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A R T I C L E I N F O A B S T R A C T 

In medicine, computed tomographic images are reconstructed from a large number of mea­
surements of X-ray transmission through the patient (projection data). The mathematical 
model used to describe a computed tomography device is a large system of linear equations 
of the form AX = B. In this paper we propose the Q_R decomposition as a direct method to 
solve the linear system. Q_R decomposition can be a large computational procedure. How­
ever, once it has been calculated for a specific system, matrices Q_ and R are stored and 
used for any acquired projection on that system. Implementation of the Q_R decomposition 
in order to take more advantage of the sparsity of the system matrix is discussed. 

© 2010 Elsevier Ltd. All rights reserved. 

1. Introduction 

Computed tomography has a significant role in medicine and industrial applications [1-4 ] . As a result of this, continuous 
efforts are carried out in order to improve image reconstruction algorithms. 

The mathematical model used to describe a computed tomography device is a large system of linear equations of the 
form AX = B. Fig. 1 shows a scanner detector. The matrix A (m x n sparse matrix) describes the system geometry. The 
element ay of matrix A is proportional to the area that a ray beam i intersects with the pixel j , (j = 1 , . . . n, where n is the 
size of the image to be reconstructed). Consequently, the A matrix is obtained from the geometrical characteristics of the 
scanner and independently of the scanned object. X is the unknown matrix to be reconstructed and represents the scanned 
object. The xy element is proportional to the X-ray absorption of the ray i by pixel j . Finally, B (m — vector) contains the X-ray 
transmission data (projections), measured by the detectors. 

In this paper we study the QR decomposition techniques for a sparse matrix used to described the computed tomography 
system geometry [3,4]. Nevertheless results are applicable to any linear sparse systems of equations which have the same 
requirements: full-rank matrices. It is desirable to have no more than 5% of non-zero elements, because fill-in could cause 
problems. 

A sparse matrix is one of the main data structures used in large-scale scientific and engineering applications for 
representing linear systems of equations. In large and sparse linear systems, as usually occurs in computer tomography, there 
are thousands of equations, but each individual equation only depends on a few variables. This leads to equations where 
most of the coefficients are zero. As a pixel is intersected by two or three rays at the most, only two or three coefficients (ay) 
aren't zero. This implies that for each equation having n unknowns, only two or three of them have a non-zero coefficient. 
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X-Ray Source 

Fig. 1. The figure shows a fan-beam scanner in which the detectors, X-ray source, ray projections and field ofview(FOV) are marked. A fan-beam is emitted 
by the X-ray source which is attenuated by the object. Finally, the attenuated beam is recorded by the detectors. 

In computer tomography no more than 3% of the coefficients are non-zero elements, mostly around 2%, depending on the 
geometrical description of the scanner. 

One way of solving a linear system AX = B involves a decomposition matrix A into Q and R [5] matrices, where R is a 
triangular matrix and Q an orthogonal matrix. If the A matrix is decomposed into Q and R matrices, A = Q • R, then the new 
linear system to be solved is: 

As has been stated above, the A matrix only depends on the geometry of the scanner and the Q and R matrices are 
calculated for a given scanner only once. When an object is scanned, the Q and R matrices, previously calculated and stored, 
are used to solve the triangular system (1) . In this way, to obtain the final reconstructed image, it is only necessary to solve 
a triangular linear system. 

A is a m x n matrix and verifies m > n. For m < n we compute the QR decomposition of A T . W e assume that A has full 
rank. Orthogonal decompositions have been used extensively for small and dense matrices, because it is well known that 
such a decomposition is numerically stable. The storage and the operation count requirements in the decomposition are 
0(mn) and 0 ( m n 2 ) respectively [6]. 

This paper is organized as follows. In Section 2, the sparse matrix structure is presented. Section 3 describes the 
permutation procedure. This part of the algorithm is quite a bit faster and it allows us to speed up the rest of the algorithm. 
Section 4 describes the way we have followed for the implementation of the QR decomposition algorithm. In Section 5 we 
present the results we have obtained with our procedure. Finally, in Appendix details on the pseudo-code developed are 
presented. 

2. Sparse matrix representation 

The data structure for a sparse matrix is a very important issue. The data structure must be compact and easily accessed 
by the applications it has been designed for. Sparse row-wise representation of a matrix A with m rows and n columns is 
given by three one-dimensional arrays. 

For instance, consider the sparse matrix 

R X = QT B. (1) 

A = 

an 0 
0 0 

a31 a32 

.041 0 

0 " 

023 
0 
0 

If nz is the number of non-zero elements (five in this case), for a sparse row-wise storing scheme it is necessary to have 
two arrays of nz elements (RA and JA), and one array of m + 1 (4 + 1 = 5 in this case), elements /A. RA contains the matrix 
non-zero elements RA = an, a23, a3\, a32, a 4 i , ordered by increasing row index and then by columnJA contains the column 



Fig. 2. Effect of row ordering algorithm, (a) Original 1600 x 1600 matrix obtained for a computer tomography system with 2% of non-zero elements, 
(b) The final matrix obtained with the proposed ordering algorithm. Black points represent the non-zero element positions. 

index of the elements stored in RA, in this example JA = 1,3,1,2,1. Finally, the IA array contains the pointer element to 
the first element of each row in RA (and also in JA). In this example IA = 1,2,3, 5, 6. Note that element (m + 1) points to 
the first empty element. 

IA = 1 2 3 5 6 

I I I ; 
RA = an 032 a 4 1 

JA = 1 3 1 2 1 

(2) 

Notice that the column indices in JA are ordered within a given row. It is worth emphasizing that certain applications 
don't require an ordered row-wise format, e.g. some sparse matrix multiplications [7]. In our case, we use sparse ordered 
row-wise, because we must "find" quickly non-zero elements placed in the inferior half-triangle of the A matrix. In the same 
way the sparse order column-wise is also used: 

JA= 1 4 5 6 

RA = an a31 a 4 1 a 2 3 a 3 2 

1A= 1 3 4 2 1 

Notice tat JA and IA interchange their roles with respect to the row-wise representation. A is stored in the sparse row-wise 
scheme. 

3. Givens rotations and row ordering 

W e propose to solve the linear system AX = B by QR factorization based on Givens rotations [5], [8,9]. Givens-based QR 
decomposition factorizes the m x n matrix A into the product QR, where Q is orthogonal and R is upper triangular (or upper 
trapezoidal if m < n). 

In order to reduce the number of Givens rotations and consequently the number of fill-ins, is important to use a new row 
ordering strategy [10]. W e propose a very simple algorithm which reduces considerably the number of eliminations and 
consequently the number of fill-ins. 

The proposed ordering algorithm assigns to each row a label with the column number of the first non-zero element in that 
row. Then it orders rows by increasing label number. By permuting rows, we can reduce by 70% the number of eliminations. 
Eliminations could produce fill-ins which need more rotations and so on. Permuting rows is a quasi-instantaneous process, 
less than 10~ 2 s for matrices with 10 5 rows on a 32-bit 2 GHz microprocessor with 2 GB of RAM. 

Fig. 2 shows the original 1600 x 1600 matrix obtained for a computer tomography system with 2% of non-zero elements. 
In this figure is also shown the final matrix obtained with the proposed ordering algorithm. It can be seen that the proposed 
ordering algorithm efficiently reduces the number of eliminations by about 70%. The new order for the rows is stored in an 
array P of m elements. 



4. Algorithms 

In this section we describe two new algorithms for sparse matrix decomposition. The first algorithm computes the R 
matrix and stores data in order to compute the Q matrix. The second algorithm computes the Q matrix. These algorithms 
are implemented in two separate programs, although both algorithms share a common data structure. 

4.1. R algorithm 

The R matrix is stored in three one-dimensional arrays in the same way as was done for the A matrix. RR contains the 
matrix elements. Its length, which increases with R calculations, is the number of non-zero elements.JR contains the column 
index of the elements stored in RR. IR contains the pointer to rows. The structure for the R algorithm is: 

(1) Read the matrix A. Suppose m rows, n columns and nz non-zero elements stored in ordered sparse row-wise. 
(2) Apply ordering algorithm and update matrix A, then save P array with permutations in an external file. 
(3) For columns i = 1 to n. 

(3a) For row j = m to i + 1 
(3b) If a,j 7^ 0 then make Givens rotations' element ay 
(3c) Update R matrix: 
(3d) Store position (i, j ) and r = c/s, where c and s are cosine and sine of Givens rotations [5], for future calculations of 

"Q_" matrix. 
(3a) Continue 

(3) Continue 
(4) Update A = R 

Steps (1) and (2) above read and order the A matrix. After that, the algorithm (loop 3) searches and rotates the non-zero 
elements. This search is made by increasing order on columns, and for a given column, from the last row up to the diagonal 
positions. To update matrix R only involves modifying the values of two rows, which are very quickly overwritten because 
of the data structure used. 

When the algorithm finishes, the matrix A has been substituted by the triangular R matrix. 

4.2. Q algorithm 

In this section the Q algorithm [5] is developed for the sparse structure described in Section 2. For a matrix A m x n, the 
matrix Q contains the computed product o fm + 1 matrices o f m x r a order 

Q = Qo • Qi • 0.2 • • • Q,-i • Q• • • • Qm (4) 

where Qo is the m x m identity matrix. To calculate Q it is necessary to manipulate three matrices, which we are going to 
denote as Q„ew, Q and 0,^. The matrix Qj,ew is calculated by forward accumulation: 

Qnew = Qold ' Q' 

where 0,^ = Qo • Qi • • • Q- i - When the algorithm finishes Qj,ew = Q. The matrix Q isn't calculated and stored as a whole 
matrix. The Q matrix contains the identity matrix of 0' — 1) order in the first (j' — 1) rows and columns, whereas the remainder 
in these rows and columns are zeros. The rest of the (m — j + 1) x (m — j + 1) submatrix is denoted by Q. 

A-i 

5 
where 7,_i is the identity matrix of j — 1 order and Q is the matrix corresponding to all the Givens rotations of the column 
j . Due to the 7,_i identity matrix, (j — 1) columns at least remain unalterable in Qnew calculations. In any case, Qnew has k 
unalterable columns, with k > j, Q < + i being the first matrix in the rest of the forward product not equal to the identity 
matrix. Notice that if no rotations were done in a column of matrix A the corresponding Q matrix in Eq. (4) is the identity 
matrix. 

Qnew 

; 
/ l t o k k+ l t o m \ 

fixed torn not 

columns fixed 

\ Qdef Qnew / 

Qold Q 

/ l t o j - 1 

fixed 

columns 

\ Qdef 

jtom \ 

not fixed 

columns 

Q / 

A-i 

( o 



So k > j columns of Qnet„ remain unalterable during the rest of the algorithm and can be saved in an external file if it is 
necessary to deallocate memory. Only Q • Q, is calculated in each step: 

o • o 
/ j to k - 1 

columns 

to be added to 

Qdef 

k + 1 to m\ 
columns 

Qnew 

(5) 

4.2.2. Scheme of Q algorithm 
The general scheme for the Q algorithm is very easy, and it isn't necessary to have in M M all the data from Givens 

rotations or the matrix Qnew. Let us denote J^: Column number of the last matrix included in the forward product Qou = 
Qo • Oi • • • Q)i-h '• Column number for the matrix we are including in the current iteration J 3 : Column number for the matrix 
we are going to include in the next iteration. nH: number of columns of matrixA which have been modified. This means the 
number of Q, which are distinct from the identity matrix. Qlist: contains the list of the columns of matrix A which have been 
modified, i.e. the indices of Q, matrices which are distinct from the identity matrix. 

(1) For j = Q/ist[l] to j = Qlist[nH] 
( l a ) Forjj=J1 t o / 2 - l 

* Calculate columnsJi to jp - i 
* Add columns calculated to the external file Qde/ in sparse column-wise format, 

( l a ) continue 
( l b ) Forjj =JX to j j = m 

* Calculate rows since column J2 to m 

* Save as Q„ew. 
( l b ) continue 

• Update Q = Qnew 
(1) Continue 

The l oop ( l ) above indicates that the calculations are necessary only for those Q, matrices not equal to the identity matrix. 
Loop ( l a ) calculates j to k — 1 columns to be added to Qjef from Eq. (5) in sparse column-wise format (3). Loop ( l b ) calculates 

0nero in sparse row-wise format (2) from Eq. (5). 
Finally a backward substitution strategy has been used to solve the upper triangular system and the final solution for 

Eq. (1) is obtained. The pseudo-code is included in Appendix. 

5. Discussion and conclusions 

The proposed algorithm has been tested with two different algorithms, LAPACK [11] library SCELSS and Maximum 
Likelihood Expectation Maximization algorithm MLEM [3], [12,13], which is a widely used reconstruction algorithm in 
computer tomography. The LAPACK [11] library SCELSS is used to compare the advantages and drawbacks of sparse against 
dense structures. As MLEM is a sparse algorithm, we have used it in order to compare its results with our algorithm's results. 

A matrix A of (20 000 x 5000) with 2% of non-zero elements is used. The matrix A corresponds to a real computer 
tomography system. For the calculations, we have used a 32-bit 2 GHz microprocessor with 2 GB of M M . The image to be 
reconstructed (B-vector) has been obtained with a synthetic model. 

The differences between the reconstructed images are negligible within the significant digits for parameters like contrast 
and signal-to-noise ratio, usually used to compare results in computer tomography [3,14]. Nevertheless, computing time and 
maximum size of the system matrices are quite different. 

It isn't possible to solve bigger systems with our PC with LAPACK dense format, but computing times are very good; 
LAPACK only needs ^75 min to solve a (20 000 x 5000) system. Our algorithm works more slowly (600 min for the same 
system) but the limit in the size of matrix A is only defined by the number of non-zero elements. W e have managed up to 
10 9 non-zero elements. This implies that assuming 1% of sparsity, our matrix in dense format can have up to 10 1 1 elements. 

It should be noticed that although QR factorization is a very slow process, this must be made only once for a computer 
tomography system. It can be stored as software of the computer tomograph and used to reconstruct any image in a few 
seconds. Then to reconstruct an image only implies to solve an upper triangular system and to make a product (quasi-instant 
procedure). Fortunately, this second process to solve the triangular system, only take a few seconds for both systems, LAPACK 
and the sparse algorithm. 

W e have compared the results obtained with the procedure described in this paper, with those obtained by the authors 
in a previous work with the MLEM algorithm [3]. Even though images are very similar (differences in quality parameters 
such as contrast and signal-to-noise ratio are negligible), results are quite a bit different in CPU time consumed. The MLEM 
algorithm needs several minutes to obtain an image while for the sparse QR procedure only a few seconds are needed, our 
procedure being about 60 times faster. This is due to the fact that QR decomposition allows us to store the biggest part of the 



reconstruction algorithm (as the Q and R matrices don't change during the reconstruction process), and it is only necessary 
to solve a triangular system to reconstruct an image. However, the MLEM algorithm doesn't allow us to use any precomputed 
result that could be reutilized and/or stored. The algorithm has to start from scratch for each reconstructed image. 

Finally, we can conclude that our algorithm is capable of reconstructing images from computer tomography, by getting 
at the same time the desirable features of the dense based algorithms (i.e. their speed) and the sparse based algorithms 
(i.e. the maximum size of the matrix system). 

Appendix 

It is easy to develop the R algorithm from the scheme from Section 4.1, but more information is necessary to make the Q 
algorithm because there are several subroutines implied. 

The same notation as in Section 4 is used. W e are going to use Qj e/ to store row columns which aren't going to be modified. 

Data to construct the matrices Q, Qj,ew are stored in three arrays in sparse row-wise format and Qje/ in column-wise format. 
Let us to denote: 

• M [ i , : ] : row i of M. 
• M[:,j]: column j of M. 
• M [ i : l,j] column j since row i to /. 
• L(j : k): elements 1 to k of the list L 
• r(j): contains x quotient between sine and cosine of a Givens rotation ordered by columns [5]. It will be used to calculate 

Q matrix. 
• /QO): list ° f r o w position of rotations of matrix Q . 

• 7Q0): pointers to the first element of each column rotation in r (j) and /QO)-

A.J. Subroutines 

Two subroutines or functions are needed to construct rows and columns of matrix Q, (or using (5) to simplify Q ) . These 
subroutines need as input the position of the row rotations (j refers to the column), and the list of x values of rotations made 
in the j column of the A matrix. The output is the row (or the column). 

• Subroutine _Q_columns(j, r(j),IQ_(j), Q[ i : , j ] ) : calculates Q [ : , j ] in dense format. Inputs are /QO). list of positions of 
rotations in the j column of A, x(j), list of rotations in the j column of A. 

• SubroutineJl_rows(i,j, r(j),IQ_(j), Q [ i , : ] ) : calculates Q [ i , : ] in sparse format. Inputs are the same as in the above 
subroutine besides data of the row it must be constructed i. 

W e have implemented two subroutines to make the sparse product of two matrices Mi and M 2 to obtain M 3 = Mi • M2. One 
subroutine is designed to obtain rows of M3 (Subroutine_To_rows) which is used to obtain Qj,ew and the other one to obtain 
columns (Subroutine_To_columns) used to obtain Qj e/. 

• Subroutine_To_rows(i, j, x(j), /QO), Mi[ i , :],M3[i,:]): inputs of this subroutine are the same as Subroutine _Q__rows. This 
subroutine is called to calculate rows of Q and Mi . The output is row i of matrix M 3 , where M3 = Mi • M2 and M2 = Q. 

• Subroutine_To_columns(j, x(j), IQ(j), M^[:,j], M3[:,j]) inputs of this subroutine are the same as Subroutine_Q_column 
besides column j of matrix M i . This subroutine is called to calculate columns of Q. The output is column j of matrix M 3 , 
where M3 = Mi • M2 and M2 = Q. The columns calculated aren't going to be used again in this algorithm. Columns 
calculated here are stored in an external file, in sparse column-wise format. 

A.2. Pseudo-code o/Q algorithm 

• / i = / ( l ) . / 2 = / ( 2 ) J ( n H + l ) = m . 
• Forjj = Ji toJ 2 — 1 

- CMSubroutine_(l_columns(J,, x(J(l(J,) :/Q([ 2 - l ) ) ,/Q0Q0i) :JQ.Q2 - 1 ) ) , Q [ i : , ] ] ) . 
- Save in an external file Qj e/ in sparse column-wise format. 

• continue 
• For ij = Ji to m 

- Call Subroutine J2_Co/umns(ijJi, r y Q O i ) : /Q ( [ 2 - l ) ) ,/Q0Q0i) :_/Qy2 - 1 ) ) , QD, ij] ) . 
- Save as Q in sparse row-wise format. 

• continue 
• For j j = 2 to nH — 1 

- ActualizeJi =J(jj - l ) ; / 2 =J(jj);J3 =J(jj + 1 ) ; 
- For jj =J2 toJ3 - 1 

* Call Subroutine JTo.co/umnsO/Ji, t y Q O i ) : ; Q 0 2 - l ) ) ,/Q0Q0i) :7Q0 2 - 1 ) ) , Q[ : , j j ] , Qj e / [ : , j j ] ) 
- continue 



- ForJJ = 2torn 
* For ii = 1 to m 
* Call Subroutine^ rows(ii,jj, vQ^) : JQ_(J2 - 1 ) ) , /Q (/Q (/ i ) : JQ.(J2 - 1 ) ) , QUUh • m], Qm^h : m]) 

- continue 

" Q = Qdef 
• continue 
• output of the algorithm is Q_ matrix stored in sparse row-wise format, which is very useful because we must do Q7 B 

product. 
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