
Enhancing Variability Modeling
in Process-Aware Information
Systems through Change
Patterns

Advisors: Dr. Victoria Torres Bosch

Dr. Vicente Pelechano Ferragud

Clara Ayora Esteras

November 2015

Clara Ayora Esteras

Enhancing Variability Modeling
in Process-Aware Information
Systems through Change
Patterns

PhD Thesis. November, 2015

Enhancing Variability Modeling in Process-Aware Information Systems
through Change Patterns:

This report was prepared by
Clara Ayora Esteras

Advisors
Dr. Victoria Torres Bosch
Dr. Vicente Pelechano Ferragud

Members of the Thesis Committee
Dr. Óscar Pastor López

Dr. Félix Óscar Garćıa Rubio
Dr. Antonio Ruiz Cortés

Release date: November, 2015
Comments: A thesis submitted in partial fulfillment of the re-

quirements for the degree of Doctor of Philosophy
in Computer Science at the Universitat Politècnica
de València.
Title page paintings of Edvard Munch. The Munch
Museum. Oslo.

Rights: c©Clara Ayora Esteras, 2015

Centro de Investigación en Métodos de Producción de Software
Universitat Politècnica de València
Caḿı de Vera s/n, Edif. 1F
46022 - València, Spain

Tel: (+34) 963 877 007 (Ext. 83530)
Fax: (+34) 963 877 359
Web: http://www.pros.upv.es

To Jose Luis

}Lo mejor está por venir~

Acknowledgements

This PhD thesis has been a difficult odyssey. Like Ulysses, it has
been a hard journey full of contretempts before reaching the end.

Through these lines I would like to express my gratitude to all these
people who have contributed to finishing this journey.

First of all, I would like to thank my advisors Dr. Victoria Torres
and Dr. Vicente Pelechano, for their advices and feedback during the
development of this thesis. You both gave me the opportunity to de-
velop this research and I have learnt many things during this process.

I am especially grateful to Ass. Prof. Dr. Barbara Weber and
Prof. Dr. Manfred Reichert for their help, their interest in my work,
their valuable contributions to this research, their good advices, and the
opportunities they gave me through these years.

Another grattitude is to Visit. Prof. Dr. Jose Luis de la Vara for
taking time out from his busy schedule and collaborating with us in the
last part of the thesis.

I would also like to say thank you to Maŕıa Ortega for her help in
the implementation of the editor. Thanks to her efficient work, I could
save time and effort when validating the proposed work. I extend this
grattitude to Dr. Stefan Zugal and Dr. Jakob Pinggera for their much
appreciated feedback and support when implementing the editor.

I would like to specially thank my friends Mario and Maŕıa (Zape)
for being there. Your understanding and daily support has been funda-

mental for succeeding in this thesis.

I would also like to thank Marcela and Mariajo for showing me
a different perspective and sharing with me many laughs, bathroom
confidences, and music experiences.

A sincere thanks to Salva, Pablo, and Isma for the good moments
we shared both inside and outside the lab. I also like to express my
gratitude to Prof. Óscar Pastor for his direction of our research center.
Nor do I want to forget Ainoha, Sergio E., Paco, Vero, Ana M., Diego,
Ignacio, los Perris, Paqui, Patricia, and Jesús. Being with you always
means having a great time. I would also like to thank Ana Cidad for
her help with the paperwork, Nacho for his technical support, Harvey
for his collaboration, and the rest of current and former colleagues from
the PROS research center for their assistance and collaboration. In
addition, I would like to mention all the colleagues from the Institute
of Databases and Information Systems of the University of Ulm (espe-
cially Carolina) and from the Quality Engineering Research Group of
the University of Innsbruck for all their kindness and hospitality.

I would also like to include here my miserable colleagues from the
DSIC department (Sonia, Sergio E., Vı́ctor, Pablo, Alejandro, Lućıa,
Sergio L., Sergio P., Knut, and Raúl), with whom I have shared less
working hours but many conversations and funny moments. Thanks for
your friendship and support.

A special thanks is for my family, especially to my parents, for their
constant encouragement, love, and unlimited patience. They care about
me giving me always the unconditional support I need.

I would like to thank as well to all those people (i.e., friends, musi-
cians, and Cullera’s people) that are part of my life, and, unwittingly,
make it a little bit easier.

Finally, thanks to Jose Luis for believing in me and sharing his life
with me every day. This odyssey would not have finished without you.
I love you endlessly.

Clara Ayora

Abstract

The increasing adoption of process-aware information systems (PAIS)
together with the high variability in business processes has resulted

in collections of process families. These families correspond to a busi-
ness process model and its variants, which can comprise hundreds or
thousands of different ways of realizing this process. Managing process
variability in this context can be very challenging, labor-intensive, and
error-prone.

Motivated by this challenge, several approaches enabling process
variability have been developed. However, with these approaches PAIS
engineers usually are required to model and manage all the elements
of a process family one by one and ensure its correctness by their own.
This can be tedious and error-prone especially when a process family
comprises hundreds or thousands of process variants. For example,
PAIS engineers need to be aware of each variation and dependence of
each process variant. Thus, there is a need of methods that allow PAIS
engineers to model process variability more explicitly, especially at a
level of abstraction higher than the one provided by the existing process
variability approaches. However, how process variability is represented
is critical for defining these methods (e.g., what language constructs
are used to model process variability). In this context, using modeling
patterns (reusable solutions to a commonly occurring problem) is a
promising way to address these issues. For example, patterns have been
proved as an efficient solution to model individual business processes.

The objective of this thesis is to enhance the modeling of variability
in process families through change patterns. For such purpose, first, we
conduct a systematic study to analyze existing process variability ap-
proaches regarding their expressiveness with respect to process variabil-
ity modeling as well as their process support. Thus, we can identify the
core set of variability-specific language constructs. In addition, based
on the obtained empirical evidence, we derive the VIVACE framework,
a complete characterization of process variability which comprises also a
core set of features fostering process variability. VIVACE enables PAIS
engineers to evaluate existing process variability approaches as well as
to select that variability approach meeting their requirements best. In
addition, it helps process engineers in dealing with PAISs supporting
process variability.

Second, based on the identified language constructs, we present a
set of 10 change patterns for process families and show how they can
be implemented in a process variability approach. In particular, these
patterns support process family modeling and evolution and ensure pro-
cess family correctness by automatically introducing and deleting mod-
eling elements. In order to prove their effectiveness and analyze their
suitability, we applied these change patterns in a real scenario. More
concretely, we conduct a case study with a safety standard with a high
degree of variability. The case study results show that the application
of the change patterns can reduce the effort for process family modeling
by 34% and for evolution by 40%. In addition, we have analyzed how
PAIS engineers apply the patterns and their perceptions of this applic-
ation. Most of them expressed some benefit when applying the change
patterns, did not perceived an increase of mental effort for applying the
patterns, and agreed upon the usefulness and ease of use of the patterns.

Resumen

L
a creciente adopción de sistemas de información dirigidos por pro-
cesos de negocio (PAIS, según sus siglas en inglés) y la alta variabil-

idad en dichos procesos, han dado lugar a la aparición de colecciones de
familias de procesos. Estas familias están constituidas por un modelo de
proceso de negocio y sus variantes, las cuales pueden comprender entre
cientos y miles de diferentes formas de llevar a cabo ese proceso. Mod-
elar y gestionar la variabilidad de los procesos en este contexto puede
resultar muy dif́ıcil , laborioso, y propenso a errores.

Por este desaf́ıo se han desarrollado distintas soluciones que per-
miten la gestión de esta variabilidad en los procesos de negocio. Sin
embargo, los ingenieros que trabajan con PAIS al utilizar estas solu-
ciones deben crear y gestionar uno por uno todos los elementos de las
familias de procesos y asegurar ellos mismos su corrección. Esto puede
ser tedioso y propenso a errores, especialmente cuando las familias están
compuestas de múltiples variantes. Por ejemplo, los ingenieros deben
ser conscientes de todas las variaciones y dependencias de todas las
variantes. Por ello, son necesarios nuevos métodos que permitan a los
ingenieros de PAIS modelar la variabilidad de los procesos de una man-
era más expĺıcita, sobre todo a un nivel de abstracción más alto del
proporcionado hasta ahora por dichas soluciones. Sin embargo, para
definir estos nuevos métodos resulta clave cómo se representa la variab-
ilidad (ej.: qué primitivas se utilizan para modelar la variabilidad en los
procesos). En este contexto, el uso de patrones de modelado (soluciones

reutilizables a un problema recurrente) resultan una solución promete-
dora. Por ejemplo, los patrones resultan eficaces para modelar y ges-
tionar procesos de negocio individuales.

El objetivo de esta tesis es mejorar el modelado de la variabilidad
en las familias de procesos a través del uso de patrones de cambio. En
primer lugar, hemos llevado a cabo un estudio sistemático con el fin
de analizar las soluciones existentes que gestionan la variabilidad en los
procesos, aśı como el soporte que estas proporcionan. De esta forma,
hemos identificado y analizado cuál es el conjunto básico de primitivas
espećıficas para representar la variabilidad. Además, basándonos en
la evidencia emṕırica obtenida, hemos derivado el marco de evaluación
VIVACE, el cual recoge las primitivas de variabilidad y un conjunto
básico de caracteŕısticas que favorecen la variabilidad en los procesos.
Aśı, VIVACE conforma una completa caracterización de la variabilidad
en los procesos de negocio. Asimismo, VIVACE permite a los ingenieros
de PAIS evaluar las soluciones que permiten gestionar la variabilidad
en los procesos, aśı como seleccionar la solución que se ajuste mejor
a sus necesidades. Finalmente, VIVACE también puede ayudar a los
ingenieros a gestionar PAISs que den soporte a esta variabilidad.

En segundo lugar, basándonos en las primitivas identificadas, hemos
definido 10 patrones de cambio para familias de procesos y cómo pueden
ser implementados. Estos patrones ayudan al modelado y a la evolución
de familias de procesos y además son capaces de garantizar la corrección
de la propia familia permitiendo la inserción y el borrado automático de
elementos. Para probar su efectividad y analizar su idoneidad, hemos
aplicado estos patrones de cambio en un escenario real. En concreto,
hemos realizado un caso de estudio con un estándar de seguridad con un
alto nivel de variabilidad. Los resultados de este caso demuestran que
la aplicación de nuestros patrones de cambio puede reducir el esfuerzo
para el modelado de familias de procesos en un 34% y en un 40% para
su evolución. Además, hemos analizado cómo los ingenieros de PAIS
aplican los patrones y sus percepciones de esta aplicación, obteniendo
como resultado que la mayoŕıa de ellos encontró beneficios al aplicarlos.
Además, no percibieron un aumento en el esfuerzo mental necesario y
estuvieron de acuerdo en su utilidad y facilidad de uso.

Resum

L
a creixent adopció de sistemes d’informació dirigits per processos de
negoci (PAIS, segons les seues sigles en anglès) i l’alta variabilitat en

eixos processos, han donat lloc a la aparició de col·leccions de famı́lies
de processos. Estes famı́lies es formen d’un model de procés de negoci
i les seues variants, les quals poden comprendre entre cents i milers de
diferents formes de dur a terme eixe procés. Modelar la variabilitat dels
processos en este context pot resultar molt dif́ıcil , laboriós, i propens
a errors.

Per aquest desafiament s’han desenvolupat diverses solucions que
permeten la gestió d’aquesta variabilitat en els processos de negoci. No
obstant, els enginyers que treballen amb PAIS quen utilitzen aquestes
solucions han de crear i gestionar un a un tots els elements de les famı́lies
de processos i assegurar ells mateixos la seua correcció. Això pot ser
tediós i propens a errors especialment quan les famı́lies es componen
de múltiples variants. Per exemple, els enginyers han de ser conscients
de totes i cadascuna una de les variacions i dependències de totes les
variants. Per quest motiu, son necessaris nous mètodes que permeten
als enginyers de PAIS modelar la variabilitat dels processos de man-
era més expĺıcita, sobretot a un nivell d’abstracció més alt del fins ara
proporcionat per les solucions actuals. No obstant, per a definir aques-
tos mètodes resulta clau com es representa la variabilitat (ex.: quines
primitives s’utilitzen per a modelar la variabilitat en els processos). En
aquest context, l’ús de patrons de modelatge (solucions reutilitzables

a un problema recurrent) resulten una solució prometedora. Per ex-
emple, els patrons han sigut provats eficaçment per modelar i gestionar
processos de negoci individuals.

L’objectiu d’aquesta tesi és millorar el modelatge de la variabilitat
en les famı́lies de processos a través de l’ús de patrons de canvi. En
primer lloc, hem dut a terme un estudi sistemàtic per a analitzar les
solucions existents per a gestionar la variabilitat en els processos, aix́ı
com el suport que aquestes proporcionen. D’aquesta manera, hem iden-
tificats i analitzat quin és el conjunt bàsic de primitives espećıfiques per
a representar la variabilitat. A més, basant-nos en l’evidència emṕırica
obtinguda, hem derivat el marc d’evaluació VIVACE, el qual arreplega
les primitives de variabilitat i un conjunt bàsic de caracteŕıstiques que
afavoreixen la variabilitat en els processos. Aix́ı, VIVACE conforma
una completa caracterització de la variabilitat en els processos de ne-
goci. Aix́ı mateix, VIVACE permet als enginyers de PAIS avaluar les
solucions per a gestionar la variabilitat en els processos, aix́ı com selec-
cionar la solució que s’ajusta millor a les seues necessitats. Finalment,
VIVACE també pot ajudar als enginyers a gestionar PAISs que donen
suport a aquesta variabilitat.

En segon lloc, basant-nos en les primitives identificades, hem definit
10 patrons de canvi per a famı́lies de processos i com poden ser im-
plementats. Aquestos patrons ajuden al modelatge i a l’evolució de
famı́lies de processos i garanteixen la correcció de la pròpia famı́lia per-
mitint la inserció i eliminació automàtica d’elements. Per a provar la
seua efectivitat i analitzar la seua idonëıtat, hem aplicat els patrons de
canvi en un escenari real. En particular, hem realitzat un cas d’estudi
amb un estàndard de seguretat amb un alt nivell de variabilitat. Els
resultats de aquest cas demostren que l’aplicació dels nostres patrons
de canvi poden reduir l’esforç per al modelatge de famı́lies de processos
en un 34% i en un 40% per a la seua evolució. A més, hem analitzat
com els enginyers de PAIS apliquen els patrons i les seues percepcions
d’esta aplicació. Com a resultat, la majoria d’ells va trobar beneficis
al aplicar-los. A més, no van percebre un augment en l’esforç mental
necessari i van estar d’acord en la seua utilitat i facilitat.

Content of the thesis

List of Figures xix

List of Tables xxiv

1 Introduction 1

1.1 Motivation . 3

1.2 Problem Statement . 6

1.3 Thesis Goals . 7

1.4 Research Methodology 9

1.5 Thesis Context . 12

1.6 Thesis Structure . 13

2 Background 15

2.1 Business Process Modeling 16

2.2 Software Variability Modeling 21

2.3 Software Patterns . 24

2.3.1 Organizational patterns 25

2.3.2 Architectural patterns 27

2.3.3 Idioms . 29

2.3.4 Analysis patterns 30

2.3.5 Design patterns 32

2.4 Conclusions . 34

3 State of the Art 35

3.1 Business Process Variability Modeling 37

3.1.1 Process perspectives 37

3.1.2 Process lifecycle 38

3.1.3 Process variability approaches 40

3.2 Software Variability Modeling Patterns 42

3.2.1 Single, Multiple, and Option patterns 43

3.2.2 Patterns for evolving event-based systems 44

3.3 Business Process Modeling Patterns 46

3.3.1 Workflow patterns 46

3.3.2 Patterns for business process change 55

3.4 Discussion . 60

3.5 Conclusions . 63

4 VIVACE: Process Variability Characterization 65

4.1 Research Questions Formulation 67

4.2 The VIVACE Framework 70

4.2.1 Languages for Modeling Business Process Variab-
ility . 70

4.2.2 Techniques for Modeling Process Variability in a
Configurable Process Model 73

4.2.3 Language Constructs for Process Variability . . . 76

4.2.4 Covered Process Perspectives 79

4.2.5 Existing Tools for Managing Process Variability 81

4.2.6 Variability Support Features 82

4.2.7 Empirical Evaluation of Process Variability Ap-
proaches . 90

4.2.8 Application Domains 92

4.2.9 Aspects Cutting Across VIVACE Aspects 92

4.3 VIVACE in Practice . 93

4.3.1 Applying VIVACE to Configurable EPC 94

4.3.2 Applying VIVACE to Provop 97

4.3.3 Applying VIVACE to PESOA 100

4.3.4 Summary of the Evaluation 102

4.4 Discussion . 104

4.5 Comparison with Other Characterizations 109

4.6 Conclusions . 110

5 Variability Management in Process Families through Change
Patterns 113

5.1 Change Patterns Derivation 114

5.2 CP1: Insert Configurable Region 116

5.3 CP2: Delete Configurable Region 119

5.4 CP3: Insert Configuration Alternative in a Configurable
Region . 121

5.5 CP4: Delete Configuration Alternative from a Configur-
able Region . 122

5.6 CP5: Insert Configuration Context Condition of a Con-
figuration Alternative 124

5.7 CP6: Delete Configuration Context Condition of a Con-
figuration Alternative 125

5.8 CP7: Modify Configuration Context Condition of a Con-
figuration Alternative 126

5.9 CP8: Insert Configuration Constraint Between Config-
uration Alternatives . 127

5.10 CP9: Delete Configuration Constraint Between Config-
uration Alternatives . 128

5.11 CP10: Modify Configurable Region Resolution Time . . 129

5.12 Discussion . 129

5.13 Conclusions . 131

6 Putting CP4PF into practice 133

6.1 Context . 134

6.2 Research Questions . 137

6.3 Case Selection and Data Collection 138

6.4 Results . 145

6.5 Discussion . 148

6.6 Validity . 150

6.7 Conclusions . 151

7 Validation of the proposal with PAIS engineers 153

7.1 Research Questions . 154

7.2 Subject Selection . 155

7.3 Validation Design . 155

7.4 Data Collection Procedure 157

7.5 Results . 160

7.6 Discussion . 163

7.7 Validity . 167

7.8 Conclusions . 167

8 Conclusions and Future Work 169

8.1 Contributions . 170

8.2 Publications . 171

8.2.1 Main publications 171

8.2.2 Other publications 174

8.3 Research Collaborations 176

8.4 Future work . 177

Bibliography 179

CONTENT OF THE THESIS xvii

Appendices 201

A Check-in Process 203

B Procedure of the Systematic Study on Process Variab-
ility 207

B.1 Research Questions Formulation 208

B.2 Search String . 209

B.3 Data Source Selection 210

B.4 Inclusion and Exclusion Criteria 211

B.5 Quality Assessment . 213

B.6 Study Selection . 213

B.7 Data Extraction Strategy 216

B.8 Data Analysis . 218

B.9 Statistics of the Primary Studies 219

B.10 Threats of Validity . 221

B.11 Comparison with other Reviews 223

C Material Used in the Validation with PAIS engineers 225

C.1 Demographic Survey . 225

C.2 Material Provided for the Tasks 228

C.2.1 Instructions for the validation 228

C.2.2 Basic training . 229

C.2.3 Familiarization task 1 231

C.2.4 Familiarization task 2 233

C.2.5 Modeling task 1 without CP4PF 235

C.2.6 Modeling task 2 with CP4PF 238

D Cheetah Experimental Platform 241

D.1 Design of CEP . 241

D.2 Extension of CEP . 242

xviii CONTENT OF THE THESIS

D.3 Analysis in CEP . 243

List of Figures

1.1 Configurable process model of the check-in process in C-
EPC . 4

1.2 Design methodology cycle 10

2.1 Research areas involved in this thesis 16

2.2 Process metamodel adopted from [BPDM, 2014] 18

2.3 Business process lifecycle 19

2.4 Main concepts of software product lines 22

2.5 Generic feature model 24

2.6 Set of organizational patterns 26

2.7 Set of analysis patterns 31

2.8 Analysis patterns: Accountability - Party pattern 32

2.9 Set of design patterns 33

2.10 Design patterns: Structural - Facade pattern 34

3.1 Research areas involved in this thesis and their intersect-
ing subareas . 36

3.2 From process family definition to process variant enactment 39

3.3 Single, multiple, and option patterns 44

xx LIST OF FIGURES

3.4 Primitive actions and patterns for evolving event-based
systems . 45

3.5 Overview of existing control flow patterns 48

3.6 Overview of existing workflow data patterns 49

3.7 Overview of existing workflow resource patterns 51

3.8 Overview of existing time patterns 53

3.9 Overview of existing exception handling patterns 55

3.10 Overview of existing adaptation patterns 57

3.11 Overview of existing patterns for changes in predefined
regions . 59

4.1 The VIVACE framework 71

4.2 Distribution of studies S1-S34 according to the process
modeling language used 72

4.3 Distribution of studies S1-S34 according to the process
variability modeling technique used 74

4.4 Distribution of studies S1-S34 according to the single and
multi-artifact method used 75

4.5 Variability-specific language constructs and studies sup-
porting them . 80

4.6 Distribution of studies S1-S34 according to the process
perspectives covered . 80

4.7 Downloading links of available tools 82

4.8 Example of configuration techniques 85

4.9 Configuring a specific region of a process variant at en-
actment time . 87

4.10 Dynamically re-configuring an instance of a process variant 87

4.11 Versioning of a configurable process model 89

4.12 Propagating changes between configured process variants 90

4.13 Variability support features and studies supporting them 91

LIST OF FIGURES xxi

4.14 Methods applied to empirically evaluate process variab-
ility approaches . 92

4.15 Configurable process model of the check-in process (in
C-EPC notation) . 96

4.16 Provop model of the check-in process 99

4.17 PESOA model of the check-in process 101

4.18 VIVACE framework applied to three selected approaches 103

5.1 CP1: Design choice 1 implemented in C-EPC 117

5.2 CP1: Design choice 2 implemented in C-EPC 118

5.3 CP1: Design choice 3 implemented in C-EPC 118

5.4 CP2: Design choice 1 implemented in C-EPC 120

5.5 CP2: Design choice 2 implemented in C-EPC 120

5.6 CP2: Design choice 3 implemented in C-EPC 121

5.7 CP3 implemented in C-EPC 122

5.8 CP4 implemented in C-EPC 123

5.9 CP5 implemented in C-EPC 124

5.10 CP6 implemented in C-EPC 125

5.11 CP7 implemented in C-EPC 126

5.12 CP8 implemented in C-EPC 127

5.13 CP9 implemented in C-EPC 128

5.14 CP10 implemented in C-EPC 130

5.15 Application dependence graph between CP4PF 131

6.1 Example of techniques extracted from a safety standard 135

6.2 Excerpt of the SafetyMet metamodel (adapted from [de la
Vara & Panesar-Walawege, 2013]) 136

6.3 C-EPC model of the techniques of Figure 6.1 and the
associated questionnaire and constraints 140

6.4 BPMN model of the techniques of Figure 6.1 142

6.5 SafetyMet model of the techniques of Figure 6.1 144

xxii LIST OF FIGURES

6.6 Summary of the results for representing the table of Fig-
ure 6.1 . 146

6.7 Summary of the results for creating the models repres-
enting the IEC 61508-3:1198 standard 147

6.8 Differences between the IEC 61508-3:1998 and IEC 61508-
3:2010 versions . 147

6.9 Summary of the results for evolving the created models 148

6.10 Synthesis of the results of the case study 148

7.1 Subject’s demographics 156

7.2 Distribution of subjects and summary of the demographic
results for G1 and G2 157

7.3 Data collection procedure 158

7.4 Excerpt of the transcriptions 159

7.5 Results of the transcription coding (RQ1) 161

7.6 Results for the mental effort (RQ2) 162

7.7 Results for the duration (RQ3) 163

7.8 Results for the perceived usefulness (RQ4) 164

7.9 Results for the perceived ease of use (RQ4) 164

A.1 Variants of the check-in process (1) 205

A.2 Variants of the check-in process (2) 206

B.1 Stages of the study selection process 214

B.2 Overview of the Excel sheet for the general information
table . 217

B.3 Data extraction summary 219

B.4 Distribution of primary studies by publication year . . . 220

B.5 Distribution of primary studies by publication venue . . 220

B.6 List of publication venues 222

B.7 Comparison of related studies 223

LIST OF FIGURES xxiii

C.1 Example of a configurable process model 230

C.2 Source configurable process model for the familiarization
task 1 . 232

C.3 Target configurable process model for the familiarization
task 1 . 232

C.4 Source configurable process model for the familiarization
task 2 . 234

C.5 Target configurable process model for the familiarization
task 2 . 234

C.6 Source configurable process model for modeling task 1 . 236

C.7 Target configurable process model for modeling task 1 . 237

C.8 Source configurable process model for modeling task 2 . 239

C.9 Target configurable process model for modeling task 2 . 240

D.1 Process followed in the validation with PAIS engineers . 242

D.2 Screeshot of the implemented editor 243

D.3 Screeshot of the step-by-step records 244

xxiv LIST OF FIGURES

List of Tables

3.1 Summary of the change patterns for business processes . 61

4.1 Final list of primary studies 69

5.1 Change patterns for process families 114

8.1 Relation between the contributions and the publications
achieved . 173

B.1 Final list of primary studies 215

xxvi LIST OF TABLES

1
Introduction

Information Systems (ISs) constitute software systems that deal with
a large number of business requirements. These requirements can be

referred either to functional features that describe the core functional-
ities of the system, and to non-functional features such as performance
or scalability. This amount of requirements has driven organizations
to describe and manage ISs in a more structured and systematic way
[Sharp & McDermott, 2001], which has lead towards a new generation of
ISs named Process-Aware Information Systems (PAISs) [Dumas et al.,
2005].

Generally, a PAIS constitutes an IS that manages, analyzes, and
executes operational processes which involve requirements, people, ap-
plications services, and business data [Dumas et al., 2005]. Examples of
PAISs include workflow management systems (e.g., ADEPT2 [Reichert
et al., 2005], YAWL [van der Aalst & ter Hofstede, 2003]), enterprise
resource planning systems (e.g., SAP R/3 [SAP-Business-Suite, 1992]),

2 Introduction

case management systems (e.g., FLOWer [Dumas et al., 2005], and
PHILharmonicFlows [Künzle & Reichert, 2011]). As opposed to tra-
ditional ISs, a PAIS separates the process logic from the executed code
by representing this logic in terms of a process model [Weske, 2007]. In
particular, process models describe the business processes at a rather
high level of abstraction providing the schema for the execution of the
system [Weske, 2007]. In general, process models are embedded in a
process lifecycle comprising analysis, design, configuration, enactment,
diagnosis, and evolution [Weske, 2007]. In addition, they may serve
as a basis for facilitating communication between stakeholders, process
analysis, simulation, and visualization [Reichert & Weber, 2012].

However, in today’s dynamic business world, the success of an or-
ganization increasingly depends on its ability to adapt to changes in
its environment [Reichert & Weber, 2012]. Examples of these changes
refer to new emerging regulations, market evolution, changes in cus-
tomer behavior, and process improvement. This has led organizations
to accumulate related process models in order to support these changes
[Dijkman et al., 2012]. Related process models are typically referred as
process model variants (process variants for short) [Reichert & Weber,
2012]. Process variants pursue the same or a similar business objective
(e.g., product sale) and can have activities (and their ordering con-
straints) in common. Nevertheless, process variants differ in their ap-
plication context (e.g., regulations to comply with in different countries
or the type of product to deliver) [Reichert & Weber, 2012; Dijkman
et al., 2012; Ayora et al., 2015]. Some activities may be relevant only
for certain application contexts. All the context factors causing process
variability are typically known at design time [Reichert & Weber, 2012].

A collection of related process variants is denoted as a process family.
In practice, a process family may comprise hundreds or thousands of
process variants [Reichert & Weber, 2012]. In the automotive industry,
for example, we found a process family dealing with vehicle repair and
maintenance in a garage, which comprises more than 900 process vari-
ants [Hallerbach et al., 2010a]. These process variants share common-
alities (i.e., process fragments shared by all process variants), but also
show country- and vehicle-specific variations. In turn, [Li, 2010] reports

1.1 Motivation 3

on more than 90 process variants for handling medical examinations in a
hospital. Finally, consider check-in procedures at airports [Ayora et al.,
2015]. Even though this process is similar irrespective of the airport the
passenger departs from and the airline flying with, numerous variations
exist depending on distinguished factors such as the type of passenger
(e.g., unaccompanied minors, handicapped people, or people carrying a
pet), the type of check-in (e.g., online or at the counter), or the type
of luggage (e.g., fragile or overweight). The complete description of the
check-in process can be found in Appendix A. We will use this process
as running example throughout the thesis.

All these processes illustrate the variability that a process family
may have due to its heterogeneous application context. Trying to model
and maintain each process variant of such process families from scratch
would be too cumbersome and costly for organizations [Weber et al.,
2011]. Modeling properly the variability involved in process families
constitutes, therefore, a fundamental challenge for every PAIS. In this
context, this thesis attempts to help in this problem.

The rest of the chapter is organized as follows. Section 1.1 explains
the purpose of this thesis. Section 1.2 details the problems that this
thesis addresses. Section 1.3 introduces the goals defined for this thesis.
Section 1.4 introduces the research methodology that has been followed
in the development of the thesis. Section 1.5 explains the context in
which this thesis has been performed. Finally, Section 1.6 gives an
overview of the structure of this document.

1.1 Motivation

In order to efficiently and effectively manage process families, organ-
izations have been interested in modeling (capturing) common pro-
cess knowledge only once and making it reusable in terms of a ref-
erence process model (reference process for short) [Reichert & Weber,
2012]. Along this trend, a multitude of reference processes have been
developed in various domains. Examples include ITIL processes for
IT service management [Hochstein et al., 2005], SAP reference pro-

4 Introduction

cesses for organization resource management [Mendling et al., 2008],
and medical guidelines for patient treatment [Lenz & Reichert, 2007].
Usually, these reference processes are described in a graphical way using
a process modeling language like Business Process Modeling Notation
(BPMN) [BPMN, 2011] or Event-driven Process Chain (EPC) [ARIS,
1990]. Such languages include collections of primitives (e.g., activities
and gateways) to represent reference processes but they do not provide
proper support for explicitly describing process variations [Reinhartz-
Berger et al., 2010; de la Vara et al., 2010].

Motivated by this shortcoming, several approaches enabling pro-
cess variability along the process lifecycle have been developed. That
is, approaches allowing for the analysis, design, configuration, enact-
ment, diagnosis, and evolution of process families [Puhlmann et al.,
2006; Rosemann & van der Aalst, 2007; Hallerbach et al., 2010a]. In
these approaches, process variants are defined in terms of a configurable
process model, which represents a complete process family.1 By treat-
ing variability as a first class citizen, these configurable process models
contribute to avoiding model redundancies, fostering model reusability,
and reducing modeling efforts [Hallerbach et al., 2010a]. For example,
Figure 1.1 illustrates a configurable process model for the the check-in
process (cf. Appendix A). This configurable model is represented in
terms of the Configurable EPC (C-EPC) approach [Gottschalk et al.,
2007].

However, modeling and evolving process families and ensuring their
correctness can be very challenging due to their size and complexity.
PAIS engineers need assistance for such purpose [Reichert & Weber,
2012; Ayora et al., 2015]. Once an approach is selected (e.g., C-EPC),
PAIS engineers have to manually model and manage all the elements of
a configurable process model one by one and ensure its correctness by
their own [Hallerbach et al., 2010a]. This can be tedious and error-prone
especially when a configurable process model represents a process family
comprising a high number of process variants [Hallerbach et al., 2010a;
Reichert & Weber, 2012]. For example, PAIS engineers need to be aware

1We use the terms configurable process model and process family synonymously
throughout the thesis.

1.1 Motivation 5

X
S

E
Q

1
a

SEQ1b

1 2

S
E

Q
3

a
S

E
Q

3
b

3 4

Configuration Requirement 2:

(XOR1 = SEQ1b) ˅ (XOR1 =

SEQ1c)  OR3 = AND

Identify

passenger
Assign seat

for UM

Fill in UM

form

Provide info about

accommodation

Print duplicated boarding

card for the relative

S
E

Q
1

c

Drop off bulk

luggage

Configuration Requirement 1:

Fill UM form = ‘ON’ 

XOR1 = SEQ1b

Localize assistance to

accompany passenger

5 6

S
E

Q
5

a
S

E
Q

5
b

Configuration Requirement 3:

XOR1 = SEQ1c 

XOR5 = SEQ5b

Assign seat for

handicapped

Assign seat

Configuration Requirement 4:

Fill UM form = ‘ON’ 

XOR5 = SEQ5a

X

Fill in

ESTA form
˅

X

Configurable

function

Configurable

XOR connector

Configurable

OR connector
X˅ Configuration

Requirement

Configurable region 1

Configurable region 2

Conf. alternative

Print boarding

card

Pay excess

fee
˅

X

Drop off regular

luggage

Configuration Requirement 5:

“Provide info about accommodation” = ON 

“Fill in ESTA form” = ON

Check-in

available

Boarding

Event

Figure 1.1: Configurable process model of the check-in process in C-EPC

of each variation and dependence of each process variant. However,
there is a lack of efficient methods to deal with process variability in an
explicit manner, especially at a level of abstraction higher than the one
provided by the existing process variability approaches [Ayora et al.,
2015].

Methods for explicitly dealing with process variability cannot be
defined arbitrarily [Ayora et al., 2013]. How process variability is rep-
resented becomes critical. That means, for example, to identify what
language constructs are commonly used to capture variability in a con-
figurable process model [Ayora et al., 2013]. However, although sev-
eral attempts to describe and characterize process variability modeling
have been made (e.g., [Mechrez & Reinhartz-Berger, 2014; Aiello et al.,
2010]), none of them identify these constructs. Further, the imple-
mentation and application of these methods are crucial factors as well
[Reichert & Weber, 2012]. For example, if these methods are defined
purely in a theoretical way, their realization and materialization cannot
be proved. In addition, if their application is too time-consuming and
difficult for modeling large configurable process models, they will not

6 Introduction

be suitable. Thus, in order to prove their reality and effectiveness, such
methods should be implemented and applied in real scenarios to ana-
lyze their suitability. In addition, the way PAIS engineers interact with
these methods is also a relevant factor for determining their successful
adoption. If PAIS engineers do not have a positive attitude towards
these methods and are not willing to use them, their adoption will be
hindered as well.

The use of modeling patterns (i.e., reusable solutions to a com-
monly occurring problem [Weber et al., 2008]) is a promising way to
address these issues. For example, a language-independent and em-
pirically grounded set of adaptation patterns has been proposed for
the modeling and management of (individual) process models [Weber
et al., 2008]. Adaptation patterns not only allow creating and modify-
ing process models at a high level of abstraction, fostering model qual-
ity by ensuring correctness-by-construction, but also provide system-
atic means for realizing change operations in a process models [Döhring
et al., 2011]. Further, adaptation patterns have served as basis for
implementing changes in different stages of the process lifecycle; e.g.,
process model creation [Gschwind et al., 2008], process configuration
[Hallerbach et al., 2010a], process instance change [Dadam & Reichert,
2009; Marrella et al., 2011], process model evolution [Dadam & Reichert,
2009; Küster et al., 2010; Zhao & Liu, 2013], model refactoring [Weber
et al., 2011], change reuse [Aghakasiri & Mirian-Hosseinabadi, 2009],
model comparison [Küster et al., 2008], and change analysis [Günther
et al., 2006]. However, although adaptation patterns are well suited
for creating and managing individual process models, they are not suf-
ficient to cope with process variability in an explicit manner [Ayora
et al., 2012a]. They are not accurate for dealing with the specific com-
plexity that process variability introduces [Ayora et al., 2013].

1.2 Problem Statement

The modeling of process variability is not a closed research topic. The
work presented in this thesis attempts to enhance variability mod-

1.3 Thesis Goals 7

eling in PAISs through change patterns. For such purpose, we
state the following research questions:

RQ1. What language constructs are used to model variability in pro-
cess families?

RQ2. What change patterns are needed to model variability in process
families?

RQ3. How can the change patterns for process families be implemen-
ted?

RQ4. To what extent do the change patterns for process families im-
prove the modeling of configurable process models?

These research questions are analyzed and answered in the following
sections.

1.3 Thesis Goals

As stated above, the main goal of this thesis is to enhance variability
modeling in PAISs through change patterns. This goal has been divided
in different sub-goals in order to answer the presented research questions
above. In the following, we summarize these sub-goals.

First of all, regarding research question 1, one of the sub-goals of
this thesis is to study in-depth the process variability domain in order to
identify how process variability is actually modeled. More precisely, we
want to systematically analyze existing process variability approaches
regarding their expressiveness with respect to process variability model-
ing as well as their support along the process lifecycle. In this context,
we can identify the language constructs that are used to represent pro-
cess variability. In addition, based on the empirical evidence provided
by this study, we derive the VIVACE framework. Besides the iden-
tified variability-specific language constructs, this framework also com-
prises a core set of features fostering process variability. Thus, VIVACE

8 Introduction

provides a characterization of process variability. In addition, VIVACE
shall also allow for the systematic assessment and comparison of ex-
isting process variability approaches. Finally, VIVACE enables PAIS
engineers to select for example that variability approach meeting their
requirements best as well as help them in dealing with PAISs support-
ing process variability (e.g., to model or implement PAIS supporting
process variability).

Regarding research question 2, another sub-goal of this thesis is
to provide a set of generic patterns specifically tailored for modeling
process variability. For such purpose, our change patterns for process
families (CP4PF) are derived based on the variability-specific language
constructs obtained from the previous sub-goal of the thesis. More con-
cretely, CP4PF allow inserting, deleting, and modifying such constructs.
In addition, our CP4PF are intended to ensure process family correct-
ness, speed up the modeling process, and reduce the effort needed for
such purpose by providing systematic means for introducing and delet-
ing modeling elements.

In turn, regarding research question 3 of this thesis, we want to
illustrate how CP4PF can be realized. We do not only provide a theor-
etical and generic definition of the defined patterns, but also show how
they can be implemented in a well-established approach for modeling
configurable process models (i.e., Configurable EPC (C-EPC) [Gott-
schalk et al., 2007]). This implementation allows us to show that the
proposed patterns support process variability management and can en-
sure process family correctness by inserting and deleting automatically
modeling elements. For example, a pattern can facilitate the insertion
of the function Drop off bulk luggage in the model of Figure 1.1. In par-
ticular, a PAIS engineer would indicate the position of the function in
the model, and the implementation of the pattern would automatically
take all the rest of necessary actions for correct insertion.

Finally, research question 4 is aimed to show how CP4PF im-
prove the modeling of process variability in configurable process models.
First, in order to provide evidence that CP4PF are a feasible approach
for modeling variability, we conduct a case study with a safety standard,
which represents a process family with a high degree of variability. In

1.4 Research Methodology 9

addition, in this case study we prove that CP4PF provide a consider-
able effort reduction needed for creating a configurable process model
in comparison with three state-of-the-art approaches. Thus, configur-
able process models are modeled more efficiently when using CP4PF.
Second, to complement the validation, we explore how PAIS engineers
experience the application of CP4PF. More precisely, we implement the
patterns in the Cheetah Experimental Platform [Pinggera et al., 2010]
and study how PAIS engineers apply CP4PF, what is the impact of
pattern application, and how PAIS engineers perceive pattern useful-
ness and ease of use. If PAIS engineers do not have a positive attitude
toward CP4PF, their adoption will be hindered.

This thesis can be considered as a reference for implementing PAISs
being able to effectively modeling process variability. First, we expect
the VIVACE framework to be applied to various process variability
approaches as well as related tools in order to assess their suitability
with respect to process variability modeling. In this vein, the framework
is expected to support organizations and PAIS engineers in deciding
which process variability approach suits best to their needs. Second,
the CP4PF are intended to be used for the modeling of process families.
More precisely, since change patterns are based on the set of variability-
specific language constructs, our CP4PF may be used, for instance, for
creating new configurable process models or evolving existing ones. In
addition, the results of the case study show that CP4PF are able to
reduce the effort needed for modeling high-variable process families.
Finally, PAIS engineers also find advantages in using CP4PF and have
a positive attitude toward adopting them, which confirms the benefits
of our patterns.

1.4 Research Methodology

In order to perform the work of this thesis, we have carried out a re-
search project following the design methodology described in [Vaishnavi
& Kuechler, 2004]. This design methodology was proposed for perform-
ing research in information systems. It involves the analysis of the use

10 Introduction

and performance of designed artifacts to understand, explain and, very
frequently, to improve on the behavior of aspects of information sys-
tems. Examples of such artifacts are system design methodologies and
languages. In the case of this thesis, the designed artifacts are the char-
acterization of process variability (i.e., the VIVACE framework) as well
as the change patterns for process families (CP4PF).

The design methodology consists of a cycle of 5 process stages: (1)
awareness of the problem, (2) suggestion, (3) development, (4) evalu-
ation, and (5) conclusion (cf. Fig 1.2). In the following, we describe
each stage in detail.

Awareness of
the problem

Suggestion

Development

Evaluation

Conclusion

Stages Outputs

Proposal

Tentative
design

Artifact

Measurements

Facts learned

Behavior for
further

research

Knowledge
contribution

Circunscription

Figure 1.2: Design methodology cycle

Awareness of the problem: The awareness of a problem may come
from multiple sources (e.g., new developments in industry or in a ref-
erence discipline, reading in an allied discipline). The output of this
stage is a proposal, formal or informal, for a new research effort. In this
thesis, the outputs of this stage refer to: (1) problem motivation, (2)
research questions, and (3) review of the state of the art.

1.4 Research Methodology 11

Suggestion: This stage follows immediately behind the proposal and
is intimately connected with it. The output of this stage is the tentative
design, which is an integral part of the proposal and must be targeted
at it. This stage is an essentially creative step wherein a new artifact is
envisioned based on a novel configuration of either existing or new and
existing elements. In the context of this thesis, the outputs of this stage
refer to: (1) thesis goals and (2) backgrounds of the proposed solution.
Development: The tentative design is further developed and imple-
mented in this stage in order to produce an artifact. Implementa-
tion techniques will vary depending on the artifact to be constructed.
The implementation itself may not involve novelty beyond the state-of-
practice for the given artifact; the novelty is primarily in the design,
not in the construction of the artifact. In the context of the thesis, the
outputs of this stage refer to: (1) the VIVACE framework and (2) the
definition and implementation of CP4PF.
Evaluation: Once the artifact has been constructed, it is evaluated
according to criteria that are always implicit and frequently made ex-
plicit in the proposal. This stage contains an analytic activity in which
measurements are usually taken about the behavior of the artifact. The
results of the evaluation stage and additional information gained in the
construction and running of the artifact are brought together and fed
back to another round of suggestion (cf. circumscription arrow in Fig-
ure 1.2). In the context of this thesis, the outputs of this stage refer to:
(1) the case study and (2) the validation with PAIS engineers.
Conclusion: This stage constitutes the end of a research. The results
of this research are not only documented at this stage, but the know-
ledge gained is categorized as either facts learned or as behavior that
serves as basis of further research. Awareness of the problem changes
after conclusion thanks to the gained knowledge (cf. knowledge contri-
bution arrow in Figure 1.2). In the context of this thesis, the outputs of
this stage refer to: (1) contributions, (2) future work, (3) publications,
and (4) the thesis itself.

12 Introduction

1.5 Thesis Context

This thesis has been developed in the context of the research cen-
ter Centro de Investigación en Métodos de Producción de Software
(PROS)2 of the Universitat Politècnica de València3. The work of this
thesis has been developed in the context of the following research pro-
jects:

EVERYWARE: Construcción de Software Adaptativo para la Integ-
ración de Personas, Servicios y Cosas usando Modelos en Tiempo
de Ejecución. CICYT project referenced as TIN-2010-18011.

The goal of EVERYWARE is to develop information systems that
combine a set of available services (offered by an environment) to
support the functionality required by end users. In many cases,
this functionality is variable depending on the needs of the users.
In this project, our CP4PF help to face the modeling of business
processes reflecting this changing functionality.

SMART ADAPT: Desarrollo de Software Adaptativo en un Mundo
Inteligente. Retos Tecnológicos en el ámbito de la Ingenieŕıa Di-
rigida por Modelos. MINECO project referenced as TIN2013-
42981-P.

One of the challenges of SMART ADAPT is to provide a frame-
work to allow the self-evolution of models. In this context, the
use of CP4PF contributes to ensuring the automatic evolution of
these models. In addition, CP4PF guarantee the proper evolution
of the models by ensuring model correctness.

2www.pros.upv.es
3www.upv.es

www.pros.upv.es
www.upv.es

1.6 Thesis Structure 13

1.6 Thesis Structure

The remainder of this thesis is organized as follows:

Chapter 2: introduces the main research areas that are related to this
work in order to provide a basic background for understanding
the overall thesis.

Chapter 3: reviews the most relevant existing works related to the
thesis. Their analysis is necessary to determine the current state
of research and practice.

Chapter 4: presents the VIVACE framework. VIVACE is resulted
from an systematic study of the process variability domain. Thus,
it constitutes a complete process variability characterization. In
addition, VIVACE enables for the systematic assessment and com-
parison of process variability approaches.

Chapter 5: presents the set of change patterns for modeling of process
families (CP4PF). In particular, CP4PF are described, illustrated,
and provided with implementation details.

Chapter 6: reports how we put CP4PF into practice in a real and
industrial scenario. It describes a case study performed with a
safety standard as a feasibility proof of CP4PF. In addition, we
measure the effort needed to apply the patterns in a real scenario,
which is compare with three state-of-the-art approaches in order
to determine the advantages of using CP4PF.

Chapter 7: details the validation with PAIS engineers in order to ana-
lyze the impact of CP4PF as well as how PAIS engineers experi-
ence their application.

Chapter 8: summarizes the main conclusions that can be drawn as a
result of the development of this thesis. It describes the contri-
butions that have been made, discusses the impact of the thesis,
and presents the future work that could be performed.

14 Introduction

2
Background

This thesis deals with the enhancement of process variability mod-
eling through the use of change patterns. In order to describe its

specific domain, the thesis is placed in the intersection of three research
areas: Business Process Modeling, Software Variability Modeling, and
Software Patterns (cf. Figure 2.1). That is, this thesis relies on the
different concepts and techniques from these areas. In this chapter, we
introduce these concepts and techniques in order to clarify the found-
ations in which our work relies on and provide a basic background for
understanding the overall thesis.

The rest of the chapter is organized as follows. Section 2.1 introduces
the concepts that support business processes modeling. In turn, Section
2.2 describes the main concepts of software variability modeling. Section
2.3 outlines the pattern-based techniques used for the development of
software. Finally, Section 2.4 concludes the chapter.

16 Background

Business
Process

Modeling

Software
Variability
Modeling

Thesis
work

Software
Patterns

Figure 2.1: Research areas involved in this thesis

2.1 Business Process Modeling

Nowadays, the modeling of business processes is a very common practice
in organizations. It plays a major role both in industry and academia,
helping organizations to be competitive and to achieve their business
goals [Indulska et al., 2009].

2.1 Business Process Modeling 17

According to [Weske, 2007], a business process is defined as “a set of
activities performed in coordination in an organizational and technical
environment”. Analyzing this definition, a business process defines what
(activities) shall be done, how it shall be done (coordination), and by
whom (organizational and technical environment). In this context, busi-
ness process models (also named process schemas) constitute the main
artifacts for representing the respective business processes. A business
process model (process model for short) is used within organizations for
communication and learning purposes, for decision support about pro-
cess development and design, for control and decision support during
process execution, and for analysis of information technology support
[Aguilar-Savén, 2004].

Basically, process models are defined from the basic primitives from
the metamodel depicted in Figure 2.2.1 These primitives allow for
modeling the functional, behavioral, organizational, informational, tem-
poral, and operational perspectives of a business process [Curtis et al.,
1992; Melao & Pidd, 2000; Korherr, 2008; Reichert & Weber, 2012;
Jablonski & Bussler, 1996; Lanz et al., 2010, 2012].

• The functional perspective specifies the decomposition of a busi-
ness process into units of work, i.e., it represents the activities
that may have to be performed to reach a particular business ob-
jective [Curtis et al., 1992]. An atomic activity is associated with
a single action, whereas a complex activity refers to a sub-process
or, more precisely, a sub-process model. In Figure 2.2, this per-
spective is represented by entities activity, atomic activity, and
complex activity.

• The behavioral perspective captures the behavior of a process model
and hence reflects the control flow between its activities. The lat-
ter defines the order of the activities as well as the constraints for
their execution. This perspective is represented by entities control
connector (i.e., gateway) and control edge (i.e., arrows) in Figure
2.2.

1This metamodel has been adopted from [BPDM, 2014].

18 Background

Process

Model

Node

Control

Edge

Event Activity

Control

Connector

Complex

Activity

Atomic

Activity

contains

contains

is a

is ais a

is a is a

Operation

contains

Role

executes

Data

Object

output

input

connect

describes

Organizational

perspective

Operational

perspective

Informational

perspective

Functional

perspective

Behavioral

perspective

Temporal

perspective

Figure 2.2: Process metamodel adopted from [BPDM, 2014]

• The organizational perspective represents the different actors or
roles involved in a process model that are in charge of execut-
ing particular process activities (i.e., humans or systems). This
perspective is represented by entity role in Figure 2.2.

• The informational perspective covers data and data flow, i.e., it
represents the informational entities (e.g., data objects) consumed
(i.e., used as input for activity execution) or produced (i.e., as out-
put resulting from activity execution) during process execution.
This perspective is represented by entity data object in Figure 2.2.

• The temporal perspective covers temporal constraints restricting
the execution and scheduling of activities; e.g., the time an activ-
ity may be started or completed, a message arrived, a deadline
expired, or an error occurred. This perspective is represented by
entity event in Figure 2.2.

2.1 Business Process Modeling 19

• The operational perspective refers to the implementation of atomic
process activities, i.e., the application services (e.g., web services,
electronic user forms) to be invoked when these activities are star-
ted. For a particular atomic activity, different implementations
may exist. At enactment time, one of them is then dynamically
selected and bound to the execution of this activity. This per-
spective is represented by entity operation in Figure 2.2.

In general, process models are embedded in a process lifecycle com-
prising different phases (cf. Figure 2.3) [Weske, 2007; Bridgeland &
Zahavi, 2008; Aguilar-Saven, 2004]. These phases include: Analysis &
Design, Configuration, Enactment, Diagnosis, and Evolution.

Figure 2.3: Business process lifecycle

During the analysis and design phase, based on domain require-
ments, relevant (emerging or existing) process information is gathered,
analyzed, consolidated, and represented in terms of process models.
These models are also validated and verified based on various techniques
(e.g., simulation, correctness checks). In turn, during the configuration
phase, the process model is enhanced with technical information that
facilitates its execution (e.g., information about the enactment system).
Once this configuration is completed, process instances can be enacted.

20 Background

A process instance represents a concrete case in the operational busi-
ness of an organization [Weske, 2007]. Thus, the process enactment
phase encompasses the actual execution of the business process. Mon-
itoring techniques are used in this phase in order to gather relevant
information and data about the process instances’ enactment. Later, in
the diagnosis phase, this gathered information is analyzed in order to
identify problems and to find process aspects that can be improved (e.g.,
bottlenecks). Finally, the identified improvements as well as emerging
requirements (e.g., changes in the business context) can lead to the evol-
ution of the process models. This may also entail the ability to change
process instances accordingly (i.e., the ones being executed). Process
evolution may be incremental (i.e., only requiring small changes of the
implemented process) as for continuous process improvements, or be re-
volutionary (i.e., requiring radical changes) as in the context of process
innovation or process re-engineering [Reichert & Weber, 2012].

There are two types of process models: (1) business-oriented process
models and (2) workflow models [La Rosa, 2009]. Business-oriented pro-
cess models are high-level models used for analyzing the domain require-
ments at the early stages of the lifecycle (i.e., the analysis and configura-
tion stages). In general, these models provide a basis for communication
among relevant stakeholders, and as such they must be unambiguous
as well as intuitive. In turn, workflow models are designed for process
automation. They are typically obtained by refining business-oriented
process models with information that is relevant for implementation.
Their execution is supported by a workflow management system.

Both types of process models are created by means of a graphical
notation named business process modeling language. For example, for
creating business-oriented process models, the most representative lan-
guage are: Event-driven Process Chains (EPC) [SAP-Business-Suite,
1992], UML Activity Diagrams [UML, 2007], and Business Process
Modeling Notation (BPMN) [BPMN, 2011]. In turn, for workflow
models, the main languages are: the Web Services Business Process
Execution Language (WS-BPEL or BPEL) [WS-BPEL, 2004] and Yet
Another Workflow Language (YAWL) [van der Aalst & ter Hofstede,
2003]. Some of these languages have appeared in academia and adop-

2.2 Software Variability Modeling 21

ted later in industry (e.g., BPMN), whereas others have been initially
defined for industrial purposes and improved by means of academic re-
search (e.g., EPC). However, the common characteristics of all these
languages is their capability for representing the sequence of activities
of a business process, the involved stakeholders and the data or messages
interchanged between them [La Rosa, 2009]. Since these languages have
been developed with specific purposes, a “universal” language for busi-
ness process modeling does not exist. Only BPMN has been standard-
ized by the OMG consortium [OMG, 1989] since it contains notational
information and execution semantics (e.g., BPMN 2.0).

2.2 Software Variability Modeling

During the last decade, variability modeling has become a hot topic
[Schmid & John, 2004; Cetina et al., 2009; Alférez et al., 2014]. In
the context of information systems, variability modeling is referred to
representing the capability to change of a software system [Geyer &
Becker, 2002]. One of the main interests on variability modeling comes
from the field of Software Product Lines (SPLs) [Pohl et al., 2005].

SPLs encompass the creation and management of similar software
products (products’ families) for a particular domain. Most organiza-
tions build software within a few domains, repeatedly building system
variants within those domains. This is achieved by defining only once
the common product functionalities (i.e., shared by all family mem-
bers) and combining them with a set of variation points. A variation
point is an identifier of one or more locations in a product at which the
variation will occur [Pohl et al., 2005]. By explicitly defining variation
points, time, effort, cost and complexity of software creation and main-
tenance are reduced [Krueger, 2013].

In general, a SPL can be described in terms of four concepts (cf. Figure
2.4).

• Software asset inputs. A set of software assets (e.g., require-
ments, source code, test cases, and documentation) that can be

22 Background

Software asset
inputs

Production
mechanism
and process

Software product
outputs

Decision
model

Figure 2.4: Main concepts of software product lines

configured and composed in different ways in order to create all of
the products. To obtain the different products, assets may be op-
tional and also they can be configured in different ways to provide
different behavior.

• Decision model. Decisions describe optional and variable char-
acteristics for the products (i.e., variation points). Each product
is uniquely defined by its decisions.

• Production mechanism and process. A set of prescribed rules
is used for composing and configuring each product from the soft-
ware asset inputs, i.e., product decisions are used to determine
which software asset inputs are used and how they are configured.

• Software product outputs. The set of all products that can
be produced in a product line from the software assets inputs and
the existing decision model.

Three main processes are involved in SPLs: Domain Engineering

2.2 Software Variability Modeling 23

(DE), Application Engineering (AE) and Management [Bosch et al.,
2001]. During DE, the variability of a SPL is defined and common
and variable domain artifacts are developed (i.e., the decision model is
created). During AE, individual products are developed by selecting
and configuring shared artifacts and, where necessary, adding product-
specific extensions (i.e., the production mechanism and process is per-
formed). Finally, during management, organizational issues are handled
in order to obtain the products (e.g., by giving resources).

Recently, a number of methods and techniques for managing SPLs
have been defined [Bayer et al., 2006]. In this thesis, we highlight two of
them regarding their ability to model variability. The first one refers to
Software Configuration Management (SCM) [Pressman, 2001], a meth-
odology for controlling and managing a product family. Work on SCM
has led to models and languages to capture how a set of available options
impacts upon the way a software system is built from a set of assets.
These options conform the variable parts of the system. Examples of
SCM languages are the Adele Configuration Manager [Estublier & Cas-
allas, 1994] and the Proteus Configuration Language [Tryggeseth et al.,
1995]. The second method, and the most studied one, refers to feature
models [Schobbens et al., 2006]. These models are tree-structures used
to describe a set of products in terms of their features. A feature corres-
ponds to a logical unit of behavior or functionality by which different
products can be distinguished and defined (i.e., features represent vari-
ation points). It can be mandatory (the feature is always used in the
product) or optional (the feature can be used in the product). In addi-
tion, a feature can be bound to other features via inclusion and exclusion
constraints and it can be decomposed into a set of sub-features. The
limit of sub-features that a feature can have is determined by logical
relationships. The AND relationship indicates that all the sub-features
must be selected. In turn, the XOR relationship indicates that only
one sub-feature can be selected. Finally, the OR relationship indic-
ates that one or more sub-features can be selected. This OR can be
further specified with an [n..m] cardinality [Czarnecki & Antkiewicz,
2005], where n indicates the minimum and m indicates the maximum
number of allowed sub-features. In addition, it is possible to define the

24 Background

features that are included in the product by default. A configuration
of a feature model specifies then a valid scenario in terms of features
selected/deselected, i.e. a scenario that complies with the defined con-
straints. This configuration represents the configuration of the product
in the software product line. Figure 2.5 shows an example of a generic
feature model.

Feature 1

Feature 2 Feature 3

Feature 4 Feature 5 Feature 6 Feature 7

Feature 8 Feature 9 Feature 10 Feature 11 Feature 13 Feature 14

<<includes>>

<<excludes>>

[1..2]

[n..m]

Cardinalities OR XOR

<<includes>>

Constraints

Default feature<<excludes>>

Mandatory feature

Optional feature

Feature 12

Figure 2.5: Generic feature model

2.3 Software Patterns

Another actual hot topic in information systems refers to the use of pat-
terns for modeling software. Patterns were initially introduced in 1977
as an architectural (building) concept [Alexander et al., 1977]. But it
was in 1989 when patterns were applied for the first time for software de-
velopment [Fowler, 1997; Beck & Cunningham, 1987]. Since that year,
there has arisen several definitions of the term ’pattern’ [Martin, 2000;

2.3 Software Patterns 25

Riehle & Züllighoven, 1996; Appleton, 1997; Gabriel, 1996]. However,
in this thesis we consider the definition provided by Martin in [Martin,
2000] since it is the most commonly used. For Martin, a software pattern
is defined as a “general reusable solution to a commonly occurring prob-
lem within a given context”. These software patterns constitute common
practices in software development. In addition, software patterns need
to be based on empirical observations (i.e., being demonstrable in prac-
tice).

Depending on the abstraction level they refer [Fernandez, 1998],
patterns can be classified as:

• Organizational patterns, oriented to describe the structure of
an organization.

• Architectural patterns, oriented to define the architectural
structure of a system.

• Idioms, oriented to a given programming language.

• Analysis patterns, oriented to help in the conceptual modeling
of the system.

• Design patterns, oriented to describe design constructs while
designing the system.

2.3.1 Organizational patterns

Organizational patterns constitute solutions for describing structures
of relationship which help an organization to achieve its goals [Coplien
& Harrison, 2005]. These patterns are inspired by analyzing multiple
professional organizations and finding common structures in their social
networks [Coplien & Harrison, 2005]. Organizational patterns can be
divided into four groups (cf. Figure 2.6):

• Patterns for project management. They point to the initial design
of an organization.

26 Background

Project management

OP1: Community of Trust
OP2: Size the Schedule
OP3: Get On With It
OP4: Named Stable Bases
OP5: Incremental Integration
OP6: Private World
OP7: Build Prototypes
OP8: Take No Small Lips
OP9: Completion Headroom
OP10: Work Split
OP11: Recommitment Meeting
OP12: Work queue
OP13: Informal Labor Plan
OP14: Development Episode
OP15: Implied Requirements
OP16: Developer Controls Process
OP17: Work Flows Inward
OP18: Programming Episode
OP19: Someone Always Makes Progress
OP20: Team Per Task
OP21: Sacrifice One Person
OP22: Day Care
OP23: Nercenary Analyst
OP24: Interrupts Unjam Blocking
OP25: Don’t Interrupt an Interrupt

Organizational Patterns

Piecemeal Growth

OP26: Size the Organization
OP27: Phasing It In
OP28: Apprenticeship
OP29: Solo Virtuoso
OP30: Engage Customers
OP31: Surrogate Customer
OP32: Scenarios Define Problem
OP33: Fire Walls
OP34: Get Keeper
OP35: Self Selecting Team
OP36: Unity of Purpose
OP37: Team Pride
OP38: Skunk Works
OP39: Patron Role
OP40: Diverse Groups
OP41: Public Character
OP42: Matron Role
OP43: Holistic Diversity
OP44: Legend Role
OP45: Wise Fool
OP46: Domain Expertise in Roles
OP47: Subsystem by Skill
OP48: Moderate Truck Number
OP49: Compensate Success
OP50: Failed Project Wake
OP51: Developing In Pairs
OP52: Engage Quality Assurance
OP53: Application Design is Bounded by Test Design
OP54: Group Validation

Organizational style

OP55: Few Roles
OP56: Producer Roles
OP57: Producer in the Midle
OP58: Stable Roles
OP59: Divide and Conquer
OP60: Conway’s Law
OP61: Organization Follows Location
OP6: Organization Follows Market
OP63: Face to Face Before Working Remotely
OP64: Form Follows Function
OP65: Shaping Circulation Realms
OP66: Distribute Work Evenly
OP67: Responsibilities Engage
OP68: Hallway Chatter
OP69: Decouple Stages
OP70: Hub Spoke and Rim
OP71: Move Resposibilities
OP72: Upside Down Matrix Management
OP73: The Water Cooler
OP74: Three To Seven Helpers per Role
OP75: Coupling Decrease Latency

People and Code

OP76: Architect Controls Product
OP77: Architecture Team
OP78: Lock’em Up Together
OP79: Smoke Filled Room
OP80: Stand Up Meeting
OP81: Deploy Along the Grain
OP82: Architect Also Implements
OP83: Generics and Specifics
OP84: Standards Linking Locations
OP85: Code Ownership
OP86: Feature Assignment
OP87: Variation Behind Interface
OP88: Private Versioning
OP89: Loose Interfaces
OP90: Subclass per Team
OP91: Hierarchy of Factories
OP92: Parser Builder

Figure 2.6: Set of organizational patterns

• Patterns for the picemeal growth. They refer to the growth of an
organization once it is up and running.

2.3 Software Patterns 27

• Patterns for the organizational style. They shape the “style” of
an organization and provide a good foundation for tailoring an
organization to its business and market.

• Patterns for people and code. They help an organization in align-
ing the people (e.g., developers) and code structures properly.

The fundamental process for applying an organizational pattern in
an organization is:

1. Find the weakest part of the organization.

2. Find a pattern that is likely to strengthen it.

3. Apply the pattern.

4. Measure the improvement or degradation.

5. If the pattern improved things, go to step 1 and find the next
improvement; otherwise, undo the pattern and try an alternative.

Finally, organizational patterns capture the foundations of the agile
software development movement. In particular, they have inspired the
creation of parts of Scrum [Schwaber, 2004] and of Extreme Program-
ming [Beck, 1999]. For a complete description of organizational pat-
terns, we refer to [Coplien & Harrison, 2005].

2.3.2 Architectural patterns

Architectural patterns are well-established problem-solution pairs to ar-
chitectural problems that occur in a given context and are affected by
it [Coplien & Alexander, 1996]. The software architecture of a system
comprise the set of structures needed for reasoning about the software
components of a systems, their properties, and their relations [Avger-
iou & Zdun, 2005]. An architectural pattern does not only document
“how” to solve an architectural problem, but also “why” it needs to be
solved (i.e. the rationale behind the solution) [Bass, 2007]. In addition,

28 Background

architectural patterns help to document the architectural design de-
cisions, facilitate communication between stakeholders through a com-
mon vocabulary, and describe the quality attributes of a software system
as restrictions that must be fulfilled [Buschmann et al., 2007].

Architectural patterns can be classified according to the different
architectural views of a system [Clements et al., 2002]. An architectural
view is a representation of a system from the perspective of a related set
of its components. Thus, an architectural pattern defines the types of
components, properties, and relationships that work together to solve a
particular problem from a certain view. The existing views are:

• The layered view. It deals with how a system, as a complex hetero-
geneous entity, can be decomposed into interacting components.
Examples of architectural patterns in this view are: layers and
indirection layer.

• The data flow view. It deals with the data streams that are suc-
cessively processed or transform by the components of a system.
Examples of patterns in this view are: batch sequencial and pipes
and filters.

• The data-centered view. It deals with multiple components of a
system that access a central data repository. Examples of pat-
terns in this view are: shared repository, active repository, and
blackboard.

• The adaptation view. It deals with how a system can adapt its own
behavior/components at evolution time. Examples of patterns in
this view are: microkernel, reflection, and interceptor.

• The language extension view. It deals with how a system provides
an abstraction layer for the computing infrastructure. Examples
of patterns in this view are: interpreter, virtual machine, and
rule-based system.

• The user interaction view. It deals with the components of the
user interface of a system that are shown at runtime. Examples of

2.3 Software Patterns 29

patterns in this view are: model-view-controller and presentation-
abstraction-control.

• The component interaction view. It deals with how individual
components exchange messages, but keeping their autonomy. Ex-
amples of patterns in this view are: explicit invocation, implicit
invocation, client-server, peer-to-peer, and publish-subscribe.

• The distribution view. It deals with how to distribute the com-
ponents of a system in a network. Examples of patterns in this
view are: broker, remote procedure calls, and message queuing.

2.3.3 Idioms

Idioms constitute the lowest-level patterns since they depend on a spe-
cific implementation technology such as a programming language (e.g.,
C++, Java) [Coplien, 1997]. In general, an idiom refers to a syntactical
shortcut that does something not immediately obvious from the code
itself but which is used often enough that other programmers recognize
its meaning. For example, the structure i += 1 in Java is obvious
for a Java programmer, but could be a mystery to a non-expert in
Java. Idioms are not restricted to any programming paradigm and can
be defined for example for object-oriented programming (e.g., Java),
functional programming (e.g., Haskell) [Gibbons, 2010], aspect-oriented
programming (e.g., AspectJ) [Lesiecki, 2005], and special-purpose pro-
gramming (e.g., SQL) [Tropashko & Burleson, 2007].

Finally, some programmers argue that data structures such as queues,
linked lists, trees, graphs, or stacks constitute idioms as well. Although
they may seem more primitive as compared to more high level patterns
(e.g., architectural patterns), data structures define (non-obvious) solu-
tions to store data and process them. The same could be stated to the
entity class since it constitutes a template for managing objects (e.g.,
creation, implement behavior).

30 Background

2.3.4 Analysis patterns

Analysis patterns capture an abstraction of a situation that can often be
encountered in software modeling. They were defined by Fowler in 1997
based on empirical observations [Fowler, 1997]. An analysis pattern
can be represented as a group of related, generic objects (metaclasses)
with stereotypical attributes (data definitions), behaviors (method sig-
natures), and expected interactions defined in a domain-neutral manner
that represent a common construction in business modeling. In general,
analysis patterns facilitate the transformation of the domain require-
ments of a system into a conceptual model. Since an analysis pattern
may be relevant to many domains, they are very valuable for promoting
reuse among the systems. In particular, there are six groups of analysis
patterns whose names come from the domain patterns were observed
the first time (cf. Figure 2.7). In this thesis, we outline analysis pat-
terns very briefly. For a complete description of analysis patterns, we
refer to [Fowler, 1997].

• Patterns for accountability. They describe relationships that define
responsibilities between the parties of a system.

• Patterns for observations and measurements. They are used for
recording facts.

• Patterns for referring to objects. They focus on indexing for re-
ferring objects in an exact way.

• Patterns for inventory and accounting. They focus on accounting,
describing how a network of accounts can form an active account-
ing system.

• Patterns for planning. They depict the relationship between stand-
ard plans and one-off plans, and how to plan and record the use
of resources.

• Patterns for trading. They focus on trading in situations where
prices are fluid and we need to understand how these price changes
affect the profits.

2.3 Software Patterns 31

Accountability

AnP1: Party
AnP2: Organization Hierarchies
AnP3: Organization Structure
AnP4: Accountability
AnP5: Accountability Knowledge Level
AnP6: Party Type Generalizations
AnP7: Hierarchic Accountability
AnP8: Operating Scopes
AnP9: Post

Analysis Patterns

Referring to Objects

AnP27: Name
AnP28: Identification Scheme
AnP29: Object Merge
AnP30: Object Equivalence

Observations and Measurements

AnP10: Quantity
AnP11: Conversion Ration
AnP12: Compound Units
AnP13: Measurement
AnP14: Observation
AnP15: Subtyping Observation Concepts
AnP16: Protocol
AnP17: Dual Time Record
AnP18: Rejected Observation
AnP19: Active Observation, Hypothesis, and Projection
AnP20: Associated Observation
AnP21: Process of Observation
AnP22: Enterprise Segment
AnP23: Measurement Protocol
AnP24: Range
AnP25: Phenomenon with Range
AnP26: Using the Resulting Framework

Inventory and Accounting

AnP31: Account
AnP32: Transactions
AnP33: Summary Account
AnP34: Memo Account
AnP35: Posting Rules
AnP36: Individual Instance Method
AnP37: Posting Rule Execution
AnP38: Posting Rules for Many Accounts
AnP39: Choosing Entries
AnP40: Accounting Practice
AnP41: Sources of an Entry
AnP42: Balance Sheet and Income Statement
AnP43: Corresponding Account
AnP44: Specialized Account Model
AnP45: Booking Entries to Multiple Accounts
AnP46: Models
AnP47: Structural Models
AnP48: Implementig the Structure
AnP49: Setting Up New Phone Services
AnP50: Setting Up Calls
AnP51: Implementing Account-based Firing
AnP52: Separating Calls into Day and Evening
AnP53: Charging for Time
AnP54: Calculating the Tax

Planing

AnP55: Proposed and Implemented Action
AnP56: Completed and Abandoned Actions
AnP57: Suspension
AnP58: Plan
AnP59: Protocol
AnP60: Resource Allocation
AnP61: Outcome and Start Functions

Trading

AnP62: Contract
AnP63: Portfolio
AnP64: Quote
AnP65: Scenario

Figure 2.7: Set of analysis patterns

Figure 2.8 shows an example of an analysis pattern. More precisely,
it shows the party pattern of the accountability category. This pattern
is applied when people and units of an organization have similar features
or responsibilities. The solution provided by the pattern lies on creating

32 Background

a type party as a supertype of person and organization.

Person

Unit

Party

Telephone

Adress

E-mail

[0..1]

[0..1]

[0..1]

*
*

*

Figure 2.8: Analysis patterns: Accountability - Party pattern

2.3.5 Design patterns

Design patterns gained popularity after the book of the so-called “Gang
of Four” [Gamma et al., 1995]. Unlike analysis patterns, design patterns
are formalized best practices that can be used to solve common problems
when designing a system in an object-oriented way. A design pattern
has four essential parts: a statement of the context where the pattern is
useful, the problem that the pattern addresses, the forces that play in
forming a solution, and the solution that resolves those forces. There are
23 design patterns classified in three groups based on their functionality
(cf. Figure 2.9). In the following, we summarizes these patterns. For
a complete description of design patterns, we refer to [Gamma et al.,
1995].

• Creational patterns. They deal with the initialization and con-
figuration of classes and objects. More precisely, these patterns
abstract the creation process of the instances of the classes of the
model.

• Structural patterns. They deal with decoupling the interface and
the implementation of classes and objects. More precisely, these

2.3 Software Patterns 33

Creational

DeP1: Factory
DeP2: Abstract Factory
DeP3: Builder
DeP4: Prototype
DeP5: Singleton

Design Patterns

Structural

DeP6: Adapter
DeP7: Bridge
DeP8: Composite
DeP9: Decorator
DeP10: Facade
DeP11: Flyweight
DeP12: Proxy

Behavioral

DeP13: Interpreter
DeP14: Template
DeP15: Chain of Responsability
DeP16: Command
DeP17: Iterator
DeP18: Mediator
DeP19: Memento
DeP20: Observer
DeP21: State
DeP22: Strategy
DeP23: Visitor

Figure 2.9: Set of design patterns

patterns focus on how classes and objects are used to compound
bigger structures.

• Behavioral patterns. They deal with the dynamic interaction
among societies of classes and objects. More precisely, these
patterns describe the algorithms and assignation of responsibil-
ity among the existing objects.

Figure 2.10 shows an example of a design pattern. In this case, it
shows the facade pattern. This pattern is aimed to provide a unified
interface for a set of interfaces. In this way, the unified interface facil-
itates the interaction with the other interfaces reducing the complexity
of the system and its dependencies.

Design patterns differ from analysis patterns in three ways [Fernan-
dez, 1998]:

• Design patterns relate to system implementation and are focused

34 Background

Interface 3

Interface 1

Interface 4

Interface 2

Facade

Class

interaction

Figure 2.10: Design patterns: Structural - Facade pattern

on typical design aspects (e.g., user interfaces, objects’ creation,
and basic structural properties).

• Design patterns can be applied to any system (e.g., all systems
have user interfaces or need to create objects).

• Analysis patterns depend on the specific system and their se-
mantics describe aspects of this system or its application domain.

2.4 Conclusions

The purpose of this chapter is to provide an introduction to the found-
ations and the basic background of the research areas this work relies
on. We have described the different concepts and techniques of three
areas: Business Process Modeling, Software Variability Modeling and
Software Patterns. This thesis is related with these areas since we aim
to provide a set of change patterns (i.e., software patterns area) specific-
ally tailored for modeling variability (i.e., software variability modeling

2.4 Conclusions 35

area) in process families (i.e., business process modeling area). Thus,
much of the techniques introduced here are used as a basis in this thesis.
In the following, we provide an overview of existing approaches closely
related to the described research areas as well as to the goals of this
thesis.

36 Background

3
State of the Art

O
nce we have analyzed in Chapter 2 the main research areas in which
this thesis relies on, in this chapter we analyze existing approaches

closely related to these areas as well as to the goals of this thesis. Fig-
ure 3.1 illustrates the research areas and their subareas (intersections),
where each of the analyzed approaches is placed. More precisely, we
identify three subareas: Business Process Variability Modeling, Software
Variability Modeling Patterns, and Business Process Modeling Patterns.
Relevant approaches in these subareas are analyzed and discussed in this
chapter.

The rest of the chapter is organized as follows. Section 3.1 describes
approaches related to the modeling of business process variability. Sec-
tion 3.2 outlines the main patterns that are used for modeling variability
in software systems. In turn, Section 3.3 introduces patterns that sup-
port changes in business process modeling. In Section 3.4 we discuss the
difference between the existing approaches and the work of this thesis.

38 State of the Art

Finally, Section 3.5 concludes the chapter.

Business
Process

Modeling

Software
Variability
Modeling

Business

Process

M odeli ng

Patterns

S oftware

Variabi lity

M odeli ng

Patterns

Business

Process

Variabi lity

M odeli ng

Thesis
work

Software
Patterns

Figure 3.1: Research areas involved in this thesis and their intersecting sub-
areas

3.1 Business Process Variability Modeling 39

3.1 Business Process Variability Modeling

The co-existence of multiple variants of the same business process model
is a widespread phenomenon in contemporary organizations. These
process variants pursue the same or similar business objective sharing
certain commonalities (e.g., process fragments), while at the same time
having differences due to their use in the different application context
(e.g., certain fragments may be relevant for only some of the process
variants depending on the application context) [Dijkman et al., 2012;
Soffer, 2005; van der Aalst & Basten, 2002].

A collection of related process variants constitutes a process fam-
ily [Reichert & Weber, 2012]. Applying conventional business process
modeling approaches (cf. Section 2.1) to process families requires either
(1) to model each variant separately or (2) to model multiple variants
together [La Rosa et al., 2013]. In the first case, the result is a signific-
ant redundancy (i.e., duplication of process fragments) as the variants
have much in common. In the second case, the complexity of the con-
solidated model grows rapidly and it becomes difficult to analyze and
maintain individual variants [La Rosa et al., 2013].

Motivated by this observation, process variants are typically defined
in terms of a configurable process model, which represents a complete
process family [Reichert & Weber, 2012]. In particular, a configur-
able process model eliminates model redundancies by representing the
commonalities of different process variants only once. Furthermore, it
fosters model reuse since variant particularities can be shared among
multiple variants [La Rosa et al., 2009a].

3.1.1 Process perspectives

Like business process models, in the configurable process models, the
functional, behavioral, organizational, informational, temporal, and op-
erational can be observed. In general, all these perspectives may be sub-
ject to variation. For example, in respect to the functional perspective,
consider Variants 4-6 of the check-in process (cf. Appendix A). De-
pending on the type of passenger, the set of activities to be performed

40 State of the Art

may differ; e.g., Assign seat for UM in the context of unaccompan-
ied minors, Assign seat for handicapped in the context of handicapped
passengers, or Assign seat for regular passengers. In turn, regarding
the behavioral perspective, the control flow of the check-in process dif-
fers for example in the model part preceding activity Print boarding
card ; e.g., activities Provide information about accommodation and Fill
in ESTA form are only performed if the passenger is traveling to the
US, but shall be omitted otherwise. Thus, there exist two options in
the control flow of the process; i.e., either to perform the activities or to
skip them. In turn, variations in the organizational perspective is found
when the check-in can be performed by passengers using a web system
(cf. Variants 1-2 in Appendix A), whereas check-in at the counter is
performed by airline staff (cf. Variants 4-6). In addition, depending on
the type of check-in, the resulting boarding card either is an electronic
or a paper-based document, which refers to variability in respect to the
informational perspective. In respect to the temporal perspective, the
availability of the check-in service is delimited from 23 (cf. Variants
1-3) to 3 (cf. Variants 4-6) hours before departure, depending on the
type of check-in. This is represented using different start events. Fi-
nally, regarding the operational perspective, the implementation of the
Print boarding card activity differs depending on the type of check-in;
i.e., online, counter, or with self-servicing machine.

3.1.2 Process lifecycle

Configurable process models also follow the phases of the process li-
fecycle (cf. Figure 2.3). In the context of process variability, at the
analysis and design phase, process variants are defined in terms of a
configurable process model, which must be verified and validated. In
this case, verification means that it needs to be ensured that all pro-
cess variants that may be derived from the configurable process model
are syntactically correct and sound (e.g., no deadlocks or livelocks). In
turn, validation shall ensure that the configurable process model prop-
erly reflects the semantics of all business processes. In order to derive
a specific process variant from the configurable process model, at the

3.1 Business Process Variability Modeling 41

configuration phase, an individualization as well as a selection procedure
are performed based on the respective application environment (i.e., ap-
plication context) in which a process variant shall exist [La Rosa et al.,
2009a]. Then, this individualized (and selected) process variant is de-
ployed to the target process engine for its enactment. Figure 3.2 depicts
the transitions from the analysis and design of a process family to the
enactment of a process variant instance.

Process Family

Process Variant Model

A
n

a
ly

s
is

 &
 D

e
s
ig

n

 Completed

 Activated

✗ Skipped

 



✗

Current
Context

Process Variant Instance

Deployment

Configurable
Process Model All

Contexts

In
d

iv
id

u
a

li
z
a

ti
o

n

S
e

le
c

ti
o

n

E
n

a
c

tm
e

n
t

A B I

C

D

E

F

G

H

H

G

I

I

I

I

G

H

F

C

D

E

A B

A B

A B

A B

Figure 3.2: From process family definition to process variant enactment

At enactment time, it needs to be guaranteed that process variants
are executed according to the configured process variant model [van der
Aalst et al., 2010b; Hallerbach et al., 2009; Ayora et al., 2012a]. In ad-
dition, this phase covers configuration decisions that may only be made
during enactment time (i.e., dynamic configurations) [Angles et al.,
2013; Murguzur et al., 2014]. Even though configuration is partially

42 State of the Art

performed at enactment time, soundness should be ensured at design
time. Another aspect to take into account during this phase refers to
dynamic re-configurations, i.e., to switch from the current process vari-
ant to another [Soffer, 2005; van der Aalst & Basten, 2002]. In this
case, sophisticated exception handling techniques are necessary (e.g., to
abort instances that are no longer needed [Reichert & Weber, 2012]).
Accordingly, monitoring techniques are required to provide accurate
information about the current execution state of the process variant
instance. The monitored data is then used in the diagnosis phase to
identify possible model optimizations that, in turn, will guide the evol-
ution of the family. This evolution may be referred to evolving (i.e.,
modifying) a single process variant or to evolve the schema of a process
family, which results in a new process family (i.e., to evolve the config-
urable process model) [Ayora et al., 2012a]. In this context, co-existing
schema versions of a configurable process model may have to be main-
tained. This means that conflicts between single process variants which
have been individually evolved, and the evolution of the configurable
process model need to be handled.

3.1.3 Process variability approaches

Recently, a number of approaches to create configurable process models
have emerged. By treating variability as a first class citizen, process
variability approaches avoid model redundancies and foster model re-
usability [Reichert & Weber, 2012]. In general, these approaches allow
representing a configurable process model either in a single artifact or in
a set of related artifacts [Ayora et al., 2015]. Using a single artifact, all
process variants and related aspects (e.g., commonalities of the process
variants, variant-specific parts, configuration constraints, and applica-
tion context) are included in a single model. On the contrary, using a
set of related artifacts these aspects are defined separately in different
models. In the following, we provide an overview of specific approaches
for both methods.

First, regarding the use of a single artifact, hiding & blocking oper-
ators have been defined to configure a process variant by making unob-

3.1 Business Process Variability Modeling 43

servable (i.e., hiding) or disabling (i.e., blocking) those execution paths
that are not included in the variant [Schunselaar et al., 2012]. Another
approach refers to the use of configurable nodes. These nodes repres-
ent variation points to which different alternatives can be assigned. In
addition, configuration constraints (named configuration requirements)
restrict the combination of allowed alternatives [Yao & Sun, 2012]. Con-
figurable nodes have been used in combination with conventional process
modeling languages such as EPC and YAWL [Gottschalk et al., 2007].
In addition, configurable nodes can be used to define variability at any
process perspective (e.g., organizational, informational) [La Rosa et al.,
2011]. Another approach to capture process variability in a single arti-
fact refers to the use of temporal logic [Groefsema et al., 2011]. That is,
processes are defined as directed graphs combined with logic formulae,
which represent configuration constraints. Further, annotated models
is also an approach used to represent process variability. Annotations
(e.g., stereotypes, labels) are included in the configurable process model
to accommodate variability. Annotations have been defined for BPMN
[Frece & Juric, 2012; Döhring et al., 2011] and for EPC [Reijers et al.,
2009; Becker et al., 2004]. In addition, meta-model extensions for UML
Activity Diagrams [Moon et al., 2008; Saidani & Nurcan, 2014; Koloko-
lov et al., 2014; Marcolino et al., 2014] and BPEL [Lazovik & Ludwig,
2007] have been proposed in order to realize configurable process mod-
els. In the same vein, multiplicity indicators can be also attached to
modeling elements (e.g., activities) to denote the possible lowest and
upper-most numbers of variants these elements may have in a process
family [Reinhartz-Berger et al., 2010]. Finally, a hierarchical indexing
structure to capture variability at the business goal level has also been
proposed [Derguech et al., 2010]. In this hierarchical representation,
a variation point is a business goal that has more than one way (i.e.,
business variant) to be achieved.

Second, when a process family is represented in different artifacts,
it is typically defined in terms of a base model, a set of variable process
fragments, a set of rules to define when the variable process fragments
are used in the base model, and the definition of an application context
determining when these rules are applied. Thereby, the base model

44 State of the Art

is specified using a conventional business process modeling language
(e.g., BPMN). However, different policies may be applied when defining
this base process model, e.g., setting the latter to the most frequently
used process variant or to the process model having minimum average
edit distance to the rest of process variants of the family [Li et al.,
2011]. Concerning the three other artifacts, different techniques for
defining them exist. For representing variable process fragments, for
example, features models (from software product lines) [Alférez et al.,
2014; Montero et al., 2008; Schnieders & Puhlmann, 2007; Czarnecki
& Antkiewicz, 2005] or goal models [Lapouchnian et al., 2007; Angles
et al., 2013] can be used. In addition, variable process fragments may
be defined based on a set of process model components [Sakr et al.,
2011], a variant list [Meerkamm & Jablonski, 2011], or a set of pre-
specified change operations [Hallerbach et al., 2010b; Lu et al., 2009].
In turn, the rules for adapting the base model may rely on techniques
such as business rules [Kumar & Yao, 2012], process model queries [Sakr
et al., 2011], and non-functional constraints [Lapouchnian et al., 2007].
Finally, ontologies, semantic rules, questionnaire models, and context
analysis methods may be used for defining the application context of
process variants [Alférez et al., 2014; Yao et al., 2012; La Rosa et al.,
2009b; Santos et al., 2012; de la Vara et al., 2010].

Regarding lower-level representations of process families, it is also
possible to define process variability by coding an algorithm [Tealeb
et al., 2014]. In addition, event logs are also used to identify commonal-
ities between processes of different organizations [Buijs & Reijers, 2014].
Further, declarative specifications can also be used with the same pur-
pose [Jiménez-Ramı́rez et al., 2015]. However, these approaches are out
of the scope of this thesis since we focus exclusively on process models.

Several empirical evaluations of process variability approaches have
been conducted [Ayora et al., 2015]. Case studies are the most fre-
quent method and have been conducted in different domains such as
egovernment [Gottschalk et al., 2009], logistic [Lönn et al., 2012], risk
management [Scherer & Sharmak, 2011], smart cities [Murguzur et al.,
2013],and retail [Pascalau & Rath, 2010]. Regarding other types of
evaluations, the Goal/Question/Metric method is used to evaluate how

3.2 Software Variability Modeling Patterns 45

good the design of a configurable process model is [Alférez et al., 2014].
In turn, [Reijers et al., 2009] reports on the benefits that practitioners
found after they interacted with a configurable process model. Simil-
arity metrics to measure the complexity (e.g., size) of a configurable
process model are used in [Vogelaar et al., 2011]. Mapping patterns to
compare different process variability approaches in terms of complexity
(e.g., size of resulting models) are also used in [Baier et al., 2010].

3.2 Software Variability Modeling Patterns

Patterns have also been applied to model software product lines since
they can reduce time, cost, and effort (cf. Section 2.3). Up to our
knowledge, there are two main sets of patterns that allow modeling
variability in product lines: (1) single, multiple, and option patterns
[Keepence & Mannion, 1999], and (2) patterns for evolving event-based
systems [Tragatschnig et al., 2013].

3.2.1 Single, Multiple, and Option patterns

In [Keepence & Mannion, 1999], authors have developed a method for
building product family models using a set of predefined patterns to
model family variations. The method starts by analyzing existing user
requirements from systems within the product family and identifying
the discriminants. Three types of discriminants are used: single discrim-
inants (i.e., mutually exclusive features), multiple discriminants (i.e.,
optional features that are not mutually exclusive), and option discrim-
inants (i.e., single optional features that might or might not be used).
These discriminants and their three associated patterns (cf. Figure 3.3)
are used and combined to produce a unified family model that includes
all commonality and variation across the family.

1. Single adapter pattern. The single discriminant can be modeled
as an inheritance hierarchy in which generic features are modeled
in a base class and specific features are modeled as mutually ex-
clusive subclasses (i.e., only one subclass can be instantiated in a

46 State of the Art

product). Virtual functions are used in the base class for access-
ing the methods in the subclasses so other model parts can refer
to instances of this base class without knowing which subclass a
given product will use. The single adapter pattern is implemented
using the singleton design pattern (cf. Figure 3.3 part 1).

2. Multiple adapter pattern. The multiple discriminant is modeled
in the same way as a single discriminant, i.e., as an inheritance
hierarchy with a base class and specific subclasses. However, in
this pattern, more than one subclass can be instantiated in any
single system. To access methods in a particular subclass, each
subclass instance is identified by a name, which is stored in a
collection (cf. Figure 3.3 part 2).

3. Option pattern. The option discriminant is modeled by creating
two associated peer classes: Class A and B. The associated classes
must have a [0-1] relationship on at least one end. For example,
in Figure 3.3 part 3, Class B is an optional class with Class A.
Class A does not assume that Class B exists, and therefore can
be reused whether or not Class B is reused. The option pattern
can also be applied to “related-to” and “aggregation” associations
[Keepence & Mannion, 1999].

Base Class

SubClass 1 SubClass 2

Instance

Base Class

SubClass 1 SubClass 2

InstanceInstance

Collection

Collection
Instance

Class A Class B
[0..1]

1) Single adapter 2) Multiple adapter 3) Option

Figure 3.3: Single, multiple, and option patterns

3.2 Software Variability Modeling Patterns 47

The single, multiple, and option patterns have been put into prac-
tice for modeling product families in the spacecraft mission-planning
domain. The resulting family encapsulates all the variability of the do-
main without restricting its family [Keepence & Mannion, 1999]. In
addition, authors guaranteed that using the patterns simplifies the pro-
cess of building complex models that support variability. However, they
also claimed that quantifying the costs of applying the patterns is dif-
ficult since it depends on more than one technique.

3.2.2 Patterns for evolving event-based systems

In general, the implementation of a particular change in an event-based
system involves executing relevant actions (e.g., adding or removing
components, enabling or disabling components, or altering the compon-
ents’ inputs or outputs) while taking into account the consequences of
these actions (e.g., other components might be affected by these actions)
[Cleland-Huang et al., 2003]. The use of patterns to deal with changes in
event-based systems is investigated in [Tragatschnig et al., 2013, 2014].
In an event-based system, an actor (i.e., component) is totally unaware
of the others and is indirectly triggered by particular events emitted
by other components, which leads to a high degree of flexibility. In
the context of event-based systems, there are no prescribed execution
descriptions and the constituent actors and their relationships can be
arbitrarily changed at any time [Tragatschnig et al., 2014]. Related
actors are encapsulated in logical groups named execution domains.

In order to deal with the complexity and the large degree of flexib-
ility of event-based systems, system evolution is managed at different
levels of abstraction. More precisely, instead of code statements, funda-
mental abstractions for describing primitive actions are used to modify
the system at the low-level. On top of these actions, a set of high-
level abstractions are described in terms of change patterns. Figure 3.4
presents these primitive actions and patterns.

A proof-of-concept implementation of these change patterns has
been developed. More precisely, authors estimate the necessary effort
(in number of statements) for manually implementing a change on an

48 State of the Art

Primitive action Description
add (a) It adds the actor a to the execution domain
remove (a) It removes the actor a from the execution domain
setTarget (a, d) It sets the target of the execution domain d for an actor a
set (a,p) It sets a new port p for the actor a
setDomain (a,d) It sets the execution domain d for actor a
add (p,events) It adds a set of events to port p
remove (p,events) It removes a set of events from port p
replace (p,events) It replaces all events of port p with another set of events
replace (p,e,e’) It replaces event e of port p with event e’

Pattern Description
Insert (x) It adds an actor x in the current execution domain
Delete (x) It removes the actor x from the current execution domain

Move (x,y,z)
 It moves the actor x in a way that the actor y will become
predecessor and the actor z will become successor of x,
respectively

Replace (x,y) It substitute the actor x by the actor y

Swap (x,y)
 Given an actor x that precedes an actor y, this pattern will
switch the execution order between x and y

Parallelize (x,y)
 It enables the concurrent execution of two actors x and y
that are performed sequentially before

Migrate (x, d, d’)
 It migrates an actor x from an execution domain d to
another execution domain d’

Figure 3.4: Primitive actions and patterns for evolving event-based systems

event-based system and compare these results to the defined actions
and change patterns. Results shows that describing changes using the
defined change patterns is about 11% of the effort compared to the effort
needed to implement each change manually. Using the change patterns,
there are roughly 9 times less statements needed in comparison to per-
form each change individually [Tragatschnig et al., 2013]. These results
demonstrate the benefits of using change patterns.

3.3 Business Process Modeling Patterns

The ability to efficiently deal with process change has been identified as
one of the critical success factors for any PAIS [Lenz & Reichert, 2007].
The high complexity and cost of change management are considered as
a major concern when modeling business processes [Reichert & Weber,

3.3 Business Process Modeling Patterns 49

2012]. To overcome this problem and make PAIS better comparable,
two types of patterns have been introduced: workflow patterns [van der
Aalst et al., 2003] and patterns for business process change [Reichert &
Weber, 2012].

3.3.1 Workflow patterns

Workflow patterns aim at delineating the fundamental requirements
that arise during business process modeling on a recurring basis and
describe them in an imperative way. In particular, workflow patterns
provide a thorough examination of some perspectives that need to be
supported by a business process modeling language (i.e., control flow,
data, resource, time, and exception handling). In addition, workflow
patterns are defined independently of specific workflow technologies
and modeling languages. Thus, they are intended to be used for ex-
amining the suitability of a particular process language for a particular
project and for assessing relative strengths and weaknesses of various
approaches to process specification. In addition, workflow patterns help
in implementing certain business requirements in a particular PAIS and
serve as a basis for language and tool development [van der Aalst et al.,
2003]. In the following, we describe existing workflow patterns for each
process perspective.

Control flow patterns characterize the range of control flow con-
structs that might be encountered when modeling and analyzing work-
flows [van der Aalst et al., 2003]. There exist forty control flow patterns
classified in eight groups (cf. Figure 3.5).

• Patterns for basic control flow. They describe elementary aspects
to specify activities and their ordering.

• Patterns for advanced branching and synchronization. They char-
acterize more complex branching and merging concepts which
arise in business processes. Although relatively commonplace in
practice, these patterns are often not directly supported or even
able to be represented in many commercial offerings.

50 State of the Art

Basic Control Flow

CFP1: Sequence
CFP2: Parallel Split
CFP3: Synchronization
CFP4: Exclusive Choice
CFC5: Simple Merge

Control Flow Patterns

Advanced Branching and Synchronization

CFP6: Multi-Choice
CFP7: Structured Syncronizing Merge
CFP8: Multi-Merge
CFP9: Structured Discriminator
CFP28: Blocking Discriminator
CFP29: Cancelling Discriminator
CFP30: Structured Partial Join
CFP31: Blocking Partial Join
CFP32: Cancelling Partial Join
CFP33: Generalised AND-Join
CFP37: Local Syncronizing Merge
CFP38: General Syncronizing Merge
CFP41: Thread Merge
CFP42: Thread Split

Iteration

CFP10: Arbitrary Cycles
CFP21: Structured Loop
CFP22: Recursion

State-based

CFP16: Deferred Choice
CFP17: Interleaved Parallel Routing
CFP18: Milestone
CFP39: Critical Section
CFP40: Interleaved Routing

Multiple Instance

CFP12: Multiple Instances without Syncronization
CFP13: Multiple Instances with a priori Design-Time Knowledge
CFP14: Multiple Instances with a priori Run-Time Knowledge
CFP15: Multiple Instances without a priori Run-Time Knowledge
CFP34: Static Partial Join for Multiple Instances
CFP35: Cancellin Partial Join for Multiple Instances
CFP36: Dynamic Partial Join for Multiple Instances

Cancelation

CFP19: Cancel Task
CFP20: Cancel Case
CFP25: Cancel Region
CFP26: Cancel Multiple Instance Activity
CFP27: Complete Multiple Instance Activity

Termination

CFP11: Implicit Termination
CFP43: Explicit Termination

Trigger

CFP23: Transient Trigger
CFP24: Persistent Trigger

Figure 3.5: Overview of existing control flow patterns

• Patterns for iteration. They deal with capturing repetitive beha-
vior in a workflow (e.g., loops, cycles). These patterns are divided

3.3 Business Process Modeling Patterns 51

in internal and external interactions depending on the elements
that interact in the workflow.

• Patterns for multiple instances. They describe situations where
there are multiple threads of execution active in a process model
which relate to the same activity (and hence share the same im-
plementation definition). Multiple instances can arise in three
situations: (1) an activity is able to initiate multiple instances
of itself, (2) a given activity is initiated multiple times as a con-
sequence of it receiving several independent triggers (e.g. as part
of a loop), and (3) a set of activities share the same implementa-
tion definition (i.e., overlapping executions).

• Patterns for termination. They deal with the circumstances under
which a workflow is considered to be completed.

• Patterns for triggering. They deal with the external signals that
may be required to start certain tasks.

• Patterns state-based. They reflect situations for which solutions
are most easily accomplished in process languages that support
the notion of state. In this context, this state includes the broad
collection of data associated with the execution of each process in-
stance, including the status of various activities as well as process-
relevant working data (e.g., activity and instance data elements).

• Patterns for cancellation. They deal with the concept of activity
cancellation where enabled or active instances are withdrawn.

Workflow data patterns aim to capture the various ways in which
data is represented and utilized in workflows [Russell et al., 2004a].
Workflow data patterns are classified in four groups referred to how
data is characterized in workflows (cf. Figure 3.6).

• Patterns for data visibility. They relate to the extent and manner
in which data elements can be viewed by various components of
a workflow process.

52 State of the Art

Data Visibility

DP1: Task Data
DP2: Block Data
DP3: Scope Data
DP4: Multiple Instance Data
DP5: Case Data
DP6: Folder Data
DP7: Workflow Data
DP8: Environment Data

Workflow Data Patterns

Internal Data Interaction

DP9: Task to Task
DP10: Block Task to Sub-Workflow Decomposition
DP11: Sub-Workflow Decomposition to Block Task
DP12: to Multiple Instance Task
DP13: from Multiple Instance Task
DP14: Instance to Instance

Data-based Routing

DP34: Task Precondition – Data Existence
DP35: Task Precondition – Data Value
DP36: Task Postcondition – Data Existence
DP37: Task Postcondition – Data Value
DP38: Event-based Task Trigger
DP39: Data-based Task Trigger
DP40: Data-based Routing

Data Transfer

DP27: Data Transfer by Value – Incoming
DP28: Data Transfer by Value – Ongoing
DP29: Data Transfer – Copy In/Copy Out
DP30: Data Transfer by Reference – Unlocked
DP31: Data Transfer by Reference – With Lock
DP32: Data Transformation – Input
DP33: Data Transformation – Output

External Data Interaction

DP15: Task to Environment – Push-Oriented
DP16: Environment to Task – Pull-Oriented
DP17: Environment to Task – Push-Oriented
DP18: Task to Environment – Pull-Oriented
DP19: Instance to Environment – Push-Oriented
DP20: Environment to Instance – Pull-Oriented
DP21: Environment to Instance – Push-Oriented
DP22: Instance to Environment – Pull-Oriented
DP23: Workflow to Environment – Push-Oriented
DP24: Environment to Workflow – Pull-Oriented
DP25: Environment to Workflow – Push-Oriented
DP26: Workflow to Environment – Pull-Oriented

Figure 3.6: Overview of existing workflow data patterns

• Patterns for data interaction. They focus on the manner in which
data is communicated between active elements within a workflow.

• Patterns for transfer data. They consider the means by which the
actual transfer of data elements occurs between workflow compon-
ents and describe the various mechanisms by which data elements
can be passed across the interface of a workflow component.

• Patterns for routing data. They characterize the manner in which
data elements can influence the operation of other aspects of the
workflow, particularly the control flow perspective.

3.3 Business Process Modeling Patterns 53

Workflow resource patterns describe how resources can be rep-
resented and utilized in workflows [Russell et al., 2004b]. A resource
is considered an entity capable of doing work. This is usually assigned
to the resource in the form of work items, each of which describe an
integral unit of work that the resource should undertake. A resource is
classified as either human or non-human (e.g., equipment). A human
resource is typically a member of an organization that usually has a
specific position in this organization. As a consequence, resources may
have a number of associated privileges, which determine what they can
actually do. Workflow resource patterns are classified in seven groups
referred to how resources are presented in workflows (cf. Figure 3.7).

• Patterns for creation. They correspond to limitations on the man-
ner in which a work item may be executed. They are specified at
design time, usually in relation to a task, and serve to restrict the
range of resources that can undertake work items that correspond
to the task. They also influence the manner in which a work item
can be matched with a resource that is capable of undertaking it.
For all of these patterns it is assumed that there is an associated
organizational model which allows resources to be uniquely iden-
tified and that there is a mechanism to distribute work items to
specific resources identified in the organizational model. As cre-
ation patterns are specified at design time, they usually form part
of the process model which describes a business process.

• Patterns for pushing. They characterize situations where newly
created work items are proactively offered or allocated to resources
by the system. These may occur indirectly by advertising work
items to selected resources via a shared work list or directly with
work items being allocated to specific resources. In both situations
however, it is the system that takes the initiative and causes the
distribution process to occur.

• Patterns for pulling. They correspond to the situation where in-
dividual resources are made aware of specific work items, which
require execution, either via a direct offer from the system or indir-
ectly through a shared work list. The commitment to undertake

54 State of the Art

Creation

RP1: Direct Distribution
RP2: Role-Based Distribution
RP3: Deferred Distribution
RP4: Authorization
RP5: Separation of Duties
RP6: Instance Handling
RP7: Retain Familiar
RP8: Capability-Based Distribution
RP9: History-Based Distribution
RP10: Organizational Distribution
RP11: Automatic Execution

Workflow Resource Patterns

Push

RP12: Distribution by Offer – Single Resource
RP13: Distribution by Offer – Multiple Resources
RP14: Distribution by Allocation – Single Resource
RP15: Random Allocation
RP16: Round Robin Allocation
RP17: Shortest Queue
RP18: Early Distribution
RP19: Distribution on Enablement
RP20: Late Distribution

Auto-Start

DP36: Commencement on Creation
DP37: Commencement on Allocation
DP38: Piled Execution
DP39: Chained Execution

Detour

RP27: Delegation
RP28: Escalation
RP29: Deallocation
RP30: Stateful Reallocation
RP31: Stateless Reallocation
RP32: Suspension-Resumption
RP33: Skip
RP34: Redo
RP35: Pre-Do

Pull

RP21: Resource-Initiated Allocation
RP22: Resource-Initiated Execution – Allocated Work Item
RP23: Resource-Initiated Execution – Offered Work Item
RP24: System-Determined Work Queue Content
RP25: Resource-Determined Work Queue Content
RP26: Selection Autonomy

Visibility

DP40: Configurable Unallocated Work Item Visibility
DP41: Configurable Allocated Work Item Visibility

Multiple Resource

DP42: Simultaneous Execution
DP43: Additional Resources

Figure 3.7: Overview of existing workflow resource patterns

a specific task is initiated by the resource itself rather than the
system.1 Generally this results in the work item being placed on
the specific work list for the individual resource for later execu-

1Note that the distinction between push and pull patterns is identified by who
allocates the work items.

3.3 Business Process Modeling Patterns 55

tion although in some cases, the resource may elect to commence
execution on the work item immediately.

• Patterns for detouring. They refer to situations where work item
distributions that have been made for resources are interrupted
either by the system or at the instigation of the resource. As a
consequence of this event, the normal sequence of state transitions
for a work item is varied. There is a number of possible impacts
on a work item, depending on its current state of progression and
whether the detour was initiated by the resource with which the
work item was associated or by the system. Detouring patterns
are defined for each one of these impacts.

• Patterns for auto-start. They relate to situations where execution
of work items is triggered by specific events in the lifecycle of
the work item or the related process definition. Such events may
include the creation or allocation of the work item, completion
of another instance of the same work item or a work item that
immediately precedes the one in question.

• Patterns for visualization. They classify the various scopes in
which work item availability and commitment are able to be viewed
by resources.

• Patterns for multiple resources. They focus on many-to-many cor-
respondences between the resources and work items in a given al-
location execution (i.e., multiple resources working on the same
work item). Unfortunately, contemporary management systems
(e.g., ADEPT2 [Reichert et al., 2005]) do not properly support
these patterns [Russell et al., 2004b]. This is a pity since for more
complicated activities people tend to work in teams and collab-
orate to jointly execute work items. Moreover, there is also a
lack of consideration for work items that require access to mul-
tiple non-human resources (e.g. plant and equipment, fuel, and
consumables) in order to proceed.

Time patterns constitute solutions for representing commonly oc-
curring temporal constraints. Time patterns are classified in four groups

56 State of the Art

based on their semantics (cf. Figure 3.8).

Durations and Time Lags

TP1: Time Lags between two Activities
TP2: Durations
TP3: Time Lags between Arbitrary Events

Time Patterns

Restricting Execution Times

TP4: Fixed Date Elements
TP5: Schedule Restricted Elements
TP6: Time-based Restrictions
TP7: Validity Period

Variability

TP8: Time-dependent Variability

Recurrent Process Elements

TP9: Cycle Elements
TP10: Periodicity

Figure 3.8: Overview of existing time patterns

• Patterns for time duration and lags. They provide support for ex-
pressing durations of different granularities (i.e., activities, activ-
ity sets, processes, or sets of process instances) as well as time
lags between activities or–more generally– between process events
(e.g., milestones).

• Patterns for restricting execution times. They allow specifying
constraints regarding possible execution times of single activities
or entire processes (e.g., activity deadlines).

• Patterns for time variations. They provide support for express-
ing time-based variability during process execution (e.g., varying
control flow depending on temporal aspects).

• Patterns for recurrent process elements. They express temporal
constraints in connection with recurrent activities or process frag-
ments (e.g., cyclic flows and periodicity).

Exception handling patterns are used for changing the state of a
process instance (i.e., its behavior) and its related elements (e.g., work

3.3 Business Process Modeling Patterns 57

items) [Russell et al., 2006]. Exception handling patterns are classified
in two groups depending on the level on which the exception is produced
(cf. Figure 3.9).

Work Item Level

EP1: Continue Offer
EP2: Reoffer
EP3: Force-fail Withdrawn Offer
EP4: Force-complete Withdrawn Offer
EP5: Continue Allocation
EP6: Reallocate
EP7: Reoffer Withdrawn Allocation
EP8: Force-fail Withdrawn Allocation
EP9: Force-complete Withdrawn Allocation
EP10: Continue Execution
EP11: Restart
EP12: Reallocate after Halted Execution
EP13: Reoffer after Halted Execution
EP14: Force-fail after Halted Execution
EP15: Force-complete after Halted Execution

Exception Handling Patterns

Instance Level

EP16: Continue with instance execution
EP17: Remove current instance execution
EP18: Remove all instances

Figure 3.9: Overview of existing exception handling patterns

• Patterns for handling exceptions at work item level. They focus on
dealing with exceptions in the assignment of resources to the work
items. There is a multitude of ways in which these exceptions can
be handled although the specific details will depend on the current
state of execution of the work item (e.g., fail, complete).

• Patterns for handling exceptions at instance level. They allow
dealing with exceptions that occur in the context of the execution

58 State of the Art

of a process instance. They define how the instance should be
managed in an overall sense, particularly in regard to other work
items that may currently be executing or will run at some future
time.

3.3.2 Patterns for business process change

In order to create a process model, different approaches can be pur-
sued. One involves the use of change primitives. Change primitives are
edit operations that work on single process model elements (e.g., add
node, add edge, move node, remove node, remove edge)
[Reichert & Weber, 2012]. The disadvantage of designing process mod-
els with change primitives is, that soundness and data flow correctness
cannot be guaranteed for models with three or more activities and has to
be checked after model generation. Soundness is given if the model does
not contain any dead activities and the option for a proper completion
is guaranteed [Reichert & Weber, 2012].

Another approach for model creation comprises the application of
change patterns [Weber et al., 2008]. Change patterns are high-level
change operations, which impose pre- and post-conditions to guaran-
tee the development of a sound and correct process model. These
pre- and postconditions are particularly necessary upon conducting ad-
hoc changes by end-users and become even more important if software
agents execute these changes automatically during enactment time.
Change patterns are derived from a set of change primitives, providing
a higher level of abstraction [Reichert & Weber, 2012]. They combine
a set of change primitives and offer correctness-by-construction [Weber
et al., 2008], which ensures, that only certain high-level changes can
be applied to a process model, upholding a sound and correct state.
Change patterns for model creation are divided into two major categor-
ies: adaptation patterns and patterns for changes in predefined regions.
Thereby, adaptation patterns support structural process adaptations,
whereas patterns for changes in predefined regions allow for built-in
flexibility. In the following, we describe each category of patterns in
detail.

3.3 Business Process Modeling Patterns 59

Adaptation patterns allow users to structurally modify a process
schema at the type or instance level by using high-level change oper-
ations (e.g., to add an activity in parallel to another one) instead of
low-level change primitives (e.g., to add a single node or to delete a
single control flow edge). The use of a set of pre- and post-conditions
with these high-level operations allows to guarantee soundness when
applying the respective operations [Weber et al., 2008; Dadam & Reich-
ert, 2009]. They can be applied along the entire process lifecycle (i.e.,
process analysis, design, configuration, enactment, diagnosis, and evol-
ution) and do not have to be pre-planned, i.e., the region to which
adaptation patterns may be applied can be chosen dynamically. Hence,
adaptation patterns are well suited for realizing process changes at both
design and enactment time. Like design patterns in software engineer-
ing, change patterns aim at reducing complexity by raising the level of
abstraction for expressing changes [Gamma et al., 1995]. Generally, ad-
aptation patterns can be applied to the whole process schema, i.e., the
region to which the adaptation pattern is applied can be chosen dynam-
ically. Therefore, adaptation patterns are well suited for dealing with
exceptions or for coping with the evolving nature of business processes
[Weber et al., 2008]. However, note that when working with adaptation
patterns, process models need to be block-structured. A process model
features a block-structure [Reichert & Weber, 2012], if it is composed
of blocks (single-entry single-exit fragments), which can be nested, but
must not overlap. A total of 14 adaptation patterns are classified in five
groups (cf. Figure 3.10):

• Patterns for adding/deleting fragments. These allow for the inser-
tion (AP1) and deletion (AP2) of process fragments at a specific
point in a given process schema.

• Patterns for moving/replacing fragments is supported by adapta-
tion patterns AP3 (Move Process Fragment), AP4 (Replace Pro-
cess Fragment), AP5 (Swap Process Fragment), and AP14 (Copy
Process Fragment).

• Patterns for adding/deleting process levels. These allow for adding
or removing levels of hierarchy (i.e., subprocesses). Thereby, the

60 State of the Art

Adding/Deleting Fragments

AP1: Insert Process Fragment
AP2: Delete Process Fragment

Adaptation Patterns

Moving/Replacing Fragments

AP3: Move Process Fragment
AP4: Replace Process Fragment
AP5: Swap Process Fragment
AP14: Copy Process Fragment

Adding/Deleting Levels

AP6: Extract Sub Process
AP7: Inline Sub Process

Adapting Control Dependencies

AP8: Embed Process Fragmentin a Loop
AP9: Parallelize Activities
AP10: Embed Process Fragment in Conditional Branching
AP11: Add Control Dependency
AP12: Remove Control Dependency

Change Transition Conditions

AP13: Update Condition

Figure 3.10: Overview of existing adaptation patterns

extraction of a sub process from a process schema is supported by
AP6, whereas the inclusion of a sub process into a process schema
is supported by AP7.

• Patterns for adapting control dependencies. These refer to 5 pat-
terns: embed an existing process fragment in a loop (AP8), par-
allelize a process fragment (AP9), embed an existing process frag-
ment in a conditional branch (AP10), and add/remove control
dependencies (AP11, AP12).

• Patterns for change transition conditions. These refer to AP13
(Update condition) which allows changing transition conditions
in logical decisions (e.g., XOR gateways).

3.3 Business Process Modeling Patterns 61

Two general design choices are valid for the 14 adaptation patterns:
(1) be applied at the process type and/or process instance level and (2)
be applied on a process fragment (e.g., an atomic activity, an encapsu-
lated sub process, or a hammock). If an adaptation pattern is supported
at the process type level, the graphical editor of the PAIS should allow
users to edit a process schema at design time using the respective pat-
tern. If no pattern support is provided, process schema changes have
to be conducted at a low level of abstraction using change primitives
[Weber et al., 2008]. If a respective pattern is, in turn, supported at the
process instance level, changes of single instances can be accomplished.

Patterns for Changes in Predefined Regions allow for bet-
ter dealing with uncertainty by deferring decisions regarding the exact
control flow to enactment time. Instead of requiring a process model
to be fully specified prior to execution, parts of the model can remain
unspecified. In contrast to adaptation patterns, whose application is
not restricted a priori to a particular process part, patterns for changes
in predefined regions define constraints concerning the parts of a pro-
cess schema that can be changed or expanded. Thus, the application
of these patterns has to be anticipated at build-time. This can be ac-
complished by defining regions in the process schema where potential
changes may be performed during enactment time. As process schema
changes or process schema expansions can only be applied to these pre-
defined regions, respective patterns are less suited for dealing with ar-
bitrary exceptions [Dadam & Reichert, 2009]. Instead they allow for
dealing with situations where, due to uncertainty, decisions cannot be
made at build-time, but have to be deferred to enactment time. Figure
3.11 summarizes existing patterns for changes in predefined regions.

There exist four patterns for changes in predefined regions. These
four patterns differ regarding the parts that can remain unspecified
resulting in a different degree of freedom during enactment time.

• Late Selection (PP1). It allows deferring the selection of the im-
plementation of a particular activity to enactment time. Prior
to execution only a placeholder activity has to be provided, the
concrete implementation is selected during enactment time either

62 State of the Art

Patterns for Changes to Predefined Regions

PP1: Late Selection of Process Fragments
PP2: Late Modeling of Process Fragments
PP3: Late Composition of Process Fragments
PP4: Multi-Instance Activity

Figure 3.11: Overview of existing patterns for changes in predefined regions

based on predefined rules or on user decisions.

• Late Modeling (PP2). It offers more freedom and allows for model-
ing selected parts of the process schema at enactment time. Prior
to execution only a placeholder activity has to be provided, its
implementation is model during enactment time.

• Late Composition of Process Fragments (PP3). It enables the
on-the-fly composition of process fragments from the process re-
pository (e.g., by dynamically introducing control dependencies
between a predefined set of fragments). There is no predefined
plan, but the process instance is created in an ad-hoc way by se-
lecting from the available activities in the repository. In addition,
constraints may be defined, which have to be considered while
composing a process fragment.

• Multi-Instance Activity (PP4). It allows for deferring the decision
on how often a specific activity should be executed during en-
actment time. PP4 not only constitutes a change pattern, but a
workflow pattern as well since it allows for the creation of multiple
activity instances during enactment time [van der Aalst et al.,
2003]. The decision of how many instances are created can be
based either on knowledge available at design time or on some
knowledge gained at enactment time (cf. Section 2.1).

3.4 Discussion 63

Table 3.1 summarizes the main properties of the two major pattern
categories for dealing with business processes.

Adaptation patterns
Patterns in changes
to predefined regions

Structural
process
change

yes no

Anticipation
of change

no yes

Change re-
stricted to
predefined
region

no yes

Application
area

Unanticipated ex-
ceptions, unfore-
seen situations

Address uncertainty by
deferring decisions to
enactment time

Table 3.1: Summary of the change patterns for business processes

3.4 Discussion

In this chapter we have described the most relevant approaches closely
related to the work of this thesis. First, we have analyzed existing
approaches that deal with process variability modeling. Using a hetero-
geneous set of techniques (e.g., configurable nodes), there exist plenty of
process variability approaches that allow creating and managing config-
urable process models. However, these approaches are primarily focused
on providing different formats for representing configurable processes
(e.g., represent the concept of configurable node), instead of systemat-
izing how to create and evolve configurable process models using the
approaches (e.g., methodology). With the current process variability
approaches, PAIS engineers usually are required to manually model
and manage all the elements of a configurable process model one by

64 State of the Art

one and ensure its correctness by their own. This can be both a tedi-
ous and error-prone task especially when a configurable process model
represents a process family comprising a high number of process vari-
ants. For example, PAIS engineers need to be aware of each variation
and dependence of each process variant. In this thesis, on top of these
approaches, we define a set of change patterns that enable the model-
ing and management of configurable process models at a higher level
of abstraction than the one provided by existing process variability ap-
proaches. Used in combination with any process variability approach,
our set of patterns are intended to speed up the modeling process and
reduce the effort needed for such purpose. Even though the multiple
definitions of the term ’pattern’ (cf. Section 2.3), we consider this thesis
as a pattern-based approach since we provide a reusable solution for
modeling process families. In particular, our change patterns can be
classified as design patterns (cf. Section 2.3.5) since they can be used
to solve common problems when defining a process family. In addition,
since they are based on the results obtained from a systematic literature
review, our patterns are empirically grounded.

Regarding other use of patterns, in this chapter we have also ana-
lyzed how patterns have been applied for modeling software product
families. In the analyzed approaches, patterns have been proved as
a feasible approach to reduce modeling efforts. This results coincide
with the benefits that we envision for our set of patterns. Further, we
have examined workflow patterns that make PAISs better comparable.
Respective patterns provide means for analyzing the expressiveness of
process modeling tools and languages in respect to different workflow
perspectives (e.g., resources or data). In the same vein, we have re-
vised patterns for dealing with changes in business process models (i.e.,
adaptation patterns and patterns for better dealing with process uncer-
tainty). Although all these patterns are well suited for product families
and single process models, they are not sufficient to cope with the com-
plexity that process variability introduces. Thus, our set of patterns
complement existing work since we cover variability-specific needs for
process families.

Furthermore, as well as existing patterns in the context of busi-

3.5 Conclusions 65

ness processes (i.e., workflow patterns and patterns dealing with pro-
cess model changes) can be used for PAIS comparison, there is a lack
of methods for comparing PAIS including process variability. This en-
tails that PAIS engineers should select the proper process variability
approach based on their previous experience and knowledge. In this
thesis, we also fill this gap by providing a broad characterization of pro-
cess variability. We perform an in-depth and systematic study of ap-
proaches enabling process variability in order to provide a clear picture
of process variability and identify the main aspects of existing process
variability approaches. Then, based on this empirical evidence we de-
rive a framework named VIVACE, which shall allow for the systematic
assessment and comparison of existing process variability approaches.

3.5 Conclusions

This chapter presents the most relevant approaches closely related to
the work of this thesis. As discussed previously, the thesis complements
these approaches. In the following, we describe in detail our in-depth
and systematic study of the process variability domain. This study help
us to provide a broad characterization of process variability.

66 State of the Art

4
VIVACE: Process Variability

Characterization

The modeling of process variability is a way of capturing common
process knowledge and reusing it in terms of configurable process

models. For creating such models, several approaches have been defined
(cf. Section 3.1). However, with these approaches, PAIS engineers are
required to manually model and manage all the elements of a configur-
able process model one by one, which can be tedious and error-prone
especially with large process families (e.g., thousands process variants).
For example, PAIS engineers need to be aware of each variation and
dependence of each process variant. Thus, more efficient methods that
allow PAIS engineers to model process variability at a level of abstrac-
tion higher than the one provided by the existing process variability
approaches are needed.

In this context, the use of modeling patterns [Weber et al., 2008]

68 VIVACE: Process Variability Characterization

is a promising solution. However, a set of patterns specifically tailored
for modeling process variability cannot be defined arbitrarily. How pro-
cess variability is represented in existing approaches becomes critical
for such definition. That means, for example, to identify what lan-
guage constructs are used to capture variability in a configurable pro-
cess model. However, although several attempts to describe and char-
acterize process variability modeling have been made (e.g., [Mechrez &
Reinhartz-Berger, 2014; Aiello et al., 2010]), none of them identify these
constructs.

In this chapter, we deal with this issue by studying in-depth the
process variability domain. For such purpose, we conducted a system-
atic study to analyze existing process variability approaches regarding
their expressiveness with respect to process variability modeling as well
as their process support. This study was performed as a systematic
literature review over the process variability domain. Thus, we could
identify the specific language constructs used to represent process vari-
ability. In addition, in this study we decided to consider all the phases
of the process lifecycle (cf. Section 2.1) since process variability model-
ing, as described in previous chapters, is involved in several phases such
as analysis and design phase, enactment, and evolution (cf. Sections 2.1
and 3.1). As a result, apart from the language constructs, we are able
to derive a complete characterization of process variability along the
process lifecycle. This characterization is aggregated in the VIVACE
framework. In particular, VIVACE can support PAIS engineers in (1)
defining new process variability approaches, (2) improving their com-
munication, (3) evaluating existing process management technologies
enabling process variability, (4) selecting which of the approaches meets
PAIS engineers’ requirements best, and (5) dealing with (e.g., modeling,
implementing) a PAIS that will effectively support variability along the
process lifecycle.

More concretely, this chapter presents VIVACE and the essential
aspects of the systematic study that allow understanding how it was
obtained. For a complete description of the performed study, we refer to
Appendix B. The rest of the chapter is organized as follows. Section 4.1
describes the research questions we defined in order to characterize the

4.1 Research Questions Formulation 69

process variability domain. Section 4.2 presents the VIVACE framework
and describes each of its aspects in detail. Section 4.3 illustrates the
way VIVACE can be applied in practice. Section 4.5 compares VIVACE
with other process variability characterizations. Finally, Section 4.6
concludes the chapter.

4.1 Research Questions Formulation

A systematic study (in terms of a systematic literature review) is a
means of identifying, evaluating, and interpreting relevant data in a
specific area through a replicable, scientific, and transparent approach,
which reduces the probability of any bias [Kitchenham & Charters,
2007]. To conduct such a study with respect to process variability, we
designed a protocol following the guidelines, procedures, and policies
proposed by Kitchenham in [Kitchenham & Charters, 2007]. According
to the latter, this protocol described the formulation of the research
questions, the search string, the data sources chosen for performing the
search, the identification of inclusion and exclusion criteria, the quality
assessment questions, the selection of studies1, the method for extract-
ing the data from the selected studies, and the way how the obtained
data shall be analyzed (cf. Appendix B).

The overall goal of our systematic study was to analyze relevant
papers regarding their expressiveness for modeling process variability
and their support for handling process variability along the process life-
cycle. To perform such analysis we investigated the following six issues,
which allows us to better classify and characterize each relevant paper.
First of all, since there exists no standard language for modeling process
variability, we were interested in identifying what process modeling
languages have been used for this purpose. Second, as literature refers
to various techniques for creating configurable process models
[Ayora et al., 2012a], we were interested in providing an overview of the
way these techniques are used. Third, in order to allow assessing the
expressiveness of existing approaches for modeling process variability

1In the given context, a study refers to a retrieved paper.

70 VIVACE: Process Variability Characterization

(and serve as a basis for our change patterns), we wanted to identify
a core set of variability-specific language constructs frequently
used by these approaches. Fourth, since variability may concern dif-
ferent process perspectives, we wanted to provide insights into the
perspectives covered by existing process variability approaches. Fifth,
in order to assess the practical applicability of existing process variab-
ility approaches, we were interested in identifying the available tools
supporting these approaches. Sixth, we wanted to create an in-depth
understanding of variability support features (e.g., to verify and
validate process variants) that foster process variability along the dif-
ferent phases of the process lifecycle. Seventh, to assess the level of
maturity of existing process variability approaches, we further investig-
ated whether and–if so–how these approaches have been empirically
evaluated. Finally, we analyzed the domains in which existing process
variability approaches have been applied. In this context, we considered
the following research questions:

• RQ1. What underlying business process modeling languages are
used for modeling process variability?

• RQ2. Which techniques are used for representing process variab-
ility in a configurable process model2?

• RQ3. What language constructs are provided for representing
process variability in a configurable process model?

• RQ4. Which process perspectives are covered by languages that
enable the modeling of process variability?

• RQ5. What tools exist for enabling process variability?

• RQ6. What variability support features are provided for fostering
process variability in all phases of the process lifecycle?

• RQ7. Have existing process variability approaches been evalu-
ated? If so, how does this evaluation look like?

2Remember that related process variants are defined in terms of a configurable
process model, which then represents a complete process family.

4.1 Research Questions Formulation 71

• RQ8. In which domains have existing process variability ap-
proaches been applied?

To answer these questions, we subjectively elaborated a search string
using keywords we derived based on our in-depth knowledge of the topic
and taking the defined research questions into account. This string was
applied to relevant data sources to find studies related to the topic (i.e.,
process variability). These queries resulted in a total of 4947 studies,
which were filtered based on a set of inclusion/exclusion criteria and
a set of questions to assess their quality. Overall, this resulted in 63
primary studies, which are summarized in Table 4.1. Each of these
studies is associated with a unique identifier (i.e., Study ID), which is
used in the following to refer to the respective studies.

Study ID Study ID

S1-Alférez et al. [Alférez et al., 2014]
S33-Czarnecki et al. [Czarnecki & An-
tkiewicz, 2005]

S2-Bucchiarone et al. [Bucchiarone et al.,
2013]

S34-Becker et al. [Becker et al., 2004]

S3-Kumar et al. [Kumar & Yao, 2012]
S35-van der Aalst et al. [van der Aalst
et al., 2012]

S4-Frece et al. [Frece & Juric, 2012] S36-Li et al. [Li et al., 2011]
S5-Santos et al. [Santos et al., 2012] S37-Weber et al. [Weber et al., 2011]

S6-W. Yao et al. [Yao et al., 2012]
S38-Derguech et al. [Derguech & Bhiri,
2011]

S7-Q. Yao et al. [Yao & Sun, 2012] S39-Yahya et al. [Yahya & Bae, 2011]
S8-Ognjanovic et al. [Ognjanovic et al.,
2012]

S40-Koetter et al. [Koetter et al., 2011]

S9-Gröner et al. [Gröner et al., 2012] S41-Gröner et al. [Gröner et al., 2011]

S10-Boffoli et al. [Boffoli et al., 2012]
S42-van der Aalst et al. [van der Aalst
et al., 2010a]

S11-Schunselaar et al. [Schunselaar et al.,
2012]

S43-La Rosa et al. [La Rosa et al., 2010]

S12-Groefsema et al. [Groefsema et al.,
2011]

S44-Mahmod et al. [Mahmod & Chiew,
2010]

S13-Döhring et al. [Döhring et al., 2011]
S45-Gottschalk et al. [Gottschalk et al.,
2008]

S14-Park et al. [Park & Yeom, 2011] S46-Thomas et al. [Thomas, 2008]

S15-Nguyen et al. [Nguyen et al., 2011]
S47-Koschmider et al. [Koschmider &
Oberweis, 2007]

S16-Pascalau et al. [Sakr et al., 2011] S48-Mendling et al. [Mendling et al., 2006]
S17-Meerkamm et al. [Meerkamm &
Jablonski, 2011]

S49-Recker et al. [Recker et al., 2006]

S18-Derguech et al. [Derguech et al., 2010]
S50-Reinhartz-Berger et al. [Reinhartz-
Berger et al., 2005]

72 VIVACE: Process Variability Characterization

S19-Hallerbach et al. [Hallerbach et al.,
2010b]

S51-Döhring et al. [Döhring et al., 2014]

S20-de la Vara et al. [de la Vara et al.,
2010]

S52-Derguech et al. [Derguech et al., 2012]

S21-Reinhartz-Berger et al. [Reinhartz-
Berger et al., 2010]

S53-Lönn et al. [Lönn et al., 2012]

S22-Acher et al. [Acher et al., 2010] S54-Bulanov et al. [Bulanov et al., 2011]
S23-Reijers et al. [Reijers et al., 2009] S55-Vogelaar et al. [Vogelaar et al., 2011]

S24-La Rosa et al. [La Rosa et al., 2009b]
S56-Reinhartz-Berger et al. [Reinhartz-
Berger & Sturm, 2012]

S25-La Rosa et al. [La Rosa et al., 2011]
S57-Scherer et al. [Scherer & Sharmak,
2011]

S26-Montero et al. [Montero et al., 2008]
S58-Pascalau et al. [Pascalau & Rath,
2010]

S27-Moon et al. [Moon et al., 2008] S59-Baier et al. [Baier et al., 2010]
S28-Gottschalk et al. [Gottschalk et al.,
2007]

S60-Gottschalk et al. [Gottschalk et al.,
2009]

S29-Lapouchnian et al. [Lapouchnian
et al., 2007]

S61-La Rosa et al. [La Rosa & Mendling,
2009]

S30-Schnieders et al. [Schnieders & Puhl-
mann, 2007]

S62-Schnieders et al. [Schnieders & Weske,
2007]

S31-Lazovik et al. [Lazovik & Ludwig,
2007]

S63-Giese et al. [Giese et al., 2007]

S32-Lu et al. [Lu et al., 2009]

Table 4.1: Final list of primary studies

During the selection process, we organized these 63 primary studies
in three groups:

1. Studies describing process variability approaches: S1 - S34.

2. Studies describing process variability support features: S35 - S50.

3. Studies describing solely empirical evaluations of process variab-
ility approaches: S51 - S63.

Each of the 63 primary studies was deeply analyzed with the goal
to answer the defined research questions. The obtained results are ag-
gregated in the VIVACE framework.

4.2 The VIVACE Framework 73

4.2 The VIVACE Framework

This section presents the VIVACE framework. The latter aggregates
the results we gathered in the context of the defined research questions
(cf. Section 4.1). Hence VIVACE draws a complete characterization of
process variability support. It refers to (1) the process variability mod-
eling language, (2) the techniques provided for building a configurable
process model, (3) the process perspectives covered, (4) the variability-
specific language constructs, (5) the features supporting process vari-
ability in the different phases of the lifecycle, (6) tools implementing
process variability approaches, (7) empirical evaluations performed, and
(8) their application domains (cf. Figure 4.1).

In the following, we present each of the aspects of VIVACE separ-
ately.

4.2.1 Languages for Modeling Business Process Variab-
ility

We first present the analysis related to RQ1 (What underlying business
process modeling languages are used for modeling process variability?).
In order to answer this research question, we analyzed the group of stud-
ies describing process variability approaches (i.e., S1-S34). In particular,
these studies referred to the expressiveness of existing approaches with
respect to the modeling of process variability. In this section, we focus
on the languages they use as basis for modeling process variability.

Figure 4.2 shows the distribution of the 34 studies according to the
modeling languages they use for representing both the commonalities
(i.e., process fragments shared by all process variants) and variations
of the members of a process family (i.e., the process variants).

As can be seen, 17 studies are conceived to be independent of a
particular process modeling language; i.e., S1, S3, S5, S9, S10, S15, S18,
S19, S20, S22, S24, and S28-S33. For example, these studies propose
the use of feature models, ontologies, rules, or hierarchical indexing
structures in order to capture and model process variability. In turn,
respective approaches can be used in combination with any process

74 VIVACE: Process Variability Characterization

The VIVACE framework
Modeling language used to represent process variability

Technique used for building the configurable process model

 Method for modeling the process family

Process perspectives covered

Variability-
specific

language
constructs

LC1 Configurable Region

LC2 Configuration Alternative

LC3 Configuration Context Condition

LC4 Configuration Constraint

LC5 Configurable Region Resolution Time

Variability
support
features

Analysis & Design phase

 F1.1 Modeling a configurable process model

 F1.2 Verifying a configurable process model and its related
process family

 F1.3 Validating a configurable process model

 F1.4 Evaluating the similarity of different process variants

 F1.5 Merging process variants

Configuration phase

 F2 Configuring specific regions of a process variant out of a
configurable process model

Enactment phase

 F3.1 Configuring specific regions of a process variant at
enactment time

 F3.2 Dynamically re-configuring an instance of a process variant
at enactment time

Diagnosis

 F4 Analyzing a collection of process variants

Evolution

 F5.1 Versioning of a configurable process model

 F5.2 Propagating changes of a configurable process model to
already configured process variants

Tool implementation

Empirical evaluation

Application domain

Figure 4.1: The VIVACE framework

4.2 The VIVACE Framework 75

17

5
4

2 2 1 1 1 10

2

4

6

8

10

12

14

16

18

Language
independence

BPMN EPC UML Directed
graphs

OWL POPM PVOSM CApLang

Figure 4.2: Distribution of studies S1-S34 according to the process modeling
language used

modeling language (e.g., BPMN, EPC, or UML Activity Diagrams)
for properly representing process variability.

On the contrary, the other 17 studies propose approaches that ex-
tend existing (process) modeling languages with specific constructs for
modeling process variability, or that design proprietary languages for
this purpose. In particular, 11 studies propose conceptual extensions of
existing process modeling languages such as BPMN (i.e., S4, S8, S13,
S16, S26), EPC (i.e., S21, S23, S25, and S34), and UML Activity Dia-
gram (S14, S27) in order to enable the explicit modeling of process vari-
ability. In turn, 6 studies either make use of languages such as Directed
Graphs (S11 and S12) or OWL [OWL, 2009] (S6), which are common
in other fields, or they propose proprietary languages developed for the
modeling of process variability; i.e., CApLang (S2), PVOSM (S7), and
POPM (S17).

4.2.2 Techniques for Modeling Process Variability in a
Configurable Process Model

We now consider RQ2 (Which techniques are used for representing pro-
cess variability in a configurable process model?). We identified two

76 VIVACE: Process Variability Characterization

techniques that may be used to model process variability (cf. Figure
4.3). In particular, these techniques either allow capturing the entire
process family (i.e., all process variants) in a single model artifact (i.e.,
single artifact technique) or in a set of related model artifacts (i.e.,
multi-artifact technique). The latter may represent different aspects of
the process family, e.g., commonalities of the process variants, variant-
specific parts, configuration constraints, and application context. In or-
der to answer RQ2, again we analyze the 34 studies describing process
variability approaches (i.e., S1-S34). In particular, these studies refer
to the expressiveness of existing approaches regarding the modeling of
process variability.

13

20

0

2

4

6

8

10

12

14

16

18

20

Single artifact technique Multi-artifact technique

Figure 4.3: Distribution of studies S1-S34 according to the process variability
modeling technique used

The single artifact technique has been realized by various studies
based on different methods (cf. Figure 4.4). The latter include hiding
& blocking (S11), configurable nodes (S7, S25, and S28), and logic for-
mulae (S12). Furthermore, annotations for BPMN (S4 and S13), labels
for EPC (S23 and S34), and meta-model extensions for UML Activity
Diagrams (S27) and BPEL (S31) have been proposed in order to realize
configurable process models. Finally, multiplicity indicators (S21) and
a hierarchical indexing structure (S18) constitute two specific methods
for representing a configurable process model in terms of a single arti-

4.2 The VIVACE Framework 77

fact. Note that all these methods enrich the configurable process model
with additional information (e.g., configuration constraints) in order to
guide users when deriving process variants.

In turn, the multi-artifact technique has been realized in the follow-
ing studies: S1, S3, S5, S6, S8, S9, S10, S14-S17, S19, S20, S22, S24,
S26, S29, S30, S32, and S33. Basically, approaches using this technique
represent a process family in terms of four different modeling artifacts.
The latter include a base model, a set of variable process fragments,
rules for adapting the base model through adding/deleting the variable
process fragments, and an application context determining when these
rules apply. Thereby, the base model is specified using a particular
business process modeling language (e.g., BPMN). However, different
policies may be applied when defining a base process model, e.g., setting
the latter to the most frequently used process variant or to the process
model having minimum average edit distance to the process variants of
the process family [Li et al., 2011].

Concerning the three other artifacts (i.e., variable process fragments,
rules to adapt the base model, and application context), different meth-
ods for defining them exist (cf. Figure 4.4). In turn, these methods are
based on specific techniques from various fields (e.g., software product
lines, semantic web, and requirements engineering), or they are expli-
citly designed for the process variability approach at hand. For rep-
resenting variable process fragments, for example, features models, as
known from software product lines, can be used (cf. studies S1, S8, S9,
S10, S14, S15, S22, S26, S30, and S33). In turn, in the requirements
engineering field, S29 refers to goal models that may be applied to rep-
resent variability at a high level of abstraction. Finally, variable process
fragments may be defined based on a set of process model components
(S16), a variant list (S17), or a set of pre-specified change operations
(S19 and S32).

In turn, the rules for adapting the base model may rely on meth-
ods such as business rules (S3) and process model queries (S16). The
approach described by study S29, for example, uses non-functional con-
straints for deriving process variants.

78 VIVACE: Process Variability Characterization

1

3

2 2

1 1 1 1 1

2
1

2

1

10

1 1 1 1
0

2

4

6

8

10
H

id
in

g
&

 B
lo

ck
in

g

C
o

n
fi

gu
ra

b
le

 n
o

d
es

B
P

M
N

 e
xt

en
si

o
n

EP
C

 e
xt

en
si

o
n

U
M

L
A

ct
iv

it
y

D
ia

gr
am

s
ex

te
n

si
o

n

B
P

EL
 e

xt
en

si
o

n

M
u

lt
ip

lic
it

y
in

d
ic

at
o

rs

Lo
gi

c
fo

rm
u

la
e

H
ie

ra
rc

h
ic

al
 in

d
ex

in
g

st
ru

ct
u

re
s

C
h

an
ge

 o
p

er
at

io
n

s

V
ar

ia
n

t
lis

t

C
o

n
te

xt
 a

n
al

ys
is

Q
u

es
ti

o
n

n
ai

re
 m

o
d

el

Fe
at

u
re

 m
o

d
el

s

B
u

si
n

es
s

ru
le

s

O
n

to
lo

gi
es

P
ro

ce
ss

 m
o

d
el

 c
o

m
p

o
n

en
ts

 &
 q

u
er

ie
s

G
o

al
 m

o
d

el
s

Single artifact methods Multi-artifact methods

Figure 4.4: Distribution of studies S1-S34 according to the single and multi-
artifact method used

Finally, for defining an application context, studies S1 and S6 use on-
tologies (described in the OWL language) and semantic rules. In turn,
S24 uses a questionnaire model for defining the application context of
each process variant. Finally, S5 and S20 redefine a context analysis
method from a business process perspective in order to analyze context
properties.

Note that study S2 has not been considered in the above classifica-
tion since it describes process variability at the program code level, i.e.,
S2 does not use process models to represent process variability. Thus,
it cannot be classified in any of the described techniques due to the
absence of a configurable process model.

4.2 The VIVACE Framework 79

4.2.3 Language Constructs for Process Variability

Regarding RQ3 (What language constructs are provided for represent-
ing process variability in a configurable process model?), we identi-
fied five variability-specific language constructs: configurable region,
configuration alternative, configuration context condition, configuration
constraint, and configurable region resolution time. These constructs
abstract from concrete process variability approaches since they are
defined at a higher level of abstraction. In the following, we describe
the identified variability-specific language constructs and illustrate them
along the check-in process (cf. Appendix A). Note that for obtaining
these constructs, again we only analyze studies describing process vari-
ability approaches (i.e., S1-S34).

• Configurable Region Language Construct (LC1): A configurable
region corresponds to a region of a configurable process model
for which different configuration choices exist, depending on the
application context. Studies supporting language construct LC1
include S1-S5, S7-S23, and S25-S34.

Example 1 (Configurable Region). Regarding the check-in
process (cf. Appendix A), activity Pay extra fee is only per-
formed if the luggage has overweight. Otherwise, it is skipped.
Consequently, at the respective position of the configurable pro-
cess model, there exist two choices depending on the weight of the
luggage; i.e., either perform the activity or skip it. Accordingly,
the respective position of the configurable process model consti-
tutes a configurable region.

• Configuration Alternative Language Construct (LC2): A configur-
ation alternative corresponds to a particular configuration choice
that may be selected in the context of a specific configurable region
(LC1). In general, respective alternatives may refer to any pro-
cess perspective; i.e., the functional, behavioral, organizational,
informational, temporal, and operational perspectives (cf. Sec-
tion 2.1). The studies that support this construct include S1-S5,

80 VIVACE: Process Variability Characterization

S7-S23, and S25-S34. However, note that they do not support
configuration alternatives with respect to all process perspectives.

Example 2 (Configuration Alternative). Several configura-
tion alternatives exist for the check-in process. Regarding the be-
havioral perspective, for example, before performing activity Print
boarding card, each activity that may be performed or skipped
constitutes a configuration alternative, e.g., activity Fill in ESTA
form. Concerning the organizational perspective, there exist dif-
ferent roles that may perform the Print boarding card activity, i.e.,
the passenger himself via the web system, the self-servicing ma-
chine, or the airline personnel at the check-in counters (i.e., each
role constitutes a configuration alternative). The configuration
alternatives related to the informational perspective refer to the
different types of boarding cards resulting from the check-in pro-
cess (e.g., electronic versus paper-based). Finally, configuration
alternatives of the temporal perspective refer to the start events
“23 hours before departure” or “3 hours before departure”.

• Configuration Context Condition Language Construct (LC3): A
configuration context condition defines the conditions under which
a particular configuration alternative (LC2) of a configurable re-
gion (LC1) shall be selected. Studies that consider this construct
include S1, S2, S5, S6, S8, S13-S15, S19, S20, S24, S28, S30, S33,
and S34.

Example 3 (Configuration Context Condition). Before
activity Print boarding card will be performed in a check-in pro-
cess (cf. Appendix A), different alternatives exist. For example,
activity Fill in ESTA form is only performed if the passenger is
traveling from EU to US. In this case, the configuration context
condition “flight destination”determines whether or not this activ-
ity will be performed.

4.2 The VIVACE Framework 81

• Configuration Constraint Language Construct (LC4): A config-
uration constraint is defined as a restriction regarding the selec-
tion of configuration alternatives (LC2). Respective constraints
are based on semantic restrictions to ensure the proper use of the
defined configuration alternatives (e.g., exclusion or inclusion rela-
tionships). The studies supporting this language construct include
S2, S5-S10, S12, S14-S17, S19, S21, S22, S24-S29, and S31-S33.

Example 4 (Configuration Constraint). Regarding the check-
in process, activity Localize assistance to accompany passenger
shall be performed when handicapped passengers check-in. Ac-
cordingly, a configuration constraint is or needs to be introduced
in the configurable process model to express that this activity shall
be only performed if the passenger is a handicapped person. Oth-
erwise, the activity shall be skipped.

• Configurable Region Resolution Time Language Construct (LC5):
The configurable region resolution time allows modelers to dis-
tinguish between configurable regions (LC1) whose configuration
either depends on the initial or the current context of a process
instance (i.e., configuration or enactment time). Studies support-
ing this construct include S15, S28 and S32.

Example 5 (Configurable Region Resolution Time). Re-
garding the check-in process, the process variant specifying the
online check-in may be configured at configuration time by select-
ing the activities referring to the web system role. However, the
activity related to the overweight luggage (i.e., Pay excess fee)
is only performed if the passenger places the luggage at the desk
scales. In this case, the decision whether or not this activity will
be performed is postponed to enactment time.

Figure 4.5 summarizes which studies supported which variability-
specific constructs. As shown, configurable regions (LC1) and configur-
ation alternatives (LC2) were supported by 32 (out of 34) studies. In
turn, configuration context conditions (LC3) were covered by 15 studies,

82 VIVACE: Process Variability Characterization

while 24 studies considered the definition of configuration constraints
(LC4). Finally, only 3 studies allowed specifying the configurable region
resolution time (LC5).

Interestingly, only 2 studies covered the entire set of the language
constructs we identified (i.e., LC1-LC5): S15 and S28. In turn, 7 studies
covered four language constructs (e.g., LC1, LC2, LC3, LC4); i.e., S2,
S5, S8, S14, S19, S32, and S33. Altogether, Figure 4.5 confirms the
high relevance of the five language constructs in respect to the explicit
modeling of process families and the variability inherent to them.

 Studies supporting the language construct

Variability-
specific

language
constructs

LC1 Configurable Region S1-S5, S7-S23, S25-S34

LC2 Configuration Alternative S1-S5, S7-S23, S25-S34

LC3 Configuration Context Condition
S1, S2, S5, S6, S8, S13-S15, S19, S20, S24,
S28, S30, S33, S34

LC4 Configuration Constraint
S2, S5-S10, S12, S14-S17, S19, S21, S22, S24-
S29, S31-S33

LC5 Configurable Region Resolution Time S15, S28, S32

Figure 4.5: Variability-specific language constructs and studies supporting
them

4.2.4 Covered Process Perspectives

This section describes the analysis in respect to research question RQ4,
which refers to the process perspectives covered (Which process per-
spectives are covered by languages that allow for the modeling of process
variability?). For answering RQ4, we re-analyzed the studies describing
process variability approaches (i.e., S1-S34).

As illustrated by Figure 4.6, the most frequent process perspectives
covered by existing process variability approaches are the functional
and behavioral ones. As shown, 33 studies considered both process
perspectives; i.e., the respective approaches define process variability in
respect to the control flow perspective (i.e., S1-S24 and S26-S34). In
turn, the informational perspective was only considered by 7 studies
(i.e., S3, S4, S15, S17, S25, S32, and S34) and the organizational one

4.2 The VIVACE Framework 83

by 5 studies (i.e., S3, S17, S22, S25, and S34). Finally, none of the
identified studies considered variability of the temporal or operational
perspective.

33 33

5
7

0

5

10

15

20

25

30

35

Functional Behavioral Organizational Informational Temporal Operational

Figure 4.6: Distribution of studies S1-S34 according to the process perspect-
ives covered

As can be seen in Figure 4.6, most studies solely cover variability
with respect to control flow (i.e., the functional and behavioral per-
spectives). However, studies S3, S17 and S34 are more complete cov-
ering four perspectives (i.e., functional, behavioral, organizational, and
informational). Finally, studies S4, S15, S22, and S32 at least cover 3
different perspectives (e.g., functional, behavioral, and informational).

4.2.5 Existing Tools for Managing Process Variability

This section deals with the analysis of RQ5, which refers to available
tools providing support for process variability (i.e., What tools exist for
enabling process variability?). For answering research question RQ5,
we analyzed the studies describing process variability approaches (i.e.,
S1-S34) and variability support features (i.e., S35-S50). In particular,
these studies might refer to available tool implementations.

We found 41 tools for managing process variability. Out of them,

84 VIVACE: Process Variability Characterization

however, only 10 were available online; i.e., these tools can be down-
loaded from websites (including manuals and tutorials); i.e., S2, S11,
S13, S22, S24-S26, S28, S29, and S33. Figure. 4.7 lists these tools.

Furthermore, we observed that until 2013 most tool implementations
constitute proof-of-concept prototypes not yet ready for industrial ad-
option; i.e., they were developed with the goal to validate the feasibility
of the proposed approaches. Besides this, the kind of tool differs, de-
pending on the objective of the respective study. In detail, existing
implementations provide graphical editors for modeling process vari-
ability (S29), model transformations that allow generating the entire
family of process variants from a feature model (S26), and extensions
of existing process modeling languages for explicitly representing vari-
ability (S5, S13). In some studies, these implementations are realized
as an Eclipse plug-in (S1, S8, S15, S25, S27, S28) or a proprietary Java
tool (S3 and S24).

Other implementations integrate existing tools for realizing a par-
ticular process variability approach. Examples include S6, S9 and S33,
which implement a set of plug-ins to integrate a feature model editor
with the Protègè tool, a transformation from BPMN to Description
Logic, and Rational Software Modeler, respectively. Finally, other pro-
cess variability approaches are implemented by extending commercial
BPM suites such as ARIS Architect (S19, S23), IBM Rational Software
Architect (S30), and WebSphere BPEL4WS (S31).

4.2.6 Variability Support Features

This section summarizes the variability support features extracted in
the context of RQ6 (What variability support features are provided for
fostering process variability in all phases of the process lifecycle?). For
answering this research question, we analyzed studies describing pro-
cess variability approaches (i.e., S1-S34) and variability support features
(i.e., S35-S50). We organize the features along the phases of the process
lifecycle (cf. Section 2.1).

4.2 The VIVACE Framework 85

Study ID Reference

S2 soa.fbk.eu/node/218

S11 www.promtools.org/prom6/

S13 www.markus-doehring.de/phd/index.php?option=com_content&view=article&id=59&Itemid=63

S22 modalis.polytech.unice.fr/softwares/manvarwor

S24 www.processconfiguration.com/download.html

S25 www.processconfiguration.com/download.html

S26 www.eclipse.org/m2m/atl/atlTransformations/#FM2BPMN

S28 www.yawlfoundation.org/

S29 https://se.cs.toronto.edu/trac/ome/wiki

S33 gp.uwaterloo.ca/fmp2rsm

Last accessed: October, 2015

Figure 4.7: Downloading links of available tools

Phase I: Analysis & Design
In the analysis & design phase, a process family is designed, modeled,
validated, and verified using a particular process variability approach.
In this context, language constructs such as the ones introduced in Sec-
tion 4.2.3 are provided in order to specify and represent the common as
well as the variable parts of the process variants of a process family in a
configurable process model. Relevant features identified for this phase
are as follows:

Feature F1.1 (Modeling a configurable process model). Tool
support is needed for designing a configurable process model that repres-
ents an entire process family (i.e., the collection of all process variants).
In this context, we must consider all language constructs introduced
(cf. Section 4.2.3) as well as appropriate tool support for them. Since
graphical process models are usually more comprehensible than non-
graphical ones [Weske, 2007], in addition, graphical editors, navigation
features, and visualization support are required to facilitate the creation
of such models. Studies S1, S3, S4, S6, S7, S9, S10, S12-S23, S25-S28,
and S30-S34 provide various techniques supporting this feature.

Feature F1.2 (Verifying a configurable process model and
its related process family). Efficient techniques are needed in order
to ensure that configurable process models are syntactically correct and

86 VIVACE: Process Variability Characterization

behaviorally sound.3 This means, it must be guaranteed that solely
syntactically correct and behaviorally sound process variants can be
derived from a configurable process model. The verification may be
accomplished during the creation of the configurable process model or
latter. Feature F1.2 is considered by studies S23, S32, S35, S40, S41,
S48, and S49.

Feature F1.3 (Validating a configurable process model).
Techniques are needed for validating the semantic correctness of config-
urable process models. In particular, it must be ensured that a config-
urable process model properly covers all relevant variants of a business
process. Again, such a validation may be accomplished during the cre-
ation of a configurable process model or afterwards. Studies S42 and
S46 use logic formulas to address this issue.

Feature F1.4 (Evaluating the similarity of different process
variants). In order to reduce modeling efforts, techniques for determ-
ining the similarity between related process variants are needed. Before
adding a process variant to a process family, for example, it needs to be
checked whether a similar process variant already exists. This is crucial
in order to avoid redundancies and duplications. Studies S32, S44 and
S47 provide methods and algorithms for this purpose.

Feature F1.5 (Merging process variants). In order to avoid
mode redundancy and foster model reusability, techniques for integrat-
ing (i.e., merging) a collection of related process variants in a configur-
able process model are needed. Corresponding techniques are provided
by studies S11, S23, S38, S39, and S43. Usually, a configurable process
model resulting from their application covers the behavior of all pro-
cess variants merged. In addition, reversibility techniques that allow
deriving any of the input process variants from the configurable process
model through individualization are useful as well. Studies S11, S38
and S43 describe methods for realizing such reversibility; i.e., they en-
sure the traceability of each variant after having performed the merging
process.

3Regarding a sound process, all activities may be executed in the context of at
least one process instance and no deadlocks or livelocks may occur.

4.2 The VIVACE Framework 87

Phase II: Configuration
The goal of the configuration phase is to derive an executable process
variant (i.e., a member of the process family) through a configuration
of the configurable process model. This is denoted as individualization
process. Furthermore, the resulting process variant then needs to be
deployed on the enactment system (e.g., workflow management system).
We identified Feature F2 for this phase:

Feature F2 (Configuring a process variant out of a configur-
able process model). In general, tools should provide sophisticated
user interfaces. Furthermore, proper techniques for retrieving the cur-
rent application context and deriving an appropriate process variant for
it are required. On one hand, algorithms for checking the syntactical
correctness and soundness of configured process variants as well as their
conformance with the specified configuration constraints (cf. Section
4.2.3) are required. For example, inclusion (exclusion) constraints may
enforce (exclude) configuration alternatives with respect to a specific
configurable region. In particular, users should be prohibited from de-
riving invalid process variants, e.g., by informing them about constraint
violations. On the other hand, techniques enabling a high level of ab-
straction are required when specifying a particular application context;
i.e., the configuration of a particular process variant should be accom-
plished at a high level of abstraction. Furthermore, the process variant
resulting from a configuration (i.e., individualization) procedure should
be graphically displayed to users. This feature is supported by stud-
ies S1, S8-S11, S14, S15, S17, S21-S26, S28-S30, S33, S34, S41, and
S50 based on different techniques for configuring a process variant. For
example, studies S24 and S25 provide a questionnaire model (i.e., form-
based questionnaire) that allows individualizing a configurable process
model by answering questions about the respective application context.
Another well-known configuration technique is provided by feature mod-
els (e.g., S41 and S50). The latter map features to configuration altern-
atives; i.e., when a feature is selected, the configurable process model
becomes configured automatically. Other techniques we discovered with
respect to the support of the configuration phase include configuration

88 VIVACE: Process Variability Characterization

algorithms (e.g., S8 and S23), goal models (S29), and decision tables
(S10). Figure 4.8 illustrates abstract examples of these techniques. To
be more precise, it depicts a questionnaire model (part A), a feature
model (part B), a goal model (part C), and a decision table (part D).

q1
f1

f2

q2

f3

f4

f5

A- Questionnaire model

C1: f1 XOR f2

C2: f1  f3

C3: f3 XOR f4 XOR f5

B – Feature model

A

B
E

C

F G

Goal
Soft

goal

Goal

Soft

goal

Goal

AND

AND

-

+

C – Goal model D – Decision table

A
B
C
D
E
F
G
H

X X
X

X X
X

XX
XX

X X
X X

1 2 3 4 5

D

Optional feature Mandatory feature

+ Helps

- Hurts

C
o

n
d

it
io

n
s

Values

+ Possible value

Figure 4.8: Example of configuration techniques

Phase III: Enactment
During the enactment phase, instances of a (configured) process vari-
ant may be created, started and executed. In this context, it should
be possible to dynamically configure or re-configure a process vari-
ant if required [Ayora et al., 2012a]; i.e., to switch from one process
variant to another during enactment time. Note that such dynamic
(re-)configuration might become necessary due to contextual changes
occurring during enactment time [Alférez et al., 2014]. However, a
dynamic (re-)configuration must be accomplished in a controlled and
robust manner. For example, automated re-configurations of a sound
process variant instance should always result in a sound process vari-
ant instance again. Note that this differs from ad-hoc changes as sup-
ported in adaptive PAISs [Reichert & Weber, 2012]. Usually, ad-hoc
changes correspond to unplanned dynamic changes, whereas a dynamic
re-configuration switches the execution of a process instance from its
current variant model to another pre-specified one. In detail, we ob-
served the following features for the enactment phase:

4.2 The VIVACE Framework 89

Feature F3.1 (Configuring specific regions of a process vari-
ant at enactment time). Certain configuration decisions can solely
be made at enactment time when required data becomes available. In
order to address this issue, late modeling techniques [Reichert & Weber,
2012] for configuring process variants at enactment time are provided by
S4, S5, S13, and S32. This feature is illustrated by Figure 4.9: A part of
the process variant (indicated as activity X) is deemed to be of dynamic
nature. In particular, X is defined based on a set of activities (i.e., C, D,
E, F, G, and H) and a corresponding set of constraints restricting their
use (presented as logic formulas in Figure 4.9). During enactment time,
for a given process variant instance, X may be concretized based on
available context data or user decisions. For the given scenario, Figure
4.9 shows a particular design of the process for which X is substituted
by a process fragment composed out of activities G and H. Note that
this substitution is valid in terms of the prescribed constraints (e.g., G
and H exclude each other).

+
A B IX A B I

G

H

C D

E

G
+

Constraints

C ˄ D ˄ E

G xor H

F

H
Configuration at

enactment time

Figure 4.9: Configuring a specific region of a process variant at enactment
time

Example 6 (Configuring specific regions of a process variant
at enactment time). Whether or not a passenger carries overweight
luggage is not known until she arrives at the counter. Hence, the Pay
extra fee activity may only be selected when enacting instances of the
respective process variant.

Feature F3.2 (Dynamically re-configuring an instance of a
process variant at enactment time). For a particular instance of a

90 VIVACE: Process Variability Characterization

process variant, it might become necessary to dynamically switch its ex-
ecution from the current process variant model to another pre-specified
one. Such dynamic re-configurations might be required, for example,
to react to contextual changes [Reichert & Weber, 2012]. Studies S1,
S2, S12, and S19 provide techniques that support this advanced fea-
ture. Figure 4.10 illustrates it for a process variant instance that is
dynamically re-configured to another variant model (i.e., the execution
of activity F substitutes the one of activities C, D and E).

A B

C

D

E

I
P P

▲

▲

▲ Dynamic

re-configuration

A B IF
P P ▲

PCompleted ▲Activated

Instance I on process variant 1: Instance I on process variant 2:

Figure 4.10: Dynamically re-configuring an instance of a process variant

Example 7 (Dynamically re-configuring an instance of a pro-
cess variant at enactment time). Regarding the check-in process,
changes of the passenger status might require dynamic variant switches.
For example, consider a passenger not having entered her frequent flying
number when buying the ticket and therefore being initially treated as
a regular customer. When providing the frequent flying number later,
a switch to another process variant needs to be performed.

Phase IV: Diagnosis
In the diagnosis phase, a collection of configured process variants is
analyzed to learn from the configuration settings made at design and
enactment time.

Feature F4 (Analyzing a collection of process variants).
Techniques for learning from the configuration settings chosen when
configuring the process variants at design or enactment time are needed;
i.e., by analyzing the structure as well as the behavior of a given collec-

4.2 The VIVACE Framework 91

tion of process variants, an improved configurable process model might
be obtained. Studies providing support for this advanced feature in-
clude S36 and S45.

Phase V: Evolution
This phase deals with the evolution of a process family and the con-
figurable process model representing its members in order to cope with
changing and evolving requirements. Examples of such evolutionary
changes include the addition of new process variants (i.e., variants that
cannot be configured out of the configurable process model so far), the
removal of existing ones (i.e., process variants that must no longer be
configured), and the modification of existing process variants to increase
their quality (e.g., to improve model comprehensibility). In order to en-
able such an evolution, a configurable process model must be changed
accordingly. In this context, we identified the following features:

Feature F5.1 (Versioning of a configurable process model).
Techniques allowing for the co-existence of different versions of the same
configurable process model are needed, particularly in the context of
long-running processes. For example, study S46 presents a method
using version-graph models to support this feature. Figure 4.11 shows
four versions of a configurable process model and the associated version
graph to manage them.

Feature F5.2 (Propagating changes of a configurable pro-
cess model to already configured process variants). When chan-
ging a process fragment in a configurable process model, which is com-
mon to several process variants, the changes must be propagated across
all (already configured) process variants in order to maintain overall
consistency of the process family and to reduce maintenance efforts.
Techniques for propagating changes of a configurable process model to
already configured process variants are described in studies S3 and S37.
Figure 4.12 illustrates this feature.

92 VIVACE: Process Variability Characterization

A B

Configurable process model - version 1:

C

D

E

F

G

H

I A B

C

D

E

F

G

H

IX

A B

C

D

E

F

G

H

IX

Y

A B

C

D

E

F

G

H

IX Y

Z

Version graph:

Insert X between

A and B

Configurable process model - version 2:

Configurable process model - version 3: Configurable process model - version 4:

Insert X after F

Insert G after Y

Conf. region

Conf. alternative

Insert Z after D

Insert Y after I

Configurable process

model - version 3

Configurable process

model - version 1

Configurable process

model - version 2

Configurable process

model - version 4

Figure 4.11: Versioning of a configurable process model

A B

Configurable process model - version 1:

C

D

E

F

G

H

I A B

C

D

E

F

G

H

IX

Insert X after A

Insert Y after C

Configurable process model - version 1.1:

Conf. region

Conf. alternative

Y

Propagating the changes

to already configured

process variants

Process variants configured out of version 1:

A B

C

D

E

I

A B IF

A B I
G

H

A B

C

D

E

I

A B IF

A B I
G

H

X

X

X

Y

Figure 4.12: Propagating changes between configured process variants

4.2 The VIVACE Framework 93

Figure 4.13 summarizes the identified variability support features and
presents the primary studies supporting them. Note that, in addition
to these variability support features, well known features for managing
single (i.e., individual) process models are applicable in the context
of process families as well. As example consider algorithms measur-
ing process model similarity [Dijkman, 2008; Dijkman et al., 2011a] or
techniques enabling process model refactorings [Dijkman et al., 2011b].
Both might improve the management of process families as well [Reich-
ert & Weber, 2012]. This work excludes such standard features since it
focuses on variability-specific language constructs and support features.

 Studies supporting the feature

Variability
support
features

Analysis & Design phase

 F1.1 Modeling a configurable process model
S1, S3, S4, S6, S7, S9, S10, S12-S23,
S25-S28, S30-S34

 F1.2 Verifying a configurable process model and its related process family S23, S32, S35, S40, S41, S48, S49

 F1.3 Validating a configurable process model S42, S46

 F1.4 Evaluating the similarity of different process variants S32, S44, S47

 F1.5 Merging process variants S11, S23, S38, S39, S43

Configuration phase

 F2 Configuring specific regions of a process variant out of a configurable
process model

S1, S8-S11, S14, S15, S17, S21-S26,
S28-S30, S33, S34, S41, S50

Enactment phase

 F3.1 Configuring specific regions of a process variant at enactment time S4, S5, S13, S32

 F3.2 Dynamically re-configuring an instance of a process variant at
enactment time

S1, S2, S12, S19

Diagnosis phase

 F4 Analyzing a collection of process variants S36, S45

Evolution phase

 F5.1 Versioning of a configurable process model S46

 F5.2 Propagating changes of a configurable process model to already
configured process variants

S3, S37

Figure 4.13: Variability support features and studies supporting them

4.2.7 Empirical Evaluation of Process Variability Approaches

This section describes the results for RQ7, which refers to empirical
evaluations existing until 2013 in the context of process variability (i.e.,
Have existing process variability approaches been evaluated? If so, how
does this evaluation look like?). For answering this research question, we

94 VIVACE: Process Variability Characterization

analyzed studies describing process variability approaches (i.e., S1-S34)
and empirical evaluations of these approaches (i.e., S51-S63).

We found that two different methods have been applied to empir-
ically evaluate process variability approaches: case studies and exper-
iments (cf. Figure 4.14). Case studies constitute the most popular
method applied in the context of 12 studies (i.e., S28, S51-54, S56, S57,
S58, and S60-S63). Furthermore, 4 studies deal with experimental val-
idations (i.e., S1, S23, S55, and S59). Study S1 uses the Goal-Question-
Metric method to evaluate the design of a configurable process model.
In turn, S23 reports on interviews with practitioners after they interac-
ted with a configurable process model. In turn, study S55 uses similarity
metrics to cope with the complexity (e.g., size) of configurable process
models. Finally, S59 provides mapping patterns to compare two process
variability approaches (i.e., S23 and S28) in terms of complexity (e.g.,
size of the resulting models).

12

4

0

2

4

6

8

10

12

Case study Experiment

Figure 4.14: Methods applied to empirically evaluate process variability ap-
proaches

It is noteworthy that there only exist few concrete evaluations of
process variability approaches. In turn, this indicates a lack of empirical
evaluations of existing process variability approaches, which have not
matured to the level of general industrial adoption yet (e.g., regarding
scalability and usability).

4.2 The VIVACE Framework 95

4.2.8 Application Domains

This section gives insights into RQ8, which refers to the domains in
which existing process variability approaches have been applied (i.e.,
In which domains have existing process variability approaches been ap-
plied?). For this purpose, we analyzed studies describing process vari-
ability approaches (i.e., S1-S34) and empirical evaluations of these ap-
proaches (i.e., S51-S63). We observed that process variability approaches
have been applied to different domains. The latter include e-government
(S12, S28, S53, S54, S55, and S60), retail (S10, S16, and S58), finance
(S23), automotive industry (S2), healthcare (S17 and S61), and film
production (S24 and S25). Note that this list only includes those do-
mains for which there exists a clear evidence that the process variability
approach is applied to real business processes; i.e., we do not considered
domains for which fictitious processes are described.

4.2.9 Aspects Cutting Across VIVACE Aspects

The aspects of VIVACE described in the previous sections are not com-
pletely independent from each other. This section analyzes the relations
among the results.

First, the analysis made in the context of research questions RQ1
and RQ2 reveals that many of the language-independent process variab-
ility approaches rely on a multi-artifact technique for building configur-
able process models. This applies to 14 out of 17 language-independent
process variability approaches: S1, S3, S5, S9, S10, S15, S19, S20, S22,
S24, S29, S30, S32, and S33.

Second, the multi-artifact technique (RQ2) enables a broader sup-
port of the variability-specific language constructs identified (RQ3).
Most process variability approaches relying on a multi-artifact tech-
nique (e.g., S1, S14, and S15) support three or more of these language
constructs. This may be explained by the fact that the use of additional
artifacts allows defining broader aspects of a configurable process model;
e.g., configuration context conditions or configuration constraints.

Third, it is noteworthy that the identified language constructs (RQ3)

96 VIVACE: Process Variability Characterization

are mainly supported with respect to the functional and behavioral pro-
cess perspectives (i.e., control flow) (RQ4). This is plausible since the
most supported variability-specific language constructs (i.e., configur-
able region and configuration alternative) are related to the control flow
of the process.

Fourth, tool support available for a particular process variability
approach (RQ5) does not entail an empirical evaluation of the respective
approach (RQ7). Although tools may facilitate the evaluation of an
approach, only 3 process variability approaches (i.e., S1, S23 and S28)
have been both implemented and empirically evaluated.

4.3 VIVACE in Practice

Like other frameworks [Sinnema et al., 2006; Aiello et al., 2010], VI-
VACE is intended to systematically assess and compare process vari-
ability approaches with respect to their expressiveness and the features
provided for the support of process variability in the different phases
of the process lifecycle. In order to illustrate the way VIVACE can
be applied in practice, we exemplarily assess selected process variabil-
ity approaches. In detail, the latter include C-EPC (S28) (cf. Section
4.3.1), Provop (S19) (cf. Section 4.3.2), and PESOA (S30) (cf. Section
4.3.3). We select these approaches since they are (1) well established
and highly cited, (2) there exists a mature tool support for them, and (3)
they represent variability using different techniques (cf. Section 4.2.2).
For each selected approach, based on VIVACE we provide a general
description, discuss its expressiveness with respect to process variabil-
ity modeling, and assess its lifecycle support for process variability. As
evaluation criteria, we consider the results gathered in the context of
the presented research questions (cf. Section B.1).

For both, variability-specific language constructs (cf. Section 4.2.3)
and variability support features (cf. Section 4.2.6), we differentiate
between no support [-], partial support [+/-], and full support [+]. In
addition, regarding the process perspectives supported (RQ4), we use
codes to indicate the perspectives covered by the approach: behavioral

4.3 VIVACE in Practice 97

(B), functional (F), organizational (O), informational (I), temporal (T),
and operational (Op). In this vein, we use these codes for Language
Construct LC2 (i.e., configuration alternative) in order to indicate the
process perspectives it covers. Finally, we summarize evaluation results
in Section 4.3.4.

4.3.1 Applying VIVACE to Configurable EPC

General description. A possible way of realizing a configurable pro-
cess model is to enrich a process model with configurable nodes. A
modeling language supporting this approach is C-EPC (i.e, Configur-
able EPC). C-EPC extends an existing process modeling language (i.e.,
EPC) by introducing configurable elements. In particular, this allows
merging the behavior of all valid process variants in one and the same
artifact, i.e., the configurable process model corresponds to one artifact
(single artifact technique). Configurable nodes have been introduced for
other process modeling languages as well (e.g., YAWL [van der Aalst
& ter Hofstede, 2003]). Figure 4.15 illustrates the use of C-EPC in the
context of the check-in process (cf. Appendix A). Configurable nodes
are depicted with a thicker line. We do not add intermediate events
between functions in order to keep the size of the configurable process
model as small as possible. This helps us mitigate possible undesirable
effects on understandability and likelihood of errors due to model size
[Mendling et al., 2010]. In addition, practitioners recommend not to in-
clude events between functions in EPC for the sake of simplicity [ARIS-
Community, 2010]. Thus, the configurable nodes correspond to process
fragments with single entry and single exit (i.e., SESE fragment). They
may have two different forms. On one hand, the SESE fragment may
consist of a splitting configurable connector, immediately followed by
a set of branches representing configuration alternatives, and a join-
ing configurable connector; i.e., the configurable connectors delimit a
configurable region (e.g., Configurable region 1 in Figure 4.15). Al-
ternatively, the SESE fragment may consist of a configurable function
(e.g., Configurable region 2 in Figure 4.15), which may be configured
as ON (i.e., the function shall be kept in the configured process model),

98 VIVACE: Process Variability Characterization

OFF (i.e., the function shall not be included in the configured process
model), or OPT (i.e., the function shall be conditionally included in
the configured process model deferring the decision about its execution
to enactment time). In turn, SESE fragments representing the different
configuration options are included as branches between two configurable
connectors (e.g., Localize assistance to accompany passenger in Config-
urable Region 1 in Figure 4.15). Further, note that the application
context is represented separately from the configurable process model
in a questionnaire model [La Rosa et al., 2009b]. Note that the latter
is not depicted in Figure 4.15 due to lack of space. Finally, semantic
constraints with respect to the configuration of configurable functions
and connectors (e.g., mutual exclusion, inclusion) may be specified in
terms of configuration requirements linked to the configurable nodes.
For example, Configuration Requirement 1 in Figure 4.15 states that
the configurable function Fill in unaccompanied form is only included if
SEQ1b is selected in XOR1; i.e., activity Assign seat for UM is selected.

X

S
E

Q
1

a

SEQ1b

1 2

S
E

Q
3

a
S

E
Q

3
b

3 4

Configuration Requirement 2:

(XOR1 = SEQ1b) ˅ (XOR1 =

SEQ1c)  OR3 = AND

Identify

passenger
Assign seat

for UM

Fill in UM

form

Provide info about

accommodation

Print duplicated boarding

card for the relative

S
E

Q
1

c

Drop off bulk

luggage

Configuration Requirement 1:

Fill UM form = ‘ON’ 

XOR1 = SEQ1b

Localize assistance to

accompany passenger

5 6

S
E

Q
5

a
S

E
Q

5
b

Configuration Requirement 3:

XOR1 = SEQ1c 

XOR5 = SEQ5b

Assign seat for

handicapped

Assign seat

Configuration Requirement 4:

Fill UM form = ‘ON’ 

XOR5 = SEQ5a

X

Fill in

ESTA form
˅

X

Configurable

function

Configurable

XOR connector

Configurable

OR connector
X˅ Configuration

Requirement

Configurable region 1

Configurable region 2

Conf. alternative

Print boarding

card

Pay excess

fee
˅

X

Drop off regular

luggage

Configuration Requirement 5:

“Provide info about accommodation” = ON 

“Fill in ESTA form” = ON

Check-in

available

Boarding

Event

Figure 4.15: Configurable process model of the check-in process (in C-EPC
notation)

Process variability expressiveness. Regarding the identified
variability-specific language constructs presented in Section 4.2.3, in C-

4.3 VIVACE in Practice 99

EPC, a configurable region (LC1) is specified in terms of a configurable
connector or function (LC1 [+]). In turn, a configuration alternative
(LC2) corresponds to a SESE fragment that may either be included as
a branch between two configurable connectors (e.g., Localize assistance
to accompany passenger in Configurable Region 1 in Figure 4.15) or
excluded. Basically, configuration alternatives consider the functional
and behavioral perspectives. In addition, extended support with re-
spect to the organizational and informational perspectives is provided
[La Rosa et al., 2009b] (LC2 [F, B, O, I]). In turn, configuration con-
text conditions (LC3 [+]) are represented separately in a questionnaire
model (see [La Rosa et al., 2009b]). A configuration constraint is spe-
cified in terms of a configuration requirement. The latter may be linked
to the configurable nodes that delimit the configurable region to which
the respective configuration alternatives belong (LC4 [+]); e.g., Con-
figuration Requirement 1 in Figure 4.15. Finally, configurable region
resolution time is supported since configurable functions can be con-
figured to OPT, deferring their configuration to enactment time when
the context information becomes available (LC5 [+]); e.g., configurable
function Pay excess fee in Figure 4.15.

Process variability support. The C-EPC approach has been im-
plemented in a toolset called Synergia, which provides a number of vari-
ability support features as well [Synergia, 2009]. In particular, Synergia
supports the creation of a configurable process model using a graphical
editor. Moreover, it allows defining the context of a configurable pro-
cess model using configuration requirements (F1.1 [+]). Further, the
Synergia toolset provides a mapper tool that can be used to verify a
configurable process model and its related process family [Rosa, 2009]
(F1.2 [+]). In addition, it is possible to validate configured process mod-
els using C-EPC Validator [Mendling, 2008] (F1.3 [+]). No support is
provided for measuring the similarity between process variants (F1.4 [-
]), whereas sophisticated merging techniques are presented in [La Rosa
et al., 2010] (F1.5 [+]). The configuration of process variants is suppor-
ted by a questionnaire-based approach, which has been implemented
in the Quaestio tool [Rosa, 2009]. By answering a set of questions, do-
main experts are assisted and guided in configuring configurable process

100 VIVACE: Process Variability Characterization

models and hence in deriving a specific process variant (F2.1 [+]); i.e.,
domain facts (answers) are mapped to configuration choices. Config-
uration at enactment time and dynamic re-configuration of a process
variant are not considered; once the configuration of a C-EPC model
is finished, the resulting process model variant is deployed and cannot
be changed anymore (F3.1 [-], F3.2 [-]). In turn, support for optim-
izing process variant models is provided in [Gottschalk et al., 2008]
(F4.1 [+]). No explicit support exists for handling different versions
of a configurable process model or propagating model changes to pro-
cess variants (F5.1 [-], F5.2 [-]). In addition, the C-EPC approach has
been empirically evaluated in a case study [Lönn et al., 2012]. Finally,
C-EPC has been applied to business processes from different domains
(e.g., e-government and film production).

4.3.2 Applying VIVACE to Provop

General description. In Provop, a pre-specified base process model
(base process for short) is adjusted to the given application context
through a sequence of model changes; i.e., context-specific structural
adaptations are applied in order to derive a particular process variant
from a configurable process model in Provop [Hallerbach et al., 2010a,
2009]. Furthermore, a base process may be specified with any process
modeling language; i.e., Provop provides a language-independent ap-
proach.

Figure 4.16 illustrates how the check-in process family can be rep-
resented in Provop. In particular, the configurable process model can
be represented through several artifacts (i.e., multi-artifact technique).
The top of Figure 4.16 depicts the base process based model out of
which the process variants can be configured. Figure 4.16 further shows
the structural adaptations (i.e., change options) that may be applied in
isolation or combination to this base process when configuring a partic-
ular process variant. In Provop, configurable regions of the base process
are specified by a SESE fragment, delimited by two adjustment points
(i.e., black diamonds). For example, in Figure 4.16 a configurable re-
gion comprises the process fragment delimited by adjustment points A

4.3 VIVACE in Practice 101

and B. In turn, a configuration alternative is specified in terms of a
change option, which includes (1) a list of atomic change operations
modifying a configurable region of the base process and (2) a context
rule that defines the context conditions under which the change opera-
tions shall be applied (e.g., Option 1 in Figure 4.16). The application
context is specified in terms of context rules, which include a set of con-
text variables and their values specifying the conditions under which a
configuration alternative (i.e., a change option) shall be chosen (e.g.,
Option 2 shall be applied if the passenger is a handicapped person). All
context variables and their allowed values are gathered in the context
model (cf. Figure 4.16). Finally, semantic constraints (e.g., mutual ex-
clusion or inclusion) may be specified between two change options in
the option constraint model ; e.g., if Option 2 is applied, Option 3 shall
be excluded (cf. Figure 4.16).

Identify

passenger

Assign

seat

Print

boarding card

Base model

Drop off regular

luggage

Change options (i.e., atomic sequences of change operations)

A B C D F G H

Adjustment point

Context Variable Range of Values
passenger_type

flight_destination
luggage_weight

ADULT, UM, HAN
EU, USA
[0, 50]

Context model

luggage REG, BULK

Option constraint model

Option 2 Option 3excludesOption 2 Option 3excludes

O
p

ti
o
n

 3 DELETE Assign

seat

A B

CTXT RULE (static):

IF passenger_type = UM ˅ passenger_type= HAN

CTXT RULE (static):

IF luggage = BULK

O
p

ti
o
n

 6

Drop off bulk

luggage

G HINSERT

DELETE Drop off regular

luggage

F G

CTXT RULE (static):

IF luggage_weight > 20

O
p

ti
o
n

 5

Pay

excess fee

D FINSERT

CTXT RULE (static):

IF flight_destination = USA

O
p

ti
o
n

 4

Fill in

ESTA form

B CProvide info about

accomodation

INSERT

CTXT RULE (static):

IF passenger_type = UM

O
p

ti
o
n

 1 INSERT Assign seat

for UM

A B

INSERT Fill in UM

form

B C

F G
AND ˄˄

Print duplicate boarding

card for the relative

X Z

X
Z

F
G

CTXT RULE (static):

IF passenger_type = HAN

O
p

ti
o
n

 2 INSERT Assign seat for

handicapped

A B

F G
AND ˄˄

Localize assintance to

accompany passenger

X Z

X
Z

F
G

Figure 4.16: Provop model of the check-in process

Process variability expressiveness. In Provop, a configurable
region is specified in terms of a SESE fragment of the base process, de-
limited by two adjustment points (LC1 [+]). In turn, a configuration
alternative (LC2) is specified in terms of a change option. These al-
ternatives may be defined with respect to the control flow perspective,

102 VIVACE: Process Variability Characterization

i.e., behavioral and functional perspective (LC2 [F, B]). In turn, con-
figuration context conditions can be specified in terms of context rules
(LC3 [+]), while configuration constraints are specified as constraints
between change options in the option constraint model (LC4 [+]). Fi-
nally, Provop does not allow for the specification of the configurable
region resolution time (LC5 [-]).

Process variability support. The Provop approach has been im-
plemented in a proof-of-concept prototype based on the ARIS Business
Architect tool [Reichert et al., 2009]. The creation of a configurable
process model is supported by a graphical editor, which allows creating
a base model and specifying the options that may be used to configure
it (F1.1 [+]). The prototype further supports the definition of a con-
text model through a set of context variables. Moreover, relationships
between variants can be defined in the option constraint model. The
configured process models can be verified to ensure their correctness
(F1.2 [+]). However, no validation support is provided (F1.3 [-]). In
addition, techniques for measuring the similarity of process variants [Li
et al., 2008] as well as for merging process variants [Li et al., 2011] are
provided (F1.4 [+], F1.5 [+]). The prototype further provides configur-
ation support (F2.1 [+]). Depending on the actual context, a (sub-)set
of the available change options is applied to the base process model
resulting in a context-specific process variant. The Provop prototype
checks whether the defined options violate any constraint defined on
the total set of change options. If such a constraint violation is de-
tected, the prototype notifies the process engineer accordingly. After
selecting the change options relevant in the given application context,
these are applied to the base process and the resulting process variant
is displayed to the user. Dynamic configuration at enactment time is
not supported by the Provop prototype (F3.1 [-]). Opposed to this, dy-
namic re-configuration of a process variant instance due to contextual
changes at enactment time is supported by including variant branches
in the process model and encapsulating the adjustments of single change
options within these variant branches (F3.2 [+]). Support for analyzing
a collection of process variants is provided through a separate tool [Li,

4.3 VIVACE in Practice 103

2010], which can import the process variants created by the Provop pro-
totype (F4.1 [+]). In turn, the evolution of configurable process models
is not considered; i.e., neither support for handling different versions of
a configurable process model nor support for propagating the changes
of the base process to already configured process variants has not been
provided yet (F5.1 [-], F5.2 [-]). Finally, Provop has been illustrated
using processes from the automotive and healthcare domains.

4.3.3 Applying VIVACE to PESOA

General description. The PESOA approach represents a process
family through a configurable process model including a set of annota-
tions. More precisely, annotations are attached to the process activities
that may be subject to variation [Puhlmann et al., 2006]. For this pur-
pose, language-independent techniques like encapsulation, inheritance,
design patterns, and extension points are used. In principle, therefore,
PESOA may be applied to any process modeling language. Further,
the application context of the variable activities is specified in terms of
features attached to them. Accordingly, process variants are configured
by selecting features in the respective feature model. However, the rela-
tionships that may exist between the alternatives of different variation
points are not considered.

Figure 4.17 illustrates the configurable process model corresponding
to the check-in process as defined in PESOA. It composes the related
feature model, which, in turn, contains the features associated with the
configuration alternatives. For example, the configurable process model
comprises five optional activities (e.g., Fill in UM form, Provide in-
formation about accommodation, and Drop off bulk luggage) specified
in terms of extension points. Moreover, an inheritance technique is
provided in order to model the alternatives for activity Seat assign-
ment. Attached to the definition of each alternative, there are context
conditions (i.e., features) defining when the alternative shall be selected
(i.e., multi-artifact technique). For example, activity Pay excess fee will
only become available if variable luggage overweight has value TRUE.

Process variability expressiveness. Configurable regions are

104 VIVACE: Process Variability Characterization

{passenger_type=UM}

<<Variant>>

Assign seat UM

{passenger_type=HAN}

<<Variant>>

Assign seat handicapped

Boarding

Card

<<Abstract>>

Seat assignment

Identify

passenger

{flight_destination=USA}

<<Optional>>

Provide information about accomodation

Print boarding

card

check-in

passenger_type
flight_destination

luggage_overweight

ADULT

UM

HAN

USA EU

TRUE FALSE

Process model

Associated feature model

{passenger_type=ADULT}

<<Variant>>

Assign seat

{flight_destination=USA}

<<Optional>>

Fill in ESTA form

luggage

REG BULK

{passenger_type=UM}

<<Optional>>

Fill in UM form

{luggage_overweight=TRUE}

<<Optional>>

Pay excess fee

Drop off regular

luggage

{passenger_type=UM}

<<Null>>

Print duplicated boarding card for the relative

{passenger_type=HAN}

<<Variant>>

Localize assistance to accompany passenger

{luggage=BULK}

<<Optional>>

Drop off bulk luggage

Start event

End event Activity with no variations

Flow relation

Realization relation
<<Abstract>>

...
<<Variant>>

...

<<Optional>>

...Data Object

Variation Point

Variants

Mandatory
Single choice

Feature
Selected feature

Figure 4.17: PESOA model of the check-in process

defined by attaching annotations to those activities that are subject
to variation (LC1 [+]). In addition, configuration alternatives can be
modeled using techniques like encapsulation, inheritance, design pat-
terns, and extension points; e.g., Provide information about accommod-
ation in Figure 4.17. However, these alternatives only refer to the beha-
vioral and functional perspectives (LC2 [F, B]). Furthermore, the con-
figuration context conditions of the alternatives are defined in terms of
features attached to the activities instead of process variables (LC3 [+]).
Finally, neither configuration constraints between configuration altern-
atives nor configurable region resolution time can be specified (LC4 [-],
LC5 [-]).

Process variability support. PESOA has been realized as Ec-
lipse plug-in that supports the creation of a configurable process model
(F1.1 [+]). Its graphical editor allows representing configurable regions
including configuration alternatives. In addition, it supports the defini-
tion of configuration context conditions. This is accomplished based on
feature diagrams [Czarnecki & Antkiewicz, 2005], i.e., each process vari-
ant is tagged with features, determining the conditions under which this

4.3 VIVACE in Practice 105

variant is valid. However, neither verification nor validation support is
provided (F1.2 [-], F1.3 [-]). In addition, neither similarity nor merging
techniques exist (F1.4 [-], F1.5 [-]). The configuration of process models
is supported by feature diagrams, i.e., for each disabled feature, the cor-
responding variable parts are removed from the process variant model
(F2.1 [+]). Note that the usage of feature diagrams allows configuring
process variants at a high level of abstraction. In addition, the resulting
process variants are displayed to users. Since PESOA focuses on the
modeling as well as configuration of process variants, features related to
the deployment, execution, diagnosis, and evolution of process variants
are not taken into account (F3.1 - F5.2 [-]). Finally, PESOA has been
illustrated using processes from the retail domain.

4.3.4 Summary of the Evaluation

Figure 4.18 illustrates the VIVACE framework as well as its use for
evaluating the selected process variability approaches. As shown, none
of the selected process variability approaches supports the framework
completely. To be more precise, the language constructs are fully sup-
ported only by one approach (i.e., C-EPC). In addition, the features
introduced in Section 4.2.6 are only partially supported. The latter can
be explained by the fact that all approaches lack support for the late
phases of the lifecycle (i.e., enactment, diagnosis, and evolution).4

In absence of an established reference framework for process variab-
ility, VIVACE covers different aspects related to process variability. In
particular, it covers modeling aspects of process variability (i.e., mod-
eling languages and techniques, variability-specific language constructs,
and process perspectives covered), existing support for process variabil-
ity along the lifecycle (i.e., variability support features), existing tools,
empirical evaluations of process variability, and application domains in
which process variability approaches have been applied. In this context,
based on the descriptions provided in [Gómez-Pérez, 2001], we discuss
the completeness, expandability, and consistency of VIVACE.

4We will apply VIVACE to other approaches as well. Respective results will be
made available on a website.

106 VIVACE: Process Variability Characterization

The VIVACE framework
Approach enabling process variability

C-EPC Provop PESOA

Modeling language used to represent process variability Independent Independent Independent

Technique used for building the configurable process model Single artifact Multi-artifact Multi-artifact

 Method for modeling the process family Configurable nodes Operational Annotations

Process perspectives covered F, B, O, I F, B F, B

Variability-
specific

language
constructs

LC1 Configurable Region + + +

LC2 Configuration Alternative F, B, O, I F, B F, B

LC3 Configuration Context Condition + + +

LC4 Configuration Constraint + + -

LC5 Configurable Region Resolution Time + - -

Variability
support
features

Analysis & Design phase

 F1.1 Modeling a configurable process model + + +

 F1.2 Verifying a configurable process model and its related
process family + + -

 F1.3 Validating a configurable process model + - -

 F1.4 Evaluating the similarity of different process variants - - -

 F1.5 Merging process variants + - -

Configuration phase

 F2 Configuring specific regions of a process variant out of a
configurable process model

+ + +

Enactment phase

 F3.1 Configuring specific regions of a process variant at
enactment time

- - -

 F3.2 Dynamically re-configuring an instance of a process variant
at enactment time

- + -

Diagnosis

 F4 Analyzing a collection of process variants + - -

Evolution

 F5.1 Versioning of a configurable process model - - -

 F5.2 Propagating changes of a configurable process model to
already configured process variants

- - -

Tool implementation + + +

Empirical evaluation + - -

Application domain
e-government,
film production

automotive,
healthcare

retail

Figure 4.18: VIVACE framework applied to three selected approaches

• Completeness: The process variability aspects covered by VI-
VACE have been identified from an in-depth study, which provides
a fundamental and profound understanding of business process
variability. As a consequence of this methodological choice, the
VIVACE framework only describes how process variability is cur-
rently supported (i.e., description and classification of existing lit-
erature), but not how support for process variability should look
like (e.g., important variability support features that have not
been addressed by existing research yet). In addition, VIVACE
framework is influenced by the defined research questions (cf. Sec-

4.4 Discussion 107

tion B.1). Although we are confident that these cover the most
important process variability aspects (e.g., variability-specific lan-
guage constructs and variability support features) and for charac-
terizing existing literature, completeness cannot be guaranteed.

• Expandability: If other research proposes more aspects that
cannot be fully mapped to the existing framework (e.g., need for
adding other variability-specific language constructs), VIVACE
may be expanded with the newly identified aspects. However,
with every expansion of the framework it might potentially be-
come necessary that aspects need to be merged and subsequently
renamed (e.g., a newly added features is similar, but not identical,
to an existing one and hence the two features might be merged
and a new label covering both features might be assigned).

• Consistency: The orthogonality of the process variability as-
pects covered in VIVACE minimize the occurrence of inconsist-
encies in the results obtained after its application. For example,
the assessment of a specific variability-specific language construct
(e.g. configurable region) does not have an impact over the eval-
uation of variability support features.

4.4 Discussion

The data presented in the previous sections allowed us to answer the re-
search questions that guided our study. This section provides a general
discussion about VIVACE and its aspects.

First, we learned that we can distinguish between language-independent
and language-specific process variability approaches (RQ1). Basically,
language-independent approaches extend an existing process modeling
language, but are intended to be applicable to other process modeling
languages as well. However, we observed that the latter is far from
being trivial due to existing language peculiarities. Despite the fact
that language independence is useful for generalizing a process variab-
ility approach, it might be more suitable to focus on a well-established

108 VIVACE: Process Variability Characterization

process modeling language (e.g., standardized languages) as well as to
develop variability-specific techniques optimized for this language. In
particular, this would facilitate its industrial adoption and evaluation.

Second, we observed that 13 studies implement a single artifact tech-
nique to represent a process family. By contrast, 20 studies provide a
multi-artifact technique making use of various modeling artifacts in or-
der to represent the different aspects of a process family; e.g., common
parts, variant-specific parts, constraints, and application context. Note
that these figures do not provide evidence about which technique is
more exposed. Hence, additional research is needed; e.g., experiments
evaluating the techniques in different settings (e.g., varying model size
or covered process perspectives).

Third, despite the high number of process variability approaches
identified, a common set of variability-specific language constructs is
essentially supported by most approaches (RQ3); i.e., configurable re-
gions and alternatives (supported by 32 studies), configuration con-
text conditions (15 studies), configuration constraints (24 studies), and
configurable region resolution time (3 studies). Although existing ap-
proaches use different terminology (e.g., configurable region vs. vari-
ation point) and realize the language constructs in different ways (cf.
Section 4.2.3), the five languages constructs we identified are the most
prevalent ones in existing literature on process variability. In turn, this
can be considered as a valuable insight. However, only two studies
report on process variability approaches supporting all five variability-
specific language constructs; i.e., most existing approaches do not cover
the entire set of constructs. Hence, additional efforts are required to
support all variability-specific language constructs in an integrated way
in order to cover process variability in a more complete sense. In addi-
tion, the language constructs we identified as well as their descriptions
can be used as a standard vocabulary when dealing with process variab-
ility. Thus, they will contribute to improving the communication among
PAIS engineers.

Fourth, regarding the process perspectives covered by existing pro-
cess variability approaches (RQ4), most efforts (i.e., 33 studies) have
been spent on modeling the variability of the functional and behavioral

4.4 Discussion 109

perspectives (i.e., activities and control flow). In turn, the informational
and organizational perspectives are only covered by rather few studies
(7 and 5 studies, respectively). On the contrary, none of the identified
studies considers variability of the temporal or operational perspective
even though variability support for these two perspectives is crucial
in practice. As illustrated in the context of the check-in process (cf.
Section 3.1), variability occurs with respect to all process perspectives.
Accordingly, it must be properly handled for each of them in order to
be able to represent processes families from the real world. Thus, an
integrated approach for modeling process variability, which covers all
language constructs as well as process perspectives, is needed. As a
consequence, additional research is needed in order to extend existing
process variability approaches such that they cover other process per-
spectives (i.e., the temporal and the operational ones) as well. Finally, it
is noteworthy that the identified language constructs (RQ3) are mainly
supported for the functional and behavioral perspectives (i.e., control
flow). However, since variability is prevalent for all process perspectives,
these language constructs need to be extended to cover all perspectives.

Fifth, process variability approaches should not only allow for the
modeling of variability, but also provide tool support for managing pro-
cess variants along the process lifecycle. In this line, we have identified
41 studies providing a tool implementation (RQ5). However, most of
these implementations constitute proof-of-concept prototypes. In addi-
tion, only 10 of the 41 implementations are made available on respective
websites. When making tools accessible to others, researchers promote
a wider adoption of their solutions by practitioners. Thus, tools can be
applied to real scenarios and other users might improve them.

Sixth, our findings reveal a core set of 11 variability support features
to deal with process variability along the process lifecycle (RQ6). Five
of these features are related to the modeling of a configurable process
model: modeling, verifying, validating, evaluating the similarity of vari-
ants, and merging process variants. Regarding the configuration phase,
there exist studies dealing with the configuration of process variants.
In turn, for the enactment phase, techniques for dynamically config-
uring parts of a process variant instance as well as for dynamically

110 VIVACE: Process Variability Characterization

re-configuring process variant instances exist. Besides, several stud-
ies report on techniques for analyzing process variants. Finally, there
are techniques for maintaining different versions of configurable pro-
cess models as well as for propagating changes across process variants;
i.e., techniques supporting the evolution of process families over time.
Overall, this set of features will allow process engineers to evaluate the
practical applicability of existing process variability approaches.

Basically, existing work on process variability has focused on modeling
issues. However, more efforts are required with respect to the imple-
mentation, enactment, diagnosis, and evolution of process families and
corresponding variants. In addition, similar to single (i.e., individual)
business processes [Vergidis et al., 2008; Li et al., 2011; Li, 2010], more
advanced techniques for optimizing process families need to be provided.
For example, this includes support for identifying process variants that
may be derived from a configurable process model, but never have been
configured or deployed. In turn, respective optimizations might trigger
the evolution of the configurable process model. In addition, optimiz-
ation techniques might discover frequently applied configuration steps,
which are then lifted up to the configurable process model to reduce fu-
ture configuration efforts. Furthermore, refactoring support should be
provided in order to improve the quality of a configurable process model;
i.e., altering its schema, but without changing its behavior. These ex-
amples suggest emerging research areas related to process families (i.e.,
process variability).

Finally, there is no integrated process variability approach support-
ing the entire set of features along the process lifecycle. Basically, ex-
isting process variability approaches support the modeling, verification
and configuration of configurable process models. However, none of the
identified approaches supports a wider range of features; i.e., only very
few process variability approaches support more than one feature; e.g.,
study S1 supports 3 features (i.e., F1.1., F2.1, and F3.2), while study S3
refers to 2 features (i.e., F1.1 and F5.1). As a consequence, more efforts
are required in order to cover the entire set of features in an integrated
way.

4.5 Comparison with Other Characterizations 111

Used in combination with the identified language constructs, variability-
specific features will help process engineers to analyze, compare, and
assess the support provided by existing process variability approaches.
While language constructs allow assessing the expressiveness required to
explicitly model process variability in process families, the variability-
specific features reflect the support required to adequately cope with
such expressiveness along the different phases of the process lifecycle.
Thus, another purpose of our work is to use these language constructs
and variability-specific features as an evaluation framework, which we
denote as VIVACE (cf. Figure 4.18). As opposed to other variabil-
ity frameworks [Sinnema et al., 2006; Aiello et al., 2010], VIVACE has
been the result of a systematic analysis of existing literature identifying
which aspects are actually supported when dealing with process variab-
ility. Accordingly, we expect our framework to be applied to different
process variability approaches as well as related tools in order to eval-
uate their suitability for process variability management. In the same
vein, we expect VIVACE to support process engineers in implementing
a PAIS supporting process variability along the process lifecycle. Fi-
nally, VIVACE may assist process engineers in selecting the variability
approach meeting their requirements the best.

Seventh, only few process variability approaches have been extens-
ively evaluated in practice so far (RQ7); i.e., 15 studies. However, the
absence of a broader empirical evidence limits the acceptance of respect-
ive approaches and aggravates their practical use.

Eighth, we observed that process variability approaches have been
applied in various domains, e.g., healthcare, retail, and e-government.
This emphasizes the presence of variability in business processes from
different domains.

4.5 Comparison with Other Characterizations

The overall goal of VIVACE is to provide a fundamental and profound
characterization and understanding of process variability. In addition,
we aim to comprehensively assess the support provided by existing pro-

112 VIVACE: Process Variability Characterization

cess variability approaches along the entire lifecycle of process families.
However, to the best of our knowledge, there exist three other works
that have to some degree characterized process variability as well.

First, Lang [Lang, 2002] reports on the results of a systematic map-
ping on flexible process modeling. A set of research questions is defined
for identifying the types of approaches enabling flexible processes, the
research method used (e.g., analysis, implementation), the contributions
of the study (i.e., tool, method), the context in which these approaches
were developed (i.e., industrial vs. academic), and their quality assess-
ment. This work is broader in scope compared to our analysis since it
focuses on process flexibility in general (see [Reichert & Weber, 2012]
for a comprehensive description of process flexibility issues). On the
contrary, we focus on a concrete aspect of process flexibility (i.e., the
support of process variability through configurable process models) with
the goal of providing profound insights into how existing approaches
enable process variability support (i.e., modeling languages, techniques,
language constructs, and features). Other aspects of process flexibility
(i.e., looseness, adaptation, and evolution) were out of the scope of our
work and hence we did not included them. In addition, we identified a
set of language constructs and variability support features tailored to-
wards the support of process variability; i.e., we establish the VIVACE
framework for evaluating and comparing existing process variability ap-
proaches.

In [Valença et al., 2013], Valença et al. present a systematic mapping
on process variability, which summarizes the theoretical background of
this topic. Although the goal of this paper is related to the one of our
work, the authors solely deal with design time issues. On the contrary,
we considered all phases of the process lifecycle. This is relevant since
execution and maintenance aspects of process variability will enrich
its understanding. In addition, Valença et al. consider complement-
ary keywords in the search string; e.g., “change”, “agility”, “reuse”, and
“similarity”. As a result, they also retrieve studies related to features
for managing single (i.e., individual) business processes (e.g., [Dijkman,
2008]). However, we restricted our search to variability-specific issues
to set a clear focus on process variability support. Furthermore, we ex-

4.6 Conclusions 113

plore how process variability is actually supported and implemented by
existing approaches, i.e., we provide a complete evaluation framework.

Furthermore, Santos et al. [dos Santos Rocha & Fantinato, 2013]
conduct an systematic review on how software product lines (SPL) tech-
niques have been applied to business process management. For this
purpose, the authors analyze coarse-grained aspects of SPL techniques
for business processes such as domain and application engineering, SPL
architectures, variability management, and feature modeling. In our
work, we are specifically investigating how variability can be managed
in process families (e.g., languages, constructs, features). We attempt to
provide detailed insights into the modeling of process variability as well
as into the way process variants can be configured, enacted, evolved, and
maintained, no matter what the used techniques are. On the contrary,
[dos Santos Rocha & Fantinato, 2013] only considers process variabil-
ity approaches related to SPL techniques (e.g., use of feature models
to represent process variability), neglecting other methods for dealing
with process variability (e.g., annotated configurable process models
[Schnieders & Puhlmann, 2007]).

Finally, in the context of software processes, there exist reviews ana-
lyzing variability in software process tailoring. For example, [Martinez-
Ruiz et al., 2012] identifies the requirements and mechanisms that con-
sistently support process tailoring. Finally, [Pedreira et al., 2007] de-
scribes the tools, techniques, approaches, and experiences of variability
in software engineering processes. However, these works were not deeply
analyzed since their focus is not on business process variability as such.

4.6 Conclusions

This chapter aims to describe the study we conducted to analyze and
characterized the domain of process variability. More precisely, we have
studied systematically existing approaches dealing with process variab-
ility in order to analyze how process variability is actually modeled. As
a result, we have identified a set of language constructs used to repres-
ent process variability. These constructs allows us to answer research

114 VIVACE: Process Variability Characterization

question 1 (cf. Section 1.2) of this thesis. In addition, they will be the
base of our change patterns specifically tailored for modeling variability
in process families.

The systematic study also allowed us to derive the VIVACE frame-
work, a complete characterization of process variability. VIVACE is in a
higher level of abstraction than the one provided by the existing process
variability approaches. In addition, VIVACE supports PAIS engineers
in (1) defining new process variability approaches, (2) improving their
communication, (3) evaluating existing process management technolo-
gies enabling process variability, (4) selecting which of them meets their
requirements best, and (5) dealing with (e.g., modeling, implementing)
a PAIS that will effectively support variability along the process life-
cycle.

In the following, and taking as a basis the identified variability-
specific language constructs, we define the set of change patterns for
modeling variability in process families.

5
Variability Management in

Process Families through
Change Patterns

Taking as a basis the variability-specific language constructs identi-
fied in VIVACE, we derive a set of change patterns for process fam-

ilies. Since existing adaptation patterns have been effectively applied in
individual process models previously [Weber et al., 2008], we follow and
adapt this perspective in order to provide patterns to deal with process
variability in an explicit manner (i.e., based on the variability-specific
constructs). We intend to provide a set of generic patterns that can
be afterwards implemented in any of these approaches [Ayora et al.,
2012c]. Thus, our patterns address process variability at a level of ab-
straction higher than the one provided by the existing process variability
approaches [Ayora et al., 2015] (e.g., C-EPC).

116
Variability Management in Process Families through Change

Patterns

The rest of the chapter is organized as follows. Section 5.1 explains
how the patterns hav been derived. Sections 5.2-5.11 describe the set
of change patterns in detail. Section 5.12 provides a discussion of the
defined patterns. Finally, Section 5.13 concludes the chapter.

5.1 Change Patterns Derivation

For deriving the patterns, we applied the three basic operations over the
identified variability-specific language constructs: insertion, deletion,
and modification (cf. Table 5.1). As a result, we obtained four patterns
to add variability-specific language constructs to a configurable pro-
cess model (CP1, CP3, CP5, and CP8), four patterns to remove them
(CP2, CP4, CP6, and CP9), and two patterns to modify them (CP7 and
CP10). We do not consider patterns for modifying configurable regions,
configuration alternatives, and configuration constraints. These modi-
fications can be realized combining other change patterns and existing
adaptation patterns. For example, modifying a configuration alternat-
ive may be implemented applying patterns CP3 and CP4. However, we
defined CP7 and CP10 in order to modify in a more efficient way the
variability-specific language constructs they affect (i.e., configuration
context condition and configurable region resolution time).

In the following, we describe the set of change patterns in detail. In
particular, for each pattern, we provide a name, a brief description, a
description of the problem addressed, an illustrative example based on
the check-in process (cf. Appendix A), and the design choices for its
definition (i.e., indicating pattern variants). For example, CP1 presents
three design choices: (1) insert a configurable region as a new region
with a set of new configuration alternatives, (2) insert it by transforming
a commonality into a configuration alternative (i.e., a common process
fragment now is only applied in a specific process variant), or (3) insert
it by transforming a set of commonalities into a set of configuration
alternatives. To demonstrate that the patterns–despite their intended
generic nature–can be realized, we show how they can be implemented
in a well-established approach for modeling configurable process mod-

5.1 Change Patterns Derivation 117

CP1: Insert Configurable Region

CP2: Delete Configurable Region

CP3: Insert Configuration Alternative in a Configurable Region

CP4: Delete Configuration Alternative from a Configurable Region

CP5: Insert Configuration Context Condition of a Configuration Alternative

CP6: Delete Configuration Context Condition of a Configuration Alternative

CP7: Modify Configuration Context Condition of a Configuration Alternative

CP8: Insert Configuration Constraint between Configuration Alternatives

CP9: Delete Configuration Constraint between Configuration Alternatives

CP10: Modify Configurable Region Resolution Time

Table 5.1: Change patterns for process families

els (i.e., Configurable EPC (C-EPC) [Gottschalk et al., 2007]). For
example, for each design choice, we indicate how it can be implemented
in C-EPC. This implementation in C-EPC guarantees correctness-by-
construction in terms of structure and behavior [Dumas et al., 2013;
Weske, 2007] by providing systematic means for introducing and delet-
ing modeling elements correctly. For example, by only indicating the
position of an element in the model, the implementation of the pattern
would automatically take all the rest of necessary actions for correct
insertion guaranteeing, for instance, that deadlocks are not introduced.
Thus, configurable process models are also expected to be modeled more
efficiently. In addition, for some cases pattern implementation is based
on the use of adaptation patterns (cf. Section 3.3.2). This way we pro-
mote reuse between already existing patterns and the new ones. We
further provide implementation details distinguishing between (i) con-
figurable functions and (ii) configurable connectors since both allow
representing configurable regions in C-EPC. In addition, we provide in-
formation about the parameters needed for each pattern. For example,
realizing CP1 requires (1) the precise position in the configurable pro-
cess model where the configurable region shall be inserted and (2) the
configuration alternatives to be inserted in the configurable region (if
needed). This information is highlighted in gray in the figures.

118
Variability Management in Process Families through Change

Patterns

5.2 CP1: Insert Configurable Region

Description: A configurable region is added in a configurable process
model.

Problem addressed: At a certain position in the configurable process
model, different configuration alternatives that exist are not reflected
in the configurable process model so far. Hence, a configurable region
covering these configuration alternatives shall be added.

Example: The way how boarding cards are handled depends on the
type of check-in (e.g., paper-based vs. electronic boarding cards). As-
sume that the configurable process model has not considered these con-
figuration alternatives yet. Hence, a configurable region needs to be
added to reflect this variability.

Design choices (DC):
(DC1) Insertion as a new configurable region with up to n configuration
alternatives (n ≥ 0)
(DC2) Insertion as a new configurable region by transforming a com-
mon process fragment into a configuration alternative
(DC3) Insertion as a new configurable region by transforming existing
process fragments into a set of configuration alternatives

Implementation in C-EPC:
For DC1, CP1 is realized by
1. applying adaptation pattern AP1 (Insert Process Fragment) to insert
the configurable region using either (i) a configurable function (cf. Fig-
ure 5.1) or (ii) two configurable connectors (i.e., split and join) at the
precise position where the configurable region should be located (i.e.,
after activity B), and
2. applying repeatedly CP3 (Insert Configuration Alternative in a Con-
figurable Region) to insert a process fragment representing the config-
uration alternative (only relevant for configurable connectors), i.e., the
configuration alternative is added as a branch between the two config-

5.2 CP1: Insert Configurable Region 119

urable connectors delimiting the configurable region (i.e., activity X).

A B

X

BA B X A B A
X

X

BAi) ii)
1 21

X X

X X X X

Figure 5.1: CP1: Design choice 1 implemented in C-EPC

For DC2, CP1 is realized by
1. applying adaptation pattern AP1 (Insert Process Fragment) to insert
the configurable region using either (i) a configurable function (cf. Fig-
ure 5.2) or (ii) two configurable connectors (i.e., split and join) at the
precise position where the configurable region should be located (i.e.,
after activity B),
2. applying adaptation pattern AP2 (Delete Process Fragment) to de-
lete the common process fragment from its current position (i.e., activity
B), and
3. applying CP3 (Insert Configuration Alternative in a Configurable
Region) to re-insert the common process fragment as a configuration
alternative of the configurable region (only relevant for configurable
connectors), i.e., the alternative is added as a branch between the two
configurable connectors delimiting the configurable region (i.e., activity
B).

For DC3, CP1 is realized by
1. applying adaptation pattern AP1 (Insert Process Fragment) to in-
sert the configurable region (only relevant for configurable connectors)
at the precise position where the configurable region should be located
(i.e., after the join XOR gateway),
2. applying adaptation pattern AP2 (Delete Process Fragment) to de-
lete the existing process fragment from its current position, and
3. applying repeatedly CP3 (Insert Configuration Alternative in a Con-
figurable Region) once per configuration alternative to re-insert the ex-

120
Variability Management in Process Families through Change

Patterns

B

A C AB CA CB

A C A C

A C

i)

ii)
1 2 3

B

2

A CB

1
BB

B

X X

X X X X

B
X X

Figure 5.2: CP1: Design choice 2 implemented in C-EPC

isting process fragments as configuration alternatives of the configurable
region, i.e., each process fragment is added as a branch between the two
configurable connectors delimiting the configurable region (i.e., activity
B is inserted as one alternative and activity C as another one in Figure
5.3).

A D

B

C
A D

B

C
A D

B

C
A D

B

C

1 2 3

X X

X X X X X X X X X X

Figure 5.3: CP1: Design choice 3 implemented in C-EPC

Parameters:
– the position in the configurable process model where the configurable
region shall be inserted
– the configuration alternative(s) to be added to the configurable region

5.3 CP2: Delete Configurable Region 121

5.3 CP2: Delete Configurable Region

Description: A configurable region of a configurable process model is
deleted.

Problem addressed: A configurable region is no longer needed and
thus it is deleted.

Example: Assume that a configurable region, capturing the variability
for obtaining a boarding card, exists (i.e., paper vs. electronic docu-
ment). However, in order to save money, the airline now only offers the
electronic-based boarding card (i.e., other configuration alternatives are
no longer offered) and hence the configurable region is no longer needed.

Design choices (DC):
(DC1) Deletion by removing all the configuration alternatives
(DC2) Deletion by keeping exactly one of the configuration alternatives
(i.e., the configuration alternative remains as a common process frag-
ment)
(DC3) Deletion by keeping the set of configuration alternatives

Implementation in C-EPC:
For DC1, CP2 is realized by
1. applying repeatedly change pattern CP4 (i.e., Delete Configuration
Alternative in a Configurable Region) to delete each existing configura-
tion alternative; i.e., once per configuration alternatives (only relevant
for configurable connectors, i.e., activity X in Figure 5.4), and
2. applying adaptation pattern AP2 (Delete Process Fragment) to de-
lete the configurable region in form of either (i) a configurable function
or (ii) two configurable connectors (i.e., split and join).

For DC2, CP2 is realized by
1. applying repeatedly CP4 (Delete Configuration Alternative in a Con-
figurable Region) to delete the existing configuration alternatives of the

122
Variability Management in Process Families through Change

Patterns

X A B

B

A B

A BA
X

BA

i)

ii)
21

2

X XX X

Figure 5.4: CP2: Design choice 1 implemented in C-EPC

configurable region (only relevant for configurable connectors, i.e., activ-
ity B in Figure 5.5),
2. applying adaptation pattern AP2 (Delete Process Fragment) to de-
lete the configurable region in form of either (i) a configurable function
or (ii) two configurable connectors (i.e., split and join), and
3. applying adaptation pattern AP1 (Insert Process Fragment) to re-
insert the remaining configuration alternative as a (common) process
fragment in the exact position where the configurable region was loc-
ated (i.e., activity B).

B

A CA
B

B

A C

C A C

A CBA C

A C

i)

ii)

2 3

1 2 3

B

B

X X X X

Figure 5.5: CP2: Design choice 2 implemented in C-EPC

For DC3, CP2 is realized by
1. applying adaptation pattern AP2 (Delete Process Fragment) to de-
lete the existing process fragment (including the configurable region and
its alternatives) from its current position,

5.4 CP3: Insert Configuration Alternative in a Configurable
Region 123

2. applying adaptation pattern AP1 (Insert Process Fragment) to re-
insert at the precise position where the configurable region was located
a process fragment consisting of a two non-configurable connectors, and
3. applying repeatedly adaptation pattern AP1 (Insert Process Frag-
ment) to re-insert the deleted configuration alternatives as branches
between the two recently added non-configurable connectors (i.e., activ-
ity B is inserted as one branch and activity C as another one in Figure
5.6).

Figure 5.6: CP2: Design choice 3 implemented in C-EPC

Parameters:
– the configurable region to be deleted
– the configuration alternative(s) that should be kept

5.4 CP3: Insert Configuration Alternative in
a Configurable Region

Description: A configuration alternative is added in a specific config-
urable region of a configurable process model.

Problem addressed: For a specific configurable region of the config-
urable process model, existing configuration alternatives do not cover
all possible configuration choices so far.

124
Variability Management in Process Families through Change

Patterns

Example: Assume that a configurable region, capturing the variab-
ility for obtaining a boarding card, exists (i.e., paper vs. electronic
document). Assume further that the airline now wants to offer the pos-
sibility of obtaining the boarding card for smart phones as well. Thus,
an alternative shall be added to this configurable region.

Implementation in C-EPC:
CP3 is realized by applying adaptation pattern AP1 (Insert Process
Fragment) to insert the process fragment representing the configura-
tion alternative, i.e., the configuration alternative is added as a branch
between the two configurable connectors delimiting the configurable re-
gion (i.e., activity X in Figure 5.7).

Figure 5.7: CP3 implemented in C-EPC

Parameters:
– the configurable region to which the configuration alternative belongs
– the configuration alternative to be inserted

5.5 CP4: Delete Configuration Alternative from
a Configurable Region

Description: A configuration alternative is removed in a specific con-
figurable region of a configurable process model.

5.5 CP4: Delete Configuration Alternative from a Configurable
Region 125

Problem addressed: A configuration alternative is no longer needed
and thus it is deleted.

Example: Assume that a configurable region capturing the variability
for obtaining a boarding card exists (i.e., paper vs. electronic docu-
ment). Assume further that for economic reasons, the airline does not
offer paper-based boarding cards anymore allowing only electronic and
mobile phone ones. Thus, the configuration alternative printing a paper
boarding card is no longer needed.

Implementation in C-EPC:
CP4 is realized by applying adaptation pattern AP2 (Delete Process
Fragment) to delete the process fragment representing the configura-
tion alternative, i.e., the configuration alternative is deleted as a branch
between the two configurable connectors delimiting the configurable re-
gion (i.e., activity X in Figure 5.8). If the configuration alternative
is associated with configuration requirements, these may be deleted as
well by applying CP9 (Delete Constraint between Configuration Altern-
atives), i.e., Configuration requirement 1.

Figure 5.8: CP4 implemented in C-EPC

Parameters:
– the configurable region to which the configuration alternative belongs
– the configuration alternative to be deleted

126
Variability Management in Process Families through Change

Patterns

5.6 CP5: Insert Configuration Context Condi-
tion of a Configuration Alternative

Description: A context condition related to a configuration alternat-
ive of a configurable region is added to define when the configuration
alternative shall be selected.

Problem addressed: A context condition is added to a configurable
process model to specify the condition under which a particular config-
uration alternative shall be selected.

Example: A passenger who carries luggage exceeding 20kg must pay
an extra fee (where luggage exceeding 20kg refers to the new context
condition).

Implementation in C-EPC:
Since the configuration context conditions are included in a separate
questionnaire model, CP5 is realized by adding a new fact to the ques-
tion referred to the application context of the condition (cf. Figure 5.9).
If the questionnaire model does not include a question for the specific
application context, a new question should be added. In addition, if the
new fact implies new constraints, these should be included as well.

Parameters:
– the context condition to be inserted

Figure 5.9: CP5 implemented in C-EPC

5.7 CP6: Delete Configuration Context Condition of a
Configuration Alternative 127

5.7 CP6: Delete Configuration Context Condi-
tion of a Configuration Alternative

Description: A context condition related to a configuration alternat-
ive of a configurable region of a configurable process model is deleted.

Problem addressed: A configuration context condition is no longer
needed for selecting a configuration alternative in a configurable region
and thus it is deleted.

Example: VIP passengers do not have to pay a fee for luggage over-
weight so far. However, the airline decides that from now on all passen-
gers must pay such fee.

Implementation in C-EPC:
Since the configuration context conditions are included in a separate
questionnaire model, CP6 is realized by removing an existing fact from
the question referred to the application context of the condition (cf. Fig-
ure 5.10). If the question of the removed fact is not used by any other
configuration alternatives, the question should be removed as well. In
addition, the constraints referred to the removed fact should be removed
as well.

Figure 5.10: CP6 implemented in C-EPC

Parameters:
– the context condition to be deleted

128
Variability Management in Process Families through Change

Patterns

5.8 CP7: Modify Configuration Context Con-
dition of a Configuration Alternative

Description: A context condition related to a configuration alternat-
ive of a configurable region of a configurable process model is modified.

Problem addressed: A context condition is no longer adequate and
shall be modified in the configurable process model.

Example: The payment of an extra fee is required when luggage weight
exceeds over 20kg. Due to new business goals, this is changed and the
extra fee is only required when the luggage weights more than 15kg.

Implementation in C-EPC:
Since the configuration context conditions are included in a separate
questionnaire model, CP7 is realized by modifying the fact or the con-
straint referred to the application context of the alternative (cf. Figure
5.11).

question

Fact 1

Fact 2

Fact 3

CONSTRAINTS:

C1: Fact 1 XOR Fact 2 XOR Fact 3

Fact 3'

Fact 3'

Figure 5.11: CP7 implemented in C-EPC

Parameters:
– the context condition to be modified

5.9 CP8: Insert Configuration Constraint Between Configuration
Alternatives 129

5.9 CP8: Insert Configuration Constraint Between
Configuration Alternatives

Description: A constraint regarding the selection of configuration al-
ternatives from one or more configurable regions is added to the config-
urable process model.

Problem addressed: The selection of configuration alternatives can
only be done under certain conditions.

Example: When unaccompanied minors are travelling, extra staff is
required to accompany them to the boarding gate, i.e., an inclusion
constraint exists.

Implementation in C-EPC:
CP8 is realized by inserting a configuration requirement, which is then
linked to the involved configurable nodes (either configurable functions
or connectors) that delimit the configurable region of the configuration
alternatives to be constrained (cf. Figure 5.12).

Figure 5.12: CP8 implemented in C-EPC

Parameters:
– the configuration region to which the alternatives whose selection will
be constrained
– the configuration constraint to be inserted

130
Variability Management in Process Families through Change

Patterns

5.10 CP9: Delete Configuration Constraint Between
Configuration Alternatives

Description: A constraint between two or more configuration altern-
atives from one or more configurable regions is deleted.

Problem addressed: A constraint between two or more configura-
tion alternatives is no longer needed and thus it is deleted.

Example: When unaccompanied minors are travelling, extra staff is
required to accompany them to the boarding gate (i.e., inclusion con-
straint). Due to emerging legal regulations, from now on their relatives
shall accompany them, i.e., the inclusion constraint is no longer needed.

Implementation in C-EPC:
CP9 is realized by deleting a configuration requirement, which is linked
to the configurable nodes that delimit the configurable region of the
configuration alternatives to be constrained (cf. Figure 5.13).

Figure 5.13: CP9 implemented in C-EPC

Parameters:
– the configuration constraint to be deleted

5.11 CP10: Modify Configurable Region Resolution Time 131

5.11 CP10: Modify Configurable Region Res-
olution Time

Description: In a configurable process model, the resolution time of a
configurable region is modified.

Problem addressed: : The resolution time of a configurable region
in a configurable process model is no longer adequate and is modified.

Example: Passengers travelling to US should fill in the ESTA form.
However, due to new regulations, if the passenger already travelled to
the US in smaller period than six months with the same airline, the
latter may decide that the ESTA form is not needed again. This means
that the activation of the activity “Fill in ESTA form” depends on the
passenger and the airline (i.e., activity “Fill in ESTA form” becomes
optional).

Implementation in C-EPC:
Since resolution time is only supported by the optionality of config-
urable functions (i.e., OPT configuration), CP10 is implemented by
modifying to OPT the configuration requirements that restricts the
configuration of the configurable function; e.g., from ON to OPT (cf.
Figure 5.14). The constraints of the questionnaire model referred to
the function which resolution time has been changed should be adapted
accordingly.

Parameters:
– the configurable region whose resolution time is modified

5.12 Discussion

In absence of an established method to deal with process variability in
an explicit manner, we provide a set of change patterns that enable the
modeling and evolution of process families. In addition, these patterns

132
Variability Management in Process Families through Change

Patterns

Figure 5.14: CP10 implemented in C-EPC

are intended to reduce the effort needed for such purposes and ensure
process family correctness. In this context, in the following we discuss
the completeness, generalizability and application order of our patterns.

Regarding the completeness of the proposed patterns, we ground
the patterns on a set of variability-specific language constructs obtained
from a large-scale systematic literature review. As a consequence of this
methodological choice, our patterns describe how process variability is
supported in the literature. Therefore, CP4PF is complete with regards
to their support for such constructs. We have not specified patterns for
modifying configurable regions, configuration alternatives, and config-
uration constraints because they can be realized by combining other
change patterns and existing adaptation patterns. However, CP7 and
CP10, which correspond to the combination of other patterns for some
approaches (e.g., Provop, cf. Section 4.3.2), have been defined in or-
der to modify in a more efficient way the variability-specific language
constructs that they affect (i.e., configuration context condition and
configurable region resolution time). As a consequence, our pattern set
is not minimal.

Regarding the generalizability of CP4PF, our systematic review
identified the variability-specific language constructs in 34 different ap-
proaches for process family management. Although these approaches
use different terminology (e.g., configurable region vs. variation point)

5.13 Conclusions 133

and may realize the language constructs in different ways (cf. Section
4.2.3), the five languages constructs are widely used in the literature
on process variability. Using this set of constructs as a basis, we can
ensure that the proposed patterns are expressive enough to model and
evolve process families in such approaches. That is, CP4PF can be
implemented in any of these approaches for the constructs that they
support.

When modeling with only CP4PF, the application order of the pat-
terns is implicitly determined by the type of operation (insertion, modi-
fication, and deletion) and the constructs of each pattern. For example,
configuration alternatives cannot be inserted if configurable regions have
not been inserted previously. The same happens when inserting con-
figuration context conditions and constraints, they need the previous
insertion of configuration alternatives. Figure 5.15 shows the applica-
tion dependence graph between the patterns.

CP1 CP3 CP5 CP7

CP2 CP4 CP6

CP8

CP9CP10
Application
dependence: Y can
be applied if X has
been applied before

X Y

Figure 5.15: Application dependence graph between CP4PF

5.13 Conclusions

This chapter introduces 10 patterns for modeling (representing) and
evolving process families. Our change patterns for process families

134
Variability Management in Process Families through Change

Patterns

(CP4PF) have been derived from the five variability-specific constructs
used for representing process variability. To show that our patterns–
despite their intended generic nature–are specific enough to manage
process variability, we have presented their implementation in C-EPC,
a well-known process variability approach. This implementation al-
lows us to show that the proposed patterns support process variability
management and can ensure process family correctness by providing
systematic means for introducing and deleting modeling elements. Fi-
nally, CP4PF are intended to reduce the effort needed for modeling
and evolving configurable process models by automatically introducing
modeling elements. CP4PF and its implementation allow us to answer
research question 2 and 3 of this thesis (cf. Section 1.2). In the fol-
lowing, we validate our patterns in two ways: (1) by conducting a case
study with a safety standard as a feasibility and effort reduction proof,
and (2) by studying how users apply the patterns and their perceptions
of this application.

6
Putting CP4PF into practice

I
n the previous chapter, we have defined a set of 10 change patterns for
modeling process families (CP4PF). In this chapter, we put CP4PF

into practice in a real and industrial scenario. In particular, we report
on a case study conducted with a safety standard for validating CP4PF.
We have selected this empirical method because it is a well-established
and widely accepted approach for studying phenomena in their real life
context [Robson, 2002], including for software and systems engineering
research [Shull et al., 2008; Runeson & Höst, 2009]. Case studies are
usually classified as flexible research and aim to provide new knowledge
from and about actual situations. Their conclusions are based on evid-
ence collected in a planned and consistent manner. We followed the
guidelines and procedures proposed in [Runeson & Höst, 2009].

The case study allows us to validate the feasibility of our proposed
CP4PF in a real scenario as well as analyzing the effort of applying
them. Case studies with similar or the same purposes (i.e., feasibility

136 Putting CP4PF into practice

and effort analyses) can be easily found in the literature on e.g. business
process modeling [Moreno-Montes de Oca et al., 2015; Ayora et al.,
2015] and system assurance modeling [Panesar-Walawege et al., 2013;
Nair et al., 2014].

The rest of the chapter is organized as follows. Section 6.1 describes
the context of the case study. In turn, Section 6.2 presents the set of
research questions, while Section 6.3 describes the case selection and
the data collection procedure. Section 6.4 focuses on the case study
results and Section 6.5 presents a discussion of these results. In addition,
Section 6.6 discusses the validity of our case study. Finally, Section 6.7
concludes the chapter.

6.1 Context

A safety–critical system is one whose failure can lead to injury or death
to people or damage to the environment [de la Vara & Panesar-Walawege,
2013]. These systems are subject to rigorous safety assurance and as-
sessment processes as a way to ensure that they do not pose undue risks.
These processes are usually performed in accordance with safety stand-
ards, whose compliance with must be proved. Although it is common
that safety standards are sector-specific (e.g., for aerospace), some are
generic and thus applicable to a wide range of systems. An example
of this type of standards is IEC 61508 [IEC, 2010], which deals with
functional safety of electrical, electronic, and programmable electronic
systems. IEC 61508 has also been used as basis for sector-specific stand-
ards in the automotive, nuclear energy, process automation, and railway
sectors.

Typically, safety standards indicate the requirements to fulfill, the
artifacts to create, and the activities to execute in a safety-critical sys-
tem’s lifecycle. Standards also recommend techniques that might be
used during the lifecycle. These techniques represent alternative ways to
reach the standards’ objectives. There are standards and parts of stand-
ards that focus on software safety aspects (e.g., IEC 61508-3, which is
the third part of the IEC 61508). Figure 6.1 shows an example of the

6.1 Context 137

techniques recommended in a software safety standard. The content of
the figure is based on the software architecture design phase of the IEC
61508-3.

Technique SIL 1 SIL 2 SIL 3 SIL 4
1 Dynamic reconfiguration -- -- NR NR

2a Structured methods -- R HR HR

2b Formal methods -- R HR HR

3 Modular approach HR HR HR HR

Figure 6.1: Example of techniques extracted from a safety standard

Safety standards indicate when a technique should be used. For
example, in IEC 61508 the techniques are assigned to safety integrity
levels (SIL), which represent the relative level of risk reduction for a
function or system. IEC 61508 defines four SILs, being SIL 1 the low-
est risk-reduction and SIL 4 the highest one. In addition, the standard
also provides a recommendation regarding the use of a technique for a
specific SIL: highly recommended (HR), recommended (R), no recom-
mendation for or against being used (- -), and not recommended (NR).
For example, in Figure 6.1 the technique Dynamic reconfiguration has
no recommendation for SIL 1 and SIL 2, while it is not recommended
for SIL 3 and SIL 4. As a rule of thumb, the use of HR techniques is
compulsory and NR techniques must not be used. Finally, IEC 61508
indicates the alternative use of some techniques to specify that only one
of them might be used (e.g., techniques 2a and 2b in Figure 6.1 are
alternative techniques since only one of them can be used).

In real practice, the variability associated to safety standard com-
pliance (hereafter referred to as variability of a safety standard) is high
and complex. For example, IEC 61508-3 recommends around 150 tech-
niques, which in combination with the number of SILs, the given recom-
mendations, and the existence of alternative techniques, result in thou-
sands of possible ways of complying with the standard. For example,
the technique Structured methods has three different recommendations
in Figure 6.1. In addition, Structured methods is only used if the tech-

138 Putting CP4PF into practice

nique Formal methods is not used (i.e., alternative techniques). These
variations even increase if, for example, it is considered that some sys-
tems might not use a HR technique because of the specific characteristics
of the system (e.g., code automatically generated). Safety standards do
not and cannot provide a unique algorithm for combining the techniques
that will be correct for any application of the standard [IEC, 2010].

In order to facilitate their understanding, application, and compli-
ance, safety standards can be represented with models [Nair et al., 2014].
Practitioners use process models [Nair et al., 2015] and some commercial
tools for representing safety standards’ processes with BPMN [ADONIS,
2008; Stages, 2014], including the modeling of techniques as BPMN
activities [Atego, 2010]. In addition, specific models for safety assur-
ance and certification have also been proposed during the last years.
For example, SafetyMet is a metamodel for specifying how to comply
with a safety standard [de la Vara & Panesar-Walawege, 2013]. Figure
6.2 shows an excerpt of this metamodel. In general terms, and using
Figure 6.1 as a reference, the class Reference Applicability is used to
represent a row of the table, and the class Reference Technique is used
to specify a technique (e.g., Structured methods). The classes Reference
Criticality Level and Reference Applicability Level are used to specify
the SILs (SIL 1 - SIL 4) and the types of recommendation (e.g., HR),
respectively, whereas the class Reference Criticality Applicability is used
to link a technique with a recommendation for a specific SIL (e.g. tech-
nique Structured methods has a HR recommendation for SIL 4). The
class Reference Requirement can be used to specify that some techniques
are alternative to each other (e.g., techniques 2a and 2b in Figure 6.1).

Finally, safety standards are not static documents. New versions
are usually released for including emerging techniques as well as mak-
ing techniques adjustments; e.g., IEC 61508 has two versions: 1998 and
2010. This can lead, for instance, to the inclusion or removal of tech-
niques or recommendation modifications. As a consequence, existing
representations of the standards should be evolved in order to comply
with these changes. For example, BPMN models and SafetyMet models
representing IEC 61508:1998 should be evolved to comply with the 2010
version.

6.2 Research Questions 139

Reference
Applicability

Reference
Technique

Reference Criticality
Applicability

Reference Criticality
Level

Reference
Applicability Level

1...n

0..1

0...n

1

Reference
Requirement

0..1

Figure 6.2: Excerpt of the SafetyMet metamodel (adapted from [de la Vara
& Panesar-Walawege, 2013])

6.2 Research Questions

The goal of the case study was to analyze and validate the application of
CP4PF in a real and industrial modeling scenario. For such a purpose,
we focused on the variability of safety standards. In particular, we
formulate the following research questions:

• RQ1. Is the application of CP4PF a feasible approach for modeling
the variability of a safety standard?

This question refers to whether CP4PF can be used effectively for
(1) creating a configurable process model representing the variability of
a safety standard (e.g., when to use a technique) and (2) evolving this
model in accordance to the changes introduced by a new version of the
standard.

• RQ2. Does the application of CP4PF reduce the effort for mod-
eling the variability of a safety standard?

This question is based on the level of effort spent throughout the
creation and evolution of the configurable process model representing a
safety standard when compared to state-of-the-art approaches. Effort
is an important factor for determining if CP4PF can be successfully
adopted in industry by practitioners. If the effort for modeling and

140 Putting CP4PF into practice

evolving a configurable process model using CP4PF is higher than the
effort required with the approaches currently used (e.g., BPMN), then
CP4PF adoption will be hindered.

6.3 Case Selection and Data Collection

The subject of the case study is the IEC 61508 standard. We chose IEC
61508 because it is a general standard that is applied in different sectors
and for different systems. Among its parts, we chose part 3, which deals
with software development. For answering RQ1, both the first (1998)
and the second version (2010) were taken into account. More precisely,
we used CP4PF for creating a configurable process model representing
the variability of the IEC 61508-3:1998 and used them again for evolving
the resulting model in order to comply with the 2010 version. We used
C-EPC and applied therefore CP4PF using their implementation in this
notation (cf. Chapter 5).

Regarding RQ2, we used the number of operations as the effort
metric. The main advantages of operation measurement for effort ana-
lysis over, for instance, time measurement are that: (1) it allowed us to
compare the modeling effort with different approaches without having
to engage experts (in each approach) with similar levels of expertise and
modeling skills; (2) finding experts that can spend the time necessary to
create large models can be extremely difficult, especially if the experts
must meet the above conditions; (3) it avoided threats to validity related
to the modelers’ fatigue in creating large models, and; (4) the results
were more reliable since the operations could be measured twice and the
outcome would be the same. In particular, we compared the number of
operations needed with CP4PF with the number of operations needed
to create and evolve a IEC 61508 model using two state-of-the-art ap-
proaches: BPMN and the SafetyMet metamodel. On the one hand, we
chose BPMN because it is the de-facto standard for process modeling
[BPMN, 2011] and it is used in industry for modeling safety standards
[ADONIS, 2008; Stages, 2014]. On the other hand, we chose SafetyMet
because it is a generic metamodel specifically targeted at representing

6.3 Case Selection and Data Collection 141

safety standards [de la Vara & Panesar-Walawege, 2013]. In addition,
to determine the exact impact that CP4PF have in the representation
of the standard in a configurable process model, we also compared the
number of operations applying CP4PF with the number of operations
needed to create and evolve the same configurable process model in C-
EPC but without applying the patterns. In summary, we compared the
number of operations using four approaches:

• Create and evolve a C-EPC model using CP4PF

• Create and evolve a C-EPC model adding/deleting/modifying lan-
guage primitives (e.g., configurable connector)

• Create and evolve a BPMN model adding/deleting/modifying lan-
guage primitives (e.g., activity)

• Create and evolve a SafetyMet model adding/deleting/modifying
language primitives (e.g., Reference Technique)

Data collection involved two main activities. The first one consisted
in creating the models representing the variability of the standard IEC
61508-3:1998 using the four approaches. In turn, the second activity
consisted in evolving the four resulting models to comply with the 2010
version. For both activities, we measured the number of operations
needed for creating/evolving the models. More precisely, we considered
four types of actions:

1. Insert a modeling element (e.g., a link)

2. Insert a named modeling element (e.g., a BPMN activity) or apply
an insert pattern (e.g., CP1)

3. Delete a modeling element (e.g., a link) or apply a delete pattern
(e.g., CP2)

4. Modify a modeling element (e.g., rename a BPMN activity, re-
arrange a link) or apply a modify pattern (e.g., CP10)

142 Putting CP4PF into practice

We measured the first, third, and fourth type of action as one op-
eration, and the second one as two operations (i.e., one operation for
the insertion and another for writing a name). We made this difference
in order to reflect that both inserting an element and naming it require
a higher effort than only inserting, deleting, or modifying it. We con-
sidered that no distinction was necessary for the aspects common to all
the types of actions (e.g., indication of element location, when either
selecting an element for modification or deletion or specifying where to
insert it).

Prior to data collection, we defined how the variability of the stand-
ard can be systematically represented with the selected approaches. Fig-
ure 6.3 shows the configurable process model of the techniques presented
in Figure 6.1 with the C-EPC notation.1

Use dynamic

reconfiguration

˅
Start

event
˅

End

event

X

Use formal

methods

Use

structured methods

X

Configuration Requirement 1:

“Use dynamic reconfiguration” = OPT
 “Use structured methods“ = OPT

Configuration Requirement 2:

“Use dynamic reconfiguration” = OFF
 “Use structured methods“ = ON

Configuration Requirement 4:

“Use structured methods” = ON 
“Use formal methods“ = ON

Configuration Requirement 3:

“Use structured methods” = OPT
 “Use formal methods“ = OPT

Configurable

function
XOR connectorOR connector X˅ Configuration

Requirement
Event

3 4

2
1

q1: Which SIL need
to be achieved?

f1: SIL 1

f2: SIL 2

f3: SIL 3

T M

f4: SIL 4

CONSTRAINTS:
C1: f1  (“Use dynamic reconfiguration” = OPT)
C2: f2  (“Use dynamic reconfiguration” = OPT)
C3: f3  (“Use dynamic reconfiguration” = OFF)
C4: f4  (“Use dynamic reconfiguration” = OFF)

M

M

M

question fact link question-factfact true by default mandatory factMT

QUESTIONNAIRE:

CONFIGURABLE PROCESS MODEL:

Use modular

approach

Figure 6.3: C-EPC model of the techniques of Figure 6.1 and the associated
questionnaire and constraints

1The name of each technique has been adapted to the format “verb + object” in
order to make them process-oriented [Mendling et al., 2010].

6.3 Case Selection and Data Collection 143

Techniques were represented depending on the provided recommend-
ations. Techniques with two (or more) recommendations were defined
as configurable functions, which can be configured to ON (i.e., the func-
tion is included), OFF (i.e., the function is not included), or OPT (i.e.,
the function is optionally included) depending on the SIL to achieve
and the recommendation of use. Thus, the SILs corresponded to the
application context of the configurable functions. For a given SIL, we
considered that

• HR techniques must be used. Thus, the configurable function
should be configured to ON.

• R techniques and techniques with no recommendation (- -) are
optional. Thus, the configurable function should be configured to
OPT.

• NR techniques must not be used. Thus, the configurable function
is configured to OFF.

However, techniques with only one recommendation for all the SILs
were represented as regular functions; i.e., no configurations were needed
(e.g., function Use modular approach in Figure 6.3). The concrete con-
figuration of each function for each SIL was defined in the configuration
requirements. Since the application context in C-EPC is represented
in a questionnaire model (cf. Figure 6.3), configuration requirements
were defined based on previous configurations [La Rosa et al., 2009b].
For example, Configuration Requirement 3 states that the configurable
function Use formal methods is configured based on the configuration
of the function Use structured methods. Finally, we defined that altern-
ative techniques (e.g., 2a and 2b of Figure 6.1) should be represented
using XOR connectors (e.g., XOR 3 and 4 in Figure 6.3). We used
OR connectors to represent that there is not predefined precedence or-
der in the use of the techniques (e.g., OR 1 and 2 in Figure 6.3). In
IEC 61508-3, the use of the techniques is provided in different tables,
which are associated to specific lifecycle activities. For example, Figure
6.1 shows the techniques for the activity software architecture design.

144 Putting CP4PF into practice

Thus, for each table provided in the standard, we created a configur-
able process model for representing the variability of the corresponding
lifecycle activity.

Figure 6.4 shows how the content of Figure 6.1 can be represented
with BPMN. In line with the way of modeling presented in [Atego,
2010], we modeled each technique as an activity. In turn, we used XOR
gateways to differentiate among the recommendations.

Use dynamic
reconfiguration

SIL1, SIL2

SIL3, SIL4

Use structured
methods

SIL1, SIL2

SIL3, SIL4

Use formal methodsSIL1, SIL2

SIL3, SIL4

1 2

3 45 6

7 8

Activity XOR gatewayOR gateway
End

event
Start

event

Use modular approach

Figure 6.4: BPMN model of the techniques of Figure 6.1

For example, XOR 3 and 4 in Figure 6.4 are used to fork the sequence
flow into two paths, one for each type of recommendation for the activity
(i.e., technique) Use dynamic reconfiguration. SILs are then used as
conditions of these gateways to decide which path should be taken. For
example, the path of SIL 3 and 4 in XOR3 is taken when the technique
is NR and thus must not be used. In the case of R techniques and
techniques with no recommendation (- -), we modeled them using XOR
gateways in order to represent that the techniques might be used or not
(e.g., XOR gateways 5 and 6 in Figure 6.4). Like in C-EPC, alternative
techniques are represented using XOR gateways (e.g., XOR 7 and 8 in
Figure 6.4). In addition, we used OR gateways again to represent that

6.3 Case Selection and Data Collection 145

there is no precedence order in the use of the techniques (i.e., techniques
can be applied in any order). We created a BPMN model for each table
of the standard, as we did with C-EPC.

Finally, regarding the SafetyMet metamodel, we represented the
variability of the IEC 61508 using the classes and relationships of the
metamodel (cf. Figure 6.5).

During the data collection, the main author was the main respons-
ible for systematically creating and evolving the models and measuring
the operations. Nonetheless, she did not created the models completely
alone. Dr. Jose Luis de la Vara iteratively validated the resulting mod-
els, as well as the measurement results. He has wide knowledge on
safety assurance and certification (e.g., [Nair et al., 2014, 2015], and is
co-creator of SafetyMet [de la Vara & Panesar-Walawege, 2013]. The
advisors of this thesis also reviewed the collected data.

146 Putting CP4PF into practice

<<
R

ef
C

ri
ti

ca
lit

yA
p

p
lic

ab
ili

ty
>>

<<
R

ef
C

ri
ti

ca
lit

yL
e

ve
l>

>
SI

L1
<<

R
ef

C
ri

ti
ca

lit
yL

ev
el

>>
SI

L2
<<

R
ef

C
ri

ti
ca

lit
yL

e
ve

l>
>

SI
L3

<<
R

ef
C

ri
ti

ca
lit

yL
ev

el
>>

SI
L4

<<
R

ef
A

p
p

lic
ab

ili
ty

Le
ve

l>
>

R
<

<R
ef

A
p

p
lic

ab
ili

ty
Le

ve
l>

>
N

R

<<
R

ef
C

ri
ti

ca
lit

yA
p

p
lic

ab
ili

ty
>>

<<
R

ef
C

ri
ti

ca
lit

yA
p

p
lic

ab
ili

ty
>>

<
<R

ef
C

ri
ti

ca
lit

yA
p

p
lic

ab
ili

ty
>

>

<<
R

ef
A

p
p

lic
ab

ili
ty

>>

<
<R

ef
A

p
p

lic
ab

ili
ty

>>

<<
R

ef
C

ri
ti

ca
lit

yA
p

p
lic

ab
ili

ty
>>

<
<R

ef
Te

ch
n

iq
u

e
>>

Fo
rm

al
 m

et
h

o
d

s

<<
R

ef
C

ri
ti

ca
lit

yA
p

p
lic

ab
ili

ty
>>

<<
R

ef
C

ri
ti

ca
lit

yA
p

p
lic

ab
ili

ty
>>

<<
R

ef
A

p
p

lic
ab

ili
ty

>>

<
<R

ef
C

ri
ti

ca
lit

yA
p

p
lic

ab
ili

ty
>

>

<<
R

ef
R

eq
u

ir
em

en
t>

>
A

lt
er

n
at

iv
e

<<
R

ef
Te

ch
n

iq
u

e
>>

D
yn

am
ic

 r
ec

o
n

fi
gu

ra
ti

o
n

<<
R

ef
Te

ch
n

iq
u

e
>>

St
ru

ct
u

re
d

 m
et

h
o

d
s

<<
R

ef
A

p
p

lic
ab

ili
ty

Le
ve

l>
>

H
R

<<
R

ef
A

p
p

lic
ab

ili
ty

Le
ve

l>
>

--

<<
R

ef
A

p
p

lic
ab

ili
ty

>>

<<
R

ef
Te

ch
n

iq
u

e
>>

M
o

d
u

la
r

ap
p

ro
ac

h

<<
R

ef
C

ri
ti

ca
lit

yA
p

p
lic

ab
ili

ty
>>

Figure 6.5: SafetyMet model of the techniques of Figure 6.1

6.4 Results 147

6.4 Results

In this section, we describe the outcomes of the case study.

Results for Model Creation

Since the IEC 61508 documents are under copyright, we refrained from
sharing the created models. We are not allowed to publish, for ex-
ample, the content of their tables. However, for illustration purposes,
we detail in Figure 6.6 the results obtained for representing the table
presented in Figure 6.1 using the four approaches (i.e., the results for
obtaining the models presented in Figures 6.3-6.5). Figure 6.6 shows
the total number of modeling elements for the resulting models as a way
to show their scale. In addition, it shows the number of actions needed
for creating the models. Since we modeled from scratch, we mostly
used insertions of modeling elements, insertions with name, and insert
patterns. The total number of operations is the result of adding the
number of inserted elements plus two times the number of insertions of
named elements or the application of insert patterns. For example, for
creating the configurable process model in C-EPC in combination with
CP4PF, we needed 15 insertions of modeling elements (2+2+1+1+9),
one insertion of a function, 11 applications of insert patterns (3+4+4),
and four applications of modify patterns to change the constraints of
the questionnaire model associated to the facts. This resulted in a total
of 43 operations (15+1x2+11x2+4=43). Regarding the application of
CP4PF, CP1 automatically introduces sequence flows and CP5 auto-
matically introduces a question of the questionnaire and the respective
constraints (cf. Chapter 5).

Figure 6.7 summarizes the results of the creation of the models rep-
resenting IEC 61508-3:1998. A total of 119 techniques were represen-
ted. For creating the configurable process model with CP4PF, four
patterns were used. We applied CP1 once per technique represented,
CP5 once per existing SIL, CP8 for inserting the configuration require-
ments needed to specify the configuration of each configurable function,
and CP7 for modifying the constraints of the questionnaire. In total,

148 Putting CP4PF into practice

Approach
Total of

modeling
elements

Type of actions

Total of
operations 1. Insert element

2. Insert named element /
apply INSERT pattern

3. Delete modeling
element /
apply DELETE
pattern

4. Modify modeling
element / apply
MODIFY pattern

C-EPC + CP4PF

(model presented
in Figure 6.3)

47

- 2 XOR connectors
- 2 OR connectors
- 1 start event
- 1 end event
- 9 sequence flows

- 1 function
- 3 app. of CP1
- 4 app. of CP5
- 4 app. of CP8

------------- - 4 app. of CP7 43

C-EPC

(model presented
in Figure 6.3)

47

- 2 XOR connectors
- 2 OR connectors
- 1 start event
- 1 end event
- 12 sequence flows
- 8 requirement connectors
- 4 links question/facts

- 1 function
- 3 configurable functions
- 4 configuration
requirements
- 1 question
- 4 facts
- 4 constraints

- 4 modification
constraints

68

BPMN

(model presented
in Figure 6.4)

48

- 12 XOR gateways
- 2 OR gateways
- 1 start event
- 1 end event
- 22 sequence flows

- 4 activities
- 6 labeled sequence flows

------------- ------------- 58

SafetyMet

(model presented
in Figure 6.5)

57

- 4 Reference Applicability
- 9 Reference Criticality
Applicability
- 31 links

- 4 Reference Technique
- 1 Reference Requirement
- 4 Reference Criticality Level
- 4 Reference Applicability
Level

------------- ------------- 70

Figure 6.6: Summary of the results for representing the table of Figure 6.1

we needed 295 pattern applications.

Results for Model Evolution

To evolve IEC 61508-3:198 into IEC 61508-3:2010, we first analyzed the
difference between both versions. Figure 6.8 shows these differences.
Then, we evolved the created models in order to represent these changes.

Figure 6.9 summarizes the results of this evolution. More precisely,
it shows the number of the elements of the evolved models as well as
the operations needed for the evolution. With CP4PF, we applied four
patterns, resulting in a total number of 181 pattern applications. More
precisely, we applied CP1 once per new technique with two different
recommendations, CP2 once per technique with two different recom-
mendations deleted, CP8 for adding the configuration constraints of
the techniques introduced, and CP9 for modifying the constraints in
the questionnaire model.

6.4 Results 149

Approach
Total of

modeling
elements

Type of actions

Total of
operations 1. Insert element

2. Insert named element /
apply INSERT pattern

3. Delete modeling
element /
apply DELETE
pattern

4. Modify
modeling
element /
apply MODIFY
pattern

C-EPC + CP4PF 841

- 62 XOR connectors
- 38 OR connectors
- 19 start event
- 19 end event
- 288 sequence flows

- 46 functions
- 73 app. of CP1
- 4 app. of CP5
- 70 app. of CP8

------------- - 148 app. of CP7 960

C-EPC 841

- 62 XOR connectors
- 38 OR connectors
- 19 start event
- 19 end event
- 361 sequence flows
- 140 requirement connectors
- 4 links question/facts

- 46 functions
- 73 configurable functions
- 70 configuration requirements
- 1 question
- 4 facts
- 4 constraints

- 148 constraint
modifications

1187

BPMN 1203

- 282 XOR gateways
- 38 OR gateways
- 19 start event
- 19 end event
- 582 unlabeled sequence flows

- 119 activities
- 144 labeled sequence flows

------------- ------------- 1466

SafetyMet 1305
- 119 Reference Applicability
- 216 Reference Criticality Applicability
- 835 links

- 119 Reference Technique
- 8 Reference Requirement
- 4 Reference Criticality Level
- 4 Reference Applicability Level

------------- ------------- 1440

Figure 6.7: Summary of the results for creating the models representing the
IEC 61508-3:1198 standard

Techniques introduced 63

Techniques deleted 30

Techniques renamed 17

Techniques with different recommendations 5

Figure 6.8: Differences between the IEC 61508-3:1998 and IEC 61508-3:2010
versions

Synthesis of the Results

Figure 6.10 synthesizes the results. As shown, in the creation of the
models, the use of CP4PF with C-EPC reduces the number of opera-
tions in a 19.1% with respect to using only C-EPC, a 34.5% with respect
to BPMN, and a 33.3%, with respect to SafetyMet. For evolving the
models, the use of CP4PF in combination with C-EPC reduces the num-
ber of operations in a 25.1% with respect to only C-EPC, a 40.4% with
respect to BPMN, and a 33.1%, with respect to SafetyMet.

150 Putting CP4PF into practice

Approach
Total of

modeling
elements

Type of actions

Total of
operations 1. Insert element

2. Insert named element /
apply INSERT pattern

3. Delete modeling
element /
apply DELETE pattern

4. Modify
modeling
element /
apply MODIFY
pattern

C-EPC + CP4PF 1137
- 44 XOR connectors
- 140 sequence flows

- 18 functions
- 45 app. of CP1
- 72 app. of CP8

- 20 app. of CP2
- 10 functions
- 18 XOR connectors

- 44 app. of CP7
- 17 function
rename

563

C-EPC 1137

- 44 XOR connectors
- 185 sequence flows
- 144 requirement connectors

- 18 functions
- 45 configurable functions
- 72 configuration
requirements

- 20 configurable functions
- 10 functions
- 18 XOR connectors

- 44 constraint
modifications
- 17 function
rename

752

BPMN 1558
- 181 XOR gateways
- 325 unlabeled sequence flows

- 63 activities
- 92 labeled sequence flows

- 30 activities
- 82 XOR gateways

- 17 activity
rename

945

SafetyMet 1701
- 63 Reference Applicability
- 117 Reference Criticality Applicability
- 443 links

- 63 Reference Technique
- 7 Reference Requirement

- 30 Reference Technique
- 30 Reference Applicability
- 1 Reference Requirement

- 17 technique
rename

841

Figure 6.9: Summary of the results for evolving the created models

Approach

Model creation Model evolution

Number of
modeling
elements

Number of
operations

% of effort
reduction

Number of
modeling
elements

Number of
operations

% of effort
reduction

C-EPC + CP4PF 841 960 na 1137 563 na

C-EPC 841 1187 19.1% 1137 752 25.1%

BPMN 1203 1466 34.5% 1558 945 40.4%

SafetyMet 1305 1440 33.3% 1701 841 33.1%

Figure 6.10: Synthesis of the results of the case study

6.5 Discussion

In this section, we discuss the results of the case study focusing on
answering the research questions.

Regarding RQ1 (Is the application of CP4PF a feasible approach
for modeling the variability of a safety standard?), we could success-
fully model and evolve a configurable process model for IEC 61508-3
using CP4PF. We needed 295 pattern applications for creating the con-
figurable process model and 181 for evolving it. The main challenge

6.5 Discussion 151

was to define how the information of the standard had to be repres-
ented with C-EPC. More precisely, we had to decide how to capture
all the variability in a C-EPC configurable process model and at the
same time how to ensure model understandability and accuracy. For
example, we discussed how to properly represent the techniques and the
associated recommendations in the most suitable manner (e.g., repres-
ent techniques as configurable functions). For evolving the configurable
process model, we also had to determine the impact that the differences
between both versions of the standard had on the already created config-
urable process model. For example, we needed to decide how to reflect
in the configurable process model that a recommendation had changed
for a specific SIL (e.g., adding new configuration requirements).

For modeling and evolving the configurable process model, we used
a total of six change patterns (CP1, CP2, CP5, CP8, CP9, and CP10)
out of the 10 defined. More precisely, we applied patterns referred to
four variability-specific language constructs: configurable region, con-
figuration context condition, configuration constraint, and configurable
region resolution time. We did not apply patterns related to config-
uration alternatives (i.e., CP3 and CP4) because we decided to model
techniques as configurable functions, which implicitly define the con-
figuration alternatives (i.e., ON, OFF, OPT). In addition, we did not
use patterns for deleting or modifying the application context (i.e., CP6
and CP7) because the application context (i.e., SILs) did not change
between the versions of the standard.

Regarding RQ2 (Does the application of CP4PF reduce the effort
for modeling the variability of a safety standard?), we consider that the
results show that the application of CP4PF can significantly reduce the
effort for modeling the variability of a safety standard. When compared
to state-of-the-art approaches (i.e., BPMN and SafetyMet metamodel),
CP4PF in combination with C-EPC can reduce up to 34.5% the number
of operations for creating a configurable process model of the variability
of a safety standard, and up to 40.4% for evolving it. We acknowledge
that CP4PF were used in combination with a variability-specific ap-
proach that deals with process variability in an explicitly manner (i.e.,
C-EPC). This might be advantageous, for example, in respect to BPMN,

152 Putting CP4PF into practice

since it was not conceived to explicitly deal with process variability. In
addition, we need to consider that the SafetyMet metamodel was con-
ceived for being compliant with any safety standard, supporting any
kind of information they may include (e.g., guidelines and techniques
explanations). This adds a set of extra modeling actions (e.g., insert-
ing a Reference Applicability element) that need to be done but are
not needed for representing the selected information of IEC61508-3.
However, even when compared to modeling with only C-EPC, the ap-
plication of the change pattern is clearly advantageous to us (over 19%
reduction in the number of operations). In this sense, we consider that
most of the benefit comes from using CP4PF, not from the process
variability approach.

Finally, the results for RQ2 coincide with the benefits we envisioned
when defining CP4PF. The case study allowed us to determine the ac-
tual extent to which the application of CP4PF can reduce the effort for
modeling a process family in a real scenario. This is mainly due to the
fact that CP4PF can automatically insert or delete several modeling
elements with a single modeling action (i.e., pattern application).

6.6 Validity

Like any other modeling situations, modeling IEC 61508-3 comprised
decisions about how to create the models (e.g., modeling gateways in
pairs). In addition, only one author was the main responsible for creat-
ing the models. These both factors affect internal validity. To mitigate
possible threats, we decided, prior to data collection, how to system-
atically represent the variability of the standard with the selected ap-
proaches. The obtained models were also validated.

Regarding conclusion validity, CP4PF were implemented and ap-
plied with only one process variability approach (C-EPC). The results
of the case study and thus the conclusions drawn could differ when
implementing CP4PF with other approaches (e.g., Provop [Hallerbach
et al., 2010a]).

Single case studies as the one conducted (with only one safety stand-

6.7 Conclusions 153

ard) pose threats to external validity. However, we expect similar results
for standards with similar characteristics (e.g., other safety standards,
and especially those based on IEC 61508). We also believe that vari-
ability management of process families from other domains can benefit
from CP4PF. Since the implementation of CP4PF with C-EPC auto-
matically introduces or deletes modeling elements, we may expect an
effort reduction when modeling and evolving other process families.

6.7 Conclusions

This chapter presents a case study conducted with the process family
of a safety standard (i.e., IEC 61508-3). The case study results have
allowed us to show the feasibility of the CP4PF and their suitability
in terms of effort reduction. When compared to other state-of-the-art
approaches, the defined patterns are able to reduce the effort needed for
modeling a process family by 34% and for evolving it by 40%. Thus, the
application of the change patterns can help in effectively modeling and
evolving large and highly-variable process families. Their application
can also considerably reduce variability management effort.

To the best of our knowledge, it is the largest case study that has
been conducted so far on process variability management, the first one
that has dealt with process family evolution, and the first one that has
compared the results of different approaches. This case study helps us
to answer research question 4 of this thesis (cf. Section 1.2). In the
following, we complement the validation of the patterns by validating
them with PAIS engineers. This allows us to analyze how patterns are
applied in practice and how they are perceived by PAIS engineers.

154 Putting CP4PF into practice

7
Validation of the proposal

with PAIS engineers

I
n the previous chapter, we have validated our change patterns (CP4PF)
by showing their feasibility for modeling and evolving process fam-

ilies. In addition, we have shown that CP4PF are able to reduce the
effort needed for such purposes. To complement this validation, this
chapter describes the validation of our CP4PF with PAIS engineers in
order to explore how CP4PF are used. That is, to study how PAIS en-
gineers apply CP4PF, what is the impact of patterns application, and
how PAIS engineers perceive pattern usefulness and ease of use.

The rest of the chapter is organized as follows. Section 7.1 shows
the research questions of this validation. While Section 7.2 presents
the selected subjects, Section 7.3 describes the validation design. In
turn, Section 7.4 focuses on the data collection procedure, and Section
7.5 on the results of the validation. Section 7.6 focuses on the results

156 Validation of the proposal with PAIS engineers

of this validation and Section 7.7 in their validity. Finally, Section 7.8
concludes the chapter.

7.1 Research Questions

The main goal of this validation was to explore how PAIS engineers
experience the use of CP4PF. To this end, we focused on the impact
of change patterns in the evolution of configurable process models. We
formulate the following research questions:

• RQ1. What is the user experience when using CP4PF for evolving
configurable process models?

This question aims to analyze user’s behaviors and attitudes about
using CP4PF when evolving configurable process models.

• RQ2. What is the impact of CP4PF usage on the perceived men-
tal effort (of PAIS engineers) for evolving configurable process
models?

Evolving configurable process models requires a certain mental effort
that can depend, for example, on the assignment, the own experience,
and the level of difficulty. This question allows us to explore whether
the use of CP4PF increments the mental effort for evolving configurable
process models.

• RQ3. What is the impact of CP4PF usage on the time that PAIS
engineers need to evolve configurable process models?

Since CP4PF are intended to speed up the evolution of configurable
process models, this question focuses on determining if the use of CP4PF
allow PAIS engineers to reduce the duration of this activity.

• RQ4. What is the PAIS engineers’ perception about CP4PF usage
for evolving configurable process models?

7.2 Subject Selection 157

This question studies whether CP4PF are easy to learn, are clear
and understandable, and can enhance productivity and effectiveness.

7.2 Subject Selection

We used convenience sampling [Wohlin et al., 2000] for subject selec-
tion, and contacted both researchers and practitioners. We selected
four researchers from the Centro de Investigación en Métodos de Pro-
ducción de Software1 (S1-S4) and four practitioners from different soft-
ware development and consulting companies (S5-S8). The researchers
had knowledge about process modeling and the practitioners had ex-
perience in dealing with process models in real scenarios. Although
the selected subjects were not experts in process families, they were
convenient for the purpose of this validation because they had to deal
with process modeling regularly. As described below, subjects received
basic training on process families in order to ensure that they had a
homogeneous level of knowledge in process families (cf. Appendix C).

7.3 Validation Design

We asked subjects to evolve two configurable process models with and
without CP4PF. We compared two factors: (1) the configurable process
models to be evolved and (2) the approach used (i.e., with and without
CP4PF). For the first factor, two configurable process models were used:
a check-in process at an airport and a medical examination process at
a hospital. The complete description of the models can be found in
Appendix C.2. We chose these models because they are simple, under-
standable, realistic, and have enough variability for the application of
CP4PF (cf. Example 1). This way, subjects would more easily focus
on the use of the patterns instead of being affected by the complexity
of the selected models. For the second factor, we decided to extend
BPMN with C-EPC constructs because all the subjects were familiar

1The researchers were independent and external to our work in process families.

158 Validation of the proposal with PAIS engineers

with BPMN, but not with EPC or C-EPC. That is, we enable subjects
to model configurable tasks and configurable gateways with BPMN in
order to apply CP4PF. This resulted in two approaches: C-EPC-like
BPMN in combination with CP4PF and C-EPC-like BPMN without
CP4PF. By selecting two simple models and only two approaches, we
mitigated the boredom effect preventing subjects of becoming tired and
putting less effort and interest into the validation.

Subjects were distributed into two balanced groups: G1 and G2.
For ensuring that both groups were homogeneous, we asked subjects
to fill out a demographic survey in advance in order to determine their
experience regarding the topics of the validation, i.e., process modeling,
process families, and adaptation patterns. Appendix C.1 presents the
questions of this survey. The results of the survey are shown in Figure
7.1. S1, S3, S5, and S8 were assigned to G1, and S2, S4, S6, and
S9 to G2, to avoid great differences between the groups (cf. Figure
7.2). To mitigate the learning and tiredness effects, G1 first evolved
the configurable process model referred to the airport check-in without
CP4PF, and G2 first evolved the same configurable process model with
CP4PF. Secondly, G1 evolved the configurable proces model referred to
medical examinations with CP4PF, and G2 without them.

1. Years

modeling
business

processes

2. Years
modeling

with BPMN

3. BPMN
models

analyzed
within last 12

months

4. BPMN
models
created

within last
12 months

5. Average of
activities of

these models

6. Previous
experience

with
adaptation

patterns

7. Previous
experience

with
process
families

Acad.

S1 > 5 > 5 60 - 120 < 60 10 - 50 Yes Yes

S2 3 - 5 3 - 5 < 60 < 60 10 - 50 Yes Yes

S3 3 - 5 3 - 5 Less than 60 < 60 > 100 Yes No

S4 3 - 5 3 - 5 < 60 < 60 10 - 50 Yes Yes

Pract.

S5 1 - 3 1 - 3 < 60 < 60 10 - 50 No Yes

S6 < 1 < 1 < 60 < 60 10 - 50 Yes No

S7 1 - 3 1 - 3 120 - 180 120 - 180 10 - 50 No No

S8 < 1 < 1 < 60 < 60 < 10 Yes Yes

Figure 7.1: Subject’s demographics

7.4 Data Collection Procedure 159

Distribution of subjects

G1: S1, S3, S5, S8
G2: S2, S4, S6, S7

 Group Min. Max. Med. Group Yes No
1. Years modeling
BPs

G1 < 1 > 5 1 - 3 3. Certification
in BPMN

G1 0 4

G2 < 1 3 - 5 1 - 3 G2 0 4

2. Years modeling
with BPMN

G1 < 1 > 5 1 - 3 7. Previous
experience
with
adaptation
patterns

G1 3 1

G2 < 1 3 - 5 1 - 3 G2 3 1

4. BPMN models
analyzed within
last 12 months

G1 < 60 60 - 120 < 60 8. Previous
experience
with process
families

G1 3 1

G2 < 60 120 - 180 < 60 G2 2 2

5. BPMN models
created within last
12 months

G1 < 60 < 60 < 60

G2 < 60 120 - 180 < 60

6. Average of
activities of these
models

G1 < 10 > 100 10 - 50

G2 10 - 50 10 - 50 10 - 50

Figure 7.2: Distribution of subjects and summary of the demographic results
for G1 and G2

7.4 Data Collection Procedure

In order to apply CP4PF, we implemented a modeling editor based on
the Cheetah Experimental Platform (CEP) [Pinggera et al., 2010]. This
platform is used in experimental research on business process modeling.
Our editor implemented CP4PF in C-EPC-like BPMN and allows ap-
plying the patterns to a configurable process model. Additionally, the
implemented editor allowed us to automatically record subjects’ model-
ing actions in order to replay step by step what subjects did when using
the change patterns. The complete description of CEP can be found in
Appendix D.

The procedure followed for data collection is presented in Figure
7.3. First, we introduced the context of the validation to the subjects.
Then, subjects were guided through three tutorials in order to ensure

160 Validation of the proposal with PAIS engineers

a homogeneous level of knowledge and that subjects were sufficiently
literate in process modeling, process families, and CP4PF. Afterwards,
subjects were asked to perform two guided familiarization tasks, one for
the insert patterns and one for the delete patterns. These tasks aimed
to ensure that the subjects obtained practical experience and familiarity
using CP4PF and CEP.

Introduction

Airport check-in task
without CP4PF

G1

G2

Process modeling
tutorial

Process families
tutorial

CP4PF tutorial

Medical examinations task
with CP4PF

Medical examinations task
without CP4PF

Airport check-in task
with CP4PF

Assess
mental effort

G1

G2

Usefulness
questionnaire

Feedback
Ease of use

questionnaire

Familiarization with
INSERT patterns

Familiarization with
DELETE patterns

Assess
mental effort

Figure 7.3: Data collection procedure

Afterwards, the subjects evolved two configurable process models
(i.e., airport check-in and medical examinations) with and without CP4PF.
For each model, the subjects received a source configurable process
model (i.e., the one they needed to evolve), a target configurable pro-
cess model (i.e., the one they needed to obtain). The subjects create
the target configurable process model from the source. By giving both
models, we tried to simulate the modeling situation in which an existing
model needs to be adapted to a new version (e.g., adapting models of
IEC 61508:1998 to IEC 61508:2010, or adapting CMMI level 2 models
to level 3 [CMMI, 2010]). In addition, since subjects had the target
solution available, the challenge lied in determining the set of patterns
needed for evolving the source model and in combining them effect-
ively. This allowed the subjects to analyze the impact of CP4PF when
evolving a configurable process model.

The evolution tasks were executed individually (i.e., subjects per-
form them one by one). In addition, while performing this tasks, we

7.4 Data Collection Procedure 161

asked the subjects to think out loud in order to record their thoughts
[Ericsson & Simon, 1980]. This allowed us to study the subjects’ per-
spective and experience while applying CP4PF. Then, we transcribed
the records and annotated each line using a coding scheme (cf. Figure
7.4). For such purpose, we first created an initial list of codes that
were used to categorize the transcriptions. If new codes were identified
while transcribing the records, they were added to the list or merged
to the already existing ones. Five types of codes were identified: errors
(e.g., wrong change pattern application), challenges (e.g., doubts), gen-
eral comments (e.g., benefits and improvement suggestions), modeling
strategies (e.g., control flow first), and knowledge (e.g., knowledge ac-
quired “on the fly”). The detailed codes are presented in Figure 7.5. We
also used the step-by-step replay (recorded by the editor) in order to
check what the subjects were modeling when expressing some thought.
The first author coded the transcriptions and the second author valid-
ated the coding. This data helped us in answering RQ1.

Content Code
“I don’t remember what needs to be selected for applying CP8” Challenge

“I prefer to manage the control flow first” Modeling strategy

“No, it doesn’t work like this” Error

“Applying CP3 is very similar to applying CP1 ” Knowledge

“The automatic layout is terrible” General comment

Figure 7.4: Excerpt of the transcriptions

After finishing the evolution tasks, we asked the subjects to assess
the mental effort they needed to accomplish each task. This mental
effort was measured using a 7-point Likert scale ranging from Very low
over Neutral to Very high. These answers helped us answer RQ2. In
addition, we automatically stored the duration (in minutes) that the
subjects needed to accomplish each task, which allowed us to answer
RQ3.

Once configurable process models had been evolved, the subjects

162 Validation of the proposal with PAIS engineers

answered two questionnaires about the perceived usefulness and the
perceived ease of use [Davis, 1989] of the CP4PF used. The perceived
usefulness questionnaire comprised six questions about whether CP4PF
would facilitate a subject’s job, if CP4PF are useful, and whether they
would enhance a subject’s job performance, productivity, and effect-
iveness. The perceived ease of use questionnaire included six questions
concerning a subject’s learning attitude towards CP4PF, as well as their
flexibility and simplicity. Both questionnaires were based on the Tech-
nology Acceptance Model [Davis, 1989] and measured with 7-point Likert
scales to evaluate the subject’s own extent of agreement or disagreement
(i.e., from Strongly Agree over Neutral to Strongly Disagree). These
questionnaires allowed us to answer RQ4. Finally, we asked subjects to
provide qualitative feedback.

7.5 Results

This section summarizes the results of the validation with PAIS engin-
eers.2

Regarding subjects experience the use of CP4PF (RQ1), a total of 8
transcriptions were produced (one transcription per subject) with a 573
lines on average. Figure 7.5 summarizes the results of the transcription
coding. For each code, we provide the total number of occurrences and
the number of occurrences per subject. The most frequent codes are
G1 and K1 referred to the perceived benefits of CP4PF and the know-
ledge that subjects acquire while applying them (e.g., Ah! This pattern
in applied like this. I didn’t know before), respectively. Moreover, all
subjects referred to this code (K1) and most subjects to C1 (doubting
about what elements should be selected for applying a pattern), G1, and
S1 (focusing firstly on the control flow elements). On the contrary, only
two subjects incur in E1 (incorrect pattern application), C2 (doubting
what pattern should be applied), and K2 (stating the previous know-
ledge needed to apply a pattern).

2Further details on the results can be found in http://www.pros.upv.es/
bpvar/evaluation/ValidationUsers.rar

http://www.pros.upv.es/bpvar/evaluation/ValidationUsers.rar
http://www.pros.upv.es/bpvar/evaluation/ValidationUsers.rar

7.5 Results 163

 Codes S1 S2 S3 S4 S5 S6 S7 S8 Total

Errors
E1. Incorrect pattern application (e.g., “Ah! This
pattern wasn’t the correct one”)

0 0 0 0 0 3 1 0 4

Challenges

C1. The subject doubts about what elements
should be selected for applying a pattern (e.g., “I
don’t know what elements need to be selected”)

0 2 1 0 2 1 3 0 9

C2. The subject doubts about what pattern
should be applied (e.g., “What pattern do I need
to apply for inserting a requirement?”)

0 0 0 0 3 2 0 0 5

General
comments

G1. The subject expresses a benefit about the
patterns (e.g., “This is much quicker with the
patterns”)

5 0 5 0 5 1 7 1 24

G2. The subject expresses an improvement for
the patterns (e.g. “It would be great to apply two
patterns in a row”)

3 0 1 0 0 2 0 0 6

G3. The subject complains about the automatic
layouting (e.g., “I don’t like the layout”)

0 5 0 2 0 6 0 0 13

Modeling
strategies

S1. Control flow first (e.g., “I prefer to focus first
on the control flow elements”)

9 1 2 1 0 0 1 1 15

Knowledge

K1. Knowledge acquired while modeling (e.g.,
“Ah! This pattern is applied like this”)

1 2 6 2 3 2 4 2 22

K2. Required knowledge to apply a pattern (e.g.,
“This can’t be done if you don’t know what a
configurable node is”)

0 2 0 0 0 2 0 0 4

Figure 7.5: Results of the transcription coding (RQ1)

Figure 7.6 shows the results concerning the perceived mental ef-
fort for evolving configurable process models with and without CP4PF
(RQ2). As shown, there is a difference between the minimum value
when not using CP4PF (i.e., Low) and the maximum (i.e., High). On
the contrary, when using the patterns this difference is lower (i.e., the
minimum value is Very Low and the maximum is Medium). The medi-
ans are Low-Rather Low for not using CP4PF and Low for using them.
Only one subject reported higher mental effort when using the patterns,
and four reported lower mental effort.

Figure 7.7 shows the results of the time (in minutes) that the sub-
jects needed to accomplish the evolution of configurable process mod-
els with and without CP4PF (RQ3). The minimum value not using
CP4PF is 3.78 minutes, the maximum value is 11.6, and the average is
7.15 minutes. When using CP4PF the minimum and maximum value
are 4.32 and 10.05 minutes, respectively. The average time in this case

164 Validation of the proposal with PAIS engineers

1

4

4

1

2

1

1

1 1

0 1 2 3 4 5 6 7 8

Without CP4PF

With CP4PF

Very Low Low Rather Low Medium Rather High High

Figure 7.6: Results for the mental effort (RQ2)

is 7.24 minutes.

Figure 7.8 presents the results for the perceived usefulness question-
naire and Figure 7.9 presents the results for the perceived ease of use
questionnaire (RQ4). Most subjects agreed or strongly agreed upon the
usefulness and ease of use of CP4PF. The only statement for which some
disagreement was indicated is “I find CP4PF to be flexible to interact
with”, and all the subjects agreed or strongly agreed upon “Learning to
operate CP4PF is easy for me”.

Finally, we obtained positive comments regarding CP4PF when
asked for qualitative feedback. Most of the subject (six out of eight)
indicated that CP4PF are very straightforward to understand and use.
One subject mentioned that CP4PF could help her in avoiding modeling
errors at her job and another stated that CP4PF could reduce modeling
time and effort in her company. However, one subject complained about
the troubles that she had had to evolve a configurable process model us-
ing CP4PF. She mentioned that although the patterns could be useful,
she was more familiar with traditional modeling (i.e., without change
patterns). Finally, two subjects explicitly complained about the auto-
matic layout. They reported that this functionality, which rearranged

7.6 Discussion 165

8,71

6,48

4,61

3,78

7,65

6,56

11,6

7,87,73 7,85

4,32

6,09

10,05
9,63

7,43

4,78

0

1

2

3

4

5

6

7

8

9

10

11

12

S1 S2 S3 S4 S5 S6 S7 S8

Minutes

Without CP4PF With CP4PF

Figure 7.7: Results for the duration (RQ3)

all modeling elements after applying a change pattern, was not satis-
factory at all.

7.6 Discussion

This section interprets the results of the validation and provides a gen-
eral discussion.

First, regarding RQ1 (What is the user experience when using CP4PF
for evolving configurable process models?), the analysis of the transcrip-
tions showed us that doubts arose while applying CP4PF. For example,
five out of the eight subjects had troubles when deciding which ele-
ments should be selected for applying a change pattern. It was not
clear to these subjects which elements they had to select to apply a
specific pattern, especially the first time this pattern was used. In turn,

166 Validation of the proposal with PAIS engineers

2

1

2

1

1

1

1

2

1

1

1

1

1

2

2

2

2

2

4

3

3

4

4

4

0 1 2 3 4 5 6 7 8

6. Overall, I find CP4PF useful in my job

5. Using CP4PF makes it easier to do my job

4. Using CP4PF enhances my effectiveness on the
job

3. Using CP4PF increases my productivity

2. Using CP4PF improves my job performance

1. Using CP4PF in my job enables me to accomplish
tasks more quickly

Neutral Somewhat Agree Agree Strongly Agree

Figure 7.8: Results for the perceived usefulness (RQ4)

1

3

2

3

3

1

1

2

2

1

3

5

4

4

2

4

4

3

0 1 2 3 4 5 6 7 8

6. Overall, I find CP4PF easy to use

5. It is easy to become skillful at using CP4PF

4. I find CP4PF to be flexible to interact with

3. My interaction with CP4PF is clear and understandable

2. I find it easy to use CP4PF to evolve process families

1. Learning to operate CP4PF is easy for me

Somewhat Disagree Somewhat Agree Agree Strongly Agree

Figure 7.9: Results for the perceived ease of use (RQ4)

two subjects had doubts with respect to what pattern they needed to
apply. We consider that these doubts are typical for the first use of a
new approach. In addition, most of these doubts where solved “on the
fly” while interacting with CP4PF, which suggest that the patterns are

7.6 Discussion 167

intuitive for subjects.

The subjects also expressed benefits while using CP4PF, and in com-
parison with not using them (e.g., “These patterns allow me to model
quicker”). We interpret this as a positive attitude of subjects for adopt-
ing CP4PF. In addition, the subjects provided improvement suggestions
for the patterns. For example, one subject said that it would be much
more useful to delete two configuration alternatives in a row when ap-
plying the CP4PF.3 We consider that these comments indicate that
subjects want to adapt CP4PF to the way they actually model. These
type of comments are very valuable because they can help CP4PF for
better fit subjects’ expectations.

When analyzing the transcriptions, we observed that some subjects
tended to focus first on the elements involved in the control flow of
the configurable process model (e.g., configurable functions and con-
nectors), and then on the attached elements (i.e., configuration require-
ments). We consider that this is related to the way subjects actually
model process variability and may imply an order in the application of
CP4PF. Although there is an implicit precedence in the application of
the patterns (e.g., a configuration constraint–CP8–cannot be applied
introduced configurable regions–C1–or configuration alternatives–CP3–
have been introduced), and since most of the subjects preferred to deal
with the control flow first, we think that the explicit definition of a
methodology for applying the patterns would be beneficial. This meth-
odology would provide guidelines for helping PAIS engineers to apply
CP4PF correctly and consistently.

Second, regarding RQ2 (What is the impact of CP4PF usage on
the perceived mental effort (of PAIS engineers) for evolving configurable
process models?), the results indicate that the use of CP4PF for evolving
a configurable process model resulted in slightly lower perceived mental
effort. This can be surprising because presumably the use of CP4PF
may require a higher mental effort, especially if the patterns have not
been used before [Weber et al., 2013]. These results may indicate that

3This pattern is defined for deleting only one alternative each time (cf. Chapter
5).

168 Validation of the proposal with PAIS engineers

adopting CP4PF may be less costly than expected.

Third, regarding RQ3 (What is the impact of CP4PF usage on the
time that PAIS engineers need to evolve configurable process models?),
the average time for evolving a configurable process model was slightly
higher when using CP4PF. Our expectation was different, as CP4PF
are intended to speed up the modeling and evolution of configurable
process models. However, based on the transcriptions, this time differ-
ence could be a result of issues related to the automatic layout. Some
subjects reorganized the modeling elements after each pattern was ap-
plied, thus performed additional actions when applying CP4PF. Indeed,
if the three subjects that complained about the automatic layout (cf.
Figure 7.5) while evolving the models are not taken into account, the
application of the patterns resulted in a decrease of around a 17% in
the average time, and only one subject needed more time for evolving
a configurable process model with the patterns. Therefore, we are still
confident that CP4PF can reduce the time needed for evolving a con-
figurable process model. Further empirical studies will allow us to more
strongly substantiate this claim, which is also already supported by the
results of the case study.

Fourth, regarding RQ4 (What is the PAIS engineers’ perception
about CP4PF usage for evolving configurable process models?), the sub-
jects tended to perceive CP4PF as useful for evolving configurable pro-
cess models, at least for the tasks performed. The results of the per-
ceived usefulness questionnaire suggest that CP4PF can increase effect-
iveness when evolving a configurable process model. In addition, the
subjects also perceived CP4PF easy to use. Based on the answers of
the perceived ease of use questionnaire, we consider that, in general,
subjects’ attitude toward CP4PF is positive. Finally, the answers co-
incide with both the qualitative feedback that subjects provided and
the analysis of the transcriptions we made. Except for one subject, no
remarkable doubts or errors were detected.

7.7 Validity 169

7.7 Validity

A threat to internal validity is the size of the selected models. We se-
lected two small and easily-understandable configurable process models
from realistic scenarios (i.e., airport check-in and medical examinations)
so that the subjects focused on applying CP4PF instead of on under-
standing the selected models. Using larger configurable process models
may produce different results, but at the same time it may introduce
other threats (e.g., increment of complexity).

The low number of subjects affects conclusion validity as well as the
fact that the subjects worked only on model evolution. We performed
this validation as an exploratory (pilot) study to better analyze how
patterns are applied and what are the perceptions about them. Thus,
this validation serve as a basis for future empirical studies. In addition,
we have tried to make claims about CP4PF that are clearly based on
the validation results.

Regarding external validity, the validation with PAIS engineers was
exploratory. We did not aim to generalize its results but mainly to gain
insights into how PAIS engineers apply CP4PF and their perceptions.
Nonetheless, we selected subjects with enough background in process
modeling, and with different experience levels to try to obtain an ad-
equate sample. In addition, we divided subjects into two groups of
similar average experience in the topics of the evaluation to reduce the
impact of the experience level on the results. Although further experi-
mentation is needed to better assess the extent to which the obtained
results can be generalized, our validation with PAIS engineers serve as
a basis for future empirical evaluations.

7.8 Conclusions

This chapter presents a validation with PAIS engineers in order to ex-
plore their experience and perception when applying the defined CP4PF.
Although some drawbacks were found (e.g., automatic layout), the res-
ults show that PAIS enginners’ attitude toward our patterns is positive.

170 Validation of the proposal with PAIS engineers

This suggests that the defined patterns could be easily adopted and as-
sist process engineers in managing process variability. In combination
with the results of the case study, we can conclude that CP4PF can
be used as an efficient solution for modeling and evolving configurable
process models with a high degree of variability. This validation with
PAIS engineers also helps us to answer research question 4 of this thesis
(cf. Section 1.2).

8
Conclusions and Future Work

The present thesis deals with the enhancement of process variability
modeling through the use of change patterns. On the one hand, we

have identified the language constructs used to represent process vari-
ability by performing an systematic study on process variability. This
has allowed us to characterize process variability and evaluate process
variability approaches (cf. Chapter 4). On the other hand, we have
defined an efficient solution (i.e., a set of change patterns) for modeling
and evolving configurable process models (cf. Chapter 5-7). However,
the research line in which the work of this thesis is by no means com-
pleted here. Further research can be performed in order to complement
and extend this thesis.

This last chapter introduces the conclusions of the work developed
and proposes new areas for future research. More precisely, Section 8.1
presents the main contributions of the thesis. Section 8.2 provides an
overview of the publications that have been produced throughout the

172 Conclusions and Future Work

development of the thesis. Further, Section 8.3 describes the research
collaborations that have been done in the context of the thesis. Finally,
Section 8.4 outlines the ongoing and future work that can extend the
work developed in the thesis.

8.1 Contributions

The work of this thesis provides the following contributions:

• Process variability characterization. Through an in-depth
study, we have systematically analyzed existing process variability
approaches regarding their expressiveness with respect to process
variability modeling as well as their support along the process li-
fecycle. In this context, we have identified, among others, a core
set of variability-specific language constructs as well as a core set
of features fostering process variability. Thus, we provide a com-
plete characterization of process variability. In addition, based on
the empirical evidence provided by this analysis, we have derived
the VIVACE framework. VIVACE shall allow for the system-
atic assessment and comparison of existing process variability
approaches and enables PAIS engineers to select that variab-
ility approach meeting their requirements best. Additionally,
VIVACE helps them in dealing with PAISs supporting process
variability.

• A set of change patterns for modeling and evolving pro-
cess families. Based on the identified variability-specific lan-
guage constructs, we have derived 10 change patterns for pro-
cess families (CP4PF). These patterns enable the modeling and
evolution of a configurable process model.

• An implementation in C-EPC of the CP4PF. Despite their
intended generic nature, we have illustrated how the CP4PF can
be realized and showed how they can be implemented in a well-
established approach for modeling configurable process models
(i.e., C-EPC). This implementation have allowed us to show that

8.2 Publications 173

the proposed patterns can ensure process family correctness
by providing systematic means for introducing and deleting mod-
eling elements.

• Evidence of feasibility and effort reduction for variability
management of real process families when applying the
defined patterns. Through a case study with a safety standard,
we have shown that CP4PF are a feasible approach for modeling
and evolving process families. In addition, we have determined
that our CP4PF are able to reduce the effort needed for such
purposes by 34% and by 40%, respectively.

• Evidence of PAIS engineers’ experience and perceptions
when applying the defined patterns. Complementing the
case study, we have implemented the patterns in the Cheetah Ex-
perimental Platform and have studied how PAIS engineers apply
CP4PF, what is the impact of pattern application, and how PAIS
engineers perceive pattern usefulness and ease of use. The results
show that most PAIS engineers expressed some benefits when
applying the CP4PF, did not perceived an increase of mental
effort for applying the patterns, and agreed or strongly agreed
upon the usefulness and ease of use of the patterns.

8.2 Publications

The research activity presented in this thesis has produced innovative
and different contributions that have been presented and discussed on
different peer-review forums. In this section, we present the articles
that have been produced in the context of this thesis.

8.2.1 Main publications

The research developed in this thesis has been published in different
forums where relevant research about business processes is presented
and discussed. In particular, three types of forums are included: in-
ternational journals indexed in the Journal Citation Reports (JCR)

174 Conclusions and Future Work

index [Thomson-Reuters, 2014], international conferences, and work-
shops. The position of the name of the author of this thesis is used as
an indicator of the degree of contribution in each publication.
International Journals Indexed in the JCR:

• Clara Ayora, Victoria Torres, Barbara Weber, Manfred Reich-
ert, and Vicente Pelechano. VIVACE: A framework for the sys-
tematic evaluation of variability support in process-aware inform-
ation systems. Information and Software Technology 57, pp. 248–
276, Springer, (2015).

• Clara Ayora, Victoria Torres, Jose Luis de la Vara, and Vicente
Pelechano. Variability Management in Process Families through
Change Patterns. (Submitted to Information and Software Tech-
nology, 2015, Springer).

International Conferences:

• Clara Ayora, Victoria Torres, Barbara Weber, Manfred Reich-
ert, and Vicente Pelechano. Enhancing modeling and change sup-
port for process families through change patterns. 14th Interna-
tional Working Conference on Business Process Modeling, Devel-
opment, and Support, BPMDS 2013, Valencia (Spain), pp. 246–
260. Springer, Lecture Notes in Business Information Processing,
Volume 147.

International Workshops:

• Clara Ayora, Victoria Torres, Manfred Reichert, Barbara Weber,
and Vicente Pelechano. Towards run-time flexibility for process
families: open issues and research challenges. 2nd International
Workshop on Process Model Collections, PMC 2012, Tallin (Es-
tonia), pp. 477–488. Springer, Lecture Notes in Business Inform-
ation Processing, Volume 132.

8.2 Publications 175

• Victoria Torres, Stefan Zugal, Barbara Weber, Manfred Reichert,
Clara Ayora and Vicente Pelechano. A qualitative comparison
of approaches supporting business process variability. 3rd Inter-
national Workshop on Reuse in Business Process Management,
rBPMN 2012, Tallin (Estonia), pp. 560–572. Springer, Lecture
Notes in Business Information Processing, Volume 132.

All these publications present the results of this thesis. Table 8.1
shows the relation between the contributions presented in this thesis and
the publications achieved during its execution. In this case, publications
are presented in chronological order of publication.

Contribution Publication

Process Variability Characterization
- PMC 2012
- rBPM 2012
- IST Journal 2015

CP4PF (derivation, implementation, - BPMDS 2013
and validation) - IST Journal 2015

(submitted)

Table 8.1: Relation between the contributions and the publications achieved

Detail and relevance of the publications

This section provides some information about the relevance of the con-
ferences where different aspects of the work of this thesis have been
published.

Information and Software Technology. Information and Software
Technology is a peer-reviewed scientific journal focused on research and
experience that contributes to the improvement of software development
practices. The journal’s scope includes any methods and techniques that
allow to better engineer software and manage its development. Accord-
ing to the JCR index of 2013, the journal has an impact factor of 1.328.

176 Conclusions and Future Work

In addition, it is ranked as the 31th out of 105 journals in the cat-
egory “Computer Science/Software Engineering” and the 51th out of
135 journals in the category “Computer Science/Information Systems”.
Both rankings show the relevance of the journal for the community.

International Working Conference on Business Process Mod-
eling, Development, and Support. The BPMDS conference has an
important role in the business process community agglutinating high
quality papers. This conference provides a discussion forum where re-
searchers and practitioners of this community can meet, disseminate
and exchange ideas and problems, identify some of the key challenges
related to business processes, and explore together possible solutions
and future works. The conference papers are published by Springer and
it is usually possible to include them in a special issue of a relevant
journal (e.g., SoSyM). According to the CORE conference ranking of
2014 [CORE, 2014], BPMDS is a Core C conference.

International workshops. In addition to the above mentioned ven-
ues, the first part of the work of this thesis has been published in two
workshops (i.e., PMC and rBPM) from the main conference in busi-
ness process management field, i.e., Conference on Business Process
Management. These workshops have provided us with very valuable
feedback specially at the early stage of the thesis.

8.2.2 Other publications

In addition to the main publications, a set of publications was also pro-
duced during the development of this thesis. Although the content of
these publications is not strictly related to the content of this thesis,
they are highly related to it since all of them deal with its main topic,
i.e., process variability. These publications are listed in the following in
chronological order. Again, the position of the name of the author of
this thesis is used as an indicator of the degree of contribution in each
publication.

8.2 Publications 177

• Clara Ayora, Germán Harvey Alférez, Victoria Torres, and Vi-
cente Pelechano. Procesos de negocio auto-adaptables al contexto.
VII Jornadas de Ciencia e Ingenieŕıa de Servicios, JCIS 2011, A
Coruña (Spain), pp. 147–160.

• Clara Ayora, Victoria Torres, and Vicente Pelechano. Feature
modeling to deal with variability in business process perspectives.
VIII Jornadas de Ciencia e Ingenieŕıa de Servicios, JCIS 2012,
Almeŕıa (Spain), pp. 111–124. Best Paper Award.

• Clara Ayora, Victoria Torres, and Vicente Pelechano. Modelos
de caracteŕısticas para la gestión de la variabilidad en las per-
spectivas de los procesos de negocio. Novática - Revista de la
Asociación de Técnicos de Informática, 2012, pp. 36–41.

• Clara Ayora, Germán Harvey Alférez, Victoria Torres, and Vi-
cente Pelechano. Applying CVL to business process variability
management. 2nd International Workshop VARiability for You,
VARY 2012, Innsbruck (Austria), pp. 24–29.

JCIS is the main Spanish conference on Services Computing and
it is organized by Sistedes.1 This conference is a forum for discussing
and exchanging both knowledge and experience regarding computing
services and related topics (e.g., business processes that rule these ser-
vices). In this context, first we published a methodology for adapting
business processes at enactment time. Through the use of autonomic
computing, business processed can be adapted to new needs emerged
while process execution. Second, we published a feature-based method
to deal with process variability in the organizational and informational
perspective. This last paper obtained the best paper award of the con-
ference. In addition, an extended version of it was published in the
national journal Novática2 edited by the ATI (Asociación de Técnicos
de Informática).

1http://www.sistedes.es/
2http://www.ati.es/novatica/

http://www.ati.es/novatica/

178 Conclusions and Future Work

In turn, VARY3 is a workshop held in conjuction with the MODELS
conference.4 This workshop influences the ongoing standardization ef-
forts within OMG to establish a common variability language. In this
case, we contributed by presenting the usage of this common variability
language to deal with business process variability.

8.3 Research Collaborations

Research collaborations with researchers from international institutions
enriched the preparation of this thesis. More precisely, we collaborated
with:

• Associate Professor Dr. Barbara Weber. University of Innsbruck
(Austria).

• Professor Dr. Manfred Reichert. University of Ulm (Germany).

• Visiting Professor Dr. Jose Luis de la Vara. Universidad Carlos
III, Madrid (Spain).

The aim of these collaborations was to be open, influenced and en-
riched by distinct research streams, works, visions and schools. Both,
Dr. Barbara Weber and Dr. Manfred Reichert have a long tradition
of teaching, industry collaboration, and research in the domains of in-
formation systems engineering, business processes, and business process
flexibility. Thanks to this joint collaboration, we enriched both the VI-
VACE framework for the systematic evaluation of process variability
as well as the set of change patterns dealing with process variability.
As important results of this collaboration, we published a joint journal
article [Ayora et al., 2015] and a conference paper [Ayora et al., 2013]
in which the author of this thesis was the leader of the projects. Fur-
thermore, along this collaboration, a one-month research visit to the

3http://vary2012.irisa.fr/
4http://www.modelsconference.org/

8.4 Future work 179

University of Ulm was accomplished. This visit fostered valuable dis-
cussion and eventually discovered new perspectives and improvements
on the work of this thesis that otherwise would not be reached.

In turn, Dr. Jose Luis de la Vara is a researcher with wide knowledge
on safety assurance and certification [Nair et al., 2014], and is co-creator
of SafetyMet [de la Vara & Panesar-Walawege, 2013]. This collaboration
allowed us to validate our set of change patterns (i.e., CP4PF) through
a case study in a real scenario (i.e., a safety standard). As a result of
this collaboration, a journal article has been submitted leaded by the
author of this thesis.

8.4 Future work

The work proposed in this thesis can be extended in several ways. The
following list summarizes the research directions that are planned to
continue this work:

Extend VIVACE with other characteristics such as understand-
ability, maintainability, tool support features, and formalization. By
also considering these advanced requirements, we will be able to addi-
tionally assess the quality of an existing process variability approach
from a quantitative perspective.

Extend CP4PF to other process perspectives. As described
in Chapter 2.1., process models comprise different perspectives (i.e.,
functional, behavioral, organizational, informational, temporal, and op-
erational). In this thesis, we have only focused on the functional and
behavioral ones (i.e., control flow distribution). We believe that our pat-
terns can be easily extended to support the representation of a range of
variations in data objects or resources, e.g., insert resource, delete data
object.

Consider process variability at enactment time. In this thesis,
we have only considered variability that is known at design time. How-

180 Conclusions and Future Work

ever, in the near future, we also aim to identify complementary patterns
for covering runtime variability. These complementary patterns need to
consider unforeseeable changes that occur during process execution and
were not anticipated at design time.

Apply CP4PF to other domains. Although in this thesis we have
considered a process family with a high degree of variability (i.e., safety
standard), we would like to conduct further empirical studies in order
to determine to what extent the outcomes of our case study can be
transferred to other domains (e.g., healthcare).

Conduct more empirical validations with practitioners. We
would also like to perform controlled experiments with a number of
subjects higher than the current validation with users presented in this
thesis.

Bibliography

Acher, M., Collet, P., Lahire, P., & France, R. (2010). Managing variab-
ility in workflow with feature model composition operators. In Proc.
SC’10 , (pp. 17–33).

ADONIS (2008). Community Edition 3.0 http://www.
adonis-community.com/.

Aghakasiri, Z., & Mirian-Hosseinabadi, S.-H. (2009). Workflow change
patterns: Opportunities for extension and reuse. In Proc. SERA’09 ,
(pp. 265–275).

Aguilar-Savén, R. (2004). Business process modelling: Review and
framework. International Journal of Production Economics, 90 (2),
(pp. 129–149).

Aguilar-Saven, R. S. (2004). Business process modelling: Review and
framework. International Journal of Production Economics, 90 (2),
(pp. 129–149).

Aiello, M., Bulanov, P., & Groefsema, H. (2010). Requirements and
tools for variability management. In Proc. COMPSACW’10 , (pp.
245–250).

Alexander, C., Ishikawa, S., & Silverstein, M. (1977). A Pattern Lan-
guage: Towns, Buildings, Construction. Oxford University Press.

http://www.adonis-community.com/
http://www.adonis-community.com/

182 Bibliography

Alférez, G., Pelechano, V., Mazo, R., Salinesi, C., & Diaz, D. (2014).
Dynamic adaptation of service compositions with variability models.
Journal of Systems and Software, 91 (0), (pp. 24–47).

Angles, R., Ramadour, P., Cauvet, C., & Rodier, S. (2013). V-BPMI: A
variability-oriented framework for web-based business processes mod-
eling and implementation. In Prc. RCIS’13 , (pp. 1–11).

Appleton, B. (1997). Patterns and software: Essential concepts and
terminology.

ARIS (1990). Event-driven Process Chain. http://www.
ariscommunity.com/event-driven-process-chain.

ARIS-Community (2010). ARIS Community Basic rules on EPC mod-
eling. http://www.ariscommunity.com/users/rbaureis/
2010-03-22-basic-rules-epc-modelling.

Atego (2010). Atego Process Director http://www.atego.com/
products/atego-process-director/.

Avgeriou, P., & Zdun, U. (2005). Architectural patterns revisited–a
pattern.

Ayora, C., Torres, V., Reichert, M., Weber, B., & Pelechano, V. (2012a).
Towards run-time flexibility for process families: Open issues and
research challenges. In Proc. BPM’12 Workshops, (pp. 477–488).

Ayora, C., Torres, V., Weber, B., Reichert, M., & Pelechano, V.
(2012b). Dealing with variability in process-aware information sys-
tems: language requirements, features, and existing proposals. Tech-
nical Report UIB-2012-07. Tech. rep., Faculty of Engineering and
Computer Science, University of Ulm,

Ayora, C., Torres, V., Weber, B., Reichert, M., & Pelechano, V. (2012c).
Variability management in business process models, technical report,
pros-tr-2012-06. Tech. rep., PROS - UPV,

http://www.ariscommunity.com/event-driven-process-chain
http://www.ariscommunity.com/event-driven-process-chain
http://www.ariscommunity.com/users/rbaureis/2010-03-22-basic-rules-epc-modelling
http://www.ariscommunity.com/users/rbaureis/2010-03-22-basic-rules-epc-modelling
http://www.atego.com/products/atego-process-director/
http://www.atego.com/products/atego-process-director/

Bibliography 183

Ayora, C., Torres, V., Weber, B., Reichert, M., & Pelechano, V. (2013).
Enhancing modeling and change support for process families through
change patterns. In Proc. BPMDS/EMSAD’13 , (pp. 246–260).

Ayora, C., Torres, V., Weber, B., Reichert, M., & Pelechano, V. (2015).
VIVACE: A framework for the systematic evaluation of variability
support in process-aware information systems. Information and Soft-
ware Technology , 57 , (pp. 248–276).

Baier, T., Pascalau, E., & Mendling, J. (2010). On the suitability
of aggregated and configurable business process models. In Proc.
BMMDS/EMMSAD’10 , (pp. 108–119).

Bass, L. (2007). Software architecture in practice. Pearson Education
India.

Bayer, J., Gerard, S., Haugen, Ø., Mansell, J., Møller-Pedersen, B.,
Oldevik, J., Tessier, P., Thibault, J., & Widen, T. (2006). Con-
solidated product line variability modeling. In Proc. SPL’06 , (pp.
195–241).

Beck, K. (1999). Embracing change with extreme programming. Com-
puter , 32 (10), 70–77.

Beck, K., & Cunningham, W. (1987). Using pattern languages for object
oriented programs. In Proc. OOPSLA’87 .

Becker, J., Delfmann, P., Dreiling, A., Knackstedt, R., & D.Kuropka
(2004). Configurative process modeling – outlining an approach to
increased business process model usability. In Proc. IRMA’04 .

Boffoli, N., Caivano, D., Castelluccia, D., & Visaggio, G. (2012). Busi-
ness process lines and decision tables driving flexibility by selection.
In Proc. Software Composition, (pp. 178–193).

Bosch, J., Florijn, G., Greefhorst, D., Kuusela, J., Obbink, J., & Pohl,
K. (2001). Variability issues in software product lines. In Proc.
PFE’01 Workshop, (pp. 13–21).

184 Bibliography

BPDM (2014). Business Process Definition MetaModel, volume
ii: Process Definitions. http://www.omg.org/spec/BPDM/1.0/
volume2/PDF.

BPMN (2011). Business Process Model and Notation, OMG Standard,
version 2.0. http://www.bpmn.org/.

Bridgeland, D. M., & Zahavi, R. (2008). Business Modeling: A Practical
Guide to Realizing Business Value. Morgan Kaufmann Publishers
Inc.

Bucchiarone, A., Mezzina, C. A., & Pistore, M. (2013). CAptLang:
A language for context-aware and adaptable business processes. In
Proc. VaMoS’13 , (pp. 1–5).

Buijs, J., & Reijers, H. (2014). Comparing business process variants
using models and event logs. In Proc. BPMDS/EMMSAD , (pp. 154–
168).

Bulanov, P., Groefsema, H., & Aiello, M. (2011). Business process
variability: A tool for declarative template design. In Proc. ICSOC
Workshops’11 , (pp. 241–242).

Buschmann, F., Henney, K., & Schimdt, D. (2007). Pattern-oriented
Software Architecture: On Patterns and Pattern Language, vol. 5.
John Wiley & Sons.

Cetina, C., Giner, P., Fons, J., & Pelechano, V. (2009). Autonomic
computing through reuse of variability models at runtime: The case
of smart homes. IEEE Computer , 42 (10), 37–43.

Cleland-Huang, J., Chang, C., & Christensen, M. (2003). Event-based
traceability for managing evolutionary change. Software Engineering,
IEEE Transactions on, 29 (9), (pp. 796–810).

Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers, J.,
& Little, R. (2002). Documenting software architectures: views and
beyond . Pearson Education.

http://www.omg.org/spec/BPDM/1.0/volume2/PDF
http://www.omg.org/spec/BPDM/1.0/volume2/PDF
http://www.bpmn.org/

Bibliography 185

CMMI (2010). Capability Maturity Model Integration www.
cmmiinstitute.com.

Coplien, J. (1997). Advanced c++ programming styles and idioms. In
Proc. IEEE TOOLS’97 , (pp. 352–352).

Coplien, J. O., & Alexander, A. W. O. (1996). Software patterns.

Coplien, J. O., & Harrison, N. (2005). Organizational patterns of agile
software development . Pearson Prentice Hall Upper Saddle River.

CORE (2014). Conference Ranking. http://www.core.edu.au/
index.php/conference-rankings.

Curtis, B., Kellner, M. I., & Over, J. (1992). Process modeling. Com-
munication of the ACM , 35 (9), (pp. 75–90).

Czarnecki, K., & Antkiewicz, M. (2005). Mapping features to mod-
els: A template approach based on superimposed variants. In Proc.
GPCE’05 , (pp. 422–437).

Dadam, P., & Reichert, M. (2009). The ADEPT project: A decade
of research and development for robust and flexible process support
- challenges and achievements. Computer Science - Research and
Development , 23 (2), (pp. 81–97).

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user
acceptance of information technology. MIS quarterly , (pp. 319–340).

de la Vara, J., Ali, R., Dalpiaz, F., Sánchez, J., & Giorgini, P. (2010).
COMPRO: A methodological approach for business process contex-
tualisation. In Proc. OTM’10 , (pp. 132–149).

de la Vara, J. L., & Panesar-Walawege, R. K. (2013). Safetymet: A
metamodel for safety standards. In Proc. MODELS’13 , (pp. 69–86).

Derguech, W., & Bhiri, S. (2011). An automation support for creating
configurable process models. In Proc. WISE’11 , (pp. 199–212).

www.cmmiinstitute.com
www.cmmiinstitute.com
http://www.core.edu.au/index.php/conference-rankings
http://www.core.edu.au/index.php/conference-rankings

186 Bibliography

Derguech, W., Gao, F., & Bhiri, S. (2012). Configurable process models
for logistics case study for customs clearance processes. In Proc. BPM
Workshops’12 , (pp. 119–130).

Derguech, W., Vulcu, G., & Bhiri, S. (2010). An indexing struc-
ture for maintaining configurable process models. In Proc. BPM-
DS/EMMSAD’10 , vol. 50, (pp. 157–168).

Dijkman, R. (2008). Diagnosing differences between business process
models. In Proc. BPM’08 , (pp. 261–277).

Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., & Mendling, J.
(2011a). Similarity of business process models: Metrics and evalu-
ation. Information Systems, 36 (2), (pp. 498–516).

Dijkman, R., Gfeller, B., Küster, J., & Völzer, H. (2011b). Identifying
refactoring opportunities in process model repositories. Information
and Software Technology , 53 (9), (pp. 937–948).

Dijkman, R., La Rosa, M., & Reijers, H. (2012). Managing large collec-
tions of business process models–current techniques and challenges.
Computers in Industry , 63 (2), (pp. 91–97).

Döhring, M., Reijers, H., & Smirnov, S. (2014). Configuration vs. adapt-
ation for business process variant maintenance: An empirical study.
Information Systems, 39 , (pp. 108–133).

Döhring, M., Zimmermann, B., & Karg, L. (2011). Flexible workflows at
design– and runtime using BPMN2 adaptation patterns. In Business
Information Systems, vol. 87, (pp. 25–36).

dos Santos Rocha, R., & Fantinato, M. (2013). The use of software
product lines for business process management: A systematic lit-
erature review. Information and Software Technology , 8 (55), (pp.
1355–1373).

Dumas, M., Rosa, M. L., Mendling, J., & Reijers, H. (2013). Funda-
mentals of Business Process Management.. Springer.

Bibliography 187

Dumas, M., van der Aalst, W., & ter Hofstede, A. (2005). Process-aware
Information Systems: Bridging people and software through process
technology . 0-47166-360-9. John Wiley & Sons, Inc.

Ericsson, K. A., & Simon, H. A. (1980). Verbal reports as data. Psy-
chological review , 87 (3).

Estublier, J., & Casallas, R. (1994). Configuration Management, Trends
in software, chapter IV . John Wiley & Sons,.

Fernandez, E. B. (1998). Building systems using analysis patterns. In
Proc. ISAW’98 , (pp. 37–40).

Fowler, M. (1997). Analysis Patterns: Reusable Objects Models.
Addison-Wesley Longman Publishing Co., Inc.

Frece, A., & Juric, M. B. (2012). Modeling functional requirements for
configurable content- and context-aware dynamic service selection in
business process models. Journal of Visual Languages & Computing ,
23 (4), (pp. 223–247).

Gabriel, R. (1996). Patterns of software, vol. 62. Oxford University
Press New York.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design
Patterns: Elements of Reusable Object-oriented Software. Addison-
Wesley Longman Publishing Co., Inc.

Geyer, L., & Becker, M. (2002). On the influence of variabilities on the
application-engineering process of a product family. In Proc. SPL’02 ,
(pp. 1–14).

Gibbons, J. (2010). https://patternsinfp.wordpress.com/
welcome/.

Giese, C., Schnieders, A., & Weiland, J. (2007). A practical approach
for process family engineering of embedded control software. In Proc.
ECBS’07 , (pp. 229–240).

https://patternsinfp.wordpress.com/welcome/
https://patternsinfp.wordpress.com/welcome/

188 Bibliography

Gómez-Pérez, A. (2001). Evaluation of ontologies. International Journal
of Intelligent Systems, 16 (3), (pp. 391–409).

Gottschalk, F., Aalst, W., & Jansen-Vullers, M. (2007). Configurable
process models – a foundational approach. In Reference Modeling ,
(pp. 59–77). Physica-Verlag HD.

Gottschalk, F., Aalst, W., & Jansen-Vullers, M. (2008). Mining refer-
ence process models and their configurations. In Proc. OTM’08 , (pp.
263–272).

Gottschalk, F., Wagemakers, T., Jansen-Vullers, M., van der Aalst, W.,
& La Rosa, M. (2009). Configurable process models: Experiences
from a municipality case study. In Proc. CAiSE’09 , (pp. 486–500).

Groefsema, H., Bulanov, P., & Aiello, M. (2011). Declarative enhance-
ment framework for business processes. In Proc. ICSOC’11 , (pp.
495–504).

Gröner, G., Boskovic, M., Parreiras, F. S., & Gasevic, D. (2012). Model-
ing and validation of business process families. Information Systems,
38 (5), (pp. 709–726).

Gröner, G., Wende, C., Boskovic, M., Silva Parreiras, F., Walter, T.,
Heidenreich, F., Gasevic, D., & Staab, S. (2011). Validation of fam-
ilies of business processes. In Proc. CAiSE’11 , (pp. 551–565).

Gschwind, T., Koehler, J., & Wong, J. (2008). Applying patterns during
business process modeling. In Proc. BPM’08 , (pp. 4–19).

Günther, C., Rinderle, S., Reichert, M., & van der Aalst, W. (2006).
Change mining in adaptive process management systems. In Proc.
OTM’06 , vol. 4275, (pp. 309–326).

Hallerbach, A., Bauer, T., & Reichert, M. (2009). Guaranteeing sound-
ness of configurable process variants in Provop. In Proc. CEC’09 ,
(pp. 98–105).

Bibliography 189

Hallerbach, A., Bauer, T., & Reichert, M. (2010a). Capturing vari-
ability in business process models: The Provop approach. Software
Maintenance and Evolution: Research and Practice, 22 (6-7), (pp.
519–546).

Hallerbach, A., Bauer, T., & Reichert, M. (2010b). Configuration and
Management of Process Variants, chap. International Handbook on
Business Process Management. Springer-Verlag Berlin Heidelberg.

Hochstein, A., Zarnekow, R., & Brenner, W. (2005). ITIL as common
practice reference model for it service management: Formal assess-
ment and implications for practice. In IEEE International Conference
on e-Technology, e-Commerce, and e-Services, (pp. 704–710).

Hsieh, H.-F., & Shannon, S. E. (2005). Three approaches to qualitative
content analysis. Qualitative health research, 15 (9), 1277–1288.

IEC (2010). Functional safety of electrical/electronic/programmable
electronic safety-related systems (iec 61508).

Indulska, M., Recker, J., Rosemann, M., & Green, P. (2009). Business
process modeling: Current issues and future challenges. In Proc.
CAiSE’09 , (pp. 501–514).

Jablonski, S., & Bussler, C. (1996). Workflow Management: Modeling
Concepts, Architecture and Implementation. International Thomson
Computer Press.

Jalali, S., & Wohlin, C. (2012). Systematic literature studies: Database
searches vs. backward snowballing. In Proc. ESEM’12 , (pp. 29–38).

Jiménez-Ramı́rez, A., Weber, B., Barba, I., & Del Valle, C. (2015).
Generating optimized configurable business process models in scen-
arios subject to uncertainty. Information and Software Technology ,
57 , 571–594.

Keepence, B., & Mannion, M. (1999). Using patterns to model variab-
ility in product families. IEEE software, 16 (4), (pp. 102–108).

190 Bibliography

Kitchenham, B., & Charters, S. (2007). Guidelines for performing
Systematic Literature Reviews in Software Engineering, Version 2.3.
Tech. rep., Keele University and Durham University Joint Report,

Koetter, F., Weidmann, M., & Schleicher, D. (2011). Guarantee-
ing soundness of adaptive business processes using ABIS. In Proc.
BIS’11 , (pp. 74–85).

Kolokolov, V., Ruehl, S., Baumann, P., Zhang, S., & Verclas, S. (2014).
Modelling variability in activity diagrams for mobile business applic-
ations. In Proc. COMPSAC’14 , (pp. 155–160).

Korherr, B. (2008). Business process modelling – languages, goals and
variabilities. Ph.D. thesis, Vienna University of Technology.

Koschmider, A., & Oberweis, A. (2007). How to detect semantic busi-
ness process model variants? In Proc. SAC’07 , (pp. 1263–1264).

Krueger, C. (2013). Software Product Lines. Home Page. http://
www.softwareproductlines.com.

Kumar, A., & Yao, W. (2012). Design and management of flexible
process variants using templates and rules. Computers in Industry ,
63 (2), (pp. 112–130).

Künzle, V., & Reichert, M. (2011). PHILharmonicFlows: towards a
framework for object-aware process management. Journal of Software
Maintenance and Evolution: Research and Practice, 23 (4), (pp. 205–
244).

Küster, J., Gerth, C., & Engels, G. (2010). Dynamic computation of
change operations in version management of business process models.
In Proc. ECMFA’10 , (pp. 201–206).

Küster, J., Gerth, C., Förster, A., & Engels, G. (2008). Detecting and
resolving process model differences in the absence of a change log. In
Proc. BPM’08 , (pp. 244–260).

La Rosa, M. (2009). Managing Variability in Process-Aware Informa-
tion Systems. Ph.D. thesis, Queensland University of Technology.

http://www. softwareproductlines.com.
http://www. softwareproductlines.com.

Bibliography 191

La Rosa, M., Dumas, M., & ter Hofstede, A. (2009a). Modelling busi-
ness process variability for design-time configuration. In Handbook of
Research on Business Process Modeling , (pp. 204–228).

La Rosa, M., Dumas, M., ter Hofstede, A., & Mendling, J. (2011).
Configurable multi-perspective business process models. Information
Systems, 36 (2), (pp. 313–340).

La Rosa, M., Dumas, M., Uba, R., & Dijkman, R. (2010). Merging
business process models. In Proc. OTM’10 , (pp. 96–113).

La Rosa, M., & Mendling, J. (2009). Domain-driven process adaptation
in emergency scenarios. In Proc. BPM Workshops’09 , (pp. 290–297).

La Rosa, M., van der Aalst, W., Dumas, M., & Milani, F. (2013).
Business process variability modeling : A survey. Technical Report
61842.

La Rosa, M., van der Aalst, W., Dumas, M., & ter Hofstede, A. (2009b).
Questionnaire-based variability modeling for system configuration.
Software and Systems Modeling , (2), (pp. 251–274).

Lang, A. (2002). Flexible business process modeling – A Systematic
mapping study . Master’s thesis, Athabasca University.

Lanz, A., Weber, B., & Reichert, M. (2010). Workflow time patterns for
process-aware information systems. In Proc. BPMDS/EMMSAD’10 ,
(pp. 94–107).

Lanz, A., Weber, B., & Reichert, M. (2012). Time patterns for process-
aware information systems. Requirements Engineering Journal , (pp.
(pp. 1–29)).

Lapouchnian, A., Yu, Y., & Mylopoulos, J. (2007). Requirements-driven
design and configuration management of business processes. In Proc.
BPM’07 , (pp. 246–261).

Lazovik, A., & Ludwig, H. (2007). Managing process customizability
and customization: Model, language and process. In Proc. WISE’07 ,
(pp. 373–384).

192 Bibliography

Lenz, R., & Reichert, M. (2007). IT support for healthcare processes –
premises, challenges, perspectives. Data & Knowledge Engineering ,
61 (1), (pp. 39–58).

Lesiecki, N. (2005). http://www.ibm.com/developerworks/
java/library/j-aopwork6/index.html.

Li, C. (2010). Mining Process Model Variants: Challenges, Techniques,
Examples. Ph.D. thesis, University of Twente, The Netherlands.

Li, C., Reichert, M., & Wombacher, A. (2008). Mining process variants:
Goals and issues. In Proc. SCC’08 , (pp. 573–576).

Li, C., Reichert, M., & Wombacher, A. (2011). Mining business pro-
cess variants: Challenges, scenarios, algorithms. Data & Knowledge
Engineering , 70 (5), (pp. 409–434).

Lönn, C.-M., Uppström, E., Wohed, P., & Juell-Skielse, G. (2012).
Configurable process models for the Swedish public sector. In Proc.
CAiSE’12 , (pp. 190–205).

Lu, R., Sadiq, S. W., & Governatori, G. (2009). On managing business
processes variants. Data & Knowledge Engineering , 68 (7), (pp. 642–
664).

Mahmod, N., & Chiew, W. Y. (2010). Structural similarity of business
process variants. In Proc. ICOS’10 , (pp. 17–22).

Marcolino, A., Oliveira, E., Gimenes, I., & Barbosa, E. (2014). Empir-
ically based evolution of a variability management approach at UML
class level. In Proc. COMPSAC’14 , (pp. 354–363).

Marrella, A., Mecella, M., & Russo, A. (2011). Featuring automatic
adaptivity through workflow enactment and planning. In Proc. Col-
laborateCom’11 .

Martin, R. C. (2000). Design principles and design patterns. Tech. rep.,
Object Mentor,

http://www.ibm.com/developerworks/java/library/j-aopwork6/index.html
http://www.ibm.com/developerworks/java/library/j-aopwork6/index.html

Bibliography 193

Martinez-Ruiz, T., Münch, J., Garćıa, F., & Piattini, M. (2012). Re-
quirements and constructors for tailoring software processes: a sys-
tematic literature review. Software Quality Journal , 20 (1), (pp. 229–
260).

Mechrez, I., & Reinhartz-Berger, I. (2014). Modeling design-time vari-
ability in business processes: Existing support and deficiencies. In
Proc. BPMDS/EMMSAD’14 , (pp. 378–392).

Meerkamm, S., & Jablonski, S. (2011). Configurable process models:
experiences from a medical and an administrative case study. In Proc.
ECIS’11 .

Melao, N., & Pidd, M. (2000). A conceptual framework for understand-
ing business processes and business process modelling. Information
Systems Journal , 10 (2), (pp. 105–130).

Mendling, J. (2008). C-EPC Validator. http://www.mendling.
com/EPML/C-EPC-Validator.xsl.

Mendling, J., Recker, J., Rosemann, M., & van der Aalst, W. (2006).
Generating correct EPCs from configured C-EPCs. In Proc. SAC’06 ,
(pp. 1505–1510).

Mendling, J., Reijers, H. A., & van der Aalst, W. (2010). Seven process
modeling guidelines (7PMG). Information and Software Technology ,
52 (2), 127–136.

Mendling, J., Verbeek, H., van Dongen, B., van der Aalst, W., & Neu-
mann, G. (2008). Detection and prediction of errors in EPCs of the
SAP reference model. Data & Knowledge Engineering , 64 (1), (pp.
312–329).

Montero, I., Peña, J., & Ruiz-Cortés, A. (2008). From feature models
to business processes. In Proc. IEEE SCC’08 , (pp. 605–608).

Moon, M., Hong, M., & Yeom, K. (2008). Two-level variability ana-
lysis for business process with reusability and extensibility. In Proc.
COMPSAC ’08 , (pp. 263–270).

http://www.mendling.com/EPML/C-EPC-Validator.xsl
http://www.mendling.com/EPML/C-EPC-Validator.xsl

194 Bibliography

Moreno-Montes de Oca, I., Snoeck, M., Reijers, H. A., & Rodŕıguez-
Morffi, A. (2015). A systematic literature review of studies on business
process modeling quality. Information and Software Technology , 58 ,
187–205.

Murguzur, A., De Carlos, X., Trujillo, S., & Sagardui, G. (2014).
Context-aware staged configuration of process variantsruntime. In
Proc. CAiSE’14 , (pp. 241–255).

Murguzur, A., Truong, H. L., & Dustdar, S. (2013). Multi-perspective
process variability: A case for smart green buildings (short paper).
In Proc. SOCA’13 , (pp. 25–29).

Nair, S., De La Vara, J. L., Sabetzadeh, M., & Briand, L. (2014).
An extended systematic literature review on provision of evidence
for safety certification. Information and Software Technology , 56 (7),
689–717.

Nair, S., de la Vara, J. L., Sabetzadeh, M., & Falessi, D. (2015). Evid-
ence management for compliance of critical systems with safety stand-
ards: A survey on the state of practice. Information and Software
Technology , 60 (0), 1–15.

Nguyen, T., Colman, A. W., & Han, J. (2011). Modeling and managing
variability in process-based service compositions. In Proc. ICSOC’12 ,
(pp. 404–420).

Ognjanovic, I., Mohabbati, B., Gaevic, D., Bagheri, E., & Bokovic, M.
(2012). A metaheuristic approach for the configuration of business
process families. In Proc. SCC’12 , (pp. 25–32).

OMG (1989). Object Management Group. http://www.omg.org.

OWL (2009). Web Ontology Language, w3c. http://www.w3.org/
TR/owl-features/.

Panesar-Walawege, R. K., Sabetzadeh, M., & Briand, L. (2013). Sup-
porting the verification of compliance to safety standards via model-
driven engineering: Approach, tool-support and empirical validation.
Information and Software Technology , 55 (5), 836–864.

http://www.omg.org
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/

Bibliography 195

Park, J., & Yeom, K. (2011). A modeling approach for business pro-
cesses based on variability. In Proc. SERA’11 , (pp. 211–218).

Pascalau, E., & Rath, C. (2010). Managing business process variants
at eBay. In Proc. BPM’10 , (pp. 91–105).

Pedreira, O., Piattini, M., Luaces, M. R., & Brisaboa, N. R. (2007).
A systematic review of software process tailoring. ACM SIGSOFT
Software Engineering Notes, 3 (32), (pp. 1–6).

Perry, D. E., Porter, A. A., & Votta, L. G. (2000). Empirical studies
of software engineering: a roadmap. In Proceedings of the conference
on The future of Software engineering , (pp. 345–355). ACM.

Pinggera, J., Zugal, S., & Weber, B. (2010). Investigating the process
of process modeling with cheetah experimental platform. In Proc.
ER-POIS’10 , (pp. 25–31).

Pohl, K., Böckle, G., & van der Linden, F. (2005). Software Product
Line Engineering: Foundations, Principles and Techniques. Springer-
Verlag New York.

Pressman, R. S. (2001). Software Engineering: A Practitioner’s Ap-
proach. McGraw-Hill Higher Education.

Puhlmann, F., Schnieders, A., Weiland, J., & Weske, M. (2006). Variab-
ility mechanisms for process models. Technical Report 17/2005. Tech.
rep., Hasso–Plattner–Institut, Postdam,

Recker, J., Rosemann, M., der Aalst, W., & Mendling, J. (2006). On
the syntax of reference model configuration – transforming the C-
EPC into lawful EPC models. In Proc. BPM Workshops’06 , (pp.
497–511).

Reichert, M., Rechtenbach, S., Hallerbach, A., & Bauer, T. (2009). Ex-
tending a business process modeling tool with process configuration
facilities: The Provop demonstrator. In BPM Demonstration Track .

196 Bibliography

Reichert, M., Rinderle, S., Kreher, U., & Dadam, P. (2005). Adaptive
process management with ADEPT2. In Proc. ICDE’05 , (pp. (pp.
1113–1114)).

Reichert, M., & Weber, B. (2012). Enabling Flexibility in Process–Aware
Information Systems: Challenges, Methods, Technologies. Springer-
Verlag Berlin Heidelberg.

Reijers, H., Mans, R., & van der Toorn, R. (2009). Improved model
management with aggregated business process models. Data & Know-
ledge Engineering , 68 , (pp. 221–243).

Reinhartz-Berger, I., Soffer, P., & Sturm, A. (2005). A domain en-
gineering approach to specifying and applying reference models. In
Proc. Workshop Enterprise Modelling and Information Systems Ar-
chitectures 75 , (pp. 50–63).

Reinhartz-Berger, I., Soffer, P., & Sturm, A. (2010). Extending the
adaptability of reference models. Systems, Man and Cybernetics, Part
A: Systems and Humans, IEEE Transactions on, 40 (5), (pp. 1045–
1056).

Reinhartz-Berger, I., & Sturm, A. (2012). Comprehensibility of UML-
based software product line specifications: A controlled experiment.
Empirical Software Engineering , (pp. (pp. 1–36)).

Riehle, D., & Züllighoven, H. (1996). Understanding and using patterns
in software development. TAPOS , 2 (1), 3–13.

Robson, C. (2002). Real world research: A resource for social scientists
and practitioners-researchers, vol. 2. Oxford: Blackwell .

Rosa, M. L. (2009). Managing Variability in Process-Aware Information
Systems. Ph.D. thesis, Faculty of Science and Technology Queensland
University of Technology Brisbane, Australia.

Rosemann, M., & van der Aalst, W. (2007). A configurable reference
modelling language. Information Systems, 32 (1), (pp. 1–23).

Bibliography 197

Runeson, P., & Höst, M. (2009). Guidelines for conducting and report-
ing case study research in software engineering. Empirical Software
Engineering , 14 (2), 131–164.

Russell, N., ter Hofstede, A., Edmond, D., & van der Aalst, W. (2004a).
Workflow data patterns. Technical Report FIT-TR-2004-01. Tech.
rep., Eindhoven University of Technology,

Russell, N., ter Hofstede, A., Edmond, D., & van der Aalst, W. (2004b).
Workflow resource patterns. Technical Report WP 127. Tech. rep.,
Queensland University of Technology,

Russell, N., van der Aalst, W., & ter Hofstede, A. (2006). Workflow
exception patterns. In Proc. CAiSE’06 , (pp. 288–302).

Saidani, O., & Nurcan, S. (2014). Business process modeling: A
multi-perspective approach integrating variability. In Proc. BPM-
DS/EMMSAD’14 , (pp. 169–183).

Sakr, S., Pascalau, E., Awad, A., & Weske, M. (2011). Partial process
models to manage business process variants. International Journal of
Business Process Integration and Management , 6 (2), (pp. 240–256).

Santos, E., Pimentel, J., Castro, J., & Finkelstein, A. (2012). On the
dynamic configuration of business process models. In Proc. BMMD-
S/EMMSAD’12 , vol. 113, (pp. 331–346).

SAP-Business-Suite (1992). http://www.sap.com/index.html.

Scherer, R., & Sharmak, W. (2011). Process risk management using
configurable process models. In Proc. IFIP AICT’11 , vol. 362, (pp.
341–348).

Schmid, K., & John, I. (2004). A customizable approach to full lifecycle
variability management. Science of Computer Programming , 53 (3),
259–284.

Schnieders, A., & Puhlmann, F. (2007). Variability modeling and
product derivation in e-business process families. In Technologies
for Business Information Systems, (pp. 63–74).

http://www.sap.com/index.html

198 Bibliography

Schnieders, A., & Weske, M. (2007). Activity diagram based process
family architectures for enterprise application families. Journal En-
terprise Interoperability , (pp. (pp. 67–76)).

Schobbens, P.-Y., Heymans, P., & Trigaux, J.-C. (2006). Feature dia-
grams: A survey and a formal semantics. In Proc. RE’06 , (pp. 136–
145).

Schunselaar, D., Verbeek, E., Aalst, W., & Raijers, A., Hajo (2012).
Creating sound and reversible configurable process models using
CoSeNets. In Proc. BIS’12 , (pp. 24–35).

Schwaber, K. (2004). Agile project management with Scrum. Microsoft
Press.

Sharp, A., & McDermott, P. (2001). Workflow Modeling: Tools for
process improvement and application development . Artech House Inc.

Shull, F., Singer, J., & Sjøberg, D. I. (2008). Guide to advanced empir-
ical software engineering , vol. 93. Springer.

Sinnema, M., Deelstra, S., & Hoekstra, P. (2006). The COVAMOF
derivation process. In Proc. ICSR’06 , (pp. 101–114).

Sjøberg, D. I., Hannay, J. E., Hansen, O., Kampenes, V. B., Kara-
hasanovic, A., Liborg, N.-K., & Rekdal, A. C. (2005). A survey of
controlled experiments in software engineering. Software Engineering,
IEEE Transactions on, 31 (9), 733–753.

Soffer, P. (2005). Scope analysis: identifying the impact of changes in
business process models. Software Process: Improvement and Prac-
tice, 10 (4), (pp. 393–402).

Stages (2014). The Stages Process Management System http://
stages.methodpark.com/.

Synergia (2009). http://www.processconfiguration.com/
download.html.

http://stages.methodpark.com/
http://stages.methodpark.com/
http://www.processconfiguration.com/download.html
http://www.processconfiguration.com/download.html

Bibliography 199

Tealeb, A., Awad, A., & Galal-Edeen, G. (2014). Context-based
variant generation of business process models. In Proc. BPMD-
S/EMMSAD’14 , (pp. 363–377).

Thomas, O. (2008). Design and implementation of a version manage-
ment system for reference modeling. Journal of Software, 3 (1), (pp.
49–62).

Thomson-Reuters (2014). Journal Citation Reports (jcr). http://
wokinfo.com/products_tools/analytical/jcr/.

Tragatschnig, S., Tran, H., & Zdun, U. (2013). Change patterns for
supporting the evolution of event-based systems. In Proc. CoopIS’13 ,
(pp. 1–8).

Tragatschnig, S., Tran, H., & Zdun, U. (2014). Impact analysis for
event-based systems using change patterns. In Proc. SAC’14 .

Tropashko, V., & Burleson, D. (2007). SQL Design Patterns: Expert
Guide to SQL Programming . Rampant Techpress.

Tryggeseth, E., Gulla, B., & Conradi, R. (1995). Modelling systems
with variability using the PROTEUS configuration language. In Proc.
ICSE’95 , (pp. 216–240).

UML (2007). Unified Modeling Language, OMG Standard,
version 2.1.2. http://www.omg.org/spec/UML/2.1.2/
Infrastructure/PDF.

Vaishnavi, V., & Kuechler, W. (2004). Design re-
search in information systems. http://desrist.org/
design-research-in-information-systems.

Valença, G., Alves, C., & Niu, N. (2013). A systematic mapping study
on business process variability. Journal of Computer & Science In-
formation Technology , 1 (5).

van der Aalst, W., & Basten, T. (2002). Inheritance of workflows: an
approach to tackling problems related to change. Theoretical Com-
puter Science, 270 (1–2), (pp. 125–203).

http://wokinfo.com/products_tools/analytical/jcr/
http://wokinfo.com/products_tools/analytical/jcr/
http://www.omg. org/spec/UML/2.1.2/Infrastructure/PDF
http://www.omg. org/spec/UML/2.1.2/Infrastructure/PDF
http://desrist.org/design-research-in-information- systems
http://desrist.org/design-research-in-information- systems

200 Bibliography

van der Aalst, W., Dumas, M., Gottschalk, F., ter Hofstede, A.,
La Rosa, M., & Mendling, J. (2010a). Preserving correctness during
business process model configuration. Formal Aspects of Computing ,
22 (3–4), (pp. 459–482).

van der Aalst, W., Lohmann, N., & La Rosa, M. (2012). Ensuring
correctness during process configuration via partner synthesis. In-
formation Systems, 37 (6), (pp. 574–592).

van der Aalst, W., Lohmann, N., La Rosa, M., & Xu, J. (2010b). En-
suring correctness during process configuration: An approach based
on partner synthesis. In Proc. BPM’10 , (pp. 95–111).

van der Aalst, W., Reijers, H., Weijters, A., van Dongen, B.,
De Medeiros, A., Song, M., & Verbeek, H. (2007). Business pro-
cess mining: An industrial application. Information Systems, 32 (5),
713–732.

van der Aalst, W., & ter Hofstede, A. (2003). YAWL: Yet another
workflow language. Information Systems, 30 , (pp. 245–275).

van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., & Barros, A.
(2003). Workflow patterns. Distributed and Parallel Databases, 14 (1),
(pp. 5–51).

Vergidis, K., Tiwari, A., & Majeed, B. (2008). Business process ana-
lysis and optimization: beyond reengineering. IEEE Transactions on
Systems, Man, and Cybernetics, 1 (38), (pp. 69–82).

Vogelaar, J., Verbeek, H., Luka, B., & van der Aalst, W. (2011). Com-
paring business processes to determine the feasibility of configurable
models: A case study. In Proc. BPM Workshops’11 , (pp. 50–61).

Weber, B., Pinggera, J., Torres, V., & Reichert, M. (2013). Change
patterns in use: A critical evaluation. In Proc. BPMDS/EMSAD’13 ,
(pp. 261–276).

Weber, B., Reichert, M., Mendling, J., & Reijers, H. (2011). Refactoring
large process model repositories. Computers in Industry , 62 (5), (pp.
467–486).

Bibliography 201

Weber, B., Reichert, M., & Rinderle-Ma, S. (2008). Change patterns
and change support features - enhancing flexibility in process-aware
information systems. Data & Knowledge Engineering , 66 , (pp. 438–
466).

Weske, M. (2007). Business process management: concepts, languages,
architectures. Springer-Verlag Berlin Heidelberg.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., &
Wesslén, A. (2000). Experimentation in Software Engineering: An
Introduction. Kluwer Academic Publishers.

WS-BPEL (2004). Web Services Business Process Execution Lan-
guage (WS-BPEL), OASIS Standard, version 2.0. http://docs.
oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf.

Yahya, B., & Bae, H. (2011). Generating reference business process
model using heuristic approach based on activity proximity. In Proc.
IDT’11 , (pp. 469–478).

Yao, Q., & Sun, Y. (2012). Design of the variable business process model
based on message computing. In Proc. CSO’12 , (pp. 169–172).

Yao, W., Basu, S., Li, J., & Stephenson, B. (2012). Modeling and
configuration of process variants for on-boarding customers to it out-
sourcing. In Proc. SCC’12 , (pp. 415–422).

Zhang, H., Babar, M. A., & Tell, P. (2011). Identifying relevant studies
in software engineering. Information & Software Technology , 53 (6),
(pp. 625–637).

Zhao, X., & Liu, C. (2013). Version management for business process
schema evolution. Information Systems, 38 (8), (pp. 1046–1069).

http://docs.oasis-open. org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open. org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

Appendices

A
Check-in Process

For illustrating the size and complexity of a process family, we con-
sider the check-in procedures at an airport, which are characterized by
a high degree of variability. Even though this process is similar irre-
spective of the airport the passenger departs from and the airline flying
with, numerous variations exist depending on distinguished factors. For
example, variability is caused by the type of check-in (e.g., online, at
the counter, or at the self-servicing machine), which, in turn, determines
the type of boarding card (e.g., electronic versus paper-based). Other
sources of variability include the flight destination (e.g., information
about the accommodation is required when traveling to the US) and the
type of passenger (e.g., unaccompanied minors and handicapped people
might require extra assistance). Depending on the type of luggage (e.g.,
bulk or overweight luggage), moreover, the process slightly differs since
an extra fee might have to be paid. Finally, temporal variations re-
garding the check-in procedure are typical as well (e.g., possibility to
check-in several days before departure versus checking-in a few hours

206 Check-in Process

before the flight).

Figures A.1 and A.2 show six simplified process variants of this
check-in process represented in terms of the Business Process Modeling
Notation (BPMN) [BPMN, 2011]. These variants have been modeled
and validated in collaboration with subject matter experts. In partic-
ular, the showed process variants share commonalities while also show-
ing differences. Activities common to all process variants are colored in
grey. Variants 1 and 2 (cf. Figure A.1) presume that the check-in is
done online by the passenger. First, the passenger is identified and a
seat is assigned. Variant 1 describes the process in case the passenger
is flying from Europe to the United States, which requires informa-
tion about accommodation as well as filling in the electronic system for
travel authorization (i.e., ESTA form). Finally, an electronic boarding
card is printed and the passenger drops off the luggage at the business
class counter. Regarding Variant 2, after printing the boarding card,
the payment of an extra fee at the airline ticket office is required due
to luggage overweight. In turn, for Variant 3 the check-in is done at
the self-servicing machine and the luggage is dropped off at the fast bag
drop counter. Finally, for these three process variants, check-in becomes
available 23 hours before departure.

In contrast, Variants 4-6 (cf. Figure A.2) represent the check-in
process accomplished at the respective counter at the airport. For ex-
ample, Variant 4 describes the check-in for an unaccompanied minor.
In this variant, a special seat is assigned and an extra form is filled
in. In addition, a copy of the boarding card is required for the relative
accompanying the minor to the boarding gate. Variant 5 refers to a
handicapped passenger requiring extra assistance by a person accom-
panying him, whereas Variant 6 corresponds to the check-in process
of a passenger carrying bulk luggage. In these three process variants,
a check-in may only be performed at maximum 3 hours before depar-
ture, once the counters will have opened. Finally, the boarding card is
printed in paper format.

207

Identify

passenger
Assign seat

Provide

information about

accommodation

Print

boarding

card

Electronic

boarding

card

Variant 1: Online check-in of an adult passenger with a business class ticket from EU to USA

Drop off

regular

luggage

W
e
b
 s

y
s
te

m
B

u
s
in

e
s
s

c
la

s
s

c
o
u

n
te

r

23 hrs

before

departure

Fill in ESTA

form

Variant 2: Online check-in of an adult passenger with an economy class ticket from EU to EU with overweight luggage

W
e
b
 s

y
s
te

m
E

c
o
n

o
m

y

c
la

s
s

c
o
u

n
te

r

A
ir
lin

e

ti
c
k
e
t

o
ff

ic
e Pay extra

fee

Identify

passenger
Assign seat

Print

boarding

card

Electronic

boarding

card

23 hrs

before

departure

Drop off

regular

luggage

F
a
s
t
b

a
g
 d

ro
p

c
o
u

n
te

r

S
e
lf
-s

e
rv

ic
in

g

m
a
c
h

in
e

23 hrs

before

departure

Identify

passenger
Assign seat

Print

boarding

card

Paper

boarding

card

Drop off

regular

luggage

Variant 3: Check-in at the self-servicing machine for an adult passenger with an economy class ticket from EU to EU

Figure A.1: Variants of the check-in process (1)

208 Check-in Process

Variant 5: Check-in for a handicapped passenger with an economy class ticket from EU to USA

E
c
o
n

o
m

y
 c

la
s
s

c
o
u

n
te

r

3 hours

before

departure

Identify

passenger

Assign seat

for

hadicapped

Print

boarding

card

Drop off

regular

luggage

Paper

boarding

card

Localize assistance

to accompany

passenger

Provide

information about

accommodation

Fill in ESTA

form

B
u
lk

 l
u
g
g

a
g
e

c
o
u

n
te

r

Variant 6: Check-in for an adult passenger with an economy class ticket from EU to EU with bulk luggage

E
c
o
n

o
m

y
 c

la
s
s

c
o
u

n
te

r 3 hours

before

departure

Identify

passenger
Assign seat

Print

boarding

card

Drop off

bulk

luggage

Paper

boarding

card

A
ir
lin

e

ti
c
k
e
t

o
ff

ic
e Pay extra

fee

Variant 4: Check-in for an unaccompanied minor (UM) passenger with an economy class ticket from EU to EU with a
relative accompanying him until the boarding gate

E
c
o
n

o
m

y
 c

la
s
s

c
o
u

n
te

r

3 hours

before

departure

Identify

passenger

Assign seat

for UM

Print

boarding

card

Drop off

regular

luggage

Paper

boarding

card

Fill in UM

form

Print duplicated

boarding card for

the relative
Duplicated

paper

boarding card

Figure A.2: Variants of the check-in process (2)

B
Procedure of the Systematic
Study on Process Variability

This appendix contains the description of the study we performed about
process variability approaches regarding their expressiveness with re-
spect to process variability modeling as well as their support along the
process lifecycle. More concretely, this study was performed as a Sys-
tematic Literature Review (SLR).

A SLR is a means of identifying, evaluating, and interpreting relev-
ant data in a specific area through a replicable, scientific, and transpar-
ent approach, which reduces the probability of any bias [Kitchenham &
Charters, 2007]. To conduct such an SLR with respect to process vari-
ability, we designed a protocol following the guidelines, procedures, and
policies proposed by Kitchenham in [Kitchenham & Charters, 2007].
According to the latter, this protocol described the formulation of the
research questions, the search string, the data sources chosen for per-

210 Procedure of the Systematic Study on Process Variability

forming the search, the identification of inclusion and exclusion criteria,
the quality assessment questions, the selection of studies1, the method
for extracting the data from the selected studies, and the way how the
obtained data shall be analyzed. In the following, we describe these
aspects in detail.

B.1 Research Questions Formulation

Our overall goal was to identify and analyze studies related to business
process variability. Note that a detailed understanding of the way pro-
cess variability is managed in the context of process families requires an
in-depth analysis of various aspects; e.g., modeling languages, language
constructs, tools, and features [Reichert & Weber, 2012]. Our SLR fo-
cused on the analysis of relevant papers regarding their expressiveness
for modeling process variability, their support for handling process vari-
ability along the process lifecycle, and their empirical evaluations. For
this purpose, we considered the following research questions, which will
be discussed in the following.

• RQ1. What underlying business process modeling languages are
used for modeling process variability?

• RQ2. Which techniques are used for representing process variab-
ility in a configurable process model2?

• RQ3. What language constructs are provided for representing
process variability in a configurable process model?

• RQ4. Which process perspectives are covered by languages that
enable the modeling of process variability?

• RQ5. What tools exist for enabling process variability?

1In the given context, a study refers to a paper retrieved in the SLR.
2Remember that related process variants are defined in terms of a configurable

process model, which then represents a complete process family.

B.2 Search String 211

• RQ6. What variability support features are provided for fostering
process variability in all phases of the process lifecycle?

• RQ7. Have existing process variability approaches been evalu-
ated? If so, how does this evaluation look like?

• RQ8. In which domains have existing process variability ap-
proaches been applied?

Since there exists no standard language for modeling process variab-
ility, we were interested in identifying what process modeling languages
have been used for this purpose (RQ1). As literature refers to various
techniques for creating configurable process models [Ayora et al., 2012a],
in addition, the SLR shall provide an overview of the way these tech-
niques are used (RQ2). In order to allow assessing the expressiveness
of existing approaches for modeling process variability, the SLR shall
further identify a core set of variability-specific language constructs fre-
quently used by these approaches (RQ3). Since variability may concern
different process perspectives, the SLR shall provide insights into the
perspectives covered by existing process variability approaches (RQ4).
In order to assess the practical applicability of existing process vari-
ability approaches, the SLR shall further identify the available tools
supporting these approaches (RQ5). Moreover, the SLR shall create an
in-depth understanding of variability support features (e.g., to verify
and validate process variants) that foster process variability along the
different phases of the process lifecycle (RQ6). To assess the level of
maturity of existing process variability approaches, we further invest-
igate whether and–if so–how these approaches have been empirically
evaluated (RQ7). Finally, we analyzed the domains in which existing
process variability approaches have been applied (RQ8).

B.2 Search String

We subjectively elaborated a search string using keywords we derived
based on our in-depth knowledge of the topic and taking the defined
research questions into account; i.e., we applied subjective search string

212 Procedure of the Systematic Study on Process Variability

definition [Zhang et al., 2011]. Since the keywords may be described
with synonymous terms [Reichert & Weber, 2012], we attempted to use
a wide range of terms in order to broadly cover the scope of the SLR.
These terms were connected through the logical connector OR.

The search string was iteratively refined with the goal to maximize
the number of different candidate studies to be retrieved for the SLR.
More precisely, several pilot searches were performed in order to refine
the keywords in the search string based on a trial and error approach.
We excluded terms whose inclusion does not yield additional studies.
These pilot searches were continuously inspected by experts on process
variability in order to ensure that all relevant studies are found.

The search string of our SLR was as follows:

’process family’ OR ’configurable process model’ OR ’process model
collection’ OR ’reference process model’ OR ’configurable workflow’
OR ’process variant’ OR ’business process variability’ OR ’process

configuration’ OR ’process model configuration’

B.3 Data Source Selection

The defined search string was applied to relevant data sources to find
studies related to the topic (i.e., process variability). More precisely,
six electronic libraries were identified by topic experts as a basis for
conducting the SLR:

1. SpringerLink

2. IEEE Xplore Digital Library

3. ACM Digital Library

4. Science Direct - Elsevier

5. Wiley InterScience

6. World Scientific

B.3 Data Source Selection 213

These libraries included the proceedings of the most relevant confer-
ences, workshops and journals the business process management com-
munity publishes its research results in; e.g., Data & Knowledge En-
gineering, Computers in Industry, Information Systems, Information
and Software Technology, Conference on Business Process Management
(BPM), Conference on Advanced Information Systems Engineering (CAiSE),
Working Conference of Business Process Modeling, Development, and
Support (BPMDS), IEEE Enterprise Computer Conference (EDOC),
International Conference on Cooperative Information Systems (CoopIS),
Symposium on Applied Computing (SAC), and International Conference
on Service Computing (SCC).

With the above selection of libraries, we wanted to retrieve a max-
imum number of candidate studies from a minimum number of libraries,
while reducing the overlap between them as much as possible. In addi-
tion, we checked whether papers about the topic, which we had already
known, were included in the selected libraries as well. As an additional
data source, we considered the literature cited by the retrieved stud-
ies themselves; i.e., we applied backward reference searching [Jalali &
Wohlin, 2012]. In turn, this improved SLR results by covering a wide
spectrum of directly relevant studies. Finally, Google Scholar Alerts
(e.g., “process variability”) were continuously analyzed in order to be-
come aware of any publication on the topic emerging in 2013 during the
writing process; i.e., after the search in the specified data sources was
performed.

Due to the large amount of data sources chosen, the defined search
string was suitably adapted where necessary; e.g., through the use of
plural forms (e.g., ’process families’ instead of ’process family’). In
addition, the search string was applied to full text (i.e., title, abstract,
and content of the study) in order to ensure that potentially relevant
studies are not excluded.

214 Procedure of the Systematic Study on Process Variability

B.4 Inclusion and Exclusion Criteria

We defined the following inclusion and exclusion criteria in order to
identify relevant studies for our SLR:

Inclusion criterion :

1. The study is related to process variability and describes

• a process variability approach or

• process variability support features or

• an empirical evaluation of a process variability approach.

Exclusion criteria :

1. The study is not related to process variability, or it merely men-
tions process variability terms in a generalized manner.

2. The study is not electronically available or requires the payment
of access fees.3

3. The study refers to a non-peer reviewed publication (e.g., a pre-
face, editorial, or technical report).

4. The study is not presented entirely in English language.

5. The study presents some type of review (e.g., survey, SLR), but
does not deal with outcomes of a particular research work.

6. In case several studies refer to the same process variability ap-
proach, all studies except the latest and most complete version is
excluded.

A study was eliminated if it met any of these exclusion criteria. Note
that we did not apply any restriction with respect to the publication
date.

3This only applies to fees that are not covered by the subscriptions to any of the
selected data sources.

B.5 Quality Assessment 215

B.5 Quality Assessment

In addition to the inclusion and exclusion criteria, each selected study
was assessed based on a set of quality assessment questions (QA). In
particular, this was crucial for interpreting and synthesizing the data
extracted from the selected studies [Kitchenham & Charters, 2007].

• QA1: Does the study include sufficient data to infer how process
variability is explicitly modeled?

• QA2: Does the study include sufficient data about the support of
process variability in one or several phases of the process lifecycle?

• QA3: Has the process variability approach described in the study
been implemented, formalized or empirically evaluated?

These questions were scored as follows: 1 if the question is satisfied
and 0 if it is not satisfied. The intention behind this quality assessment
was to ensure a certain level of maturity for the studies included in the
SLR. Further, we wanted to guarantee that studies of pure conceptual
nature are not included.

B.6 Study Selection

The SLR was conducted by applying the defined search string to each
of the six electronic libraries. These queries resulted in a total of 4947
studies (cf. Figure B.1, Stage 1). Meta-data related to them was then
imported into an Excel file, which stored the source of each study to-
gether with its main information, i.e., title, authors, type of venue (e.g.,
conference, journal), and complete reference of the study. Following
this, each of the studies was reviewed in order to determine its relev-
ance for the SLR. Note that this step was accomplished based on the
defined exclusion criteria.

First, the title of each retrieved study was analyzed in order to check
whether it actually dealt with process variability (i.e., Exclusion Cri-
teria 1-5). In cases the information from the title was not sufficient

216 Procedure of the Systematic Study on Process Variability

Stage 1:

Application of the

inclusion criterion

Search electronic libraries Studies = 4947

Stage 2:

Application of

exclusion criteria 1-5

Exclude studies on the basis

of titles, abstracts, and

introductions

Studies = 100

Stage 3:

Inclusion of

backward references

Include backward references

of remaining studies
Studies = 125

Stage 4:

Application of the

exclusion criterion 6

Exclude duplicated studies
Studies = 114

Stage 5:

Application of the

quality assessment

questions

Exclude studies without

sufficient data about process

variability modeling and

support.

Exclude studies without

implementation, formalization,

or evaluation

Studies = 63

Figure B.1: Stages of the study selection process

to decide whether or not to include the study, the corresponding ab-
stract and introduction sections were additionally scanned. After this
filtering, we obtained 100 relevant studies (cf. Figure B.1, Stage 2).
Following this, we analyzed the literature cited in the background or
related work sections of these 100 studies (i.e., we apply backward refer-
ence searching). This results in 25 additional studies, which we included
for further consideration (cf. Figure B.1, Stage 3). In the next stage,
duplicated studies were removed (i.e., Exclusion Criterion 6) resulting
in 114 relevant studies in total (cf. Figure B.1, Stage 4). Finally, stud-
ies related to process variability, but without sufficient data about how
process variability is modeled or supported or with no tool implement-
ation, formalization or empirical evaluation, were discarded in order to

B.6 Study Selection 217

ensure a sufficient level of maturity (i.e., quality assessment questions).
Overall, this resulted in 63 primary studies (cf. Figure B.1, Stage 5),
which are summarized in Table B.1. Each of these studies is associated
with a unique identifier (i.e., Study ID), which is used in the following
to refer to the respective studies.

Study ID Study ID

S1-Alférez et al. [Alférez et al., 2014]
S33-Czarnecki et al. [Czarnecki & An-
tkiewicz, 2005]

S2-Bucchiarone et al. [Bucchiarone et al.,
2013]

S34-Becker et al. [Becker et al., 2004]

S3-Kumar et al. [Kumar & Yao, 2012]
S35-van der Aalst et al. [van der Aalst
et al., 2012]

S4-Frece et al. [Frece & Juric, 2012] S36-Li et al. [Li et al., 2011]
S5-Santos et al. [Santos et al., 2012] S37-Weber et al. [Weber et al., 2011]

S6-W. Yao et al. [Yao et al., 2012]
S38-Derguech et al. [Derguech & Bhiri,
2011]

S7-Q. Yao et al. [Yao & Sun, 2012] S39-Yahya et al. [Yahya & Bae, 2011]
S8-Ognjanovic et al. [Ognjanovic et al.,
2012]

S40-Koetter et al. [Koetter et al., 2011]

S9-Gröner et al. [Gröner et al., 2012] S41-Gröner et al. [Gröner et al., 2011]

S10-Boffoli et al. [Boffoli et al., 2012]
S42-van der Aalst et al. [van der Aalst
et al., 2010a]

S11-Schunselaar et al. [Schunselaar et al.,
2012]

S43-La Rosa et al. [La Rosa et al., 2010]

S12-Groefsema et al. [Groefsema et al.,
2011]

S44-Mahmod et al. [Mahmod & Chiew,
2010]

S13-Döhring et al. [Döhring et al., 2011]
S45-Gottschalk et al. [Gottschalk et al.,
2008]

S14-Park et al. [Park & Yeom, 2011] S46-Thomas et al. [Thomas, 2008]

S15-Nguyen et al. [Nguyen et al., 2011]
S47-Koschmider et al. [Koschmider &
Oberweis, 2007]

S16-Pascalau et al. [Sakr et al., 2011] S48-Mendling et al. [Mendling et al., 2006]
S17-Meerkamm et al. [Meerkamm &
Jablonski, 2011]

S49-Recker et al. [Recker et al., 2006]

S18-Derguech et al. [Derguech et al., 2010]
S50-Reinhartz-Berger et al. [Reinhartz-
Berger et al., 2005]

S19-Hallerbach et al. [Hallerbach et al.,
2010b]

S51-Döhring et al. [Döhring et al., 2014]

S20-de la Vara et al. [de la Vara et al.,
2010]

S52-Derguech et al. [Derguech et al., 2012]

S21-Reinhartz-Berger et al. [Reinhartz-
Berger et al., 2010]

S53-Lönn et al. [Lönn et al., 2012]

S22-Acher et al. [Acher et al., 2010] S54-Bulanov et al. [Bulanov et al., 2011]
S23-Reijers et al. [Reijers et al., 2009] S55-Vogelaar et al. [Vogelaar et al., 2011]

S24-La Rosa et al. [La Rosa et al., 2009b]
S56-Reinhartz-Berger et al. [Reinhartz-
Berger & Sturm, 2012]

218 Procedure of the Systematic Study on Process Variability

S25-La Rosa et al. [La Rosa et al., 2011]
S57-Scherer et al. [Scherer & Sharmak,
2011]

S26-Montero et al. [Montero et al., 2008]
S58-Pascalau et al. [Pascalau & Rath,
2010]

S27-Moon et al. [Moon et al., 2008] S59-Baier et al. [Baier et al., 2010]
S28-Gottschalk et al. [Gottschalk et al.,
2007]

S60-Gottschalk et al. [Gottschalk et al.,
2009]

S29-Lapouchnian et al. [Lapouchnian
et al., 2007]

S61-La Rosa et al. [La Rosa & Mendling,
2009]

S30-Schnieders et al. [Schnieders & Puhl-
mann, 2007]

S62-Schnieders et al. [Schnieders & Weske,
2007]

S31-Lazovik et al. [Lazovik & Ludwig,
2007]

S63-Giese et al. [Giese et al., 2007]

S32-Lu et al. [Lu et al., 2009]

Table B.1: Final list of primary studies

During the selection process, we organized these 63 primary studies
in three groups:

1. Studies describing process variability approaches: S1 - S34.

2. Studies describing process variability support features: S35 - S50.

3. Studies describing solely empirical evaluations of process variab-
ility approaches: S51 - S63.

The specified selection process was carried out by the author of
this thesis and was continuously checked by her advisors and coauthors
[Ayora et al., 2015]. More precisely, they randomly reviewed selected
studies to ensure consistency of the process. Further, they ensured the
correct application of the inclusion and exclusion criteria as well as the
quality assessment questions. All disagreements were resolved through
discussion.

B.7 Data Extraction Strategy

To each of the 63 primary studies, a data extraction process was applied
with the goal to answer the research questions defined in Section B.1.

B.7 Data Extraction Strategy 219

For this purpose, we used Excel sheets to capture and store the relevant
information. Figure B.2 includes an excerpt of these sheets.4

Figure B.2: Overview of the Excel sheet for the general information table

In detail, we extracted the following information:

1. General information about the study; i.e., title, authors, type of
venue (e.g., conference, journal), and complete reference of the
study.

2. The underlying language used for modeling process variability;
e.g., BPMN and EPC (RQ1).

3. The technique used to define a configurable process model (RQ2).

4. Variability-specific language constructs that may be used to rep-
resent process variability (RQ3).

5. The process perspectives covered; e.g., behavioral, organizational,
and informational (RQ4).

4The complete filled Excel sheets can be downloaded from: http://www.pros.
upv.es/bpvar/SLR/SLRDataExtraction.rar

http://www.pros.upv.es/bpvar/SLR/SLRDataExtraction.rar
http://www.pros.upv.es/bpvar/SLR/SLRDataExtraction.rar

220 Procedure of the Systematic Study on Process Variability

6. Information about the implementation of the approach; i.e., avail-
ability of a tool implementing the approach, type of implementa-
tion, and link for downloading this tool (RQ5).

7. Features provided for the management of process variability (RQ6).

8. Available results from empirical evaluations of a process variabil-
ity approach and type of evaluation performed (e.g., case study,
survey) (RQ7).

9. Domain in which the process variability approach has been applied
(RQ8).

For research questions RQ1, RQ2, RQ3, RQ5, and RQ6, data was
extracted by first creating an initial list of categories based on our know-
ledge and experience about the topic (i.e., process variability) [Ayora
et al., 2012a,b; Weber et al., 2008, 2011]. Once data extraction star-
ted, each study was then thoroughly analyzed and extracted data was
assigned to a category based on content analysis techniques [Hsieh &
Shannon, 2005]; if new categories were identified, they were added to the
list. Throughout the analysis, process categories might be merged. In
this case, already analyzed studies were re-assigned. However, regarding
RQ4 (i.e., process perspectives covered), we started data extraction with
a predefined list of the existing process perspectives (cf. Section 2.1).
Then, we assigned each study to the process perspectives it covered;
i.e., we used descriptive statistics to analyze the results (i.e., frequency
counts). A similar procedure was applied in the context of RQ7. We
first created a predefined list of existing types of empirical evaluations.
Then, each study was assigned to the type of evaluation it described.
Finally, for RQ8, we included each identified domain in which exist-
ing process variability approaches have been applied by analyzing the
content of each study. Again, throughout this analysis similar domains
might be merged. This may imply the reassignment of already analyzed
studies. Figure B.3 summarizes the data extracted and the techniques
used for data analysis.

B.8 Data Analysis 221

RQ Extracted item Type of data Analysis

General
information

Title Free text --

Author Free text --

Venue Free text --

Reference Free text --

RQ1 Underlying language for modeling process variability
Initial list based on previous
knowledge

Content analysis
techniques

RQ2 Technique used to create a configurable process model
Initial list based on previous
knowledge

Content analysis
techniques

RQ3
Variability-specific language constructs provided to
represent process variability

Initial list based on previous
knowledge

Content analysis
techniques

RQ4 Process perspectives covered
Predefined list of existing
process perspectives

Descriptive statistics
(i.e., frequency counts)

RQ5

Existence of a tool implementing the approach Yes/No --

Type of implementation
Initial list based on previous
knowledge

Content analysis
techniques

Download link for the tool Free text --

RQ6
Features provided for the management of process
variability

Initial list based on previous
knowledge

Content analysis
techniques

RQ7 Type of empirical evaluation performed
Predefined list of existing types
of empirical evaluations

Descriptive statistics
(i.e., frequency counts)

RQ8
Domain in which the process variability approach has
been applied

Free text
Content analysis
techniques

Figure B.3: Data extraction summary

B.8 Data Analysis

Data analysis shall provide suitable information to answer our research
questions. This was achieved by synthesizing the data obtained from
the data extraction process. More precisely, the respective research
questions were answered by analyzing the identified categories based on
the created Excel sheets as well as the results of the quality assessment
process. In addition, for answering RQ1-RQ4, only studies of the first
type (i.e., S1-S34) were considered since they describe the expressive-
ness of the respective approach regarding the modeling of process vari-
ability. In turn, for answering RQ5 and RQ6, studies of the first and
second type were analyzed (i.e., S1-S50) since both types might deal
with implementation support for process variability. Finally, for RQ7
and RQ8, studies of the first (i.e., S1-S34) and third (i.e., S51-S63)
type were considered since they might provide empirical evaluations of

222 Procedure of the Systematic Study on Process Variability

process variability approaches.

In order to simplify the synthesis of the extracted data, we used
descriptive techniques to summarize them; e.g., graphics and tabular
descriptions.

B.9 Statistics of the Primary Studies

This section presents some statistics of the primary studies we selected
from the SLR. First, Figure B.4 shows the temporal distribution of the
63 primary studies by publication year (i.e., from 2004 to 2013). As can
be seen, the yearly number of published studies on process variability
has increased over time, with a peak in 2012. This indicates a growing
interest in the topic (i.e., process variability).

0

2

4

6

8

10

12

14

16

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Figure B.4: Distribution of primary studies by publication year

Second, an additional analysis was performed regarding the pub-
lication venue in which the primary studies were published (primary
studies published as book chapters were not taken into account in this
analysis; therefore the latter was based on 60 out of the 63 studies).
42 of the primary studies were published in proceedings of conference
and workshops (70%), while 18 studies (30%) appeared in journals (cf.
Figure B.5).

B.10 Threats of Validity 223

0

1

2

3

4

5

6

JS
S

C
iI

JV
LC IS

B
P

IM

IE
EE

 T
SM

C

D
K

E

SS
M

B
P

M
J

FA
C JS

JE
SE JE

I

V
aM

o
S

B
P

M
D

S

SC
C

C
SO SC B
IS

IC
SO

C

SE
R

A

EC
IS

O
TM

C
O

M
P

SA
C

W
IS

E

G
P

C
E

IR
M

A

ID
T

C
A

iS
E

IC
O

S

SA
C

B
P

M

W
EM

IS
A

IF
IP

 A
IC

T

EC
B

S

Journals Conferences and Workshops

Figure B.5: Distribution of primary studies by publication venue

A total of 35 publication venues were identified. Interestingly, there
are only two publications venues, namely BPM (Conference on Busi-
ness Process Management) and BPMDS (Working Conference of Busi-
ness Process Modeling, Development, and Support) with a relatively
high number of primary studies (i.e., 4 and 6 studies respectively). All
other venues published at most three studies on the topic. Finally, it
is noteworthy that process variability was a topic addressed in various
fields, i.e., publication venues from the business process management
field (e.g., BPM conference), the web services field (e.g., ICSOC con-
ference), the software engineering field (e.g., JSS journal), and the in-
formation systems field (e.g., CAiSE conference). Figure B.6 includes
the list with the full names of the publication venues.

B.10 Threats of Validity

The main threats to the validity of our work are selection bias, inac-
curacy in data extraction & analysis, and reliability [Kitchenham
& Charters, 2007; Perry et al., 2000; Runeson & Höst, 2009; Sjøberg
et al., 2005].

224 Procedure of the Systematic Study on Process Variability

Journals

JSS Journal of Systems and Software

CiI Computers in Industry

JVLC Journal of Visual Languages & Computing

IS Information Systems

BPIM Business Process Integration and Management

IEEE TSMC IEEE Transactions on Systems, Man, and Cybernetics

DKE Data & Knowledge Engineering

SSM Software and System Modeling

BPMJ Business Process Management Journal

FAC Formal Aspects of Computing

JS Journal of Software

JESE Journal Empirical Software Engineering

JEI Journal Enterprise Interoperability

Conferences
and

Workshops

VaMoS International Workshop on Variability Modelling of Software-intensive Systems

BPMDS Working Conference on Business Process Modeling, Development, and Support

SCC IEEE International Conference on Services Computing

CSO International Joint Conference on Computational Science and Optimization

SC International Conference on Software Composition

BIS International Conference on Business Information Systems

ICSOC International Conference on Service Oriented Computing

SERA International Conference on Software Engineering Research, Management, and Applications

ECIS European Conference on Information Systems

OTM On the Move Federated Conferences & Workshops

COMPSAC IEEE International Computer Software and Applications

WISE International Conference on Web Information Systems Engineering

GPCE International Conference on Generative Programming and Component Engineering

IRMA Information Resources Management Association Conference

IDT International Conference on Intelligent Decision Technologies

CAiSE International Conference on Advanced Information Systems

ICOS IEEE Conference on Open Systems

SAC ACM Symposium on Applied Computing

BPM International Conference on Business Process Management

WEMISA Workshop Enterprise Modelling and Information Systems Architecture

IFIP AICT IFIP Advances in Information and Communication Technologies

ECBS International Conference and Workshops on the Engineering of Computer-Based Systems

Figure B.6: List of publication venues

To ensure that the SLR is complete as far as possible and no im-
portant literature is missing, we used six well-known literature sources.
These include the most important conference and journals on the topic
(i.e., process variability). In addition, by scanning the references of the
retrieved studies (i.e., backward reference searching), we ensured the
completeness of the SLR. Further, we ensured that all relevant literat-
ure previously known to us was found by the SLR as well.

First, our systematic search was conducted in 2013. Accordingly,

B.11 Comparison with other Reviews 225

studies published later were not included in our work.5 In order to min-
imize the selection bias, the selection process performed by the main
author was continuously reviewed by her co-authors. To be more pre-
cise, the co-authors randomly reviewed selected studies to ensure the
consistency of the selection process, along with the correct application
of inclusion and exclusion criteria. Disagreements emerging in this con-
text were resolved through comprehensive discussions. Paper duplica-
tion constitutes another potential threat. Hence, the selected studies
were checked twice in order to detect and remove duplicate papers, in-
cluding only the most recent and complete version.

Second, data extraction and analysis were carried out by the main
author. This might comprise subjective decisions since several primary
studies did not provide a clear description of objectives and results.
To mitigate this risk, a rigor extraction process was applied based on
the guidelines of Kitchenham [Kitchenham & Charters, 2007]. In addi-
tion, the co-authors continuously checked the work of the first author
resolving disagreements through discussion.

Finally, we ensure reliability as the search process can be replicated
by other researchers. Since the data extraction process also considers
subjective factors (e.g., in cases where studies did not provide clear
descriptions), however, there is no guarantee that other researchers will
obtain exactly the same results as presented in this work.

B.11 Comparison with other Reviews

Figure B.7 presents a comparative summary of the related revies (cf.
Section 4.5) based on the retrieved studies. While column “Primary
studies” presents the identified primary studies of each work, column
“Overlapping studies” shows the studies identified in our SLR as well.
In terms of primary studies, there is no significant difference between
the SLRs. To be more precise, Lang et al. [Lang, 2002] retrieved 60,
Santos et al. [dos Santos Rocha & Fantinato, 2013] 63, and our work

5We continuously scan newly emerging papers and approaches to evolve our frame-
work as well as to apply it to the emerging approaches.

226 Procedure of the Systematic Study on Process Variability

63 primary studies. Concerning Valença et al. [Valença et al., 2013],
there is a higher number of primary studies (i.e., 80 studies). This can
be explained with the complementary keywords the authors use in the
search string (e.g., “change”, “agility”). The overlap of the studies is
relatively low between our SLR and Lang et al. and Santos et al., re-
spectively, since the goals of these works are different. On the contrary,
the overlap increases in the case of Valença et al. since the focus is
more related to our SLR (i.e., process variability). However, note that
we expanded the analysis of process variability to other phases of the
lifecycle and identify the set of features specifically tailored to process
families as well.

Work Primary studies Overlapping studies

Lang et al. 60 S19, S25, S47

Valença et al. 80
S16, S19, S21, S22, S24, S25, S28, S32, S34,
S35, S36, S38, S41, S42, S43, S45, S49

Santos et al. 63 S8, S9, S10, S14, S15, S26, S27, S41, S62

Figure B.7: Comparison of related studies

C
Material Used in the
Validation with PAIS

engineers

This appendix contains the material that was used in the validation of
the CP4PF with PAIS engineers.

C.1 Demographic Survey

For ensuring that both groups of PAIS engineers were homogeneous,
we asked subjects to fill out a demographic survey in advance in order
to determine their experience regarding the topics of the validation,
i.e., process modeling, process families, and adaptation patterns. This
section presents the questions of this survey:

228 Material Used in the Validation with PAIS engineers

1. What description matches best your current status?

• Academic

• Professional

2. How many years ago did you start modeling business processes?

• Less than 1 year

• More than 1 year but less than 3 years

• More than 3 years but less than 5 years

• More than 5 years

3. How many years ago did you start modeling with BPMN?

• Less than 1 year

• More than 1 year but less than 3 years

• More than 3 years but less than 5 years

• More than 5 years

4. Have you got a certification in BPMN?

• None

• OCEB/OCEB2

• BPMessentials

• IBM Certified Solution

• Other

5. If you have selected ’Other’ please specify which certification:

6. How many BPMN models have you analyzed within the last 12
months? (A year has about 250 working days. In case you read
one model per day, this would sum up to 250 models).

• Less than 60

• More than 60 but less than 120

C.1 Demographic Survey 229

• More than 120 but less than 180

• More than 180 but less than 250

• More than 250

7. How many BPMN models have you created within the last 12
months? (A year has about 250 working days. In case you read
one model per day, this would sum up to 250 models).

• Less than 60

• More than 60 but less than 120

• More than 120 but less than 180

• More than 180 but less than 250

• More than 250

8. How many activities did all these BPMN process models have on
average?

• Less than 10

• More than 10 but less than 50

• More than 50 but less than 100

• More than 100

9. Have you used adaptation patterns before? i.e., any mechanism
to automatically change the structure of a BPMN process model
before? (e.g., to automatically insert an activity in parallel to an-
other, to automatically embed an activity in a conditional branch-
ing)

• Yes

• No

10. Have you dealt with process families before? i.e., collection of
related process models that share the same core but also show
some differences depending on the application context (e.g., the
same process executed in different countries may be handled in
different ways due to differences in regulations)

230 Material Used in the Validation with PAIS engineers

• Yes

• No

C.2 Material Provided for the Tasks

In order to introduce PAIS engineers in the validation session, we dis-
tributed the material between the groups (G1 and G2). Note that to
mitigate the learning and tiredness effects, G1 first evolve a configurable
process model without CP4PF and G2 first evolve it using CP4PF.

C.2.1 Instructions for the validation

This session will be structured in the following way:

1. Guided part:

• BPMN tutorial

• C-EPC-like BPMN tutorial

• Basic training

• Change patterns tutorial

• Familiarization task 1 (INSERT patterns)

• Familiarization task 2 (DELETE patterns)

2. Not guided part:

• Modeling task 1 without CP4PF

• Assess mental effort

• Modeling task 2 with CP4PF

• Assess mental effort

• Fill in the questionnaire Perceived Ease of Use

• Fill in the questionnaire Perceived Usefulness

• Feedback

C.2 Material Provided for the Tasks 231

C.2.2 Basic training

What are process model variants and process families?

The increasing adoption of business processes in enterprises has resul-
ted in large process model repositories comprising collections of related
process model variants, which share the same core activities but also
show differences depending on the application context (e.g., the same
process executed in different countries may be handled in different ways
due to differences in regulations). A collection of related process vari-
ants is denoted as process family .

What is a configurable process model?

In this context, related process model variants are defined in terms of a
configurable process model , which represents the complete behavior
of a process family (i.e., it contains the behavior of all the related pro-
cess model variants). In particular, such a configurable process model
eliminates model redundancies by modeling the shared core activities
only ones. Furthermore, it fosters model reuse since variant differences
can be shared among multiple variants. Configurable process models
contain two groups of modeling elements:

1. Elements that represent the shared core activities by all process
model variants (i.e., commonalities). Typically, these elements
are defined using primitives of a business process language.

2. Elements that represent the variability-specific language constructs
that define the difference between each process model variants.

Example of a configurable process model:

232 Material Used in the Validation with PAIS engineers

a

b

c

d

e

fConfigurable
Region 1

Configurable
Region 2

Configuration
Alternative 2

Configuration
Alternative 1

Configuration requirement:

a  e

Configuration Constraint 1

Figure C.1: Example of a configurable process model

Note that first two XOR gateways and activities b, c, d, e, and f cor-
respond to commonalities shared by all process variants and are repres-
ented using BPMN primitives. Note as well that the variability-specific
language constructs are highlighted with yellow squares and represented
using C-EPC-like BPMN primitives marked in green.

What variability-specific language constructs are?

• Configurable Region: region of a configurable process model
for which different choices (i.e., variations, differences) exist de-
pending on the application context (cf. Configurable Region 1
and Configurable Region 2 in Figure C.1).

• Configuration Alternative: particular choice for a configur-

C.2 Material Provided for the Tasks 233

able region (cf. Configuration Alternative 1 and Configuration
Alternative 2 in Figure C.1).

• Configuration Constraint: semantic restriction regarding the
selection of configuration alternatives; e.g. exclusion, inclusion
(cf. Configuration Constraint 1 in Figure C.1).

What is a change pattern?

A change pattern is a solution for a recurring problem when model-
ing process families. More precisely, they constitute automatic and
structural adaptations for a configurable process model using high-level
change operations (e.g., insert activity in parallel) instead of low level
change primitives (e.g., add activity).

What are the change patterns for process families?

• Insert Configurable Region

• Delete Configurable Region

• Insert Configuration Alternative

• Delete Configuration Alternative

• Insert Configuration Constraint

• Delete Configuration Constraint

These patterns will be deeply analyzed and used in the following
tutorial and familiarization tasks.

C.2.3 Familiarization task 1

The purpose of this task is to help you to get used to the tool, process
families, and the INSERT change patterns. For such purpose, the tool

234 Material Used in the Validation with PAIS engineers

displays a source configurable process model (cf. Figure C.2). From the
latter, you need to reproduce the target configurable process model (cf.
Figure C.3) using the INSERT change patterns. When you are finished
with modeling, please use the Finish-Modeling button on the top left
to proceed.

Please keep in mind that the model will be automatically laid out
after applying a change pattern.

a

b

c

d

e

Figure C.2: Source configurable process model for the familiarization task 1

a

b

c

d

e

f

Configuration Requirement 1
b  e

g
1 2 3 4

5 6

Figure C.3: Target configurable process model for the familiarization task 1

In order to help you in this task, we provide the solving path needed
to obtain the target model from the source one. Each sentence of the
solving path has the following format:
“Select (modeling elements to select) - CHANGE PATTERN TO APPLY”

C.2 Material Provided for the Tasks 235

1. Select (a) - INSERT Configurable Region Function

2. Select (OR1, b, c, OR2) - INSERT Configurable Region Conditional

3. Select (OR2, AND3) - INSERT Configurable Region Function (Name:
g)

4. Select (e) - INSERT Configurable Region Exclusive

5. Select (XOR5, e, XOR6) - INSERT Configuration Alternative (Name:
f)

6. Select (OR1, OR2, XOR5, XOR6) - INSERT Configuration Constraint
(Constraint: b -> e)

Hint 1: When creating fragments between gateways, it does not matter
whether activity “b” is the activity in the upper branch and “c” in the lower or
the other way around.

Hint 2: When creating the model in the tool, it does not matter if the
edges are not as sharp as in the model above.

Hint 3: To select modeling elements, you can drag the cursor over the
elements or click each element plus the key CTRL of the keyboard. In both
cases, selected elements will be highlighted in grey.

Hint 4: When pressing the Layout button in the panel dialog, the dis-
played model is reordered.

Hint 5: When pressing the Undo button in the panel dialog, the last
performed operation is undone.

Hit 6: The sequence flows can be rearranged by dragging the startpoint
(or endpoint) to another modeling element using the ’Select’ tool from the
Palette on the right hand side of the tool.

C.2.4 Familiarization task 2

The purpose of this task is to help you to get used to the tool, process families,
and the DELETE change patterns. For such purpose, the tool displays a
source configurable process model (cf. Figure C.4). From the latter, you need
to reproduce a target configurable process model (cf. Figure C.5) using the
DELETE change patterns. Once you are finished with modeling, please use
the Finish-Modeling-Button on the top left to proceed.

Please be aware that the edges in the given model may look differently
from the ones you are creating with the tool.

236 Material Used in the Validation with PAIS engineers

Also, keep in mind that the model will be automatically laid out after
applying a change pattern.

b

c

f g

h

Configuration Requirement 1
b  e

e

i

jd

a

Figure C.4: Source configurable process model for the familiarization task 2

b

c

f

e g
1 2 3 4

Figure C.5: Target configurable process model for the familiarization task 2

In order to help you in this task, we provide the solving path needed to
obtain the target model from the source one. Each sentence of the solving
path has the following format:
“Select (modeling elements to select) - CHANGE PATTERN TO APPLY”

1. Select (a) - DELETE Configurable Region

2. Select (Configuration Requirement 1) - DELETE Configuration Con-
straint

3. Select (d) - DELETE Configuration Alternative

4. Select (XOR3, f, XOR4) - DELETE Configurable Region All (Change
to Non-configurable Gateways)

C.2 Material Provided for the Tasks 237

5. Select (AND, g, h, AND) - DELETE Configurable Region Keep [g]

6. Select (OR, I, j, OR) - DELETE Configurable Region None (Remove all
the elements in the region)

Hint 1: When creating fragments between gateways, it does not matter
whether activity “b” is the activity in the upper branch and “c” in the lower or
the other way around.

Hint 2: When creating the model in the tool, it does not matter if the
edges are not as sharp as in the model above.

Hint 3: To select modeling elements, you can drag the cursor over the
elements or click each element plus the key CTRL of the keyboard. In both
cases, selected elements will be highlighted in grey.

Hint 4: When pressing the Layout button in the panel dialog, the dis-
played model is reordered.

Hint 5: When pressing the Undo button in the panel dialog, the last
performed operation is undone.

Hit 6: The sequence flows can be rearranged by dragging the startpoint
(or endpoint) to another modeling element using the ’Select’ tool from the
Palette on the right hand side of the tool.

C.2.5 Modeling task 1 without CP4PF

The challenge in this task is to reproduce a configurable process model from
the one depicted in the tool using the primitives provided in the palette. In
particular, the tool displays a source configurable process model (cf. Figure
C.6). From the latter, you need to reproduce a target configurable process
model displayed in the auxiliar screen (cf. Figure C.7). Once you are fin-
ished with modeling, please use the Finish-Modeling button on the top left to
proceed.

Please be aware that the edges in the given model may look differently
from the ones you are creating with the tool.

Also, keep in mind that the model will be automatically laid out after
applying a change pattern.

238 Material Used in the Validation with PAIS engineers

C
he

ck
 v

is
a

Pr
in

t
b

oa
rd

in
g

ca
rd

R
eg

is
te

r
p

et

D
ro

p
of

f
bu

lk

lu
gg

ag
e

R
eg

is
te

r
p

as
se

n
ge

r

C
h

an
ge

se

at

as
si

gn
m

e
n

t

D
ro

p
of

f
lu

gg
ag

e

C
h

ec
k

fl
yi

n
g

n
u

m
b

er

C
he

ck

p
ho

to

P
ro

vi
d

e
 in

fo
rm

at
io

n

ab
o

u
t

ac
co

m
m

o
d

at
io

n
C

he
ck

 ID

Figure C.6: Source configurable process model for modeling task 1

C.2 Material Provided for the Tasks 239

A
ss

ig
n

 s
e

at

C
h

ec
k

vi
sa

P
ri

n
t

b
o

a
rd

in
g

ca
rd

R
eg

is
te

r
p

e
t

P
ro

vi
d

e
 in

fo
rm

at
io

n

ab
o

u
t

ac
co

m
m

o
d

at
io

n

C
h

an
ge

se

at

as
si

gn
m

e
n

t

C
o

n
fi

gu
ra

ti
o

n
 R

e
q

u
ir

e
m

e
n

t
1

A
ss

ig
n

 s
e

at
 

 C
h

an
ge

 s
ea

t
as

si
gn

m
en

t

D
ro

p
of

f
lu

gg
ag

e

Fi
ll

in
 E

ST
A

fo
rm

C
he

ck
 I

D

Figure C.7: Target configurable process model for modeling task 1

240 Material Used in the Validation with PAIS engineers

C.2.6 Modeling task 2 with CP4PF

The challenge is to reproduce a configurable process model from the one de-
picted in the tool using the provided set of change patterns. In particular, the
tool displays a source configurable process model (cf. Figure C.8). From the
latter, you need to reproduce a target configurable process model (cf. Figure
C.9). Once you are finished with modeling, please use the Finish-Modeling
button on the top left to proceed.

Please be aware that the edges in the given model may look differently
from the ones you are creating with the tool.

Also, keep in mind that the model will be automatically laid out after
applying a change pattern.

C.2 Material Provided for the Tasks 241

P
re

p
ar

e
m

ed
ic

al
 r

ep
o

rt

R
eg

is
te

r
p

at
ie

n
t

In
fo

rm

re
la

ti
ve

s

P
re

pa
re

p

at
ie

n
t

Tr
an

sp
o

rt

p
at

ie
n

t

P
re

p
ar

e
m

ed
ic

al
 r

ep
o

rt

P
ay

tr

ea
tm

en
t

A
dm

it

p
at

ie
n

t
Tr

ea
t

p
at

ie
n

t

Sc
h

ed
u

le

n
ex

t
tr

ea
tm

en
t

In
fo

rm

p
h

ys
ic

ia
n

In
fo

rm
 in

su
ra

n
ce

co

m
p

an
y

Figure C.8: Source configurable process model for modeling task 2

242 Material Used in the Validation with PAIS engineers

R
eg

is
te

r
p

at
ie

n
t

P
re

pa
re

p

at
ie

n
t

C
h

ec
k

p
at

ie
n

t

P
re

pa
re

m

ed
ic

al
 r

ep
o

rt

P
ay

tr

ea
tm

en
t

A
dm

it

p
at

ie
n

t
Tr

an
sp

o
rt

p

at
ie

n
t

C
o

n
fi

rm

tr
ea

tm
en

t
Tr

ea
t

p
at

ie
n

t

C
o

n
fi

gu
ra

ti
o

n
 R

e
q

u
ir

e
m

e
n

t
1

C
o

n
fi

rm
 t

re
at

m
e

n
t


 P
ay

 t
re

at
m

e
n

t

Sc
h

ed
u

le
tr

ea
tm

en
t

In
fo

rm

p
h

ys
ic

ia
n

Figure C.9: Target configurable process model for modeling task 2

D
Cheetah Experimental

Platform

This appendix contains the description of the Cheetah Experimental Platform
(CEP) used in the validation of the CP4PF with PAIS engineers. CEP was
originally defined by the Quality Engineering Research Group of the University
of Innsbruck (Austria) [Pinggera et al., 2010]. We extended CEP by imple-
menting the CP4PF in order to allow their application.

D.1 Design of CEP

Originally, CEP enables experimenters to quickly assemble experimental work-
flows from other components. In particular, CEP offers a set of frequently used
components, including surveys, tutorials and editors for creating process mod-
els. In the context of the validation performed in this thesis, we followed
the experimental process depicted in Figure D.1. When executing this pro-
cess, CEP guides the user through the experimental process ensuring that the

244 Cheetah Experimental Platform

setup is followed. Furthermore, data collected is stored on a central database
server, giving researchers the possibility to check whether all activities were
completed and to restore the experiment to a specific state (e.g., in case of a
crashed system). If the database server cannot be accessed a local copy is cre-
ated and the user is asked to send it to the experiment’s supervisor via email.
In addition, CEP ensures that all steps (or questions) marked as mandatory
are followed (or answered) before the user continues with the next step in the
process.

Introduction

Airport check-in task
without CP4PF

G1

G2

Process modeling
tutorial

Process families
tutorial

CP4PF tutorial

Medical examinations task
with CP4PF

Medical examinations task
without CP4PF

Airport check-in task
with CP4PF

Assess
mental effort

G1

G2

Usefulness
questionnaire

Feedback
Ease of use

questionnaire

Familiarization with
INSERT patterns

Familiarization with
DELETE patterns

Assess
mental effort

Figure D.1: Process followed in the validation with PAIS engineers

Besides monitoring the correct execution of the experimental process, CEP
enables to gather the results of each questionnaire as well as to automatically
record all the modeling actions. This is done to replay step by step what
PAIS engineers did when applying the patterns. More precisely, every change
to the configurable process model (e.g., add/delete/move configurable region,
add/delete/move edge) and the corresponding timestamp are automatically re-
corded and stored separately, offering the possibility for detailed investigations
concerning the application of the patterns.

D.2 Extension of CEP

In order to enable the investigation of how CP4PF are applied, we extended
CEP by implementing an editor. This editor is a rather simple modeling
component providing only basic modeling functionalities for simulating a “pen
and paper” modeling session using a set of patterns. The focus was put on
developing a tool facilitating the investigation of how CP4PF are applied,

D.3 Analysis in CEP 245

rather than providing a full fledged modeling suite. In our editor, we decided
to extend BPMN with C-EPC constructs because all the subjects were familiar
with BPMN, but not with EPC or C-EPC. Thus, we enable the modeling of
configurable tasks and configurable gateways with BPMN in order to apply
CP4PF. Currently, C-EPC-like BPMN is the only process modeling language
supported by CEP for creating configurable process models. Nevertheless,
support for other notations was kept in mind when designing CEP and can
easily be integrated. Figure D.2 includes a screenshots of the implemented
editor.

Figure D.2: Screeshot of the implemented editor

D.3 Analysis in CEP

In addition to efficiently executing and monitoring experiments, CEP allows
for the analysis of the recorded data. This is done through the functionalities
of the Cheetah Analyzer (e.g., data export features and means for replaying

246 Cheetah Experimental Platform

process models).

To be able to analyze the data collected when executing the experimental
process an export system is in place. By providing the option to export data
as Comma-Separated Values (.csv) files, several tools for performing statistical
analysis can be addressed (e.g., SPSS, Excel).

Another advantage of using CEP is the possibility of replaying process
models created with the implemented editor. Recording all modeling steps en-
ables researches to investigate how CP4PF are applied. For this purpose, the
Cheetah Analyzer allows for a step-by-step execution of the steps performed
during the experimental process. Additionally, researches can export the re-
cords using the Mining XML (.mxml) format, allowing them to apply process
mining techniques using ProM [van der Aalst et al., 2007]. Figure D.3 shows
an screeshot of the step-by-step records.

Figure D.3: Screeshot of the step-by-step records

www.pros.upv.es

Centro de Investigación en Métodos
de Producción de Software

Universitat Politècnica de València
Caḿı de Vera s/n, Edifici 1F, Dept. DSIC

46022 - València
Spain

Tel: (+34) 963 877 007 (Ext. 83530)
Fax: (+34) 963 877 359

	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Thesis Goals
	1.4 Research Methodology
	1.5 Thesis Context
	1.6 Thesis Structure

	2 Background
	2.1 Business Process Modeling
	2.2 Software Variability Modeling
	2.3 Software Patterns
	2.3.1 Organizational patterns
	2.3.2 Architectural patterns
	2.3.3 Idioms
	2.3.4 Analysis patterns
	2.3.5 Design patterns

	2.4 Conclusions

	3 State of the Art
	3.1 Business Process Variability Modeling
	3.1.1 Process perspectives
	3.1.2 Process lifecycle
	3.1.3 Process variability approaches

	3.2 Software Variability Modeling Patterns
	3.2.1 Single, Multiple, and Option patterns
	3.2.2 Patterns for evolving event-based systems

	3.3 Business Process Modeling Patterns
	3.3.1 Workflow patterns
	3.3.2 Patterns for business process change

	3.4 Discussion
	3.5 Conclusions

	4 VIVACE: Process Variability Characterization
	4.1 Research Questions Formulation
	4.2 The VIVACE Framework
	4.2.1 Languages for Modeling Business Process Variability
	4.2.2 Techniques for Modeling Process Variability in a Configurable Process Model
	4.2.3 Language Constructs for Process Variability
	4.2.4 Covered Process Perspectives
	4.2.5 Existing Tools for Managing Process Variability
	4.2.6 Variability Support Features
	4.2.7 Empirical Evaluation of Process Variability Approaches
	4.2.8 Application Domains
	4.2.9 Aspects Cutting Across VIVACE Aspects

	4.3 VIVACE in Practice
	4.3.1 Applying VIVACE to Configurable EPC
	4.3.2 Applying VIVACE to Provop
	4.3.3 Applying VIVACE to PESOA
	4.3.4 Summary of the Evaluation

	4.4 Discussion
	4.5 Comparison with Other Characterizations
	4.6 Conclusions

	5 Variability Management in Process Families through Change Patterns
	5.1 Change Patterns Derivation
	5.2 CP1: Insert Configurable Region
	5.3 CP2: Delete Configurable Region
	5.4 CP3: Insert Configuration Alternative in a Configurable Region
	5.5 CP4: Delete Configuration Alternative from a Configurable Region
	5.6 CP5: Insert Configuration Context Condition of a Configuration Alternative
	5.7 CP6: Delete Configuration Context Condition of a Configuration Alternative
	5.8 CP7: Modify Configuration Context Condition of a Configuration Alternative
	5.9 CP8: Insert Configuration Constraint Between Configuration Alternatives
	5.10 CP9: Delete Configuration Constraint Between Configuration Alternatives
	5.11 CP10: Modify Configurable Region Resolution Time
	5.12 Discussion
	5.13 Conclusions

	6 Putting CP4PF into practice
	6.1 Context
	6.2 Research Questions
	6.3 Case Selection and Data Collection
	6.4 Results
	6.5 Discussion
	6.6 Validity
	6.7 Conclusions

	7 Validation of the proposal with PAIS engineers
	7.1 Research Questions
	7.2 Subject Selection
	7.3 Validation Design
	7.4 Data Collection Procedure
	7.5 Results
	7.6 Discussion
	7.7 Validity
	7.8 Conclusions

	8 Conclusions and Future Work
	8.1 Contributions
	8.2 Publications
	8.2.1 Main publications
	8.2.2 Other publications

	8.3 Research Collaborations
	8.4 Future work

	Bibliography
	Appendices
	A Check-in Process
	B Procedure of the Systematic Study on Process Variability
	B.1 Research Questions Formulation
	B.2 Search String
	B.3 Data Source Selection
	B.4 Inclusion and Exclusion Criteria
	B.5 Quality Assessment
	B.6 Study Selection
	B.7 Data Extraction Strategy
	B.8 Data Analysis
	B.9 Statistics of the Primary Studies
	B.10 Threats of Validity
	B.11 Comparison with other Reviews

	C Material Used in the Validation with PAIS engineers
	C.1 Demographic Survey
	C.2 Material Provided for the Tasks
	C.2.1 Instructions for the validation
	C.2.2 Basic training
	C.2.3 Familiarization task 1
	C.2.4 Familiarization task 2
	C.2.5 Modeling task 1 without CP4PF
	C.2.6 Modeling task 2 with CP4PF

	D Cheetah Experimental Platform
	D.1 Design of CEP
	D.2 Extension of CEP
	D.3 Analysis in CEP

