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Abstract

This thesis deals with two characteristic problems in visual feedback robot
control: 1) sensor latency; 2) on providing suitable trajectories for the robot
and for the measurement in the image. All the approaches presented in this
work are analyzed and implemented on a 6 DOF industrial robot manipu-
lator or/and a wheeled robot.

Focusing on the sensor latency problem, this thesis proposes the use of
dual-rate high order holds within the control loop of robots. In this sense,
the main contributions are:

- Dual-rate high order holds based on primitive functions for
robot control (Chapter 3): analysis of the system performance
with and without the wuse of this multi-rate technique from
non-conventional control. In addition, as consequence of the use of
dual-rate holds, this work obtains and validates multi-rate controllers,
concretely dual-rate PIDs.

- Asynchronous dual-rate high order holds based on primitive
functions with time delay compensation (Chapter 3): gene-
ralization of asynchronous dual-rate high order holds incorporating
an input signal time delay compensation component, improving thus
the inter-sampling estimations computed by the hold. It is provided
an analysis of the properties of such dual-rate holds with time de-
lay compensation, comparing them with estimations obtained by the
equivalent dual-rate holds without this compensation, as well as their
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implementation and validation within the control loop of a 6 DOF
industrial robot manipulator.

Multi-rate nonlinear high order holds (Chapter 4): genera-
lization of the concept of dual-rate high order hold with nonlinear
estimation models, which include information about the plant to be
controlled, the controller(s) and sensor(s) used, obtained from ma-
chine learning techniques. Thus, in order to obtain such a nonlinear
hold, it is described a methodology non dependent of the machine
technique used, although validated using artificial neural networks.
Finally, an analysis of the properties of these new holds is carried out,
comparing them with their equivalents based on primitive functions,
as well as their implementation and validation within the control loop
of an industrial robot manipulator and a wheeled robot.

With respect to the problem of providing suitable trajectories for the

robot and for the measurement in the image, this thesis presents the novel
reference features filtering control strategy and its generalization from a
multi-rate point of view. The main contributions in this regard are:

- Reference features filtering control strategy (Chapter 5): a

new control strategy is proposed to enlarge significantly the solution
task reachability of robot visual feedback control. The main idea is
to use optimal trajectories proposed by a non-linear EKF predictor-
smoother (ERTS), based on Rauch-Tung-Striebel (RTS) algorithm, as
new feature references for an underlying visual feedback controller. In
this work it is provided both the description of the implementation
algorithm and its implementation and validation utilizing an industrial
robot manipulator.

Dual-rate Reference features filtering control strategy (Chap-
ter 5): a generalization of the reference features filtering approach
from a multi-rate point of view, and a dual Kalman-smoother step
based on the relation of the sensor and controller frequencies of the
reference filtering control strategy is provided, reducing the computa-
tional cost of the former algorithm, as well as addressing the problem
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of the sensor latency. The implementation algorithms, as well as its
analysis, are described.






Resum

La present tesis proposa solucions per a dos problemes caracteristics dels
sistemes robotics el els que el bucle de control es tanca tnicament utilitzant
sensors de visio artificial: 1) la laténcia del sensor; 2) 'obtencié de trajec-
tories factibles tant per al robot com per les mesures en la imatge. Tots els
métodes propostos en aquest treball son analitzats, validats e implementats
utilitzant un brag robot industrial de 6 graus de llibertat i/o un robot amb
rodes.

Atenent al problema de la laténcia del sensor, esta tesis proposa 1'ts de
retenidors bi-freqiiéncia d’ordre alt a dins del llagos de control de robots.
Al respecte, les principals contribucions son:

- Retenidors bi-freqiiéncia d’ordre alt basats en funcions pri-
mitives a dintre dels llagos de control de robots (Capitol 3):
analisis del comportament del sistema amb i sense I'tts d’aquesta téc-
nica de control no convencional. A més a més, com a conseqiién-
cia de I'ts dels retenidors, obtenci6 i validacié de controladors multi-
freqiiéncia, concretament de PIDs bi-freqiiéncia.

- Retenidors bi-freqiiéncia asincrons d’ordre alt basats en fun-
cions primitives amb compensaci6é de retards (Capitol 3): ge-
neralitzacio6 dels retenidors bi-freqiiéncia asincrons d’ordre alt inclouen
una component de compensacio del retras en la senyal d’entrada al re-
tenidor, millorant aixi les estimacions inter-mostreig calculades per el
retenidor. Es proporciona un analisis de les propietats dels retenidors
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amb compensacié del retras, comparant-les amb les obtingudes per
el seus predecessors sense la compensacio, aix{ com la seua imple-
mentaci6 i validacié en un brag robot industrial de 6 graus de lliber-
tat.

Retenidors multi-freqiiéncia no-lineals d’ordre alt (Capitol
4): generalitzacio del concepte de retenidor bi-freqiiéncia d’ordre alt
amb models d’estimacié no lineals, incloent informacié tant de la
planta a controlar, com del controlador(s) i sensor(s) utilitzat(s),
obtenint-la a partir de técniques d’aprenentatge. Aixi doncs, per
obtindre el retenidor no lineal, es descriu una metodologia indepen-
dent de la ferramenta d’aprenentatge utilitzada, pero validada amb
I'is de rets neuronals artificials. Finalment es realitza un analisis de
les propietats d’aquestos nous retenidors, comparant-los amb els seus
predecessors basats amb funcions primitives, aixi com la seua imple-
mentaci6 i validacié6 amb un brag robot de 6 graus de llibertat i amb
un robot mobil de rodes.

Per el que respecta al problema de generaci6 de trajectories factibles per
al robot i per la mesura en la imatge, aquesta tesis proposa la nova estratégia
de control basada amb el filtrat de la referéncia i la seua generalitzacié des
de el punt de vista multi-freqiiéncia.

- Estratégia de control basada amb el filtrat de la referéncia

(Capitol 5): una nova estratégia de control es proposada per ampliar
significativament 1’espai de solucions dels sistemes robotics realimen-
tats amb sensors de visio artificial. La principal idea es la d’utilitzar
les trajectories optimes obtingudes per una trajectoria predita per
un filtre de Kalman seguit d’un suavitzat basat en I'algoritme Rauch-
Tung-Striebel (RTS) com noves referéncies per a un control donat. En
aquest treball es proporciona tant la descripci6 del algoritme aixi com
la seua implementaci6 i validacié utilitzant un brag robotic industrial
de 6 graus de llibertat.

Estratégia de control bi-freqiiéncia basada en el filtrat (Capi-
tol 5): generalitzacio de 'estratégia de control basada am filtrat de
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la referéncia des de un punt de vista multi freqiiéncia, amb un filtre
de Kalman multi freqiiéncia i un Kalman-Smoother dual basat amb
la relaci6 existent entre les freqiiéncies del sensor i del controlador, re-
duint aixi el cost computacional de l’algoritme i, al mateix temps,
donant soluci6 al problema de la laténcia del sensor. L’algoritme
d’implementaci6 d’aquesta técnica, aixi com la seua validacid uti-
litzant un bra¢ robot industrial de 6 graus de llibertat, es descriu
a lo llarg d’aquesta tesis.






Resumen

La presente tesis propone soluciones para dos problemas caracteristicos de
los sistemas roboticos cuyo bucle de control se cierra tinicamente emple-
ando sensores de vision artificial: 1) la latencia del sensor; 2) la obten-
cion de trayectorias factibles tanto para el robot asi como para las medidas
obtenidas en la imagen. Todos los métodos propuestos en este trabajo son
analizados, validados e implementados utilizando brazo robot industrial de
6 grados de libertad y/o en un robot con ruedas.

Atendiendo al problema de la latencia del sensor, esta tesis propone el
uso de retenedores bi-frequencia de orden alto dentro de los lazos de control
de robots. En este aspecto las principales contribuciones son:

- Retenedores bi-frecuencia de orden alto basados en funciones
primitivas dentro de lazos de control de robots (Capitulo
3): analisis del comportamiento del sistema con y sin el uso de esta
técnica de control no convencional. Ademés, como consecuencia del
empleo de los retenedores, obtenciéon y validaciéon de controladores
multi-frequencia, concretamente de PIDs bi-frecuencia.

- Retenedores bi-frecuencia asincronos de orden alto basados
en funciones primitivas con compensacién de retardos (Capi-
tulo 3): generalizacion de los retenedores bi-frecuencia asincronos de
orden alto incluyendo una componente de compensacién del retardo en
la senal de entrada, mejorando asi las estimaciones inter-muestreo cal-
culadas por el retenedor. Se proporciona un analisis de las propiedades
de los retenedores con compensaciéon del retardo, comparandolas con

XX1
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las obtenidas por sus predecesores sin compensacion, asi como su im-
plementacién y validacién en un brazo robot de 6 grados de libertad.

Retenedores multi-frecuencia no lineales de orden alto (Capi-
tulo 4): generalizacion del concepto de retenedor bi-frecuencia de
orden alto con modelos de estimacién no lineales, los cuales incluyen
informacion tanto de la planta a controlar, como del controlador(es) y
sensor (es) empleado(s), obtenida a partir de tecnicas de aprendizaje.
Asi pues, para obtener dicho retenedor no lineal, se describe una me-
todologia independiente de la herramienta de aprendizaje utilizada,
aunque validada con el uso de redes neuronales artificiales. Finalmente
se realiza un anélisis de las propiedades de estos nuevos retenedores,
comparandolos con sus predecesores basados en funciones primitivas,
asi como su implementacién y validacién en un brazo robot de 6 grados
de libertad y en un robot mévil con ruedas.

Por lo que respecta al problema de generacion de trayectorias factibles
para el robot y para la medida en la imagen, esta tesis propone la nueva
estrategia de control basada en el filtrado de la referencia y su generalizaciéon
desde el punto de vista multi-frecuencial.

- Estrategia de control basada en el filtrado de la referen-

cia (Capitulo 5): una nueva estrategia de control se propone para
ampliar significativamente el espacio de soluciones de los sistemas
roboticos realimentados con sensores de vision artificial. La principal
idea es utilizar las trayectorias 6ptimas obtenidas por una trayectoria
predicha por un filtro de Kalman seguido de un suavizado basado en
el algoritmo Rauch-Tung-Striebel (RTS) como nuevas referencias para
un controlador dado. En este trabajo se proporciona tanto la descrip-
cion del algoritmo como su implementacion y validaciéon empleando
un brazo robotico industrial.

Estrategia de control bi-frecuencia basada en el filtrado de la
referencia (Capitulo 5): generalizacion de la estrategia de control
basada en filtrado de la referencia desde un punto de vista multi-
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frecuencial, con un filtro de Kalman multi-frecuencia y un Kalman-
Smoother dual basado en la relacion existente entre las frecuencias
del sensor y del controlador, reduciendo asi el coste computacional
del algoritmo y, al mismo tiempo, dando solucién al problema de la
latencia del sensor. El algoritmo de implementacion de este enfoque,
as{ como su validaciéon empleando empleando un brazo robot indus-
trial, es descrito a lo largo de la presente tesis.
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Chapter 1

Introduction

Visual feedback robot control has been studying along the last four decades
by many researchers, mostly from the areas of control and computer science,
as shows Figure It is a viable method for robot control based on the
utilization of visual information extracted from images to close the robot
control loop. Using vision in robot control makes it possible to solve different
problems, which can be handled safely based on the sensory visual data
without any contact with the environment.

Yet, until the last fifteen years, this field of research was not fully applied
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Figure 1.1: Visual feedback robot control related areas.
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in real-time processes because of technology limitations. Nowadays however,
the growth in robotics, computer science and sensor technologies has allowed
applying all the knowledge acquired in the past, solving and improving
thus all sort of applications, yielding a spectacular impact in several areas
including industrial manufacturing, automotive systems, medical robots for
surgery, and on.

Despite of this, there is still being very important issues that have to be
considered when vision sensors are used within automatic systems. These
issues include local or global stability, |Branicky] (1997); Chaumette| (1998);
\Gans and Hutchinson| (2007); [Park et al. (2012), robustness, Malis et al.
(2010); |Assa and Janabi-Sharifi (2014]), suitable trajectories for the robot
and for the measurement in the image, Pages et al.| (2006); (Chesi (2009b
and the problem of the sensor latency, Usai and Di Giamberardino| (2006
[Fujimoto (2003)); Sasajima and Fujimoto (2007)).

The commented problems in visual feedback robot control have not been
an obstacle to develop a wide variety of applications using all kind of robotic
platforms, ranging from robot manipulators, |[Kragic and Christensen! (2002),
underwater robots, Lots et al. (2001));|Heshmati-Alamdari et al.| (2014), areal
robots, Barajas et al. (2013); Nguyen et al| (2014), or humanoids robots,
\Agravante et al.| (2013); |Carbajal-Espinosa et al.| (2014). The actual com-
mercial applications avoid some of the commented problems by introducing
high technological devices, increasing thus the price of the application, or
well reducing the 3D match control problem to the more much simple 2D
control problem.

This demonstrates the interest this field of research awakes not only in
the academy society but in the society in general.

Motivations

Visual feedback robot control encounters different sort of issues, as the
sensor latency problem or task reachability. The first one is usually avoided
by the utilization of high speed cameras, increasing considerably the cost
of the application and decreasing their resolution. However, there are so
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many systems that use limited hardware, such as drones, small robots using
embedded hardware, etc., in which the sensor latency problem is a very
important issue that must be taken into account when controlling them.

For the second problem, there are many approaches trying to overcome
it, although the majority of them have a high computational cost that makes
them difficult to be implemented in hardware with hard real-time limita-
tions.

These sorts of problems have motivated us to accomplish the present
work.

Contributions and Manuscript Outline

This manuscript is compound of 6 chapters including the introductory and
the conclusions chapters. After the introductory chapter, it starts by re-
viewing the state of the art in multi-rate control schemes, non-linear and
optimal control, and visual feedback control. Then new approaches to solve
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the problem of sensor latency in visual feedback robot control are proposed
and their experimental evaluations are presented. Following, a novel con-
trol strategy for visual feedback robot control is formulated in order to
provide suitable trajectories for the measurement in the image, when using
hardware with limited resources. Then, its generalization from a multi-rate
point of view is formulated and a set of algorithms are provided. Finally,
the conclusions of these approaches are collected in the last chapter.

e Chapter 2. State of the art: In this chapter, state of the art on
multi-rate control is focused on dual-rate high order holds, nonlinear
control focused on optimal controllers, and visual feedback control in
the light of visual features used, control schemes designed and pro-
blems that could appear, is presented.

e Chapter 3. Visual feedback control based on dual-rate high
order holds: In this chapter, the sensor latency problem is addressed
via classical dual-rate high order holds, Solanes et al| (2011), which
are circuits for generating, from a sequence of inputs sampled at low
sampling rates, a continuous signal or a discrete one at a higher sam-
pling rate (see Figure . A set of experimental evaluations using
a wheeled robot performing path following task based on visual feed-
back data controlled by the well known Pure Pursuit controller, and
a 6 DOF industrial robot manipulator performing a visual feedback
control positioning task by considering the most usual and simple
features, which are the Cartesian coordinates of image points, are
presented, |Solanes et al.|(2011). Then, dual-rate high order holds are
generalized by considering time delays of the input signal. A gene-
ral formulation and algorithm are then described obtaining the new
Asynchronous Dual-rate High Order holds with Time Delay Compen-
sation. Experimental experimentation is provided by using a 6 DOF
industrial robot manipulator.

e Chapter 4. Visual feedback control based on dual-rate non-
linear high order holds: In this chapter, we propose a new dual-
rate hold function that includes information about the system to be



controlled, the specific controller used and the task performed. It is
based on machine learning techniques, which uses real data from the
system in order to learn the hold function. A methodology for ob-
taining such dual-rate nonlinear function is also presented by using
artificial neural networks as learning tool. Finally, experimental re-
sults are provided demonstrating the properties of such an approach,
Solanes et al.| (2012blfal).

e Chapter 5. Visual feedback control based on reference fea-
tures filtering control strategy: In this chapter, a new control
strategy is proposed to enlarge significantly the solution task reach-
ability of visual feedback robot control. The main idea is to use op-
timal trajectories proposed by a non-linear EKF predictor-smoother
(ERTS), based on Rauch-Tung-Striebel (RTS) algorithm, [Rauch et al.
(1965), as new feature references for an underlying visual feedback
controller. In addition to this, its generalization from a multi-rate
point of view and a dual Kalman-smoother step based on the relation
of the sensor and controller frequencies is provided, reducing thus the
computational cost of the algorithm, as well as addressing the pro-
blem of the sensor latency. Finally, experimental results are provided
showing up the properties of this new control strategy, |[Ernesto Solanes
et al.| (2013)); Solanes et al.| (2015).

This work has led to several publications in the robotic community.
Following the order they appear in throughout this chapter, here are the
contributions with the corresponding publications:

JCR Journal papers

- Solanes, J. Ernesto and Mufioz-Benavent, Pau and Girbés, Vicent
and Armesto, Leopoldo and Tornero, Josep. On Improving Robot
Image Based Visual Servoing Based On Dual-rate Reference Filtering
Control Strategy. In Robotica. Vol. FirstView, Pag. 1-18, 2015.

DOI 10.1017/S0263574715000454 ISSN 1469-8668
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International conference papers and non-indexed journals

Solanes, J. Ernesto and Armesto, Leopoldo and Tornero, Josep and
Girbés, Vicent. Improving image based visual servoing with reference
features filtering. In International Conference on Robotics and Au-
tomation (ICRA 2013). Karlsruhe, Germany, May 6-10, 2013. Page
3083-3088.

Solanes, J. Ernesto and Girbés, Vicent and Tornero, Josep and
Armesto, Leopoldo. Non-linear Dual-rate Controller for Path Follow-
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In 2013, a research stay of ten months, founded by Generalitat Valen-
ciana with the program VALi+d, was made at the Mechanical Department
of the University of California in Berkeley (USA), under the supervision of
Professor Masayoshi Tomizuka. In this period of research, several aspects
of the Chapter [3| concretely asynchronous dual-rate high order holds with
time delay compensation, as well as others not included in this work, such
as constrained LQR for visual feedback robot control, were developed.

Finally, during this thesis, several final undergrad projects have been
guided. One of them was awarded with the National OMRON award “Ini-
tiative to the Research and Innovation in Automatic Control”, closely related
to the topic of this Ph.D.

Final Undergrad Projects Guided

- Soluciones Industriales basadas en Robdtica y Vision by Andreu Co-
lomer Perpina. Guided by Josep Tornero Montserrat and J. Ernesto
Solanes Galbis. June 2013, ETSID, Technical University of Valencia
(Spain)

Final Undergrad Projects Awards

- Premio Omron de “Iniciacion a la Investigacién e Innovacién en Au-
tomatica” 2012/2013. Aplicacion Industrial de Multi-rate Robot Vi-
sual Servoing by Andreu Colomer Perpina. Guided by Josep Tornero
Montserrat and J. Ernesto Solanes Galbis



Chapter 2

State of the Art

2.1 Multi-rate Estimation and Control

Digital controllers and computer science have become almost essential in
our society. Daily, new devices flood the market, from mobile phones to
cars, offering new capabilities to make our life easier and more comfortable.

Industry is not alien to recent technological developments in computer
science and digital controllers, which are utilized for controlling almost all
mechanical systems such as robots, motors, machine tools etc., because of
cost, reliability, flexibility and compactness.

Figure shows the block diagram of a general digital control sys-

' 6,
) Sampler| N
(6)

Clz] —» H("E"‘i)er

Sampler ‘ O
(69

Figure 2.1: Digital control system.



10 CHAPTER 2. State of the Art

tem, where P.(s) is a continuous-time plant to be controlled, C(z) is a
discrete-time controller implemented in digital computer, d(¢) and n(t) are
disturbance and measurement noise, respectively. Because the discrete-time
controller has to deal with continuous-time signals in the digital control sys-
tems, it needs to have two samplers S for the reference signal r(¢) and the
output y(¢), and one hold H on the input u(t).

Therefore, there exist three time periods 9,, d,, d, which represent the
periods of r(t), y(t), and u(t), respectively. The input period §, is generally
decided by the speed of the actuator, D/A converter, or the calculation on
the CPU. Moreover, the output period ¢, is also determined by the speed
of the sensor or the A/D converter.

Current control systems usually hold hardware restrictions on these pe-
riods (d,, and/or d,). Moreover, in case of multi-variable systems, there exist
many time periods. However, the conventional digital control systems, also
known as single-rate control approach, make all periods equal to the longest
period for simplification.

On the other hand, the multi-rate sampling control systems have been
studied from the point of view both of control theories and practical appli-
cations.

2.1.1 Periodic Modelling

A general multi-rate system can be defined by a set of m-inputs and p-
outputs, as it is shown in Figure The inputs can only be applied

in a specific sampled time given by t% = <tﬁ13,tjf§, e ,t$§>, with v =

1,2,...,m, being the r-subscript of r} the total number of updates of the
m-input. In the same way, the outputs can only be measured in the sampled

time given by tYv = <t§;u‘,’, t3§7 ey tg1;,“,>, with w = 1,2,...,p, and being the
s-subscript of s¥ the total number of updates of the p-output. Supposing
that the input signal is sampled synchronously and considering the system

outputs periodic, the frame period is obtained as the least common multiple

0 =lem <t}“,tyw>, and the base period as the greatest common divisor § =
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Figure 2.2: Genear multi-rate scheme.

gcd <t;-‘”,tyw>. The relation between both periods is known as multiplicity

number N = %

In |Armesto and Tornero (2005), the authors provide a matrix based
method to model multi-rate MIMO systems taking into account the sam-
pling pattern of each input and output. The method is based on introduc-
ing a switching matrix in which its row refers to an input/output and the
columns to the moment in which the referred input/output is activated,
that is:

Ay(k) = diag{6" (k),v=1,2,...,m} (2.1)
Ay (k) = diag {6V (k),w=1,2,...,p} (2.2)
w1 mod(k,N) = - v
) (k:)—{o mod(k:,N);ér;-’}’j_1’2""’TT (2.3)
1 mod(k,N)=s¥] .
Yw — ’ ) — w
J (k)—{o mod(k,N)#3%"}’2_1’2""’85 (2.4)

with t;f” =7y é and t;l-/w = s 4.
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The main advantage of this modeling technique is the use of a model at
base period and therefore is oriented to real-time systems, which requires
information processed at high frequency. Using this technique it is possible
to design different elements of the control loop easily, such as controllers,
holds, samplers, multi-rate observers, etc.

2.1.2 Multi-rate Estimation based on Holds

Historically, the generalized hold is firstly introduced in|Chammas and Leon-
des| (1978)). In the generalized hold approach, shown in Figure the
control input is generated from u(k) by:

w(t) =Y h(t—k-8)u(k) (2.5)
=0

where h(t) is an arbitrary hold function and § is the frame period. This
function is also called the Chammas-Leondes’ generalized hold [Chammas
and Leondes| (1978).

Utilizing the hold function as a design parameter, it is possible to assign
all poles only by the gain output feedback without the state observer. This
approach was extended to feed-forward control in Kabamba (1987), where
simultaneous pole assignment, exact model matching, decoupling, and op-
timal noise rejection are successfully realized.

However, in this method, an arbitrary waveform is assumed to be ge-
nerated as the hold function h(t). In practice, it is very difficult to make
arbitrary hold function because h(t) is generally composed of exponential
and sinusoidal functions. Thus, in Chammas and Leondes| (1979); Kaczorek
(1985); |Araki and Hagiwara| (1985), the pole assignment method was modi-
fied to the multi-rate hold, in which the control input is piecewise constant,
as shown in Figure . Because this scheme is easily implemented by
ordinary D/A converters, the multi-rate hold is a practical solution of the
generalized hold.

Moreover, it is possible to assign not only poles but also zeros by the
generalized holds, [Kabambal (1987)), and multi-rate holds, |/Araki and Hagi-
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(a) Generalized hold. (b) Controller working at high frequency

Figure 2.3: Multi-rate holds

wara (1985); [Moore et al.| (1989); Mita et al.| (1990). These results have
brought great advantages because the discrete-time plant usually has un-
stable zeros in the conventional single-rate digital control system, and it is
impossible to allocate zeros by feedback control.

Other method to obtain practical solution to the generalized hold was
introduced by [Tornero and Tomizuka (2000); Tornero et al. (1999b). The
approach was coined as Dual-rate High Order Holds (DR-HOHs), and can be
seen as a generalization of conventional holds such as impulse hold (IH), zero
order hold (ZOH), first order hold (FOH), and second order hold (SOH),
which are in practice the most commonly used. Table shows, for the
three most used hold circuits, the continuous transfer function Gy(s), the
discrete transfer function Gy, ;(2") with the input hold at frame period &,
and dual-rate discrete transfer function, Gy, ;(z, 2V), and the discrete-time
algorithm, being ¢ = 0,1,..., N — 1. By following the procedure in [Tornero
and Tomizuka, (2000), other hold circuits and FIR filters can be obtained.

Furthermore, Armesto and Tornero| (2003a, 2005) introduced a metho-
dology to generate dual-rate high order holds by using all kind of primitive
functions. Moreover in|Armesto and Tornero| (2005)) an attempt to introduce
the dynamics of the system into the holder model was described. Due to
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HOLD IH ZOH FOH
Gh(s) 1 l—e;’”‘" (= —N&s)Z ( +N65 )
Gh,i(f) 1 1 i ; V)
. X _ f_M
Gn.i(s %) {o S hincruise () () (F )2 (%= )
Algorithm at & up(k,i)=u(k,0)- +-A; up(k,i)=u(k,0) uy(k,i)=u(k,0)+%[u ( —u(k—1,0)]

Table 2.1: Dual-rate High Order holds.

the relevance of such holds along this thesis, below we give a more detailed
explanation of this approach.

2.1.2.1 Dual-rate High Order Holds based on Primitive Func-
tions

In Armesto and Tornero| (2003a)) a general formulation valid for generating
DR-HOH circuits based on Lagrange extrapolator, Bezier parametric equa-
tions and Taylor series as primitive functions was presented. The concept
of primitive function is used to generate the set of signals at base-period ()
every frame-period (§), [Tornero and Tomizuka| (2002a) and |Armesto and
Tornero| (2003a)).

The primitive function uses the input values inducing an order of func-
tion complexity:

Z £t t) - u(te—1) (2.6)

where t;, = ké is the sampling-time for the last available input and t,_; =

— 18 the time previous frame periods. uy(t) is the hold output evaluated
at time ¢ based on inputs from ¢ to t;_;. Therefore, every base period, the
output is:

tk—i-Z(S anlzé tk l) (2.7)

where i= 0, 1,..., N —1. The notation for discrete sequence of input/output
values uses double index indicating the indexes for frame and base periods,
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that is u(k,i) = u(k-6 +i-6). Therefore the hold can be expressed in discrete

time as:
Z )-u(k —1,0) (2.8)

with f;;l(i) =f,(i-0).
On the other hand, the output for each update can be expressed as:

wy(ty +i-6) =Y £4(6-0)-u(tyy) (2.9)
=0
that can be rewritten as:
w((k+ 1/N)8) =~ £(i-6)-u((k — 1)) (2.10)
=0
The discrete function for each output is expressed as:
n((k+1/N)) Z j —1)) (2.11)

Applying the lifting technique Bamieh et al.[(1991)) to the output vector,
it takes the form:

> ErOpu((k —1)
uy(0) ol
On(e+1/N)=| =0 | ; £ (Dua((k — 1)) (2.12)
uy(N —1) n
> (N = Du((k 1)
= |

And its Z-transform is:

T (=) =G (zY) - T(=Y) (2.13)
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(2.14)

In addition, the transfer function of a dual-rate hold can be obtained in

the recursive form applying Equations[2.11and 2.12] obtaining the matrices
in estate space representation expressed at frame period:

with,

0
_ I
Ay(k) = :
0

£3.1(0)

f.(1)

Cu(k) = ’ :
£,(N - 1)

Gu(zN)=C)- (:NT—A,) " By + Dy

(2.15)
I
_ 0
B, = : (2.16)
0
£ 0(0)
£ 0(1)
h = :
fro(N —1)
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HOLD TRANSFER FUNCTION ENTRIES G (V)

ZOH I
FOH N
FBOH (G
FOTH i
3i i\2 .74 P P2\
soH <<1+;T+55N> )" | () 3 ) 1
i 2ZN i ()2 1-2271\]
SOBH <(H@\f) +WFZ(1<7V) +<2NZN )-I
e V(=) 1(i)2N
SOTH (( +W'zlé\f) > +(HT\2\(’2N) +2(NZ)N ) v

Table 2.2: DR-HOHs based on polynomial functions (transfer function re-
presentation).

with the LTI transfer function expressed at frame period:

] . ]
n . .
Z fn,l(l) ZN
G:M)y=| = . (2.18)
SN 1) N
= ]

Tables 2.2 and 2.3] show the DR-HOHs transfer function and discrete
algorithm, respectively, by using Lagrange extrapolation (denoted as HOH),
Bezier based functions (denoted as HOBH) and Taylor series based functions
(denoted as HOTH).

Moreover, in/Armesto and Tornero| (2005) a state space representation of
the DR-HOHs is formulated. This representation can be easily used whether
into SISO or MIMO systems. As a resume, a DR-HOH can be formulated
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HOLD DISCRETE ALGORITHM uy, (k, i)

ZOH u(k,0)

FOH ' |

FBOH ) u(k)— % u((k—1))

FOTH

SOH  (1+#&+1)°) utk, 0+ (3+()") -uk-1,0+5(% +(N)) u(k—2,0)
SOBH (14 55) - u(k, 0)+2(1+§)(ﬁ) (k—1,0)+ (%) u(k—2,0)
SOTH (144 +5(8)°)ulk,0)+(1+4) G u(k—1,0+1 (§)u(k—2,0)

Table 2.3: MR-HOH based on polynomial functions (discrete algorithm
representation).

as follows,
w, (k)= Cp (k) vy (k) + Dy (k) -u(k) |
with,
T—Ay (k) 0 0 Ay (k)
Ay(k)  I-Ay(k) 0 0
0 Ay(k) I—Ayuk) 0
(2.20)
Froo(i) [ — Au(k)] + Fr () Ay (k)]
Ch(k) _ Fn,l(i) [I - Au(k)} + Fn,Q(Z)Au(k) (2.21)
Fr(i) [I — Au(k)]
Dy (k) = Fpo(i) Ay (k) (2:22)

where A, (k) is defined as in Equation and F={F,0,Fp1,...,Fp,}is
the hold model, which is fully explained in |Armesto and Tornero| (2005)).
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2.1.2.2 Dual-rate Dynamic Model based Holds.

It is important to remark that even though holds based on primitive func-
tions have proved a very good performance working on nonlinear systems
such as robot manipulators, Solanes et al. (2011)), mobile robots, |Armesto
and Tornero| (2004); Armesto et al.| (2004), among others, this performance
is highly dependent on the primitive function used.

A first attempt to include the system dynamics into the hold prediction
model was described in |Armesto and Tornero| (2005)). It is about the use of
its dynamic model as tool used by the hold to provide the N-1 prediction
samples. In this sense, and if the dynamic model fits with the plant, such
predictions may perform better than the ones obtained by using primitive
functions.

Without loss of generality, let’s use the equation of a zero order hold,
which is:

Gp(s) = (1 — e NT¥) (2.23)

®» | =

As it is said before, the aim of this approach is to include the dynamic
model of the system inside the hold model. If Gp(s) is the transfer function
of the plant, then the expression of the hold model is:

Gp(s) = (1 — e NT9) Gyls) (2.24)

S

Now, if a first order dynamic model is utilized, the expression given by
Equation [2:24] becomes:

K

Gp(s) = (1 — e*NTS) m

(2.25)

where the parameter K refers to the system gain and 7 its response time.
Since an implementation point of view is worthy to obtain the time-

domain hold expression, as long as it has been done in the case of the dual-

rate holds based on primitive functions. Thus, using the inverse Laplace



20 CHAPTER 2. State of the Art

transform to Equation

_ o B 1/ e—NTs
Gp(s)=K-(1-e™). iy =K- [1/% s(s+/1/7) T S(sH/T)

£ s(ler/lz‘r)> - (1_6_1/Tt)'u<t) (226)
)) (1= e YNy (1 N §)

-1 67N6-5 . efN-J»s
L T( s sH /T

uh(k:-Nfﬂ—t):K-((l—e_l/Tt)~u(t)—T(l—e_l/T(t_k’N‘s))-u(t—k-N-5)> (2.27)

In Armesto and Tornero (2005) several examples are shown demonstrat-
ing their properties using linear examples.

2.1.3 Multi-rate Control

The multi-rate estimation techniques seen along this chapter can be used
to design new multi-rate controllers, Fujimoto et al.| (1999); |Albertos et al.
(1990). In this regard, the dual-rate high order holds shown in Section
were used in Tornero and Tomizuka (2000); [Tornero et al.| (2001b)) to
obtain equivalent dual-rate controllers. Along this thesis, several examples
will demonstrate how the discretization of controllers based on dual-rate
high order holds improve the performance of the overall system, getting
back most of the continuous controller properties.

In general, dual-rate controllers are composed by three different ele-
ments: a discrete controller working at high frequency, a dual-rate high
order hold, and a discrete controller working at low frequency. In this
sense, dual-rate hold circuit has two main functions: 1) being the interface
in between both frequencies, the high and the low one; 2) provide samples
at the instants where there is not measured data available.

The general expression of a multi-rate controller is given by:

[UO(ZN) e I_JN_l(ZN)] T= [GC’DRy()(ZN) e GC’DRyN_l(ZN)]T~E(ZN)
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SINGLE RATE > SINGLE RATE | ™
* CONTROLLER| _,, H CONTROLLER[ | DUAL-RATE -
> AT Low DR-HOH - | "ATHIGH | - |PLANT MODEL
FREQUENCY " | FREQUENCY |

 J

Figure 2.4: Multi-rate control structure.

where,
Ge,pro(zY)
Geprn-1(zY) ~
Gerroo(z) ... Gerron-1(2) Ghno(z)
= : : : : -Ge,rr(2V)
Genrn-10(2) ... Gempn-1n-1(2)] |Gpn-1(zV)
(2.29)

being G. pro(z"), the dual-rate controller transfer function, G gr(z) the
lifted model of the controller transfer function at high frequency, Gy, o(2)
the hold transfer function, and G.rr(z") the low frequency controller
transfer function. The general scheme of this approach can be seen in Figure
2.4

In the following, among the vast variety of controllers, multi-rate PID
and LQR versions are going to be described due to their use along this work.

2.1.3.1 Multi-rate PID

In |Tornero et al. (2001b) was presented the multi-rate PID controller. This
work assumes that a continuous PID controller is already designed in order



22 CHAPTER 2. State of the Art

to meet continuous time-domain and/or frequency-domain specifications.
Then, authors take the controller described in a multiplicative form:

1
Gprp(s) = K- (1 + ) (14 748) (2.30)
TiS ) N —r
PD
PI

where K, is the proportional gain, and 7; and 74 are the integral and deriva-
tive time-constants, respectively. It is possible to implement a dual-rate PID
controller separating the dynamics in two parts, [Tornero et al. (2001b)): a
PI at low frequency, a PD at high frequency and a DR-HOH interfacing
both controllers.

SN _ (1 _ N<5) o _Ta/8
N Ti N 1+74/0
Gpip(z2Y) = Ky —— 1t - Gp(z,2Y). Tl
2V —1 N—— z
—_——
DR-HOH .
PI controller at low freq. R-HO PD controller at high freq.

(2.31)

Some experiments using linear systems demonstrate the improvements
of such a dual-rate controller, not only with respect to its equivalent low
frequency, but with respect to the scheme based on a dual-rate hold and a
PID designed at high frequency.

2.1.3.2 Multi-rate Linear Quadratic Regulator

In (Colaneri and de Nicolao| (1995); Tornero et al. (1999a; [2001a), authors
present the multi-rate version of optimal controllers such as LQG. Given
the following stochastic system defined in the continuous-time domain:

x(s+1)=A.-x(s)+B.-u(s)

2.32
¥(5) = Co x(s) +De-u(s) (232

being the equivalent discrete-time domain system at ¢ defined as:
x(k+1)=As-x(k)+Bs-u(k) (2.33)

y(k)=Csx(k)+Ds-u(k)
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Assuming the following single-rate index:

IS g gt | Q@ M )
U CIEON R ] IRCED

*
where x(k) is the system state vector, u(k) the system input vector and Q,

* *
R v M have been obtained from the equivalent continuous index:

JC:% /0 T uT(t)]~[%c I‘{)Hﬁgg] dt (2.35)

with:

5
* T
Q= / ehe tQCeAct

0

N 5 t
M= / AllQ, [ / eAcTBCdT]dt (2.36)
0 0

N 5 t t B
R= / [ / BCTeACTTdT] Q. [ / eAcTBCdT}dH—RCé
0 0 0

In order to obtain the equivalent multi-rate index, an estimator like
interface is required. In this regard, in Tornero et al.| (1999a, [2001a)) dual-
rate high order holds where used for this purpose. Thus, the multi-rate
index is:

1 S x u é M x(k) | _
JMR = kao[ (k) up(k)] LV}T & Lh(k)] i
1Ny " Qurr(k) Maa(k)] [xaa(k)
ka_o[ Tir(k) ul(k)] [MZJ\FM(k) RMR(’C)] [ u(k) ]
where
Quatky = | ¥ MGE g gy | MDA
Ci (k)M Cj(k) R Cs(k) Cj (k) R Cs(k)

Ryr(k) = DT (k) R Dy (k)
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Finally, by using the Riccati equation, the optimal multi-rate control is
obtained as follows:

Aumr (k) = Ayp(k) — BMR(]‘C)RJT}R(/{)M&R(]?)
Sur(k) =Amr (k)Smr(k—1) [AMR (k) + KMR(k‘)] + Qumr(k)—
—Mur(k) Ry 5 (k)M 5 (k) »
Kur = [Rur(k) + BYp(k)Sur(k + 1)Byr(k)] -
‘BMR(k)SMR(k + 1) AMR (k})
u(k) = — (Ry/r(k)ML, . + Knr(k)) x(k)

(2.39)
On the other hand, it is possible to obtain the equivalent multi-rate
lifted LQR to the single-rate one by using also dual-rate high order holds

like interface, Armesto and Tornero (2005} 2006). Thus, let us define the
multi-rate lifted index as:

Jur =13 [Khp(kN) al(kN)] [1‘\%%’; gﬁ] [X]g&(]’f]])v )] (2.40)

with:

(2.41)

oox Py ox _oox Py %
5 Cf?aTR]%5Ch CgEiaTRstDh

_ * x  k _ * x ko
DIBs; RB;C;, D!Bs RBsDy



2.2. Nonlinear Optimal Control 25

and
Q:d@ag{ Q, ,Q} Mzdwg{ M, 7M}
R = diag R,...,R}
I 0 ... 0 0 (2.42)
* A * Bs 0 0
A5= B§: .
AY AY'Bs ... Bs 0

Finally, by using the Riccati equation, the optimal multi-rate control is
obtain as follows:

Sur(kN) = QMR_MMRRX/IRM{/[R"F[A v — MTpRy Bl ]
SMR(/CN—FN) [AMR BMR (R]\;RMMR—F/{?MR(]{:N))]
Kyr(kN) = [RMR+BMRSMR(kN+N)BMR]
B”Syr(EN 4+ N) (AMR BurRy ML L)
(kN + N) = — (Ry/pM%, 1 + Kuyr(kN)) x(kN) o)
2.43

2.2 Nonlinear Optimal Control

Optimal control theory has well developed tools for optimizing a number
of performance indexes that embody desirable objectives for time-invariant
systems. In contrast, nonlinear optimal control (optimization constrained
by a nonlinear dynamical system) is still a developing field. While its roots
were laid down in the 50’s with the introduction of dynamic programming
(leading to Hamilton-Jacobi-Bellman partial differential equations, Bellman
(1954)) and the Pontryagin maximum principle (a generalization of the
Euler-Lagrange equations deriving from the calculus of variations, [Pontrya-
gin (1959)), these were more theoretical contributions rather than practical
design techniques.

From these beginnings, numerous design methodologies for nonlinear
optimal control have been developed, often following different paths and
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techniques. Today, it appears as a fragmented field. The nonlinear optimal
control problem is now attacked on many different fronts: by extending the
linear theory, utilizing generalizations of the Lyapunov methodology, and
brute force computation, to name a few.

In the following we described three different approaches: receding hori-
zon control, iterative linear quadratic regulator and extended Rauch-Tung-
Striebel controller.

2.2.1 Receding Horizon Control

Receding horizon, moving horizon, or model predictive control places im-
portance on optimal performance, Kwon and Pearson| (1977); Mayne and
Michalska; (1990)); Camacho and Bordons| (2004)). These techniques apply a
receding horizon implementation in an attempt to approximately solve the
optimal control problem through on-line computation. The receding hori-
zon methodology is to solve a trajectory optimization emanating from the
current state, and implement the resulting open-loop solution until a new
state update is received and the process is repeated.

In [Sauvee et al.| (2006), other image based visual servoing scheme based
on nonlinear model predictive control was proposed considering the direct
dynamic model of the robot, its joint and torque limits, the camera projec-
tion model and the visibility constraint. The authors exhibit the efficiency
and the robustness of the proposed solution to control a 6 degrees of freedom
mechanical system under simulation scenario.

In Allibert et al. (2010) visual servoing task is formulated into a non-
linear optimization problem in the image plane. The authors claim that
with predictive control it is easy to take into account 2D and 3D con-
straints. The approach was proved in simulation scenario with a 6 degrees
of freedom (DOF) free-flying camera, highlighting the capabilities and the
efficiency of this approach by a comparison with the classical image-based
visual servoing.

In Max and Lantos| (2014)), approximately time-optimal control of auto-
matically driven cars modeled with gear shift as discrete control input beside
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the continuous ones in a path between two path boundaries is adresed using
model predictive control. The path boundaries are defined by their corner
points that may be the result of image processing in real time or prescribed
in advance. It is divided into sections for which separate optimum control
problems are solved in a nonlinear moving horizon predictive control fashion
increasing the semi-online character of the approach.

Although receding horizon control has proven quite successful in some
nonlinear systems such as the one commented, stability guaranty still being
a concern for some time.

2.2.2 Iterative Linear Quadratic Regulator

Iterative linear quadratic regulator (iLQR) method for optimal feedback
control of nonlinear systems uses iterative linearization of the nonlinear
system around a nominal trajectory, and computes a locally optimal feed-
back control law via a LQR, |Li and Todorov| (2004). In the literature it is
possible to find out some contributions using iLQR.

In Li and Todorov| (2004)), the presentation of iLQR method for locally-
optimal feedback control of nonlinear dynamical systems was presentei and
applied to a musculo-skeletal arm model with 10 state dimensions and 6
controls, and used to compute energy-optimal reaching movements, demon-
strating that the new method converged substantially faster and finding
slightly better solutions.

The algorithm considers a discrete time nonlinear dynamical system
with state variable x; € R™* and control u; € R™:

Xg+1 = f(Xk, ) (2.44)
and the quadratic cost function: u, € R™«

N-1
Jo =5 (xn —x )" Qp- (xn—x )T+§ > (a"-Qoxp+upR-uy) (245)
K=0

where xx describes the final state (each movement lasts N steps), x* is

the given target state. The state cost-weighting matrices Q and Qy are
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symmetric positive semi-definite, the control cost-weighting matrix R is
positive definite. All these matrices are assumed to have proper dimensions.
Note that when the true cost is not quadratic, we can still use a quadratic
approximation to it around a nominal trajectory.

Each algorithm iteration starts with a nominal control sequence uy,
and a corresponding nominal trajectory x; obtained by applying ui to the
dynamical system in open loop. When good initialization is not available,
uy, is initialized to 0. The iteration produces an improved sequence u; by
linearizing the system dynamics around X, uy, and solving a modified LQR
problem. The process is repeated until convergence is.

In [Zhang et al.| (2012)) an iLQR method for trajectory tracking control
of a wheeled mobile robot system was presented. The proposed scheme
involves a kinematic model linearization technique, a global trajectory gen-
eration algorithm, and trajectory tracking controller design. A lattice plan-
ner, which searches over a 3D configuration space (z,y,6), was adopted to
generate the global trajectory. The iLQR method is used to design a lo-
cal trajectory tracking controller. According to the experiment results, the
proposal improved the control sequences (v,w) iteratively and produced
slightly better results.

2.2.3 Extended Rauch-Tung-Striebel Controller

Zima et al| (2013); Armesto et al.| (2015) presented a non-iterative
linearization-based controller for nonlinear unconstrained systems, coined
as Extended Rauch-Tung-Striebel (ERTS). Due to the relation of this work
in this thesis, let us describe the basis and algorithm presented in [Armesto
et al.| (2015).

Consider an stochastic nonlinear dynamic system modelled as Markov
process with known transition probability depending on the actual state x;
and the control action uy:

X1 ~ p(Xep1[xe, wy) (2.46)

For an arbitrary stochastic control given by distribution m(uy), the re-
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sulting distribution of x;1 is

xio ~ polab) = [ pleeabeumuidu (247)
R7u
Consider also obtaining a stochastic controller which optimizes the fol-
lowing expectedlﬂ loss:

N-1
J (%0, 80:N, T0:N—1) = E{QN(XN7 SN li(xe. 8, Wt)} (2.48)
t=0

where sequence 8o.xy = 8o, ...,8y stands for the desired quantities related

to states (in fact, reference trajectories for some outputs), gy (xy,Sy) is an

arbitrary function for the final cost and the intermediate loss is Iy (X, S¢, 7).
Similarly as in Todorov| (2008), consider a cost function of the form:

li(x¢, 8¢, ™) = qe (%t S¢) + KL (pa(xet1 [x¢ ) | [D(%e41]%¢) ) (2.49)

where p(x¢41]x%¢) is a user-defined reference dynamics and ¢ (x¢,8;) is an
arbitrary function over the state satisfying

/ emaxeS)ds, =1 (2.50)
Rns

The KL function stands for Kullback-Leibler divergence [Kullback and
Leibler| (1951). As discussed there, such KL term acts as a penalization on
the control input.

Under these assumptions, a controller was derived from the duality be-
tween optimal control and estimation, established by Todorov in Kullback-
Leibler divergence setting. This was achieved by considering a nonlinear
model with affine control input x;11 = f(x¢) + By(x¢)u; for known vector-
valued function f(x;), matrix B(x;), and a quadratic index:

N-i
1 1
J = 591]\}QN9N +3 E (el Qier + uf Ryuy) (2.51)
=0

Lthe expectation is taken over realizations of the random variables x1.n .
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for e, = §; — h(x;) and known Q;, R; and known vector-valued function
h(Xt).

In Todorov, (2008); |[Karny (1996) was demonstrated that there is a re-
lated stochastic KL optimal control problem for an arbitrary deterministic
quadratic-cost problem which, as a consequence, can be solved optimally
via the duality.

In order to accommodate to KL control approach, in|Zima et al.| (2013);
Armesto et al.| (2015)) a fictitious Gaussian noise was added, with variance
V; and, also, a fictitious target stochastic dynamics was proposed.

Hence, the original dynamics is restricted to

P(Xer1|xe, wr) 2 N (£(xe) + B(xi)uy, Vi) (2.52)
and the reference dynamics is set to
P(xev1/xe) £ N(E(xt), Vi) (2.53)

Function f(x;), and matrices Vy, V; are derived from the cost function to
be analogous to the Riccati equation solution [Todorov| (2008), in particular
V: = B(x)R; 1BT(xt)7 and reference function is taken as the original
passive dynamics f(x;) = f(x;).

The ¢; term in ([2.49)) is stated as the sum of quadratic state-dependent

terms
1

qt(x¢,8¢) = §(§t — h(xt))TQt(§t —h(x)) + ¢ (2.54)

for constant ¢; chosen in order to fulfill the restriction fRnS e~ a(xt8t)ds, = 1,
and the rightmost term in the referred formula is set as the KL divergence
term between and . This choice of matrices makes identi-
cally equal to the quadratic index in ; in the case under consideration,
for f(x;) = f(x;), which shows the equivalence in such a case between the
standard LQR and KL cost solutions.

The estimation problem dual to the previous control problem requires
computing the smoothed probability p(x;+1|X¢, ye:8 =St+1:8), t=0,. .., N—
1, where the desired states §;y1.y from the original control problem are now
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considered as the observed measurements of an output y; from the model
in the dual problem defined (using (2.53)) and (2.54)) as

Xt+1 ™~ N(f(xt), Vt) (255)

yi ~ N(h(x;),Q; ") (2.56)

The control algorithm proposed in [Zima et al. (2013)); Armesto et al.
(2015) uses an approximation of the above conditional probability computed
by Rauch-Tung-Striebel (RTS) smoother, Rauch et al. (1965). The RTS

smoother is optimal for linear models with Gaussian noise, and uses the
following steps, given a known x; by assuming:

e forward pass realized by Kalman filter computing p(x;|x¢, Yr.r = S¢.r)
forr=t,...,N.

e backward pass computing the p(x;|x;,yrny = Spn) for 7 = N —
... t+1

The resulting smoothed distribution is a Gaussian one Rauch et al.| (1965)).

If functions f(x;), h(x;) are nonlinear, RTS can be used for the linearized
model at each trajectory point; however, optimality of the proposed estimate
is no longer guaranteed.

Notwithstanding, this is analogue to the Extended Kalman filter, suc-
cessfully used in many control and robotic applications. Inspired on that,
the nonlinear version of the RTS smoother is denoted as ERTS in [Leondes
et al.| (1970).

Once the estimation problem has been solved by either of the two above
proposals, duality indicates that the optimal control action should fulfil
pr(Xe1/xe) = N (X145 Pryapsn), taking the Gaussian result of the
smoother. Hence, both mean and variance should be matched, computing
a deterministic control u; in to match the estimate mean,

f(x¢) + B(xe)ur = Xy n (2.57)

and setting V; equal to the estimated variance (recall that V is a “fictitious”
variance as the original problem is deterministic):

Vi=Pijen (2.58)
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As was mentioned above, V; is related to the standard LQR backwards-in-
time recursion of the Riccati equation solution.

If f(x¢) = Ayx; in (2.57)), we would be in the linear LQR case so (2.57))
could be solved for exact equality. However, for nonlinear cases we have only
an approximation of p(xt+1| ~) proposed by the smoother because A;x; in-
volves some linearization error in the generated system trajectories. Hence,
using the left pseudo-inverse of B; £ B(x;), denoted as 3, = (B} B;)"'B7,
we have a control action given by:

ut:/@t(it+1|t+N_f(Xt)) (2.59)

as the proposal for the nonlinear control lawﬂ trying to fit in a Least-
Squares sense.

From the above considerations, the resulting control algorithm (Algo-
rithm (1) in Zima et al| (2013); Armesto et al.| (2015), denoted as Extended
Rauch-Tung-Striebel (ERTS) controller, is composed of two parts: 1) com-
puting X144y via ERTS smoother, and 2) obtaining the approximation
of the optimal control . The state x; is assumed to be known, so the
proposed controller is a deterministic state feedback one.

It should be noted that the backward smoothing step does not compute
matrices P ;i expression is only needed in the formal problem
solution but, in fact, the value of V; is not needed to solve , so its
computation is omitted. Also, note that in order to provide a valid solution
for the smoothing algorithm, matrix P, must be full-rank, otherwise,
its Moore-Penrose pseudo-inverse should be used on line 12. Indeed, the
pseudo-inverse would provide zero correction on line 13 of the algorithm in
the state directions in which the fictitious noise does have zero variance.
From a duality point of view, that amounts to requiring zero control action
effect on uncontrollable states, as intuitively expected.

21f the KL control problem were set with user-defined V. instead of , a variant
of the approach resulting in a probability distribution over control actions would ensue
Zima et al. (2013). However, artificially introducing noise in the control action is not
relevant in most optimal control applications, so the issue is pursued no further.
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Algorithm 1 ERTS Controller
1: [Initialization]
2: )A(t‘t = Xy, Pt|t =0
3: [Prediction/
4: forr=t+1,...,t+ N do
. -
6
7

}A(T|‘r—1 = f(f(‘r—lh'—l)
[linearization]

of
A'rfl -

OXr_1

Xr—1=Xr—1|7—1

8: H, = oh

0%+

Xr=Rr|r_1
9 P =A. Py, AT +B. R BT,
10: K, = PT|T—1HZ(HTPT\T—1HZ + Q;l)_l
11: P‘r\‘r = (I - K.,—H.,—)PT|T,1
12: fcr|‘r = )A(T|‘r71 + KT(§T - h(kﬂ‘rfl))
13: end for
14: [Smoothing]
15: forr=t+N—-1,t+ N—-2,...,t+1do

16: L, =P, ATP_|

17: chlt+N = )A(T|‘r + LT()A(T+1\t+N - i‘r«kl\‘r)
18: end for

19: [Control computation/

20: w; = (B By)"'B (Xep1e4n — £(x0))

2.3 Visual Feedback Control

Visual feedback control, also known as visual servoing, is a field which in-
volves different disciplines such as computer vision, robotics and automatic
control. The concept was introduced in the late 80’s early 90’s in order
to control robots thanks to cameras, |Weiss et al.| (1987); |Feddema et al.
(1991); Hutchinson et al.| (1996)); Chaumette and Hutchinson| (2006). Re-
gardless the robot or task used for, the goal is to control the robot thanks
to visual data gathered by a camera. In order to be successful, the control
task must therefore link the motion of the robot with the visual data. It is
a well known flexible and robust technique which increase the accuracy and
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the versatility of a vision-based robotic system.

Although in the beginning the approaches were thought to be applied
to industrial manipulators to perform positioning or tracking tasks, during
the last decade researchers have been applying visual feedback control to
other kind of robots (i.e. wheeled robots, Fomena et al| (2009); [Pasteau
et al.| (2014); Cherubini and Chaumette (2013), under-actuated systems
like quadrotors, |Grabe et al. (2015)); Bourquardez et al.| (2009)); Ozawa and
Chaumette| (2011), or underwater vehicles, |Lots et al.| (2001); Heshmati-
Alamdari et al.| (2014)), and tasks, (i.e. tele-Echography [Li et al.| (2012));
Krupa et al.| (2015). In fact, there is a wide realm of applications in many
robotics domains.

In the following, a review in visual feedback control is presented by
focusing on the methods and configurations used along this thesis.

2.3.1 Camera-robot Configurations

Mainly, there exist two configurations to combine camera(s) and robot(s).
The first one is called eye-in-hand, consisting in camera(s) attached to the
robot end-effector (see Figure . In this configuration, the transfor-
mation between camera(s) and the robot frames is constant during all the
control task. The second configuration is known as eye-to-hand, in which
camera(s) is(are) placed somewhere into the workspace looking at the tar-
get, the manipulator or both of them (see Figure . Contrary to the
former configuration, in this case the transformation between camera(s)
and manipulator frames has to be compute in each control iteration. Hy-
brid configurations can be constructed when eye-to-hand and eye-in-hand
configurations are used, Allen et al. (1993)). More details concerning ca-
mera(s)/robot configurations can be found in |Flandin et al.| (2000).

2.3.2 Task Functions in Visual Feedback Control

In visual feedback control a task is defined as the interaction of a robot
with its environment using vision sensors. In order to apply motions with
respect to a specified reference frame (i.e. camera frame F., end-effector
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(a) Eye-in-hand (b) Eye-to-hand

Figure 2.5: Example of camera-robot configurations.

frame F., tool frame F;, manipulated object frame F,, or robot frame F,.), a
transformation between different frames is required to transform the motion
from one frame to another, Spong et al.| (2006)); Dombre and W.| (2007). In
order to perform a task, features from the target must be extracted from
different points of views, depending on the target and the task to be carried
out.

2.3.2.1 Camera Space Control

Let us denote s* the set of desired features, s the set of current features,
and “P,(t) the relative pose between the camera and the object frames at
instance t. With this, it can be defined the task function e as:

e =s(‘P,(t)) —s* (2.60)

In this case, the variation of visual features, s, related to the relative move-
ments between the camera and the scene is given by:

_ Os BCPO_i_@
- o°P, Ot ot

$

(2.61)
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being % the variation of s due to the object own motion. Taking 8?1530 = L,
which is defined in the literature as the Interaction matrix, Hutchinson et al.
(1996)); |Dombre and W. (2007), and 8350 = v, the velocity of the camera’s
frame, obtaining thus the relation used for object tracking tasks:
Os
ot
If the target is considered stationary during all the task, then % =0,
and the relation used for positioning tasks is:

§=Lg Ve (2.63)

$=Ls v+ (2.62)

2.3.2.2 Joints Space Control

In this case, the relation between § and the velocity of the joint variables ¢
is given in Dombre and W. (2007) as follows:

_ 0s 0P, 0P, 0q  O0Os
0P, 0¢P, Oq Ot Ot
where “P.(t) and °P,(t) are the relative pose between the camera and the
end-effector frames, and between the end-effector and the object frames,
respectively. Taking ag—zo = ¢J,, which is the robot Jacobian, and gzge =
¢J, = “V, coined as twist transformation matrix defined by [Dombre and
W.| (2007)):

S

(2.64)

cI{e [cte]x : cRe
03x3 ‘Re
where “R, and “t, are the rotation matrix and the translation vector from
the end-effector frame F, to the camera frame F.. Thus, thus the relation
used for tracking object purposes is:

V, = (2.65)

Os
S=Lg-“V.-%J, - q+ — 2.
$ s q+at (2.66)
Js

If the target is considered stationary during all the task, then & = 0
and the relation used for positioning tasks is:

§=Ls-°V.-J, - § (2.67)
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2.3.3 Features Selection

In visual feedback control the set of vision features extracted from the target
are the input to the control scheme. A feature can be any part/property
of the scene that can be extracted from the image. It is a crucial aspect
to select a good set of visual features since the performance and robustness
of the controller depends on great measure of it, |[Janabi-Sharifi and Wilson
(1997); [J.T Feddema; (1991)); Chaumette| (1998). The number of degrees of
freedom (DOF) to be controlled by the employed control scheme determines
the minimum number of independent features required.

Three classes of image features are commented in this section: geome-
tric features, luminance /photometric features, and moment features, paying
more attention to the former ones, due to their relevance in this workf|

2.3.3.1 Geometric Features

This approach is based on the geometrical description of elements of a scene,
in the 2D case, or in relating the robot frame to a target frame in the 3D
case. Hybrids features (both 2D and 3D visual features) can also be used
to perform visual feedback control tasks. Following, a brief description of
the most commonly used geometrical features is provided:

e 2D visual features: the most common 2D visual features are point
coordinates, parameters representing straight lines or ellipses, region
of interest, and contours, |J.T Feddema (1991)); |[Espiau et al.| (1991);
Janabi-Sharifi and Wilson| (1997); Gans et al.|[(2003). In the particular
case of image points, Cartesian, polar or cylindrical coordinates are
generally used, Iwatsuki and Okiyama (2002). In all cases, camera
calibration to obtain both intrinsic and extrinsic camera parameters
is required, [Malis and Cipollal (2002); Pomares et al.| (2007)).

e 3D visual features: in this case, object model and image measure-
ments are used to compute or estimate the relative pose between ob-

3For a more detailed survey about classes of image features used in visual servoing,
see [Marey| (2010)
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ject and camera frames in the Cartesian workspace, or to reconstruct
the 3D coordinates. In [Martinet et al.| (1996); |Wilson et al.| (1996);
Deng et al. (2003), the 3D coordinates of the points of the object
are used as the feature vector. A priori knowledge about the camera
calibration parameters is required. In|Cervera et al. (2003), 3D visual
feedback control, orientation in pose vector can be represented by the
total format, roll-pitch-yaw or axis-angle formats, [Wang and Wilson
(1992), or quaternion formulate, |Hu et al.| (2010).

Hybrid visual features: a mixture composed of both kinds of 2D
and 3D features is presented in |[Malis et al|(1999); Deng et al.| (2002);
Cervera et al.| (2003); Marchand et al.[(2005), and polar and Cartesian
parametrizations of image points coordinates are presented in [Corke
et al.| (2009).

Gaussian mixture features: in Abdul Hafez et al. (2008), an ap-
proach that removes both features tracking and features correspon-
dence was presented. Collectively features points extracted from the
image are modelled as a mixture of Gaussian. Using Lyapunov the-
ory, a control signal is derived to minimize a distance function between
the two Gaussian mixtures. The distance function is given in a closed
form, and its gradient is efficiently computed and used to control the
system. As presented in |Abdul Hafez et al. (2008), three degrees of
freedom can be controlled using this approach, while six degrees of
freedom can be considered under the assumptions that a depth distri-
bution is available.

Redundant features: using redundant features can improve the
performance of control task and increase the positioning accuracy by
improving the corresponding minimum singular value of the extended
image Jacobian, Hashimoto et al.| (1996). However, processing a large
feature set can sometimes be computationally infeasible.
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2.3.3.2 Luminance/Photometric Features

This approach is based on considering the whole image as a feature set de-
fined by pixel intensities. Photometric features does not rely on complex
image processing such as feature extraction, matching, and tracking pro-
cess, contrary to utilizing geometric visual features such as points, straight
lines, pose, homography, etc. In addition, it is not very sensitive to partial
occlusions and to coarse approximations of the depths required to compute
the interaction matrix.

In Kallem et al.| (2007)), a framework was proposed, in which spatial
sampling kernels were used to design feedback controllers for visual servoing.
The use of such kernels provided natural hooks for Lyapunov theory, thus
unifying tracking and control and providing a framework for optimizing
a particular servoing task. The proposed control law is performed in two
stages, translation first and then rotation, accomplishing thus the goal task.
The proposed method was valid only for 4DOF robots.

In Bakthavatchalam et al.| (2013), authors proposed a new type of visual
features for visual servoing, coined as photometric moments. The authors
claimed that using this set of features it is possible to avoid binary image or
spatial segmentation steps, liberating thus the visual servoing process from
the crutches of image processing and feature tracking. [Bakthavatchalam
et al. (2013) also proves that with photometric moments a large convergence
domain is obtained. The analytical form of the interaction matrix was
also developed in closed form for these features. Results from experiments
carried out with photometric moments validated the proposed modelling
and control schemes, showing that they performed well for large camera
displacements and were endowed with a large convergence domain.

2.3.3.3 Moment Features

Image moments have been widely used in computer vision for decades, es-
pecially in pattern recognition and 3D reconstruction. As it is pointed out
in (Chaumette (2004), image moments provide a generic representation of
any object, with simple or complex shapes, that can be segmented in an
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image.

In (Chaumette| (2004), the analytical form of the interaction matrix re-
lated to any moment that can be computed from segmented images was
determined, using Green’s theorem derivation method. This result was
then applied to classical geometrical primitives. Then, the selection of six
combinations of moments to control the 6DOF of the system was described
and analyzed. In this work the author assumed a planar object and that
the configurations such that the object and the camera planes were parallel
at the desired pose. Experimental results demonstrated that a correct be-
havior of the system was obtained if either a simple symmetrical object or
a planar object with complex and unknown shape were considered.

Later, in Liu et al. (2009), a method consisting of an ameliorative
image pre-processing algorithm and an improved image based visual servo-
ing (IBVS) using image moments algorithm, were proposed. In this sense,
choosing image moments as the image features, there was an increase re-
garding to the stability of the visual servoing system and in the applied
range of objects. In this approach, authors proposed a decoupled Jaco-
bian matrix for controlling the motion of the camera with individual image
features, based on this control sequence:

e Stage 1 - Teaching: the robot is taught with the desired position of
object.

e Stage 2 - Move the optical azis to the object centroid: the optical axis
is moved onto the object centroid in order to estimate the depth of
the object centroid.

e Stage 3 - Adjust the rotation corresponding to x and y azes: this stage
allows decoupling the Jacobian matrix.

o Stage 4 - Adjust the object size and orientation: this final stage com-
pletes the task function goal keeping constant image features related
to z and y axes (this is possible because their derivation from invariant
moments).
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Results under simulated scenario showed important improvements in terms
of stability.

Then, in Bakthavatchalam et al.| (2014)), was introduced the concept of
tunable visual features for moments based visual servoing schemes. The
authors also proposed two metrics for tuning them for optimal behavior:
the first metric ensures optimal response of the control to errors in the
image space, while the second metric ensures orthogonality between the
interaction matrix components (vectors) related to the control of x and y
rotational motions. Visual features based on moment invariants were then
computed from these optimally tuned shift points. The visual features built
from these moment invariants were used to control the x and y rotations
in a 6DOF visual servoing control scheme. In short, the “tunable” property
of shift points was exploited to solve the important problem of controlling
rotational motions around the x and y camera axes. These ideas were
validated in both virtual and experimental scenarios.

2.3.4 The Interaction Matrix

The analytical form of the interaction matrix is based on the type of the
camera and the projection model used, [Hutchinson et al.| (1996)); [Fomena)
et al. (2009). The most common geometric model is the perspective projec-
tion one. In this model, the center of projection is considered at the origin
of the camera frame F,., and the image plane is at f, being f the camera
focal length.

In the following, let us obtain the interaction matrix form for the parti-
cular case of points like features due to its relevance along this work.

By considering a 3D point with coordinates P = [X,Y, Z,1]7 in the
camera frame F., and using a perspective projection model, the point P is
projected on a 2D point p, of coordinates p = [z, y, 1]T in the image plane,

such that:
Wi o

where u and v are the image point coordinates in pixel unit, ¢ = (¢, ¢y) is
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the coordinates of the principle point, f is the focal length of the camera
lens, and « is the ratio of pixel dimension.
By taking the derivative of 2.68] we obtain:

. -
m = [X/Z - XZ/ZJ (2.69)
Y Y/Z-YZ/Z

If the spatial velocity of the camera is given by v, = (v,w), where v
and w are the instantaneous linear and angular velocities of the origin of
the camera frame F,. respectively, then the velocity of a 3D point P related
to the camera velocity is defined using the fundamental kinematic equation
P = —v — w x P, such that:

X Vg — Wy 4 +w, Y
Y =|voy—w  X4w,-Z (2.70)
Z Uz_wx'Y+Wy'X

Injecting the values from into [2.69] and grouping we obtain the classical
result, |Weiss et al.| (1987):

HEEEEE T e B M
Y A +y Ty T w
which can be rewritten as,

p=Lp-v (2.72)

where Ly, is the interaction matrix related to p. If there is a set of n features,
s = (p1,...,Pn), the interaction matrix is obtained by staking Ly, for all
pi €s:

Ls=| : (2.73)
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2.3.5 Visual Feedback Control Laws

In the control design phase, a number of properties should be considered
such as local and global stability, robust behavior with respect to measure-
ment and modelling errors, local or global exponential decrease, order of
convergence, absence of local minima and singularities, obtaining suitable
robot trajectories, and finally the degree of decoupling between the visual
information and the controlled degrees of freedom.

Taking that in consideration, a huge amount of control laws have been
proposed along the time: classical approaches, 2D and 3D visual feed-
back control; enhanced visual feedback control approaches, such
as “sliding mode control”, |Zanne et al.| (2000), “decoupled/partitioned con-
trol”, (Corke and Hutchinson| (2001)), “control based on trajectory planning”,
Mezouar and Chaumette (2002); (Chesi (2009b)), “Origin-shift in cylindri-
cal coordinates”, Iwatsuki and Okiyamal (2005)), “ Varying-feature-set con-
trol schemes”, Mansard et al| (2009)); Hybrid and switching strategies,
such as “Hybrid approaches”, Malis et al| (1999); (Chaumette and Malis
(2000); Malis and Cipolla (2002)); Malis and Chaumette| (2000); Benhimane
and Malis| (2007); Kyrki et al.| (2004b); Hafez et al.| (2007)), “Switching ap-
proaches”,|Gans and Hutchinson| (2003alJbl 2007)); Toibero et al(2009); Deng|
et al (2005)); Xie et al| (2009), “ Hybrid and/or switching strategies involving
other approaches”, [Hashimoto and Noritsugul (2000a)); [Chesi et al.| (2004));
Taylor and Kleeman| (2004); Wang et al| (2010)), and on.

In the following, classical 2D and 3D visual feedback control laws are
detailed due to their relevance along this thesis.

2.3.5.1 2D Visual Feedback Control

2D visual feedback control, or image based visual servoing (IBVS), uses fea-
tures extracted directly from the image as input of the control law without
any supplementary estimation step. IBVS does not need to estimate the
pose at each iteration which helps to provide a robust positioning control
against calibration and modelling errors.

IBVS is characterized by several advantages. First of all, when points
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are used as set of features, this set is controlled directly in the image plane
to move the features approximately around straight lines. As a consequence,
the features can be constrained in order to keep them within the camera field
of view during all the control task, Chaumette| (1998). In addition to this,
camera calibration and modelling errors do not affect the convergence of
the algorithm but the time of such a convergence, Hutchinson et al.| (1996);
Hager| (1997)); [Mezouar and Chaumette| (2002). IBVS is also less sensitive
to image noises rather than other approaches.

However, some issues concerned to IBVS must be considered. Firstly,
it is hard to predict the trajectory of the end effector and robot may reach
its joint limits. Secondly, the end-effector translational and rotational mo-
tions are not directly controlled and the usual coupling existing between
these motion makes it difficult to plan a pure rotation or a pure translation
(i.e. camera retreat problem, Chaumette| (1998))). Also, since the system is
usually highly coupled, the analytical domain of system stability is hardly
reachable in the presence of camera modelling errors. Furthermore, classical
IBVS is only locally asymptotically stable, and may fail in the presence of
large displacement to be realized, |Chaumette] (1998); Cervera et al.| (2003),
which needs a path planning step to split a large displacement up in smaller
local movements, Mezouar and Chaumette (2002)). Finally, potential fail-
ure occurs when IBVS is subject to image singularities or local minima,
Chaumette| (1998).

In IBVS, providing some information about the depth of the object in
the camera frame is usually necessary for computations required to obtain
the interaction matrix. Since the stability region for the error in depth
estimation is not very large, [Malis et al.| (2010), it is necessary to accurately
estimate the depth. For static objects, this estimation of the depth value
can be obtained from the measurement of the current values of the feature
points x and y, and their image motion & and g, and of the camera velocity,
Matthies et al| (1989)); |Geraud et al| (1998)). The depth parameters of
planar and volumetric parametric primitives like points, lines, cylinders,
spheres, etc. can be also obtained, (Collewet et al. (2008). Another depth
estimation method for static points without the explicit need for image
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motion estimation can be found in |[De Luca et al| (2008). In Xie et al.
(2009), a laser pointer is used and the depth estimation can be achieved
through a triangulation method.

2.3.5.2 3D Visual Feedback Control

In 3D visual feedback control, or position based visual servoing (PBVS), the
task function is expressed in the Cartesian space. The translation and the
rotation of the camera are explicitly reconstructed using pose estimation,
Hutchinson et al.| (1996); Wilson et al.| (1996); Martinet et al.| (1996); Deng
et al.|(2003). PBVS is known to have global asymptotic stability referring
to the ability of a controller to stabilize the pose of the camera from any
initial condition if 3D estimation is perfect. The analytical proof is evident
if the pose is perfect, otherwise it is very hard to reach it out. When
accurate 3D estimation is employed, decoupling rotation and translation is
obtained. Errors in calibration are propagated to errors in the 3D world,
so it is required to ensure robustness of PBVS, [Kyrki et al.| (2004al).

No mechanism in PBVS ensures keeping the features visible within the
camera field of view (FOV) when the translation is defined in the desired
fixed end-effector frame, Wilson et al. (1996]). While, if the translation is
expressed in the camera frame, the trajectory in the image plane is improved
under large camera rotation motion, and features can be kept in the image
plane for small rotation, Deng et al. (2003). In PBVS, the task function
to be regulated is usually defined as the error between current and desired
poses. The pose can also be selected as the pose of the camera or the
end-effector with respect to the object or any other reference frame in the
workspace. When the pose between the camera and the object is considered,
the task function is given by e =“* P.. After executing the task, the camera
reaches the desired position and the task function e =“* P.x = 0.

One of the main problems in 3D visual feedback control is the deter-
mination of the relative position and orientation of the observed object,
that is the pose with respect to the camera. For real-time pose estimation
of the object, image measurements are combined with the known object
CAD description. The pose can be estimated using image points, [Haralick
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et al. (1989); DeMenthon and Davis| (1995a)); Liu and Wong| (1999); Ansar|
and Daniilidis| (2003)); [Chesi (2009a)), using point and line correspondence,
Dornaika and Garcial (1999)), using point to region correspondence,
roy and Qi (2008), using curves, [Safaee-Rad et al.| (1992), or using other
different geometrical features as in virtual visual servoing,
\Chaumette| (2002)). For obtaining more accurate pose estimation, different
filters are usually used to estimate its translational and rotational parame-
ters, [Ficocelli and Janabi-Sharifi| (2001); Lippiello et al.| (2004); |Shademan)
land Janabi-Sharifi (2005), and recently [Janabi-Sharifi et al.| (2011)).

In response to the difficulties appearing in IBVS and PBVS, several
methods that do not rely solely on the interaction matrix have been devised
to improve the behavior of the visual feedback control laws.

2.3.6 Problems in Visual Feedback Control

Selecting a suitable set of visual features and designing good control schemes
should be taken into account for avoiding system failures. Usual problems
in visual feedback control that are directly influenced by this selection, and
can be enhanced by a good selection, are: local minima, singularity and
visibility problems.

2.3.6.1 Local Minima

Generally, local minima occurs only with very specific configurations,
\Chaumette, (1998); |Gans and Hutchinson| (2003a). Getting trapped in a lo-
cal minima, camera velocity is null v = 0, while the feature errors have not
been minimized, such that s—s* # () € Ker(L™). This results in converging
to a final pose that is different from the desired one. When s is composed in
three image points and Lg is full rank, then we have Ker(L*) = 0, implying
that there is no local minima. However, when three points are used, the
same image of the three points can be seen from four different camera poses,
which means four camera poses exist such that s = s*, which corresponds
to four global minima. When at least four points are used, unique pose
can theoretically be obtained. However, dim(L*) = 6 x 6, implying that
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dim Ker(L') = 0. Using four points, the control law tries to enforces 8
constraints on the image trajectory while the system has only six degrees of
freedom. In that case, due to the existence of unrealizable motions in the
image that may be computed by the control law, a local minima may be
reached, |(Chaumette (1998)).

Several control strategies have been used to avoid local minima in vi-
sual servoing. For example, and as already said before, in [Deng et al.
(2005)); |Gans and Hutchinson| (2007), a hybrid motion control strategy
that considers the local minima problem is presented while in [Mezouar and
Chaumette (2002) a path planning strategy is developed.

2.3.6.2 Singularity

When the interaction matrix is singular causing a task singularity, the ve-
locity tends to infinity and the system is unstable. It may become singular
if image points are chosen as visual features. For instance, when four points
are used and the required camera motion is defined by a pure rotation of
180° around its optical axis, the image trajectory obtained of each point is
such that the points move concurrently in a straight line at the principal
point, where the interaction matrix is singular, (Chaumette, (1998). For the
considered motion, the choice of image points coordinates is really inade-
quate. Indeed, if the four points in the image are replaced by cylindrical
parameters (¢, 6), the singularity can be avoided when the same initial po-
sition is used, showing a pure rotation motion around the optical axis of the
camera.

In PBVS, Wilson et al.| (1996); Martinet et al.| (1996)); [Deng et al.
(2003)), most of representations avoid the problems of local minima and/or
singularities of the corresponding interaction matrices depending on the
chosen e. This problem can also be solved by using potential function,
Hashimoto  and  Noritsugu (2000D)), partitioning  approach,
Corke and Hutchinson| (2001)), switching approach, [Deng et al.| (2005)), hy-
brid approach, Malis et al. (1999), and PBVS, Wilson et al. (1996).
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2.3.6.3 Feature Visibility

Using classical 2D and 3D visual feedback control and assuming a bad
calibration and a large initial camera displacement, the target may leave
the camera field of view, |[Malis et al.| (1999); Chesi and Vicino (2004). That
is why it is desirable to have servoing controls able to keep features in the
camera field of view to obtain reliable feedback signal during the servoing
process. To minimize the probability that the object leaves the FOV, a
repulsive potential field can be adopted, (Chesi and Vicino| (2004)), a path
planning strategy, Mezouar and Chaumette| (2002), switching strategies,
Gans and Hutchinson (2007), as well as using structure light, |Xie et al.
(2009).

2.3.7 Multi-rate Visual Feedback Control

Recently, many researches have focused their attention on the sensor latency
problem. This problem arises when sensors are much more time-consuming
than the sampling periods of the rest of the electrical-mechanical system.
Vision sensors are one example of this. Although large amount of informa-
tion can be extracted using vision sensors, their require long time for image
processing.

Recent advances in vision technology have provided very high-speed
image processing sensors (about 1 ms). As a result, several real-time ap-
plications have been developed. However, there are associated problems,
including limitations on complexity of the image processing task as well as
the size of the image.

It is well known how multi-rate control and estimation approaches have
improved the performance of many kind of systems. Although many contri-
butions with dual-rate or N-periodic systems,|Armesto and Tornero| (2003b)),
can be found using a linear system approach, for N-periodic non-linear sys-
tems (i.e. a robot equipped with a vision system) there are very few tools.
Yet, there are some attempts of solving the problem of sensor latency for
visual feedback controlled systems using multi-rate techniques.

For example, in [Usai and Di Giamberardino (2006 a multi-rate stra-
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tegy, based on motion planing under multi-rate digital control, Monaco and
Normand-Cyrot| (1992), for the control of a non-holonomic mobile robot
using a visual feedback control approach, was presented. Such strategy
is based on a mathematical model computed using two virtual image fea-
tures, which guarantees their presence in the camera field of view during all
the robot motion, assuming the robot moves throughout an environment
without any obstacles, and features belong to the ground plane. Such a hy-
pothesis allows one to have an estimation of the distance of the 3D features
from the camera.

In [Fujimoto| (2003), problems of sensor latency and disturbances in vi-
sual feedback control systems are addressed using inter-sampling distur-
bance rejection with switching scheme. In the controller, multi-rate inter-
sample disturbance rejection algorithm is utilized, which was proposed by
authors for general digital control system with restricted sampling fre-
quency. The proposed feed-forward scheme with open-loop estimation and
switching function enables the disturbance rejection without any sacrifice
of the closed-loop characteristics. Therefore, a new precise formulation of
delay problems in visual feedback control was established as the image pro-
cessing latency, the difference between sampling period of camera signal
and control period of joint servo system, and delay of inner-loop joint servo
system. The authors demonstrated that by introducing novel multi-loop
control schemes and depth identification, the proposed inter-sample dis-
turbance rejection controller becomes applicable to the complicated visual
feedback control problem of 6 DOF manipulator with moving object points.

Closely to this work, in [Sasajima and Fujimoto| (2007)) the problem of
sensor latency was addressed by separating this latency into two problems.
The first problem is that the vision sensor requires long time for image
processing, and this delay works as dead-time to feedback control system.
The second problem is that the sampling period of vision sensor such as a
CCD camera is comparatively long (over 33 ms), while the control period
of joint servo is short (less than 1 ms). For the first problem of time delay
modelled as e~74** | the movement of the object is modelled as output distur-
bance, and it is estimated and predicted by full-order disturbance observer.
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For the second problem about difference between sampling period and con-
trol period, this work formulates this issue explicitly by establishing novel
precise model of the delay problem. Two multi-rate repetitive controllers
were proposed to reject high-order repetitive disturbance. By simulations
and experiments, perfect tracking controller with periodic signal generator
(RPTC) demonstrated higher disturbance rejection performance than ob-
server based controller (RIDR). RPTC was enable to track moving objects
with high frequency element in visual servo system. Moreover, the compu-
tation cost of RPTC was superior to RIDR because it could be realized by
the periodic signal generator and low order perfect tracking controller.

Multi-rate Kalman filter has also been used as an attempt to overcome
the problem of sensor latency, Hollmuler and Harle| (1999). In this case the
Kalman model estimates both robot and object movements to perform a
visual feedback control tracking task.



Chapter 3

Visual Feedback Control based
on Dual-rate High Order Holds

3.1 Motivation

Sensors and actuators in robotic applications are based on different tech-
nologies, showing different physical properties. In this sense, it is very com-
mon to find robots with sensors and actuators working at different sampling
rates. This is a problem that arises from inherent technological limitations
of each type of sensor, communication channels, processing time, etc. The
naive solution to overcome this problem, known as sensor latency problem,
is to decrease the overall sampling period to the slowest one. However, it is
well known that this approach may decrease the overall system performance,
since high frequency dynamics are missed due to the temporal discretization
as a consequence of the Nyquist sampling constraint.

Significant improvements can be obtained for robot systems when intro-
ducing multi-rate techniques, (Chang et al.| (2009)); |Anderson| (2007)); Reddy
et al. (2007)). During the last three decades special attention has been paid
to dual-rate sampled-data systems, and it is possible to find many contri-
butions dealing with estimating and control of multi-rate systems [Tornero
and Tomizuka (2002b), but few of them dealing with the design of non-

o1



52 CHAPTER 3. Visual Feedback Control based on DR-HOHs

linear multi-rate estimators or controllers for nonlinear systems, |Chang et al.
(2009); |Ahrens et al.| (2009).

Perhaps, one of the most used tools in estimation is the Kalman fil-
ter and its generalization from a multi-rate point of view, the multi-rate
Kalman filter, Hollmuler and Harle| (1999); [Smyth and Wu| (2007). This
estimation technique uses linear model and well defined covariance matrices
in order to perform good estimations. It is well known its robustness dealing
with signal noises, although this property depends on grate measure of the
covariance matrices sometimes complicated to set up, even more if we deal
with complex MIMO nonlinear systems.

Owing to their easy implementation and the good performance shown
for signal estimation in the past, this chapter proposes dual-rate high order
holds, |Armesto and Tornero (2003al 2005)), to control nonlinear systems
(i.e. robot manipulators), assuming small noisy signals. Concretely, two
different robotic platforms are used along the chapter to study the properties
of using such extrapolators: a wheeled robot performing a path following
task; a 6 DOF industrial robot manipulator performing error positioning
and tracking tasks. Both of them use vision systems to close the control
loop.

In addition to that, in this chapter a more general dual-rate high order
hold is presented, incorporating time delay compensation within its struc-
ture. This is the most general case of hold since signal asynchronies and
time delay are considered to perform the inter-sampling estimations. For-
mulations, as well as the implementation algorithm, are described. This
approach is then validated by both simulation and experimental scenarios
for the particular case of estimating data from vision systems to control
robots.

3.2 Visual Feedback Wheeled Robot Control based
on Dual-rate High Order Holds.

The problem of maintaining accurate motion along a specified path is one
of the most interesting control tasks in the field of mobile robotics. The
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(b) Expected dual-rate control behavior.

Figure 3.1: Due to the low-frequency actuation in Figure (a) the robot
deviates from the desired path, while the dual-rate control in Figure (b)
can potentially correct such deviations at a higher sampling rate. Measured
way-points (WP) (black points), estimated WP (red points), ideal behavior
(black line) and robot behavior (dashed green line).

accuracy has a direct influence on the maximum velocity that the robot can
achieved with a stable control. As in every control approach of sampled-
data systems, the sampling time of sensors and actuators has also a great
influence on the maximum following speed.

In classical control theory, the sampled period is taken from the slowest
element of the system, which in robotics usually comes from sensors (i.e.,
GPS, vision, etc.). In order to provide a solution to this problem, multi-rate
approaches can be used, where the aim is to reproduce, as ideal behavior,
the high-frequency single-rate response.

Figure[3.I)shows the advantages of using the knowledge of inter-sampling
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estimated way-points for controlling a robot. Without inter-sampling
knowledge, the robot applies a constant control input that may cause an
excessive deviation between the reference path and the robot path. How-
ever, if such way-points were accessible at inter-sampling time instants, the
controller could provide a better path following performance. This problem
arises from designing controllers at too low frequency sampling rates, which
could even lead to non-stabilization.

Therefore, the inclusion of dual-rate high order holds for estimating the
unknown inter-sampling way-points should improve the overall performance
of such applications. In the following, we describe the set-up used for vali-
dating our approach.

SUMMIT mobile platform is a robot with Ackerman configuration with
limited curvature:

1 tana

= = 3.1
fimaz Rmm L ( )

where Kinqe 1S the maximum curvature of the robot, Ry, is the minimum
turning radius, « is the steering angle and L is the distance between axles.
All the characteristics and interesting information regarding to this platform
is in Appendix [A] Section [A-T.2]

Figure shows the general proposed dual-rate control diagram based
on dual-rate high order holds. Remark that in this case the controller is
designed at high frequency, although if the dynamics of the controller allow
it, it is possible to implement dual-rate controllers, as it will be proved in
Section (see Tornero and Tomizuka (2000); Tornero et al.| (2001b) for
implementation details).

Hence, the controller used is the well-known Pure Pursuit, Morales et al.
(2009). This method requires selecting a point along the path that is sep-
arated a given look-ahead distance from the robot. The steering angle is
proportional to the look-ahead point translated to the reference frame of
the robot. In addition, it is used SLAM technique, |Grisetti et al. (2007)),
stereo vision processing and a way-point selection module which provides
estimations of the robot pose and valid way-point based on estimation on
several sensors, such as IMU (odometry) and vision system.
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Figure 3.2: Dual-rate control block diagram for SUMMIT platform based
on DR-HOHs.

PROCESSING

Considering the physical constraints of SUMMIT and the shape of the
path to follow (a regular path inscribed into a rectangle of 5.2 by 4.9 meters
of size), the following control parameters are chosen: look-ahead (LA) 1.5
m, nominal velocity (v) 1.5 m/s, base-period (control period) 50 ms, (20
Hz) and frame-period (measure/way-points acquisition) § =500 ms (2 Hz).

In the following the validation under simulated scenario of the proposed
dual-rate approach is discussed.

A dynamic simulator of the SUMMIT mobile platform was developed
for test and validation of the algorithms before being tested into the real
SUMMIT. As resume, it uses open source tools such as ROS, GACEBO,
ViSP, OpenCV, OROCOS, among others. All these tools allow us to take
into account the robot dynamics and wheeled slippage, among much other
non-linearity, and simulate sensors and dual-rate control like if we were
working directly with the experimental platform (more details can be seen
in Appendix [A| Section .

Figure shows the different ROS processing nodes and their interac-
tion between them. In this case, the “Acquisition and processing block” of
Figure|3.2] is composed by “Image processing”, “Data fusion” and “Way-point
selector” nodes. These nodes are in charge to provide the next way-point
to follow from image data of a stereo vision system, and the current robot



56 CHAPTER 3. Visual Feedback Control based on DR-HOHs

2Hz
30 Hz fpointcloud (PointCloud)

Iright {Image)

2 Hz

fmap {OccupancyGrid)
20 Hz

femd_vel (Twist)

Jodom (Odometry) Ipose (Pose)

WAY-POINT
SELECTOR

fwp_low (Paint)

Ipose (Pose)

20 Hz
fwip_high (Point)

Figure 3.3: Proposed ROS-based software architecture: stereo vision node
provides two images in topics (/left) and (/right), stereo processing pro-
duces a /pointcloud topic (converted into a laser scan), G-mapping produces
an occupancy grid (/map) and the robot pose (/pose), way-points selector
determines a valid way-point (/wp_low) at low-frequency, /DR-HOH gen-
erates inter-sampling way-points (/wp_high) and pure-pursuit computes
appropriate robot command (/cmd _ vel).

pose, both signals working at 2 Hz (low sampling rate). The robot control
(SUMMIT driver) is performed at a higher sampling rate (20Hz). Here the
path and robot pose are assumed to be obtained from real sensors.

The advantage of the analysis under simulation is that it is possible to
simulate how the system will behave if it could work at ideal high frequency
and thus, quantify the improvements of our approaches. Therefore, Figure
[3-4] shows the ideal trajectory performed by SUMMIT robot when the con-
troller can work at high frequency. Compared with the trajectory performed
by the robot when its controller works at single-rate low frequency (Figure
, it is clear that its behavior has degraded until the point that the robot
may lose the path. On the other hand, using the proposed dual-rate ap-
proach based on dual-rate high order holds, the system behaves much better
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Figure 3.4: SUMMIT mobile robot working at high frequency.

than the classical single-rate working at low frequency, as it is shown in Fi-
gure [3.6) when DR-FOHs are used, and Figure [3.7 when DR-SOHs are used.
Figure shows a comparison using the single-rate at high frequency
as ideal behavior and comparing this ideal with the result produced by the
classic single-rate at low frequency. Similarly, Figure compares the
results of using dual-rate approach with DR-SOH. Certainly, classic single-
rate behavior working at low frequency produce a bad performance of the
system, even oscillating and losing the path to follow. On the other hand,
the dual-rate approach presents a better performance. This can be seen in
the control action shown in Figures |3.8(b)| and [3.8(f)] where even though
DR~SOH sometimes produces strong actions, they are more similar than the
ones produced by the ideal single-rate control working at high frequency.

Table [B:1] provides a more accurate analysis based on a benchmark-
ing with different metrics, [Yuste et al.| (2010). As expected, the average
following error and its maximum value are much bigger in the single-rate
approach, while using a dual-rate framework improves the performance.
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Figure 3.5: SUMMIT mobile robot working at low frequency.

) t = 10s. ) t = 20s.
) t = 30s. ) t = 40s.

Figure 3.6: SUMMIT mobile robot using DR-FOHs.
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Figure 3.7: SUMMIT mobile robot using DR-SOHs.

FEATURE METRIC SR(5) | SR(5) | DR-FOH | DR-SOH
Average Error [m] L3 e 0.1458 | 0.3097 0.1803 0.1585
Maximum Error [m] max;y e; 1.8409 1.8751 1.8576 1.8504
Average Curvature [rad-m’l] > ke 0.5566 | 0.8434 0.5752 0.5760
Maximum Curvature [rad-m™] maxy |k 1.0050 | 1.6520 1.0298 1.0233
Average Sharpness [rad-m™ ] +> o 3.5276 | 11.4703 4.4502 3.7886
Maximum Sharpness [rad-m™!] max; |oy| 64.4824 | 288.2119 | 89.6029 78.9596
Normalized Bending Energy [m™!] | L, «7-v,At | 0.0282 | 0.0741 0.0292 0.0289
Normalized Abruptness [radm s | £ 3 o7 -v,At | 4.1236 | 106.5804 5.5357 4.6746

Table 3.1: Metrics of path following comparing Single-rate and Dual-rate
approaches.

On the other hand the Bending Energy and the Abruptness demon-
strates that the control with a DR-SOH is smoother and needs less energy
to follow the path because it does not have to modify the robot direction so
many times, due to the fact that the intermediate way-points are estimated
more accurately rather than conventional single-rate control.
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rate second order holds.
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3.3 Visual Feedback Robot Manipulator Control
based on Dual-rate High Order holds.

In the following, let us assume this notation: “1Msg, (tasty,tz,02,0y,02),
where 51M52 is the homogeneous matrix relating frame S, with respect
to frame S1; X, Y and Z are Cartesian coordinates in meters, and 6, 0,
and 6, are the three Euler angular coordinates in radians. In addition, the
world frame is denoted with sub-index w, the camera frame is denoted with
sub-index ¢, the robot end-effector frame is denoted with sub-index e, and
the object frame is denoted with sub-index o

The proposed dual-rate approach can be implemented in 2D and 3D
workspaces. This section only provides experiments working into the 2D
workspace, although the conclusions can be extended to the control on the
3D workspace.

2D visual feedback control schemes (IBVS), |Corke| (2011); Chaumette
and Hutchinson| (2006), use the image-plane coordinates of a set of points
to define the set s;. Let us denote f; and ff as the current and reference
image state, respectively. s; = {fi,....,f,}, € 37 is the set of n current
state, and s} = {f}, ..., £}, € R3" the set of n reference state.

Without loss of generality, this section considers features-like-points,
P; = (X, Y;, Z;)T € R3 in the Cartesian workspace, to perform vision
feedback control tasks, being extensible to any other kind of features. In
this section, the depth parameter Z; is getting updated, (Chaumette and
Hutchinson| (2006)), by using Dementhon and Davis pose estimation algo-
rithm, [DeMenthon and Davis| (1995b)) (see Chapter [2| Section for
further details about how to obtain the interaction matrix).

The non-free flying camera case (see Corke| (2011)) is used, in which
the motion of the camera is constrained by a manipulator, in our particular
case a 6 degree of freedom (DOF) manipulator, where in its end-effector the
camera is attached (eye-in-hand configuration).

According to the non-free flying camera case J(s;, q;) = Lg(s;)-¢ V-
*Je(qr) € R¥™ is the Jacobean matrix, which relates the measured features
velocity with the manipulator velocity, where *J,(q;) € R™ is the robot



62 CHAPTER 3. Visual Feedback Control based on DR-HOHs

CONTROL SYSTEM

~
DESIRED
VIEW DUAL-RATE CONTROLLER Col';‘hT"';o'-
. Ewrltml &

+ SINGLE-RATE SINGLE-RATE
O »| CONTROLLER |~ o TERERTE |- —»| CONTROLLER S
L AT LOW RATE AT HIGH RATE

Y

\J

CURRENT VISION SYSTEM

VIEW =

'controd Buision|

DUAL-RATE |
INTEREACE 4—/—— VISION ALGORITHM [-4——IMAGE ACQUISITION|-

Figure 3.9: Visual feedback robot control block diagram.

Jacobean matrix, ¢V, € RO is the twist velocity matrix, Lg(s;) € R3¢
is the image Jacobean (known as interaction matrix) and q; € R™ and
4: € R are the robot positions and velocities, respectively, being m the
manipulator number of DOF.

Thus, the general control law is given by:

C'lt:jJr(StaClt)'ét (3-2)

Figure 3.9 shows the general multi-rate control block diagram. Regard-
less of the robot used, and focusing on the working frequency, it is possible
to distinguish to subsystems out: Vision System and Control System.

In Vision System two related tasks are contemplated: Image Acquisition
is in charge of getting images with a sampling period gacq; Vision Algorithm,
containing image processing algorithms, running at 5pmc. Thus, Oyision =
Sacq + Spmc denotes the periodic sampling time of the Vision System.

With respect to the Control System, it is composed by a high level con-
troller that, in the general multi-rate case, is a dual-rate controller, although
it can also be a single-rate one, and a low level controller that is in charge
to control the motors directly. Oeontror Will be the sampling period of the
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low frequency controller counterpart (if applicable) and § the minimum pe-
riod admissible by the manipulator, which will be the same for the high
frequency controller counterpart.

Along this section two controllers are used: a proportional control law,
Hashimoto (1993); Corke| (2011), and a PID controller, |Lots et al.| (2001)).

In this case, it was developed a simulator based on Robotics, |Corke
(1996), and Machine Vision, Corke (2005)), toolboxes developed in Mat-
lab/Simulink.

3.3.1 Results under Simulation

Several experiments have been carried out to analyze some aspects of our
approach, which is impossible with real systems. For all of them, the pro-
portional controller is used. Among all the alternatives of placing dual-rate
holds within the control loop, in this test they are placed between the Vi-
sion System and the Control System. Thus, the controller works at high
frequency and the features are being extrapolated using dual-rate holds.
The sampling period of the Vision System is Svision = 84ms, being the con-
troller period the same as the base period deontro; =0 =10 ms. Furthermore,
a tracking task is performed, where an object moves with constant velocity.

Figure [3.10] shows performances obtained by the single-rate and the
proposed dual-rate approach based on DR-HOHs: Figure compares
single-rate low frequency with the ideal at high frequency; Figure
compares dual-rate approach using DR-ZOH with the ideal at high fre-
quency; Figure compares dual-rate approach using DR-FOH with
the ideal at high frequency; Figure ompares dual-rate approach us-
ing DR-SOH with the ideal at high frequency. Note how when dual-rate
higher order holds are used, the system behaves much more similar to the
ideal high frequency one. Due to the trajectory followed by the object, both
first and second function fit quite the same, although this result cannot be
generalized.

As expected, the multi-rate approach based on dual-rate high order holds
provides better system performance than low frequency single-rate. In fact,
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Figure 3.10: Dual-rate visual feedback control using DR-HOHs vs single-
rate visual feedback control: true object position, solid black line; high
frequency control, solid blue line; low frequency control and control using

DR-HOHs, solid red line.

these responses look like the ideal high frequency response.

In addition to this, the next experiment analyzes the effect of the noise,
and thus the robustness of this approach, compared with the one obtained
using a dual-rate Kalman filter, |Armesto and Tornero (2006]), Steffes (2014]).
It is obvious that, dual-rate high order holds do not perform filtering and
therefore they are not as robust as Kalman filter while dealing with noises.
The aim of the analysis is to determine the maximum level of noise that
can be allowed with dual-rate high order holds. Figure shows the
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Figure 3.11: DR-HOH versus DR-Kalman Filter

results obtained with both dual-rate estimators in terms of MSE and its
covariance, while varying the percentage of contained error on the system
(robot pose) and measurement (vision system). For measurement errors less
than 15%, the performance of both estimators is very similar. For higher
errors Kalman behaves better because its filter nature, which is not the case
of dual-rate high order holds.

3.3.2 Experimental Results

In this section, Kr5 cell platform is used to validate the proposed approach
(see Appendix Sectionfor a more detail information). A Logitech
web-cam mounted on the robot end-effector is used as sensor. The resolution
of the camera is set 640 x 480 pixels, which allows work at 30 fps. The object
is a single circular shape, and the task goal is to center its center of mass
in the middle of the image plane. The object is moving along a square
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(a) Kuka KR5 sixx R650 cell. (b) Kuka industrial robot end-effector.

Figure 3.12: Experimental setup.

trajectory with a velocity of 13 cm/s.

As controller, a Workstatiorﬂ is used running on Ubuntu 10.04 O.S., and
using Visual Servoing Platform, [Marchand et al. (2005)), as open source
library to implement the needed vision processing algorithm. More detailed
information regarding the communication within each system, as well as
hardware description, is given in Appendix [A]

The initial pose of the end-effector is *M,(0.375,0.0,0.695,0,7/2,0).
The camera is at °M(0.0, 0.0, —1.650, 0.0, 0.0, 0.0) with respect to the ob-
ject, being the transformation between the end-effector and the camera
“M.(—0.080,0.0,0.050, —2.235, —2.182,0.056) (see Figure [3.12).

Given that we don’t have direct access to join torques, indirect visual
servoing has been implemented according to |[Hashimoto et al.| (1996]).

Table [3:2] shows the obtained results while performing the described
tracking task using single-rate and the proposed dual-rate approach. Con-
cretely, the conventional low frequency single-rate visual feedback robot
control approach is compared with the proposed dual-rate one using DR-
ZOHs, DR-FOHs, DR-SOHs, DR-SOBHs and DR-SOTH. It is shown that
quadratic errors produced by the proposed dual-rate approach are less than

1 ASUS: Intel Core i7-2670QM, 8GB of RAM @ 2.2GHz and a GeForce GTX 560M
2GB
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e?(s* —s) (m) ts (ms) d(%)

SINGLE-RATE IBVS 0.03441748 — Under — damped
Dual-rate IBVS (DR-ZOH) 0.03431598 — Under — damped
Dual-rate IBVS (DR-FOH) 0.01741782 550 12
Dual-rate IBVS (DR-SOH) 0.01768391 530 9
Dual-rate IBVS (DR-SOBH) |  0.01851924 580 9
Dual-rate IBVS (DR-SOTH) |  0.01799218 570 9
Dual-rate IBVS (KALMAN) 0.01874451 580 Under — damped

Table 3.2: Single-rate versus dual-rate IBVS controller: object moving at
13 cm/s.

the one produced by the system controlled at low frequency. This fact is
highlighted in Figure where the trajectory followed by the center of
the camera is drawn, showing that the best result is given when a dual-rate
first order hold is used. Remark that this is because the first order estimat-
ing function fits better to the trajectory made by the object rather than the
second order model function. Although in this particular set-up has been
obtained a better performance in terms of convergence time rather than
using a dual-rate Kalman filter, the latter is more robust against system
and measure noises, as it was shown in the previous section.

The comparison between performances obtained by using a dual-rate
controller is shown in Figure In this case a visual feedback PID,
Lots et al.| (2001), is chosen as controller. According with [Tornero et al.
(2001b)), a continuous PID is designed and then it is obtained its equivalent
at low frequency, at high frequency and the dual-rate equivalent controller
(see Chapter [2| Section and [Tornero et al.| (2001b) for further details
about how obtain a dual-rate PID). Figure [3.13(b)| shows the system per-
formance in each one of the described cases, where the better behavior is
achieved with the dual-rate PID. The improvement with respect to the con-
ventional single-rate approach reaches a 75% in terms of quadratic errors.
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Figure 3.13: Visual feedback robot control: single-rate vs dual-rate ap-
proaches.

3.4 Asynchronous Dual-rate High Order Holds with
Time Delay Compensation

At this point, dual-rate high order holds have demonstrated how their in-
clusion within the control loop improves the overall system behavior, not
only working with linear systems but with nonlinear systems.

However, the control of such systems can be improved by considering
signal asynchronies, which is more realistic when dealing with robotic plat-
forms. That is, even although the control actions have to be given periodi-
cally, the data from sensors might be used at the moment which is available.
This concept was introduced to dual-rate holds in |[Armesto et al| (2008)),
improving in grate measure the performance given by classical dual-rate
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Figure 3.14: Dual-rate Asynchronous High Order Holds with Time Delay
Compensation block diagram.

holds.

Other aspect to consider is signal delays, as happens in the case of vision
systems, where the required time by the sensor for acquiring + processing +
sending results to other systems includes delays between the moment that
the picture was taken and the moment the controller has access to such
results.

The contribution of this section is the generalization of dual-rate asyn-
chronous holds presented in [Armesto et al| (2008), by adding the Time
Delay Compensation, coining the approach as dual-rate asynchronous high
order holds with time delay compensation (Async. DR-HOH-TDC).

3.4.1 Concepts and Formulation

Let us define the time delay as t4. Since sometimes it is difficult to compute
the exact value of such delay when working with real systems, for now and
the rest of the chapter signals depending on the delay will be treated as
estimations and denote with *. Taking this notation, the general expression
of a hold is:

() =) i (tu(fjo), i) (3.3)
1=0
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Algorithm 2 Dual-rate Asynchronous High Order Holds with Time Delay
Compensation

1: Input: u(t),U;, T;,t;,Other information about t4;,t

2: [u(t),?;] =DelayEstimation(u(t), t;,Other information about ta;)

3: if u(t) is updated then

4:  shift out u(f;_,) and shift in u(#;) from U;

5:  shift out fj_n and shift in fj from 7T;
6
7
8
9

i (t) = u(f))

: else
ay,(t)=0
for [ =0ton do
10: retrieve u;, from U;
11: retrieve ¢; from 7;
12: ap(t)=up(t)+£ (t, u(fj_l), fj_l)
13:  end for
14: end if

15: return 0y (t), U; and T;

where u(tj) denotes the hold 1nput signal at the delay compensated instant
t] =t; td , being t] n<...< t <'t, and td the estimated time delay at
j-

Figure shows the block diagram of the generalized dual-rate hold.
Asynchronism is denoted by the variable frame period ¢’, meanwhile the
base period (hold output) is denoted 6. The hold incorporates a delay es-
timator which, if it is possible, receives time data information from the ac-
quisition /processing block. Thus, having the estimated delay and the signal
value, it is possible to compute more accurate inter-sampling estimations.

In addition, the pseudo-code for implementing the proposed dual-rate
hold with time delay compensation is given in Algorithm [2] which is the
generalization of the algorithm presented in |[Armesto et al.| (2008)), corre-
sponding to the control diagram block of Figure In line [2 delay esti-
mation is needed and performed with input u(¢) at t; and the corresponding
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time information given by sensors. Once the time is compensated obtain-
ing #;, both U; = {u(fj), ... ,u(fj_n)} and T; = {fj, ..,tj_p} are updated
with u(fj) and fj, respectively, and shifting out the last part information
u(tj_,) and £;_, (see lines {4/ and . The rest of the algorithm (from line
to is the application of Equation getting finally the corresponding
inter-sampling estimations, returning in line |15 i, (t), U; and 7;.

From now to the end of this chapter, holds to be used are the ones
based on primitive functions, |Armesto and Tornero| (2003a). Figure
shows the performance obtained by Async. DR-ZOH-TDC and DR-FOH-
TDC, while Figure shows a comparison of Lagrange, Bezier and Taylor
DR-SOHs, denoted as (DR-ASOH-TDC), (DR-ABSOH-TDC) and (DR-
ATSOH-TDC), respectively.

In addition, Figure[3.17 compares both Async. DR-SOH and DR-SOH-
TDC. With compensating the time delay the hold is able to provide better
estimations than without such compensation.

In the following, without loss of generality, we comment the results ob-
tained when we use the new Async. DR-HOH-TDC for estimating data
from vision systems in order to control robots such as industrial robot ma-
nipulators. Even that this is a particular example, the results obtained are
more than relevant because this system is highly nonlinear, validating thus
the presented approach.
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Figure 3.15: Performances of Async. DR-ZOH-TDC and Async. DR-FOH-
TDC.
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(b) hold based on Bezier.

(c) hold based on Taylor.

Figure 3.16: Performances of Async. DR-SOH-TDC.
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Figure 3.17: Comparison between the estimations carried out by Async.
Dual-rate SOH with time delay compensation (green cross samples) and
without (green triangular samples)

3.4.2 Data Estimation from Vision Systems

Figure [3.18) shows a typical industrial visual feedback robot control struc-
ture. There is a controller in charge to get data from the vision sensor in
order to compute the correspondent control action to be sent to the robot.
The robot exchanges data with the external controller, while the vision
system only sends data without receive any feedback from the external con-
troller. Coming up next in Sections [3.4.2.1| and [3.4.2.2] the robot system is
not considered.

3.4.2.1 Simulated Results

Let us suppose the following virtual set-up: a stationary 5 MP camera
(2048 x 2444 pixel) ceiling mounted, in overhead position, and looking at a
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Figure 3.18: Industrial control structure based on vision systems.

target, which moves in a circular path of 10 cm of radio and a velocity of 4
cm/s. The minimum frame period of the camera is 100 ms, while the worst
case will be variable depending on the experiment performed. The control
task goal is to track the object.

Figure [3.19shows the estimations performed by several dual-rate holds.
Concretely, the comparison between classical synchronous dual-rate second
order hold (Sync. DR-SOH), asynchronous dual-rate second order hold
(Async. DR-SOH) and the proposed asynchronous dual-rate second order
hold with time delay compensation (DR-SOH-TDC). The reason of using a
second order hold is because the hold function model fits with the signal to
be estimated. Comparing the three of them it can be concluded that the
best results are obtained by the Async. DR-SOH-TDC.

Figure [3.20] shows the main property of this approach. When delays are
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significant, classical dual-rate holds are performing their estimations using
past information. By introducing the TDC component, the estimations per-
formed by dual-rate holds are based on actual (an error factor of time delay
compensation was introduced to fit better with the reality) information and
thus the improvement in their estimation is evident.

Figure shows the MSE of the estimations with respect the ideal
trajectory using Async. DR-HOHs with and without TDC approach. Note
how, independently of the hold order chosen, the best results are always
given by the proposed dual-rate holds with time delay compensation.

In addition to this, Figure[3.22]shows the histogram analysis of the MSE
indicating how is the data disparity when the TDC component is not in-
cluded and when it is included. The result shows a big improvement when
the TDC component is included with a disparity below 7%. However, with-
out the TDC component, the MSE disparity is in between 57% and 87%.
These results confirm that with the new DR-HOH-TDC better estimations
are obtained.

Remark 1 Input signal delays produce noise effect to high order holds.

The proof of remark [ is given in Figure Note that, estimations
produced by Async. DR-SOH are worst than the ones performed by a first
order hold. This is because the signal stored by the hold, due to delays, is
becoming noisy and, as higher order model function is used, much bad data
is utilized for computing the estimations, giving worst results. On the other
hand, note that if delays are compensated, the second order hold produce
better estimations rather than the first order hold, in this particular case
because the second order function fits better with the input signal.

Remark 2 Time delay compensator component acts like a low pass filter
to high order holds.

The proof of Remark [2]is given empirically in Section [3.4.2.2]

The comparison between noisy signals and asynchronous delayed signals
that Remark [T] postulates is demonstrated in Figures and where
the MSE obtained by using DR-FOH-TDC and DR-SOH-TDC is compared
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Figure 3.21: Asynchronous Dual-rate High Order Holds estimation MSE
with and without time delay compensation approach.
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Figure 3.22: Histogram comparison between DR.SOH with and without
TDC.

in function of the level of noise introduced with the hold input signal. Again,
it can be seen that, when the noise level is low, DR-SOH-TDC obtains
better estimations rather than DR-FOH-TDC because its model function
fits better with the trajectory followed by the target. Contrary to this, if
the noise level is high, then is the DR-FOH-TDC the one which produces
better estimations rather than DR-SOH-TDC.
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Figure 3.23: Async. DR-HOH-TDC performance against low noisy input
signals.
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Figure 3.24: Async. DR-HOH-TDC performance against high noisy input
signals.
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Figure 3.25: Experimental set-up: PC-based Xpectia vision system, 5 MP
camera and a PLC.

3.4.2.2 Experimental Results

Let us define the set-up used in this section (Figure : a PC-based
industrial vision system Xpectia, a 5 MP industrial camera (resolution of
2448 x 2044) working at 12 fps, a PLC as external controller, an automatic
rolling disc (see Appendix and a blue rectangle as target. The
camera communicates with Xpectia via camera-link, and Xpectia uses Eth-
ernet UDP /IP protocol to communicate with the PLC. Within the PLC,
all the presented approaches are implemented (see AppendixE[). A study of
the worst case given by the detection algorithm to be used fixes the frame
period in § = 300 ms, being the base period § = 10 ms.

The goal of this experiment is to detect the Cartesian pose of a moving
object and send this pose out, as well as the acquisition+processing runtime
to the external computer. In this sense, a 3D object pose detection algo-
rithm, based on image model of the object already implemented in Xpectia,
is used. This algorithm has the following working modes, depending on the
precision or the searching window required by the application:

e Matching model using 360° (P1): if this option is activated, the match-
ing between the object and the model is carried out not only along
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Table 3.3: Comparison of Asyn DR-HOHs performances with and without
TDC

MSE
WITHOUT TDC WITH TDC
FOH SOH FOH SOH

P1 P2 ALG. TIME [ms] VELOCITY [rpm]

9 3.23 3.04 2.64 1.79

7.5 3.07 2.80 1.96 1.31

ON OFF 300 6 2.56 2.49 1.76 1.29
4.5 2.21 2.19 1.35 1.11

9 1.60 1.59 0.80 0.83

7.5 1.47 1.46 0.76 0.82

OFF 88 6 1.30 1.30 0.65 0.77

OFF 4.5 1.13 1.13 0.53 0.68
7.5 1.64 1.63 0.87 0.79

6 1.55 1.54 0.79 0.74

ON 120 4.5 1.46 1.46 0.72 0.72

the whole image size, but also considering rotation of the object. This
option is high computational consuming.

e Precision (P2): this option assures better or worst detection of the
object. If this precision option is set on, the algorithm is more robust,
but also more time consuming.

Other factor to be considered is the velocity of the moving object, which
means that as much velocity more problems the algorithm will get to detect
it.

Table shows the results obtained doing this experiment. The best
performances are obtained by the proposed Async. DR-HOH-TDC, inde-
pendently of the algorithm configuration. It is interesting to remark that,
the worst case, which is when the algorithm parameter settings are all OFF,
first order hold produces better estimations rather second order hold. This
result confirms what we proved in said in earlier sections.

Figure [3.26]shows the comparison between the estimations given by DR~
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Figure 3.26: Application example of Async. DR-HOH-TDC: object trajec-

tory, dashed black line; using DR-SOH-TDC, solid red line; using DR-FOH-
TDC, solid blue line;.
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FOH-TDC and the ones given by DR-SOH-TDC. Due to the path followed
by the object, second order hold model function fits better rather than first
order model function.

3.4.3 Visual Feedback Manipulator Control using Async.
DR-HOH-TDC

In earlier sections, Async. DR-HOHs-TDC have been successfully validated
in open loop. The aim of this section however, is the experimental validation
of the proposed Async. DR-HOH-TDC, when they are include into the
control loop of a visual feedback robot control system.

The experimentation is carried out by using the Agilus cell (see Ap-
pendix for more details), which includes: a 6 DOF Agilus industrial robot
manipulator; a camera Logitech web-cam C300 attached to the robot-end
effector; a Workstationﬂ as control system; and a PC-Based vision system.

The camera is connected via USB to the PC-based vision system, which
functions are: the image acquisition and processing, and the communication
of the results via protocol UDP/IP to the control system.

Within the control system, all the proposed algorithms are implemented,
including all the dual-rate extrapolators seen along this chapter and the 2D
visual feedback robot control, Corke| (2011)).

In this case, four coplanar dots forming a square of 0.300m of side are
used as target. Along this section, several experiments are analyzed, keeping
the target stationary, performing thus an error position control task.

Regarding to the experimentation set-up, two different initial camera po-
sitions with respect to the target are studied: in the first, the object frame
is placed at “M,(0.655,0.023, —0.649, —2.577,1.608, —0.194) with respect
to the world frame, the robot end-effector frame is at “M,(0.621, —0.101,
—0.628,1.334,2.392,0.626) with respect to the world frame, being the re-
lation between camera and end-effector frames “M.(—0.080, 0.050, —2.235,
—2.182,0.056) (see Figure ; in the second, the object frame is placed

2ASUS: Intel Core i7-2670QM, 8GB of RAM @ 2.2GHz and a GeForce GTX 560M
2GB working under Ubuntu 12.04 prompted with a real-time kernel



86 CHAPTER 3. Visual Feedback Control based on DR-HOHs

(a)  Set-up for Test 1: (b)  Set-up for Test 2:
M, (0.621, —0.101, —0.628, 1.334, 2.392, “M.,(0.506,0.037, —0.973, 0.861, 2.724).
0.626) .

Figure 3.27: Visual feedback manipulator control for estationary
objects: "M, (0.655,0.023, —0.649, —2.577,1.608, —0.194) and “M,(
—0.080, 0.050, —2.235, —2.182,0.056) .

at M, (0.621, —0.101, —0.628, 1.334, 2.392, 0.626) with respect to the world,
the robot end-effector frame is at “M,(0.506,0.037, —0.973,0.861,2.724)
with respect to the world frame, with the same relation between the camera
and the end-effector frames as the case before (see Figure [3.27(b))).

Figure [3:28 shows the image plane trajectory followed by each feature in
three different sampling times, comparing in this case Async. DR-FOHs and
Async. DR-FOH-TDC. Related to this are the results shown in Figure [3:29]
in which a comparison of the MSE and control actions of the system using
Async. DR-FOH and Asyn DR-FOH-TDC, respectively, demonstrates an
improvement of around 1 second in terms of convergence time carried out
by the last ones.

In the same way, Figure shows the image plane trajectory followed
by each feature in three different sampling times, but this time using Async.
DR-FOHs and Async. DR-SOH-TDC. Figure shows the MSE and
control actions of the system using Async. DR-SOH and Async. DR-
SOH-TDC, respectively. As in the previous case, the convergence time is
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(a) Using DR-FOHs:
instant O sec.

(b) Using DR-FOHs: (¢) Using DR-FOHs:
instant 6 sec. convergence at 16.07
sec.

(d) Using DR-FOH-
TDC: instant 0 sec.

(e) Using DR-FOH- (f) Using DR-FOH-
TDC: instant 6 sec. ~TDC: convergence at
14.91 sec.

Figure 3.28: Test 1 - Features trajectory performance: comparative between
Async. DR-FOH and Async. DR-FOH-TDC.
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(c) Controller actions % using Async. DR-FOH-
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Figure 3.29: Test 1: comparative between Async. DR-FOHs and Async.
DR-FOHs-TDC.
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(a) Using DR-SOHs:
instant O sec.

(b) Using DR-SOHs: (c) Using DR-SOHs:
instant 6 sec. convergence at 17.7
sec.

(d) Using DR-SOH-
TDC: instant 0 sec.

(e) Using DR-SOH- (f) Using DR-SOH-
TDC: instant 6 sec. TDC: convergence at
16.01 sec.

Figure 3.30: Test 1 - features trajectory performance: comparative between

Async. DR-SOH and Async. DR-SOH-TDC.
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(c) Controller actions % using Async. DR-SOH-TDC.

Figure 3.31: Test 1: comparative between Async. DR-SOH and Async.

DR-SOH-TDC.
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HOLD A ‘ 0.025 ‘ 0.050 ‘ 0.075 ‘ 0.100 ‘ 0.125 ‘ 0.150 ‘ 0.175 ‘ 0.200 ‘ 0.225 ‘ 0.250 ‘ 0.275 ‘ 0.300

S-DR-ZOH 90.84 | 52.32 | 39.76 | 28.17 | 23.92 | 19.38 | 21.32 — — — — —
S-DR-FOH 83.57 | 51.30 | 34.83 | 26.92 | 20.04 | 18.74 | 17.55 | 16.02 | 17.33 | 20.39 - -
S-DR-SOH 85.05 | 51.15 | 33.23 | 25.02 | 19.46 | 18.32 | 20.56 | 23.32 — — - -
A-DR-ZOH 85.18 | 49.20 | 32.36 | 24.63 | 19.08 | 18.92 | 18.62 | 20.00 | 20.15 — — —
A-DR-FOH 79.61 | 46.12 | 30.66 | 22.76 | 18.36 | 17.13 | 16.33 | 14.47 | 12.03 | 9.97 8.57 9.27
A-DR-SOH 80.02 | 46.08 | 29.10 | 22.95 | 18.37 | 17.17 | 17.50 | 18.89 | 21.88 — — —
A-DR-ZOH-TDC | 85.18 | 49.20 | 32.36 | 24.63 | 19.08 | 20.22 | 18.69 | 20.00 | 20.15 - - -
A-DR-FOH-TDC | 78.48 | 45.49 | 28.85 | 21.00 | 17.12 | 16.53 | 15.03 | 12.83 | 11.45 | 8.78 8.00 9.12
A-DR-SOH-TDC | 79.01 | 44.07 | 27.67 | 20.79 | 17.00 | 16.51 | 16.45 | 17.55 | 19.32 - - -

Table 3.4: Test 1: Comparison between Sync. DR-HOHs, Async. DR-
HOHs and Async. DR-HOH-TDC in function of the controller’s gain ().
The resulting mean of 5 experiments are shown in this table

improved around 1 second with respect to the one obtained using Async.
DR-SOHs. However, the convergence time is worse compared with the one
obtained by using DR-FOH-TDC, which confirms the results commented in
earlier sections about that in the presence of lightly noisy signals, as higher
the hold order worse estimations are obtained, proving thus experimentally
Remark 21

In addition to this, Table[3.4]shows a comparison of the convergence time
with respect to the controller grain (A) between all the holds used along this
chapter, where “S” denotes Synchronous and “A” denoting Asynchronous.
It is interesting to see how the new approach converges faster than the rest,
keeping still its robustness, other empirical proof of Remark [2]

The second test is one that classical single-rate control at low frequency
cannot solve because of the sensor latency. Due to the last results, this
time only first order hold model functions are used. Figure [3.32 shows the
comparative of the image trajectories performed by Async. DR-FOH and
Async. DR-FOH-TDC, while Figure their respective MSE and con-
trol actions are represented. Note that the convergence time has improved
around 2 seconds without noticing any bad behavior of the system.
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(a) Using DR-FOHs:
instant 0 sec.

(b) Using DR-FOHs: (c) Using DR-FOHs:
instant 11 sec. convergence at 26 sec.

(d) Using DR-FOH-
TDC: instant 0 sec.

(e) Using DR-FOH- (f) Using DR-FOH-
TDC: instant 11 sec. TDC: convergence at
23.83 sec.

Figure 3.32: Test 2 - Features trajectory performance: comparative between
Async. DR-FOH and Async. DR-FOH-TDC.
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(c) Controller actions % using Async. DR-FOH-
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Figure 3.33: Test 2: comparative between Async. DR-FOHs and Async.

DR-FOHs-TDC.
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3.5 Summary

The first proposal of this chapter is the use of dual-rate high order holds
to improve the performance of nonlinear systems such as robots controlled
data from vision sensors.

This approached has been validated first, in a wheeled robot performing
a path following task, and then in a 6 DOF industrial robot manipulator
performing a target tracking task.

An analysis of similarities and differences between single-rate working
at low and single-rate working at high frequency as well as using the new
dual-rate approach has been made, showing that the behavior of the system
using dual-rate holds is more similar to the ideal working at high frequency
and therefore much better than classic control at low frequency.

In addition to this, a comparison under simulation using dual-rate holds
and using dual-rate Kalman filter has demonstrated that, for measurement
errors less than 15%, the performance of both estimators are very similar.
For higher errors Kalman Filter based extrapolator performs better because
its inherent filtering effect.

Moreover, a comparison between dual-rate visual feedback robot control
using DR-HOHs, and using DR-Kalman Filter as Estimator, has been made
experimentally, which results shows that, in this particular case, the error
is lower using DR-HOHs, although DR-Kalman is more robust.

The second part of the chapter formulates the extension of asynchronous
dual-rate high order holds incorporating a time delay compensator, coining
this approach Asynchronous Dual-rate High Order Hold with Time Delay
Compensation Async. DR-HOH-TDC.

A wide analysis has been made in order to highlight the properties of
such new approach. Under simulation, Async. DR-HOH-TDC has shown a
much better performance rather than their homologous Async. DR-HOH.
Results have also shown how the noise affects to the hold estimations and
how this new approach improves their robustness.

Then, the new holds have been tested by including them within the
control loop of a visual feedback robot controlled. In this case a 6 DOF
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Figure 3.34: Tracking moving targets Agilus cell platform set-up.

manipulator has been used performing both error positioning and target
tracking tasks. In all the experiments, the new approach has shown the
property to improve more the overall system performance rather than using
holds without TDC approach.

3.6 Discussion

Visual feedback robot control performing a tracking task was also analyzed.
In this case, a conveyor is used to perform the experiment, in which the
target is placed on it and moves with a velocity of 0.375 m/s (see Figure
3.34). The controller proportional gain used in this case takes a value of
A = 0.200, and Async. DR-FOHs with and without TDC are compared.

Figure [3.35] shows the analysis results. There is an improvement when
the proposed DR-FOH-TDC is used instead the classical equivalent one,
although in this case, the noise produced by the robot movement produces
not desirable noisy control actions. This example shows the lack of using
DR-HOHs when high noisy signals are estimated.

Nowadays we are working on incorporating a Kalman filter into the
hold model in order to be able to deal with noisy signals. The preliminary
results under simulation scenario show a great improvement as it can be
seen in Figure[3.36, where DR-FOH-TDC with Kalman Filter is more robust
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against noises rather than the homologous DR-FOH-TDC.

Figure shows the results of this experimentation, in which DR-
FOH-TDC produces a better performance in terms of MSE and standard
deviation rather than the analogous without TDC approach.
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Figure 3.35: Object tracking: comparative between Async. DR-FOHs and
Async. DR-FOHs-TDC.
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Noise (62, u=0)

(a) Async. DR-FOH-TDC.

0 05 1 15 2 25
Noise (62, u=0)

(b) Async. DR-FOH-TDC including a Kalman filter.

Figure 3.36: Async. DR-FOH-TDC performance against high noisy input
signals including a Kalman filter.



Chapter 4

Visual Feedback Control based
on Dual-rate Nonlinear High
Order Holds

4.1 Motivation

In Chapter [3] dual-rate high order holds based on primitive functions were
used to provide high frequency estimations from low frequency data com-
ing from nonlinear systems, such as an industrial manipulator or a wheeled
robot. Although the performance obtained with this approach was satis-
factory compared with the same system controlled at low frequency, these
holds do not consider system kinematic and dynamic constraints, controller
used or task performed, in order to estimate the high frequency data.

The motivation of this chapter is to provide a nonlinear function model
for dual-rate holds which includes all the commented system and application
aspects. For this regard, this chapter proposes the use of machine learning
techniques in order to learn the specific nonlinear hold function model,
coining this approach as dual-rate nonlinear high order holds.

A methodology for obtaining the nonlinear hold estimation function is

99
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firstly detailed. Although the proposed methodology is particularized to
the use of artificial neural networks along this chapter, it is independent of
the machine learning tool to be used. The proposed approach is then vali-
dated and compared with the classical one in several examples and robotic
platforms. Concretely, a 6 DOF industrial manipulator performing a vi-
sual feedback control tracking task, and a wheeled robot performing a path
following task.

4.2 Multi-rate Nonlinear Holds

In |Armesto and Tornero| (2003a)), the expression of a hold was provided
according to the primitive function used (see Chapter [2| Equation . A
more general expression is given by:

uh(k,i):fi(t, tk,u(tk),...,u(tk_n)) (4.1)

where F; is each of the elements of a non-linear function-valued vector F
that represents the mapping between low-frequency sampled signals and
inter-sampling instants. Therefore, the hold needs to predict inter-sampling
signal values based on a set of previously known inputs sampled at low-
sampling frequency.

Let us assume F : 7T — Zj the mapping between the high-frequency
discrete sequence Zj, = {up(k,0),--- ,up(k, N — 1)} and the low-frequency
signals Z = {u(k —n,0),--- ,u(k —1,0),u(k,0)}. Since in 7}, is included
future-time instants and inter-sampling values that are not accessible in
real-time processes, 7;, is denoted as the hold-estimated mapping. Thus,
the aim is to find an appropriate mapping such as 7j ~ 7, for every time
instant t;, = k¢ and input vector Z. Once the packed vector I, is generated,
it is unpacked using the inverse lifting operator £~!, Bamieh et al.| (1991),
which produces the hold output “continuized” signal up(t).

It is easy to reach out to an extension of this formulation from a multi-
rate point of view, where different inputs can be considered working at
different frequencies. Let us denote “NS” as the number of holds needed
by the system (usually it depends on the number of sensors but could be
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Figure 4.1: Multi-rate Nonlinear High Order Hold Hold block diagram.

also actuators or other kind of systems), {ty,,...,txys} the updating in-
stants, {51, ey 6N5} the frame period, and § de common base period, be-
ing {N1,...,Nng} the corresponding multiplicity number for each input.

Thus, for each sensor, a set of input and output datasets are obtained, and
gathering them together, a set of sets of input dataset {Il, . ,INS}, and

output dataset {f}l, ... ,f}:} S} is obtained. Then, the order of the hold func-
tion can also be varying, and thus {ni,...,nyg} is denoted as the set of

“NS” hold orders. The general multi-rate hold (see Figure takes then
the following form:

uy(k1,11) Fir (tstiy, ua (b, )y oo w1 (e —ny )
Uy, = : = : (4.2)
uy, (kns, ing) Fins (ts trns» UNS (Ers ) -5 UNS (L —nns )

Analytical methods can be used in order to obtain the mapping F. In
this regard, in |Armesto and Tornero (2005), a first attempt to incorpo-
rate the dynamics of the system was presented, although only proved using
linear systems (first and second order models). Obtaining a precise nonlin-
ear model analytically is always a hard and tedious work, even more when
working with industrial systems, which do not allow knowing all the infor-
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mation about their systems, or simply, it is not possible to get access to the
system nonlinear characteristic parameters.

This is the main reason that nowadays machine learning techniques,
Sun et al.| (1996); Kim et al. (2012)); Zhao et al.| (2015), are widely used in
the field of robotics. The robot hardware is progressively becoming more
complex, which leads to a growth of interest in applying machine learning
and statistics approaches within the robotic community. At the same time,
there has been a growth within the machine learning community in using
robots as motivating applications for new algorithms and formalisms.

In this chapter, the use of supervised machine learning methods, Kot-
siantis| (2007), such artificial neural networks, Misra and Saha (2010), is
proposed, which have shown to be one of the most adequate methods as it
is shown hereinafter.

The non-linear function-valued vector is learnt from a set of input data
working at low frequency and output data working at high frequency. Owing
to the fact that the high frequency data is not available, two solutions are
proposed:

e Having access to high frequency data using high technological hard-
ware: this might be possible by using an advanced sensor (likely more
expensive) providing data that we can use during the training phase.
The expensive sensor can be later replaced with a cheaper one, which
is particularly interesting if the solution has to be reproduced or is in-
dustrialized. For example, a camera with Gigabit Ethernet might have
a different bandwidth than a USB camera, while they might provide
images of a similar quality, since the camera interface is independent
from the camera sensor.

o High frequency data obtained by virtual environments: nowadays, the
use of dynamic simulators is common in all research and industrial
fields but in robotics even more. For this reason, there exists a vast
variety of available open-source tools which can be applied in specific
applications. In this kind of simulators one can perform tasks almost
like in the real systems.
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Figure 4.2: Method 1 for collecting data.

All two methods include kinematic and dynamic information of the sys-
tem working in close loop. Thus, the non-linear function-valued vector has
specific information not only about the system, controller and sensors but
also the task performed. As result, better estimations might be obtained.

In this chapter all the experiments presented are performed using the
second proposal, which is by using synthetic dataset obtained in simulation.
Following, a methodology for obtaining dual-rate non-linear high order holds
is described, which is independent of the method used for obtaining datasets
at high frequency.

4.2.1 Methodology

In this section, two possible methods for collecting datasets are described.
The first one, shown in Figure 4.2] is to do small “jumps” around all the
workspace, letting the system evolve N-instants (N = g) in each “jump”.
The second one, shown in Figure |4.3] is the same but letting the system
more instants to evolve. In this sense, less “jumps” are needed, although
there is major probability of repeated data, which can be problematic for

the learning procedure.

In both cases, the set of  inputs is set as
I:{[ul(k7 0)7 U1(k—1, 0)] ) [uQ(k7 0>7 uQ(k_L 0)] ) [u3(k7 0)7 u3(k_17 O)] 3 '}7
and the set of outputs as
I, = {[uh1(k70)7uh1 (k7 1)7uh1 (k72)v“']7[uh2(k70)vuh2 (kv 1)7uh2 (ka2)a-“]7

[an, (k, 0)un, (k, Dapg (k, 2)...] ...}
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Figure 4.3: Method 2 of casting datasets.

In Algorithm [3] the steps for obtaining dual-rate nonlinear high order
holds are described. The algorithm inputs are the set of datasets at low
and high frequency collected previously and well sequenced. Then two more
steps are needed: the training step (from line [5{to line , in which machine
learning tools are used to learn the non-linear function-valued vector for
each [-hold needed; the validation step (from line |§| to line , in which
the obtained non-linear function-valued vectors are tested and validated.
Remark that it is necessary to use different datasets than the one utilized
during the training step, otherwise results will be not significant. If the
test step is passed, then the non-linear function-valued vector is ready to be
used, otherwise the learning procedure has to be reviewed and performed
again.
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Algorithm 3 Multi-rate NLHOHs setting-up methodology.
1: Obtaining needed datasets:
2: Set of input {Il, e

+1 >N
{Ih’ SRR }TRAINING
Set of input {II, e ,INS}TEST dataset for testing
Learning step:
for/=1,..., NS do
Learn F;
end for
Testing step:
for/=1,..., NS do
10:  Test F; using Z; and compare with ideal ones
11: end for
12: if Testing step OK then
13:  return {F,...,Fns}

NS
TN} rRAINING and output

datasets for learning

14: else

15:  if First time then
16: Go to step

17:  else

18: Go to stef]]

19: end if

20: end if

4.2.2 Example

In this example, the control of a DC Motor is carried out by using a LQR
controller. In this sense, the simplified model of a DC Motor is used, which
is:
w = —%w + %u
0=w

(4.3)

where u is the control input, and y; = 6 and yo = w are the position and
velocity of the motor respectively. Its representation in state space takes
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o= 5] ][] »

) =l A ] e

where w is the process noise, which is assumed to be drawn from a zero
mean multivariate normal distribution with covariance Q.,, and v is the
observation noise which is assumed to be zero mean Gaussian white noise
with covariance R,,.

Thus, the discrete-time domain equivalent system at § is:

[mk+w}_k ﬂi;iﬁw Eﬁﬂ+
(
(

o) =10 1) o) + Jo] mo £ o
(4.5)

k

k)
The concrete values used in this example are: § = 0.2 and 0 = 2, being
N = 5. Furthermore, the DC Motor parameters taken for this example
are 7 = 0.25seg. and K = 0.25. Then, the continuous model described by

“m“mz[ﬂ[gﬂm+mww .
][22 [

Lastly, the continuous-time domain process and observation noise co-

the form:

] u(k)+w(k)

K(6—7(1—e%/m))
K(1—e9/m)
+

variances are:

@:Bﬁ]mzl (4.7)

and a unitary gain matrix G. € R?*? is taken.
Using MATLAB control toolbox, a LQR is designed in the continuous-

time domain, obtaining then the equivalents discrete L(Q) regulators at low
and high frequency.
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2

(a) Motor position dataset distribu- (b) Motor velocity dataset distribu-
tion. tion.

Figure 4.4: Dataset distribution.

A first order hold is used in this example. In addition, the signal to be
estimated is the position and velocity errors. Therefore, the set of inputs are
set as
Z(k) = {ep(k,0),ep(k —1,0),ey(k,0),ey(k —1,0)}, meanwhile the set of
outputs are Z(k)={ep(k,0),...,ep(k, N —1),ey(k,0),...,ey(k,N —1)}.

Figure shows the collected data uniformly distributed in the range
[—2.5,2.5] radians, and Figureshows the equivalent velocities for the
working point of our system. For this case, the second method for collecting
data has been used (see Figure [4.3).

Matlab artificial neural network toolbox, concretely
Levenberg-Marquardt back-propagation algorithm, is used to learn the non-
linear function-valued vector. A network structure of two-layer feed-forward
network with sigmoid hidden neurons and linear output neurons using 10
hidden neurons was used. The validation is carried out using a different
dataset.

Figure[4.5]shows the comparison between low and high frequency equivalent
LQ regulators. In this case, sampling at low frequency produces a non-
desirable performance, while if the sampling is at high frequency the system
behaves adequately.

In Figures [£.6] and [£.7] the comparison of the system working at ideal
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Figure 4.5: Low frequency single-rate control vs control based on dual-rate
nonlinear high order holds. Motor position estate: system working at low
frequency (dashed red line); system using DR-NLFOHs (solid blue line).
Motor Velocity state: system working at low frequency (dashed green line);
system using DR-NLFOHs (solid yellow line).

high frequency and using dual-rate approaches are represented. Figure
show the system behavior obtained by using a classical dual-rate first order
hold. In this case, the system has improved considerably its performance
with respect to the same system controlled at low frequency. Yet, the com-
parison with the system controlled at high frequency highlights that there
is still appearing some oscillations. On the other hand, by using dual-rate
nonlinear first order holds (Figure , the performance is almost exactly
than the ideal single-rate working at high frequency, which proves the im-
provement obtained with the new approach.
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Figure 4.6: Control based on dual-rate high order holds vs control based on
dual-rate nonlinear high order holds. Motor position estate: system using
DR-FOHs (dashed red line); system using DR-NLFOHs (solid blue line).

Motor Velocity state: system using DR-HOHs (dashed green line); system
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Figure 4.7: Ideal high frequency single-rate control vs control based on dual-
rate nonlinear high order holds. Motor position estate: system working at
high frequency (dashed red line); system using DR-NLFOHs (solid blue
line). Motor Velocity state: system working at high frequency (dashed
green line); system using DR-NLFOHs (solid yellow line).
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Figure 4.8: SUMMIT virtual environment based on ROS and Gacebo.

4.3 Visual Feedback Wheeled Robot Control based
on Dual-rate Nonlinear High Order Holds

The path following control problem described in Chapter [3] Section [3.2] is
here analyzed but using the proposed dual-rate nonlinear high order holds
(Figure. In this case, we have considered the same path than in Chapter
but here, in order to highlight the properties of the new approach, it is in-
scribed into a rectangle of 3.2 by 2.9 meters of size with the following control
parameters: look-ahead (LA) 1 m, nominal velocity (v) 1.5 m/s, base-period
(control period) 50 ms, (20 Hz) and frame-period (measure/way-points ac-
quisition) §=>500 ms (2 Hz).

For this application, dual-rate second order holds are used. In addi-
tion, way-points (¢r) are estimated by the hold from past measured way-
points and the actual robot pose (¢r). Thus, the hold input takes the form
{gr(k —2,0),q7(k —1,0),qr(k,0),qr(k,0)}, and the hold output
{ar(k,0),qr(k,1),--- ,qr(k, N —1)}. Note that in this example 5 = 500
ms and § = 50 ms, being N = g = 10.

Figure[4.9shows the collected data uniformly distributed along the path.
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(a) Snapshot of the dataset process. (b) Final dataset obtained.

Figure 4.9: Dataset at high frequecy acquition example.

For this case, the first method for collecting data has been used (see Figure
13).

Without loss of generality, the results for one specific path are presented
in this chapter, although it can be easily extended in order to learn more
situations that allow the dual-rate nonlinear hold to estimate way-points
for paths a priori unknown.

Although other libraries such as FANN library, , were used
to learn the non-linear function-valued vector, at the end the best results
were obtained with Levenberg-Marquardt back-propagation algorithm de-
veloped in Matlab. A network structure of two-layer feed-forward network
with sigmoid hidden neurons and linear output neurons was used. In this
case, using a number of 20 hidden neurons was enough to get good estima-
tions.

Figure shows the validation of the dual-rate nonlinear second
order hold, whereas Figure compares the estimations performed by
classic and nonlinear holds. In that figure, the robot is located in qr(k,0),
and based on that position, the way-point qr(k,0) has been selected based
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circles). The robot is represented by
a big blue triangle, while previously
selected way-points are represented
by magenta circles.

Figure 4.10: Validation and comparison of the estimations given by the
obtained dual-rate nonlinear hold.

on the look-ahead distance criterion. Previous selected way-points are also
considered qr(k — 1,0) and qr(k — 2,0) since a second order hold is used.
As result, the figure shows that the best estimations are produced by the
proposed dual-rate nonlinear second order hold.

Figure shows the trajectory followed by SUMMIT along the path if
the controller is computing control actions at high frequency. Remark that
this is the ideal behavior of the robot, although it is not possible to imple-
ment such a high frequency controller because technological limitations. On
the other hand, Figure shows how the system performs when the con-
troller is computing actions at low frequency. This comparison highlights
that the low frequency controlled system performs worse rather than the
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Figure 4.11: SUMMIT mobile robot working at high frequency.

system controlled at ideal high frequency. Nevertheless, Figure [£.13] shows
that the performance obtained by the same system when the dual-rate sec-
ond order hold is set on it, is very similar to the one obtained by the systems
controlled at ideal high frequency.

Similarly, Figure and Figure shows the system perfor-
mance when dual-rate approaches with DR-SOH and DR-NLSOHs are used,
respectively. Certainly, the classic single-rate behavior working at low
frequency produce a bad performance of the system, while dual-rate ap-
proaches present better results, independently the holder used. However,
the behavior of the system obtained by DR-NLSOHs is much more similar
to the ideal one rather than the obtained using DR-SOHs. This result is
also shown in Figures 4.14(d))) and [4.14(f)])), where the controller actions
of both the ideal single-rate at high frequency and DR-NLSOH are very
similar, while the ones produced by using DR-SOH are different, sometimes
stronger, increasing thus the abruptness.

Table provides a more accurate analysis based on a benchmarking
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Figure 4.12: SUMMIT mobile robot working at low frequency.
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Figure 4.13: SUMMIT mobile robot working at high frequency using DR-
NLSOHs.



4.3. Visual Feedback Wheeled Robot Control using DR-NLHOHs 115

X (rad m™)

a 5 15 20

X (m) t(s)
(a) Single-rate at (b) Single-rate at
low frequency versus low frequency versus
single-rate at high single-rate at high
frequency: robot frequency: control
trajectory. actions.

* (rad: m™")

) 2 5 10 15 20

0
X (m) ts)

(¢) Dual-rate with (d) Single-rate at
DR-SOHs frequency DR-SOHs frequency

interfaces versus interfaces versus
single-rate at high single-rate at high
frequency: robot frequency: control
trajectory. actions.

Y (m)

Xt ,
(e) Single-rate at (f) Single-rate at
DR-NLSOHs fre- DR-NLSOHs fre-
quency interfaces quency interfaces
versus single-rate versus single-rate
at high frequency: at high frequency:
robot trajectory. control actions.

Figure 4.14: Comparison of SUMMIT performance when using conventional
and multi-rate approaches (DR-HOhs based on primitive functions and DR~
NLHOHSs based on learning).
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METRIC SR(9) | SR(6) | DR-SOH | DR-NLSOH
I3 ¢ ] 0.0515 | 0.1036 | 0.0555 0.0532
max; e; [m] 0.1077 | 0.4405 0.1882 0.1173
15 ks [rad/m] 0.7555 | 0.8198 | 0.7944 0.7571
max; || [rad,/m] 1.4147 | 1.7045 | 1.6125 1.4666
I3, o [rad/m] 1.3411 | 1.2863 | 2.0351 1.3791
max, |0y [rad,/m] 0.8170 | 22.4286 | 16.5394 | 10.5302
TS k2o At [m 1] | 0.0499 | 0.0632 | 0.0577 0.0502
+ >, 07 vAt [rad/mas] | 0.3179 | 1.1990 1.0364 0.3467

Table 4.1: Metrics of path following comparing Single-rate and Dual-rate
approaches.

with different safety-related metrics, Yuste et al.| (2010). As expected, the
average following error and its maximum value are much bigger on the
single-rate approach, while using a dual-rate framework improves the per-
formance. Furthermore, this result demonstrates that the DR-NLSOH is
much closer to the ideal case rather than the DR-SOH. Moreover, it can be
shown that both maximum of curvature and sharpness are lower and much
more similar between the ideal case and the DR-NLSOH than with respect
the other approaches, which in general implies more safety and robust be-
havior.

In addition to this, the Bending Energy and the Abruptness demon-
strates that the control with a DR-NLSOH is smoother and needs less
energy to follow the path because it does not have to modify the robot
direction so many times, due to the fact that the intermediate way-points
are estimated more accurately than with DR-SOH.
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Figure 4.15: Visual feedback robot control using DR-NLHOHs block dia-
gram.

4.4 Visual Feedback Robot Manipulator Control
based on Dual-rate Nonlinear High Order Holds

The proposed dual-rate nonlinear holds are used in this section to estimate
the intersampling image features in order to perform a visual feedback robot
control task, in which the controller is working at high frequency. In this
chapter, we focus on the 2D visual feedback control approach with the
camera in eye-in hand configuration. Remark that the proposed approach
can be used to estimated all kind of signals coming from different systems
and workspaces.

Figure shows the dual-rate block diagram, which represents a par-
ticular case of the full dual-rate scheme shown in Chapter [3| Section [3.3]
and also in [Solanes et al. (2011). Differently to there, in this section only
two sampling rates are considered: the frame period relative to the vision
system (0 = N-§), and the base period relative to the control system (§).
The signal to be estimated is the error between current and desired fea-
tures of the detected object. Without loss of generality, this section uses
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features-like-points, being extensible for any class of features.

Kr5 cell platform is used in this section with the same set-up already
explained in Chapter[3] Section[3:3.2] In addition, the corresponding virtual
Kr5 cell platform has been used for generating the datasets. This platform
includes robot physical constraints such as the kinematics and dynamics of
each element and it is implemented using OpenRAVE library, [Diankov and
Kuffner| (2008). In this sense, physical joint limits of the robot have been
obtained from manufacture’s specifications, and inertial parameters have
been obtained through finite element software, in this case NX7.5, assuming
that the center of gravity of each element is on the geometric center of the
element, each element has an uniform density of the mass, and assuming the
manufacture’s material specification. In addition, it is used the distortion
model of the camera, Puget and Skordas (1990), which parameters have
been obtained based on calibration tools included in ViSP library, Marchand
et al.| (2005)), taking thus into account camera non-linearities.

Due to the particular real-time needs of the Kr5 robot (see Appendix
for further details), a base period of 10 ms is chosen. On the other hand,
our vision system runs at 70 ms, becoming this as frame period 6. The
relation between both periods is N=§/5=7.

Owing to the results obtained in Chapter 3| where first order hold worked
better than second order hold in this particular set up, this section uses first
order holds.

The error between the desired and the current features, e(k,0) = s(k,0)—
s*(k,0) is signal to be estimated by the hold. Thus, e(k,0) ~ M(—0.2,0.2)
meters is randomly generated, where M refers to uniform distribution, by
moving every 2 frame periods an object to be followed. The input sequence
takes the form I(k,0) = {e(k —1,0),e(k,0)}, being the target sequence
i(k,i) = {e(k,0),...,e(k, N —1)}.

In this case, Levenberg-Marquardt back-propagation algorithm imple-
mented in Matlab with a network structure of two-layer feed-forward net-
work with sigmoid hidden neurons and linear output neurons is used with
20 hidden neurons, in order to learn the non-linear function-valued vector.

Figure [4.16| shows, once the dual-rate nonlinear hold has been val-
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Figure 4.16: Comparison between dual-rate high order hold estimations:
ideal (black crosses), dual-rate first order holds (blue dots), dual-rate non-
linear first order hold (red triangles), I(k) = {e(k — 1,0),e(k,0)} (magenta
diamonds).

idated using different dataset than the one used for training purposes,
the comparative between the estimations provided by DR-FOH and its
equivalent DR-NLFOH. It can be seen that estimations provided by DR-
NLFOH are almost match to the ideal ones, while DR-FOH estimations
differ much more.

4.4.1 Results

In order to demonstrate how similar is the performance of the dual-rate ap-
proach with respect to the ideal single-rate at high frequency, a comparative
analysis is shown under simulated scenario. The sampling base period has
been kept constant and equal to 10 ms as in the real case. The frame-period
is changed in order to analyze how the ratio N affects to the estimations.
For every experiment, a glitch displacement of the object is done on random
directions and magnitudes. The aim of this experimentation is to analyze
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Figure 4.17: Disturbance Analysis: Mean Square Error |pixel| with respect
to single-rate at high frequency.

the behavior on a situation with sudden changes, where the feature extrac-
tion fails by detecting an incorrect object. Results in Figure 4.17 show that
DR-NLFOHs provide a solution similar to the single-rate at hlgh frequency.

The validation of the obtained dual-rate non-linear holds is carried out
by using the real Kr5 platform. Two different kind of experiments are
performed: firstly, a stationary object formed by four dots is used to perform
an error positioning task (locating the robot end-effector in a specific pose
relative to the object); the second set-up is carried out by using a moving
object formed by a single dot projected on a board, with an over-head



4.4. Visual Feedback Manipulator Control using DR-NLHOHs 121

(6]
o

o o o
T

Convergence Time (s)

—_
o
T

002 004 006 o.bsxoh 012 0.14 0.6

Figure 4.18: IBVS convergence time: single-rate at low frequency (blue solid

line), dual-rate first order holds (green dashed-dot line), dual-rate non-linear
holds (red dashed line).

projector (this set-up is fully described in Chapter [3| Section . The
object in this experiment is moving following a square trajectory at different
velocities.

Figure [4.18] shows a comparison of the convergence time in function
of the proportional gain (\) for the single-rate approach and conventional
dual-rate high order holds described in this chapter. An experiment finishes
when the error between desired and current features is less than 0.01 meters
in normalized coordinates, or the controller produces instabilities such as
system overshooting greater than 20%. Moreover, each result is obtained as
a mean of 10 experiments. As conclusion, our dual-rate approach introduces
higher stability margin.

Figure [£.19shows a sequence of frames at different time instants in order
to compare single-rate at low frequency and dual-rate using DR-NLFOHs.
The dual-rate approach using DR-NLFOHs provides a good performance
of features trajectories and the algorithm convergence is around two times
faster than conventional single-rate approach and nearly the same conver-
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(a) t=0s. (b) t=4s. (c) t=T7s. (converged)

(d) t=0s. (e) t=4s. (converged) (f) t=4s. (converged)

Figure 4.19: Image plane trajectories with A = 0.08: (a), (b) and (c) single-
rate at low frequency and (d), (e) and (f) dual-rate non-linear holds; current
features (red crosses) and Desired features (green crosses).

gence time than DR-FOH, but with higher stability margin.

Moreover, Figure shows the object following experiment as de-
scribed above. Once again, DR-NLFOHs present less quadratic error than
the system with classical dual-rate first order holds (see Table [4.2)), due
to their better predictions, especially when the object changes its trajec-
tory. At all events, the performed visual feedback control using dual-rate
approach has an important improvement in the object tracking with respect
to single-rate cases at low sampling frequencies.

4.5 Summary

In this chapter a generalization of dual-rate high order holds has been pre-
sented in order to take into account the dynamic of non-linear systems and
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Optimal A SR-LF | DR-FOH | DR-SOH | DR-SOBH | DR-SOTH | DR-NLHOH
vopj=10cm/s | MSE(m) | 0.02987 | 0.02078 | 0.02013 0.02192 0.02102 0.01998
Vopj =13cm/s | MSE(m) | 0.04135 | 0.03248 | 0.03652 0.03715 0.03773 0.024183
Vob; =16¢m /s | MSE(m) | 0.06223 | 0.03938 | 0.04032 0.04193 0.04109 0.03389

Table 4.2: Single-rate VS dual-rate approaches: object moving at different
velocities following a square trajectory.

controllers. Using machine learning techniques, and in particular artificial
neural networks (ANN), a new concept of dual-rate non-linear hold (DR~
NLHOH) has been formulated.

In that sense, the chapter establishes a general methodology for com-
puting DR-NLHOHs based on artificial neural networks, based on datasets
set from virtual environments.

The approach has been validated in two different platforms: a wheeled
robot performing a path following task, and an industrial robot manipulator
performing a visual feedback control error positioning and tracking tasks.

An analysis of similarities and differences between single-rate working at
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low and single-rate working at high frequency has been made, showing that
the behavior of the system using DR-NLHOHs is quite similar to the ideal
working at high frequency and therefore much better than classic control at
low frequency.

In addition, the comparison between DR-NLHOHSs and classic DR-HOHs
has showed that, although both of them improve the classic single-rate be-
havior, the system using DR-NLHOHs produces better estimations rather
than DR-HOHs.



Chapter 5

Visual Feedback Control based

on Reference Features
Filtering Control Strategy

5.1 Motivation

The problem of finding suitable trajectories for the measurement in the
image still being nowadays, an important issue in robot visual feedback
control.

In (Todorov| (2008), a stochastic optimal control is presented, whose re-
sult is dual to an estimation problem. Zima et al.| (2013 demonstrates
and solves the implementation for such an estimation problem, solving non-
linear LQR-like problems more efficiently than iterative strategies such as
iLQR, [Todorov]| (2005). The authors derive an optimal controller, with the
appropriate setting of Kalman matrices dual to a LQR problem, using a
non-linear EKF predictor-smoother (ERTS), based on Rauch-Tung-Striebel
(RTS) algorithm, Rauch et al.| (1965), which provides an optimal state tra-
jectory. Such trajectory is used to compute the optimal control law based
on Least Squares (LS).

125
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Figure 5.1: Principle of Reference Filtering control strategy (example with
T=t+3).

Our concerned is not in providing an optimal controller, but robust
solutions for visual feedback robot control problems using well-known con-
trollers, being the main idea of the approach presented in this chapter to
use optimal trajectories proposed by ERTS as reference.

In addition, the generalization of the reference features filtering algo-
rithm proposed, from a dual-rate point of view, is presented in this chapter,
giving a solution to the sensor latency problem.

5.2 Reference Features Filtering Control Strategy

The idea behind the proposed approach is to use the solution given by
ERTS algorithm as reference for an underlying controller. By doing this,
two steps are needed to get the new reference features 8y T the first step
of the algorithm is carried out by an Extended Kalman filter, which provides
a sequence of future features subject to the open-loop model behavior using
reference as observation, as shown in blue Figure 5.1} Then, a Gaussian
Smoother is used to provide an optimal trajectory, as shown in the red dots
and line trajectory of Figure [5.1]

The algorithm structure of the proposed reference filtering control stra-
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tegy contains three main components. As a consequence, the explanation
of the algorithm is divided into three parts:

e Kalman Filter (subsection [5.2.1])
e Extended Kalman Filter/Smoother (subsection [5.2.2)
e Visual Feedback Control (subsection [5.2.3))

In Algorithm [ there is an initialization of state (line|3) and its covari-
ance matrix (line; afterwards, it loops, from line@tountil convergence,
i.e. until detected features match with reference ones. Line [I0] computes fil-
tered feature references with the dual-sampling Extended Kalman Filter/S-
moother. A generic underlying visual feedback controller (VCF) is used
in line [L1] to generate the correspondent control actions for each sampling
instant. The algorithm uses generic call functions such as “GetNewImage”,
“GetFeatures”, “ApplyControl” and “Wait” to complete the remainder of
functionalities also required in standard visual feedback control applica-
tions.

As reminder, along this chapter the base period (control period) is de-
noted as ¢ and the frame period is denoted as 6 = N§.

5.2.1 Kalman Filter (KF)

A conventional Kalman filter (KF) is used to estimate the position and
velocity of the set of features, s;. In this sense, a periodic stochastic linear
model based on the well-known constant velocity model is employed.

&) _ [T NoX| [34] | [222g

3 = > _ 5.1

LJ [O I } l:ét—l] i [ No1 | 1)
I fe

with §; is the estimated feature vector, §; its velocity and P, its joint
covariance matrix, wy is the acceleration (assumed to be a white noise
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Algorithm 4 Reference filtering control strategy for robot visual feedback

control
1: 7, = GetNewImage()

2: sy, = GetFeatures(Z;)
3: g_t|t =0

4: Pt|t =Py

5 Rns, Qns

// Loop until convergence
while ||s; — s}|| < error do
Z; = GetNewImage()
s: = GetFeatures(Z;)

[§t|t7 ét|t7 Pt\t:|:KF(St7 ét\ta ét\b Pt|t)
10: 8y, =BEKFS(3;, s}, ar, Rvs, Qo)
11 & = VEC(ar, 841, 8q.411)

12:  ApplyControl(q;)

13: Wait(N5)

14: end while

w1 ~ N(0,Q)) and Q a covariance matrix. In addition to this, s; is
treated here as measurement and v; as measurement noise vy ~ N (0, f{),
with covariance matrix R. It is convenient to remark that if the control is
performed into the image plane (2D), the upper index n of Table rep-
resents the number of detected features. On the contrary, if the control is
performed in the Cartesian space (3D), the dimensions of previous matrices
are constant because the state is related to the translation and rotation of
the object frame, F,.

5.2.2 Extended Kalman Filter/Smoother (EKFS)

The state for EKF'S represents a filtered feature reference. Its initialization
is made through variables §;;, q¢, s;. Since they are known, the initial co-
variance Py is initialized to a zero covariance matrix. Reference estimation
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Table 5.1: Variable dimensions w.r.to the workspace in which the control
task is being performed.

variable Dimensions in 2D  Dimensions in 3D

ét §R3n §R6
Pt 3%671 xX6n 3%6 X6

Wi §R3n §R6
3nx3n 6Xx6

Q R R

vy §R3n §R6
R §R3n X3n §R6 X6
1 %Z’m X3n %6 X6

evolves during a given time horizon 7' = t+h, where h is the number of
iterations expressed in frame period units representing a prediction horizon.

During the EKF step, the system evolves in “open-loop” since future
control inputs are unknown and thus treated as Gaussian noises, and for
that reason Algorithm [5|assumes null input. Target features s; are taken as
“observations” to ensure global convergence of the trajectory and compared
with the predicted state to perform the update step. As summary, the EKF
provides a trajectory set:

{85015 Stiopmar -+ Sty (5.3)

The Extended Kalman Smoother (EKS step) performs a backward esti-
mation by taking into account “predicted” estimations. Thus, the EKS step
generates estimations under the form:

{§§“|T7§;—1|T’§§“—2|T7 '-~7§t+1|T} (5'4)

It is interesting to note that the smoothing step in [Rauch et al.| (1965
also computes state covariance during backward smoothing, however in the
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Algorithm 5 Extended Kalman Filter/Smoother (EKFS)
Input: s, s}, q:, Rys and Qus
Definitions: T'=t+h

// EKF Step

1. g;:'t = S¢, Ptlt = 0, C=1
2. forr=t+1,...,T do
3. [§i|7—7 PT\T] = EKF(SL éj’—lh—l’ PT*l‘TflJ Qns, RN&)
4. end for
// EKS Step
5. forr=T-1,...,t+1do
. R —1 a a
6. S;k_lT = S;k_l,r + PT\T : P7—+1|7— : (Sj—+1|T - Sj’—l—lh)
7. end for
=k -~ -~
8. return S§;;, = {S:+1\Tv ""SI+N\T}

proposed algorithm, the corresponding equations are not implemented since
they are not necessary.

The well known local model based on the interaction matrix, |[Allibert
and Courtial (2009)); Allibert et al.| (2010), is used to perform the filter-
smoother step. This model is linearized and “discretized” upon the sampling
timdﬂ. Thus,

St+1=8t+JIns(8e,qr) - Qe (5.5)

with Jns(8¢,q1) = N6 - J(8e, qr).

"From “discretization” of a non-linear stochastic system %; = A.(x)x: +
Be(x:)(us + wy) and yi = Cx¢ + vi, where x¢yns = Ans(Xe)x: + Bns(x:)(ur +
Wt:t+N6), Yt:t+N&S = Cx¢ + VitdNSs, Wt:tbNS ~ N(O,QNs) and VitbN§ ~

N§
N(0,Rys), with Quns = / ANe) B Q. BT . A< M4 and Rus

N§ Né 0N5 T
C / {[ / eA°<H>Bcds}Qc{ / Bl eAe (H)ds] } drCT4R.NS.
0 T T
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Similarly, covariances of EKF must be appropriately computed:

Qns= N6 - I(8,ar) Q- I" (8¢, ar) (5.6)
(N6 T4
Rys= 3 ~J (81, at) QeI (8¢, qr) +ReNG (5.7)

Algorithm [5]returns the set of reference features filtered by the smoother.

5.2.3 Visual Feedback Control

As mentioned hereinafter, the generic visual feedback controller in Algo-
rithm [ can be implemented in 2D and 3D workspaces. This chapter pro-
vides analysis and examples using well-know P and PID controllers. Let us
summarize the setting-up of states s;, as well as the controller used in each
workspace.

2D visual feedback control schemes (IBVS),
Corke| (2011); (Chaumette and Hutchinson| (2006), use the image-plane coor-
dinates of a set of points to define the set s;. Let us denote f; and f; as the
current and reference image state, respectively. s; = {fi,....,f,}, € R is
the set of n current state and s} = {f},...,fi}, € R3" the set of n reference
state.

Without loss of generality, this chapter considers features-like-points,
P, = (X,Y;, Z;)7 € 3 in the Cartesian workspace, to perform vision
feedback control tasks, being extensible to any other kind of features. In
this chapter, the depth parameter Z; is getting updated, [Chaumette and
Hutchinson| (2006), by using Dementhon and Davis pose estimation algo-
rithm, DeMenthon and Davis| (1995b). As a consequence, the estimation of
Zy has to be estimated so that the state is extended as
f; = (4,90, Z4)T € N3, with 2, = X;/Z; and y; = Y;/Z; the coordinates
being expressed in meters in the camera workspace and the interaction ma-
trix described in |Chaumette and Hutchinson| (2006) is extended as,

= 0 mew (l+af) w .
Le(f)=| 0 — % 14y —z-y  —ap| €RT (5.8)
0 0 —1 —Yt - Zt Tt - Zt 0
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being Lg(s¢) = [Lgy -+ Lg,,] " € RS,

On the other hand, 3D visual feedback control schemes, Martinet et al.
(1996); (Chaumette and Hutchinson (2006); Siciliano and Khatib| (2008);
Corke| (2011), also known as position based visual servoing (PBVS), use
the pose of the camera with respect to some reference coordinate frame to
define s;.

Let us denote F. the current camera frame, 7 the desired camera frame,
and F, the object frame. Here the standard notation of using a leading
superscript to denote the frame with respect to which a set of coordinates
is adopted. Furthermore, let ©“t. and ¢ R be the translation and rotation
matrix that gives the orientation of the current camera frame relative to the
desired frame. Thus, in case the interaction matrix is,

— c*]-:{c 0 626
Ls(st)—[ 0 LQJ eR (5.9)
in which Lg, is given by:
0 sinc(6) 9 323
Lopu=Is— z[ulx + |1 — ——5 | - [u]5 e R 5.10
sa=ls — S lul, ( Smc2<g>) l? (5.10)

where I3 is the 3x3 identity matrix, sinc(z) is the sinus cardinal defined
such that z - sinc(x) = sinz, sinc(0) =1 and s; is (t, 0u).

Let us assume in this chapter the non-free flying camera case, see
Corke| (2011)), in which the camera’s motion is constrained by a manipulator,
in our particular case, a 6 degree of freedom (DOF) manipulator, where in
its end-effector, the camera is attached (eye-in-hand configuration).

According to the non-free flying camera case J(s;,q;) = Lg(s;)- V-
*Jr(q;) € R¥™ is the Jacobean matrix, which relates the measured features
velocity with the manipulator velocity, where *J,(q;) € R™ is the robot
Jacobean matrix, ¢V, € R is the twist velocity matrix, Lg(s;) € R3¢
the interaction matrix and q; € R™ and q; € R™ are the robot positions
and velocities, respectively, being m the manipulator number of DOF.

Thus, the general control law is given by:

Qt:j+(staqt)'ét (5-11)



5.3. Dual-rate Reference Filtering Control Strategy 133
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Figure 5.2: Single-rate Reference Features Filtering strategy control block
diagram.

To obtain a pure image-based control, which is to reduce the interaction
matrix given in equation (5.8), an additional H € R33" block-diagonal

matrix defined by H = diag(¢), with ¢ = [é g m, is introduced in (5.11)),
obtaining the 2D visual feedback controller used in this chapter:

~

ar=J%(st,qr)- H-3 (5.12)

Along this chapter two controllers are used: a proportional control law,
Hashimoto (1993); Corke| (2011), and a PID controller, [Lots et al.| (2001)).

Finally, Figure shows the control block diagram of the proposed
dual-rate reference filtering control strategy approach.

5.3 Dual-rate Reference Filtering Control Strategy

In this section, the reference filtering approach of Algorithm [4] is extended
from a dual-rate point of view. In this sense, besides providing more suitable
trajectories for the measurements in the image, the following generalization
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will allow us to deal with the problem of the sensor latency.

As occurred in the single-rate case, Algorithm [6] contains three main
components. As a consequence, the explanation of the algorithm is divided
into three parts:

e Dual-rate Kalman Filter (subsection [5.3.1))
e Dual-sampling Extended Kalman Filter/Smoother (subsection [5.3.2)
e Visual Feedback Control (subsection |5.3.3)

In the proposed algorithm |§| there is an initialization of state (line
and its covariance matrix (line ; afterwards, it loops, from line |§| to
until convergence, i.e. until detected features match with reference ones.
Line computes filtered feature references with the Dual-Sampling Ex-
tended Kalman Filter/Smoother (DS-EFFS). A generic underlying visual
feedback controller (VCF) is used in line [12| to generate the correspondent
control actions for each sampling instant (code from (11} to . The algo-
rithm uses generic call functions such as “GetNewlImage”, “GetFeatures”,
“ApplyControl” and “Wait” to complete the remainder of functionalities
also required in standard visual feedback control applications.

5.3.1 Dual-rate Kalman Filter (DR-KF)

A dual-rate Kalman filter, Armesto and Tornero| (2006); |Steffes| (2014), is
used to estimate the position and velocity of the set of features, s;. The
inherent model of the dual-rate Kalman filter is a particular case of the
formulation presented in |Armesto and Tornero| (2006). In this sense, the
periodic stochastic linear model given in Equation sampled at high fre-
quency (9) takes the form of:

8] 1 61][8ea]  [E1
306 R Ee e

s = [(IJ Ej vy (5.14)
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Algorithm 6 Dual-rate Reference Filtering for visual feedback control

© » N

10.
11.
12.
13.
14.
15.
16.

ARl e

Ty n = GetNewImage()
seN|-N = GetFeatures(Z, )
St-Njt-n =0
Pi v~ =Po
Wait(6-N)
/] Loop until convergence
while ||s; — s}|| < error do
7; = GetNewImage()
st = GetFeatures(Zy)
{éﬂta Stlt Pt\t] =DR-KF(st, 8- n[t-N» St-N|t-N» Pr-nj—n)
5541 =DS-EKFS Gy a7
fori=0,...,N—1do
d; = VEC(Atsis Seriferis Sapri1)
ApplyControl(g;)
Wait(d)
end for
end while

with d being the sampling time at base-period, §; is the estimated feature
vector, g;t its velocity and Py its joint covariance matrix, w, is the accel-
eration (assumed to be a white noise w,_; ~ N (0,Q)) and Q a covariance
matrix. In addition to this, s; is treated here as measurement and v; as
measurement noise v; ~ A'(0, R), with covariance matrix R (see Table
for matrices and vectors dimension).

To derive the lifted model, the following lifted vectors are considered:

W, = [wl/(0) wl(1) ... wl(N=1)]" e 3N (5.15)
S, = [s7(0) sT(1) sT(N—1)]" e w3V (5.16)
V= [VE©0) vI() ... vE(N-1)]" e N (5.17)

Since features are measured once every frame period §, the sparse lifted
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vectors are (see Armesto and Tornero| (2006) for details):

wi = [wl(0) wi() ... wI(N-1)]" e @V (5.18)
s. = [s7(0)]" € ®* (5.19)
v = [vE(0)]" e ®*" (5.20)

leading to the following lifted stochastic model:

8] _ [T NOT| [8pn],[@0Ey @5 oy

2| = : 5.21
[sj [0 1 ] [ét_NH i T I
_ &)

s = [I 1] [sj + v (5.22)

5.3.2 Dual-sampling Extended Kalman Filter /Smoother(DS-
EKFS)

The state for EKF'S represents a filtered feature reference. Its initializa-
tion is made through variables §t|t, q:, S;. Since they are known, the initial
covariance Py, is initialized to a zero covariance matrix. Reference estima-
tion evolves during a given time horizon T' = t+hN, where h is the number of
iterations expressed in frame period units representing a prediction horizon.

At this point, two approaches have to be considered: 1) applying a full
step EKFS working at control period; 2) using two different sampling rates:
vision period and control period. By using the dual-sampling approach, the
computational time is reduced N times (in the limit case) compared to the
fixed step approach.

The dual-sampling approach is shown in Algorithm [7] where the first N
iterations of the fast-sampling Extended Kalman Filter (EKF) evolves at
control period (lines [2| to , while for the remainder of iterations, a slow-
sampling EKF evolves at vision period (lines [5|to . During the EKF step,
the system evolves in “open-loop” since future control inputs are unknown
and thus treated as Gaussian noises, and for that reason Algorithm [7] as-
sumes null input. Target features sf are taken as “observations” to ensure
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Algorithm 7 Dual-sampling Extended Kalman Filter/Smoother (DS-
EKFS)
Input: s;, q; and s}
Definitions: T'=t+h- N
// Fast-sampling EKF' Step

1. §:|t =s;, Py =0,C=1¢ R33N
2. forr=t+1,....,t+ N do
3. [gj—h—v PTIT] = EKF(S; éj—_nr_lv PT—l\T—ly Qs, Ré)
4. end for
// Slow-sampling EKF Step
5. for[=2,...,h do
6. T=t+IN
7. [é;k—|7—7 PT|T] = EKF(SI, éj—_N‘T_Nv P‘rfN|‘rfN7 Qns, RN(S)
8. end for

// Slow-sampling EKS Step
9. forl=h,...,2do
10. 7=t+({—-1)N
11. éj‘T = éj‘T +P P
12. end for

// Fast-sampling EKS Step
13. forr=t+N—-1,...,t+1do

ax A% -1 a* a*

14. Stir = 87z + PT‘T ’ P7—+1|7— ' (ST+1|T o S’7'+1|7')
15. end for

=k ~
16. return §;,., = {8

-1 Ax Ak
T+N|r (ST+N|T B ST+N|T)

* ot
41T " St+N\T}
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Figure 5.3: Comparison of the trajectories estimated by both (high fre-
quency single-rate) EKFS and DR-EKFS. The case shown corresponds to a
parameter setting of N = 8, being 56 the prediction horizon : high frequency
prediction step (1), red dots; low frequency prediction step (2), brown dots;
low frequency smoothing step (3), magenta dots; high frequency smoothing
step (4), blue dots.

global convergence of the trajectory and compared with the predicted state
to perform the update step. As summary, the EKF provides a trajectory
set:

Ak Ak Ak Ak ~
{841 1015 St2pm2 -+ Stvien s Stianjmans -+ STyt (5.23)

The Extended Kalman Smoother (EKS step) performs a backward es-
timation by taking into account “predicted” estimations. Here, a double-
integration step is performed, in which first iterations evolve at frame period
(lines |§| to |12 of Algorithm [7)) backward in time, while the last IV iterations
evolve at base period to . Thus, the EKS step generates estimations
under the form:

A% Ak Ak Ak ~
{8711 87 STan (s -+ St - St} (5.24)

It is interesting to note that the smoothing step in Rauch et al. (1965)
also computes state covariance during backward smoothing, however in the
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proposed algorithm, the corresponding equations are not implemented since
they are not necessary.

The double step reference filtering control strategy described by Al-
gorithm [7] can be considered to be a discretization of the single-rate one
described by Algorithm [5] This is illustrated in Figure [5.3] where is shown
the prediction and the smoothing trajectories performed in one algorithm
step by using the SR-HF-IBVS (Figure and the DR-EKFS-IBVS
(Figure control strategies. In addition, Figure shows a more
detailed comparison between the two algorithms. Concretely, Figure [5.4(a)|
illustrates the Mean Square Error (MSE) defined as the error between Siar
and s}, where, despite the higher sampling period, very little degradation
can be seen. On the other hand, Figure which shows the compu-
tational cost of both algorithms, indicates that the computational cost of
Algorithm [f] is significantly reduced by an approximate ratio of 1 to N by
using Algorithm [7] It is convenient to remark that the prediction horizon
can be higher than the number of inter-sampling samples needed because
better estimations of the algorithm are obtained, as it is shown in Figure
Thus, even though only the last N estimations of the algorithm are
used, the rest plays an important role in both robustness and reachabil-
ity. In this sense, we have to reach to an agreement between estimations
accuracy and computational cost.

The well known local model based on the interaction matrix, [Allibert
and Courtial (2009); |Allibert et al.| (2010), is used to perform the filter-
smoother step. This model is linearized and “discretized” upon the sampling
timeﬂ Thus, depending on the period used, obtaining;:

(based period) 8441 = 8:+J5(8¢, q¢) Qs (5.25)
(frame-period) 8t v = 8¢t +Ins5(Se, Qr) - e (5.26)

2From “discretization” of a non-linear stochastic system %; = A (x;)x: + Be(x:)(us +
wy) and y: = Cx¢+ve, where xeq5 = As(xe)xe+Bs(Xt) (e +Weits), Yeirps = Cxe+Vengs,

S
Wens ~ A0, Qs) and viss ~ N(O.Rs), with Qs = [ A8, QBT A s

0
S5 5 5
and R =C / {{ / eAC<H>BCds}QC[ / BCTeACT(H)ds} }chT+R65.
0 T T
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Figure 5.4: Algorithm computational cost and cost index between (high
frequency single-rate) HF-EKFS (blue bars) and DR-EKFS (red bars).
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Figure 5.5: Dual-sampling reference filtering control strategy for visual feed-
back robot control block diagram.

with J5(8¢,q) = 6 - J(8¢, qr) and Ins(84,q) = N -6 - I (8¢, ).
Similarly, covariances of EKF must be appropriately computed:

Qs=06-J(8,a) QeI (81, ar) (5.27)
Qns= N6 - I3, ) QeI (81, ar) (5.28)
3
Rs= % I, a8) QeI (8, q1) +Red (5.29)
3
Rys= (N;) I3 ar)-Qe-I" (81, q1) +ReNS (5.30)

Algorithm [7]returns the set of reference features filtered by the smoother
on a lifted vector.

5.3.3 Visual Feedback Control

Here the same explanation seen earlier in Section [5.2.3]
Finally, Figure shows the control block diagram of the proposed
dual-rate reference filtering control strategy approach.
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5.4 Analysis and Results

A series of experiments have been made up in order to analyze the proper-
ties and improvements of the proposed dual-rate reference filtering control
structure with respect to its single-rate counterpart, in both 2D and 3D
workspaces.

In the following, let us assume this notation:
S Mg, (te, ty,tz,0z,60,,0,), where S1Mg, is the homogeneous matrix relat-
ing the coordinate system Sy with respect to the S; one; X, Y and Z are
Cartesian coordinates and 6, 6, and ¢, are the three angular coordinates.

Results described along this section have been carried out in both si-
mulation and real scenarios. Working under simulation scenario provides
us the capability of carrying out tests in extreme conditions. On the other
hand, implementing all the approaches presented in this chapter using in-
dustrial robot manipulators, vision system, industrial cameras, Ethernet
communications, etc. will validate results obtained under simulation.

The simulation environment has been implemented using the C++ pro-
gramming language, with different open source libraries such as ViSP, Marc-
hand et al| (2005), OpenRAVE, Diankov and Kuffner (2008|) or Orocos
Toolchain, Bruyninckx et al.| (2003); [Soetens and Bruyninckx (2005), among
others. This environment allows us to show the better performance it is pos-
sible to get by using the novel dual-rate reference filtering control strategy
in critical situations. The robots (Kr5 and Agilus) have been kinemati-
cally and dynamically modeled using OpenRAVE and ViSP libraries. The
intrinsic and extrinsic camera parameters used are the ones obtained by
calibrating the different cameras used for. In addition Orocos Tool-chain is
used to assure the task schedule of the different components working under
Linux prompted with a real-time kernel (see Annex [A|for more details). Fi-
gure shows a snapshot of the simulation scenarios used in this chapter.

In the following, several tests are performed in order to analyze the prop-
erties of the proposed dual-rate visual feedback control structure. Without
loss of generality, four coplanar points, forming a square of 300mm on a
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(a) Kuka Krb sixx R650.

(b) Kuka Agilus R900 sixx.

Figure 5.6: Virtual robot platforms.

side, have been used as target.

5.4.1 Simulation Results

With respect to the controller parameters, in this subsection a proportional
control law has been used and Q and R have been tuned up to their optimal
values, which are the ones that minimize the reachability time and maximize
task solution reachability.

Moreover, and because the control task failure in 2D and 3D spaces are
not produced by the same causes, two types of tests, depending on where
the control task is carried out, have been performed:

1) If the control is carried out into the 2D space, there are two pro-
blems, pure rotations around the optical axis and large translations. The
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Figure 5.7: Reachability regions and convergence time analysis for different
rotation angles using classical image based control. The red region indicates
that IBVS was unable to converge.

first analysis achieved in this section is by using the single-rate proposal of
Section In this very first experiment, it is analyzed the benefits of our
proposal with respect to classical 2D visual feedback controllelﬂ

The case of pure rotations is one of the most representative and chal-
lenging cases in visual feedback control tasks and is cause bay the failure
when working with real robots due to the camera retreat, which violates the
limit joint constraints. The case of large translation as well as cases where
features leave the camera field of view is similar to the 3D case, depending
on the situation of the object with respect to the camera.

Figure 5.7} where the zone colored in red indicates that the algorithm
has failed to solve the task, while degraded green shows its convergence
time, shows how classical single rate 2D visual feedback control (SR-IBVS)
cannot solve complex situations where the rotation around the optical axis is
higher than 90° degrees (red region), despite of the value for the control gain
A. On the contrary, our novel reference filtering control strategy working
at low frequency (SR-EFKS) is able to solve rotations up to 170° degrees,
as depicted in Figure 5.8] In addition to this, the convergence time is

3Results have been obtained with a ASUS laptop with Ubuntu 12.04 as OS and
hardware configuration: Intel Core i7-2670QM, 8GB of RAM @ 2.2GHz and a GeForce
GTX 560M 2GB
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Figure 5.8: Reachability regions and convergence time analysis for different
rotation angles using SR-EFKS-IBVS controller: problem reachability and
convergence time in function of A. Red regions indicate control convergence
failure.

about three times smaller compared to classical IBVS. Previous figures show
that values of A are higher in SR-EKFS-IBVS than classical IBVS without
become unstable.

In general, the covariance matrix Qg will have little influence, while
the smoothed trajectory is more sensible to different values on covariance
matrix Ryg. If the covariance matrix Qpg is too large, then the dynamics
of the filter/smoother become slower than the closed-loop dynamics and
thus convergence time increases exponentially as shown in Figure for
larger values of Qus. If the covariance matrix Ryg is too large, then the
trajectories modified by EKFS smoother converge too quick to the reference
features and thus the “smoothing” effect is cancel out, which implies that
reachability is similar to the classic IBVS case.

Horizon prediction parameter IV, has little influence over the reachabil-
ity, while clearly affects to the convergence time as shown in Figure [5.10

The results under simulation scenario for the case of large translation
are pretty similar to the ones of the case of pure rotation. An example of
this case is shown experimentally in Section [5.4.2

Now, the following test highlights the benefits of using the dual-rate
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Figure 5.9: Influence of covariance matrices magnitudes over reachability
and convergence time. The red regions indicate that SR-EKFS-IBVS was
unable to converge.

reference features filtering algorithm [6] with respect to its single-rate coun-
terpart, Algorithm [l Figure [5.11] shows, for the case of a pure rotation of
150°, how the variation of the controller gain parameter (A) and the camera
frame rate affects to the solution reachability and the convergence time. The
test shows the improvement obtained by the proposed dual-rate reference
filtering control structure (Figure compared with its single-rate
counterpart (Figure . In can be seen that the dual-rate approach is
more robust against the delay introduced by the camera’s frame rate, but
also converges faster than its equivalent single-rate one working at frame
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rate.

2) If the control is carried out directly in the 3D space, there are not
typical cases of failure but the ones in which during the control task features
leave the camera field of view, Chaumette| (1998). For this reason, initially
the object is placed on 9 different places in the Cartesian workspace. Such
places have been chosen because, experimentally, they produce task control
failures when using classic single-rate approaches. For each one of them,
its local frame is rotated, “F., from —20° to 20° in roll and pitch, and
360° in yaw. All these rotations draw a spherical cap. Because of the
difficulty on representing such 3D space of solutions, for better readability
and without loss of generality, it has been impose that, if taking one roll-
pitch combination any yaw has produced a failure, then that roll-pitch pair
is considered as failure.

In Figure [5.12] the representation of the commented test is shown. The
camera frame-period is 84ms. A proportional control law has been used as
underlying controller, and Qs and Rs have been tuned up to their optimal
values, which are the ones that minimize the convergence time and maximize
task solution reachability.

The figure demonstrates that, the proposed dual-rate reference filtering
control strategy provides a better performance than its single-rate counter-
part working at low frequency. That is, there are more reachable situations.
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Figure 5.11: 2D visual feedback control with reference filtering strategy:
analysis of the reachability and convergence time.

Owing the difficulty to analytically analyze the robustness of multi-rate
control structures (even more difficult when nonlinear systems, such as the
one presented in this chapter, are within the control loop), this analysis is
carried out empirically throughout experimentation.

In this case (and for both 2D /3D control workspaces), the task to be
solved is a pure rotation around the optical axis of 90°. The control period
is 10ms for the dual-rate approach, remaining the same as the frame period
in the case of the single-rate one. The controller characteristic parameters,
such as the control gain A, Qs and Ry, as well as the dynamic model matri-
ces, are modified to the needed equivalent ones for each frame period (see
Section for more details). Qs and Rs have been tuned up to their
optimal values, which are the ones that minimize the reachability time and
maximize task solution reachability.

One easy form to introduce disturbances to visual feedback control
schemes is to modify the value of the depth parameter (Z;). Usually, this pa-
rameter has to be estimated from vision algorithms, meaning that it highly
depends on the camera calibration accuracy. Moreover, most of pose estima-
tion algorithms, such as the used in this chapter, are model based. Object
model errors also affect the estimation of Z;. Knowing this, in this exper-
iment Z will vary to show up how such a variation affects the proposed
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Figure 5.12: Analysis of solution reachability using 3D visual feedback with
reference filtering control strategy. A failure is represented with red color,

DR-EKFS-PBVS in blue and SR-EKFS-PBVS in green.
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dual-rate reference filtering control structure, comparing its performance
with the given by its single-rate counterpart. Its optimal value is 0.115m.

Results in Figure [5.13] demonstrate that the dual-rate control strategy
presented in this chapter is not only able to reach out the solution when
high frame periods are required by the vision system but also is much more
robust against camera calibration and object model errors than its single-
rate counterpart. It is interesting to remark that errors which makes lower
Z value affect more to the controller robustness than vice versa due to that
the model is based on the image Jacobean, Allibert et al.| (2010). This could
be different if other features are chosen, as it is well known by researchers
in this field. Despite of this, this experiment proves that, under the same
conditions, the dual-rate control strategy proposed in this chapter is more
robust than the single-rate one.
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Figure 5.13: Robustness comparison of both single-rate and dual-rate refe-
rence filtering approaches (25 experimets were performed).

5.4.2 Experimental Results

The proposed approach has been implemented and validated using different
hardware. Specifically: two industrial robot manipulators of 6 DOF have
been used, Kuka Krb sixx R650 and Kuka Agilus R900 sixx; as vision system
a webcam connected via USB to a workstation, a smart camera connected
via Ethernet IP and a 5MP monochrome camera connected to an industrial
PC-based Xpectia vision system from OMRON Electronics; as controllers,
a workstation and an IGEP board (see Annex |A|for further information).
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Figure 5.14: Industrial robot visual feedback control scheme.

Besides the hardware used, Figure shows their common control
block diagram. Concretely, for the experiments shown in this section, vision
system works at 0 = 84 ms, and the external controller at § = 10 ms.

In the first experiment, the validation of the Algorithm[4]is presented. In
this case single-rate reference features filtering control strategy is compared
with classic 2D visual feedback controller, both of them working at frame
period. In addition, the comparison between our SR-EKFS-IBVS approach
and the same but without the use of the Gaussian smoother, SR-EK-IBVS,
is also provided. The hardware used in this case is: robot Kuka Krb sixx
R650, web-cam Logitech C300 mounted at the robot end-effector, and a
workstation as controller. All these hardware are communicated via pro-
tocol TCP/IP throughout the RSI.EthernetXML technology from KUKA
Robots (see Annex [A| for a more detailed information regarding KUKA-
External hardware real-time communication).

The experimentation is based on pure rotation around camera optical
axis studied in Section [5.4.1] and, in addition, to large displacements.

Figure depicts the robot initial configuration for the rotational
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(a) Set-up for rotation case: the object is rotated 150° with respect
to the initial position.

(b) Set-up for large displacement problem: the object is rotated and
translated with respect to the initial position.

Figure 5.15: Experimental set-up on KUKA KRb5 sixx R650 cell platform.
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case, where the initial pose is turned an angle of 150° degrees with respect Z
axis and the distance of 0.205 m below the camera reference system. On the
other hand, a large displacement case is shown in Figure . Let us de-
note the world frame with the sub-index w, which origin is placed on the base
of the robot, with positive-Z is pointing at the ceiling. Thus, the camera, de-

noted with the sub-index c is at
“M,(0.280,0.046, —0.524, 3,093, 0.215, 0.878), and the object, denoted with
the sub-index 0, is at

¢M,(0.312,0.202,0.819, 0.0986, 0.685,0.957). Finally, the robot end-effector
and the camera are related by *M.(—0.080,00.050, —2.235, —2.182,0.056).
This problem is even harder to solve since it implies large scale variations,
rotations and Cartesian shifts.

Parametrization setting for both experiments is A = 4, Qys = I and
Rys = 10 - I. Both cases show a comparison between SR-EKF-IBVS and
SR-EKFS-IBVS has made in order to compare two filtering strategies and
how affect them to the system behavior.

Figures|5.16(a)land[5.17(a)|show image plane trajectories described with
the SR-EKF-IBVS and SR-EKFS-IBVS algorithms, using the same covari-
ance matrices and the control gain. In the rotation problem, the trajectories
result are quite similar but the control action are more smoothed in the case
of SR-EKFS-IBVS than in the SR-EKF-IBVS, providing a better movement
of the robot joints (see Figures|5.16(b)| and [5.16(c))). In large displacement
problem, both of them solve it but the behavior in the image plane is diffe-
rent, see Figure [5.17(a)l This is because, in SR-EKFS-IBVS, the smooth
part of the filter is considering the Z parameter during more prediction
(T =t+ Np) than SR-EKF-IBVS (that only predicts the T' =t 4 1), that in
this problem is quite different from the desired Z*, and this aspect produces
different trajectories filtered. An important aspect is that, although both
algorithms have similar magnitudes of the control actions in the beginning,
SR-EKFS-IBVS has more smoothed control actions than SR-EKF-IBVS
with the same convergence time, due to the trajectory predicted (see Fig-
ures [5.17(b)| and [5.17(c)]).

Although the SR-EKFS-IBVS behavior can provide better behaviors
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Figure 5.16: Rotation problem (Object rotation 150°): comparative be-
tween SR-EKF-IBVS and SR-EKFS-IBVS both with the same parameters
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Figure 5.17: Large translation problem: comparative between SR-EKF-
IBVS and SR-EKFS-IBVS both with the same parameters (Q = I, R =
10.0- I and A = 4.0)
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Table 5.2: Pure Rotation Problem (Object Rotation 150°).

Algorithm Time [ms| Convergence Time [

SR-EKF-IBVS 0.2971 20.295
SR-EKFS-IBVS N, = 10 1.4735 18.943
SR-EKFS-IBVS N, = 20 2.9906 18.317
SR-EKFS-IBVS N, = 30 4.34 17.865

than SR-EKF-IBVS, its convergence time depends on the parameter N,
(see Table 5.2). The SR-EKFS-IBVS filtering time grows linearly with N,
and this implies that the convergence time of the whole algorithm (time
between the start pose until the system reach the desired pose) is greater.

The next experimentation is carried out by using the following hardware:
Agilus R900 sixx manipulator is equipped with a robot controller that al-
lows external real-time communication using the Ethernet UDP protocol;
the Xpectia vision system is a PC based system that allows an easy imple-
mentation of industrial visual applications. However, the pre-programmed
algorithms are simple (i.e. 2D model-based object detection, bar-codes de-
tection, etc.), so new functionalities like feature detection, pose estimation
and camera calibration algorithms has been added. On it, the block “Fea-
tures extraction algorithm” from Figure The workstation controller re-
ceives the current robot joints positions from the robot controller and the
updated features pose estimation from the vision system. All the control
approaches presented in this paper have been implemented in this external
controller. The resulting control action, i.e. target robot joints positions, is
sent then to the robot controller. On it, the blocks DR-KF, DS-EKFS and
VFC from Figure [5.5]

The end effector frame is denoted with the sub-index e, being in this
experiment placed at “M,(0.506,0.037, —0.973,0.861,2.724). The camera
frame is in “M,(0.489,—0.294, —0.586, 1.506, 2.523, 0.406) with respect to
the world frame. The object frame will vary depending on the test per-
formed. Finally, the end-effector and the camera are related by
“M.(—0.080,00.050, —2.235, —2.182,0.056) (see Figure [5.18]).
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Figure 5.18: Experimental set-up with eye-in-hand camera-robot configu-
ration detecting four coplanar dots forming the vertices of a square of 0.1
meter of side.

The influence of the matrices Rs and Qg, when a proportional controller
is used, is analyzed, in order to highlight the potential of the proposed dual-
rate reference filtering control scheme. In this case, the control is performed
directly in the Cartesian workspace and the controller gain () is taken
constant and equal to 4.5.

The object is in “M,(0.655,0.023, —0.649, —2.577,1.608, —0.194), being
the distance between the camera and the object frames 0.115m, and the goal
to center the object within the image. This task cannot be performed by
single-rate controller working at low frequency due to that the vision system
latency makes the features leave the camera field of view while the task is
being performed.

Figure shows the obtained results. It is interesting to remark how
the election of Qs and Ry affects the system behavior, by solving many situ-



5.4. Analysis and Results 159

(a) Features trajec- (b) Features trajectory (c) Features tra-
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Figure 5.19: Analysis of the influence of Qs and Rs matrices:
3D workspace, proportional control law (A = 4.5); & = 84ms,
0 = 10ms; “M,(0.655,0.023, —0.649, —2.577, 1.608,—0.194), “M.(0.49,
—0.294, —0.586, 1.506, 2.523, 0.406), °M?(0.0,0.0, —0.115,0.0, 0.0,0.0), and
“MZ(0.60, —0.068, —0.638,0.132,0.041, —2.73).
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(a) Image plane features trajec-
tory.
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Figure 5.20: 2D workspace task, using the DR- reference filter-
ing control strategy (both single-rate and classical dual-rate ap-
proaches fail):  *“M,(0.621,—0.101,—0.628,1.334, 2.392,0.626); “M_.(
0.489, —0.294, —0.586, 1.506, 2.523,0.406), °M_.(0,0,—0.115, 0.0,0.0,0.0),
“M(0.57,—0.176, —0.638,0.158, —0.568,0.543); Qs = Ii2x12 and Ry =
10 - Iﬁxﬁ; A= 2.5.
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(a) Image plane features trajec-
tory.

5
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(b) Evolution of the 3D object pose
error: (C* txe, c* tYe, < tze, C e,
< ac,“* 0.); data relative to X axis in
blue, to Y in red, and to Z in green.

(c¢) Control actions dq;/0t.

Figure 5.21: 3D workspace task, wusing the dual-rate reference
filtering control strategy (both single-rate and classical dual-
rate approaches fail): “M,(0.621, —0.1, —0.628, 1.334, 2.392, 0.626);
M., (0.489, —0.294, —0.586, 1.506, 2.523, 0.406), °M,(0.0,0.0,
—0.1,0.0,0.0,0.0), “M?(0.57,—0.25,—0.60, 0.09,—-0.37,0.51), Qs =
1100 - Isx and Rs = diag(1,1,1,15,15,15); A = 4.5.
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ations, where classic single and dual rate control strategies fail. In addition
to this, such improvement does not carry a loss of time reaching out the so-
lution, neither a high computational cost, which would make the approach
not suitable for real-time applications.

Figures [5.20] and [5.21] show two examples only solved by using the pro-
posed dual-rate reference filtering approach. In Figure the control
is performed directly into the image plane using a proportional controller

working at high frequency. The object is placed at
"M, (0.621, —0.101, —0.628, 1.334, 2.392,0.626), being the goal to position
the end-effector at

WM (0.570, —0.176, —0.638, 0.158, —0.568, 0.543). The failure in classic ap-
proaches is because its tendency to perform straight lines in the image plane.
This behavior produces that features leave the camera field of view. The
failure of the single-rate control using the reference filtering approach is due
to the latency in getting new data from the vision system.

Closely to the last result is the one shown in Figure 521 where the
difference is that the control is performed directly into the 3D workspace,
also using a proportional controller working at high frequency. The object
position is the same that the case before but the desired end effector position
is M} (0.568, —0.248, —0.604, 0.087, —0.366,0.514). As the 2D case, the
failure of classic approaches is because the controller performs a straight
trajectory in the Cartesian workspace, losing the features before the goal is
reached. The failure of the single-rate control using the reference filtering
approach is, as in the previous case, due to the latency in getting new data
from the vision system.

For last, two cases of study are studied in order to compare the proposed
2D and 3D dual-rate reference filtering control strategies with classic single
and dual rate respective controllers, as well as with their single-rate counter-
parts: in case 1, all the controllers used are able to solve the problem, mean-
while in case 2, only the proposed dual-rate with reference filtering approach
has had the capability to provide a solution. The indicators chosen has been
the typical rise and settling times, overshoot, the maximum effort defined as

2
mazey| Yoy <%q;) and the Integrating Square Control Effort defined as
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Table [5.3] where the reference filtering control strategy approach has
been denoted as EKFS for simplification, shows that the system obtains
the best performances when the proposed dual-rate visual feedback control
strategy is used. In can be seen how all measured indicators show the
better performance of dual-rate control strategies against their single-rate
ones, and in particular, how the implemented algorithms DR-EKFS-P and
DR-EKFS-PID (in IBVS and PBVS approaches) are clearly superior to

other studied cases.



Table 5.3: Comparative of single-rate and dual-rate approaches using several controllers.

791

APPROACH CONTROLLER TIME DOMAIN RESPONSE
RISE TIME [s] SETTLING TIME [s] OVERSHOOT [%] MAX EFFORT [°/s] ISCE [°]
CASE1 CASE2 CASE1 CASE2 CASE1 CASE2 CASE1 CASE2 CASE1 CASE2
P 6.517 - 11.829 - 2 - 11.791 - 44.625 -
PID 6.208 - 11.056 - 3 - 11.305 - 41.552 -
sg  EKFS-P 5.822 - 10.233 - 2 - 10.338 - 39.001 -
IBVS EKFS-PID 5.513 - 10.012 - 3 - 10.155 - 36.976 -
P 5.219 - 8.939 - 2 - 9.102 - 24.763 -
PID 4.927 - 8.071 - 2 - 8.188 - 15.239 =
bR EKFS-P 4.318 5.333 7.634 10.015 0 0 7.522 9.130 13.777 16.229
EKFS-PID 4.018 5.112 7.183 9.899 0 0 7.161 8.882 13.069 15.401
P 7.526 - 13.271 - 5 - 14.054 - 52.991 -
PID 7.056 - 12.988 - 3 - 13.721 - 50.327 =
sr  EKFS-P 6.418 - 11.638 - 0 - 11.428 - 43.910 -
EKFS-PID 5.481 - 10.673 - 0 - 10.307 - 38.179 -
P 5.928 - 10.301 - 2 - 10.492 - 39.871 -
PBVS PID 5.376 - 9.834 - 5 - 10.015 = 36.317 -
bR EKFS-P 4911 6.521 8.334 12.412 0 5 8.325 11.4284 16.625 19.280
EKFS-PID 4.562 5.876 7.929 11.811 2 0 7.816 10.041 14.957 17.154

A3oye1)g SurIoy[1] SOIN}es, 90USIAFOY U0 Paseq DA G HALAVH)D
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5.5 Summary

In this chapter, a novel control strategy based on the ideas of Todorov| (2008)
and Zima et al.| (2013)) has been presented. Instead of proving dualities
between estimation and optimal control, this chapter proposes the use of
the optimal estate trajectory resulting of the Rauch-Tung-Striebel (RTS)
algorithm, as a new set of reference features to be used by an underlying
visual feedback control algorithm. Thus, the chapter shows how using this
approach, the solution reachability of classical visual feedback controllers
grows exceedingly and thus providing a more suitable trajectories for the
measurement in the image.

In addition to this, its generalization from a dual-rate point of view has
been presented, increasing thus its inherent properties and overcoming the
problem of the sensor latency.

A general formulation has been also given in order to perform our ap-
proch in both 2D and 3D workspaces.

A wide analysis has been described along the chapter, highlighting the
properties of the proposed approaches. Regardless the workspace in which
the control task is performed, the results show that the system behaves much
better in terms of solution reachability, convergence time and robustness
using the new dual-rate reference filtering control strategy compared to
classic approaches.

Finally, a variety of experiments and simulations has been analyzed,
demonstrating the benefits of the proposed dual-rate reference filtering con-
trol strategy and also using different controllers working at high frequency.
In particular, the proposed algorithm has been validated with a complete
industrial set-up with significant hardware limitations and performing sev-
eral positioning error tasks. It is therefore shown those cases where classic
approaches tend to fail, while the dual-rate approach still succeeds.






Chapter 6

Conclusions and Perspectives

6.1 Contributions

The research described in this thesis has focused on two main issues related
with sensor-based robot visual feedback control. The first issue, presented
in Chapters[3|and [4], concerned the sensor latency problem, while the second
issue, presented in Chapter [5 concerned the domain of suitable trajectories
for convergence assurance.

6.1.1 Sensor Latency Issue

In Chapter [3| we proposed the use of dual-rate high order holds |Armesto
and Tornero (2003al) as a solution to the sensor latency problem when we
have to deal with highly non-linear systems and no particular knowledge of
the system is assumed.

In particular, we have validated this approach using two different robotic
platforms: a wheeled robot, and a 6 DOF industrial robot manipulator. In
both cases, results show that the use of dual-rate high order holds improves
the behavior of the overall system due to the fact that the controller is
working at high frequency instead the classical low frequency one.

Chapter |3|also extends the work in /Armesto et al.[(2008]), by incorporat-
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ing time delay compensation, coined as asynchronous dual-rate high order
holds with time delay compensation (Asyn. DR-HOH-TDC). A wide set of
experiments were shown in both virtual and real scenarios were presented.
The proposed Asyn. DR-HOH-TDC was validated introducing them within
the control loop of a robot visual feedback control system. Concretely, a 6
DOF industrial robot manipulator performing error positioning and target
tracking tasks. The results shown that Asyn. DR-HOH-TDC provided an
important improvement in terms of convergence time (around 1 to 2 sec-
onds) with respect to Asyn. DR-HOHs approach. From such experiments
some additional conclusions could be extracted:

e Asyn. DR-HOH-TDC provides better input signal estimations rather
than its homologous Asyn. dual-rate high order holds (Asyn. DR-
HOH), in terms of MSE and typical deviation.

e Asyn. DR-HOH-TDC is more robust against input signals mixed with
white noises.

Dual-rate holds presented in Chapter {4 learn the system and controller
dynamics in order to provide better estimations, compared to all the ap-
proaches presented in Chapter The holds in Chapter [] use machine
learning techniques to generate dual-rate nonlinear hold functions for the
particular controlled system. In particular, we use artificial neural networks
and synthetic datasets in order to learn a nonlinear hold function in closed
loop. By doing this, the new nonlinear hold has information not only of the
plant to be controlled, but also the dynamics incorporated by the controller
and sensors. Nonlinear hold functions have been also validated in two diffe-
rent platforms: a wheel robot, and a 6 DOF industrial robot manipulator.
The results showed an improvement not only in terms of convergence time,
but also in terms of robustness.

6.1.2 On Providing Suitable Trajectories Issue

Chapter [5] presented a novel control strategy based on the ideas of [Todorov
(2008) and |Zima et al|(2013). The key idea is to use an optimal trajectory,
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derived from an optimal non-linear controller based on Rauch-Tung-Striebel
(RTS) algorithm, as a new set of reference features to be used by an un-
derlying visual feedback control algorithm. The chapter has shown that by
using this approach, the solution reachability of classical visual feedback
controllers grew exceedingly and thus, more suitable trajectories for the
measurement in the image were provided. Therefore, this new approach
was coined “reference features filtering control strategy”. This approach has
been extended to dual-rate systems, by including a dual-rate Kalman filter
and a dual-sampling estimation strategy.

A wide analysis in both, 2D and 3D workspaces and using several un-
derlying controllers, was described highlighting the properties of this ap-
proach. Regardless the workspace and the underlying controller used, the
results shown a better behavior in terms of solution reachability, conver-
gence time and robustness using the new reference features filtering control
strategy compared to classic approaches. Comparatives between single-rate
and dual-rate approaches have been also provided. In particular, the pro-
posed dual-rate algorithm has been validated with a complete industrial
set-up with significant hardware limitations and performing several posi-
tioning error tasks, showing cases where classic approaches tend to fail,
while the dual-rate proposed approach still succeeded.

6.2 Perspectives

The work performed in this thesis and the contributions obtained open sev-
eral research issues to be performed in the future concerning visual feedback
control schemes.

The first one is the industrial transference of the learnt knowledge to
the industry. In this sense, several known brands have been interested on
the approaches presented in this thesis (i.e. KUKA Robotics, in the use
of their real-time technology to make their applications faster and more
robust, and OMRON Electronics, in the use of their vision system within
industrial robot manipulators from different brands).

In addition to this, automotive industry sector is very interested in using
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visual feedback controlled systems for improving the performance of diffe-
rent tasks such as the windscreen sealing. This application is nowadays
carried out stopping the body car and using pre-established programmed
robot trajectories. This approach incorporates calibration errors and de-
lays. Using visual feedback and some of the approaches presented in this
thesis, applications like the one described would be solved more efficiently,
reducing the calibration problems and solving the problem while the body
car still moving.

Although including dual-rate high order holds in robot visual feedback
control applications improved the overall system performance, the noise
issue is yet a scourge of this approach. In the case of the novels dual-rate
nonlinear high order holds, this is been already solved by introducing a
Kalman filter within process of learning.

Moreover, other important aspect is the joint and camera field of view
constraints. These issues are already being studying by the use of the novel
dual-rate constrained LQR approach, which has demonstrated interesting
preliminary results under simulation. However, the time required by the
algorithm for finding a solution still being very long in order to be imple-
mented in real-time applications, such as the ones presented in this work.

In the same way, the reference features filtering approach could include
joint and camera field of view constraints, assuring thus that the proposed
trajectories are reliable.



Appendix A

Experimental Platforms

The work presented along this thesis has been strongly marked by results ob-
tained using not only laboratory hardware but industrial one. In that sense,
validation of the different approaches, as well as demonstrations shown up
to experts coming up directly from industry, are more plausible and relevant
rather than using academic hardware. However, the setting-up process is
very time consuming, requiring technical help from experts that takes long
time to come or never do. The positive thing is that, in some sense, you
become an expert by yourself, finally knowing better than anyone about the

Figure A.1: Industrial robot manipulator cell.
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hardware, its properties and limitations.

In addition to this, and as commented in chapters above, we imple-
mented one virtual environment for each platform used. Experience ac-
quired during these years of thesis demonstrated us that, it was a loss of time
to develop one virtual environment using software like Matlab/Simulink if
later such algorithms had to be translated to other programming languages
like C++ used by the real platforms. Hence, we decided to implement a
complete software architecture in which we are able to perform virtual or
real experiments by only switching by console its running mode. Figure
[A22] shows the general diagrammed flow of the mentioned software archi-
tecture, which is based on Orocos Toolchain, Soetens (2006)). First, several
initialization files have to be set up:

e “Global.xml”: all aspects concerning with the running mode are con-
templated into this file. Hence, components to be launched out (i.e.
server, control, vision, simulator and reporter), their work frequen-
cies, the robot to be used (for kinematic and dynamic aspects), the
launching mode (in simulation or real scenarios), etc. have to be set
up before the program is started.

e “Control.xml” general aspects of the controller has to be specified in
this file: control parameters, estimator to be used, control approach,
and on.

e “Vision.zml”: this file includes all possible options to be set regarding
to the camera and the vision algorithm.

e “Reports.xml” in this file it is possible to store data from a set of
possible options such as the vision and controller outputs, estimations,
acquired data, etc.

There are two possibilities depending on the mode selected: virtual
environment of real platform.

o “Virtual environment” in this mode, nor the server component nei-
ther the camera driver are needed. This component is in charge to
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CONFIG FILES
Global.xml
Control.xml
Vision.xml|
reports.xml|
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PLATFORM?

REAL PLATFORM

4 ; Y ;

CAMERA DRIVER SERVER COMPONENT
WORKING AT BASE PERIOD
ROBOT l

VIRTUAL ENVIRONMENT
WORKING AT
VISION COMPONENT
WORKING AT BASE PERIOD

v
SIMULATOR COMPONENT
‘WORKING AT BASE PERIOD
FRAME PERIOD DATA TO
_I REPORTER COMPONENT

DATA TO l
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A

REPORTER COMPONENT

Figure A.2: Algorithm structure developed to switch out in between virtual
and real platforms.

render the entire virtual environment, as well as to provide sensors
feedback. It receives data from the control component. Depending
on the platform simulated, different open source libraries have been
used, such as OpenRave (which utilizes Coin library) [Diankov and
Kuffner| (2008), Ogre Ogre3D| (2007) or Gazebo Koenig and Howard
(2004); |Aguero et al.| (2015). In Section Industrial Robotic Cells
and SUMMIT mobile platform are described due to their relevance
along this work. Yet, during the years of thesis other platforms and
simulators were worked with. One example is ORCA300 shown in
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(a) Real platform. (b) Virtual environment.

Figure A.3: ORCA300 platform.

Figure [A73]

e “Real platform” when this option is set, the server is in charge to
communicate with the respective platform, getting data from it and
exchanging data with control and vision components.

Vision and control components are totally independent of the running
mode selected. They can work at the same rate or at different one. Control
component is set out as the highest priority task (in fact is selected a little
bit lower in order to do not loose other system functions such as the Ethernet
communications), while vision component task priority is set low.

Lastly, reports are necessary to data analysis. To do this, other compo-
nent, coined as reporter, is used. Its priority is the lower one.

In the following, real platforms and virtual environments, robots and
other hardware discussed during chapters above, are described. All the
hardware mentioned is located at the Institute of Design and Manufactur-
ing (8G Ciutat Politécnica de la Inuvestigacio building) of the Universitat
Politéctica de Valéncia (UPV).
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A.1 Real Platforms

A.1.1 Industrial Robotic Cells

Robotic cells are fully used in industry. They consist on a robotic envi-
ronment surrounded by a fully sensory fence blocking up humans pass and
saving them from the robot while it is on running mode.

Such cells are provided by a set of sensors which only purpose is the
human safeness. Such sensors block immediately the automatic mode of
the robotic system if something goes wrong. In addition, the robotic system
cannot run until everything indicates that the safeness is totally guaranteed.

With all of this in mind, in 2010 (starting point of this work) it was
designed a cell for small robots (see Figure [A.4). It was built up using
aluminum bars well bracing for holding still a robot ceiling mounted inside
it. The structure is lightly bigger than the robot workspace in order to safe
humans from it. It is also equipped by a middle platform with an automatic
disc and a conveyor to perform object inspection and tracking tasks.

Two robot manipulators were set in this structure: from 2010 to 2014,
robot Kuka Kr5 sixx R650, and from 2014 on, robot Kuka Agilus R900 sixx.
In sections [A.1.1.1} and [A.1.1.2] a more detailed description of both robots
is done, as well as how to externally communicate with them to perform
real-time applications.

A.1.1.1 Robot KR5 sixx R650

Kuka Krb sixx R650 is a compact, light-weight, fast and reliable robot for
its size (see Figure . This robot was thought by KUKA Robotics to
be a link between laboratory and robust industrial robots. At the end, and
due to its capabilities, more close to the industrial demands rather than
the laboratory needs, it was utilized in some many applications around
the world. In Table the main technical specifications of Krb robot
manipulator are shown.

In our case, this robot is ceiling mounted and equipped with a camera
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(b) Application 2: Grasping with magnetic tool.

Figure A.4: Robot Krb sixx R650 cell.

attached at its end-effector for inspecting or tracking applications.

The compact KUKA KR C2 sr (see Figure is a made for small
robots who need a high performance controller. The high-quality stainless
steel housing with a 19” format, and connections routed to the front, offer
maximum flexibility and ease of use. This extremely reliable controller
makes use of service-proven drive technology and standard PC components.

It features three free PCI slots to allow use of all current and future
KUKA PC plug-in cards for small robots. It includes a wide range of
connection options, such as a 100-Mbit Ethernet controller and DeviceNet
master, to ensure reliable system integration.
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e, -

(a) Robot Manipulator. (b) Robot Controller.

Figure A.5: Robot Kr5 sixx R650 and KRC2 controller.

The KCP, KUKA Control Panel, is used to communicate with the KR
C2 sr controller. The KCP teach pendant features a full graphics color
display and a Windows interface for easy programming.

KUKA KR C2 sr is also equipped by Kuka real-time technology, which
is fully explained along this chapter.

Model KRS sixx R650
Payload 5 kg
Max. reachability 650 mm
Max. speed 8.2 m/s
Controller KR C2sr
Number of axes 6
Repeatability <=40.02 mm
Weight 28 kg
Mounting positions Floor, ceiling

Table A.1: Kuka Krb sixx R650 specifications.
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(a) Robot Manipulator. (b) Robot Controller.

Figure A.6: Robot Kuka Agilus R900 sixx and KRC4 controller.

Model Agilus R900 sixx
Payload 6 kg
Max. reachability 901 mm
Max. speed 13 m/s
Controller KR C4sr
Number of axes 6
Repeatability <40.03 mm
Weight 52 kg

Mounting positions  Floor, ceiling, wall

Table A.2: Kuka Agilus R900 sixx specifications.

A.1.1.2 Robot Agilus R900 sixx

Contrary to the Krb, Kuka Agilus is at all effects one robot thought to work
in industrial environments (see Figure . Technologically talking,
is more robust, can reach very high speeds and has a short cycle. It is
well suited to perform all kind of tasks, from pick & place to welling, and
equipped with the last Kuka technologies. It can perform tasks around the
50% faster than the Krb.

Table[A-2]shows the main technical specification of this industrial robot.

The KR C4 compact shown in Figure offers the high perfor-
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(a) Disc. (b) Conveyor. (c) Control distribu-
tion panel.

Figure A.7: Automatic externally controlled disc and conveyor.

mance and reliability of the KR C4 technology in a compact design. Its
flexible configuration and expansion capability make it a real all-rounder.
The number of hardware components, cables and connectors has been sig-
nificantly reduced and replaced by software-based solutions. The robust,
high-quality controller is designed for low maintenance; the temperature-
controlled technology only switches on briefly when needed, and is barely
audible.

The KUKA smartPAD is used to communicate with the KR C4 compact
controller. Manage the robot with it is simply easier rather than it was using
the previous PAD. Intelligent, interactive dialogues provide the user with
those operator control elements that are currently required. This makes
work easier, faster and more efficient.

A.1.1.3 Supplementary Tools

This robotic cell is well suited with different tools and automatic systems to
perform all kind of tasks ranging from inspection, pick & place or grasping,
among others.
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(a) Vision Sensor (b) Eye-in-hand configuration.

Figure A.8: Logitech Web-cam C300.

Linear and Circular Conveyors

Tracking and grasping applications are very usual in industry. There is a
huge demand nowadays in incorporating vision sensors and robots to solve
problems dealing with moving targets.

In order to perform our approaches and then show the results achieved,
a linear belt (Figure and a circular (Figure CONVeyors were
designed, built and automatized to be used in this cell.

Vicent Franch, technical in chief at the Institute of Design and manu-
facturing, was in charge of the mechanical aspects of those systems, while J.
Ernesto Solanes, PhD. student, was in charge of the electrical and control
aspects.

The controller used, as well as the DC motors, is from MAXON Motors.
This controller also allows controlling one system at a time, so the electrical
cabinet (Figure has a switch that allows commuting from one system
to the other, electrically.

In addition, it was implemented a simple software in C++ which com-
municates via USB, RS232 and 12C, allowing managing the different running
modes (position, velocity, ramp, direction, etc). This program works under
Windows and also under LINUX.
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Total Pixels 1300000 pixels
Max. digital video resolution 1280 x 1024
Video Capture 1280 x 1024 @ 30 fps
Features Right-Sound technology, USB 2.0 compatibility, snap-shot button
Video input device Color

Table A.3: Logitech web-cam C300 specifications.

CPU Core i5 2.4 GHz
0.5 Windows XP Embedded
NET Framework 3.5 or higher
Dual-task Yes
Max. number of cameras 2
Connectors USB 2.0 compatibility, Camera Link, Serial Port, Ethernet
Camera 2
Image sensor 5 MP monochrome camera FZ-S5M2 (2248 x 2044) at 12 fps

Table A.4: Industrial PC-based vision system Xpectia specifications.

Vision System

Along this thesis, different kind of vision sensors (i.e. web-cam, camera-link
industrial cameras, EthernetIP industrial cameras, smart cameras, stereo
vision system, embedded vision sensors (i.e. CMUcam)), have been used
in order to learn about different techniques and visual approaches. This
section focus its attention on two of them, which are the ones used in the
experimentation described in above chapters: Logitech web-cam C300, and
industrial PC-based vision system compounded by a 5 MP monochrome
camera FZ-S5M2 and the Xpectia FJ from OMRON Electronics.

Logitech C300 web-cam (Figure was selected because its compati-
bility with Linux. It allows recording images at 30 fps with a resolution of
640x480, with a good image refresh. The communication with the controller
is via USB. Table [A.3] shows the main characteristics of this sensor.

Xpectia FJ vision system (see Figure combines the benefits of a
compact system with the power and flexibility of an industrial PC platform.
The system enables to develop tailored vision solutions quickly. The pro-
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(a) Xpectia vision system. (b) 5 MP industrial camera attached
to the structure.

(c) 5 MP industrial camera
attached to the robot end-
effector.

Figure A.9: Industrial PC-based vision system Xpectia and 5 MP camera
configurations.
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grams are developed in the “Application Producer”, programming in C++,
and its HMI capability using Visual Basic. This system provides only drivers
for OMRON cameras, being very complicated to use other cameras apart
from these.

As vision sensor, the 5 MP monochrome camera FZ-S5M2 is used. The
resolution of this camera is 2248x2044, running at 12 fps. The connection
with Xpectia is via camera-link.

The main characteristics of this vision system are shown in Table [A74]

Manipulation Tools

In the results presented along the above chapters, only error positioning
and tracking tasks without any kind of manipulation have been described.
However, during the years of this thesis, some manipulation approaches have
been developed using mainly three tools: a laser pointer (Figure ,
an electro-magnet tool (Figure , and a grip (Figure .

In Section[A-1.1.6] a set of applications using some of those manipulation
tools is shown.

A.1.1.4 On Externally Control of Kuka Robots

Industrial robot manipulators are usually controlled with classical DIO
cards. However, that is because the automatic program is developed of-
fline and repeated once and again, the most of the cases in open loop. It
is possible to control Kuka robots from external devices in two ways: using
“KUKA.OPC” technology, or Kuka “KUKA.FEthernet RSI XML’ technol-
ogy.

“KUKA.OPC” technology is commonly used within the industry. The
problem is that real-time cannot be assured since the KCP layer has higher
priority rather than this technology. On the contrary, “KUKA.Ethernet
RSI XML’ technology assures real-time since no-task has a higher priority
than this one. The reason because the former one is more used, even though
real-time requirements are not assured, is because the majority of industrial
applications do not need to be control at real-time.
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(a) Laser pointer tool. (b) Electro-magnet tool.

(c¢) Grip tool.

Figure A.10: Manipulation tools.
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However, in order to validate our approaches, real-time has to be guar-
anteed, so “KUKA.FEthernet RSI XML” technology is used to perform all
the validations presented along this work.

Real-time Control of Kuka Robots

The KUKA.Ethernet RSI XML is an add-on technology package with the
following functions:

e Cyclical data transmission from the robot controller to an external
system in the interpolation cycle of 3 — 12ms (e.g. position data, axis
angle, operating mode, etc.)

e Cyclical data transmission from an external system to the robot con-
troller in the interpolation cycle of 3 — 12ms (e.g. sensor data)

e Influencing the robot in the interpolation cycle of 3 — 12 ms
e Direct intervention in the path planning of the robot
The characteristics of the package are the following:

e Reloadable RSI-object for communication with an external system, in
conformity with
KUKA.RobotSensorInterface (RSI)

e Communications module with access to standard Ethernet.
e Freely definable inputs and outputs of the communication object.
e Data exchange time-out monitoring.

e Expandable data frame that is sent to the external system. The data
frame consists of a fixed section that is always sent and a freely defin-
able section.
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The KUKA.FEthernet RSI XML enables the robot controller to communi-
cate with the external system via a real-time-capable point-to-point network
link. This technology has suffered several changes between the version 2.1
used by the robot Kr5 and the version 3.1 used by robot Agilus. On e of
the changes is that, meanwhile in version 2.8 the exchanged data could be
transmitted via the Ethernet TCP /TP or UDP /IP protocol as XML strings,
in the new version 3.1 this XML strings transmission is only allowed via
UDP/IP protocol. In the case of the Kr5, the Ethernet TCP /IP was used,
the UDP/IP protocol is the one already working on Agilus.

Programming of the KUKA. Ethernet RSI XML package is based on cre-
ating and linking RSI-objects. RSI-objects are small pieces of
pre-programmed code that can be executed and has additional function-
alities than the normal KRL-code. To be able to communicate exter-
nally through Ethernet, a specific standard object (ST_ETHERNET or
ST _COROB) needs to be created. The code line for creating for example the
ST ETHERNET is typically:
err=ST ETHERNET(A,B,config_file.xml), where err is a type of string
used by the RSI XML (called RSIERR) containing the error code produced
when creating the object (normally #RSIOK when it works), A is an integer
value that contains the specific RSI-object ID so that it is possible to locate
and refer to, B is an integer value for the container to which you want the
RSI-object to belong in order to create a group of different objects contain-
ing to the same container, config file.xml is a configuration file located in
the INIT folder (path C:/KRC/ROBOTER/INIT) on the robot controller
that specifies what should be sent and received by the robot controller. The
content of this file will be explained further down.

ST ETHERNET and ST _COROB are objects that can be influenced by
external signals, and also send data back to the external system in form
of XML files, containing different tags with data. The data can be for ex-
ample information about the robot’s actual axis positions, Cartesian actual
positions etc. This data shall send to the server and back within each in-
terpolation cycle of 12ms. ST ETHERNET has the same functionality as
ST COROB but with additional functionalities; one of these object always
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Figure A.11: Functional principle of data exchange.

need to be created and correctly linked in the KRL code in order to establish
communication with the external system. For this thesis, the communica-
tion object ST ETHERNET was used. When one of these objects is created
and linked correctly, the robot controller connects to the external system as
a client.

There are different types of RSI-objects and depending on what you
want to do, you have to create and link the correct objects to each other.
Besides the standard Ethernet card, an additional card (3COM) was needed,
to be able to handle the speed of the transferred data.

The robot controller initiates the cyclical data exchange with a KRC
data packet and transfers further KRC data packets to the external system
in the interpolation cycle of 12ms. This communication cycle is called an
IPO-cycle (Input Process Output), and can be seen in Figure above.
The external system must respond to the KRC data packets with a data
packet of its own.

To be able to influence the robot, one needs to initiate an RSI-object
for the movements. There are mainly two objects used for this: First, an
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\ ToolCS
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Base CS
World CS

Robot CS

Figure A.12: Definition of the different coordinate systems.

object called ST_AXISCORR(A,B) for specific movements in axis Al to A6,
where A is the specific ID of the created object, and B is the container that
the object belongs to; The second object is called ST PATHCORR(A,B)
for movements in Cartesian coordinates, where A, B are the same as for the
ST_AXISCORR object.

A coordinate system is also needed (normally BASE, TCP, WORLD)
as a reference for the movements. This is done by creating a RSI object
called ST_ON(A,B), where the parameter A is a string containing the co-
ordinate system that is supposed to be used (expressed as #BASE, #TCP
or #WORLD), and B is an integer value, 0 if the correction values sent to
the robot shall be absolute, or 1 if they shall be relative.

A schematic picture of the data exchange sequence with the different
RSI objects is shown in Figure above. When the robot is delivered
from the factory, the BASE coordinate system is the same as the WORLD
and both are located in the base of the robot by default. BASE is normally
moved to the base of the work piece on which the robot is working. The
differences between the different coordinate systems (CS) can be seen in
Figure below. NOTE: For the robot used in this thesis, all three
systems; WORLD CS, ROBOT CS and BASE CS have the same origin
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<ROOT>
<CONFIG>
<IP_NUMBER>192.0.1.2</IP_NUMBER>
<PORT>6008</PORT>
<PROTOCOL>TCP</PROTOCOL>
<SENTYPE>ImFree</SENTYPE>
<PROTCOLLENGTH>Off</PROTCOLLENGTH>
<ONLYSEND>FALSE</ONLYSEND>
</CONFIG>
<SEND>
<ELEMENTS>
<ELEMENT TAG="DEF_RIst" TYPE="DOUBLE" INDX="INTERNAL" UNIT="0" />
<ELEMENT TAG="DEF_RSol" TYPE="DOUBLE" INDX="INTERNAL" UNIT="0" />
<ELEMENT TAG="DEF_AIPos" TYPE="DOUBLE" INDX="INTERNAL" UNIT="0" />
<ELEMENT TAG="DEF_ASPos" TYPE="DOUBLE" INDX="INTERNAL" UNIT="0" />
</ELEMENTS>
</SEND>
<RECEIVE>
<ELEMENTS>
<ELEMENT TAG="DEF_EStr" TYPE="STRING" INDX="INTERNAL" UNIT="0" />
<ELEMENT TAG="RKorr.X" TYPE="DOUBLE" INDX="1" UNIT="1" HOLDON="1" />
<ELEMENT TAG="RKorr.Y" TYPE="DOUBLE" INDX="2" UNIT="1" HOLDON="1" />
<ELEMENT TAG="RKorr.Z" TYPE="DOUBLE" INDX="3" UNIT="1" HOLDON="1" />
<ELEMENT TAG="RKorr.A" TYPE="DOUBLE" INDX="4" UNIT="0" HOLDON="1" />
<ELEMENT TAG="RKorr.B" TYPE="DOUBLE" INDX="5" UNIT="0" HOLDON="1" />
<ELEMENT TAG="RKorr.C" TYPE="DOUBLE" INDX="6" UNIT="0" HOLDON="1" />
</ELEMENTS>
</RECEIVE>
</ROOT>

Figure A.13: The structure of ERXconfig.xml.

located on the base of the robot.

Though it was discovered that when starting the WORLD coordinate
system, the origin where set on where the robot were standing when starting
the system. This only applies for the communication to the robot controller,
so that the starting position shall always be set as 0 before starting to
move the robot. The response sent back to the external system was in real
coordinates with the WORLD coordinate system starting at its standard
position on the base of the robot.

When the robot controller communicates with the external system it in-
terchanges XML Strings. The content in the XML strings for the demo pro-
gram provided by KUKA, is decided and defined in a file called
ERX _config.xml (the configuration file, mentioned above), which is located
in the robot controller, inside the INIT folder.
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CPU Intel Core i7-2670QM
RAM 8GB @ 2.2GHz
GPU GeForce GTX 560M 2GB

0O.S  Ubuntu 10.04 and 12.04 prompted with a real-time kernel

Table A.5: ASUS laptop workstation.

The IP address and port to which the robot controller will connect,
when establishing the connection, are set in this file. The sub-tags under
<SEND> are what the robot controller sends to the external system. The
most important tags for sending to the external system for in this thesis
are the tags called DEF_Rlst, which is the real position of the robot’s end-
effector, and DEF _RSol that is the set position received from the external
system. A typical example of the content in this file is shown in Figure
A13l

The DEF_AIPos and DEF ASPos are real axis position and set axis
position respectively. Under the tag RECEIVE is described what the robot
controller expects to receive from the external system. In this example only
corrections in six values (X, Y, Z, A, B and C) are included, tagged as
RKorr.

High Level Controllers

As in the case of vision sensors, different kind of controllers has been tested
up along the realization of this thesis: PCs, industrial workstation, PL.C and
embedded hardware (i.e. PANDA board, IGEPv2). Here, it is described
only the ones used in the validations presented in above chapters, which are
a laptop workstation and the Machine Controller PLC NJ501-1500. Tables
[A.5] and [A.6] shows the main characteristics of both of them.

A.1.1.5 Software

Depending on the hardware and the concrete application to be developed,
along the years of this thesis several software platforms have been learnt
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Dimensions (HxDxW) 90 mm x 90 mm x 90 mm
Memory capacity for variables 2 MB: Retained; 4 MB: Not retained
Programming SYSMAC-SE200D
CPU Intel Atom Processor
Connection USB 2.0-compliant, Ethernet, EtherCAT, DIO
Protocol EtherCAT, EthernetIP, Serial

Table A.6: Machine Controller PLC NJ501-1500.

and used, ranging from commercial software (i.e. Matlab/Simulink, Ma-
trox Imaging Library, OMRON “Application Producer”), or open source
libraries (i.e. Orocos Toolchain, Soetens| (2006), ViSP, [Marchand et al.
(2005)), openCV, |Bradski| (2000), ROS, |Quigley et al.| (2009)).

A.1.1.6 Applications Highlights

During the process of this research, several applications have been developed
in this platform. Here we highlight the most relevant from the point of view
of this thesis, since whether the author or the approaches have had an
important role on their success.

Visual feedback control of robots was not a research topic at the Institute
of Design and Manufacturing. In fact, this thesis has opened this new
research line with promising results that can be transferred to the industry
in a near future. Figure shows two applications, differentiates by if
the object is moving or stationary.

The first contribution of this thesis, visual feedback control based to
dual-rate high order holders, was implemented successfully in industrial
hardware to solve the latency problem produced by the vision system Xpec-
tia when controlling KUKA industrial robot manipulators. This project won
the Annual OMRON Price “Iniciacién a la Investigacion e Innovaciéon en Au-
tomatica” in 2012/13. The application consisted in pointing at defects on
body cars previously detected by a vision system (see Figure . The in-
clusion of the multi-rate approach shown a very important improvement of
the system concerning to the convergence time and also with the smoothness
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(b) Stationary object example.

Figure A.14: Visual feedback control.

of the motion of the robot manipulator. In addition, a grasping application
was also performed demonstrating that, using the same hardware but with
the proposed dual-rate approach, the manipulator was able to grasp objects
moving at higher velocity, where classic single-rate approaches failed.

Other interesting application developed under the guidance and help
of the researcher Aldolfo Mufioz, was a real-time user control of industrial
manipulators via multi-touch screens (see Figure . In this case, the
robot was controlled by a non-expert user via an interface thought precisely
to help such users to interact with robots without any knowledge of robot
theory.
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éu

(a) Defect detection on hood car stage.

(b) Defect tracking on car hood stage.

Figure A.15: OMRON prize 2012/2013 - Visual feedback control based on
dual-rate holders: tracking application.

Several Human Machine Interfaces (e.g. Figures [A.1.1.6| and |A.1.1.6)
were tested with non-expert individuals and, taking into account their com-
ments, the final interface was the one shown in Figures[A.1.1.6|and [A.1.1.6]

A.1.2 SUMMIT Wheeled Robot Platform

The mobile platform SUMMIT is a mobile robot which has high mobility
and it is thought for both indoor and outdoor usage. Its mechanics are
equivalent to one 4x4 and uses high quality chassis manufactured with alu-
minum. The robot can be remote-controlled or autonomous since it has
been included a stereo vision system, a laser, RTK-DGPS, inertial sensor,
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(a) Instant 1.

(b) Instant 2.

(c) Instant 3.

(d) Instant 4.

Figure A.16: OMRON prize 2012/2013 - Visual feedback control based on

dual-rate holders: grasping application.

Dimensions
Weight
Loading capacity
Max velocity
Safety level
Autonomy
Traction system
Batteries
Motors
Temperature range
Interior Connectivity
Exterior connectivity
Communication
Kinematics

567x389x323
12.9 kg
5 Kg
3m/s
1P54
240 minutes
4 wheels
4x3.3V LiFePO4
2x brushless
from 0°C to 50°C

USB, RS232, GPIO y RJ45

USB
WiFi 802.11n
Ackerman

Table A.7: SUMMIT main characteristics.
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(¢) Platform set-up.

Figure A.17: Real-time control of industrial manipulators via multi-touch
screens.
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(a)

Figure A.18: SUMMIT mobile platform.

among others.

The control diagram is open and modular, based on ROS,
, which allows whether programming or simulating the algorithms
off-line and then be tested on-line.

The main mechanical characteristics of this robot are summarized in
Table [A7l

This platform has been used mainly for line and path following tasks.
One application in the context of this thesis was a moving robot docking
using vision feedback control. Figure shows how SUMMIT docks suc-
cessfully inside the moving dock in this case. Still, several issues regarding
to the loss of the image features while the docking is being performed, are
being studied at the time this manuscript is written.

A.2 Virtual Platforms

Several virtual platforms have been developed through the course of this
thesis. However, in the present manuscript has been presented the results
obtained by using two of them: Industrial Robotic Cell Simulator and SUM-
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END OF ' END OF
IMAGE-BASED |8 IMAGE-BASED

CONTROL —7 CONTROL L~
ALGORITHM ALGORITHM g
(e) Instant t4. (f) Instant ¢s.

Figure A.19: Visual servoing application: wheeled robot docking with mov-
ing dock.
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MIT Mobile Platform Simulator. Following a brief description of each sim-
ulator is given.

A.2.1 Industrial Robotic Cell Simulator

This simulator was developed by J. Ernesto Solanes on Linux O.S, concretely
Ubuntu 12.04, using open source libraries, being the most relevant:

e ViSP, Marchand et al.| (2005)): standing for Visual Servoing Plat-
form is a modular cross platform library that allows prototyping and
developing applications using visual tracking and visual servoing tech-
niques at the heart of the researches done by Inria Lagadic team. It
provides a set of visual features that can be tracked using real-time
image processing or computer vision algorithms. An overview of its
main characteristics can be seen in Figure [A.20]

Several vision algorithms from this framework have been used to per-
form some of the tests shown along this thesis.

e OpenRave, Diankov and Kuffner (2008): OpenRAVE provides
an environment for testing, developing, and deploying motion plan-
ning algorithms in real-world robotics applications (see Figure
for an example). The main focus is on simulation and analysis of kine-
matic and geometric information related to motion planning. Open-
RAVE’s stand-alone nature allows is to be easily integrated into ex-
isting robotics systems.

It provides many command line tools to work with robots and plan-
ners, and the run-time core is small enough to be used inside con-
trollers and bigger frameworks. An important target application is
industrial robotics automation.

In this thesis, simulation and rendering functions are used, while kine-
matics, dynamics, vision and control algorithms are programmed ex-
ternally to this library.
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Real-time data plotter Many more features

Image manipulation Mathematics core

v=—-AL"(s — 5"}

Movie reader and recorder,

Operations on vectors, ¥ML /0, data transmission

Read-write pgm, png, jpeg matrices, hamogeneous Display in real-time and over the network,
images, filtering, transformations, pseudo- record time-graphs, Kalman filter, exhaustive
mathematical morpholog\;.j \in\rerse ar SVD comp-ut,arion.j xfy-graphs or 3D curves. \ documentation. p.

Powerful APl

Open source license

CfC++, 280 000 lines,

more than 220 classes fully

documented, 100 examples
and 200 sample eodes.

Released under the terms of
the open saurce GPLv2
license. Also available as a
professional edition.

Hosted on GForge, under
Subwversion contral. Mailing
lists, farum, bug tackers.

Camera calibration,
hand-eye calibration.

Visual tracking core Visual servoing core AR core

Computer vision

IBVS, PBVS, 2D ¥ and

Blob trackers, moving edges, many other contral laws Provides a wrapper over Ogre

model-based trackers, for eye-in-hand and iD engine for augmented Pose and homagraphy
keypoint trackers. eye-to-hand systems. reality applications. estimation.

S iy

Hardware abstraction

Bridges Cross platform

sl
& - I

Support multi 05 (Fedora,

Provides generic Ubuntu, Debian, Linux Mint,
interfaces over robot Includes wireframe and robot Bridges with ROS, OpenCV and 05X, Windows), but also
drivers, framegrabbers viewers, planar textures YARP, ROS nodes for camera caompilers (g++ MinGW,
\ and display devices. \ generator. calibration and tracking. J msve...) and IDE. Y,

Figure A.20: ViSP main funtionalities, [Marchand et al.| (2005]).
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Wrist . Wrist
Camera View Camera View

Figure A.21: OpenRave visibility example, Diankov and Kuffner| (2008)).

Apart from these libraries, a kinematic/dynamic specific library for
6DOF Kuka industrial robot manipulators was developed, in charge to get
access to all possible kinematic transformations, robot Jacobean, and on,
as well as the required robot dynamic parameters needed by the controller.

Therefore, Figure [A.22] shows the virtual environment developed for
Kuka Kr5 sixx R650, and Figure the one for Kuka Agilus R900 sixx.

A.2.2 SUMMIT Mobile Platform Simulator

This simulator was developed by Vicent Girbés on Linux O.S., concretely
Ubuntu 10.04, using open source libraries, being the most relevant:

e Gazebo, Koenig and Howard| (2004);|Aguero et al.| (2015): is a
well-designed simulator that makes possible to rapidly test algorithms,
design robots, and perform regression testing using realistic scenarios.
Gazebo offers the ability to accurately and efficiently simulate pop-
ulations of robots in complex indoor and outdoor environments. It
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Figure A.22: Kr5 virtual environment.

Figure A.23: Agilus virtual environment.

is a robust physics engine, has high-quality graphics, and convenient
programmatic and graphical interfaces.

e OpenCV, Bradski (2000): It has C++, C, Python and Java in-
terfaces and supports Windows, Linux, Mac OS, iOS and Android.
OpenCV was designed for computational efficiency and with a strong
focus on real-time applications. Written in optimized C/C++, the
library can take advantage of multi-core processing. Enabled with
OpenCL, it can take advantage of the hardware acceleration of the
underlying heterogeneous compute platform. Usage ranges from inter-
active art, to mines inspection, stitching maps on the web or through
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advanced robotics.

Some ROS stacks have also been used to develop this simulator, such as
the Navigation stack.

In Figure is shown a set of snapshots of this simulator. In this case,
SUMMIT robot performs a line following task stopped by the detection of
a visual mark.
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L
1 i

(a) Instant ¢o.

(d) Instant ts.

Figure A.24: wheeled robot docking with moving dock.
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—Pippin: “I didn’t think it would end this way.”
—Gandalf: “End? No, the journey doesn’t end here.
Death is just another path, one that we all must take.
The grey rain-curtain of this world rolls back, and

all turns to silver glass, and then you see it.”
—Pippin: “What? Gandalf? See what?”

—Gandalf: “White shores, and beyond, a

far green country under a swift sunrise.”

—Pippin: “Well, that isn’t so bad.”

—Gandalf: “No. No, it isn’t.”

The Lord of the Rings
J.R.R. Tolkien
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