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Fig. 1. Dofiana Natural and National Park limits. UTM 29 N coordinates. GRS80 reference ellipsoid.

and hydrogeological research. In this regard, gravimetric surveys are a
useful tool to study and model distributions of subsurface masses and
tectonic features (Torge, 1989). A separation between residual and
regional gravimetric components is needed to differentiate between
anomalies from local, near surface masses (which are of interest in this
kind of studies) and those arising from larger and deeper structures
(Dobrin and Savit, 1988; Sharma, 1997).

Results from three different methods to separate residual and
regional gravimetric components are presented and compared. These
methods are robust polynomial fitting, reduction with a global
geopotential model and spectral analysis. Finally, a discussion of the
results, from a geological point of view, is presented.

2. Geological setting

Dofiana National Park is situated in the Guadalquivir basin, which is
located in the southern part of the Iberian Peninsula, limited to the
North by the palaeozoic massif of Sierra Morena (the southern part of
the Iberian Massif) and to the South by the Betic Cordillera (related to
the convergent boundary between the African and Eurasian plates).
Some disagreements can be found in different publications regarding
the age of the sedimentary infill of the Guadalquivir basin, see for
example Garcia-Castellanos et al. (2002), but, in general, the Dofiana
National Park shows the following stratigraphic and geomorphological
characteristics (ITGE, 1992,) of Miocene to present sequence, Fig. 2 and
Fig. 3:

a) Blue marls (late Miocene and early Pliocene). This formation is the
impervious base of the park. The top of the formation, characterised
by a smooth slope, descends to the SE with a maximum depth of
250 m in that part of the marshlands, and a shallower depth in the
neighﬁburing area of the Guadalquivir River, Fig. 2.

b) Basalsilts (mid-Pliocene). Due to the regression of the early Pliocene,
a change in sedimentation took place, leading to a heterogeneous

formation in the park subsurface, consisting in clayey and sandy
areas rather than silty areas.

¢) Basal sands (Plioquaternary). This discordant formation is located
on top of the basal silts. It is 10 to 30 m thick in the coastal area,
where there is a strong wind influence. This material constitutes
the most significant aquifer level due to its imperviousness and its
dimensions.

d) Marshlands. The origin of this formation is not quite clear, although it
is admitted that, during the upper and mid-Quaternary, the sea gulf
existing in the area started to close up forming a coastal beach. This
evolved into a large lagoon that was gradually filled in with
sediments of continental origin. The marshlands are formed by
two well differentiated layers with a high content in gravels and
rounded material. Between these two layers and also on top of the
most superficial layer, there are clays and clayey;sandy material.

e) Eolic mantle of stabilised and mobile sands. Stabilised sands are
located in the NW part of the park (Clemente et al., 1997; Rodriguez
Ramirez, 2008) as part of an old dune system showing variable
thickness. Likewise, there is a small area of stabilised sands to the
South, whose origin is the formation of bars and spits that allowed
the filling up of the wetland, this area is almost at the same level as
the high tide. Mobile sands are located in an area parallel to the coast
line and consist in 3 or 4 mobile dune beaches, which can move up to
5 m/year (Clemente et al., 1997; Rodriguez Ramirez, 2008).

f) Alluvial deposits. Recent sedimentary deposits on the floor and
margins of rivers and streams.

From a tectonic point of view, the studies carried out (Benkhelil, 1976;
Fernandez et al., 1998; Rodriguez Vidal, 1989; Salvany and Custodio, 1995;
Viguier, 1977) describe the zone as an area divided into blocks limited by
the Guadalquivir fault and the lower Guadalquivir fault, Fig. 2. The onset of
the superficial structures between those faults can be explained by a
geotectonic tilt and by changes in the sedimentation environment
(Salvany, 2004).
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Fig. 2. Geology of the zone according to Montes et al., 1998; Salvany et al., 2001 and Salvany et al. 2004. UTM 29 N coordinates. GRS80 reference ellipsoid. Lucio is the local name for

the lagoons inside the Park.

3. Data acquisition
3.1. Gravity data

82 gravity points, (Fig. 4), were observed with Lacoste & Romberg
relative gravimeters, models D203, G301 and G1102. The measures
are referenced to IGSN71 gravimetric datum by the inclusion of two
known absolute gravity points (Sevilla B and Huelva B) of the Spanish
Main Gravimetric Network (Sevilla et al., 1990) in the observation
itineraries.

The data acquisition campaigns were carried out during the dry
season, in July 1998, 2000, 2002, 2003, 2004 and October 2002. The
gravimetric measures were corrected for tides, gravimeter height,
presence of underground water, and drift (Torge, 1989). It is worth
noting that the correction due to presence of water in the subsoil turned
out to be insignificant. A pore volume between 15 and 20% and 1 m in the
change of underground level during the gravimetric campaings have been

used (Nafiez, 2006), these values and the use of the Eq. (8.15) of Torge
(2001) give a maximum value of 0.008 mGal. Repeated observations in
different campaings over 11 gravimetric points have shown an agreement
above 0.05 mGal. Despite Doflana National Park is a big area, there were
significant limitations to have good gravity coverage due to the existence
of large extensions of water, areas restricted for nesting or for protected
species.

GPS receivers, (Trimble 4000 SSI, Trimble 4800 and Leica GS530),
were used for planimetric positioning of the gravity data. The
coordinates are referenced to the ETRF89 frame due to the use of 4
points of the national geodetic network REGENTE (Barbadillo and
Quirds, 1996) in the differential static observations.

Finally, altimetric information was obtained using high-precision
levelling (two digital levels were used) related to the national
precision levelling network (N.A.P., which establishes the altimetric
datum in Spain), in this particular case 3 points of the levelling
between Huelva and Sevilla were used.
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3.2. Digital model for elevations and depths

A digital elevation model is needed for Bouguer gravity anomalies
computation. The digital elevation model used was produced by
integrating the corresponding part of the Spanish National Geograph-
ic Institute (IGN) Digital Terrain Model at scale 1:25000 (referenced to
Hayford's ellipsoid and to the mean sea level in Alicante) and the
SpanishAMarine Hydrographic Institute (IHM) 442 navigation chart

705000

(referenced to WGS84 ellipsoid and to the maximum low tide of the
studied area). Due to the different geodetic reference system used in
the two data set a unification has been done using a coordinate
transformation (Nufiez, 2004). The final digital elevation model
covering the National Park is 62 km in NS direction and 42 km in
EW direction, with a 25 x 25 m resolution and an accuracy better than
3 m. The geodetic reference system of this final model is Hayforcls
ellipsoid and the altimetric reference is the mean sea level, Fig. 5.
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Fig. 4. Location of the observed gravity points. UTM 29 N coordinates. GRS80 reference ellipsoid.

Please cite this article as: Martin, A., et al., A comparison of robust polynomial fitting, global geopotential model and spectral analysis for
regional-residual gravity field separation in the Dofiana National Park (Spain), J. Appl. Geophys. (2011), doi:10.1016/j.jappgeo.2011.06.037



http://dx.doi.org/10.1016/j.jappgeo.2011.06.037
Original text:
Inserted Text
"’"

Original text:
Inserted Text
"have"

Original text:
Inserted Text
"x"

Original text:
Inserted Text
"’"


177

178
Q6179

180
182
183
184
185

188
188
189
190

192
193
194
195
196
197
198
199

t1.1

t1.4
t1.5
t1.6

A. Martin et al. / Journal of Applied Geophysics xxx (2011) XXX-XXX 5

| | |

L 1
\\ @ EL ROCIO
4110000*\:}
2

4100000

4090000 ATIANTIC OCEAN
Z

4080000

o LUCIO M. LOPEZ

710000 720000

o
(2
- T T 'J \)QL - g ?’g}j .

730000

T
740000 750000 760000

Fig. 5. Digital elevation and depths model. Mean: 4.8 m, max: 131 m, min:I40 m. UTM 29 N coordinates. GRS80 reference ellipsoid.

4. Bouguer gravity anomalies

Bouguer gravity anomalies were calculated with the usual expres-
sion (Heiskanen and Moritz, 1967), Fig. 8:
AgBouguer — AgFree—air _B+C (1)
Cis the classical terrain correction, computed by rectangular prism
integration method, taking into account the resolution of the digital

elevation model (Forsberg and Tscherning, 1981), B is the Bouguer
correction:

B = 2nKpH ()

where K is the universal gravitational constant, p is the crustal density
(2.67 gr/cm?) used in the Bouguer correction and H is the height of the
point in metres, and the free-air anomalies (Ag™~%") were
calculated using the following equation:

AgFree—air = g + 0.3086H—y, o

where g expresses the observed gravity value and vy, is the normal
gravity value on the GRS80 reference ellipsoid computed using
Somigliana formula.

Due to the small variations in elevation, Fig. 5, the maximum value
for terrain correction is 0.089 mGal.

Table 1 presents a statistical summary of the Bouguer gravity
anomalies obtained after gross-error detection and elimination as
explained below, where the high gravity gradient in the area is clear,
reaching values close to 40 mGal in less than 50 km.

Table 1

Statistical summary of the observed Bouguer gravity anomalies, the differences
between the interpolated anomalies and their values for these points, and reduced
Bouguer anomalies. Magnitudes in mGal.

Mean o Range Max. Min.
(mGal) (mGal) (mGal) (mGal) (mGal)
Agobs —9.684 11.803 42987 10.679 —32307
Aovs —Agme - 0.012 1.907 12.469 5521 +_6.948
Aghed- 2.345 2.186 9.527 7911 “1615
A

In order to completely validate the observed gravity, a method to 201
found posible errors is performed (gross-error detection). This search 202
is based on the interpolation of each gravity anomaly from the rest of 203
the data (Ag;,¢) and their comparison with the observed value (Ag,ps). 204
A point is thought to be prone to gross-error if the following equation 205
applies, (Tscherning, 1991): 206

2 2 14
|A8aps —Aine| > k[T + s * )

where k is a constant normally adopted as equal to 3, 0%, is the error 208
variance of the interpolation and o2 is the error variance of the 209
observations. 210

The most frequently method employed to interpolate data in many 211
of the geodesic and geophysical applications is the least squares 212
collocation method, (Moritz, 1980). The following expression is used 213
in order to obtain the interpolated gravity anomaly at point P: 214

Agp = Cp (Cij + Ce) _lAgi (5)

where Cp; is the transposed covariance vector of the gravity anomaly 216
between the calculation point P and points i, where the gravity 217
anomaly was observed; C; is the covariance matrix between the 218
points where the gravity anomaly was observed; C, is the covariance 219
diagonal error matrix of the observation points; and Ag; is the 220
observed gravity anomaly vector. The interpolation error variance can 221
be calculated by means of the following expression, (Moritz, 1980): 222

-1
Otag = Cor—C (G + C) G (6)

where Cpp is the variance of the gravity anomaly at point P. 223

In order to complete the above process, the covariance function 225
should be defined. In this study, empirical covariance was calculated 226
using the observed points (Knudsen, 1985). The following rule of 227
thumb was used to obtain the optimum correlation step to determine 228

empirical covariance (Tscherning and Forsberg, 1992): 229
2 dO.3>2

eg =Gyl — 7
d 0( v (7)
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where ey is the desired mean error, equal to 0.05 mGal in agreement
with the observed mean error obtained by repeated observations, Cy
and s are the variance and correlation distance respectively deduced
from the empirical covariance distribution, and d is the correlation
step. A correlation step of 0.018°, approximately 2 km, is obtained in
order not to lose information. The empirical function, Fig. 6, has to be
adjusted to a covariance model. Barzaghi et al. (1992) suggest various
models of definite positive covariance functions, from which the
selected function is (Camacho et al., 1997; Montesinos et al., 1999):

C(d) = CoJo(cd)e ™ ®)

where J, is the zero-order Bessel function, Cy is the variance of the
empirical covariance distribution and b, and ¢ are parameters
calculated by an iterative least square adjustment to provide the
best possible fit of function C(d) to the empirical covariance values,
and d is the distance.

As described in Camacho et al. (1994, 1997), once the gravity
anomalies were calculated, the resulting residuals were considered
for a second covariance analysis to detect, if possible, a secondary
correlated signal in the gravity anomalies. Fig. 7 shows the empirical
and adjusted covariance model, following the same procedure as
before. The optimum correlation step is 0.011°. Note that this
secondary signal is assumed to be uncorrelated noise, at least for
the mean distance between gravity stations, so no further signal could
be detected; therefore, only the first signal is used for interpolation.

By using this methodology, no point was found that would present
gross errors. Table 1 presents a statistical summary of the Bouguer
gravity anomalies where the high gravity gradient in the area is clear,
reaching values close to 40 mGal in less than 50 km. The second row
corresponds to the statistical summary of the results obtained when
comparing the interpolated values and the observed values.

Once all the points observed are validated, the Bouguer gravity
anomaly of any other point within the Doflana National Park can be
obtained by using Eq. (5) and Eq. (6), the adjusted covariance function
of Fig. 7 and the observed gravity anomalies.

5. Regional:residual gravity field separation

The existence of the Eartth gravitational field is a consequence of
the superposition, within the crust, of masses with different densities.
In general, this mass superposition is difficult to distinguish or identify
individually. Terms such as “residual or local” and “regional” are often
used to differentiate anomalies due to local causes close to the Earthf

Bouguer anomaly (mGal?)
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Fig. 6. Adjusted covariance function (line) and empirical covariance distribution (circles).
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Fig. 7. Secondary adjusted covariance function (solid line) and empirical covariance
distribution (circles).

surface from deeper regional causes (Blakely, 1996; Dobrin and Savit,
1988; Sharma, 1997; Torge, 1989).

There are basically three methods for separating regional field from
residual field:

* The adjustment of a polynomial to the gravitational field, assuming that
a polynomial surface adequately models the fields regional component.
The smoothness of the field is controlled by the polynomial degree,
which should be low (see for instance, Camacho et al., 1994; Montesinos
etal, 1999).

The use of a global geopotential model to eliminate the field's low
frequency component. The advantage of using this model is that it
was obtained with actual gravity data gathered throughout the
Earth (see for instance, Featherstone, 1997; Hackney et al., 2004).
Spectral methods based on calculating the power spectrum of the
gravitational signal and eliminating the low frequency components
(see for instance, Ates and Kearey, 2000; Carbé et al., 2005; Chavez
et al., 2007). This wavelength filtering can be used toEmphasise or
even reveal the existence of residual anomalies. High-pass filters,
directional filters or the second vertical derivative are used to

enhance short-wavelength components of the gravity field (Dobrin
and Savit, 1988; Lodolo et al., 2007).
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Fig. 8. Bouguer gravity anomalies. UTM 29 N coordinates. GRS80 reference ellipsoid.
Units are mGal.
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5.1. Low degree polynomial adjustment

Given the dimensions of the working area and taking into consider-
ation the low gradient of the Bouguer anomalies (Fig. 8), it seems logical to
use a low-degree polynomial for adjustment. The process is based on the
progressive introduction of coefficients, that is, first, second, third, fourth,
etc., degree polynomial adjustment should be done in that order. The
result obtained after the substraction of the part corresponding to the
polynomial adjustment to the original gravity data is the residual Eravity
signal. Fig. 9a shows the residual gravity field after first degree polynomial
adjustment and elimination, andfig. 9b, ¢, d after second, third and fourth
degree polynomial adjustment and elimination, respectively. As can be
seen, the adjustment to a fourth polynomial degree absorbs the major part
of the gravity signal, so no residual signal can be found. Obviously the
optimal polynomial to separate regional and residual gravity signal from
the original data is the previous to that one which eliminates the major
part of the total gravity signal, that is the third degree polynomial
adjustment.

Fig. 10 shows the residual component of this third-order adjustment
over the map of geological structures.

In order to obtain the coefficients for every polynomial (first, second,
third and fourth degrees), a least square prediction was carried out using
the robust polf/‘nomial fit described in Beltrao et al.*(1991 ). This

procedure is based on an iterative process that re-weights design matrix
equations so that the weight w of a gravity observation i for iteration k
will be:

wi=e", if t<548, (9a)
and
_ 2
wh = _o,1<t 548), if 2548, (9b)
max

where t =0.6745r = Vs =1, is the maximum absolute residue in
iteration (k— 1), s~ is the mean of the absolute residues of iteration
(k—1). Constant 0.6745 causes s* =) to become a consistent predictor
of standard deviation if Gaussian noise-contaminated observations are
presented. Value 5.48 is chosen as it practically corresponds to the null
weight of Eq. (9a). For the first iteration, the weight vector value is the
result of estimated observation error, obtained by repeated field
measurements at the same points. With this method the best
coefficients for each polynomial are obtained.
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5.2. Use of a global geopotential model

Since the launch of the CHAllenging Minisatellite Payload (CHAMP)
and Gravity Recovery and Climate Experiment (GRACE) missions (2000
and 2002, respectively), more than 25 new global geopotential models
(GGM) have become available to the scientific community through the
public domain http://icgem.gfz-potsdam.de/ICGEM. These models lead
to significant improvement of our knowledge of the long wavelength
part of the Earth's static gravitational field, so can be used for regional-
residual gravity field separation. Since 2004, the United States National
Geospatial-Intelligence Agency (NGA) has embarked upon the devel-
opment of a new Global Geopotential Model (GGM) of very high degree
and order (Pavlis et al., 2004). This new model is the EGM2008 (Pavlis et
al., 2008), complete up to degree and order 2159. It also has additional
coefficients up to degree 2190 and order 2159, recovering the
gravitational field up to 20 1<m*wavelengths. EGM2008 is based on the
following data sets: a new 5’ x5! gravity database for the entire planet
provided by the National Geospatial-Intelligence Agency, data from the
GRACE satellite mission (ITG-GRACEO3S geopotential model, Mayer-
Giirr, 2007, along with its complete error covariance matrix, was used),
a new elevation database based on the Shuttle Radar Topographic
Mission solution along with other databases (GTOPO30, ICESat, etc.),
and the new mean sea surface using data from the Topex/Poseidon,
Jason-1, ERS-1/2, Geosat, Envisat, GFO and ICESat altimetric satellites.

The standard deviation of gravity anomaly is better than 3 mGal in
the research area, Pavlis and Saleh, 2005, http://earth-info.nima.mil/
GandG, and can be considered as a constant due to the small dimensions
of the studied area. Fig. 11 is a plot of EGM2008 GGM, whilst Fig. 12
shows the reduced gravity field, namely the result of elfminating the
gravity anomalies of the global model from Bouguer gravity anomalies,
on the map of geological structures. This reduced gravity field
corresponds to the residual gravity component in the regional-residual
gravity field separation schema defined in this paper. Table 1 shows the
statistical summary of the residual anomalies where the range of
anomalies reduces significantly compared with the original Bouguer
anomalies.

5.3. Signal filtering

In order to achieve Fourier's analysis, Bouguer anomalies should be
interpolated to a grid. This in’t‘erpolation was carried out using Eq. (5)

A5
ATLANTIC
EA

4085000 /gm\ B,
& 0 5 Km
—
715000 720000 725000 730000 735000 740000 745000

Fig. 11. Gravity anomalies of the EGM2008 global geopotential model. UTM 29 N
coordinates. GRS80 reference ellipsoid. Units are mGal.

and Eq. (6). The optimum grid spacing between nodes should be
carefully studied. It is of no value to create a much finer grid than the
one justified by the original data distribution and quality, so the grid
spacing of 2x 2 km, as Eq. (7) indicates, has been used. The statistical
summary of the Bouguer anomalies can be seen in Table 2.

The mean radial power spectrum of gravity data can be divided, in
general, into three segments (Carbé et al., 2005; Chavez et al., 2007;
Grupta and Ramani, 1980). The part at the long wavelength with a
steep slope is assigned to the regional gravity signal (sources that are

deep and/or broad). The short wavelengths, with flatter slope, are :

assigned to the residual gravity signal (relatively shallow sources). At
very high frequencies, the spectrum is dominated by the effects due to
measurement errors, gridding errors, etc.

Fig. 13 presents the mean radial power spectrum of the Bouguer

anomaly grid. As can be seen two linear segments of differentiated slope :
can be lecognised, the separation of these two segments is situated at :

the 15 km wavelength, but we cannot conclude that this is the
wavelength for regional;residual potential field separation because,

4095000 51 anTIC

OCEAN
40000004 — Cress-Sedion

QUATERNARY DELTAIC UNIT
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4085000 [ )&usis! 3
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Fig. 12. Reduced (residual) Gravity anomalies of the EGM2008 global geopotential
model. UTM 29 N coordinates. GRS80 reference ellipsoid. Units are mGal.
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Table 2
Statistical summary of the Bouguer anomalies (Ag) and reduced Bouguer anomalies
(AgRe?) calculated on a 2 x 2 km grid and the associated error. Magnitudes in mGal.

Mean o Range Max. Min.
(mGal) (mGal) (mGal) (mGal) (mGal)
Agine (grid) [11.874 12334 45.044 12.603 [32.440
Opgine 3.322 2.782 10.442 10.457 0.015
(grid)

first of all, the regional field has much larger wavelengths than what can
be recovered in the studied area, usually maximum recoverable
wavelength is about 25-40 km (Carb6 et al., 2005; Chavez et al., 2007;
Grupta and Ramani, 1980), and secondly, it is well known that deep
seated sources cannot produce short wavelength fields, however large
shallow structures can produce long wavelengths, so the wavelengths
over 15km correspond to the wavelengths of local (residual)
sedimentary structures, which are the principal structures identified
in the polynomial regional-residual separation as can be concluded
from Figs. 14 and 15, which show the mean radial power spectrum of the
residual gravitational field for the third order polynomial adjustment on
Bouguer anomalies and residual Bouguer anomalies from EGM2008
GGM respectively. These power spectrum plots are quite similar to the
power spectrum plot in Fig. 13: the two differentiated segments are
shown with a separation at the 12 km wavelength in Fig. 14 and at the
15 km wavelength in Fig. 15, indicating that the same features are
present in the Bouguer anomalies and in the residual (third order or
EGM2008) Bouguer anomalies, that is, a part of the residual gravity
signal.

Finally these sedimentary structures, located at the long wave-
lengths (from 15 km), cannot be separated from the original signal
because the cutting wavelength is nearly half the size of the area.
Therefore, the coefficients of the longer wavelengths are not well
determined by a Fourier analysis which may lead to relatively large
uncertainties in the filter outcome.

The only certain point is that noisy cut off is located in the lower
part of the spectrum (12;15 km.), thich is the same Xvavelength
obtained in other works (Carbé et al. 2003 and Chavez et al., 2007 for
example).

In conclusion, signal filtering can not be done here simply because
the recovered area is too small.

6. Interpretation of residual anomalies

Residual gravity anomalies related to the third-order polynomial
adjustment, (Fig. 11) shows a low density area (low gravity anomaly

50+ q
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40+

Log10 (power)
i
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wavelength in Km

Fig. 13. Radial-averaged power spectrum of Bouguer anomaly map. Units are mGal.
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Fig. 14. Radial-averaged power spectrum of the residual gravitational field for the third-
order polynomial adjustment on Bouguer anomalies.

values, with regard to neighbouring values) that crosses the centre of
the park from NE to W. This low-density area corresponds to low
density sediments from the Marshlands in the NE area and, in the W, it
is situated between the eolic mantle of mobile sands (dunes) and
stabilised sands. The alluvial deposits situated at the NW part of the
park generate a low relative density area, Fig. 2 and, finally the low
relative density area in the South corresponds to the southern
settlement of stabilised sands or old beach, whose low density value is
due to its location at high tide level, Fig. 2. The high relative density

area located in the SW corresponds to the eolic mantle of mobile 4
sands (dunes), and, finally, the relative high density feature located at 4

the N, crossing from N to NW, are related to the basal sands.

Fig. 12 (residual gravity anomalies related to EGM2008 GGM),
shows the same behaviour as Fig. 10, but with high marked trends,
related in particular to the high relative density area of the eolic

mantle of mobile sands and the basal sands that completely cross the 4:
research area from NE to NW (except for the low density anomalies 4

related to the alluvial deposit). These marked trends, compared to
Fig. 10, can be clearly found in Fig. 16 and Fig. 17, where the two cross-
sections are reproduced (Fig. 3) with the residual gravity values of the

419
420
421
422
423
424
425

profiles plotted. The slopes of the EGM2008 residual gravity profile 43¢

are higher than the residual gravity profile of the third-order -

adjustment. This is expected due to the omission error of EGM2008,
which generates signal in the residual gravity anomalies from more
deeper sources than the third-order polynomial adjustment. But both
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e o @ = = e
. (22} o - N L o™ @ %]

2
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wavelength in Km

Fig. 15. Radial-averaged power spectrum of the residual gravitational field from
EGM2008 GGM.
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Fig. 16. Geological cross-section AA’ of Fig. 2 with the computed residual gravity anomalies from EGM2008 (dashed line) and from third-order polynomial adjustment. Dots line

corresponds to the modelled gravity of the geological features.

gravity profiles in the two sections have the same behaviour: for the
AA] cross-section low relative density values in the marshlands and
high relative density values related to basal sands in the NE area and
mobile sands in the W area can be found and for the BB] cross-section
the low relative density values related to the marshlands and the high
relative density values related to the basal sands can be observed.
Finally, these figures show that the above interpretations are not only
due to lateral density variations, but also to thickness variations.

In order to check the geometry and density of the geological
features, gravity profiles (Fig. 16 and Fig. 17) were modelled. The
measure of materials; density is quite difficult due to the imposibility
to obtain a good value for the volume of the material in a borehole:
everything s detached material (sand, silt, clay) that collapse during
the extraction process. So a mean value for sands (2.3 gr/cm?®) was

o

-50
-100
-150

10Km

mGal

assigned for basal sands, eolean sands (dunes) and alluvial sands,
2.0 gr/cm? for the materials of the marsh (which is the - mean density
for unconsolidated sediments (Buger, 1992)) and 2.4 gr/cm?® for basal
silt. The modelling was carried out with the GravModeler software,
which performs 2D modelling of gravity data based on the line
integral approach of the classical Talwani method (Talwani et al.,
1959) using bodies of various densities embedded within a homoge-
neous background. The separation line between the 2.3 gr/cm3
structures and the marsh in the two cross-sections has been modified
in order to give the best approximation fitting to the residual gravity
anomalies produced by the third-order polynomial adjustment. Some
differences between modelled and observed gravity can be found in
the limits of the profiles due to the software treatment of the vertices
as infinitely far to the left and right.

LUCIO M. LOPEZ

Modified contact line for
gravity modelling

Fig. 17. Geological cross-section BB’ of Fig. 2 with the computed residual gravity anomalies from EGM2008 (dashed line) and from third-order polynomial adjustment. Dots line

corresponds to the modelled gravifﬁ of the geological features.
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7. Conclusions

In order to carry out the gravimetric study of the Dofiana National
Park and draw some geological conclusions, the regional component
must be separated from the residual one within the gravitational
signal. This separation was obtained by means of a third-order
polynomial adjustment to the Bouguer gravity anomalies and the use
of the EGM2008 global gravitational model.

The results concluded that the residual anomalies obtained from
third-order adjustment or from EGM2008 GGM are equivalent,
showing the great possibilities of the very-high degree global
geopotential model EGM2008 for gravimetric studies and regional-
residual gravity field separation. Nevertheless it is not possible to
conclude which is the best suited method to perform a correct
regional-residual separation, in any case the use of, at least, two of
them (including spectral methods) are highly recommended.

The interpretation of the results is justified by the well-known
geological aspects of the park: low relative density areas are related to
the Marshlands, alluvial deposits and the old beach whilst high
relative density areas are related to the variability of thickness of the
dunes and basal sands. The most important differences between
geology and residual gravity field are related to the modification of
some boundaries for a correct modelling of the cross-sections, partly
due to the distance between gravity observations and partly due to a
possible bad identification of the specific precise limits of the
geological structures within the Park.
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