi-
cients are calculated with low computational cost (e.g.
fixed beamforming), which obtains good levels of intel-
ligibility improvement. In the case of binaural systems, di-
fferent binaural beamforming techniques have been
proposed, but their performance is notably decreased by
quantization noise and when the transmission rate is re-
duced in order to maximize the battery life. An alterna-
tive to increase the energy-efficiency in binaural speech
enhancement systems has been proposed.
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