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Abstract

The field of audio signal processing has undergone a major development in
recent years. Both the consumer and professional marketplaces continue to
show growth in audio applications such as immersive audio schemes that
offer optimal listening experience, intelligent noise reduction in cars or im-
provements in audio teleconferencing or hearing aids. The development of
these applications has a common interest in increasing or improving the
number of discrete audio channels, the quality of the audio or the sophisti-
cation of the algorithms. This often gives rise to problems of high computa-
tional cost, even when using common signal processing algorithms, mainly
due to the application of these algorithms to multiple signals with real-time
requirements. The field of High Performance Computing (HPC) based on
low cost hardware elements is the bridge needed between the computing
problems and the real multimedia signals and systems that lead to user’s
applications. In this sense, the present thesis goes a step further in the
development of these systems by using the computational power of Gen-
eral Purpose Graphics Processing Units (GPGPUs) to exploit the inherent
parallelism of signal processing for multichannel audio applications.

The increase of the computational capacity of the processing devices has
been historically linked to the number of transistors in a chip. However,
nowadays the improvements in the computational capacity are mainly given
by increasing the number of processing units and using parallel processing.
The Graphics Processing Units (GPUs), which have now thousands of com-
puting cores, are a representative example. The GPUs were traditionally
used to graphic or image processing, but new releases in the GPU pro-
gramming environments such as CUDA have allowed the use of GPUS for
general processing applications. Hence, the use of GPUs is being extended
to a wide variety of intensive-computation applications among which audio
processing is included. However, the data transactions between the CPU
and the GPU and viceversa have questioned the viability of the use of GPUs
for audio applications in which real-time interaction between microphones
and loudspeakers is required. This is the case of the adaptive filtering
applications, where an efficient use of parallel computation in not straight-
forward. For these reasons, up to the beginning of this thesis, very few
publications had dealt with the GPU implementation of real-time acous-
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tic applications based on adaptive filtering. Therefore, this thesis aims to
demonstrate that GPUs are totally valid tools to carry out audio applica-
tions based on adaptive filtering that require high computational resources.
To this end, different adaptive applications in the field of audio processing
are studied and performed using GPUs. This manuscript also analyzes and
solves possible limitations in each GPU-based implementation both from
the acoustic point of view as from the computational point of view.

One of the most used and simplest audio applications based on adap-
tive filtering is the adaptive channel identification. The adaptive channel
identification system has been first designed and implemented on a GPU,
and then, used in other adaptive applications to identify acoustic plants.
Concretely, to this end, the Least Mean Square (LMS) algorithm has been
implemented in the frequency domain. The size of both the input-data
buffers and the adaptive filters, and also, how they can be managed in or-
der to successfully exploit the GPU resources, is an important key in the
design process. The goal is to propose a GPU implementation that can
be easily adapted to any acoustic scenario, while freeing up CPU resources
for other tasks. This application sets the bases for the real-time imple-
mentation of multichannel adaptive applications using a GPU as the main
processor.

From the knowledge acquired in the channel identification application,
two more audio applications based on adaptive filtering have been devel-
oped using the GPU as the main processor. First a multichannel Adaptive
Equalization (AE) system has been developed. The prototype is based on
the filtered-x LMS algorithm. Details of the parallelization of the algorithm
have been analyzed. The experimental results have validated the real-time
performance of the AE GPU implementation. Moreover, the application
performance has also been analyzed from a computational point of view.
The second application is a multichannel Active Noise Control (ANC) sys-
tem. The ANC system has been implemented using two different algo-
rithms: the LMS and the Normalized LMS with Orthogonal Correction
Factors (NLMS-OCF). The experimental results have compared the per-
formance of both multichannel ANC GPU implementations from different
points of view: attenuation levels, convergence speed and computational
aspects. Results of both applications have shown the usefulness of GPUs
to develop versatile, scalable and low cost multichannel systems based on
adaptive filtering.

Finally, this manuscript also introduces how to implement an ANC sys-



tem for networks with distributed processing. It also sets the bases for
an implementation of distributed ANC systems using multi-GPU program-
ming, where each GPU performs the processing of each node of the network.

Keywords: Multichannel Adaptive filtering, Adaptive Equalization, Ac-
tive Noise Control, Distributed Processing, Graphics Processing Units.
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Resumen

El campo de procesado de senales de audio ha experimentado un desarro-
llo importante en los 1ltimos anos. Tanto el mercado de consumo como
el profesional siguen mostrando un crecimiento en aplicaciones de audio,
tales como: los sistemas de audio inmersivo que ofrecen una experiencia
de sonido 6ptima, los sistemas inteligentes de reduccién de ruido en coches
o las mejoras en sistemas de teleconferencia o en audifonos. El desarrollo
de estas aplicaciones tiene un propdsito comin de aumentar o mejorar el
numero de canales de audio, la propia calidad del audio o la sofisticacién
de los algoritmos. Estas mejoras suelen dar lugar a sistemas de alto coste
computacional, incluso usando algoritmos comunes de procesado de senal.
Esto se debe principalmente a que los algoritmos se suelen aplicar a sis-
temas multicanales con requerimientos de procesamiento en tiempo real.
El campo de la Computacion de Alto Rendimiento basado en elementos
hardware de bajo coste es el puente necesario entre los problemas de com-
putacién y los sistemas multimedia que dan lugar a aplicaciones de usuario.
En este sentido, la presente tesis va un paso mas alla en el desarrollo de
estos sistemas mediante el uso de la potencia de calculo de las Unidades de
Procesamiento Grafico (GPU) en aplicaciones de propdsito general. Con
ello, aprovechamos la inherente capacidad de paralelizacién que poseen las
GPU para procesar senales de audio y obtener aplicaciones de audio mul-
ticanal.

El aumento de la capacidad computacional de los dispositivos de proce-
sado ha estado vinculado histéricamente al nimero de transistores que
habia en un chip. Sin embargo, hoy en dia, las mejoras en la capaci-
dad computacional se dan principalmente por el aumento del niimero de
unidades de procesado y su uso para el procesado en paralelo. Las GPUs
son un ejemplo muy representativo. Hoy en dia, las GPUs poseen hasta
miles de nucleos de computacion. Tradicionalmente, las GPUs se han uti-
lizado para el procesado de graficos o imagenes. Sin embargo, la aparicién
de entornos sencillos de programacién GPU, como por ejemplo CUDA, han
permitido el uso de las GPU para aplicaciones de procesado general. De
ese modo, el uso de las GPU se ha extendido a una amplia variedad de apli-
caciones que requieren calculo intensivo. Entre esta gama de aplicaciones,
se incluye el procesado de senales de audio. No obstante, las transferencias
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de datos entre la CPU y la GPU y viceversa pusieron en duda la viabi-
lidad de las GPUs para aplicaciones de audio en las que se requiere una
interaccion en tiempo real entre micréfonos y altavoces. Este es el caso de
las aplicaciones basadas en filtrado adaptativo, donde el uso eficiente de la
computacion en paralelo no es sencillo. Por estas razones, hasta el comienzo
de esta tesis, habfa muy pocas publicaciones que utilizaran la GPU para
implementaciones en tiempo real de aplicaciones acusticas basadas en fil-
trado adaptativo. A pesar de todo, esta tesis pretende demostrar que las
GPU son herramientas totalmente véalidas para llevar a cabo aplicaciones
de audio basadas en filtrado adaptativo que requieran elevados recursos
computacionales. Con este fin, la presente tesis ha estudiado y desarrol-
lado varias aplicaciones adaptativas de procesado de audio utilizando una
GPU como procesador. Ademds, también analiza y resuelve las posibles
limitaciones de cada aplicacion tanto desde el punto de vista actstico como
desde el punto de vista computacional.

La identificacién adaptativa de sistemas aplicada a identificar canales
acusticos, es una de las aplicaciones de audio basadas en filtrado adaptativo
mas usadas a la vez que simples. En primer lugar, la aplicacién de identifi-
cacién adaptativa de sistemas se ha disefiado e implementado usando una
GPU como procesador. Posteriormente, esta aplicacion se ha utilizado en
otras aplicaciones para identificar canales actisticos. Concretamente, para
la implementacién de esta aplicacion, se ha usado el algoritmo de minimos
cuadrados o Least Mean Square (LMS) implementado en el dominio de
la frecuencia. Tanto el tamano de los filtros adaptativos como el de los
vectores de datos de entrada ademéas de cémo se deben gestionar dichos
vectores es un aspecto muy importante del proceso de diseno para poder
explotar con éxito todos los recursos computacionales que ofrece la GPU.
El objetivo ha sido proponer una aplicacién GPU que se pueda adaptar
facilmente a cualquier escenario acustico, mientras que al ejecutarse en la
GPU, se liberen los recursos computacionales de la CPU para otras tareas.
Con esta aplicacién se han sentado las bases de la programacién en GPU
de aplicaciones de filtrado adaptativo multicanal en tiempo real.

A partir del conocimiento adquirido en la aplicacién de identificacién de
canal, se han desarrollado dos aplicaciones multicanales de audio basadas
en el filtrado adaptativo utilizando la GPU como procesador. En primer
lugar, se ha desarrollado un sistema multicanal de Ecualizacién Adaptativa
(AE). El prototipo esta basado en el algoritmo LMS con filtrado-x. Se han
analizado los detalles de la paralelizacién del algoritmo y posteriormente,



se han validado los resultados experimentales. Ademads, el rendimiento en
tiempo real de la aplicacion de AE implementada en la GPU ha sido ana-
lizado desde un punto de vista computacional. La segunda aplicacién ha
sido un sistema de Control Activo de Ruido (CAR) multicanal. El sistema
CAR se ha implementado utilizando dos algoritmos diferentes: el LMS y el
LMS Normalizadas con Factores de Correccién Ortogonal (NLMS-OCF). Se
han presentado los resultados experimentales de ambas implementaciones
del sistema CAR para poder comparar sus rendimientos desde diferentes
puntos de vista: niveles de atenuacién, velocidad de convergencia y aspec-
tos computacionales. Los resultados de ambas aplicaciones, demuestran la
utilidad de la GPU para la implementaciéon de aplicaciones basadas en fil-
trado adaptativo asi como el desarrollo de sistemas multicanales versatiles,
escalables y de bajo coste.

Por tdltimo, este manuscrito también analiza los sistemas CAR para
redes de nodos con procesado distribuido. Ademads, establece las bases
para la implementacién de dichos sistemas CAR. distribuidos utilizando la
programacién en multiples GPUs donde cada GPU realiza el procesado de
cada nodo de la red.

Palabras Clave: Filtrado Adaptativo Multicanal, Equalizacién Adapta-
tiva, Control Activo de Ruido, Procesado Distribuido, Unidad de Proce-
samiento Grafico.
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Resum

El camp del processament de senyals d’audio ha experimentat un desen-
volupament important als dltims anys. Tant el mercat de consum com
el professional segueixen mostrant un creixement en aplicacions d’audio,
com ara: els sistemes d’audio immersiu que ofereixen una experieéncia de
so optima, els sistemes intel-ligents de reduccié de soroll en els cotxes o
les millores en sistemes de teleconferéncia o en audiofons. El desenvolupa-
ment d’aquestes aplicacions té un proposit comu d’augmentar o millorar el
nombre de canals d’audio, la propia qualitat de I’audio o la sofisticaci6 dels
algorismes que s’utilitzen. Aixo, sovint déna lloc a sistemes d’alt cost com-
putacional, fins i tot quan es fan servir algorismes comuns de processat de
senyal. Aixo es deu principalment al fet que els algorismes se solen aplicar
a sistemes multicanals amb requeriments de processat en temps real. El
camp de la Computacié d’Alt Rendiment basat en elements hardware de
baix cost és el pont necessari entre els problemes de computacio i els sis-
temes multimedia que donen lloc a aplicacions d’usuari. En aquest sentit,
aquesta tesi va un pas més enlla en el desenvolupament d’aquests sistemes
mitjancant 1'is de la potencia de calcul de les Unitats de Processament
Grafic (GPU) en aplicacions de proposit general. Amb aixo, s’aprofita la
inherent capacitat de paral-lelitzacié que posseeixen les GPUs per processar
senyals d’audio i obtenir aplicacions d’audio multicanal.

L’augment de la capacitat computacional dels dispositius de processat
ha estat historicament vinculada al nombre de transistors que hi havia en
un xip. No obstant, avui en dia, les millores en la capacitat computacional
es donen principalment per ’augment del nombre d’unitats de processat i el
seu Us per al processament en paral-lel. Un exemple molt representatiu sén
les GPU, que avui en dia posseeixen milers de nuclis de computacio. Tradi-
cionalment, les GPUs s’han utilitzat per al processat de grafics o imatges.
No obstant, I'aparicié d’entorns senzills de programacié de la GPU com
és CUDA, han permes I'is de les GPUs per a aplicacions de processat
general. D’aquesta manera, I'is de les GPUs s’ha estés a una amplia va-
rietat d’aplicacions que requereixen calcul intensiu. Entre aquesta gamma
d’aplicacions, s’inclou el processat de senyals d’audio. No obstant, les trans-
ferencies de dades entre la CPU i la GPU i viceversa van posar en dubte
la viabilitat de les GPUs per a aplicacions d’audio en que es requereix la
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interaccié en temps real de microfons i altaveus. Aquest és el cas de les
aplicacions basades en filtrat adaptatiu, on 1'is eficient de la computaci6 en
paral-lel no és senzilla. Per aquestes raons, fins al comencament d’aquesta
tesi, hi havia molt poques publicacions que utilitzeren la GPU per imple-
mentar en temps real aplicacions acustiques basades en filtrat adaptatiu.
Malgrat tot, aquesta tesi pretén demostrar que les GPU s6n eines totalment
valides per dur a terme aplicacions d’audio basades en filtrat adaptatiu
que requereixen alts recursos computacionals. Amb aquesta finalitat, en la
present tesi s’han estudiat i desenvolupat diverses aplicacions adaptatives
de processament d’audio utilitzant una GPU com a processador. A més,
aquest manuscrit també analitza i resol les possibles limitacions de cada
aplicacié, tant des del punt de vista actstic, com des del punt de vista
computacional.

La identificacié adaptativa de sistemes aplicada a identificar canals
acustics, és una de les aplicacions d’audio basades en filtrat adaptatiu més
utilitzades i simples. En primer lloc, 'aplicacié d’identificacié adaptativa
de sistemes s’ha dissenyat i implementat utilitzant una GPU com a proces-
sador. Posteriorment aquesta aplicacié s’ha utilitzat en altres aplicacions
per a identificar canals actustics. Concretament, per a la implementacio
d’aquesta aplicacié, s’ha utilitzat I’algorisme de minims quadrats o emph
Least Mean Square (LMS) implementat en el domini de la freqiiéncia. Tant
el tamany dels filtres adaptatius com el dels vectors de dades d’entrada, a
més de com s’han de gestionar aquests vectors, és un aspecte molt impor-
tant del procés de disseny ja que permet poder explotar amb exit tots els
recursos computacionals que ofereix la GPU. L’objectiu és proposar una
aplicacié GPU que es puga adaptar facilment a qualsevol escenari acustic,
mentre que al executar-la amb la GPU, s’alliberen recursos de la CPU per
a altres tasques. Amb aquesta aplicacié s’han establert les bases de la pro-
gramacié en GPU d’aplicacions de filtrat adaptatiu multicanal en temps
real.

A partir dels coneixements adquirits en ’aplicacié d’identificacié de
canal, s’han desenvolupat dues aplicacions d’audio basades en el filtrat
adaptatiu utilitzant la GPU com a processador. En primer lloc, s’ha desen-
volupat un sistema multicanal d’Equalitzacié Adaptativa (AE). El prototip
s’ha basat en I'algorisme LMS amb filtrat-x. S’han analitzat els detalls de
la paral-lelitzacié de ’algorisme, i posteriorment, s’han validat els resul-
tats experimentals. A més, el rendiment en temps real de 'aplicacié d’AE
implementada amb la GPU ha estat analitzat des d’un punt de vista com-
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putacional. Pel que fa a la segona aplicacid, s’ha implementat un sistema
de Control Actiu de Soroll (CAS) multicanal. El sistema CAS s’ha imple-
mentat per a dos algorismes distints: el LMS i el LMS Normalitzat amb
Factors de Correccié Ortogonal (NLMS-OCF). A més a més, s’han presen-
tat els resultats experimentals de les dues implementacions del sistema CAS
per després poder comparar els rendiments des de diferents punts de vista:
nivells d’atenuacio, velocitat de convergencia i alguns aspectes computa-
cionals. Els resultats d’ambdues aplicacions han demostrat la utilitat de
les GPU per a la implementacié d’aplicacions basades en filtrat adaptatiu i
el desenvolupament sistemes multicanal versatils, escalables i de baix cost.

Finalment, aquest manuscrit també introdueix sistemes CAS per a
xarxes de nodes amb processat distribuit. A més, estableix les bases per
a la implementacié d’aquests sistemes CAS distribuits utilitzant la progra-
macié en multiples GPUs on cada GPU realitza el processat de cada node
de la xarxa.

Paraules Clau: Filtrat Adaptatiu Multicanal, Equalitzacié Adaptativa,
Control Actiu de Soroll, Processat Distribuit, Unitat de processat Grafic.
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Introduction and Scope

1.1 Background

This thesis fits into the field of Information Technology and Communica-
tions [1], particularly in the areas of Digital Signal Processing [2] and High
Performance Computing (HPC) [3]. HPC generally refers to the practice
of aggregating computing power in a way that delivers much higher perfor-
mance than one could get out of a typical desktop or personal computer in
order to solve large problems in fields such as science, engineering, or busi-
ness. HPC is generally related with the use of parallel processing to solve
these large problems making use, for example, of the parallel resources of
multicore Central Processing Units (CPU) or Graphics Processing Units
(GPU).

Concretely, the main goal of this thesis is the development and im-
plementation of adaptive signal processing algorithms [4] for multichannel
spatial sound on GPU [5]. It is intended to integrate these algorithms
into systems and prototypes to solve real computing-intensive problems of
multichannel audio signal processing, with particular attention to current
and future applications that involve: recording, transmission and process-
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Figure 1.1. Basic Scheme of a multichannel recording-
reproduction system.

ing of spatial sound. By spatial sound we mean sounds coming from one
or several sources, which, implicitly or explicitly, have information of the
recording environment, of the virtual stage and/or of the real reproduction
stage (spatial information).

The main multichannel recording-reproduction problem can be de-
scribed using the scheme depicted in the Figure 1.1, where a number of
signals (to be reproduced) are processed through a multichannel process-
ing system that takes into account certain features or parameters of the
stage and of the sound scene to be reproduced. Generally speaking this
is a discrete MIMO (Multiple Input, Multiple Output) system of sound
signals with multiple loudspeakers and microphones. The number of lis-
teners is variable, although in the figure only one is represented for sim-
plicity. A large number of applications of spatial sound can be derived
from the scheme of Figure 1.1, as applications that perform reproduction
either through speakers or through headphones. The use of multiple mi-
crophones provides feedback information to the system, which is necessary
to implement multiple applications based on adaptive algorithms like: the
cancellation of undesired sounds [6], room equalization [7] or acoustic path
identification [8].

There are two classical configurations or strategies to accomplish that
the spatial sound is properly perceived by a listener through loudspeakers.
The first one surrounds the listening area of a large number of sources and
tries to recreate the sound field in a large zone of this space. It might be
called global control of sound field. The second tries to recreate the sound
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that would have been perceived in the actual listening in the ears of the
listener. This option might be called local or localized control. Methods
based on the first strategy are generally applicable to reproduction in large
areas and large numbers of listeners, where investment in a large number of
transducers is more justified. The second of the strategies is more appropri-
ate for applications for domestic reproduction or for listeners with reduced
mobility, since: the reproduction environments can have different charac-
teristics, the number of listeners is small, the number of sound sources to be
used can be reduced, and a greater precision is required for the recreation
of the acoustic environment.

Due to the increasing demand for new acoustic sensations, which gen-
erally involves an increase of audio channels, the number of transducers
(microphones or loudspeakers) used in the system showed in Figure 1.1
should be high. The increase of transducers involves an exponential in-
crease in the number of operations that have to be performed by the com-
puter. Moreover, many of these systems must be implemented in real time,
which means that the sound signals that are picked up by the microphones
must be processed continuously to generate the signals that have to be
reproduced by the loudspeakers.

While the number of channels and the processing operations are in-
creasing, the processing device has to perform all the operations in a very
short time period to keep the multichannel system working in real time.
Therefore, a powerful processing device is needed for these multichannel
real-time systems. For this reason, this thesis is based on the use of the
GPU as the main processor, so that multichannel signal processing algo-
rithms can take benefit of GPUs SIMT (Single Instruction Multiple Thread)
execution model. SIMT is a parallel execution model, used in some General
Purpose GPU (GPGPU) platforms, where multithreading is simulated by
SIMD (Single Instruction Multiple Thread) processors. The SIMD architec-
ture allows running the same instruction over multiple data and therefore,
obtaining massive parallelization for the multichannel acoustic processing.

In this context, the main work of this thesis has been the development
of prototypes based on adaptive filtering algorithms for multichannel appli-
cations such as: Channel Identification (CI), Room Equalization (RE) and
local Active Noise Control (ANC). All of them based on the new paradigms
of computing and signal processing arising from the use of GPUs.
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1.2 Motivation and objectives

The field of signal processing is highly suitable for the use of HPC based
on low-cost hardware elements, because it is the needed bridge between
the problems of computing and the real multimedia signals and systems
that leads to user applications. Nowadays, signal processing has become
a basic tool in many multichannel audio applications, such as noise con-
trol or equalization. Such applications often give rise to problems of high
computational cost, even when using common signal processing algorithms.
This is mainly due to the application of these algorithms to multiple sig-
nals and with real-time requirements. The present thesis aims to take a
further step in the development of these systems using the computational
power of GPGPUs to exploit the inherent parallelism of signal processing
for multichannel audio applications. The development of new audio sig-
nal processing applications using GPGPUs as high performance computing
elements, in which the heaviest part of the algorithms will be run, is a sci-
entific and technological challenge that has been recently addressed. The
results of researchers that combines signal processing with HPC should al-
low tackling potential applications that so far seemed unattainable for the
consumer market, due to its computational cost.

Considering the motivation aspects, the main objective of this thesis is
the following:

The development of prototypes based on adaptive filtering algorithms
for massive multichannel sound applications working in real time.

To this end, the following global objectives are also considered:

e Analyze the proposed adaptive algorithms and transform them seeking
the most efficient implementation.

o Study the GPU architecture in order to use it as the main processor
that computes and accelerates the massive processing tasks that require
the cited applications.

e Solve drawbacks from both the acoustic and computational point of
view.

o Implement GPU-based prototypes working under the real-time condi-
tion.
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Concretely, these global objectives can be particularized into several
specific objectives, as follows:

e The assessment of the use of the GPU architecture for the implemen-
tation of different sub-systems of signal processing in spatial audio
systems. This includes the testing of different parallel programming
tools in order to analyze the benefits of using them for the paralleliza-
tion of the signal processing algorithms. For example:

Jacket. Tool for programming the GPU using Matlab environment
[9].

CUDA. It means Compute Unified Device Architecture. It is a pro-
gramming language created by NVIDIA [10] to program the
NVIDIA GPUs. Used for: create kernels that run in parallel
using the multiple threads of the GPU, control the GPU mem-
ory allocations, and the data transactions between the CPU and
GPU [11].

CUFFT. CUDA implementation of the direct Fast Furier Transform
(FFT) and inverse Fast Furier Transform (IFFT) [12].

CULA. CUDA implementation of the LAPACK (Linear Algebra
Package) mathematic library [13].

CUBLAS. CUDA implementation of the BLAS (Basic Linear Alge-
bra Subprograms) mathematic library [14].

e The development of signal processing sub-systems for multichannel
sound on GPU. In particular, it is aimed to develop different algo-
rithms based on block processing in the frequency domain for different
adaptive applications such as: channel identification, room equaliza-
tion and active noise control.

e The implementation of a single-channel identification application us-
ing a GPU as the main processor.

e The implementation of a room equalization application using a GPU
as the main processor.

e The implementation of an ANC application using a GPU as the main
processor.
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e The study and implementation of an ANC system over a network of
acoustic nodes with distributed processing.

1.3 Organization of the thesis

The remainder of this thesis describes the research that has been under-
taken to develop the aims stated above. It is important to remark that
this thesis involves two different disciplines: audio signal processing and
computational science. Thus, chapter 2 is dedicated to review the state of
the art of both the adaptive signal processing and the use of GPU in signal
processing. Moreover, chapter 2 also introduces some basic knowledge of
both disciplines, which could be considered as fundamental concepts within
a mono-disciplinary thesis. However, this review helps to understand the
thesis from a multi-disciplinary point of view. The chapters are organized
and presented as follows:

e Chapter 2. This chapter is devoted to introduce basic knowledge of
adaptive signal processing and GPU computing. Moreover a brief
state of the art of both disciplines is also presented.

e Chapter 3. This chapter introduces the algorithms that have been
used in the adaptive prototypes applications, which are: the Least
Mean Squares (LMS) algorithm, and the Normalized LMS with Or-
thogonal Correction Factors (NLMS-OCF) algorithm.

e Chapter 4. This chapter presents the GPU implementation of a
single-channel identification application based on the LMS algorithm.

e Chapter 5. This chapter deals with the GPU implementation of a
multichannel room equalization application based on the LMS algo-
rithm.

e Chapter 6. This chapter develops the GPU implementation of a multi-
channel active noise control application based on the LMS algorithms.

e Chapter 7. This chapter develops the GPU implementation of a mul-
tichannel active noise control application based on the NLMS-OCF
algorithms.
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e Chapter 8. This chapter proposes a distributed algorithm for an ANC
system over a network of acoustic nodes.

e Chapter 9. Finally, the conclusions obtained throughout this thesis
are presented, including some guidelines for future research lines. A
list of published work related to this thesis is also given.

The GPU implementation of the different adaptive applications are ex-
plained from chapter 4 to chapter 7. Therefore, these chapters are organized
following the same pattern:

1. The first section introduces the adaptive application.
2. The second section presents the proposed algorithm.
3. The third section describe the GPU implementation of the algorithm.

4. The results are given from a twofold perspective: the algorithm be-
havior and the computing results.
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Preliminaries and basic concepts

This chapter describes some necessary concepts for the understanding
of this dissertation. It contains an introduction to the topic of adaptive fil-
ters, focusing on the three applications that are implemented in this thesis:
channel identification, room equalization and active noise control. More-
over, due to the multi-disciplinary nature of this thesis, a brief sate of the
art of the use of the GPU in signal processing as well as some basic con-
cepts are also presented. Finally, the main issues related to the real-time
implementation of the cited applications are stated.

2.1 Adaptive filtering algorithms

This thesis is concerned on the design and implementation of adaptive algo-
rithms related to some applications of filtering, prediction and control [15].
When the system model is completely specified, standard design techniques
can be employed to design the optimal filter or Wiener solution [16, 17].
However, this thesis is focused on designing techniques that are applicable
when the system model is only partially known. These techniques have to
self-adjust some kind of parameters related to the system. Then, it seems
plausible that appropriate models could be estimated by analyzing actual
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data. This is frequently done in practice, especially when the models are ill
defined or time varying. This leads to adaptive filtering techniques [15, 4].

Adaptive filters [17, 18, 16] are self-designing systems which can adjust
themselves to different environments. Since the invention, by Widrow and
Hoff in 1959 [19], of one of the first adaptive filters, the so-called Least mean
Square (LMS) algorithm [17, 16], many applications appeared to have the
potential to use this fundamental concept. To cite some examples, they
can be used in a wide variety of fields such as: control, communications,
sonar, radar or biomedical engineering. However, all the applications have
a common feature that is the target of filtering some input signal to match
a desired response. The filter parameters are updated by making some
measurements and applying them to the adaptive filtering algorithm such
that the difference between the filter output and the desired response is
minimized.

The adaptive filters usually use a recursive equation to adjust the filter
coefficients iteratively. The reasons for solving the problem of adaptive
filtering in an iterative manner are:

1. Iterative solutions do not require accumulation of signal samples.
This results in a memory saving.

2. The accumulation of signal samples for post processing them to gen-
erate the filter output signal introduces a delay that could be un-
acceptable in some applications. The iterative procedure does not
introduce such delay.

3. The iterative procedure results in an adaptive solution with some
tracking capabilities. For example, if the signal statistics are time
variant, then, the iterative adjustment of the filter coefficients will be
able to adjust to the new statistics.

4. Tterative solutions are in general simpler to implement.

2.1.1 The adaptive filtering problem

Figure 2.1 shows the block diagram of a general adaptive filtering scheme.
It also shows the signals involved in a general adaptive filtering problem.
The signals are the following:
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Figure 2.1. Block diagram of a general adaptive algorithm.

x (Input signal). It is the input signal of the adaptive algorithm.

y (Output signal). It is the output signal of the adaptive algorithm.
It is used in different ways depending on the application.

d (Desired signal). This signal is compared to the output signal in
order to calculate de error signal.

e (Error signal). It is the signal used by the adaptive algorithm for
minimizing any of its parameters (usually its average power).

Particularizing for a system based on a sample-by-sample acquisition, a
sample from a digital input signal «x is fed into the adaptive filter that com-
putes the corresponding output signal sample y. In general, the adaptive
filter contains adjustable parameters whose values affect how y is computed.
The output signal is compared to signal d, generally called “desired signal”,
by subtracting both samples. This difference signal is commonly known as
the error signal, which is given at time instant n by e, = d, — y,. The
error signal is used in a procedure to alter or adapt the parameters of the
adaptive filter from time n to time n 4+ 1 in a defined manner. The goal
of the adaptive procedure is to match the output signal of the adaptive
filters with the desired response signal while the time instant n increases.
In other words, the magnitude of signal e has to decrease over time. In this
context, what is meant by "better” is specified by the adaptive algorithm
used to adjust the parameters of the adaptive filter. The number and types
of parameters within this system depend on the computational structure
chosen for the system.

A wide variety of iterative algorithms have been developed in the lit-
erature for the operation of the adaptive filters, but, in practice, the choice
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of one algorithm over another is based on one or more of the following
parameters:

e Rate of convergence. This quantity describes the transient be-
havior of the algorithm. This is defined as the number of iterations
required for the algorithm to converge close enough to the solution
under stationary conditions.

e Misadjusting. This quantity describes the steady-state behavior of
the algorithm. This is a quantitative measure of the amount by which
the ensemble averaged final value of the mean-squared error deviates
from the minimum mean-squared error produced by the desired filter.

e Tracking capabilities. When an adaptive algorithm performs in a
time-variant environment, the algorithm is required to track statisti-
cal variations in the environment.

e Computational requirements. This parameter focuses on an im-
plementation point of view. The parameters of interest are the num-
ber of operations (multiplications, divisions, and additions or sub-
tractions) required for a complete iteration of the algorithm and the
amount of memory needed to store the required data and also the pro-
gram. These quantities influence the type and the price of the device
needed to implement the adaptive filter, especially in multichannel
scenarios.

e Numerical Robustness. The implementation of adaptive filtering
algorithms on a digital computer, which inevitably operates using
finite word-lengths, results in quantization errors. These errors some-
times can cause numerical instability of the adaptation algorithm. An
adaptive filtering algorithm is said to be numerically robust when its
digital implementation using finite-word-length operations is stable.

Ideally, it would be desirable to have a computationally-simple and
numerically-robust adaptive algorithm with high performance in terms of
convergence rate and misadjusting that can be easily implemented on a
hardware device. However, in practice, these characteristics are incom-
patible in most cases and some kind of trade-off between the algorithm
performance and the computational aspects is needed. Two examples of
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Figure 2.2. Block diagram of a system identification.

the mentioned trade-off, are the LMS [17, 16] and the RLS (Recursive Least
Squares) [17, 16] algorithms. The first one is a computationally simple and
numerically robust algorithm, but it exhibits a slow convergence as a draw-
back, especially for colored inputs. On the other hand, the RLS algorithm
has a fast convergence while it is computationally complex and it is also
known for having numerical problems [17]. These are two well-known al-
gorithms of the vast repertoire of adaptive algorithms. As this thesis is
focused on developing applications based on adaptive filtering, the goal is
to achieve a better trade-off by implementing algorithms with good results
in terms of convergence rate using parallel computation in order to reduce
the computational drawbacks.

Concretely, in this thesis we are going to use the LMS algorithm and
its variants to implement three adaptive applications: system identification
(channel identification), inverse modeling (room equalization), and active
noise control.

2.1.2 System identification

Figure 2.2 shows the general problem of system identification [20, 8. In
this block diagram, the unknown system represents a general input-output
relationship that the adaptive filter has to identify.

In this model, the desired response signal, d, represents the output of
the unknown system, while signal x represent its input. Here, the task of
the adaptive filter is to accurately represent the signal d at its output. If
y = d, then the adaptive filter has accurately modeled or identified the
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Figure 2.3. Block diagram of a channel post-equalization

system.

unknown system that is fed by z. In practice, the adaptive filter can only
be adjusted so that y closely approximates d over time.

The system identification task is at the heart of numerous adaptive
filtering applications such as: channel identification in communication sys-
tems or plant identification in adaptive control of sound.

2.1.3 Channel equalization

Channel equalization was one of the first applications of adaptive filters
and is described in the pioneering work of Lucky [7]. Today, it remains
as one of the most popular uses of the adaptive filters. In [21], Qureshi
provides a tutorial on Adaptive Equalization (AE). Generally speaking,
channel equalization is a technique for transmitting signals across non-
ideal communication channels. The transmitter sends a sequence at time
instant n, s,, that is known to both the transmitter and the receiver. The
received signal is used as the input signal of the adaptive filter, x,,, which
adjusts its characteristics so that its output signal y,, closely matches a
delayed version of the known transmitted signal s,_aA. A block diagram of
the channel post-equalization system is shown in Figure 2.3.

2.1.4 Active noise control

The traditional passive noise controllers made by sound absorbing materi-
als achieve high attenuation over a broad frequency range. However, they
are inappropriate for many modern applications because they are relatively
voluminous, costly, and ineffective for low frequencies. These problems are
overcome by using ANC systems. The theory of ANC systems was proposed
by Paul Leug in 1930’s [22]. Leug suggested an electro-acoustic device to
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Figure 2.4. Components of a feedforward active noise control
system.

reproduce sound of equal magnitude but opposite phase for cancellation
of tonal sound in an acoustic duct. However, due to technological limita-
tions, his idea was not feasible. In 1950’s, Olsen applied analog electronic
technology to invent the first realization of ANC. Olsen called it “Elec-
tronic Sound Absorber” [23]. All the early realizations of ANC systems
had an analog amplifier which coupled a loudspeaker to a microphone by
a simple negative feedback. The common drawback of these systems was
that they were non-adaptive. The realization of the ANC systems was
revolutionized by the use of the digital technology. Actually, today ANC
controllers are implemented using adaptive digital filters instead of analog
amplifiers. Widrow et al. developed the idea of adaptive ANC in 1975 [6],
where successful applications of adaptive ANC systems in electrocardiogra-
phy, telecommunication and speech enhancement were showed. After that,
several researchers began to apply adaptive ANC for acoustic noise control.

Active noise control systems are based on the principle of destructive
interference between a disturbance sound field called primary noise and a
secondary sound field generated by a controlled secondary source called
actuator. The target is to cancel, or at least minimize, the primary noise
signal. To cancel the primary noise, the ANC system uses an adaptive al-
gorithm to generate the secondary sound field from a reference signal that
is correlated with the primary noise. There are two different approaches to
adaptive ANC related with the way of obtaining a reference of the noise sig-
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Figure 2.5. Block diagram of a feedforward active noise con-

trol system.

nal. The two approaches are: adaptive feedforward and adaptive feedback
systems. In the adaptive feedforward ANC systems, the reference signal
is obtained regardless of the error signal, for example placing a reference
microphone outside the desired quiet zone to identify the noise field. On
the other hand, the adaptive feedback ANC systems were suggested by
Eriksson in 1991 [24]. In this approach, the noise field is identified using
a feedback estimator without a reference microphone. The study of this
thesis is focused on the first approach of feedforward control of sound. For
the purpose of noise cancellation, the noise or undesired signal is monitored
at a specific spatial point by a sensor that is called error sensor. Therefore,
cancellation is only carried out at that specific spatial point and also at
close points around the error sensor (see Figure 2.4). Nelson and Elliot in

[25], and Kuo and Morgan in [26] provides two excellent tutorial reviews of
ANC.

Figure 2.5 shows the block diagram of a feedforward ANC system,
which combines elements of both the inverse modeling and system identi-
fication. The reference signal z is obtained by a sensor and therefore, is
correlated with the noise signal. The output signal of the adaptive filter y
passes through a plant before it is added to signal d to form the error signal
e. The plant interferes with the operation of the adaptive filter by changing
the amplitude and phase characteristics of signal y, which is represented in
signal e. Thus, a prior knowledge of the plant is generally required in order
to adapt the parameters of the filter properly.

2.1.5 The LMS algorithm

Although there are lots of adaptive algorithms in literature with a vast
range of applications, the Least Mean Square (LMS) algorithm suggested
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Figure 2.6. Block diagram of a noise canceler using LMS
algorithm.

by Widrow and Hoff in 1960 [19], is one of the most widely used. The LMS
algorithm has been widely adopted in commercial products mainly because
its stability and computational simplicity. However, one of its primary
drawback is that suffers from slow convergence.

The LMS algorithm, whose equations are introduced in chapter 3, has
been cited and worked upon many researches over the years. As a result,
many modifications have been proposed and presented in literature. Here,
we are going to cite the most representative. To begin with, the Normalized
LMS (NLMS) algorithm was proposed by Nagumo and Noda [27] and Al-
bert and Gardner in 1967 [28]. This modification improves the convergence
speed and the stability with time-variations of the power of the input sig-
nal. The LMS algorithm was also presented in frequency domain with block
processing in [29]. It was first called the Fast LMS (FLMS) algorithm. In
[30, 31] and the references therein the reader will find a complete analysis of
the Frequency-domain Block LMS (FBLMS) algorithm. Although the LMS
algorithm and its variations was being used in many applications, there was
a problem with applications of adaptive cancelation of interferences. The
authors found that there was an additional filter in the cancelation path
from the adaptive filter to the summing junction, as depicted by h in Fig-
ure 2.6. Analysis of this problem showed that the LMS algorithm depends
on the phase response of h and makes it quite unstable. Authors proposed
two main solutions: one was to employ an inverse filter in the cancellation
path and the other was to introduce a filter in the reference path in order
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to compensate the effects of h. The first technique is known as filtered-
error [32, 33|, while the second technique is known as filtered-reference or
filtered-z [4], because the reference signal is commonly denoted by z. The
Filtered-error LMS (FeLMS) was later modified by Dubjert [34] and Elliot
[35] in order to increase the convergence rate. However, the Filtered-x LMS
(FXLMS) solution is the most widely used in literature.

During the last decades, the FxLMS algorithm has been developed for
special cases resulting in a wide range of algorithms. When h is a sim-
ple delay, the FXLMS takes on a special form known as the Delayed LMS
(DLMS) algorithm. Analysis of this algorithm can be found in [36, 37].
In [38], Eriksson introduced a generalization of the FxLMS to the case
of Infinite Impulse Response (ITR) filters, and he called it the Filtered-U
Recursive LMS (FURLMS) algorithm. The FURLMS algorithm is also
analyzed in [39]. Moreover, a technique called delayless subband adaptive
filter [40] was developed to address the problem of having to model the
cancelation-path filter with a large number of adaptive coefficients. This
technique computes the adaptive weights in each subband and transforms
the composite set of weights to an equivalent fullband Finite Impulse Re-
sponse (FIR) filter. These are some of the most representative techniques,
but the number of variations of the FxLMS algorithm is too numerous to
list here.

As commented before, the FXLMS algorithm suffers from slow conver-
gence due to the delay in the cancellation path. Therefore, some efforts
have been done to overcome this problem. First, Bjarnason developed the
Modified FxLMS (MFxLMS) algorithm [41], which significantly improves
the convergence rate of the FxLMS. However, although the MFxLMS al-
gorithm improves the convergence rate, another family of algorithms was
developed to raise the convergence speed of LMS-type algorithms, includ-
ing the MFxXLMS. This family of algorithms is referred to in literature as
APA family [42]. The APA family takes the name from the most widely
used algorithm of the family: the Affine Projection Algorithm (APA). The
APA was proposed by Ozeki and Umeda in 1984 [43]. Since then, lots of
contributions have analyzed the APA, see for example [44], [45] and [46].
The basic idea of this algorithm is to update the weights on the basis of
multiple input signal vectors, in contrast to the FXLMS which uses a sin-
gle input signal vector to update the coefficient weights. Therefore, its
high computational cost is the major drawback of the algorithm. To re-
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duce the computational complexity, a simplified version, called Fast Affine
Projection (FAP) algorithm, was proposed by Gay and Tavathia in 1995
[47]. From [43], some variants of the APA algorithm have been proposed
by different authors, such as the Regularized APA (R-APA) [48], the Par-
tial Rank Algorithm (PRA) [49], the Decorrelating Algorithm (DA) [44] or
the Normalized Least Mean Square with Orthogonal Correlation Factors
(NLMS-OFC)[50][45].

The NLMS-OCF algorithm has been used in this thesis because we find
its practical implementation easier than the APA implementation, and, as
considered in [45], the NLMS-OCF algorithm is a generalization of the APA
that allows other than unit delay between the input vectors. Therefore, in
chapter 7 the NLMS-OCF algorithm is applied to a multichannel ANC
system.

2.2 Graphics processing unit applied to digital signal
processing

During the last decades, digital signal processing problems has been imple-
mented using specific hardware devices such as Digital Signal Processors
(DSP) and Field-Programmable Gate Arrays (FPGA). As the adaptive fil-
tering problems are inside the field of digital signal processing, these two
devices where the most widely used for prototypes based on adaptive fil-
tering. DSPs and FPGAs are presented in the following lines.

Digital signal processor

A DSP is a specialized microprocessor with an optimize architecture for the
operational needs of digital signal processing. In fact, hardware engineers
use DSP to mean Digital Signal Processor, just as algorithm developers use
DSP to mean Digital Signal Processing. Therefore, the DSP are designed
considering the most common operations in digital signal processing: ad-
ditions, multiplications and delays (store in memory). This kind of device
has seen a tremendous growth in the last decades, finding use in everything
from mobile phones to advanced scientific instruments.
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Field-programmable gate arrays

An FPGA is an integrated circuit designed to be configured by a customer
or a designer after manufacturing. As opposed to Application Specific Inte-
grated Circuits (ASICs), where the device is built for the particular design,
the FPGAs can be programmed to the desired application or functionality
requirements. An FPGA contains programmable logic components called
logic blocks, and a hierarchy of reconfigurable interconnections that allows
to wire the blocks according to the application to be developed. Logic
blocks can be configured to perform complex combinational functions, or
merely simple logic gates like AND and XOR. In most FPGAs, the logic
blocks also include memory elements, which may be simple flip-flops or
more complete blocks of memory.

However, the science filed of high performance computing is expanding
its scope to many scientific and engineering problems, such as signal pro-
cessing algorithms, to develop user applications in the promising market
of processing, transmission and reproduction of multimedia content. The
incorporation into the market of processors with multiple cores (multicore
architectures) and the increasing use of GPUs in general purpose applica-
tions is at the same time a challenge and a great opportunity.

In the recent years, the widespread use of GPUs for general data pro-
cessing instead of its traditional use for image processing has enabled the
emergence of GPUs as a low-cost and high-performance solution for general-
purpose computations, where the field of digital signal processing is not an
exception. The computing power of the new GPU architectures should al-
low complex problems that require intensive computation to be solved even
in personal computers.

2.2.1 State of the art

In the beginning, the GPUs were created only for graphics processing. Since
then, GPUs have evolved (both in its hardware implementation, as in the
programming interface) to a very powerful processor capable of develop-
ing general purpose processing tasks. Apart from image processing, which
traditionally has been the main application of the GPUs, in literature, one
can find many references to the use of GPUs for general purpose process-
ing [51]. The first GPU implementations of non-graphics applications were
programmed using Cg (C for graphics) shading language [52], which is a
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graphical programming language. Using this language, Whalen [53] im-
plemented seven common functions of audio processing on GPU: chorus,
compress, delay, high-pass filter, low-pass filter, noise-gate and normaliza-
tion. From then on, a wide variety of audio applications have been already
implemented on GPU. Matsuyama et al describe in [54] a method for au-
tomatically generating sounds in real time. In [55], Gallo and Tsingos im-
plemented a multichannel sound propagation model and a spatial filtering
on the GPU. The signals that contained the different sounds were stored
as RGBA (Red Green Blue Alpha) textures where each component had a
bandpass copy of the original signal. There were also GPU implementations
on acoustic modeling of rooms, for example in [56], where Robert et al made
use of the 3D textures of the GPU and OpenGL (Open Graphics Library)
[57] objects to get the maximum parallelism in the computing operations.
However, the general purpose programming of GPUs using OpenGL was
very complicated since the operations had to be programmed like graphics
operations.

In June of 2007, NVIDIA, one of the leading manufacturers of graphics
cards, launched CUDA. CUDA refers both to a compiler and to a set of
development tools created by NVIDIA. It enables the programmers to use
a variation of the C programming language to implement algorithms in
the NVIDIA graphic cards. The emergence of CUDA, which made the
GPU programming easier, together with the emergence of new powerful
graphics cards, made that many algorithms of different disciplines were
implemented and tested on GPU. Furthermore, many of these new cards
were no longer manufactured for graphics as most of them no longer had
external output. From that moment, the use of GPUs for parallelizing
computationally expensive signal processing algorithms became a topic of
interest. It was evidenced in the issues of IEEE Signal Processing Magazine
of November 2009 [58] and March 2010 [59], which had almost exclusive
dedication to signal processing on GPUs.

At that time, the acoustics researchers began to consider the GPU
as a powerful platform to implement audio and acoustic applications [60].
However, most of the results were simulations. Trebien and Oliveria pro-
posed in [61] a method for synthesizing sound at the same time that they
were performing multichannel audio processing on the GPU. The GPU
implementation showed speed-ups of up to four orders of magnitude over
the CPU. Cowan and Kapralos were pioneers in implementing auraliza-
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tion algorithms on the GPU [62, 63]. The auralization of sound consists in
recording the sound in an environment and then reproducing it with the
same environment characteristics in which it was recorded. To carry out
the auralization, high computational capacity is needed because it requires
massive filtering. In [64], the authors implemented on GPU some methods
based on wave-based finite-difference. In [65] and [66], Webb and Bilbo,
use the GPU in the field of room acoustics. Regarding digital treatment
of sound, two techniques like Wave Field Synthesis (WFS) [67] and Beam-
forming (BF) [68] have also been implemented on GPU [69]. In [70], one can
find a summary of the GPU implementation in different sound applications.

Furthermore, the new GPUs have increased their processing capacity
and their use is being considered in the field of multichannel algorithms
based on adaptive filtering. However, efficient use of parallel computation
in the adaptive filtering context is not straightforward due to the feedback
loops. Moreover, the data transactions among GPU, CPU and the audio
card are critical for the real-time performance. For these reasons, very
few publications deal with the GPU implementation of real-time acoustic
applications based on adaptive filtering. As an example, in [71], Schneider
et al implemented a frequency adaptive algorithm for echo cancellation on
a GPU. Due to the lack of studies in this area, this thesis is mainly focused
on GPU implementations of multichannel adaptive algorithms.

2.2.2 Graphics processing unit

Traditionally, a GPU is defined as a programmable logic chip that ren-
ders images, animations and video for the computer’s screen. However,
since GPUs perform parallel operations on multiple sets of data, they are
increasingly used as processors for non-graphics applications that require
repetitive or intensive computations. From a conceptual point of view and
following Flynn’s taxonomy [72], a GPU can be considered as a SIMD
machine. A SIMD example could be a computer in which a single set
of instructions is executed on different data sets. SIMD implementations
usually work synchronously, with a common clock signal, so that an in-
struction unit sends the same instruction to all of the processing elements,
which execute this instruction on their own data simultaneously.

A block diagram of the organization of the GPU architecture is shown
in Figure 2.7. A GPU is composed by multiple Stream Multiprocessors
(SM). Each SM consists of multiple pipelined cores called Streaming Pro-
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Figure 2.7. A GPU has multiple Stream Multiprocessor (SM)
that are composed of multiple pipelined cores (SP). The num-
ber of SPs depends on the compute capability and the number
of SMs depends on the kind of the device. A GPU device has
off-chip device memories and on-chip memories. *(in devices
with compute capability 2.x and 3.x) **(only in devices with
compute capability 3.x).

cessors (SP). The number of SP cores in each SM depends on the CUDA
capability. The oldest GPUs with compute capability 1.2 or 1.3 (Tesla
architecture) own 8 SP cores per multiprocessor. GPUs with compute
capability 2.0 (architecture) has 32 pipelined cores, while newest GPUs
which its compute capability is 3.0 or 3.5 (Kepler architecture) own even
192 pipelined cores. Moreover, a GPU device has a large amount of off-
chip device memory (global-memory) and a fast on-chip memory (shared-
memory, registers). The shared-memory is normally used when multiple
threads must share data. There are also read-only cached memories called
constant-memory and texture-memory. The first memory is optimized for
broadcast (for example when all the threads read the same memory loca-
tion), while the second one is more oriented to graphics. Furthermore, the
GPU devices of compute capability 2.x and greater come with an L1/1.2
cache hierarchy that is used to cache global-memory. Cache of level L1 is
located on-chip memory. The same occurs to the read-only cache that is
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Standard C Code C with CUDA extensions
( )
void saxpy (int n, float a, void saxpy (int n, float a,
float *x, float *y) float *x, float *y)
{ {
for (inti=0;1i<n; ++i) inti= x* X+ X;

ylil = a*x[i] + y[il; if (i<n) y[i] = a*x[i] +y[i];
} }
int N = 1<<20; int N = 1<<20;

(x, d_x, N, cudaMemcpyHostToDevice);
(v, d_y, N, cudaMemcpyHostToDevice);

saxpy (N, 2.0, x, y); saxpy (N, 2.0, x, y);

(d_y, v, N, cudaMemcpyDeviceToHost);

. J

Figure 2.8. A simple example of code written first in plain
C and then in C with CUDA extensions.

only present in GPU devices of compute capability 3.x.

2.2.3 Compute unified device architecture

CUDA is a parallel computing platform and programming model created
by NVIDIA. Using CUDA, the GPUs can be used for general purpose
processing (not exclusively graphics). This approach is known as GPGPU.
The CUDA platform is accessible to software developers through CUDA-
accelerated libraries and extensions to standard programming languages,
including C, C++ and Fortran. These extensions let the developer express
massive amounts of parallelism and direct the compiler to the portion of
the application that maps to the GPU. A simple example of code is shown
in Figure 2.8, written first in plain C and then in C with CUDA extensions.

This software makes profit from the high amount of execution threads
which are available on a GPU. In CUDA, the code that has to be executed
on the GPU is written defining a kernel function. Each kernel has a grid
configuration, which defines the number of threads and how they are dis-
tributed and grouped. Threads are grouped into blocks, and the blocks
configure the grid. Both the blocks of threads and the grid of blocks are or-
ganized in three dimensions. Thus, a thread identification will be defined by
a position within a block (ThreadIdx.x, ThreadIdx.y, and ThreadIdx.z),
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Figure 2.9. Distribution of the threads inside the cuda grid.

and this block will be defined within a grid (BlockIdx.x, BlockIdx.y, and
BlockIdx.z). Parameters BlockDim.x, BlockDim.y, and BlockDim.z indi-
cate the dimensions of a block in the same way as gridDim.x, gridDim.y,
and gridDim.z indicate the dimensions of the grid. Figure 2.9 shows a
CUDA kernel configured by a one-dimensional grid composed of 3 blocks,
and each block composed of 5 one-dimensional threads.

The dimensions of the grid and the blocks are limited by the compute
capability of the GPU. Figure 2.10 shows a table that is taken from the
NVIDIA CUDA programming guide [11] that outlines some CUDA features
that depend on the capability of the GPU device. Moreover, all the GPU
devices that allow CUDA technology with its corresponding capability are
published in [73]. Together with CUDA technology, the GPU developers
can download the NVIDIA GPU Computing SDK (Software Development
Kit) from the NVIDIA web site. The SDK collect different CUDA projects
that could be taken as examples for the GPU developers.

2.2.4 Multi-GPU programming with multicore

Open Multi-Processing (OpenMP) [74] is an Application Program Inter-
face (API) that supports multi-platform shared memory multiprocessing
programming in C, C++4, and Fortran. OpenMP uses a portable, scalable
model that gives programmers a simple and flexible interface for develop-
ing parallel applications for platforms ranging from the standard desktop
computer to the supercomputer. It works by using parallel regions that are
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Compute Capability

Technical Specifications

1.0 | 1.1 | 1.2 | 1.3

2.x | 3.0 | 3.5

Maximum dimensionality of grid of thread
blocks

2

3

Maximum x-dimension of a grid of thread
blocks

65335

21

Maximum y- or z-dimension of a grid of
thread blocks

65535

Maximum dimensionality of thread block

Maximum x- or y-dimension of a block

512 |

1024

Maximum z-dimension of a block

64

Maximum number of threads per block

512 |

1024

Warp size

32

Maximum number of resident blocks per
multiprocessor

Maximum number of resident warps per

) 24 32 48 64
multiprocessor

Maximum number of resident threads per

) 768 1024 1536 2048
multiprocessor

Mumber of 32-bit registers per

multiprocessor 8K 16 K 32K 64 K

Figure 2.10. CUDA features that depend on the capability
of the GPU device.

specified by the programmer. The CPU code runs sequentially and at some
point hits a section where work can be distributed into several processors
that perform the computations (CPU core spans several CPU threads). Af-
terwards, when all the computations are completed, all the CPU threads
converge to a single thread again, which is called the master thread.

CUDA and openMP can work together in the following way. If a ma-
chine has a multicore processor and several GPUs, the parallelization can
be achieved by defining a number of threads in the parallel region equal to
the number of GPUs. In this sense, each CPU thread deals with a GPU.
This is very important since a CPU thread is bound with a GPU context.
Thus, all subsequent CUDA calls are executed in its corresponding GPU
context [75].
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Figure 2.11. A photo of the listening room

CUDA Architecture Fermi
CUDA Capability 2.0
Number of SMs 16
Number of cores per SMs 32
Maximum number of threads per block | 1024

Table 2.1. Characteristics of the GPU (GTX-580M).

2.3 Implementation aspects

This section is devoted to describe the main issues related to the real-time
implementation of the adaptive applications that has been developed in
this thesis. It begins with a description of the listening room used to test
the prototypes developed during this thesis. Then, a hardware description
of the prototypes is given. Finally, some constraining conditions such as
the real-time condition and the causality condition are analyzed.

2.3.1 Description of the listening room

The prototypes that have been developed during this thesis have been tested
inside a listening room. The listening room belongs to the audio and com-
munication signal processing group [76]. The dimensions of the listening
room are: 9 meters long and 4.5 meters wide. Figure 2.11 shows an image
of the room, while Figure 2.12 depicts an example of an estimated response
in frequency domain.
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Figure 2.12. Example of a frequency response of the listening
room
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Figure 2.13. Prototype description of the GPU implementa-
tion of the single-channel identification system.
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Figure 2.14. Prototype description of the GPU implementa-

tion of the multichannel room equalization system.

2.3.2 Description of the prototypes

As commented before, the three applications that have been developed
are: a single-channel adaptive identification system, a multichannel adap-
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Figure 2.15. Prototype description of the GPU implementa-
tion of the multichannel ANC system.

tive equalization system and a multichannel active noise control system.
Figures 2.13, 2.14 and 2.15 depicts the prototype description of these ap-
plications, respectively. With regards to the ANC prototype, the ANC
system has been implemented using different algorithms. However, regard-
less the algorithm, the prototype is the same in all the cases. The hardware
implementations of the three prototypes have similarities. They are com-
posed by an audio card, a CPU and a GPU. The CPU is an Intel Core
i7 (3.07 GHz). The GPU is a GeForce GTX 580 with Fermi architecture
[11], whose main characteristics are summarized in Table 2.1. The audio
card is a MOTU 24I/0. The MOTU audio card uses the ASIO (Audio
Stream Input/Output) driver to communicate with the CPU. The ASIO
driver provides input/output buffers that are used to collect/send the cur-
rent microphone and loudspeaker signals. The input buffers are linked to
the microphones and the output buffers are linked to the loudspeakers.
It should be noted that the signal processing task is carried out by the
GPU, while the CPU controls the data transfer between the input/output
buffers and the GPU. The communication between the CPU and the GPU
is depicted in Figure 2.16.

The operation of the GPU-based prototypes consists of the following
tasks that are executed in each new iteration:
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Figure 2.16. Communication between the CPU and the
GPU.

1. Collect the input-data buffers from the sensors and transfer them
through the PCI-Express bus to the GPU.

2. Carry out the corresponding algorithm on the GPU.

3. Save the output audio samples into the output-data buffers and send
them back to the CPU in order to be rendered through the loud-
speakers.

The sampling rate (f;) and the block size (B) are two important param-
eters of the audio card. The block size describes the number of transferred
discrete-time samples per iteration and thereby determines the latency of
the algorithm. The latency is the time that is spent from when the input-
data buffer is filled up until this data buffer is processed and sent back to the
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size of B thuf = B/fs = tprocyax

1 0,023 ms
32 0,73 ms
64 1,45 ms
128 2,9 ms

256 5,8 ms

512 11,6 ms

1024 23,2 ms

2048 46,4 ms

Table 2.2. Maximum processing time for a sampling rate of
fs = 44.1 kHz and different sizes of B

output-data buffer. The time that is spent to fill up the input-data buffers
is defined as B/ f,, and we will refer to it as the buffering time (tp, 7). The
choice of the parameters B and f; is critical for the real-time performance
of the system because there is a condition that must be satisfied. We call
this condition as the real time condition.

2.3.3 The real-time condition

The real-time condition defines the condition that any adaptive application
has to fulfil in order to work in real time. It is given by: tproc < tpy s, Where
tproc is the execution delay measured from the moment the input-data buffer
is sent to the GPU until the output-data buffer comes back to the CPU.
This includes transfer delays between the CPU and the GPU and the data
processing delay of the GPU.

The audio card that has been used in the prototypes offers different
values of B between B = 16 and 2048. Moreover, the audio card offers
three different sampling rates: 44.1, 44.8, and 96 kHz. It has been chosen
a sampling frequency of f; = 44.1 kHz in all the prototypes. Although it is
the lowest rate, it is a fairly high rate for the common sounds involved in
the cited applications. On the one hand, this sampling frequency offers us
the possibility of controlling sounds up to 22.05 kHz, but on the other hand,
as we have to satisfy the real time condition, it limits the processing time
of the algorithm to a few milliseconds. Table 2.2 shows the buffering time,
and therefore, the maximum processing time of the algorithm varying the
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block size from B = 1 (sample-by-sample acquisition) to B = 2048. The
table shows that depending on the size of B, the maximum time that the
algorithm has to perform the operations varies from tens of microseconds to
tens of milliseconds, which are very small time values. However, despite the
algorithm has to be processed in such a short time, results of each chapter
will show that the GPU is able to handle big multichannel ANC systems
in real time.

For the specific case of the ANC system, there is another condition
related with these parameters that has also to be satisfied. It is called the
causality condition.

2.3.4 The causality condition

The ANC system has to satisfy the causality condition in order to perform
properly [77]. It is given by: ty,pf + 75 < T,. The variable 7, defines
the maximum delay of the secondary paths that join the actuators with
the error sensors. On the other hand, 7,, defines the minimum delay of
the paths that join the noise source with the error sensors. This condition
guarantees the causality of the system.

Causality is not a constraint when a harmonic excitation is considered
because of the deterministic nature of the signal. However, it is important
in broadband noise control. In this thesis, the multichannel ANC proto-
types have been mounted inside of a listening room where both real-time
and causality conditions are fulfilled by choosing the correct distances and
parameters. If the location of the noise source and the environment where
the noise has to be canceled do not offer the possibility to fulfill the causal-
ity conditions, the algorithm has to work with a lower block size, and,
consequently, with a lower #5,f; in order to satisfy the causality condition.
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Description of the Algorithms

This chapter presents the algorithms that are going to be used in the
adaptive applications developed in this thesis. Concretely, all the pro-
totypes developed in this thesis are based in two algorithms: the Least
Mean Square (LMS) algorithm and the Normalized Least Mean Square
algorithm with Orthogonal Correlation Factors (NLMS-OCF). In a first
stage, we present the LMS algorithm and its variants: the Normalized LMS
(NLMS) algorithm, the Block LMS (BLMS) algorithm, the Frequency-
domain BLMS (FBLMS) algorithm also called Fast BLMS, and the Parti-
tioned FBLMS (FPBLMS) algorithm. In a second stage, the NLMS-OCF
is presented.

Moreover, it is important to note that this chapter provides the basis
for understanding the algorithms used in each of the applications developed
in the following chapters. However, these applications use the algorithms
presented in this chapter with some modifications depending on the re-
quirements of each application.
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3.1 Least mean squares

Following the nomenclature of the general adaptive filter described in the
Figure 2.1, we define an L-tap adaptive filter at time n as

Wy, = [wn(0) wa(1) ... wy(L—1)]7, (3.1)

where its output at time n is given by

L-1
=0

The tap weights wy,(0), wp(1), ..., wy(L — 1) are selected so that the
error signal

en = dn — Yn, (3.3)

is minimized in the mean-square sense. When the signals z,, and d,, are
both stationary, the LMS algorithm converges to a set of tap weights which,
on average, are equal to the Wiener-Hopf [16] solution. Therefore, this algo-
rithm is in practice an scheme for realizing Wiener filters without explicitly
solving the Wiener-Hopf equation.

The conventional LMS algorithm is a stochastic implementation of the
steepest-descent algorithm, replacing the cost function ¢ = E[e2] by its
instantaneous coarse estimate é = e2. Substituting é = €2 for ¢ in the
steepest-descent recursion, we obtain the adaptive filter tap weights update

Wil = Wy — pV2. (3.4)

where p is the algorithm step-size parameter and V is the gradient operator.
The ith element of the gradient vector at time n, Ve2, is

86%. _ 9, 8en. ’

Own (1) 0wy, (1)

and, substituting e, from Eq. (3.3), and taking into account that d,, is
independent of wy, (i), we obtain

(3.5)

oe2
Owp (1)

Oyn
Owy, (1)

= —2e, (3.6)
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1. Filter output
Yn = Wy Xp

2. Error estimation
en =dn — Yn

3. Tap-weight update

Wn4+1 = Wy + 2/J'enxn

Table 3.1. Summary of the LMS algorithm.

Moreover, substituting y, from Eq. (3.2)

de?
= —2e,Tp_i- 3.7
Own (1) et (37)
Finally, from these equations, we obtain that Ve2 = —2e,x,, where
Xn = [Tn Tp_1 ... Zn_ry1)t. Therefore, substituting it in Eq. (3.4) we

get that the equation of the adaptive filter tap weights update is

Wil = Wy + 20epXn. (3.8)

This equation is referred to as the LMS recursion, which is a simple
recursive procedure for the filter coefficients adaptation. The adaptation
is performed after the arrival of every new sample of signal x, and its cor-
responding desired output sample, from signal d. The algorithm has three
steps, which correspond with Egs. (3.2), (3.3) and (3.8). Equation (3.2) is
used to obtain the output signal. Equation (3.3) is performed to estimate
the error signal. Equation (3.8) calculates the adaptation of the filter co-
efficients. Table 3.1 summarize the three steps required to complete each
iteration of the LMS algorithm.

3.1.1 Normalized LMS

The normalized LMS (NLMS) algorithm is a variation of the LMS algorithm
which takes into account the variations in the signal level at the filter input.
To this end, the NLMS algorithm uses a normalized step-size parameter.
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The step-size parameter is normalized by an estimate of the power of the
filter input signal. It results in a stable as well as fast converging adaptation
algorithm.

Considering the LMS recursion

Wntl = Wy, + 2upenXp, (3.9)

where, now, the step-size parameter u,, is time-varying and defined as

i fi

Ly = = , 3.10
" oxTx,  2||x,2 (3.10)
where 71 is a constant. The NLMS recursion can be expressed as
enX
Wptl = Wy + MLT;. (3.11)
[[%n]|

3.1.2 Block LMS

The block LMS (BLMS) algorithm works on the basis of block processing.
A block of samples of the filter input and the desired output are collected
and then processed together to obtain a block of output samples. Therefore,
the filter tap weights are updated once after the collection of every block of
data samples. As a consequence, the subindex n denotes the block index.

The adaptation of the filter coefficients is given by

B
Zl':o €Bn—iLBn—i
B b
where B is the block length and p is the algorithm step-size parameter.
The calculation of the error samples at the nth block iteration is given by
€Bn+i = dBn+i — Ypn+s for ¢ = 0,1,..., B — 1, and the output samples
are calculated using the filter coefficients vector from the previous block:
YBn+i = WTTL XBn+i-
The formulation of the BLMS is presented below. Let us define the
matrix X as

Wntl = Wy, + 205 (3.12)

X, =[XBn XBn-1 .- -XBn-B+1], (3.13)



3.1. Least mean squares 43

1. Output
Yn = ann

2. Error estimation
e, = dn —Yn

3. Tap-weight update
Wpil = Wy + Q%XEen

Table 3.2. Summary of the BLMS algorithm.

and the following columns vectors

Xp = [TBn TBn-1 ---TBn_Bt1]’, (3.14)
d, =[dpn dn-1 -..dn—p+1]’, (3.15)
Yn =[YBn YBn-1 -- -YBn-B+1)", (3.16)
e, =[eBn €Bn-1 ...eBn_BH]T. (3.17)

The output and the error vectors are calculated as

Yo = X, Wy, (3.18)

e, =d, —yn. (3.19)
Finally, the filter coefficients update is done as in Eq. (3.12). Note that

B

Z €Bn—iTBn—i = Xgen, (3.20)
i=0

thus, substituting Eq. (3.20) in Eq. (3.12) we obtain
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Figure 3.1. Block diagram of the FBLMS algorithm.

B
B

Equations (6.16), (3.19) and (3.21) define one iteration of the BLMS
algorithm, which is summarized in Table 3.2.

W1 =Wy +2=XTe,. (3.21)

3.1.3 Fast BLMS

The Fast BLMS (FBLMS) algorithm is a fast implementation of the BLMS
algorithm in the frequency domain. The implementation of the FBLMS
algorithm is depicted in Figure 3.1. The Formulation of the algorithm is
presented below.

The input vector x,,, which is defined the same way it was in the BLMS
algorithm (x, = [*Bn TBn_1 ...ZBn_B4+1]|’), contains the last B samples
of the input signal at the nth block iteration. However, let us define now
X,, as the vector that contains the FFT of the concatenation of the last
two vectors of x,: X,, = FFTop{[x._; x1]7}. The filtered output vector
at the nth block iteration is calculated as

Y, = X,, o W,, (3.22)
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1. Output
Y, =X, o W,,, where
[XT y;;]T = IFFTQB{Yn}

2. Error estimation

e, =d, —y, , where

E, = FFTy5{[0% el]7}.
3. Tap-weight update

i, = E, o X’ where

=T ~
[¢F  @,]" =IFFTop{f,}, and
W1 = W, + 2uFFTop{[¢) 0L}

Table 3.3. Summary of the FBLMS algorithm.

where W, is the FFT of size 2B of the coeflicients of the adaptive filter w
at the nth block iteration, and o denotes the element-wise product of tho
vectors. The valid samples of the adaptive filter output y,, are the last B
samples of the IFFT of vector Y,,.

The error vector is obtained as

e, =d, —yn. (3.23)

The error vector is changed to frequency domain as follows

E, = FFTyp{[0} eI|T}, (3.24)

where 0p, is a column vector of B zeros. Once the error vector is calculated,
the filter coefficients are updated in the frequency domain by performing
the following equations

fi, = En o X", (3.25)

@7 Gn” = IFFTop{f,}, (3.26)
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Figure 3.2. Scheme of the partition of an adaptive filter of
size L into F' partitions of size B.

W11 = W, + 2uFFTop{[¢L 0%]7}, (3.27)

where fi,, is a 2B-size column vector and variables ¢,, and ¢,, are column
vectors composed by B elements. The FBLMS algorithm is summarized in
Table 3.3.

3.1.4 The partitioned FBLMS

When the filter length L is larger than the block length B, an efficient
implementation of the FBLMS algorithm can be derived by partitioning
the adaptive filters. This leads to the Partitioned FBLMS (FPBLMS).

Let us assume that L = F - B, where F' is the number of partitions.
The partition of the filters is depicted in Figure 3.2. Now, as the adaptive
filters are partitioned, the Eq. (3.22) has to be rewritten as

F
Y=Y X, pp10 W, (3.28)
f=1

where superscript f denotes the partition number and W£ is the FFT of
size 2B of the fth partition of the coefficients of the adaptive filter wy,.
Figure 3.3 represents the arrangement of X,, while Figure 3.4 depicts the
implementation of Eq. (3.28) when F' = 3.

As in the FBLMS algorithm, the valid samples of the adaptive filter
output y,, are the last B samples of the IFFT of vector Y,,.
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Iteration 1 Iteration 2 Iteration 3 Iteration 4
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B 0 B X B B 3
2B 2B 2B 2B
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—

Figure 3.3. Arrangement of input matrix X, when F' = 3.
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Figure 3.4. Implementation of Equation (3.28).

The equations for obtaining the error vector in frequency domain are
Eq. (3.23) and (3.24), but now, the filter coefficients are updated each
partition independently by performing the following equations

P =En o X sy, (3:29)
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1. Output
Y, = Z?:l Xp—ft10 W/ where
[xT yi]=IFFTyp{Y,}

2. Error estimation
e, =d,, —y,, where
E, = FFTy5{[0% el]7}.
3. Tap-weight update
/1£ =E,oX] _ ;.1 where
(@57 @717 = IFFT2p{ji}, and
Wi = W/ +2uFFTsp{[¢)" 0577}

Table 3.4. Summary of the FPBLMS algorithm.

[@l" GLTIT = IFFTop{fl}, (3.30)

W/ = W/ + 2uFFTo5{[6! 05717} (3.31)

The FPBLMS algorithm is summarized in Table 3.4.

3.2 The normalized least mean square with orthogo-
nal correction factors

To better understanding of the NLMS-OCF algorithm, let us start with a
reminder of the NLMS algorithm:

e Filter output
Yn = Wz; Xn

e Error estimation
en =dn — Yn

e Tap-weight update

_ Xpe
Wptl = Wp + /JHXTiLﬁLz .
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If the desired output d,, = w27x,, comes from a FIR system that
can be modeled with weights w", and there is no measurement of noise,
the minimum achievable mean square estimation error is zero. Under this

condition, for a 4 = 1 and replacing e, = w! %%, —wlx, = (W) —w,) x,:
0 T
X, - € X, (WY —w, ) x
Wil = Wy + 2 = Wy, + (W 2") L (3.32)
[[n | |||

(w%—wn)Txn
[EE

Considering that is an scalar that we call P, the weight

update equation is:

Wnil = Wy + Xy - P. (3.33)

A geometric interpretation of Eq. (3.32) is shown in Figure 3.5. If
w,, are the weights of the current iteration, the new weights w, 41 are the
point that is nearest (in || - ||2 sense) to the desired weights (w°) along the
direction specified by the input vector x,. In other words, w,41 is the
projection of w® in the direction specified by x,,.

Considering L as the number of coefficients of w®, if the L consecu-
tive input vectors x,,4; for I = 0,...,L — 1 used in the tap weight update
are orthogonal, the NLMS algorithm minimizes the distance from the true
weights w¥ along L orthogonal directions and thereby converges to the de-
sired weights in exactly L iterations. This is illustrated in Figure 3.6. For
simplicity, it is illustrated in a bi-dimensional space using filters that are
composed of two weights. In this case, as the consecutive input vectors
X, and x,41 are orthogonal, the NLMS algorithm converges to the desired
weights in two iterations. However, when the input signal is strongly col-
ored, the successive input vectors tend to be almost parallel to each other
and, therefore, the estimated weights improve very little during successive
iterations. As an example, see Figure 3.7. This behavior motivated to in-
troduce orthogonal correction factors to the NLMS algorithm to accelerate
its convergence.

The basic idea of the NLMS-OCF algorithm is to update the weights
on the basis of multiple input vectors in contrast to the NLMS algorithm
that uses a single input vector. If the successive input vectors used in the
weight update are orthogonal in nature, the convergence of the algorithm is
accelerated. When the successive input vectors are not orthogonal, this al-
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Figure 3.5. Geometric interpretation of the filter coefficients
update by the NLMS algorithm.
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Figure 3.6. Geometric interpretation of the exact conver-
gence when using orthogonal directions.

gorithm proposes to generate appropriate orthogonal input vectors. To this
end, the equation of the filter coefficients update of the NLMS is modified
as follows

Wntl = Wy, + foXp + 01Xy, + ...+ Ugxg,, n>R<L (3.34)

where the vectors x,,xX1,,X2,,...,XR, are orthogonal to each other.
The procedure to generate these orthogonal input vectors and the corre-
sponding step-sizes is explained below.

As in NLMS, x,, is the input vector at the nth instant, and, ug is
chosen as
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Figure 3.7. Geometric interpretation of the filter coefficients
update by the NLMS algorithm. (a) Almost parallel input,
small improvement. (b) Differently oriented input, large im-
provement. (c) Orthogonal input, most improvement.

o = T (3.35)

Considering w1, ., = W, + 10X, as the new estimate for the weights
obtained after the correction along x,. Using Gram-Schmidt procedure
[78], we write x,—p (D > 0) as the sum of a component along x, and a
component orthogonal to x,. Let the orthogonal component be x;,,. Then
the step-size along x;,, is

peq,, . 2
—— if %1, 0
py = Q1% (12 eI # (3.36)

0, otherwise.

where e1, = dp—p — Xfl_len+1 is the error in estimating d,_p using

W1n+1.

Considering R orthogonal correction factors, the above steps can be
generalized for a given orthogonal correction factor 0 < r < R. Vector
Xy, is the component of x,,_,p that is orthogonal to x,,, X,—1p, Xn—2p,
-+ Xp_(p—1)p and it can be computed using the Gram-Schmidt procedure.
The corresponding step-size u, is calculated as follows

e, . 2
— if ||y, 0
pr = 1%, |2 e I # (3.37)

0, otherwise.
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Choose an arbitrary w,, and the number of Orthogonal Correction Fac-
tors R < L. Repeat the following steps at each new iteration.

— T
1. e, =dy, —x;,wy,

2. po =
3. Wi, = Wy + poXp
4. xq
Foralll1 <r <R, do

6. Compute x,, as the vector obtained from x,,_,p that is orthogonal
to xo,, X1,,, X2, ---, Xr—1,, using the Gram-Schmidt procedure
[78].

r—1 Xp_,pXin
Xy, = Xn—rD — Zi:O Wxin

_ T
7. er, =dnrD— X5 . pWr, 4

- '
i I, |2 £ 0
8. pr =4 lI%r,|l
0, otherwise.

9. Wrtl,n = Wrq T WrXe,

end for

15. Wn+1 = WR+1n+1

Table 3.5. Summary of the NLMS-OCF algorithm.

where

€r, = dn—rD — Xg—rDWTnH: (3'38>

and
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Wr+1n+1 = Wn + HoXn + H1X1, +.o.+ HrXp, = WT7L+1 + HrXp,, . (339)

The NLMS-OCF algorithm is summarized in Table 3.5.
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Channel identification

One of the simplest audio applications that require real-time feedback is
the adaptive channel identification. This chapter discusses the design and
implementation of an adaptive channel identification system on a GPU.
Concretely, the LMS algorithm has been implemented in the frequency
domain. The size of the input-data buffers and filters and how they can be
managed in order to successfully exploit the GPU resources is an important
key in the design process. The goal is to propose a GPU implementation
that can be easily adapted to any other acoustic scenario, while freeing up
CPU resources for other tasks. The channel identification application will
be necessary for other audio applications like room equalization (chapter
5) or active noise control (chapters 6 and 7).

4.1 Introduction

As commented in section 2.2.1, in recent years, the number of scientific
contributions and research projects related to the use of GPUs for signal
processing applications has significantly increased. However, most of the
applications that have been using GPUs for accelerating the audio pro-
cessing consist in convolving multiple input signals with static filters. On
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the other hand, in the adaptive filtering context, the GPUs have been
rarely used. This is because there are some constraining aspects regarding
the GPU implementation of an adaptive application. These constraints
are related with the iterative execution of the signal acquisition, the data
transactions between CPU, GPUs and audio cards, and the loudspeaker
reproduction. For this reason, this thesis has studied the viability of using
the GPUs for real-time adaptive filtering applications dealing with these
constraining aspects.

The purpose of this chapter is to describe how to use GPUs for real-
time audio applications based on adaptive algorithms where the adaptive
filter coefficients vary over time in order to reach a target. The target
depends on the application. Among the wide variety of adaptive filter-
ing applications, this thesis has mainly focused on the active noise control
application. However, as shown in Figure 2.5, the ANC systems have to pre-
viously estimate or identify the plant between the error sensors and the sec-
ondary sources. This leads to a system identification problem. The system
identification is such a fundamental discipline, with such wide-ranging and
cross-disciplinary applications that has been widely studied in last decades,
resulting in many techniques that have been presented in literature. In [79],
the author describes the development of the system identification from the
early works of [80] and [81] up to nowadays. It describes the evolution
of the identification techniques from the traditional methods such as the
maximum likelihood method [80] to the identification of nonlinear systems,
going through the sub-spaced identification, the identification for control
or the frequency-domain identification to cite some examples.

Although the adaptive algorithms for channel identification are not the
system identification technique most used nowadays, it is a simple technique
based on adaptive filtering. For this reason, and to begin with the viability
study of the use of GPUs in the adaptive filtering context, an adaptive
single-channel identification application based on the LMS algorithm has
been developed using a GPU as the main processor. Therefore, this appli-
cation has been chosen for its simplicity in order to set the basis of the use
of the GPU in real-time adaptive applications. Then in the following chap-
ters, this study is expanded to multichannel applications such as adaptive
equalization (chapter 5) or active noise control (chapters 6 and 7).

On the other hand, because of the inherent capability of parallelization
of the GPUs, not all the adaptive algorithms can run efficiently on these
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Figure 4.1. Block diagram of an adaptive channel identifica-

tion system.

systems. As an example, the adaptive algorithms that work sample-by-
sample are particularly difficult to optimize in GPUs. Therefore, in this
study we have used a block-based algorithm that optimizes its computa-
tional cost through its implementation in the frequency domain. However,
a block-based algorithm introduces the disadvantage of a higher latency. In
order to illustrate how to overcome the difficulties that appear due to the
use of GPUs in adaptive systems, we have implemented a single-channel
identification system using the FBLMS algorithm, which is a computation-
ally efficient version in the frequency domain of the BLMS algorithm. As
it is explained in the following chapters, most of the actions described in
this chapter, can be extended to other adaptive applications.

4.2 Description of the algorithm

Figure 4.1 shows the general scheme of an adaptive channel identifier. Let
us consider that the block labeled with ‘system’ is an electro-acoustic sys-
tem that can be described by an impulse response between two points in
space (usually located in a room). Moreover, we assume that the ‘system’
can be modeled by a finite impulse response filter. Under these conditions,
signal x is defined as the reference signal, while signal d is the result of
exciting the ‘system’ with signal . Furthermore, we consider the vector w
as the adaptive FIR filter that models the ‘system’. Consequently, signal y
is the adaptive filter output, and finally, e is the error signal.

In the case of our study, the system is excited with a broadband signal
x. The target is the cancellation of the error signal, which is defined as:
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n-B n-B-1 n-B-2 o n-2B+1 n n-1 n-2 e n-B+1

Figure 4.2. Reordering of the data input blocks.

e = d—vy. The cancellation of the error signal means that the coefficients of
the adaptive filter fit the coefficients of the unknown system. The adaptive
algorithms minimize the error signal e or some function related with this
signal, such that w at steady state is a good estimation of the impulse
response of the system that has to be identified.

The LMS algorithm is one of the most commonly used adaptive algo-
rithms due to its good performance as well as simplicity and robustness.
For this reasons, the adaptive channel identification system has been im-
plemented using the LMS algorithm. Moreover, as long as the parallel re-
sources of a GPU are better exploited working with block-data buffers than
sample-by-sample acquisition, the LMS algorithm has been implemented
with a block-data processing, resulting in the BLMS algorithm. Finally, the
BLMS algorithm has been efficiently implemented in the frequency domain
providing the FBLMS algorithm presented in chapter 3. Thus, a compu-
tational cost reduction is achieved with respect to the BLMS algorithm in
time domain by efficiently computing the Discrete-time Fourier Transform
(DFT) with the Fast Fourier Transform (FFT). The implementation of the
FBLMS algorithm, is explained below.

Let us define the input signal vector at the nth block iteration as
Xp = [Ty Tp-1 ... xn_3+1]T. The input-data vector has to be arranged
as in Figure 4.2, forming a vector of size 2B that is composed of the concate-
nation of the last two vectors of the input signal. Then, the concatenation of
the input vectors is transformed into the frequency domain obtaining vector
X,,. It is done by applying an FFT of size 2B: X,, = FFTop{[x]_; xI]T}.

The filtered output vector at the nth block iteration is calculated as

Y, = X,, o W,, (4.1)

where W, is the FFT of size 2B of the coefficients of the adaptive filter w
at the nth block iteration, and o denotes the element-wise product of the
vectors. The valid samples of the adaptive filter output y,, are the last B
samples of the IFFT of vector Y.
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The error vector is obtained as

e, =d, —yn. (4.2)

The error vector is transformed into the frequency domain by perform-
ing an FE'T of size 2B to the error signal e,, filling its first B elements with
zeros. It is done as follows

E, = FFTy5{[0% el]7}, (4.3)

where 0p, is a columns vector of B zeros. Once the error vector is
calculated, the filter coefficients are updated in the frequency domain by
performing the following equations

(@ éu)" = IFFTop{fi,}, (4.5)
W, 1 = W, + 2uFFTyop{[¢l 0571 (4.6)

One limitation of the above algorithm is that it can identify any acous-
tic system as long as its impulse response can be approximated by a FIR
filter with a maximum of L coefficients, which in turn imposes a constraint
when setting the size of B. One solution to estimate larger response sys-
tems regardless the size of B, is to split up the adaptive filter coefficients
into blocks called partitions [82]. Let us call define F' = L/B as the number
of partitions. Thus, the L coefficients are partitioned into F' partitions of
size B. This means that the algorithm can be parallelized in order to work
simultaneously with the F' partitions of size B that have to be adapted
accordingly. Given that the GPU is specifically designed to work in paral-
lel, this solution could efficiently exploit the GPU resources by performing
the adaptation of each partition of the filters at the same time. The result-
ing implementation is called the partitioned FBLMS (FPBLMS) algorithm,
which is also explained in chapter 3.
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Figure 4.3. Block diagram of the GPU implementation of the
FPBLMS algorithm for a channel identification application at
the nth block iteration.

4.3 GPU implementation of the prototype

This section is devoted to explain the main issues of the GPU implemen-
tation of the channel identification prototype. The prototype description
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Figure 4.4. Partition of the adaptive filter.

as well as the real-time constraining aspects has been considered in section
2.3.

Figure 4.3 shows the GPU implementation of one iteration of the FP-
BLMS algorithm for a single-channel identification application. First of all,
as the length of the adaptive filter needed in the application is longer than
the block sizes offered by the audio card, the FBLMS algorithm has been
implemented by partitioning the adaptive filter, resulting in the FPBLMS
algorithm. The partitioning of the adaptive filters occurs in applications
where the filter size is longer than the input-data buffer or in applications
where the latency time requires minimizing the input-data buffer [82, 83].
In our case, by partitioning the filter, we also obtain the best performance
from the resources of the GPU by making use of the SIMD GPU archi-
tecture. This means that all the partitions of the filter can be updated
concurrently. Considering a filter size of L, and a block size of B, the adap-
tive filter w is uniformly partitioned in F' = L/B blocks of B samples. If
L is not a multiple of B, the last block is padded with zeros. Figure 4.4
illustrates the partition of the filter. As the update of the filters is done
in frequency domain, an FFT of size 2B of each partition has to be done.
This results in a coefficient matrix of size 2B x F' called W

Once the filter coefficients are arranged as in Figure 4.4, the channel
estimation is carried out by performing the FPBLMS algorithm. Table
4.1 shows a pseudo-code of the steps needed for the GPU implementation.
Moreover, the GPU uses the kernels described in Table 4.2. All the steps
are detailed below:

Step 1 First, as the adaptive filter matrix in frequency domain, W, is
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CHANNEL ESTIMATION PSEUDO CODE

Step 1 Build input data matrix x (see figure 4.3).

Step 2 FFET of size 2B of each column of matrix x.

Step 3 Perform an element-wise matrix multiplication: Y = X o W.

Step 4 Summation of all the columns of the matrix Y, all the columns are

reduced to a single one.

Step 5 Carry out an IFF'T of size 2B of the result obtained in step 4. Discard

the first B samples and save the last B samples as the output vector
in time domain y.

Step 6 Calculate the B elements of the error signal vector in time domain as:

e=d-y.

Step 7 Perform an FFT of size 2B of the error signal vector after filling its

first B elements with zeros: E = FFTop{[0% e]7}.

Step 8 Calculate the IFFT of the autocorrelation between the error signal

vector and the reference signal vector as: ¢ = IFFTop{E o0 X*}.

Step 9 Discard the last B elements of each column of matrix ¢ and fill it

with zeros. Then perform an FFT of size 2B of each columns of the
resulting matrix to obtain the step size variable needed for updating
the filter coefficients: FFTop{[¢” 0%]}.

Step 10 | Update the filter coefficients as: W = W + uFFTyp{[¢" 05]T}.

Table 4.1. The steps of the GPU implementation of the FP-
BLMS algorithm.

of size 2B x F', the algorithm builds an input data matrix x of size
2B x F in order to fit the element-wise multiplication when filtering
the input data with the adaptive filter. The building of matrix x is
depicted in Figure 4.5. Matrix x is formed by filling each column of
the matrix with the input-data buffer of the corresponding iteration.
Concretely, the first column of matrix x at the nth block iteration
is filled with the B samples of the input-data buffer of the (n-1)th
iteration followed by the B samples of the input-data buffer of the
nth iteration. The second column would be filled with the input-
data buffer of the (n-2)th iteration followed by the input-data buffer
of the (n-1)th iteration. The same way, the third column would be
filled with the input-data buffer of the (n-3)th iteration followed by
the input-data buffer of the (n-2)th iteration, and so on. In the first
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Kernel 1

This kernel launches bi-dimensional blocks of threads. It launches
2B-F threads in total, where the dimension of the blocks is (z, y, 1),
and the dimensions of the grid is (F/x, 2B/y, 1). The kernel uses
each thread for processing each sample. Thus, each thread performs
a complex multiplication between elements of each matriz.

Kernel 2

This kernel uses one-dimensional blocks of threads. The dimen-
sion of the blocks is (1, y, 1) and the dimension of the grid is
(1, 2B/y, 1), where ‘y’ is the number of threads in each block.
Therefore, the kernel launches 2B threads in total. Each thread
carries out F sums. The result is a column vector of 2B elements.
Each element contains the reduction sum of the elements of each
Tow.

Kernel 3

This kernel launches B threads divided in one-dimensional blocks.
The dimension of the blocks is (1, y, 1) and the dimension of the
grid is (1, B/y, 1). Each thread performs a subtraction between the
values of vectors d and y.

Kernel 4

It is similar to Kernel 1. The difference is that in this case E is
a vector, so each column of matriz X is element-wise multiplied by
the same vector E. The dimensions of the blocks are (1,y,1) while
the dimensions of the grid is (1,2B/y,1). Therefore, it launches 2B
threads, where each thread perform an element-wise multiplication.
Also note that before the element-wise multiplication, the kernel
carries out a conjugation of the elements of matriz X.

Kernel 5

It has the same thread configuration of kernel 1, but each thread
performs a sum instead of a multiplication.

Table 4.2. Kernel configurations

iterations, the matrix x is filled by zeros, but after F iterations, all
columns are filled with input-data buffers. Then, at iteration F + 1
the column filled in the first iteration is rewritten using the current
input data buffer.

Step 2 Once the input matrix x is arranged, it must be filtered with the
adaptive filter. For this purpose, matrix X is formed by performing
an FFT of size 2B of each column of matrix x. Then, an element-
wise multiplication between the input matrix X and the filter co-
efficients matrix W is carried out. Matrix W is a 2B x F matrix
whose columns are the FFT of size 2B of each partition of B time-
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Iteration 1 Iteration 2 Iteration 3 Iteration 4
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Figure 4.5. Example of input-data matrix when P=3.

coefficients padded with B zeros. For the FFT implementation, we
have used the NVIDIA cuFFT library [11]. This library allows mul-
tiple one-dimensional FFTs to be carried out simultaneously. There-
fore, it allows to perform the ' FFTs of the F partitions concurrently.
When the F' FFTs have been carried out, the element-wise multipli-
cation is performed launching the CUDA kernel 1 (see kernel 1 in
Table 4.2).

Figure 4.6 illustrates two schemes of the complex element-wise matrix
multiplication:

1. The elements of the fth column are ordered in the same position
in both matrices (scheme ‘A’).

2. The elements of the fth column are not ordered in the same
position in the two matrices (scheme ‘B’).

The scheme ‘A’ shows the direct implementation, where the input-
data matrix is ordered so that the elements of the fth column of
matrix X are element-wise multiplied by elements of the fth col-
umn of matrix W. This scheme has the disadvantage that all the
columns except one of the matrix X are moved at each iteration, so
it involves a copy of 2B(F — 1) elements in GPU memory at each
iteration. The copied data is represented in grey, and the current
input buffer is marked by an arrow. On the other hand, the scheme
‘B’ shows an optimized multiplication, where the current input buffer
is placed in the corresponding column avoiding GPU memory trans-
actions. Therefore, in order to achieve the same final result in both
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Figure 4.6. Two different schemes of an element-wise multi-
plication for the case F=3.

schemes, we have to redefine the thread memory access of the GPU
for multiplying the corresponding elements of the two matrices.

Step 3 The multiplication of Step 2 generates an output matrix Y of size
2B x F. Step 3 performs a sum of the F' partitions of the output
matrix Y, reducing all the columns to a single one and resulting in a
vector of size 2B. See Figure 4.7 and kernel 2 in Table 4.2.

Step 4 Next step consists in performing a one-dimensional IFFT of size
2B of the vector obtained in step 3. The last B samples correspond
to the output signal of the adaptive filter in time domain, y. As in
step 2, the IFFT is carried out using the cuF'FT library.

Step 5 Vector y is used to calculate the error vector of size B at each
iteration as: e =d — y. Kernel 3 implements this subtraction.

Step 6 This step calculates the error vector in frequency domain, E,.
To this end, first, the error vector of size B in time domain, e,
is padded with B zeros. Then an FFT of size 2B is performed.
E = FFTyp{[05 e’]7}.

Step 7 Step 7 computes the IFFT of the correlation between the error vec-
tor E and each column of the input matrix X*. At the nth iteration,
it is done performing the equation: ¢/ = IFFTyp{E, o X;_fﬂ}.
The resulting matrix ¢ is of size 2B x F. Kernel 4 is implemented
to perform the 2B element-wise multiplication of the vector E with
each column of the matrix X*.
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Figure 4.7. Representation of the CUDA Kernel 2.

Step 8 The last B elements of each column of matrix ¢ are discarded and
padded with zeros. Then, an FF'T of size 2B of each columns of the
resulting matrix is performed: FFTy5{[¢/T 0f]7y.

Step 9 Finally kernel 5 (see Table 4.2) is implemented to update each par-

tition of the filter matrix. It is done at the nth iteration performing
the equation: W£+1 = Wi, + yFFTyp{[¢/T 0L]7}.
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Figure 4.8. Estimated channel and residual error for B = 128
and L = 4096.

4.4 Results

This section analyzes the performance of the real-time implementation from
three points of view:

e Algorithm behavior.

e Implementation aspects: the throughput and the latency.

e Analysis of the maximum number of channels that could be identified

by our implementation in a multichannel application.

The experiments have been carried out inside a listening room with
dimensions of 9 x 4.5 meters. The main characteristics of the listening
room have been described in section 2.3.

4.4.1 Algorithm behavior

Figure 4.8 shows the estimated channel and the residual error of the esti-
mation. This results are obtained using a block size of B = 128 and a filter
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length of L = 4096. The residual error shows the speed of convergence of
the algorithm (note that it can be adjusted varying the step parameter u).
Theoretically, the algorithm has to identify an acoustic channel between
a loudspeaker and a microphone. However, in practice, the channel that
has to be identified is an electro-acoustic channel composed by the acoustic
channel between a microphone and a loudspeaker, and the electric channel
composed by the transducers and the audio card. In our prototype, the au-
dio card introduces a delay that depends on the buffer size, and therefore,
the estimated electro-acoustic channel depends on the size of B, specifi-
cally this delay is equal to B 4 22 samples. Therefore, this implies that the
result of the electro-acoustic estimated channel is the channel between the
loudspeaker and microphone plus the delay introduced by the audio card,
which makes the resulting channel variable with the size of B. Figure 4.9
shows the same channel estimated with different buffer sizes. In this figure,
the delay introduced by the audio card is depicted with a dot line.

4.4.2 Implementation aspects

This subsection is devoted to analyze some computational aspects. To
this end, the throughput and the latency time are studied. The latency
time is defined as the delay from which the processing begins until a re-
sponse is given. It is calculated as tproc+tpyrr. On the other hand, the
throughput is defined as the number of input samples processed per second
(throughput=B/Latency). Table 4.3 shows the latency time and through-
put for different thread configurations and different B sizes. The best
thread configurations are highlighted for each size of B. The table shows
that the throughput does not vary significantly when B varies. This is be-
cause tproc is much shorter than ¢y, . Moreover, the maximum throughput
is achieved when the size of the input-data buffer is 512 and 256 threads
per block are used, achieving a peak value over 45.000 samples processed
per second.

4.4.3 Multichannel performance

A multichannel extension of this application means that several channels
are identified at once. This multichannel extension could be formulated in
two ways: in the first approach several single channel measurements can
be performed in order to identify all the acoustic paths involved in a mul-
tichannel reproduction system, a second approach is based on measuring
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Figure 4.9. Estimations of the same channel for different
input-data buffer size.

all the acoustic paths simultaneously. The second approach involves multi-
ple microphones and loudspeakers, defining a MIMO system. In this case,
the identification of all the channels is not trivial because each microphone
receive data from all the loudspeakers, and therefore, some kind of signal
multiplexing has to be performed in order to be able to deconvolve sev-
eral impulse responses within the same measurement. Thus, two further
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L B toug | Threads | tyroc | Latency | Throughput

size | size | (ms) | per (ms) (ms) (sam-
block ples/s)

128 2.90 128 0.44 3.34 3.83-10%

128 0.54 6.34 4.03 - 10*

256 580 256 0.46 6.26 4.08 - 104

128 0.45 12.06 4.24-10*

512 | 11.61 256 0.43 12.04 4.52-104

512 0.46 12.07 4.24 -10%

4006 128 0.68 23.90 4.28 - 10;l

1024 | 23.99 256 0.57 23.79 4.30-104

512 0.52 23.74 4.31-10

1024 0.61 23.83 4.29 - 10*

128 0.60 47.04 4.35-10%

256 0.54 46.98 4.36 -10%

2048 | 46.44 512 0.61 47.05 4.35-10*

1024 0.71 47.15 4.34-10*

Table 4.3. Latency and throughput analysis obtained for
different input-data buffer size.

possibilities can be considered: time or frequency multiplexing.

On the one hand, for the time multiplexing case, signals that have been
used for years to measure single channel impulse responses, like the ones
based on maximum length sequences (MLS) [84, 85] or frequency sweeps
[86, 87], can be used in a very useful manner. On the other hand, the
frequency multiplexing method was suggested by Potchinkov in [88] for
the particular case of two channels: an audio channel and its correspond-
ing unwanted cross-talk channel. In [89], both multiplexing techniques for
multichannel identification are analyzed in further detail. However, the
multiplexing techniques for the multichannel extension case are not the
study of this thesis.

Although the extension of an adaptive single-channel identification sys-
tem to a MIMO system is not trivial, the extension to a SIMO system where
all the channels between one loudspeaker and multiple microphones are
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Figure 4.10. Extension of the GPU channel estimator to a
multi-channel system.

identified at once is straightforward. Concretely, it can be easily obtained
through a simple data arrangement. Figure 4.10 shows this multi-channel
extension with 1 loudspeaker and N microphones. In this case, the same
reference signal is used to calculate the paths between the loudspeaker
and the different microphones. In the SIMO system, vector d becomes a
three-dimensional vector where each channel occupies a plane of the ma-
trix, being each plane a column vector. Consequently, the error vector
becomes a matrix of the same dimensions. The same way, the system has a
three-dimensional matrix W in which each plane corresponds to the filter
of each channel. These three-dimensional data matrices can be handled by
the GPU through CUDA, which let the user to configure three-dimensional
grids of three-dimensional blocks of threads. Therefore, the same kernels
of Table 4.2 can be used but launched with a three-dimensional configura-
tion of the blocks and the grid. As an example, usigna SIMO system that
identifies N channels, the dimensions of the blocks and the grid of Kernel 1
would be modified as follows: dimension of the blocks (x, y, z), dimensions
of the grid (F/x, 2B/y, N/z). A similar modification would have to be done
for the other kernels.

In order to see the parallel properties of the GPU, Table 4.4 compares
the number of channels that the system is able to identify in real-time with
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Input-data Buffer Processing No of No of
buffer size | filling time time 0. channels channels
(B) touss (ms) (ms) (estimation (real mea-
touff/tproc) surement)
128 2.90 0.44 6 88
256 5.80 0.46 12 159
512 11.61 0.43 26 254
1024 23.22 0.52 44 362
2056 46.44 0.54 85 473

Table 4.4. Estimation of the number of channels that the
system could identify for different input-data buffer sizes.

an estimate of this number of channels. It has been done for different block
sizes. The estimate is calculated as follows: taking into account that the
time t,,.oc is the time used to estimate a single channel, and the time t,, s is
the maximum processing time to achieve the real-time condition, the ratio
thuff/tproc is a direct estimate of the number of channels that, at least, the
application could be able to identify. In other words, we consider that if the
time spent to identify a single channel is ‘X’, the time spent to identify 2
channels would be ‘2X’. However, considering the parallel properties of the
GPU and taking into account that adding more channels to the processing
means increasing the size of the matrices involved, the processing time
used by the system to identify X channels should be less than X-times the
single-channel processing time. This hypothesis is confirmed by the results
of the last column of Table 4.4, which shows that, in practice, the number
of channels that can be identified without losing the real-time condition is
much higher, reaching 473 channels for B=2056.

4.5 Conclusions

This chapter analyzes the viability of the use of GPUs for real-time adaptive
applications. To this end, a simple adaptive application such as a single-
channel identification system has been implemented using a GPU as the
main processor. The identification system has been based on the LMS algo-
rithm. Concretely, a partitioned BLMS algorithm in the frequency domain
called FPBLMS algorithm has been implemented in order to efficiently ex-
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ploit the SIMD GPU architecture. For this purpose, each CUDA kernel has
been designed seeking the most efficient implementation avoiding memory
copies in GPU. Moreover, some CUDA aspects as the number of threads
per block, the distribution of threads within the blocks, the number of
blocks in the grid and the distribution of the blocks in the grid have also
been analyzed.

The results have shown a good performance in terms of the algorithm
behavior. Moreover, the computing results have shown that it is important
to carry out a precious analysis of the distribution of the threads inside
the blocks and blocks inside the grid in order to efficiently configure each
Kernel. On the other hand, a study of the implementation of a multichannel
version of the application has been presented. In this sense, a SIMO system
has been implemented and evaluated, demonstrating that depending on
the input-data buffer size, the application can identify even hundreds of
channels simultaneously. As a result of the good performance offered by
the GPU implementation, it can be stated that GPUs are suitable for audio
adaptive systems working as the main processor, and that they are capable
of managing multiple channels without overloading the CPU. In this regard,
the following chapters are devoted to develop other multichannel adaptive
applications.

Finally, the main results of this study were published in the Waves
Journal [90] and opened a research line on GPU implementations of com-
putationally complex adaptive algorithms for different adaptive applica-
tions such as multichannel room equalization or multichannel active noise
control.
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The second prototype that has been implemented using a GPU is an
equalization system. Concretely, a multichannel Adaptive Equalization
(AE) system. Therefore, this chapter presents a GPU implementation of
a multichannel AE system based on the filtered-x LMS algorithm working
over a real-time prototype. Details of the parallelization of the algorithm
are given. Moreover, some experimental results are presented to validate
and computationally analyze the real-time performance of the AE GPU
implementation. Finally, results show the usefulness of GPUs to develop
versatile, scalable and low-cost multichannel AE systems.

5.1 Introduction

The equalization systems are used to compensate for transmission-channel
impairments such as frequency-dependent phase and amplitude distortion,
which can result in the interference of the transmitted signals with one
another. Besides correcting for channel frequency-response anomalies, the
equalizer can cancel the effects of multipath signal components. The equal-
ization systems have become ubiquitous in many diverse applications in-
cluding, voice, data, and video communication via various transmission
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media. As an example, multichannel equalization could find application in
audio reproduction systems that create a given acoustic environment such
as 3-D audio systems or audio applications in which different sounds are
supplied to separate the listeners that are in the same listening space. Gen-
erally speaking, these systems intend to reproduce some desired signals at
certain points of the listening space [91, 92]. The behavior of the acoustic
system at a particular listening position (usually monitored by a micro-
phone) is characterized by its impulse response. Thus, equalization is used
to modify the frequency spectrum of the original source before feeding it to
the loudspeaker in order to compensate for the loudspeaker and listening
room responses. The goal is to make the global impulse response as close
as possible to a desired one. Thus, the combined effect of the equalizer
and the acoustic path will a good approximation of the desired signal to
be obtained at the microphone. In this chapter, the equalization is used to
compensate the effects of a room. This approach is commonly known as
room equalization.

The equalization systems employ two main techniques to formulate the
filters: the fixed equalization and the adaptive equalization methods. In the
fixed equalization methods, the equalizer typically calculates the coefficient
of an inverse filter in order to compensate for the channel response. In these
methods the equalization filters are computed once and usually in a previ-
ous stage to the rendering one. This task in multichannel scenarios is not
straightforward, and efficient computational methods are needed. More-
over, the design of the inverse filter depends on the assumption of knowing
the channel transfer function. But, in some digital communications appli-
cations, the channel transfer function is not known at enough level to incor-
porate filters that remove the channel effects. Furthermore, there are also
non-stationary channels like in wireless communication, where the channels
impulse response may vary with time. These restrictions lead to the use
of the adaptive equalizers that iteratively compute the filters. An adaptive
equalizer is an equalization filter that automatically adapts to time-varying
properties of the communication channel. In the adaptive equalization con-
text, although literature contains several interesting algorithms, the LMS
algorithm in time or frequency domain, is the most widely used. However,
most of these works only present results for a Single-Input Multiple-Output
(SIMO) system, that is, an AE system that computes only one adaptive
filter for all the microphones signals [93, 94]. It seems insufficient to per-
form equalization in multichannel scenarios with massive audience, where



5.2.  The FPBFxLMS algorithm applied to room equalization 81

the sound has to be equalized at each listener position. In these massive
scenarios, Multiple-Input Multiple-Output (MIMO) systems [95] become
essential to compensate room effects. Besides, the multichannel inversion
in Wave Field Synthesis is another example of the use of MIMO systems in
equalization [96].

On the other hand, with regards to the topic of this thesis, the AE
MIMO systems seem suitable to be implemented using a GPU. This asser-
tion is due to the fact that the AE MIMO systems involve a high number
of long compensation adaptive filters, and, therefore, their implementation
require a high computational capacity. Moreover, the processing of each
channel could be done in parallel.

The previous chapter has set the bases of the real-time implementa-
tions of adaptive applications using a GPU as the main processor. To this
end, a single-channel and a multichannel identification system based on
the FPBLMS algorithm were presented and implemented on a GPU. Now,
in this chapter, the FPBLMS algorithm is used with a filtered-x structure
(FPBFXLMS) to implement a multichannel AE system on the GPU. The
use of a filtered-x structure [97, 98] is necessary for the use of the LMS
algorithm in adaptive equalization. Moreover, as explained in the previous
chapter, the choice of the other aspects of the algorithm is conditioned by
the efficient use of the parallel computation. To sum up, the block process-
ing, the frequency domain and the partition of the filters are used due to
hardware requirements of the audio card and to better exploit the paral-
lel resources of the GPU. Finally, these reasons lead us to the use of the
FPBFxLMS algorithm.

5.2 The FPBFxLMS algorithm applied to room equal-
ization

In chapter 3, the FPBLMS algorithm was presented for a single-channel
identification application. In this section, the FPBLMS algorithm is ap-
plied to a multichannel room equalization application. To this end, the
FPBLMS algorithm is implemented with a filtered-x scheme, resulting in
the FPBFxLMS algorithm. For simplicity, the block diagram of a single
channel AE system is depicted in Figure 5.1. However, notation in Table 5.1
will be used to describe the algorithm for a generic multichannel AE sys-
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1 Number of input signals

J Number of secondary sources (actuators)

K Number of error signals (monitoring sensors)

B Block size

L Length of the adaptive filters

F L/B, number of partitions of the adaptive filters

M Length of the FIR filters that model the acoustic paths

P M/B, number of partitions of the estimated acoustic
paths

T, nth sample of the ith reference signal

Xiln | [®lipn Tilpns - Vilsa p]

Yliln nth sample of the jth actuator signal

Yile | Wilsn Yilsas o+ Yilsa—perl”

€[], nth sample of the kth microphone signal

Ckl | [CMpn CMour  oc Cklpapi]

myy,, | nth sample of the kth microphone signal

13 O S P PR SRR ) (3 PNy

d), nth sample of the kth desired signal

dig, | ks, AMeny - Akpnpul "

S[jk] M-length estimation of the acoustic path that links the jth
secondary source with the kth monitoring sensor

Sl[’jk] FFT of size 2B of the pth partition of the acoustic path sy
Wiij] Coefficients of the adaptive filter of length L that links the
tth input signal with the jth secondary source

FFT of size 2B of the fth partition of the coefficients of the
adaptive filter w;;; during the nth block iteration

Table 5.1. Notation of the description of the algorithms

tem with I input signals, J secondary sources and K monitoring sensors
(I:J:K). The subscript between brackets is referred to the I:J:K channel
configuration. Furthermore, the subscript and superscript of the following
notation denotes block iteration and number of partition respectively. Fi-
nally, the estimated acoustic paths sj;;) have been previously modeled by
FIR filters.

The adaptive filter output is calculated in frequency domain at the nth
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Figure 5.1. Block diagram of a single channel AE system
based on the FPBFxXLMS algorithm.

block iteration as

I F

- f
Y. = Z Z Wil © Xilnss17 (5.1)
i=1 f=1

where X, = FFT, B{[x[j;}n,l x[jg]n]T}, and o denotes the element-wise
product of two vectors. The adaptive filter output at the nth block iteration
Y[jl. are the last B samples of IFFTo5{Y{;, }-

The algorithm error signals are calculated by subtracting the desired
signals to the microphone signals. Therefore if the algorithm error signals
tend to zero, the microphone signals converge to the desired signals. The
kth error vector at the nth block iteration is calculated in time domain as:

€], = myy, — dp,. (5.2)

Then, the kth error vector at the nth block iteration is padded with B
zeros and transformed into the frequency domain by performing an FFT of
size 2B:

Ep, = FFTy5{[05 efy, 1"} (5.3)

Moreover, the input signals are filtered through the estimated sec-
ondary paths. They are calculated at the nth iteration in frequency domain
as

P
Viijhl, = Z Sﬁk} O Xiilp_pi- (5.4)
p=1
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Let us define vector uf k], 88 the DFT of the correlation between the
input signals filtered through the estimated secondary paths, and the error
signals. It is calculated for the fth partition at the nth iteration as:

~f o %
Piiinge = Bkl © Viigal,_ pan (5.5)

for f=1,2,...,F. Finally, the update of the coefficients of the fth partition
of the ijth adaptive filter is calculated in frequency domain as follows

Wf;ﬂnﬂ Wf +MZFFT23{[¢[ wn OB}, (5.6)
k=1

for f=1,2,...,F. Constant u is the step-size parameter and vector d)”k
corresponds to the first B samples of the 2B-IFFT of the correspondmg
partition u[ijk]n

T —fT "
(Dling, Bljug )" = FETon{fl, ), (5.7)

for f=1,2,...,F.

5.3 GPU implementation of the prototype

This section is devoted to explain the GPU implementation of the multi-
channel AE prototype. Details of the multichannel AE prototype have been
shown in section 2.3. Figure 5.2 shows the GPU implementation of an it-
eration of the FPBFxLMS algorithm. The implementation makes use of
five optimized GPU kernels that are described below. The goal is to design
generic kernels that perform simple operations like element-wise multipli-
cations or sums so that the kernels can be used in the GPU implementation
of other multichannel applications. Therefore, these kernels will be used
in the GPU implementation of the multichannel ANC systems described
in chapter 6 and 7. Moreover, some GPU kernels are similar to those
used in chapter 4. However, in this chapter, the kernels are designed and
launched with three-dimensional blocks of threads and three-dimensional
grid of blocks due to the multichannel nature of the application. Fur-
thermore, the cuFFT library of NVIDIA has been used for carrying out
simultaneously multiple FFTs. The GPU kernels are the following:
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Figure 5.2. Block diagram of the GPU implementation of the
FPBFxLMS algorithm for a multichannel room equalization
application.

Kernel 1 performs an element-wise multiplication of two matrices. This
Kernel is similar to Kernel 1 of chapter 4 using the scheme ‘B’ depicted
in Figure 5.3. However, due to the multichannel nature of this applica-
tion, the matrices involved in the multiplication are three-dimensional.
Each plane of the matrix corresponds to a different channel. The first
dimension is the number of partitions, the second dimension is the size
of B, and the third dimension is the number of channels. Therefore, this
kernel performs the same computations than Kernel 1 of chapter 4, but
applying it to all the channels of the system.
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Figure 5.3. GPU kernel of an element-wise multiplication.

As the matrices involved in the multiplication are three-dimensional, this
kernel launches a three-dimensional grid of three-dimensional blocks of
threads. For example, for the particular case in which the input ma-
trix X;) is element-wise multiplied with the adaptive filter matrix Wy
(see Figure 5.3), the blocks are dimensioned with (x,y,z)! threads, and
the grid is dimensioned with (F/x, 2B/y, 1J/z) blocks. The kernel uses
each thread for processing each sample, thus each thread will perform a
complex multiplication between elements of each matrix.

Kernel 2 is launched to simultaneously reduce all the columns of each
plane (channel) to a single one by computing the sum of the elements
in each row. The number of columns that are reduced to a single one is
F or P, depending on the number of partitions. This kernel is depicted

In

1x,y,z are selected according to the restrictions of the CUDA architecture of the device.
our case, Fermi device [11]
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Figure 5.4. GPU kernel of an element-wise multiplication.

in Figure 5.4. The figure considers the case of reducing F' columns to
a single one. To this end, the kernel uses a three-dimensional grid of
three-dimensional blocks, where the dimension of the blocks and grid are
(1,y, z) and (1, 2B/y, m/z), respectively. Note that m is the number of
planes (channels) of 2B x F elements of the matrix involved. Therefore,
the kernel launches 2B - m threads in total, and each thread carries out
F sums. The result is a 2B x 1 x m matrix where each element of the
2B-dimension columns contain the reduction sum of each row.

K3 Kernel 3 is similar to kernel 2, but instead of performing the sum of
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Figure 5.5. GPU kernel of an element-wise multiplication.

columns, it sums planes (channels). It performs a sum of m planes with
the same sub-index. Figure 5.5 depicts an example of the performance of
the kernel and the grid/block configuration. In this example, the matrix
o of IJK planes results in a matrix of IJ planes after performing this
kernel. Therefore, a sum of K planes (m = K) with the same ij sub-
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Figure 5.6. GPU kernel of an element-wise multiplication.

indexes is performed.

This Kernel launches 2B - n threads, where n = F, P depending on the
number of partitions of the matrix involved. The dimensions of the grid
are (n/x, 2B/y, 1), while the dimensions of the blocks are (x, y, 1). Each
thread performs the sum of m elements.

kernel 4 has the same thread configuration as kernel 1, but each thread
performs a sum instead of a multiplication.

This kernel performs an element-wise multiplication, and its operation
is similar to the operation of kernel 1. However, the difference is that
instead of multiply two matrices, this kernel performs the element-wise
multiplication of a column vector (E[k]) and a matrix (V). Therefore,

~

as the kth plane of the error matrix (Ef;)) used in the dot product is a
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column vector instead of a matrix, each column vector of the ijkth plane
of matrix V{;;;) is element-wise multiplied by the same column vector
E[k]. The performance of the kernel as well as the grid configuration is
depicted in Figure 5.6.

5.4 Results

Some experiments are presented here to study the performance of the GPU-
based adaptive equalization prototype. The experiments have been con-
ducted in live using the prototype described in section 2.3. First, the algo-
rithm behavior has been evaluated. Secondly, the computational limits of
the GPU implementation have been studied.

5.4.1 Algorithm behavior

Regarding the algorithm behavior, the experiment consists on evaluating
the system distance index (D) [99], which finds the distance between the
real case and the ideal case. Regarding a system configuration with one
input signal (I = 1), D is defined for the nth iteration at each sensor k as

15y (Wi, * sp) — digg 12
Dy, = 101log J - ,
a 10 ( EE

(5.8)

being d the kth desired system vector which ideally corresponds to a
delayed delta functions, and || - ||2 the 2-norm.

Figure 5.7 shows the evolution of the parameter D at both microphones
using a 1:2:2 configuration, a block size of B = 512 and adjusting the pu
parameter to the maximum value that assures stability. The D parameter
has been measured with a voice interference signal at the microphones for
different signal to interference ratios (SIR). If the power of the interferences
increase, the SIR ratio decrease and the maximum p parameter that assures
stability also decrease [100]. As a result, the convergence speed is reduced.
Results show that although low ratios of SIR are used, good results in terms
of the D parameter are obtained, which means that the algorithm is robust
even with low SIR levels. However, the best performance is achieved when
there is no interference affecting to the operation of the prototype, and
results get worst by reducing the SIR ratio.
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Figure 5.7. Dk, evolution for the 1:2:2 configuration at mi-
crophone 1 (a) and microphone 2 (b).

5.4.2 Computing results

Focusing on the GPU results, the computational limits have been analyzed
varying the size of B. The size of B affects both the algorithm behavior and
the computing results. On the one hand, as B decreases, the FPBFxLMS
converges faster [101], but on the other hand, the real-time condition limits
the processing time to tpoc < B/fs, so if B decreases there is less time
for processing, and therefore less channels can be processed. Therefore, the
ideal value of B must be chosen depending on the needs of the applications.

Table 5.2 shows the maximum number of loudspeakers and micro-
phones that the GPU implementation of the adaptive equalization system
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B=256 | B=512 | B=1024 B=2048
tproc,,,, | 9-8ms | 11.6 ms | 23.2 ms | 46.4 ms
I.J-K 1:13:13 | 1:18:18 | 1:24:24 | 1:36:36
Channely 169 324 576 1,089

Table 5.2. Maximum [I:J:K system for different sizes of B

can handle in real-time with one input signal (/=1), the same number of
loudspeakers and microphones (J=K) and varying the size of B. Results
show that in the best case, the system can handle in real time more than
1.000 channels, defining a channel as a pair loudspeaker-sensor. However,
more channels could be processed by using a lower sampling rate or using a
newer card with more computing capacity. It is important to note that for
this analysis, a previous analysis like in section 4.4.2 of the best distribution
of threads in a block and blocks in a grid is necessary for each specific case
in order to achieve a good performance. This previous analysis consists in
testing the processing delay of the algorithm for each specific I:J:K case
changing the dimensions of both blocks of threads and grids of blocks to
find the fastest configuration for each different case.

5.5 Conclusions

As it has been commented along this thesis, the main goal is to analyze
the suitability of GPUs for real-time implementation of multichannel adap-
tive systems. In this sense, the previous chapter has demonstrated the
feasibility of GPUs for real-time implementations of adaptive systems. Be-
sides, the work presented in this chapter further confirms this conclusion.
Here, an adaptive equalization systems based on the FxLMS algorithm
has been implemented using a GPU. To fit the hardware/GPU require-
ments, the algorithm has been implemented in frequency domain, working
with blocks of data and partitioning the adaptive filters. As a result, a
prototype of multichannel adaptive equalization application has been suc-
cessfully implemented on GPU using CUDA language and taking benefit
of the parallelization of the multiple channels involved.

Results have shown a good performance of the adaptive equalization
prototype even when there are interfering signals with low SIR levels. More-
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over, in order to obtain a massive multichannel equalization system suitable
for a massive audience through the use of a high number of loudspeak-
ers/sensors, the computing limits of the adaptive equalization system has
been studied. It has been demonstrated that the GPU is a meaningful and
versatile solution for massive multichannel adaptive equalization systems
with even more than 1,000 channels processed in real time. Finally, it is
important to note that more channels could be processed using a different
audio card with lower frequency sampling, decimating or using newer GPUs
with more computational capacity.

Part of this work was presented in the International Conference on
Acoustics, Speech and Signal Processing (ICASSP 2014) [102] and is based
on the algorithm presented in [103]. In [103] the FPBFXLMS algorithm
was presented for a multichannel active noise control application, which is
the main work of this thesis (see chapters 6, 7 and 8).
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Active Noise Control - LMS algorithm

Following with the GPU implementation of adaptive applications, this
chapter describes the implementation of a multichannel feedforward local
Active Noise Control (ANC) system using a GPU as the main processor.
As in the previous applications, this implementation is also based on the
LMS algorithm. First, the GPU implementation based on the LMS al-
gorithm is presented using two different filtering schemes: one based on
the conventional filtered-x scheme, and the other based on the modified
filtered-x scheme. Secondly, the details regarding the parallelization of the
algorithms are given. Thirdly, the prototype has been tested in a listening
room, so, finally, some experimental results are presented to compare the
performance of both multichannel ANC GPU implementations.

6.1 Introduction

Active noise control [26, 25, 104] is a field that combines digital signal pro-
cessing techniques with traditional acoustics. The ANC systems are based
on the principle of destructive interference between a disturbance sound
field called primary noise and a secondary sound field generated by a con-
trolled secondary source called actuator. The target is to cancel, or at least
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minimize, the primary noise signal. To cancel the primary noise, the ANC
system commonly uses adaptive algorithms [17] to generate the secondary
sound field from a reference signal that is correlated with the primary noise.
As commented in section 2.1.4, the adaptive ANC systems can use two dif-
ferent approaches to obtain a reference of the noise signal. Both approaches
are known as: feedforward or feedback systems. In this chapter, the feed-
forward approach will be used, and, therefore, a reference of the noise or
undesired signal is obtained directly by a sensor. Moreover, the noise or
the undesired signal is monitored by at a specific spatial point by a sen-
sor that is called the error sensor. Therefore, cancellation is only carried
out at that specific spatial point and also at close points around the error
sensor (approximately A/10 [105], where A is the wavelength of the highest
frequency of the undesired noise). The ANC systems can be extended to
multichannel ANC systems by overlapping different controlled areas and
setting multiple secondary sources [106].On the other hand, these multi-
channel systems require a high computational capacity. An even greater
capacity is required when considering massive control systems with a high
number of channels, with one channel being defined as each pair of error
sensor - secondary source. Therefore, in practice, the computational cost
is one of the main bottlenecks of the multichannel ANC systems.

As it has been commented during this thesis, in recent years, the num-
ber of scientific contributions and research projects related to the use of
GPUs for signal processing applications has significantly increased. In
section 2.2.1, numerous GPU implementations of audio application are
cited. All these GPU implementations of audio application demonstrate
that GPUs are a suitable platform for implementing multichannel audio
applications where the processing of each channel could be done in par-
allel. Moreover, the results obtained from the previous chapters further
demonstrate the viability of using a GPU as the main processor for audio
applications based on adaptive filtering. Therefore, in contrast to tradi-
tional implementations that are based on conventional hardware devices
such as Digital Signal Processors (DSPs) [107] and dedicated hardware,
this chapter uses the GPU platform to implement a multichannel ANC
prototype.

This chapter presents and compares two different GPU implementa-
tions of a multichannel ANC prototype. Both implementations are based
on the FPBLMS algorithm, but using different filtering schemes. The choice
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of this algorithm is motivated by the same reasons given in the previous
chapters. These reasons can be summarized in allowing a fast implementa-
tion by efficiently exploiting the parallel resources of a GPU. Therefore, the
FPBLMS algorithm used in chapter 4 for a channel identification applica-
tion, is now implemented for an ANC system using two different filtering
schemes: the conventional and the modified filtered-x scheme. The filtered-
x structure is used to avoid the instability that causes the introduction of a
secondary-path transfer function into a controller using the standard LMS
algorithm [108]. To avoid this instability, the conventional filtered-x struc-
ture was suggested by Morgan in [109]. Moreover, the FxLMS algorithm
was independently derived by Widrow [97] in the context of adaptive con-
trol and by Burgess [110] for ANC applications. In 2.1.5, a briefly analysis
of the evolution over the years of the FxLMS algorithm, was given. There,
it is outlined that the modified filtered-x structure [41] was presented to
improve the convergence performance of the conventional filtered-x scheme.
Throughout this thesis, the FPBLMS algorithm based on the conventional
filtered-x scheme will be referred to as FPBFxLMS, whereas the FPBLMS
algorithm based on the modified filtered-x scheme will be referred to as
FPBMFxLMS.

As it has been commented above, the modified scheme provides a faster
convergence rate. However, it is more demanding from a computational
cost point of view. This chapter aims to demonstrate that this computa-
tional drawback can be alleviated by making use of the parallelism of the
GPU computing. Therefore, the proposed implementation of the modified
scheme can deal with the increase of computational burden. The rest of
the chapter present and discuss about the advantages and disadvantages of
the GPU implementation for both filtering schemes.

6.2 Description of the algorithms

This section focuses on illustrating the FPBFxLMS and FPBMFxLMS al-
gorithms applied to an ANC system. The goal of the algorithms is to
minimize the sum of the power of the error sensors. The block diagram of
the multichannel ANC systems based on the two algorithms is depicted in
Figure 6.1. A generic multichannel ANC system with I reference signals, J
secondary sources, and K error sensors (I:J:K) has been considered. The
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1 Number of reference signals (reference sensors)

J Number of secondary sources (actuators)

K Number of error signals (error sensors)

B Block size

L Length of the adaptive filters

F L/B, number of partitions of the adaptive filters

M Length of the FIR filters that model the estimated secondary
paths

P M/ B, number of partitions of the estimated secondary paths

T, nth sample of the ith reference signal

Xl | ®ilpn Tilpus o Tlilpap]

Yliln nth sample of the jth actuator signal

Yile | Wilsn Yilsas o+ Yilsa—perl”

€[], nth sample of the kth microphone signal

ekl | [CHpn CKus o Cklpapnl

S[jk] M-length estimation of the secondary path that links the jth
secondary source with the kth error sensor

Sﬁ.k] FFT of size 2B of the pth partition of the acoustic path sy

W{ij] Coefficients of the adaptive filter of length L that link the ith
reference signal with the jth secondary source
W[];j]n FFT of size 2B of the fth partition of the coefficients of the

adaptive filter wy;;) at the nth block iteration

Table 6.1. Notation of the description of the algorithms

notation in Table 6.1 will be used to describe the algorithms. In this work,
samples are processed by blocks of size B. The length of the adaptive fil-
ters is L, and, M is the length of the FIR filters that model the estimated
secondary paths. As commented in the previous chapters, if L and M are
greater than B, we have to split up both the adaptive filters and the es-
timated secondary paths into F' and P partitions, respectively. Thus, the
algorithm works simultaneously with all the partitions of size B. In line
with the notation of the thesis, the subscript between brackets is referred
to the (I:J:K) channel configuration, and the subscript and superscript of
the notation denote block iteration and number of partition respectively.

It was commented in 2.1.5 that there are different approaches with re-
gard to the modeling of the secondary path. One is based on the hypothesis
that the secondary path model does not have to be accurate and it can be
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Figure 6.1. Block diagrams of the multichannel ANC sys-
tem based on the (a) FPBFXLMS and (b) FPBMFxLMS al-

gorithms.

also represented just by a delay (delayed-x LMS) [111]. This technique is
used in applications with variable systems in which rapid reaction is also of
utmost interest. However, since the application described in this chapter
is set in a listening room with an almost invariant response, the secondary
paths have been previously modeled with an accurate estimation by FIR

filters called s[;3).
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6.2.1 The FPBFxLMS algorithm applied to active noise control

According to the notation of Table 6.1, the adaptive filter output is calcu-
lated as follows:

I F
= f
- Z Z W[U}n © X[ﬂn—f—&-l’ (61)
i=1 f=1

where X, = FFTZB{[ » [Z 1T}, w/ ij]n 18 the FFT of size 2B of
the fth partition of the coefﬁments of the adaptlve filter wy;;) at the nth
block iteration, and o denotes the element-wise product of two vectors. The

valid samples of the adaptive filter output y|;, are the last B samples of
IFFTop{Y ), }-

The filter coefficients are updated in the frequency domain by calcu-
lating the DFT of the correlation between the reference signals that are
filtered through the estimated secondary paths, and the error signals. To
this end, the following operations are performed in each iteration

P
Viigkn = O STy © i i (6.2)
p=1
~f _ .
Hiiji), = Bkl © Viighlappn (6.3)

for f=1,2,..., F. Vector Ep, is defined as
Ey, = FFTop{[05 efy 1"} (6.4)

The update of the coefficients of each partition of the ¢jth adaptive filters
is calculated as follows

f = 1T
Wiislnss _W[U] NZFFTzB{W[Uk] 05"}, (6.5)
f=1,2,...,F

where p is the step-size parameter, and the vector (,‘bf;jk]n corresponds to

the first B samples of the 2B-IFFT of the corresponding partition ﬁf;jk}n

T —¢T _
(Dling, Bliug, )" = FETon{fl,, 3, (6.6)
f=12.. . F
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6.2.2 The FPBMFxLMS algorithm applied to active noise control

This section focuses on describing the FPBMFxLMS algorithm. The adap-
tive filter output is calculated as in Eq. (6.1).
The output signal vectors in frequency domain Y [;; are used to estimate

the undesired signal vectors in the frequency domain, f)[k]. To this end,
the following operations are performed at the nth iteration:

YF ), ZZY npir © SPig (6.7)

j=1p=1

Dy, = Epp, — YFp,., (6.8)

where Ej,), = FFTQB{[e[%,;}w1 e[q;f]n]T}.
Moreover, the K estimated error vectors in the frequency domain at

the nth iteration, Ey), , are obtained as:

P
Viijkl, = Z Sﬁk] 0 Xlily_pi1s (6.9)
p=1
I F
=D w/
E[k‘]n - D[k]n + Z Z Z V[z]k]n f+1 [U]n’ (610)
i=1 j=1 f=1
and
Ey, = FFTo5{[05 el t (6.11)

where vector €[, is obtained from

€k, i) = IFFT2p{gp, } (6.12)
Finally, the update rule of the frequency—domaln filter coefficients is
given by Eq. (6.5), where ¢[ 4,0 and therefore u[ e (Eq. (6.3) and

Eq. (6.6)) are calculated using the estimated error signal E[k]n instead of
the error signal Ep, .



104 Active Noise Control - LMS algorithm

6.3 GPU implementation of the prototype

This section describes the main issues involved in the GPU implementation
of the real-time multichannel ANC prototype. Details of the multichannel
ANC prototype were given in section 2.3.

The GPU implementation consists of three steps: the output signal gen-
eration, the error signal calculation, and the update of the adaptive filters.
Both algorithms generate the ANC outputs by filtering the reference sig-
nals through the adaptive filters, and they both update the adaptive filters
using the error signals and the reference signals filtered through the esti-
mated secondary paths. The main difference between the two algorithms
is in the error signals that are used to update the filters. The FPBFxLMS
algorithm uses the signals picked up by the microphones as the error sig-
nal, while the FPBMFxXLMS algorithm computes an estimate of the error
signals. These three steps are implemented as follows:

S1 ANC output generation. This step is common to both algorithms and
aims to calculate the ANC output signals y[;. The operations of this
step correspond to Eq. (6.1). The implementation and the CUDA
kernels involved in it are shown in Figure 6.2(a).

S2 Error signal calculation. This step is different for each implemen-
tation. While the conventional scheme uses Eq. (6.4) directly, the
modified scheme calculates an estimate of the error signal (see Fig-
ure 6.2(b)). The corresponding description is shown in Eq. (6.7)-
(6.12).

S3 Filter updates. The update of the adaptive filter coefficients involve
the implementation of Eq. (6.3)-(6.6). The details regarding the dif-
ferent steps and kernels are illustrated by Figure 6.2(c).

The GPU implementation depicted in Figure 6.2 makes use of five
optimized kernels in order to achieve the most efficient performance of the
algorithm. These kernels are the same as those presented in chapter 5 for a
multichannel AE application. In this chapter, those kernels are reused for
an ANC application. Moreover, the cuFFT library of NVIDIA was used to
simultaneously carry out multiple one-dimensional FFT's.
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Figure 6.3. Photograph of the ANC prototype using a 1:2:2
configuration.

6.4 Results

Several experiments were performed to validate the ANC systems and to
compare both algorithms. The experiments were carried out using the pro-
totype described in section 2.3. Some different configurations of the ANC
system (I:J:K) were considered. As an example, Figure 6.3 shows a pic-
ture of the multichannel ANC system with the 1:2:2 configuration. Some
other arrangements were also used to test the performance of other config-
urations, like 1:1:1 or 1:4:4. It should be highlighted that the prototype is
capable of dealing with massive systems with high numbers of I, J and K,
reaching more than 600 processed channels in the highest case.

The performance of the ANC system was evaluated from different
points of view. It is worth mentioning that the implementation of the
algorithm using the GPU does not affect either to improve or to impair
the performance of the algorithm in terms of attenuation levels or speed of
convergence. Therefore, section 6.4.1 is devoted to validating the ANC per-
formance. For this purpose, the attenuation of the reference signal achieved
by the ANC system at the error sensors was measured. A convergence per-
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formance comparison between the FPBMFxLMS and the FPBFxLMS for
different types of reference signals is shown in section 6.4.2. The computa-
tional complexity of the GPU implementation of both algorithms is detailed
in section 6.4.3, and, finally, some computing results of the FPBMFxLMS
algorithm are analyzed in section 6.4.4.

As commented in the previous chapters, some kind of study of the
thread-block distribution of the kernels at each specific case is necessary
in order to analyze the computing results. Similarly to that explained
in 4.4.2 for the channel identification application, this study consists in a
previous test of the processing delay of the algorithm when changing both
the dimensions of the blocks of threads and the grid of blocks in order to
find the fastest configuration for each different case.

6.4.1 Residual noise level

The 1:2:2 configuration of the ANC system was considered in this set of
experiments. The following parameters were chosen: B = 2048, L = M =
4096, and two different types of reference signal. The reference signals were:

1. Band-limited white noise.

2. A periodic noise that emulates an engine signal composed of six har-
monics between 100Hz and 200Hz with an effective fundamental fre-
quency of 20 Hz.

Figure 6.4 shows the power spectral density of the average signals mea-
sured at both error sensors by using the described algorithms. A similar
performance is observed in both algorithms with noise reductions that de-
pend on the type of the reference signal. If we consider the band pass
filtered white noise, an attenuation between 20-30 dB is achieved depend-
ing on the frequency (see Figure 6.4(a)). Figure 6.4(b) illustrates the results
for periodic noise. It can be easily observed that a reduction up to 45 dB
is achieved at each harmonic.

6.4.2 Convergence performance

This section compares the convergence performance of the FPBMFxLMS
and the FPBFxLMS algorithms. The same set of parameters used in the
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Figure 6.4. Power spectral density of the average of the
signals measured at the error sensors before (solid line) and
after the ANC system operation by using the FPBFxLMS al-
gorithm (dotted line) or the FPBMFXLMS algorithm (dashed
line). The disturbance noise used in (a) is a band-limited white
noise, and in (b) is a periodic tonal noise.
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previous section was chosen. The learning curves of both algorithms were
obtained using the following equation:

Pe,
A, =101 ) 1
0logyg <Pdn> (6.13)
with
Pd,, = aPd,—1 + (1 — a)pdy, (6.14)
Pe, = aPep_1 + (1 — a)pey,
and
K
pdy =) dfy. . (6.15)
k=1
K
pen = _ ey,
k=1

where K is the number of error sensors.

Figure 6.5 illustrates the performance of the algorithms. The highest
step size p that ensures the stability for each case was chosen. Using the
filtered white noise as the disturbance signal, the step-size parameter was
set to p. = 1.5-107% and j,, = 2.8 - 107° for the conventional filtered-x
scheme and the modified filtered-x scheme, respectively. For the periodic
noise, the step-size parameter was set to pe = 3.5-1077 and f,, = 7.3-1077.

As Figure 6.5 shows, the FPBMFxLMS algorithm provides faster con-
vergence speed than the FPBFxLMS algorithm but similar steady-state
behavior. Specifically, for the case of the filtered white noise, the modified
scheme converges 1.2 seconds before the conventional scheme, which corre-
sponds to a 15% reduction in the convergence time. A larger difference is
observed when periodic noise is considered. The FPBMFxLMS algorithm
converges almost 2.25 seconds before the FPBMFXLMS algorithm, which
corresponds to a 47% reduction in the convergence time. Therefore, it can
be concluded that the FPBMFxLMS algorithm significantly outperforms
the FPBFxXLMS algorithm in terms of convergence speed. Also, note that
both algorithms converge faster for the periodic noise signal than for the
filtered random noise signal.

Another important property of the adaptive algorithms is the stability
limit. In the literature, there are some contributions made to study the
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Figure 6.5. Learning curves of the FPBMFxLMS and the
FPBFxLMS algorithms for the 1:2:2 ANC system and different
reference signals. The disturbance noise used in (a) is a band-
limited white noise, and in (b) is a periodic tonal noise.

convergence behavior of the Block Filtered-x LMS algorithm (BFxLMS).
The maximum p parameter that leads to the fastest convergence rate was
derived in [112] and is given by
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1

0<u<
=H BXmax

(6.16)

where Ajqz is the maximum eigenvalue of the filtered input signal autocor-
relation matrix R, defined as R, = E[VVT]. Therefore, the convergence
performance of the algorithm depends on the statistics of the input sig-
nal, the acoustic paths, and the block length B. For the same reference
signal, the step-size parameter u depends on B, so the maximum g value
increases by reducing the size of B, and, consequently, the convergence
speed is improved by reducing B. However, the size of B is also limited
by the real-time condition t,.o. < B/fs. Therefore, there is a minimum
value of B for each configuration that assures the real-time condition and
maximum convergence speed.

Figure 6.6 illustrates the convergence behavior of both algorithms using
a when varying the size of B between 256 and 2048. Although these results
are obtained when the disturbance signal is a single tone of 200 Hz, similar
results can be obtained with other type of noise signals. As expected, it
shows that the algorithms converge faster with a smaller block size, B.
As these results show, the maximum p is more or less doubled when B is
halved. This fact can be explained from Eq. (6.16), where, for the same
reference signal, the maximum g is doubled by reducing the size of B by
half. The difference in convergence time between B = 2048 and B =
256 is around 2.5 seconds in the conventional scheme and 1 second in the
modified scheme (using f; = 44.1 kHz). Although these results are obtained
when considering a tone as the noise signal, the same dependence behavior
between the speed of convergence and the block size could be expected for
different kind of noise signals. Finally, Figure 6.6 shows that in order to
achieve a certain convergence speed, the modified scheme can use a larger
block size than the conventional scheme. This means the adaptive controller
has more time for processing without violating the real-time condition,
and, therefore, more channels can be handled while maintaining a given
convergence speed.

6.4.3 Computational complexity

Table 6.2 compares the computing time and the computational complexity
in terms of multiplications, additions, and FFTs per iteration of the GPU
implementation of the two algorithms (FPBMFxLMS and FPBFxLMS) for
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Figure 6.6. Learning curves of the FPBMFxLMS and
FPBFxLMS algorithms for different B size and a single tone
reference.

different configurations. Since we use a value of M = L, and B = L/2 (two
partitions), the computational complexity only depends on L.

First, table 6.2 shows that the computational complexity of both algo-

rithms increases significantly with the number of channels. In the modified
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I:J:K configuration
1:1:1 1:2:2 1:4:4
Multiplications 8L 24L 80L
(1)| Additions 4L 14L 52L
FFTs 8 14 26
| Time (ms) | 0.55 0.78 1.58
Multiplications 12L 40L 144L
(2)| Additions 9L 32L 120L
FFTs 5 9 17
| Time (ms) | 0.68 0.96 2.05
M,/ M 1.5 1.6 1.8
A /A 2.25 2.29 2.31
F,./F 1.25 1.29 1.31
tm [t 1.24 1.23 1.30

Table 6.2. Processing time and total number of multipli-
cations, additions, and FFTs per iteration of the GPU im-
plementation of (1) the FPBFXLMS algorithm and (2) the
FPBMFxLMS algorithm for different ANC configurations.

scheme, when the ANC configuration changes from 1:1:1 to 1:4:4 (16 sec-
ondary paths) the number of multiplications increases by a factor of 12,
the additions by a factor of 13.3, and the FFTs by a factor of 3.4 while
the time delay increases only by a factor of 3. Taking into account that
the complexity increases with the number of channels, we can conclude
that the computational complexity is a bottleneck of massive multichan-
nel ANC systems. Therefore, if the operations of each channel are properly
parallelized, an implementation over GPU could be a viable and meaningful
solution.

Table 6.2 also shows that the modified scheme exhibits higher computa-
tional complexity due to the estimation of the error signals (see Figure 6.2).
Furthermore, we define the ratio M,,/M as the number of multiplications
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of the FPBMFxLMS algorithm divided by the number of multiplications of
the FPBFXLMS algorithm. The same ratio is defined for additions (A4,,/A),
processing time (t,,/t) and number of FFTs (F,,/F). It is shown that the
ratios of multiplications, additions and number of FFTs are greater than
the ratio of processing time. It means that the increase of computational
complexity of the modified scheme can be overcome by the implementation
of the algorithm on a GPU. This result further confirms that the GPU
implementation is a good solution for multichannel ANC systems.

6.4.4 Prototype computing performance

It is well known that the zone of high attenuation achieved by an ANC
system can be extended by adding more sensors and loudspeakers. How-
ever, as stated in the previous section, the computational cost can become
extremely large.

In this subsection, we will study the computational constraints of the
multichannel ANC prototype using the FPBMFxLMS algorithm. For this
purpose, Figure 6.7 shows the maximum number of channels that the ANC
system can handle without violating the real-time condition for L=M=4096,
different B values, and in two cases (Figure 6.7(a) one reference signal, and
Figure 6.7(b) four reference signals). This maximum number of channels is
calculated by fixing the number of error sensors and finding the maximum
number of actuators (J) that the system can handle without violating the
real-time condition. When the maximum J value for each value of K is
found, the maximum number of physical channels that are processed for
each value of K is J - K. For example, in Figure 6.7(a), when K = 180,
the maximum number of actuators that can be used without violating the
real-time condition is J = 3; therefore, the maximum number of processed
channels is 540. However, for K = 181, the maximum number of actuators
is J = 2 because the real-time condition is violated with J = 3. Thus, the
maximum number of processed channels is 362 (J = 2) when K = 181.
For this reason, the shape of the curves jumps with the increase of error
sensors.

The following considerations are highlighted in the simulation results
depicted in Figure 6.7:

e The maximum number of actuators for each value of K is calculated
by taking into account that it has to satisfy the real-time condition:
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Figure 6.7. Maximum number of channels (JK) for each K
value performing in real-time when (a) I=1 and (b) I=4 for
different sizes of B and L=M=4096.

tproc < B/ fs. Therefore, if B increases, there is more time for pro-
cessing and thus more channels can be handled.

e Two systems with different I:J: K configurations could have the same
number of physical channels but different computational costs. For
example, both the 1:1:2 and 1:2:1 configurations have 2 physical chan-
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nels, but the second configuration has a higher computational cost
because it has two adaptive filters instead of one. An increase in
the number of adaptive filters involves many more operations than
an increase in the number of error sensor signals, with IJ being the
number of adaptive filters. Therefore, when K is low and J is high,
the maximum number of channels is limited by the delay of processing
the adaptive filters (see Figure 6.7 when K is low).

e When K increases, J has to decrease in order to satisfy the real-time
condition, and, consequently, the number of adaptive filters decreases
and the curves of the number of processed channels grow quickly
reaching the maximums. The maximum of the curves is reached when
neither K nor J is much greater than the other.

e On the other hand, when J is small and K is large, which means that
the number of adaptive filters is low, the system is limited by the
error signal handling (see Figure 6.2). Moreover, for low values of B
or configurations with more than one reference signal, the decrease in
processed channels with the increase of K is not so significant. This
is because the system is able to process fewer sensors in real time
than when I = 1 and B = 2048; therefore, since K is moderate, the
decrease in the number of processed channels is also moderate.

e Two systems with the same JK configuration but a different number
of reference signals have the same number of processed physical chan-
nels but different computational costs. For instance, if four reference
signals instead of one are handled, the maximum number of processed
channels are reduced because each channel is used four times instead
of one (one time for each reference signal). On the other hand, due
to the parallelization of the operations of each reference signal, even
though the channels are used four times, the number of processed
channels is not decreased by four.

Once the maximum number of processed channels has been analyzed
for each value of K, the number of complex multiplications (CM) involved
in both the products and the FFTs for the JK configurations derived in
Figure 6.7 is depicted in Figure 6.8. It can be observed that the number
of CM performed is not constant for the different configurations. This
is because the GPU implementation is affected by the JK configuration.
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Figure 6.8. Number of complex multiplications (CM) per-
formed for the maximum JK configuration when (a) I =1
and (b) I = 4 for different sizes of B and L=M=4096.

The most remarkable aspect of Figure 6.8 is that the JK configurations
with more CM are those with low values of K and high values of J. As
explained above, the number of adaptive filters depends on both the I and
J variables; therefore, if J grows, more CM are performed because there
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cessed channels for the GPU implementation, the CPU im-
plementation, and a theoretical processing machine limited to
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per block of samples for B = 2048 and I = 1.

are more adaptive filters to cope with. Consequently, this is accentuated
when I = 4.

The maximum number of channels that can be handled in real time by
the GPU is shown in Figure 6.7. In order to compare the computational
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capabilities of the GPU with other hardware platforms, an ANC system
based on a CPU i7 was also implemented using one core and a sequential
execution. The maximum number of channels allowed by the CPU imple-
mentation was theoretically and practically studied. Moreover, the GPU
and CPU evaluation results were also compared with a theoretical process-
ing machine that was limited to perform 1-107, 2- 107, or 4 - 107 CM per
buffering time. The results of this comparison are illustrated in Figure 7.7
for the case when I = 1 and B = 2048. In this case, the buffering time is
B/fs =2,048/44,100 = 0.0464 seconds. For example, the curve labeled as
‘CM=L1e7 in Figure 6.9 represents the maximum number of channels for
each value of K that a given machine would process if this machine is able
to carry out 1-107 CM every 46.4 milliseconds. Finally, the theoretical
maximum performance of our CPU was found by calculating the maximum
number of CM that this CPU could handle in a real-time execution. A CM
involves 4 floating point multiplications and 2 floating point additions. The
floating point multiplications are performed by our CPU in 5 clock cycles,
whereas the floating point additions are performed in 3 clock cycles (see
annex 3 of [113]). Therefore, a CM involves 26 clock cycles. The CPU op-
erates at 3.07GHz, which means that our CPU could make 3.07-10%/26 CM
per second and (3.07-10/26) -0.0464 CM per buffering time. This is repre-
sented in the figure with the curve labeled as ‘theoretical CPU’. Since our
CPU also performs memory transactions and flow control instructions, the
practical CPU implementation handles fewer channels than the ‘theoreti-
cal CPU’. Furthermore, the theoretical processing machines that process
1-107, 2107, or 4 - 107 CM per buffering time would also have to per-
form memory transactions and flow control instructions in addition to the
complex multiplications. Therefore, in practice, these three curves would
be lower.

Figure 6.9 illustrates that the GPU implementation outperforms the
CPU implementation and shows the number of CM that a processing ma-
chine would have to carry out each buffering time to outperform the GPU
implementation. Moreover, the maximum benefit of the GPU is obtained
when low values of K and high values of J are used. Therefore, the GPU
reaches 4 - 107 CM per buffering time. This can be explained by the fact
that an increase in the value of K involves an increase in the time required
to handle the error signals in the frequency domain.
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6.5 Conclusions

In consonance with the previous chapters, and continuing with the analysis
of the suitability of the GPUs for the real-time implementation of multi-
channel adaptive systems, this chapter has dealt with a GPU implementa-
tion of an ANC system based on the FxLMS algorithm. In this regard, two
different schemes of the FxLMS algorithm has been compared: one that is
based on the conventional filtered-x scheme (FPBFxXLMS) and another that
is based on the modified filtered-x scheme (FPBMFxLMS). In line with all
the work presented in this thesis, the algorithms have been implemented
in the frequency domain, working with blocks of data and partitioning the
adaptive filters in order to exploit the parallel resources of the GPU.

The results of this chapter has shown that the FPBMFxLMS algorithm
converges faster than the FPBFxLMS algorithm. However, the computa-
tional complexity of the FPBFxLMS increases significantly, especially for
massive multichannel systems. Nevertheless, by taking advantage of the
parallelization capabilities of the GPU, this increase in computational cost
did not lead to a great increase in the processing delay. Therefore, the use
of a GPU platform can help to overcome the disadvantage of the modified
scheme in a real-time ANC system. As a conclusion, the same convergence
behavior of the conventional scheme can be obtained with the modified
scheme by using a larger block size. This provides more time for process-
ing and, therefore, also provides the possibility to extend the zone of high
attenuation by adding more microphones and loudspeakers.

On the other hand, the computing results have analyzed the computa-
tional limits of the ANC system. This study demonstrates that the GPU
can provide slightly more than 600 processed channels in real time. There-
fore, it is a meaningful and versatile solution for massive multichannel ANC
systems that could provide a large area of high attenuation by using many
sensors. Moreover, the computing results are related with the GPU used
for the implementation. Therefore, as commented in the previous chapter,
more channels could be processed by using a different audio card with a
lower frequency sampling, by decimating, or by using newer GPUs with
more computational capacity.

The main contributions of this chapter were published in the Transac-
tions of Audio, Speech and Language Processing of IEEE [114]. Moreover,
this work was based on the work presented in the following conferences:
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International Conference of Sound and Vibration (ICSV) [115], Inter-noise

[103] and the International Conference of the Audio Engineering Society
(AES) [116].
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The previous chapter introduces the use of the GPUs in multichan-
nel active noise control systems. This chapter continues this work, and
goes a step forward by presenting a GPU implementation of a multichan-
nel feedforward local ANC system based on the NLMS-OCF algorithm.
This algorithm increases the convergence performance of those presented
in the previous chapter. However, the NLMS-OCF algorithm also increases
the computational burden. Therefore, in order to minimize this computa-
tional drawback, the algorithm is implemented making use of the parallel
resources of a GPU.

The results of the ANC prototype based on the NLMS-OCF algorithm
are presented in this chapter, and then, they are compared with the re-
sults of the ANC systems presented in the previous chapter. In line with
the results of this thesis, this chapter shows the usefulness of GPUS for
developing versatile, scalable, and low-cost multichannel ANC systems.
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7.1 Introduction

The previous chapter presented a GPU implementation of an ANC system
based on the FXLMS algorithm. The normalized version of the FxLMS
(FxXNLMS) algorithm [4] and its multichannel version (see for example
[106]), are among the most widely used adaptive filtering techniques applied
to single or multiple channel adaptive noise cancelers for ANC applications.
As it has been commented along this thesis, this is due to its computational
simplicity and ease of implementation. On the other hand, one of the major
drawbacks of the FxXNLMS algorithm is the speed of convergence. In this
sense, the Affine Projection Algorithm (APA)[43] was developed to address
this problem. To this end, it uses affine subspace projections to speed the
convergence of the LMS-type algorithms. From [43], some variants of the
affine projection algorithm have been proposed for different authors, such
as the Regularized APA (R-APA)[48], the Partial Rank Algorithm (PRA)
[49], the Decorrelating Algorithm (DA) [44] or the NLMS with orthogonal
Correction Factors (NLMS-OCF)[50] [45].

As opposed to the FxXNLMS algorithm, which uses a single input signal
vector to update the weights of the coeflicients, the basic idea of the above
mentioned algorithms is to update the weights of the adaptive filters on the
basis of multiple input signal vectors. These algorithms are commonly re-
ferred to in literature as the APA family [42]. In the existing literature, the
algorithms of the APA family have traditionally been implemented in the
time domain for single-channel system identification or echo cancellation
problems. However, in this chapter, we use one of them for a multichannel
ANC system.

Among the APA family algorithms, we have focused on the NLMS-
OCF algorithm because we find its practical implementation easier than the
APA implementation and, as considered in [45], the NLMS-OCF algorithm,
which is a generalization of the APA, allows other than unit delay between
input vectors. With regards to its implementation in an ANC system, the
unavailability of the undesired signal in ANC systems, justifies the use of
the modified filtered-x scheme. Therefore, the modified filtered-x NLMS-
OCF (M-OCF) ! algorithm is derived from the OCF algorithm and is used

'For the sake of simplicity, we will refer throughout this chapter to the filtered-x
NLMS-OCF algorithm as the OCF algorithm and to the modified filtered-x NLMS-OCF
algorithm as the M-OCF algorithm.
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in a multichannel ANC system.

Since the M-OCF uses multiple input vector signals to update the
weights, the algorithm is highly demanding from a computational point of
view, particularly in multichannel scenarios. This computational drawback
limits its implementation in multichannel real-time systems. In line with
the theme of the thesis, the GPU implementation of the M-OCF algorithm
has been used in order to ameliorate this computational drawback. For
this purpose, the same way that it was done in the others implementations,
the M-OCF algorithm has been adjusted to successfully meet the hardware
requirements, and, therefore, a frequency-domain partitioned block-based
M-OCF algorithm has been proposed. Throughout the chapter, it will
be called the Frequency Partitioned Block Modified Filtered-X Normalized
Least Mean Square algorithm with Orthogonal Correction Factors (FPM-
OCF). As we mentioned above, the use of the NLMS-OCF algorithms in-
stead of the APA was motivated in part by the ease of implementation since
it can be easily changed to the frequency domain while the implementa-
tion of the APA in the frequency domain (which is required in most of the
practical implementations using non dedicated hardware) is not straight-
forward.

The main motivation of the work presented in this chapter is twofold:
on the one hand, to find an algorithm that improves the convergence rate
of the NLMS-type algorithms, and, on the other, to obtain an efficient
version of that algorithm to reduce the computational requirements. For
these reasons, we have considered the NLMS-OCF algorithm, in which
both the convergence rate and the computational complexity depend on
the number of correction factors (R) that are used. Therefore, this leads
to an adjustable and configurable algorithm with regard to the complexity
and the convergence rate. Accordingly, the main contributions of this work
can be summarized in the following points: first, we present the NLMS-
OCF algorithm with an embedded modified filtered-x structure (M-OCF)
in order to make it suitable for multichannel ANC systems. Second, the
M-OCF has been adjusted to its frequency partitioned block-based version
(FPM-OCF) in order to meet the hardware requirements of a real-time
implementation. Finally, a parallel implementation using a GPU hardware
platform is presented to increase the applicability and versatility of the
multichannel system.
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7.2 Description of the algorithms

This section focuses on describing the M-OCF algorithm for a multichannel
ANC system that is derived from the NLMS-OCF algorithm introduced
in [50] for a system identification application. In [50], the NLMS-OCF
algorithm is derived from the NLMS algorithm. The NLMS algorithm
adapts the filter weights so that the error signal e is minimized in the mean-
square sense. When both the input signal  and desired output signal d are
stationary, the algorithm converges to a filter weights which, on average,
are equal to the Wiener-Hopf solution. In other words, the NLMS is an
iterative algorithm that implements Wiener filters without explicitly solve
the Wiener-Hopf equation. Finally, the NLMS algorithm is a stochastic
implementation of the steepest-descent algorithm, and the adaptation of
the filters is done replacing the cost function & = E[e2] by its instantaneous
error [16].

On the other hand, the NLMS-OCF algorithm solves a constrained
minimization problem. As the NLMS-OCF algorithm uses R input vectors
for the filter weights update, it iteratively solves the constrained minimiza-
tion problem until each of the R a posteriori error is forced to zero. In
summary, it finds the filter weights wj, such that |w}, — w,,|| is minimized

subject to dy,—, — x._, w" =0 for r = 0,1,..., R (see appendix of [45]).

In a system identification application, where the NLMS-OCF algorithm
was introduced, the error signal is the error in estimating the so-called de-
sired signal that is picked up by the microphones. In contrast, in an ANC
system, the microphones pick up a mixture of the disturbance or unde-
sired signals and the signals that are used to cancel the noises. Therefore,
since the desired signals are not available and they are needed to calculate
the error signals [117], we have to use a modified filtering scheme to esti-
mate them. Therefore, this section begins with a reminder of the modified
filtered-x NLMS algorithm, and, then, introduces the modified filtered-x
structure in the NLMS-OCF algorithm (M-OCF). Finally, the FPM-OCF
algorithm is derived from the M-OCF algorithm in order to adjust the al-
gorithm to meet the hardware requirements and to seek the best parallel
implementation.

For this purpose, a generic multichannel ANC system with I reference
signals, J secondary sources, and K error sensors (/:J:K) has been con-
sidered. Moreover, we define L as the length of the adaptive filters and M
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1 Number of reference signals (reference sensors)

J Number of secondary sources (actuators)

K Number of error signals (error sensors)

B Block size

L Length of the adaptive filters

F L/B, number of partitions of the adaptive filters

M Length of the FIR filters that model the estimated secondary
paths

P M/ B, number of partitions of the estimated secondary paths

R Number of successive input vectors used in the weight update
of the NLMS-OCF algorithm

D Number of iterations between the successive input vectors
used in the weight update of the NLMS-OCF algorithm

T, ith reference signal at sample n

Xl | Pilpy Tilpas o Vilpupol

Yliln jth actuator signal at sample ¢

Yisla | Wiilsa Yilsas oo Yilsa pia)"

€[k, kth microphone signal at sample ¢

E[k]n [e[k]Bn €lklgn_1 --* e[k]Bn—B+l}T

S[jk] M-length estimation of the secondary path that links the jth
secondary source with the kth error sensor

Sz[’jk] FFT of size 2B of the pth partition of the acoustic path sj;

wi;j), | Coefficients of the adaptive filter of length L that links the
1th reference signal with the jth secondary source at at the
nth block iteration

il FFT of size 2B of the fth partition of the coefficients of the

adaptive filter that links the ith reference signal with the jth
secondary source at the nth block iteration

Table 7.1. Notation for the multichannel ANC algorithms

considered

as the length of the FIR filters that model the estimated secondary paths.
The notation in Table 7.1 will be used to describe the algorithms. As hap-
pened in the previous chapter, the secondary paths have been previously
modeled by FIR filters and considering an accurate estimation.
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Figure 7.1. Scheme of the multichannel ANC system.

7.2.1 The Modified Filtered-x NLMS algorithm (MFxNLMS)

As it has been mentioned above, this subsection outlines the multichannel
version of the MFxNLMS [41] algorithm in time domain and working with
sample-by-sample processing. The block diagram of a multichannel ANC
system based on the MFxNLMS algorithm is depicted in Figure 7.1. The
MFxNLMS algorithm is constituted by the following steps:

1. Calculation of the output signals.

The nth sample of the jth output signal is calculated as

I
T
Yiin = D Wikl Xl (7.1)
=1

where xp;), = [T}, T T(i),_s n_L+1]T is the ith input
signal vector with the last L samples from sample n.

i)

n—1
2. Calculation of the estimated undesired signals:

dig, = €, — Y (7.2)

where ey, is the nth sample of the kth microphone signal, and sample
YJ[k), is defined as
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J

Yfin =D Sk Yl (7.3)
j=1

where yii, = [Yia Ylos Yo oo Yilaoaal IS the jth out-

put signal vector with the last M samples from sample n.

. Filter updates:

K
W[ij]n+1 = W[ij]n - Z ﬂ[ijk]nv[ijk]n’ (74)
k=1
where the step-size fi;;3), is calculated as

€l

_— 7.5
M P (7:5)

Wikl =

with p being the step size parameter and ép, being the error signal

when estimating the nth sample of the kth undesired signal, a?[k]n,
given by

I J
é[k]n = d[k’}n =+ Z Z W[jiwj]nv[ijk]m (76)

i=1 j=1

where V[z]k}n = [U[wk]n U[ijk]n,1 U[ijk]n,Q e /U[ijk}nfLJrl]T is a vec-
tor with the last L samples of the ith input signal filtered through
the jkth secondary path, which is calculated as

v[ijk]n = S[j;k]XMn (7.7)

It is important to note the difference between vector xj;, in Eq. (7.1)
and Eq. (7.7). In Eq. (7.7), the vector xj;, is filtered through an M-
length filter (s(j;)), instead of an L-length filter (wy;;, ). Therefore,
in this case, vector x;, is defined as the ith input signal vector with
the last M samples from sample n.
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7.2.2 The Modified Filtered-x NLMS algorithm with Orthogonal Cor-
rection Factors (M-OCF)

This section introduces the modified filtered-x structure in the NLMS-OCF
algorithm, resulting in what we have called the M-OCF algorithm. Since
the M-OCF algorithm updates the weights of the adaptive filters on the
basis of multiple input vectors, we define R as such number of input vectors,
which are also called “correction factors”. Moreover, the parameter D is
defined as the number of iterations between the successive input vectors
used in the weights update. The best improvement in convergence rate
occurs if the successive input vectors are orthogonal. When the successive
input vectors are not orthogonal, the authors in [50] proposed generating
orthogonal directions and moving along those directions.

Here we introduce the M-OCF algorithm for an ANC system derived
from the MFxNLMS algorithm. It is done similarly to the way the NLMS-
OCF was derived from the NLMS in [50] in a system identification appli-
cation. The equations for calculating the output signals and the estimated
undesired signals are the same as in the MFxNLMS algorithm. However,
the weight update equation in Eq. (7.4) is modified as [45]

Wlijlnyr = W[z‘jln—

K K

- Z HOg81,, V0L, Z” [ijkln ¥ Lijkln — * 70 T Z“R[iijan[ijk]n
k=1 k=1

= Wligln — Z Z Foriigugy Vriigng, o

r=0 k=1
(7.8)
where R is the number of input vectors that are used in the tap weight
adaptation, and VOuikin Vigki, o - YRk, &X€ orthogonal to each other.

As before, VO, 18 the filtered input vector at the nth instant, and 0034,
is chosen as in the MFxNLMS

€1kl

U (7.9)
HVO[”k]n H

HOpjxy,, =

Let us define the vector v,

to be orthogonal t0 Vjk],s Viijkl, p> Viijkla_aps - = Viijkle_—1)p>

obtained from vy, but constrained
where D

[i7k]n
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is the distance between the input vectors. For example, considering D =1,
V3K, 1S the vector that is obtained from vy, , but constrained to be
orthogonal t0 V(i;x),.s Viijk],_, and Vi, ,- The orthogonalization can
be calculated using the Gram-Schmidt procedure [78]. The corresponding
step-size ﬂr[ijk]n is calculated as

ér[k]n :
/1«7”2’ if HVT[ijk]n 12 #0

firgn = V7. (7.10)
0, otherwise
here
e I J
5 ] T
er[k]n = d[k]nfrD + Z Zwr[ij]n+1 V[ijk]nfrD’ (711)
i=1 j=1
and
K K
Wil = Wlidln ~ Z Fo0i81,, VOlisi1 Z 130, Vi,
= = (7.12)

K
- Z For =100, Vr=1(ija)n -
k=1

When R increases, the convergence is faster, but R must be chosen
depending on the available computing resources. However, there exists a
value of R where the convergence rate saturates. With regard to D, for low
values of R, larger values of D provide better performance. This might be
explained by the fact that when D increases, the successive input signals
used in the weights update are less correlated. Table 7.2 summarizes the
M-OCF algorithm.

7.2.3 The Frequency-domain Partitioned Block Modified Filtered-x
NLMS with Orthogonal Correction Factors algorithm (FPM-OCF)

Finally, the FPM-OCF algorithm has been derived from the M-OCF algo-
rithm. Following the nomenclature of this thesis, B is the block size, L is
the length of the adaptive filters, and M is the length of the FIR filters
that model the estimated secondary paths. F' and P are the partitions of
the adaptive filter length and the estimated secondary path length, respec-
tively. Furthermore, the subscript n and the superscripts f and p of the
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following notation denote block iteration and the number of each partition,
respectively.

According to the notation, the FPM-OCF algorithm is described by
the following steps:

1. Calculation of the output signals,

I F
_ /
Y, =2 > Wl oXy 1, (7.13)
i=1 f=1

where X; = FFTQB{[X%;]%1 x[q;]n]T}, W[];j]n is the FFT of size 2B
of the fth partition of the coefficients of the adaptive filter wy;;; at the
nth block iteration. The output signals yj;, are the last B samples
of IFFT25{ Y, }-

2. Calculation of the estimated undesired signals,

Dy, = Ep, — YFp,., (7.14)

where vector Ep, is the kth microphone signal vector in the fre-
quency domain at the nth iteration, and is obtained as Ep), =

FFT?B{[e[jl;}n,l e[jl;]n]T}. Vector YF [, is defined as

YFu, =3 > Y o o Shy: (7.15)
7j=1p=1

3. Filter updates.

The update of the coefficients of each partition of the ijth adaptive
filter is calculated in the frequency domain taking into account the R
input vectors and is given by
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wl. =w/l. -
[i5]n+1 [i5]n
K T K T
— ) FFTap{ [d)é[ijk]n 05" = > FFTzB{[qﬁ{Mn 05"} -
k=1 k=1

K
— .= Z FFTQB{[QSQZ]Hn OE]T}»
k=1
(7.16)
The input vectors are filtered through the corresponding secondary
path to obtain the signal vectors Vi z;. Vector Vi, is defined at
the nth block iteration as

P
_ P
Viijkl, = Z S[jk] O Xilp_pi1- (7.17)
p=1
Generalizing for an input vector r, the vector qbf[ijk] corresponds to

the first B samples of the 2B-IFFT of the corresponding partition
~f
/‘I’T'[

ijkln
g T IFPTy(a! 7.18
[¢r[ijk]n ¢’"[z‘jk]n] - QB{ur[ijk]n}7 (7.18)
f=12,....Fand r=1,2,...,R.
We define erk] . as the vector that is obtained from vector
V[ijk]n—f+1—(rF)D with the constraint to be orthogonal to V[ijk]n—f+17
ik fi1—myp> Y (15Kl fr1—@ryD? * " 5 V[ijk]n—f+1—((r—l)F)D’ where D
is the distance between the input vectors. The corresponding step-size
vector ﬁf[ijk] is calculated as
ET o V%
[k]n Tli5k]p— f41 . 9
o B [V, 2 #0
B = T —_— I lidkln— f 41 (7.19)
0-5, otherwise

for f =1,2,...,F. The K estimated error vectors in the frequency
domain at the nth iteration, E are obtained by performing the
following equations

T’[k]n )
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I J F
£T[k]n = D[k}"*TD + Z Z Z V[ijk]nferlf(r'F‘)D ° W’/f‘l[ij]n’ (720)

i=1j=1 f=1
and, finally
E,,, =FFTop{[0; €, 1"} (7.22)

With regard to the R and D parameters, since this algorithm works by
blocks of samples, even when D = 1, the successive input signals used in
the weights update are separated by at least B samples. Moreover, when
the reference signal x[; is a white random noise, each block of samples
X[, 18 orthogonal to the previous ones. This means that Vi;z fi1oep 18
sufficiently uncorrelated with Ve, s Vi, riiops Vigklao piioop - -
Viiihln_ i1 o1y SO that we could obviate the orthogonalization procedure.
The blocks of the signals are already uncorrelated due to the nature of
the input signal, so we can take Vr[ijk]n_fﬂ = V[ijk}nferlfrF' This fact
makes the NLMS-OCF algorithm especially suited to cancel broadband
white noise signals, and for this reason, it is the case studied in section 7.4.

Note that the FPM-OCF algorithm in the particular case when R = 0
and D =1 is similar to the one introduced in the previous chapter named
FPBMFxLMS, but adding a power normalization in the weights update.
However, for the sake of simplicity, in this chapter we will refer to the
FPM-OCF algorithm with no orthogonal correction factors (R = 0) as the
FPM algorithm. A summary of the algorithm instructions executed at each
iteration is given in Table 7.2 for the M-OCF algorithm and in Table 7.3
for the FPM-OCF algorithm.

7.3 GPU implementation of the prototype

This section describes the main issues involved in the GPU implementation
of the real-time multichannel ANC prototype based on the FPM-OCF al-
gorithm. Details of the multichannel ANC prototype were given in section
2.3.
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M-OCF algorithm

Choose an arbitrary Wlijlo

R < L. Repeat the following steps at each new iteration.

I
Loy, = Z; Wi Xl

Yiila = Wile Yiaor - Yilaoarir

2. diyn = e, — Z sl Y,

3. U[ijk]n = S[jk]x[i]n’

Vil = [Vligkle Vil - Vligkla o)
4. ey, = dp, + Z Z Wi, Viigkln

5. Qijkl, Hni

'L]k]nH2

6. Wiltijlper = Wlhisln — Z Aijk] Vijk]n

Forall1 <r <R, do

7. Compute vy,
to V[ijk]n s

procedure [78].

Tlijlpsy ¥ i3K]n—rD

R N I J
8. (8 Tlkln dk:]n D Z Z:

Eriw)
A S v 2 £ 0
9. firn, =8 Ve, 2 ki
0, otherwise

_ _ T
10. WT+1[ij]n+1 = V\/'T[ij]nJrl kzl 'U’[ijk]nvrlijkln
end for

e Wil = WRj,41

and the number of Orthogonal Correction Factors

as the vector obtained from vi;;z, ., that is orthogonal
Viigkln_ps Viijkln 205 - V[ijkln_(r—1)p USING the Gram-Schmidt

Table 7.2. Summary of the M-OCF algorithm.
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FPM-OCF algorithm

Choose an arbitrary Wy, and the number of Orthogonal Correction Factors
R < L. Repeat the following steps at each new iteration. All the equations

with references to partitions are performed for f =1,2,..., F.
1. Y Z Z W[z] OX[i]beerl
=1 f=1
2. ]f)[k]n = :E[k]71 — YF[k]ﬂ, where E[k]n = FFTQB{[G"[Z];]"71 eﬁ]n]T}.
3. Y Ic]n Z Z Y[7]n pr1 © Sfjk]
Jj=1lp=
P
4. V[Uk z [4k] OX[Z]H p+1
5. &y, = Dy, + i, Zj:l Zf:l Viijkln- g1 © W[i;]
6. (€0, €fu, )" = IFFT2p{&y,}
7. By, = FFTop{[0] €}, 17}
~f o E[k]no(vlijk]n,_f+1)*
8 Biijny, = F TV,
VA
9. [(ﬁ[z]k]ﬂ ¢[z’jk] ] - IFFTQB{/’I’ [igk]n }
0. W =Wl Z FFTa5{(¢f;, 05"

Forall 1 <r <R, do

11.

12.
13.

14.

Compute V,,[ i,

ikl —f41
is orthogonal to V|
Viijn

as the vector obtained from V[ijk]n—f+1—(rF)D that

ijk]n— 410 V[Z’J’k]n—fﬂ—(F)D’ V[ijk]n—f+17(2F)D’ S

n—f+1-((r—1)F)D"

s I J F
5’“[kln =D p + Xiz Ej:l Zle Viiiklne s+1-omp © Wf[ij]n

=T T T _ &
[er[kln ET[kJn] - IFFTQB{&?"[M” 4
E,,, =FFTy{(0} e 17}

[k]n T(k]n
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E, oV*
[k]n Tliik)p— f41 . 2
Y IV, 2#0
15. M, = HVT[ijk]n_fﬂ”z ) Tligkln— f41
025, otherwise.

fT ~fT T ~f
16. [(bT[ijk]n d)r[ijk]n] :IFFT2B{NTWM”}’

f f K 5T T
17. WT+1[ij]71+1 - Wr[ij]nJrl a k§1 FFTQB{[(pT[Uk]n OB] }

end for

f _ f

17. W[ij]n+1 - WR["'j]n+1

Table 7.3. Summary of the FPM-OCF algorithm.

The GPU implementation consists of three steps that are depicted in
Figure 7.2: the output signal generation, the estimation of the “undesired”
signals, and the update of the adaptive filters. These three steps are im-
plemented as follows:

S1 Calculation of the output signals. 'This step aims to calculate the
ANC output signals y[;;,,. The operations of this step correspond to
Eq. (7.13). The implementation and the CUDA kernels involved in it
are shown in Figure 7.2(a).

S2 Calculation of the estimated “undesired” signals. This step calculates
an estimate of the undesired signals. The corresponding description
is shown in Eq. (7.14) and Eq. (7.15). The implementation and the
CUDA kernels involved in it are shown in Figure 7.2(b).

S3 Filter updates. The update of the adaptive filter coefficients involve
the implementation of Eq. (7.16)-(7.22). The details regarding the
different steps and kernels are illustrated in Figure 7.2(c).

The GPU implementation depicted in Figure 7.2 makes use of five
optimized kernels in order to achieve the most efficient performance of the
algorithm. As commented in the previous chapters, the kernels are those
presented in chapter 5 for a multichannel AE application and reused in
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(a) Block diagram of Step 1. Calculation of the output signals.
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Figure 7.2. Block diagram of the GPU implementation of
the FPM-OCF algorithm.

chapter 6 for an ANC application. Therefore, details of the implementation
of the Kernels depicted in Figure 7.2 can be found in section 5.3.
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7.4 Results

Several experiments were performed to validate the ANC system based on
the FPM-OCF algorithm. The experiments were carried out using the pro-
totype described in section 2.3. The experiments consider different I:J:K
configurations of the ANC system varying the value of J and K, but con-
sidering only a reference signal (I = 1).

In consonance with the other chapters, the ANC system has been eval-
uated from two points of view: the algorithm and the computing behavior.
Similarly to what has been done in the previous chapter, the first two sec-
tions are devoted to analyze de algorithm behavior in terms of attenuation
levels and speed of convergence. Moreover, the computational complexity
of the GPU implementation of the algorithm is also analyzed in section
7.4.3 for different values of R. Finally, section 7.4.4 presents the comput-
ing results of the GPU implementation of the FPM-OCF algorithm. Since
both the previous and the current chapter present GPU implementations
of ANC systems, the computing analysis of both chapters follows the same
pattern.

7.4.1 Residual noise levels

A multichannel ANC system with dimensions I = 1, J = 2 and K = 2
(1:2:2 configuration) has been considered in this experiment. The following
parameters were chosen: B = 2048, L = M = 4096, R = 0, and R = 4,
with broadband white random noise as reference signal.

Figure 7.3 shows the power spectral density of the average signals mea-
sured at both error sensors by using the proposed algorithm when R = 0
(FPM algorithm) and R = 4. The noise reductions showed in Figure 4
are obtained at the specific points where the error sensors are placed. A
similar noise reduction performance is achieved in both cases. It can be
easily observed that a reduction of around 25-30 dB can be achieved up
to about 20 kHz. We can conclude that the noise reduction in the steady
state does not depend on the R value.

7.4.2 Convergence performance

The convergence performance of the NLMS-OCF has been theoretically
analyzed for system identification configuration in [45]. The theoretical
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Figure 7.3. Power spectral density of the average of the sig-
nals measured at both error sensors before (solid line) and after
(dashed line) the ANC system operation by using the FPM-
OCF algorithm in two cases: (a) R = 0 (FPM algorithm), and
(b) R=4.

analysis is also validated with simulation results. Specifically, in [45], it
has been shown how the NLMS-OCF algorithm outperforms the NLMS
algorithm in terms of convergence speed. Moreover, the benefits in terms
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Figure 7.4. The learning curves of the FPM-OCF algorithm
for different values of R and using white noise as the reference

signal.

of convergence speed of the NLMS-OCF algorithm have also been shown
when compared with the APA family algorithms in [118]. In this chapter,
the convergence performance of the FPM-OCF algorithm is evaluated for
an ANC application when varying the value of R. As it has been said, when
R =0, the FPM-OCF algorithm becomes the FPM algorithm. The FPM
solves a mean square problem using a gradient descent algorithm while
the FPM-OCF solves a constrained minimization problem. To reach the
solution, both algorithms use an iterative procedure. However, the FPM-
OCF algorithm uses R input vectors instead of only one. For this reason,
the FPM-OCF algorithm converges faster than the FPM, but exhibits a
higher computational cost. In order to evaluate the algorithm performance,
the learning curves were obtained for the experiments as:

Pey,
A, = 10logy, <PZ> , (7.23)

with

Pd,, = aPd,,—1 + (1 — a)pd,,
Pe, = aPep—1 + (1 — a)pey, (7.24)
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and

K
_ 2
pdn =) diy,
k=1
K

pen = Z e[Qk]n. (7.25)

k=1

with K being the number of error sensors.

Figure 7.4 illustrates the simulations results with the configuration used
in subsection 7.4.1. In this figure it is shown that when the value of R
grows, the FPM-OCF provides a faster convergence rate. However, there
is a value of R where the increase in the speed of convergence saturates.
Specifically, the fastest convergence rate is obtained when 12 input vectors
are used to update the weights (R=12), and, consequently, a higher value
of R does not result in a faster convergence rate. On the other hand, the
learning curves show a similar steady-state behavior, which confirms the
results of the subsection 7.4.1. Focusing on the transient, the algorithm
reaches 20 dB of attenuation in approximately 2 seconds when R = 12,
while the algorithm takes around 17 seconds when R = 0, which means
that the convergence speed is accelerated 8.5 times. Another important
aspect is that a good convergence performance is obtained even with low
R values. For example, when the value of R is increased from R = 0 to
R =1, the convergence time is more or less halved.

7.4.3 Computational complexity

The results of the subsection 7.4.2 demonstrate that the FPM-OCF algo-
rithm outperforms the convergence rate of the FPM when R > 0. However,
the computational complexity increases with the increase of R. Therefore,
this section is devoted to analyzing its computational complexity, which is
the major drawback of the algorithm. To this end, Table 8.2 compares the
computing time and the computational complexity in terms of multiplica-
tions, additions, and FFTs per iteration of the GPU implementation of the
FPM-OCF algorithm. It is done for different I:J:K configurations and dif-
ferent R values. As before, note that the FPM-OCF algorithm becomes the
FPM algorithm when R = 0. Since we use a value of M = L and B=L/2
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I:J:K configuration
1:1:1 1:2:2 1:4:4
R=0 | R=4 | R=16] R=0 | R=4 | R=16] R=0 | R=4 | R=16

Multiplications | 13L | 33L | 93L | 44L | 112L | 316L | 160L | 420L | 1200L

Additions 10L | 34L | 106L | 36L | 124L | 388L | 138L | 474L | 1482L
FFTs 10 | 34 | 96 | 18 | 66 | 210 | 34 | 130 | 418
| Time (ms) [ 0.73 | 191 | 546 | 1.16 [ 322 | 920 | 2.25 | 6.64 | 19.46 |
Mp/M, 1 |25 [ 72 1 [ 25 [ 72] 1 [ 25] 75
Ar/ A 1 | 34 ]106] 1 | 34][108] 1 [ 34]107
FFTR/FFT, 1 | 34|96 | 1 [37 17| 1 | 38123
tr/to 1 [ 26 |75 | 1 |28 |80 ] 1 | 29| 86

Table 7.4. Processing time and total number of multiplica-
tions, additions and FFT's per iteration of the GPU implemen-
tation of the FPBMFxLMS-OCF algorithm for different ANC
configurations and varying the value of R when L = M.

(filters are split up into 2 partitions), the computational complexity only
depends on L. It is important to note that the computational complexity
can be analyzed by changing the I:J:K configuration (and therefore the
number of channels) and also by changing the number of input vectors (R)
used in the filter coefficients update.

First, Table 8.2 shows that, for a given value of R, the computational
complexity of the algorithm increases significantly with the increase in the
number of channels. As an example, when R = 0 (FPM algorithm), if
the ANC configuration changes from 1:1:1 to 1:4:4 (16 secondary paths),
the number of multiplications increases by a factor of 12, the additions
by a factor of 13.8, and the FFTs by a factor of 3.4 while the time delay
increases only by a factor of 3. Approximately the same occurs if R > 0. For
example, for a value of R = 16 and changing the arrangement configuration
from 1:1:1 to 1:4:4, the number of multiplications increases by a factor of
13, the additions by a factor of 14, and the FFTs by a factor of 4.3 while
the time delay increases only by a factor of 3.3. This behavior with respect
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to the number of channels is similar to that offered by the algorithms of the
previous chapter. Therefore, since the increase in the number of channels
greatly increases the complexity, we can conclude that the computational
complexity is a bottleneck of massive multichannel ANC systems regardless
of the value of R. However, if the operations of each channel are properly
parallelized, an implementation over GPU can reduce this computational
drawback and could be a viable and meaningful solution.

On the other hand, Table 8.2 also shows that when R > 0, the FPM
algorithm exhibits higher computational complexity than without using
correction factors (R = 0). This is due to the use of the R input signal
vectors in the tap weight update (see Figure 7.2, box in red). As Table 8.2
shows, the number of multiplications, additions and FFTs significantly in-
creases. Let us define the ratio Mp/My as the number of multiplications
of the FPM-OCF algorithm when R > 0, divided by the number of multi-
plications of the FPBM algorithm (R = 0). We define the same ratio for
additions (Ar/Ao), FFTs (FFTg/FFTy), and processing delay (tg/to). It
is shown that although the ratio of processing delay is similar to the ratio
of multiplications and is less than the ratios of additions and FFTs, the
difference among them is not significant. This can be explained by the fact
that the processing of step 3 in Figure 7.2 must be executed in a sequential
mode because the coefficients of the adaptive filters Wrmn+1 are needed for
the calculation of the filters Wr+1[ij]n+1’ and, therefore, it can not be par-
allelized. However, even though the calculation of Wr[ij]n_,_l’ WTH[Z’J’MH’
s WR[ij]n+1 can not be implemented in parallel, the calculation of each
one of the R times that the coefficients are updated at each iteration could
be accelerated by being implemented on a parallel computing device such

as a GPU.

Finally, it is important to emphasize that, as showed in sections 7.4.2
and 7.4.3, both the improvement in convergence rate and the increase in
complexity are linked to the number of correction factors. Therefore, this
leads to an adjustable and configurable implementation of the FPM-OCF
algorithm with regards to the complexity and convergence rate.

7.4.4 Prototype computing performance

As is well known, the ANC prototype can extend the zone of cancellation
by properly adding more sensors and transducers. However, as we have



7.4. Results 147

seen in the subsection 7.4.3, the computational cost can become extremely
large, especially when R > 0.

This section is devoted to studying the computational constraints of the
multichannel ANC prototype based on the FPM -OCF algorithm. For this
purpose, Figure 7.5 shows the maximum number of channels that the GPU-
based ANC system can handle without violating the real-time condition
for L=M=4096, B = 2048, for one reference signal (I = 1) and different
values of R. This maximum number of channels is calculated by fixing the
number of error sensors and finding the maximum number of actuators (.J)
that the system can feed without violating the real-time condition. When
the maximum J value for each value of K is found, the maximum number
of physical channels that are processed for each value of K is J - K. For
example, for the curve labeled as R = 0 in Figure 7.5, when K = 170,
the maximum number of actuators that can be used without violating the
real-time condition is J = 3; therefore, the maximum number of processed
channels is 510. However, for K = 171, the maximum number of actuators
is J = 2 because the real-time condition is violated with J = 3. Thus, the
maximum number of processed channels is 342 (J = 2) when K = 171.
For this reason, the shapes of the curves jump with the increase in error
Sensors.

The following considerations are highlighted in the simulation results
depicted in Figure 7.5:

e The maximum number of actuators for each value of K is calculated
by taking into account that it has to satisfy the real-time condition:
tproc < B /fs. Therefore, if R increases, there are more operations
to perform in the same time period and thus less channels can be
handled.

e Two systems with different I:J: K configurations could have the same
number of physical channels but different computational costs. For
example, both the 1:1:2 and 1:2:1 configurations have 2 physical chan-
nels, but the second configuration exhibits a higher computational
cost because it has to update two adaptive filters instead of one.
Therefore, an increase in the number of adaptive filters involves many
more operations than an increase in the number of error sensor sig-
nals, with IJ being the number of adaptive filters. Furthermore,
when K is low and J is high, the maximum number of channels is
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Figure 7.5. Maximum number of channels (JK) for each K
value performing in real-time when I=1 for different values of
R, B = 2048, and L=M=4096.

limited by the delay of processing the adaptive filters (see Figure 7.5
when K is low).

When K increases, J has to decrease in order to satisfy the real-time
condition, and, consequently, the number of adaptive filters decreases
and the curves of the number of processed channels grow quickly
reaching the maximums. The maximum of the curves is reached when
neither K nor J is much bigger than the other.

On the other hand, when J is small and K is large, even though the
number of adaptive filters is low and therefore less operations have to
be carried out, the system operation is limited by the handling of the
estimated undesired signals and the estimated error signals, which in-
volve memory transfers and flow control instructions (see Figure 7.2).
Therefore, the maximum number of channels decreases with the in-
crease of K. Moreover, since the calculation of the estimated error
signal is repeated R times (one for each of the R input vectors used in
the tap weight update), when the value of R increases, the decrease
in the number of channels with the increase of K is bigger than when
R=0.
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Figure 7.6. Number of complex multiplications (CM) per-
formed for the maximum JK configuration when I=1 for dif-
ferent values of R, B = 2048, and L=M=4096.

Once the maximum number of processed channels has been analyzed
for each value of K, the number of complex multiplications (CM) involved
in both the products and the FFTs for the JK configurations derived in
Figure 7.5 is depicted in Figure 7.6. A CM involves 4 floating point mul-
tiplications and 2 floating point additions. It can be observed that for a
given value of R, the curve of the number of CM performed is not constant
for the different JK configurations. As commented above, this is because
the GPU implementation is affected by the JK configuration. The most
remarkable aspect of Figure 7.6 is that the JK configurations with more
CM are those with low values of K and high values of J. As explained
above, the number of adaptive filters depends on both the I and J vari-
ables; therefore, when J grows, more CM are performed because there are
more adaptive filters to cope with. Moreover, as the value of K grows,
the handling of the estimated ”undesired” signals and the estimated error
signals limits the processing and therefore less CM are performed. Finally,
if we compare the curves with different values of R, it is shown that for low
values of K, all of the curves perform a similar number of complex mul-
tiplications, but as K increases, the decrease in the number of performed
complex multiplications is accentuated with the value of R. This is because
the algorithm performs the handling of the K error signals R times.
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Figure 7.7. A comparison of the maximum number of pro-
cessed channels for the GPU implementation, the CPU im-
plementation, and a theoretical processing machine limited to
perform 1-107, 2107, or 3-10” complex multiplications (CM)
per block of samples for B = 2048 and I = 1.

The maximum number of channels that can be handled in real time by
the GPU is shown in Figure 7.5 for different values of R. Now, the same
way it was done in the previous chapter, we compare the computational
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capabilities of the GPU with other hardware platforms. To this end, the
ANC system based on the FPM-OCF algorithm has been implemented on
a CPU i7 but using one core and a sequential execution. In this sense, the
maximum number of channels allowed by the CPU implementation was
theoretically and practically studied. Moreover, in line with the comput-
ing analysis of the previous chapter, the GPU and CPU evaluation results
were also compared with a theoretical processing machine that was limited
to perform 1-107, 2-107, or 3-107 CM per buffering time. The results
of this comparison are illustrated in Figure 7.7 for the case when I = 1,
M = L = 4096, B = 2048, and R = 2 (Figure 7.7.a) or R = 4 (Fig-
ure 7.7.b). In this case, the buffering time is B/ f; = 2048/44100 = 0.0464
seconds. For example, the curve labeled as ‘CM=1- 10"’ in Figure 7.7 rep-
resents the maximum number of channels for each value of K that a given
machine would process if this machine was able to carry out 1-107 CM
every 46.4 milliseconds. Finally, the theoretical maximum performance of
our CPU was found the same way it was done in the previous chapter:
since a floating point multiplication and a floating point addition are per-
formed by our CPU in 5 and 3 clock cycles, respectively (see annex 3 of
[113]), a CM involves 26 clock cycles. The CPU operates at 3.07GHz,
which means that our CPU could make 3.07 - 109/26 CM per second and
(3.07 - 10%/26) - 0.0464 ~ 5.5 - 10° CM per buffering time. This is repre-
sented in the figure with the curve labeled as ‘theoretical CPU’. Since our
CPU also performs memory transactions and flow control instructions, the
practical CPU implementation handles fewer channels than the ‘theoreti-
cal CPU’. Furthermore, the theoretical processing machine that processes
1-107,2-107, or 3-107 CM per buffering time would has also to perform
memory transactions and flow control instructions in addition to the com-
plex multiplications. Therefore, in practice, these three curves would be
lower.

Figure 7.7 shows that this algorithm can not be used with R > 0 for
multichannel ANC systems using the i7 CPU as the processor. Therefore,
expensive CPUs would be needed. On the other hand, the figure illustrates
that the GPU implementation outperforms the CPU implementation for
both values of R and also shows the number of CM that a processing ma-
chine would have to carry out each buffering time to outperform the GPU
implementation. Moreover, the maximum benefit of the GPU is obtained
when low values of K and high values of J are used, where the GPU car-
ries out 3 - 107 CM per buffering time. As in previous sections, this can
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Figure 7.8. Maximum number of input vectors (R) that
can be used in the tap weight update by the CPU and GPU
configurations for square I:J:K configurations when I = 1,
B = 2048, and L=M=4096.

be explained by the fact that an increase in the value of K involves an
increase in the time required to handle the estimated undesired signals and
the estimated error signals in the frequency domain. This fact is accentu-
ated with the increase in the value of R. As a conclusion, Figure 7.7 shows
that even though the increase of the value of R results in a high increase
in the computational complexity, the algorithm can be implemented in a
real-time ANC prototype using a GPU and a proper parallelization of the
operations of the multiple channels.

Finally, in order to better clarify the computational limitations of the
CPU implementation, Figure 7.8 depicts the maximum value of R that can
be used by both the CPU implementation and the GPU implementation
for different I:J:K configurations. It has been calculated for square I:J:K
configurations because they are the most representative. This means con-
figurations with one reference signal (I=1) and the same number of loud-
speakers as microphones (J=K). The figure also shows (with a dotted
line) the saturation value of R where it saturates; in this case, R = 12.
It is shown that the CPU implementation can reach the saturation value
of R only for the single channel configuration and the 1:2:2 configuration,
whereas the GPU configuration can reach up to the 1:7:7 configuration.
Moreover, the maximum channel configuration that can be implemented
on a CPU with a value of R =1 is the 1:6:6 configuration, which involves
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36 channels processed in real time. In contrast, the GPU implementation
reaches the 1:19:19 configuration, which means 361 channels processed in
real time.

7.5 Conclusions

The work of this chapter continues with the study of the use of GPUs for
implementing ANC systems. To this end, the M-OCF algorithm has been
introduced for a multichannel active noise control system. This algorithm
has been derived from the NLMS-OCF algorithm that had been previously
introduced for system identification. To meet the hardware requirements,
the M-OCF algorithm has been developed in the frequency domain, working
with blocks of data and partitioning the adaptive filters, resulting in the
FPM-OCF algorithm. Moreover, it has been shown that the FPBFxLMS
algorithm presented in the previous chapter is a particular case of the FPM-
OCF algorithm when R = 0, but without the power normalization in the
weights update.

The results presented in this chapter has proved that the convergence
rate of the FPM-OCF algorithm improves with the increase in the value
of R. Consequently, when R > 0 this algorithm converges faster than the
FPBFxNLMS algorithm (R = 0). Even though the increase in the value
of R results in a high increase in the computational complexity (specially
for massive multichannel systems), it has been demonstrated that by tak-
ing advantage of the parallelization capabilities of the GPU, the increase
in computational complexity due to the increase of channels produces a
reduced increase in the processing delay. Therefore, the use of a GPU plat-
form can help to overcome the disadvantage of the FPM-OCF in real-time
for multichannel ANC systems. Moreover, both the improvement in conver-
gence rate and the increase in computational complexity can be controlled
and adjusted with the number of correction factors used in the execution of
the algorithm, and, therefore, the value of R can be set depending on the
performance requirements. As a conclusion, we have demonstrated that
although using a current cheap GPU (GeForce GTX 580), the GHPU im-
plementation of the FPM-OCF algorithm in a real-time multichannel ANC
prototype is feasible, and, capable of processing hundreds of channels in
real time, depending on the value of R.
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On the other hand, a computing analysis of the GPU implementation
has been carried out. This analysis has shown that a commitment relation
between the convergence needing (value of R) and the available computing
resources (CPU/GPU) is necessary depending on the size of the multi-
channel structure (/:J:K configuration). For example, in a single channel
structure or a small multichannel structure (e.g 1:2:2), the FPM-OCF al-
gorithm can be implemented sequentially in a CPU using the maximum
number of correction factors without saturating. However, in bigger mul-
tichannel structures, a parallelization of the operations is needed due to
the big computational cost, and therefore, the GPU can be used. It is also
important to note that with a considerable number of R, for example R = 8
in the case of section 7.4.2, the gain in speed of convergence from R = 8
to R = 12 is not significantly. Therefore, R = 8 could be considered as the
saturation value. In this case, larger multichannel structures could be ob-
tained with R = 8 instead of R = 12. As a conclusion, the optimum relation
between R and I:J:K depends on the application needing and the available
computing resources. Finally, as it has been pointed out in all the chapters,
the results of this chapter in terms of number of processed channels could
be grater by using a different audio card with lower frequency sampling,
decimating, or even using newer GPUs with better computational capacity.

The main results of this chapter were published in the Digital Signal
Processing Journal of Elsevier [119].
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Distributed Active Noise Control

The previous chapters have demonstrates that the GPU is a mean-
ingful device for the implementation of multichannel Active Noise Control
(ANC) systems, allowing the processing of hundreds of channels in real-
time. However, sometimes, big multichannel systems can’t be considered
due to hardware or physical constraints. For this reason, this chapter goes a
step forward in the development of multichannel ANC systems by proposing
a multichannel ANC system over a network of distributed acoustic nodes.
In the distributed case, the processing of a centralized ANC system is di-
vided into several nodes. Therefore, this chapter presents a new formulation
to introduce a distributed algorithm together with an incremental collab-
orative strategy in the network. Results of this chapter demonstrate that
the scalable and versatile distributed algorithm can exhibit the same per-
formance as the centralized version. Finally, the computational complexity
and some implementation aspects have been analyzed.

8.1 Introduction

A wireless acoustic sensor network (WASN) [120] is a type of wireless sensor
network (WSN) [121, 122] whose sensor devices are microphones. It is a
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cheap, flexible and efficient solution that is generally used for monitoring
acoustic fields. The acoustic nodes are commonly composed of one or more
microphones that are used to collect signals and a processor with some
kind of communication and computation capability. The way the signals
are processed in each node depends on the network topology [123].

Some applications that make use of a WASN are presented in [124] and
the references therein. There, the acoustics nodes are usually used to record
signals through microphones, process them and even share the signals or
some local and network parameters. However, in some applications like
active noise control, the nodes have to act on their own environment. To
this end, the nodes have to own loudspeakers.

The goal of this chapter is to study the usefulness of the acoustic sen-
sor networks for ANC systems. To this end, we propose an ANC system
working over a distributed network with an incremental approach in a ring
topology [125]. In literature, one can find other works where the distributed
networks have been applied to ANC system. As a representative example,
in [126], a distributed ANC system based on the Me-FxLMS algorithm was
presented in the time domain with a sample-by-sample acquisition. How-
ever, as commonly happens in practical systems, we propose to work with
block processing and in the frequency domain. Therefore, in line with the
centralized ANC system introduced in chapter 6, the distributed ANC sys-
tem presented in this chapter is based on the FPBFxLMS algorithm, where
the goal is to minimize the sum of the power of the error sensors. Hence, the
approach presented in this chapter is the applicability of the FPBFxLMS
algorithm to a distributed ANC system.

The centralized ANC systems have been discussed along this thesis.
As it has been commented, the ANC systems can be extended to multi-
channel ANC systems by overlapping different controlled areas and setting
multiple secondary sources. These multichannel systems require a high
computational capacity. However, the multichannel ANC systems can be
divided into a network with smaller multichannel nodes or single-channel
nodes, and therefore, the computational cost is divided into the different
nodes. It is another way of forming big multichannel ANC systems. Fig-
ure 8.1 illustrates it. Finally, this chapter presents some simulation results
that demonstrate that the performance of both the centralized and the
distributed ANC systems are exactly the same.
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Figure 8.1. Schemes of (a) a centralized ANC system, (b) a
distributed ANC system with single-channel nodes.

8.2 Description of the algorithm

In chapter 6, the FPBFxLMS algorithm was presented for a generic cen-
tralized ANC system with I reference signals, J secondary sources, and K
error sensors (I:J:K configuration). The block diagram of the centralized
ANC system based on the FPBFxXLMS algorithm is shown in Figure 6.1.(a).

Here, we derive the centralized version of the so-called FPBFxXLMS al-
gorithm to a distributed ANC system with an incremental topology. The
incremental topology means that the nodes collaborate by transmitting in-
formation to an adjacent node in a consecutive order. For the sake of sim-
plicity, we consider one disturbance noise (/=1) and single-channel nodes
(J=K=1). Therefore, each node is composed of a processor, a microphone
and a loudspeaker. For a better understanding, the FPBFxXLMS is first
presented to a single channel node, and then, it is extended to a network



160 Distributed Active Noise Control

1 Number of input signals

J Number of secondary sources (actuators)

K Number of error signals (monitoring sensors)

B Block size

L Length of the adaptive filters

F L/B, number of partitions of the adaptive filters

M Length of the FIR filters that model the acoustic paths

P M /B, number of partitions of the estimated acoustic paths

z[, 1th reference signal at sample n

Xl | ilpn Tilpacs o Vilpa sl

Yl jth actuator signal at sample ¢

Yila | Wolsa Ylsa—s o+ Yilon-peil

€[k], kth microphone signal at sample ¢

€kl | [Ckn ClHlsas o+ ClMsupi]’

S[jk] M-length estimation of the secondary path that links the jth
secondary source with the kth error sensor

Sfjk] FFT of size 2B of the pth partition of the acoustic path s|;

W, Coefficients of the adaptive filter of length L during the nth
block iteration

w/ FET of size 2B of the fth partition of the coefficients of the
adaptive filter w during the nth block iteration

Table 8.1. Notation of the description of the algorithms

with N nodes.

8.2.1 The FPBFxLMS for a single-channel node

Following the nomenclature of this thesis, in this section, samples are pro-
cessed by blocks of size B. L is the length of the adaptive filter w, and M
is the length of the FIR filters that model the estimated secondary paths
s. If L and M are larger than B, both w and s have to be partitioned into
F and P partitions, respectively. Thus, the super-index of the following
notation denotes the number of partition, and the index between brackets
denotes the block iteration. The notation in Table 8.1 is used to describe
the algorithm. According to the notation, the adaptive filter output is
calculated as follows
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F
Yo=2 ., W/ oX, i1, (8.1)
where X,, = FFT{[x._; x1]7}. Vector W is the FFT of size 2B of the
fth partition of w at the nth block iteration, and o denotes the element-
wise product of two vectors. The valid samples of the adaptive filter output
yn are the last B samples of IFFT{Y,,}.

The filter coefficients are updated in the frequency domain by calculat-
ing the DFT of the correlation between the reference signal filtered through
the estimated secondary path, and the error signal. To this end, the fol-
lowing operations are performed

P
V, = szl SP 0 Xy pi1, (8.2)
i, =E,oVi_r, (8.3)
where
E, = FFT[0L el (8.4)

The update of the coefficients of each partition of the adaptive filter at
the nth block iteration is calculated as follows

T
W!, =W/ - uFFT{[¢]" 057}, (8.5)

where 1 is the step-size parameter, and the vector gbfL corresponds to the
first B samples of the 2B-IFFT of the partition ﬁ,f [n]

T —fT ~
(¢4 &1 1" =TFFT (). (8.6)
Equations (8.3)-(8.6) are performed for each partition (f=1,...,F).

8.2.2 The FPBFxLMS for a distributed ANC system

The proposed distributed ANC system is applied to a ring network of N
single-channel nodes. Therefore, N error sensors and N secondary sources
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has to be considered. In this context, there exists a global state of the
network, which is defined by N adaptive filters, one of each node. The
global network adaptive filter matrix, W,,, can be defined as

W, = [W[l]nvw[Q} . ?W[N]n]a (87)

no e

W[k’}n = [W[lk]n7w[2k]n7 N 7W[Fk2}n]7 (88)

where W, is a [2B x F'N] matrix composed of the concatenation of the
adaptive filter of each node at the nth block iteration. Matrix W of size
[2B x F| is the adaptive filter of the kth node at the nth block iteration,
and vector WJ; of size 2B, is the fth partition of the adaptive filter in
frequency domain of the kth node at the nth block iteration.

The N nodes collaborate with each other by updating their part of W
and transferring W to the next node. Therefore, each node contains its
own global state of the network, that we will refer as W,;. As commented
before, the collaboration between nodes is done in an incremental way. This
means that the kth node update its Wy, and sends it to the k+1th node.
Once all the nodes have finished the actualization of the filters, the global
updated vector Wy, is disseminated to the rest of the nodes before the
next iteration begins. This means 2(IN — 1) transfers of the global state of
the network. Figure 8.2 illustrate this collaboration between nodes.

For calculating the output signal, each node takes its filters from the
global filters when they are completely adapted. Hence, the kth node at the

nth block iteration, uses Wy, (e ) to calculate its output signal
14+ (k—1)F:

like in Eq. (8.1). Moreover, we define

Vi, = Vs Vizklo - - Vivea s (8.9)

where Vp; is a matrix of size [2B x FN]| of the kth node at the
nth block iteration. It is composed of the concatenation of the reference
signal filtered through all the secondary paths that links the jth loudspeaker
with the kth microphone (S, for j = 1,...,N). Each node knows the
estimation of the secondary paths that links all the loudspeakers of the
other nodes with its sensor. This means that, for example, the second node
knows vectors Sijo for j = 1,...,N. Matrix Vi, of size [2B x F] is

calculated as stated in Eq. (8.2) for each secondary path and each partition
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Figure 8.2. Example of an incremental collaboration in a
ring network of 4 nodes.

1 2 F

Furthermore, each node takes its error signal from its sensor to form
its error vector as in Eq. (8.4). Then, each node replicates its error vector
FN times forming the matrix Ep, of size [2B x F'N]. Equation (8.3) is
redefined for the kth node as

By, = B, 0 Vigg,.- (8.11)

Matrix E[k} of size 2B x F'N] is used at the nth block iteration by
each node to calculate the adaptation matrix of the node, g[k]n, as

T T 7 _ ~
Dy, bl = FFT{y (8.12)
i = FFT{@[YI;M O[YJBXFN}]T} (8.13)

where Q[k and O, ) are matrices of size [B x F'N]. Moreover, the op-
erators FFT and IFFT perform direct and inverse fast fourier transforms
of size 2B of each column of the matrices involved. Finally, each node cal-
culates its own estimate of the global adaptive filters using the global state
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Figure 8.3. Noise reduction of the distributed system with 4
single-channel nodes and the centralized system with a 1:4:4
configuration represented for the best and worst microphone.

of the previous node, and its own adaptation matrix Wy;,. The adaptation
of the global adaptive filters at the kth node is performed at the nth block

iteration as

Wipir = Wiy, — 1¥p,,- (8.14)

As commented before, once all the nodes have finished the actualization
of the filters at the nth block iteration, the global updated vector Wiy, is
disseminated to the rest of the nodes for the (n+1)th iteration. Moreover,
note that ﬂ[o]n = W[N]nq'

8.3 Results

Some experiments were performed to validate the distributed ANC system.
In a first stage, the noise reduction and the convergence performance of the
distributed ANC system are evaluated and compared with the centralized
ANC system. In a second stage, we evaluate and compare the computa-
tional complexity of both ANC systems.
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8.3.1 Simulation results

In this section, some simulation results are presented to validate the per-
formance of the FPBFxLMS algorithm in a distributed network with an
incremental topology. The simulations have been carried out using real
acoustic channels between microphones and loudspeakers sampled at 2 kHz.
This channels have been measured inside the listening room described in
section 2.3. We have considered a zero-mean Gaussian random noise with
unit variance as the disturbance noise. Furthermore, we have considered a
block-size of B = 512 samples, and, the same length of L = M = 1024 for
both the adaptive filters and the estimated secondary paths. This means
that two partitions are carried out. In order to evaluate the performance
of the algorithm, we define the instantaneous Noise Reduction ratio at the
kth node as

il

NRy,,, = 10logy d[2] , (8.15)
kln

where e, and dj), are the signals measured at the kth microphone with

and without the ANC operation, respectively. Moreover, the power of these

signals have been estimated using an exponential windowing.

First, we compare the noise reduction of a square centralized ANC sys-
tem with a 1:4:4 configuration and a distributed ANC system with 4 single
channel nodes. Figure 8.3 shows the noise reduction of both the centralized
and the distributed implementations of the FPBFxLMS algorithm. Figure
8.3 illustrates the results for the microphone with best and worst perfor-
mance in the centralized implementation, and the node with the best and
worst performance in the distributed implementation. As expected, the
distributed implementation has exactly the same results as the centralized
implementation in terms of convergence speed and final residual noise.

8.3.2 Computational complexity

Table 8.2 compares the computational complexity in terms of multipli-
cations, additions, and FFTs per iteration of the FPBFxLMS algorithm
implemented for a centralized and a distributed ANC system. For the
centralized implementation, we consider a multichannel ANC system with
one disturbance noise and the same number (N) of microphones and loud-
speakers (1:N:N configuration). For the distributed implementation, we
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| Generic | N=1 | N=4 | N=8 |

MUX | 4LN +4LN? | 8L | 80L | 288L
(1) | ADD| LN +3LN? | 4L | 52L | 200L
FFTs 2+ 6N 8 2 | 50

MUX| 2L +46LN 8L | 26L | 50L
(2) | ADD | L+3LN AL | 13L | 25L
FFTs 444N 8 20 | 36

Table 8.2. Total number of multiplications (MUX), additions
(ADD), and FFTs per iteration of the implementation of the
FPBFxLMS algorithm in (1) a centralized ANC system and
(2) a distributed ANC system.

consider a network of N single-channel nodes. It is important to note that
the complexity of the network as a whole is at least as high as the central-
ized algorithm. However, each node of the network could perform all the
operations independently, except the last addition of the global adaptive
filters calculated by the previous node (see Eq.(8.14)). Therefore, in Ta-
ble 8.2, we have only computed the operations of one single-channel node.
Moreover, since we use a value of M = L, and B = L/2 (two partitions)
the computational complexity only depends on L and N.

First, the third column of table 8.2 shows the computational complexity
of both algorithms related to values of L and N. Then, this computational
complexity is particularized for N = 1, N = 4 and N = 8. As expected,
when N = 1, both implementations make the same operations. This is
because both the centralized and the distributed ANC system become a
single-channel system. Moreover, for N = 4, we compare the operations of
a centralized ANC system with a 1:4:4 configuration (16 channels) with the
operations of a single-channel node of a network of 4 nodes. Finally, the
same is done for N = 8. Results show that in a centralized ANC system,
the computational complexity increases significantly with the number of
channels. This fact constitute a bottleneck in massive multichannel ANC
systems. Otherwise, the increase of computational complexity in a dis-
tributed ANC system is not so significant.
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Figure 8.4. Timing diagram of the processes carried out by
each node of the network at each iteration.

8.4 Considerations

This chapter has introduced the FPBFXLMS algorithm for a distributed
ANC system. The simulations have demonstrated that the performance of
the proposed distributed version of the algorithm can be the same as the
centralized version. However, in order to successfully implement the dis-
tributed algorithm in a prototype with several nodes, some considerations
must be taken into account.

Let us consider a network composed of N single-channel nodes. It has
been commented that each of the IV nodes can perform the algorithm inde-
pendently at the same time, except Eq. (8.14). Equation (8.14) corresponds
to the update of the global state of the network. Therefore, apparently, the
distributed ANC system could perform the algorithm in the same time as
a centralized single-channel ANC system. However, it is not true. In a
distributed ANC system, the update of the global state of the network
(Eq. (8.14)) has to be done sequentially. This means that the nth node
needs W of the (n-1)th node. Therefore, we also have to consider the pro-
cessing time that spend each node in updating its own global state of the
network (W), and the delay in transmitting W to the following node. This
fact, involves the transmission of 2L x N coefficients between N nodes. As
the transmission of data is done in an incremental mode, there are (N —1)
transmissions in each direction. Therefore, 2L x N coefficients have to be
transmitted 2(/N — 1) times in each block iteration.
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Figure 8.4 depicts a timing diagram of the processes carried out by
each node of the network at each iteration. Let us refer the processing time
depicted in blue as tpqqc, the time spent in updating W as t,,, and, finally,
the time spent in transferring W as t4,q4ns. Note that ¢, is the time spent
by a node for processing all the algorithm except Eq. (8.14). Therefore,
the time spent from the whole network in each iteration is calculated as
tdis = tproc + Nty + 2(N — 1)tirans. On the other hand, as commented in
the other chapters, the system has to satisfy the real-time condition, and,
therefore, the processing time of the whole network, ¢4, has to be less
than the buffering time, ¢4, f¢. In this sense, as t4;; depends on the time
spent in the transfer of W, the data-transfer speed of the network has to
be taken into account. Therefore, when the synchronization between nodes
is feasible and offers enough bandwidth to transfer the 2L x N coefficients
2(N — 1) times, the proposed algorithm can perform as the centralized
version.

As a future line of research, this kind of distributed ANC systems could
be implemented over a prototype owning several GPUs, where, each GPU
could handle the processing of each node of the network. The implemen-
tation of this prototype would be based on what it has been described in
section 2.2.4. There, the data transfers over the network would be modeled
by writing and reading data in the CPU memory, which would be common
to all the GPU, and therefore, to all the nodes. A more realistic or practi-
cal implementation would consider each node composed of a microphone, a
loudspeaker and a small portable device with an embedded processor such
as the Jetson card [127] of NVIDIA. In this case, each Jetson card, which
owns a GPU, would be the processor of each node. Moreover, the nodes
could communicate through a wireless Local Area Network (LAN).

8.5 Conclusions

In contrast to the centralized ANC systems presented in the previous chap-
ters, this chapter has presented a multichannel ANC system over a network
of distributed acoustic nodes, which allows the processing of a centralized
ANC system to be divided into several acoustic nodes. Therefore, this
chapter has introduced a new formulation of the FPBFxXxLMS algorithm
for its distributed implementation applied to an ANC system and using a
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collaborative incremental strategy between the nodes in the network.

The results have demonstrated that the distributed implementation of
the algorithm has the same performance as its centralized version. This re-
sults has been taken from a simulation without communication constraints
in the network. Moreover, the computational complexity of the distributed
algorithm has been studied and compared with the centralized version.
Since in the distributed algorithm, each node can perform almost all the
operations independently, the computational complexity is significantly re-
duced. However, when we consider the implementation of the proposed
algorithm in a prototype, we have to analyze some aspects with regards
to the communication capabilities between nodes in the network. In this
sense, a brief overview has been given that conclude that the distributed
ANC system will work in real time if the network has enough bandwidth to
transfer the network information without violating the real-time condition.

The main contributions of this work were presented in the European
Signal Processing Conference (EUSIPCO 2015).
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Conclusion

The overall aim of this research has been to deepen into the audio
signal processing algorithms that are based on the adaptive filtering, and
to evaluate their potential when they are implemented on GPUs. The
motivation of this research comes from the necessity of developing and
accelerating audio applications that require high computational resources.

This chapter summarizes the findings and the main contributions of this
research. First, Section 9.1 reviews the contents of this study, outlining the
main conclusions that were extracted from each chapter. Recommendations
for future research are discussed in Section 9.2. Additionally, the final
sections contain a list of works published during the course of candidature
for the P.h.D. degree, and the projects and stipends that have funded the
presented work.

9.1 Main contributions

The overall contribution of this thesis has been the development and imple-
mentation of adaptive signal processing algorithms for multichannel spatial
sound on GPUs. The use of GPUs in adaptive applications in which real-
time interaction between microphones and loudspeakers is required, was
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questioned. It was questioned due to the iterative transactions of data be-
tween the CPU and the GPU and vice versa. For this reason, first of all,
the viability of the use of GPUs for real-time adaptive audio applications
has been studied. To this end, a single channel identification system has
been implemented using the FPBLMS algorithm. Among the wide variety
of adaptive filtering applications, the channel identification application was
chosen due to its simplicity. The LMS algorithm has been implemented
in frequency domain and with a block-based processing in order to ex-
ploit the SIMD GPU architecture. For this purpose, each CUDA kernel
has been designed seeking the most efficient implementation and avoiding
GPU memory transfers. Moreover, some CUDA aspects as the number of
threads per block, the distribution of these threads within the blocks, the
number of blocks in the grid and the distribution of the blocks in the grid
have been also analyzed. As a result of the good performance offered by
the GPU implementation, it was stated that GPUs are suitable for audio
adaptive systems working as the main processors. Moreover, it has demon-
strated that the GPUs are capable of managing multiple channels without
overloading the CPU.

In a second stage, the FPBLMS algorithm has been used with a filtered-
x structure (FPBFxXLMS) to implement a multichannel AE system on the
GPU. The use of a filtered-x structure is necessary for the use of the LMS al-
gorithm in adaptive equalization. Results have shown good performance of
the adaptive equalization prototype even when there are interfering signals
with low SIR levels. Moreover, in order to obtain a massive multichannel
equalization system suitable for a massive audience through the use of a
high number of loudspeakers/sensors, the computing limits of the adaptive
equalization system have been studied. It has been demonstrated that the
GPU is a meaningful and versatile solution for massive multichannel adap-
tive equalization systems with even more than 1,000 channels processed in
real time.

The adaptive application that has been mainly studied in this thesis
is the active noise control. Three prototypes of multichannel feedforward
local ANC systems have been developed using a GPU as the main proces-
sor. These implementations have been based on two different algorithms:
the LMS algorithm with both the conventional and the modified filtered-x
structure, and the NLMS-OCF algorithm. On the one hand, regarding the
implementations based on the LMS algorithm, it has been shown that the
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FPBMFxLMS algorithm converges faster than the FPBFxLMS algorithm,
but exhibits a higher computational complexity, especially for massive mul-
tichannel systems. Nevertheless, it has been demonstrated that the use of
a GPU platform can help to overcome the disadvantage of the modified
scheme in a real-time ANC system. Moreover, the computational limits
of both ANC systems have been analyzed in order to obtain massive mul-
tichannel systems that provide a large area of high attenuation by using
more sensors. This work has demonstrated that the GPU is a meaningful
and versatile solution for massive multichannel ANC systems, which can
provide, slightly more than 600 processed channels in real time.

On the other hand, the study of the ANC application goes a step
forward by developing a GPU implementation of a multichannel feedfor-
ward local ANC system based on the NLMS-OCF algorithm. To meet the
hardware requirements, the algorithm has been developed in the frequency
domain, working with blocks of data and partitioning the adaptive filters,
resulting in the FPM-OCF algorithm. This algorithm increases the con-
vergence performance of the FPBMFxLMS algorithm. However, it also
increases the computational burden. It has been proved that both the
improvement in convergence rate and the increase in computational com-
plexity can be controlled and adjusted with the number of correction factors
used in the execution of the algorithm, and, therefore, this value can be
set depending on the performance requirements. As a conclusion, the GPU
implementation of the FPM-OCF algorithm in a real-time multichannel
ANC prototype is feasible and capable of processing hundreds of channels
in real time, depending on the value of R.

Finally, it has been studied the implementation of an active noise con-
trol system over a network of distributed acoustic nodes. It has been
demonstrated that the proposed algorithm has the same performance than
the centralized version when there are no communication constraints in the
network. Moreover, the computational complexity of the distributed algo-
rithm has been studied and compared with the centralized version. Since in
the distributed algorithm, each node can perform almost all the operations
independently, the processing delay is significantly reduced. However, when
considering the implementation of the proposed distributed algorithm in a
prototype, it has been stated that some aspects regarding the communica-
tion capabilities between nodes in the network, has to be considered. In this
sense, a brief overview has been given that conclude that the distributed
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ANC system will work in real time if the network has enough bandwidth to
transfer the network information without violating the real-time condition.

The important conclusion to point out in this dissertation is the useful-
ness of GPUs for developing versatile, scalable, and low-cost multichannel
applications based on adaptive filtering. All the proposed GPU implemen-
tations offer excellent performances regarding the audio resources they can
manage. Moreover, the fact of using GPUs for audio processing allows
the CPU resources can be used for other tasks. Thus, this dissertation
demonstrates that the use of the GPUs provides a good solution to build
applications that require massive audio processing.

9.2 Further work

This thesis has laid within the convergence of the fields of signal processing
and high performance computing. Concretely, in taking advantage of the
parallel resources that offers the GPU for general processing. The use of
GPU for general processing, instead of its traditional use in the processing
of graphics, is a relatively new field of research. Moreover, it is a scientific
and technological challenge that has been recently being addressed and
should allow tackling potential applications that so far seemed unattainable
for the consumer market. Therefore, the possibilities that it offers for future
work are really vast.

Focusing on this thesis, the future research lines are grouped in three
main blocks: development of new algorithms suitable for GPU implemen-
tations, the development of distributed prototypes based on acoustic sensor
networks, and the development of GPU libraries.

In the first case, there is still a vast variety of algorithms that can be
suitable for its GPU implementation. For example, the NLMS-OCF algo-
rithm was implemented for an ANC system in chapter 7. As commented,
the NLMS-OCF belongs to the APA family of algorithms. The choice of
this algorithm rather than the others was, in part, because its implemen-
tation in frequency domain was easier than the affine projection algorithm.
Therefore, the development of the AP algorithm in frequency domain for
an ANC system, and its parallel implementation in a many-core device can
be a useful future challenge in the active noise control field.
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In the second case, chapter 8 has shown some simulation results of a
distributed ANC system. In this area, the future work is straightforward,
and would consist in the implementation of what was presented in chapter
8 in a real prototype. To this end, it is necessary to decide the composition
of the nodes and to study how to communicate nodes in the network. In
this sense, section 8.4 introduced the idea of implementing the distributed
acoustic network with small portable nodes. The use of NVIDIA Jetson
cards as the processors of the nodes, could be a feasible option to achieve
small portable nodes with high computing capabilities.

Finally, as a consequence of the developed work throughout this disser-
tation, we have now a large number of computational kernels for different
adaptive applications. As a future work, all these kernels could be packed in
specific libraries for audio applications using GPUs. Libraries are valuable
tools for specialists of a particular field, since it facilitates the develop-
ment of scientific codes without knowing the GPU characteristics. These
future libraries will also consider the new advances in the GPU architec-
tures. Thus, it is expected that the performances of these libraries improve
meaningfully the performances that are collected in this manuscript.
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