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Quasi-two-dimensional acoustic metamaterial with negative bulk modulus
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We present the experimental realization and characterization of an acoustic metamaterial with negative bulk
modulus. The metamaterial consists of a two-dimensional array of cylindrical cavities, and the bulk modulus is
controlled by their radius size and length. Experiments are performed in a two-dimensional waveguide where
a slab of seven layers is used to extract the parameters of the metamaterial. A complete characterization of the
constructed structure is reported, including the dispersion relation of the acoustic bands and the skin depth effect,
which both have been measured, and the data are well supported by semianalytical models and by finite-element

simulations.
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I. INTRODUCTION

Acoustic metamaterials' or metafluids® are artificial struc-
tures consisting of subwavelength units with dynamical
properties not available in natural materials. For example,
acoustic metamaterials with negative inertial mass,’° nega-
tive bulk modulus,””!" and both parameters simultaneously
negative'”"'* have been reported in the last few years. It has
been discussed that negative inertia is produced by dipolar
resonances of the building units while negative bulk modulus
is created by monopolar resonances.'? Acoustic metamaterials
with other extraordinary properties such as anisotropic inertia
have been also proposed'>!® and physically realized.'”'® They
are under research because of their potential applications such
as as acoustic cloaks'® or magnifying lenses.?’

We are interested here in effective mediums with negative
modulus. This property has been already studied using
structures made of arrays of Helmholtz resonators”®!%!! or
by side holes in a narrow one-dimensional waveguide,” where
they radiate like effective monopoles.

This work reports the physical realization of a quasi-
two-dimensional (2D) metafluid with negative modulus. The
metafluid consists of a 2D hexagonal lattice of cylindrical
boreholes in a 2D waveguide. Note that the proposed structure
is different from those previously reporting negative bulk
modulus, which were mainly based on arrays of Helmholtz
resonators’%!%!1 or side holes with both ends opened.”!?
Moreover, the experimental characterization of the negativity
of bulk modulus is here performed in a true 2D environment
(a 2D waveguide) using a real 2D lattice of individual
units. To the best of our knowledge, the reported works in
this topic employed arrays of resonators characterized in a
quasi-one-dimensional environment. The negative modulus
in our proposed structure appears as a consequence of the
interaction between the modes localized in the boreholes with
the sound waves propagating inside the waveguide (WG).
It is demonstrated that the artificial structure introduced is
intrinsically low loss, is easily tunable, and has various
interesting applications; the control of wave propagation inside
waveguides is one of them.

The paper is organized as follows. After this introduction,
in Sec. II the artificial structure defining the metafluid is
introduced and the acoustic band structure of the periodic
system is analyzed. In Sec. III a finite structure is constructed
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and experimentally characterized. The reflectance and trans-
mittance spectra are measured and the effective parameters
are extracted from them. Also, finite-element simulations are
reported and compared with the experimental data. Section [V
presents experiments showing that at the frequencies where
the bulk modulus is negative, sound waves in the metamaterial
exponential decay. The skin depth effect has been experimen-
tally characterized and data are compared with an analytical
model depending on the metafluid parameters. Finally, Sec.V
summarizes the work performed.

II. THE TWO-DIMENSIONAL METAFLUID: ACOUSTIC
BAND STRUCTURE

Let us consider an array of cylindrical boreholes with equal
radii (R) and depths (L) drilled in a flat rigid surface. An
acoustically rigid panel put on top, at a distance & from
the surface, defines a 2D waveguide for sound propagation.
Figure 1(a) depicts a scheme of the structure under study
here. The underlying lattice is hexagonal with primitive lattice
vectors a; = a(‘/T§ X — %y) and a, = a(%gi + %)7), where a is
the lattice period.

Recall that sound waves propagating in a 2D rigid-walled
waveguide w have eigenfrequencies w,, , = 27 X f,,, that

depend on the height 4 as follows:!

2 2
2 ke ky) = <%> [k§+k§+ <%) } (1)

where c is the sound speed of air and # is an integer n = 0, 1,
2,3, .... Therefore, the wave number on the XY plane for the
nth mode is given by the relation

,1/2
nm
kil = [ké - <7) ] : @

where kyp = w/c. Any particular mode n would propagate

unattenuated if
2
K2 — (%) > 0. 3)

First, we have studied how the frequency dispersion in Eq. (1)
changes inside a WG having a hexagonal lattice of cylindrical
boreholes drilled in the bottom surface. The solution has been
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FIG. 1. (Color online) (a) Scheme of the metamaterial consisting
of cylindrical boreholes in a two-dimensional waveguide of height 4.
(b) The experimental setup employed in its characterization. The blue
circles represent the boreholes; a; and a, are the primitive vectors of
the hexagonal lattice with parameter a. Three microphones (Mic)
have been employed for measuring the transmittance and reflectance,
the magnitudes needed for the parameters’ extraction.

obtained by using the mode-matching technique®” as explained
below.

The pressure field in the waveguide, P,, is obtained as a
linear combination of Bloch modes satisfying the boundary
conditions at the bottom and top surfaces. Since both surfaces
of the WG are considered perfectly rigid, the normal com-
ponent of the particle velocity, v,, is zero at z = 0 (bottom
surface) and at z = & (top surface). The resulting expression
for the pressure is

Py(K.rzi0) =Y Age™ el cosk.(z — e, (4)
G

where r = (x,y) defines an arbitrary point in the 2D space
and kz2 = ké — |K + G|?. The vectors of the reciprocal lattice
are G = h\b; + hyby, with b; = 2—”(\%32 —$) and b, =

27”(%)? + 9). The vector K = K(w) defines the dispersion
relation of the acoustic band structure.

Inside the cylindrical holes, the pressure field P}, is obtained
by making use of the method of separation of variables and
the solution can be cast as follows:?!

oo o0
Pu(r0,20) = > Julkpmar)e™

m=0 n=1
X(B] e—ikoz + Bze-HkoZ)eiwt’ (5)

where (r,0) are the polar coordinates in the XY plane, J,, are
the Bessel function of order m, and k, ,, , denotes the discrete
values that satisfy the equation corresponding to the condition
that the radial velocity at the walls must be zero; i.e.,

dInlhyr) _

. 0 at r = R. ©)
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The value k, corresponding to the nth root of this equation is
kym.n and therefore

ken = (=12, )" %

r,m,n

where the subindex m denotes the number of nodal lines
passing through the center for transverse pressure distribution
in a circular duct, and n gives the number of nodal lines with
circular symmetry. With this notation, the plane mode has the
(0,0) label and k; 0.0 = ko. We have considered that this mode
is the only one excited when a pressure with large wavelength
(much larger than the hole diameter) is propagating along the
2D WG.

Therefore, the pressure field inside the holes is independent
of the transversal coordinates and reduces to

Pi(z; @) = Bre™" 4 Bye s, ®)

where we have omitted the ¢ dependence to simplify the
notation. From here onward the dependence ¢’ is implicitly
assumed in all the equations. Since the normal velocity of the
particle at the bottom surface must be zero, % =0atz =—L,
the equation above becomes '

P(z;w) = Bcosko(z + L). 9)

Inside the 2D WG, the standard boundary conditions at the
connecting (virtual) plane S between the waveguide and the
holes are considered. First, the continuity of the pressure on
the hole’s surface S = 7w R? at z = 0 leads to

> Ag cosk:h // X 7e674dS = T R*BcoskoL, (10)
p s
where the surface integral can be easily evaluated,

. ) R

iK-r iGr

et e dS =27 —J1(|K + G|R). 11
//S K+ G| 1(] |R) (1D

Second, the continuity of the normal component of particle
velocity through the unit cell’s surface S, gives

k.AgS,sink.h = —koB sin koL f/ e KremiGrgs  (12)
N

From these equations and after easy manipulations we arrive
at the equation describing the band structure,

cotwL/c = fx(w,K), (13)

where f denotes the lattice filling fraction, f = S/S,, and

kocosk,h [ J1(|G + K|R)\>
x(w,K)=—4Z ocf>s 2 1(1G + K|R) a4
G k. sink h |G + K|R

Figure 2 shows the calculated dispersion relation of the
propagating modes in a WG for three & values: i/a = 1.667
(a), h/a = 0.5 (b), and h/a = 0.1 (c). The radius and depth
of the boreholes are R = a/3 and L = 3a, respectively, and
they are fixed parameters. Again, let us remark that results
are obtained by using only the fundamental mode in the
cylindrical holes [see Eq. (9)]. This approach is reasonable
in the low-frequency region, where the wavelengths are large
in comparison with the hole diameter.
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FIG. 2. (Color online) The band structure of the acoustic metama-
terial consisting of a two-dimensional array of cylindrical boreholes
with hexagonal symmetry and lattice constant a (see Fig. 1).
The bands are depicted for three different waveguide heights: (a)
h =1.667a, (b) h = 0.5a, and (c) h = 0.1a. The radius and depth
of boreholes are R = 0.3a and L = 3a, respectively. The dashed
(dotted) lines give the dispersion relation of the fundamental n = 0
(first excited, n = 1) mode propagating in the waveguide without
boreholes. The inset shows the Brillouin zone of the hexagonal lattice
and its high-symmetry points.

At this point, let us recall that the linear frequency of the
resonances localized in a cylindrical borehole b with length L
and radius R are (in reduced units)?!

Wp.ma m

Fom =200 = 4(L +0.8E) 15
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where m is an odd number (1, 3, 5,. . .). For the holes employed
in this study, the corresponding frequencies are ?,,,1 = 0.076,
fr3=0.229, and f, s = 0.383, which correspond to the flat
bands shown in Figs. 2(a)-2(c).

The thick continuous lines in Fig. 2 represent the acoustic
bands, which are plotted along the high-symmetry directions
in the Brillouin zone (BZ) of the hexagonal lattice (see the
inset), where k; = 2w /a(2/3,0). The dashed and dotted lines
represent the dispersion relation of modes f, o and f, 1,
respectively, in the empty 2D WG [see Eq. (1)].

- fooa —a ., 512
ke k) = — = —|k k ,
fw,()( y) e 27.[[ X+ y]
T k= 21— 4 ey (T 1" (16)
RO g T 2w Y Y h '

Note that the first excited band at the I" point takes the value
7w’1(0,0) = (a/2h) = 0.30 for h = 1.667a and the dotted line
in Fig. 2(a) represents the full dispersion relation. However, the
bands corresponding to values 7 = 0.5a and & = 0.1a have
frequencies above the region represented in Figs. 2(b) and
2(c), respectively. It is observed that the dispersion relation
of frequencies propagating inside the WG with holes are the
result of the interaction between the modes localized within
the holes (the flat bands) with the modes propagating in the
empty waveguide.

Figure 2(a) shows that the interaction between the first
borehole mode f, ;, with the fundamental mode f,, , of the
WG producing a complete band gap in the region [0.078-
0.095]. This band gap appears at frequencies much lower than
that of the Bragg band gap with midgap at about [, ~
kya/2m = 0.667 (not shown in Fig. 2).

The existence of low-frequency gaps in the dispersion
relation of phononic crystals is typically associated with the
existence of low-frequency modes in the individual scatterers
and have been extensively described in the literature.>>7 For
example, the analysis reported by Wang and coworkers® on
the band structure of a narrow one-dimensional (1D) WG
with a periodic array of Helmholtz resonators leads to similar
conclusions; i.e., the interaction between the resonant modes
with the propagating waves produces a band gap opening
around the resonant frequencies. In our case the low-frequency
band gap is determined by the borehole resonances that can be
easily tuned by changing the parameters L and R.

Figures 2(b) and 2(c) show that narrowing the WG (i.e.,
decreasing /) produces an enhancement of the interaction
between the waves propagating in the WG with the 1D modes
localized in the holes. From these figures one can conclude
that for 2 — 0 the dispersion relation will consist of a lowest
band starting from zero at the I' point and that reaches the
frequency value f;, in Eq. (15). For frequencies above fj, 1,
we will obtain a set of dispersionless bands corresponding to
the discrete levels m = 2, 3, 4, ... in Eq. (15).

III. EXPERIMENTAL CHARACTERIZATION

To support the previous findings we have constructed a
sample consisting of seven rows of hollow brass cylinders with
length L = 9 cm and radius R = 1 cm. Each row contains 15
cylinders along the y axis. They were attached to a Plexiglass
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plate with area 68 cm x 68 cm where a hexagonal lattice
(with lattice constant a = 3 cm) had been drilled. The sample
was placed at the center of a 2D acoustic waveguide with
dimensions 460 cm x 366 cm x 5 cm, the height being & =
5 cm in Fig. 1(a). The top surface of the WG was constructed
with a wooden panel and we used the floor of the room as the
WG bottom surface. The temperature inside the WG during
the measurements takes a value 23.7 & 0.1 °C, which gives a
sound speed with a practically constant value ¢ = 345 m/sec,
which has been used in the numerical simulations.

It is worth noting that modes with variations along the
vertical direction (z axis in Fig. 1) are not expected until
frequencies above the cutoff of w, 1(0,0) = 27w x3.45 kHz,
which corresponds to the condition when 4 equals a half
wavelength. The sound propagating inside the WG is excited
using a column speaker placed at the front of the WG. The
laterals are covered by a 5-cm-thickness layer of fiberglass to
avoid undesired reflections. At the opposite face of the speaker
there is a programmable robot that moves a microphone with
spatial resolution of 5 mm along a line under the sample
in order to measure the profile of the pressure along the
air/metamaterial interface, which is discussed in Sec. IV.

Excitation data are generated by a NI PCI-6731 card.
The analog output of this device goes to a power amplifier
that drives the column speaker. It is worth noting that some
reflections take place between the speaker, the room, and
the open faces of the 2D waveguide. Because of this, a
time-limited signal is emitted and then the data are acquired
until the arrival time of the first unwanted reflection. Thus,
the measurements are performed under echo-free conditions.
The excitation signal consists of a sine wave modulated by a
Gaussian envelope. The frequency of the carrier is 2.5 kHz
and the spectrum of the whole signal covers a frequency range
from the low-frequency cutoff of the speaker (around 80 Hz)
up to 5 kHz.

The scattered sound by the sample is recorded by three
B&K 4958 microphones Micl, Mic2, and Mic3, put at fixed
locations on the sample holder, as is schematically depicted in
Fig. 1(b) with /; = 3 cm and [, = 9 cm. The data received by
the microphones is amplified by a B&K 2694-B device. The
resulting signal is then acquired by a PicoScope 3224 digitizer
which loads the data into a computer. During the measurement,
one pulse is emitted and all the frequency components
are obtained from the acquired data through a fast Fourier
transform. In order to reduce the presence of random noise,
several pulses are emitted and their responses are averaged.
This process is performed once for the microphones placed
at the fixed locations of Fig. 1(b) and also at each position of
the spatial sweep under the sample. All the procedure (sound
generation, robot motion, sound reception, and processing) is
managed by a custom homemade program.

A. Acoustic bands

The seven layers of the structure under study are aligned
along the I' J direction of the BZ and its total width is taken

as D =7x ‘/7§a = 21.87 cm, which has been calculated by
considering that the surfaces are located at a half distance of the
layer separation. This is a custom assumption when working

with crystalline structures terminating in a surface.
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Frequency (kHz)

FIG. 3. (Color online) Acoustic band structure along the high-
symmetry direction I'J of the Brillouin zone. The symbols represent
the bands measured using a phase-shift technique. The black lines are
the calculated dispersion relation using a mode-matching technique.
They correspond (in kHz) to those shown in Fig. 2(a). The dashed
(dotted) line defines the dispersion relation of mode O (1) in the free
waveguide [see Eq. (1)].

The sample thickness D is large enough so that the
dispersion relation can be derived experimentally from the
phase of the transmission coefficient g7 through the relation
or = kyD + 27 €, where £ is an integer and k; is the wave
number of the sample to be calculated. Band gaps in the
dispersion relation are identified by discontinuities in ¢z, so
after this effect the parameter £ must be modified in order to
place correctly the next band.

The symbols in Fig. 3 represent the points experimen-
tally measured using this technique. Note the general good
agreement between the measured dispersion relation and that
predicted by our modeling. However, it is observed that for
frequencies around 3 kHz the agreement between theory and
data is not good enough, probably due to the fact that the
condition of homogenization is not perfectly accomplished as
it is shown below.

B. Reflectance and transmittance spectra

For low frequencies, which is the region of interest in this
work, the sound propagates with a plane wave front and the
pressure field along the axis of propagation can be obtained by
solving the wave equation for 1D propagation,

i 1 dP(x;,w) w?
dx |:,o(x;a)) dx i| B(x;w)

where parameters p(x; ) and B(x; @) are inhomogeneous and
might be frequency dependent.

Within the WG, we can distinguish two regions that we
associate with mediums I and II, which correspond to the
air in the WG without and with boreholes, respectively. For
medium I, the wave equation reduces to

1 d*Pl(x;0)  @?
g g Pl e =0, (18)

P(x;w) =0, (17)

po  dx?

where By = 1.01 x 10° Pa and py = 1.2041 Kg/m?® are the
modulus and density of air.
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FIG. 4. (Color online) (a) Reflectance of a sample consisting of
seven rows of hollow metallic tubes opened to a two-dimensional
waveguide with height # =35 cm [see Fig. 1(a)]. The tubes are
arranged in a hexagonal configuration with lattice parametera = 3 cm
and have dimensions L = 9cmand R = 1 cm. (b) The corresponding
transmittance. The symbols in both plots are the measured data
while the continuous lines represents the simulations using finite
elements.

The reflection coefficient r is rapidly obtained by using the
data recorded by Micl and Mic2 embedded in the formula
resulting from 1D propagation,

Pze—ikoxl _ Ple—ik0X2

r= Pl eikox2 —_ Pzeikgxl ’ (19)

where P; and P, are the complex values of pressure taken
at the positions x; and x; of microphones Micl and Mic2,
respectively. Note that Eq. (19) is not valid when x, — x;
equals an integer multiple of a half wavelength, setting
an upper frequency limit to the measures. Since Micl and
Mic2 are separated by /; =3 cm, this limit is therefore
located at 5750 Hz, which is higher than the frequencies of
interest.

The symbols in Fig. 4(a) give the reflectance spectrum
obtained from the data recorded and the expression in Eq. (19).
The continuous lines represent the finite-element simulations
using the same experimental setup. Note that simulations give
interesting features in the spectrum, such as the narrow deeps
associated with Fabry-Perot-like modes, which are above the
accuracy limit of our experimental setup. The experimental
profiles present the main spectral features predicted by finite-
element simulations in spite of the simple method [see
Eq. (19)] employed in its derivation.

The transmittance is obtained by recording data in Mic2
and Mic3 and the expression®?

7lk[)X2 lk()xg
Ps;e +re —ikod
P2 e —ikoxs

where Pj; is the pressure measured by Mic3 at position x3,
and d is the sample thickness. The transmittance spectrum is
depicted in Fig. 4(b) together with the corresponding numeri-
cal simulations. As in the case of the reflectance spectrum, a
general good agreement is found between transmittance data
and finite element simulations.

For the sake of comprehensiveness, we report in Fig. 5 and
Fig. 6 the maps of the pressure amplitude calculated by finite

T(w) = (20)
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FIG. 5. (Color online) Map of the pressure amplitude taken at the
equatorial plane of the two-dimensional waveguide shown in Fig. 1.
The selected frequencies are denoted by arrows in Fig. 4.

elements. The selected frequencies correspond to spectral
features in the reflectance spectrum shown in Fig. 4(a). The
lowest frequency, 822 Hz, corresponds to a Fabry-Perot-like
resonance, which is characterized by a dip (peak) in the
reflectance (transmittance) spectrum. The 2D map in Fig. 5
clearly show its physical behavior, where a wavelength per-
fectly matches the sample thickness, D. Inside the cylindrical
cavities, Fig. 6(a) shows a huge sound localization, the sound
intensity being dependent on the cavity position along the x
axis; the highest are obtained at the first, middle, and last rows,
which correspond to maximum amplitude in the equatorial
plane (see Fig. 5). For the frequency 910 Hz, which belongs
to the band gap, the corresponding map in Fig. 5 shows the
perfectly reflecting behavior and the first row of cylinders is the
only one where sound penetrates, as seen in Fig. 6(b). Finally,
for the frequency above the band gap, 1265.5 Hz, Fig. 5 shows
aperfect transmission of sound and Fig. 6(c) demonstrates that

0

2

(c)

—o

FIG. 6. (Color online) Maps of the pressure amplitudes inside the
artificial structure under study. They are obtained by finite-element
simulation at three selected frequencies, which are denoted by arrows
in Fig. 4: (a) 822 Hz, (b) 910 Hz, and (c) 1265.5 Hz.
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FIG. 7. (Color online) The frequency-dependent effective bulk
modulus of the metamaterial. The symbols represent the modulus
derived from the reflectance and transmittance spectra while the
continuous line defines the extracted parameter from finite-element
simulations.

sound penetrates in all the cavities that have the same intensity
profiles along the cylindrical axis.

C. Effective parameters

We are interested in the properties of the structure at
frequencies below a certain frequency cutoff defining the
homogenization limit. It has been experimentally established®
that the frequency cutoff is w, =27 x c/4a for the case
of hexagonal arrays of rigid cylinders in air. We employ
this limit, which takes the value w, = 27 x2.87 kHz for the
structure under study, since its validity has been demonstrated
in many equivalent structures consisting of sonic scatterers in
air background. Therefore, the artificial structure studied acts
as atrue acoustic metamaterial with given effective parameters,
whose values are extracted below, for any linear frequency
under 2.87 kHz.

The frequency-dependent effective parameters of the meta-
material p,,(w) and B,,(w) are derived using the data of R(w)
and T (w) and the procedure explained in Ref. 24. The extracted
effective mass density does not depend on the frequency and
its value is practically equal to that of the background p,. The
extracted effective bulk modulus, B,,(w), normalized to that
of air, is depicted by symbols in Fig. 7, where the shadowed
region indicated the frequencies at which the bulk modulus
takes negative values.

The effective parameters have been also extracted by
using the reflectance and transmittance spectra obtained from
finite-element simulations and the expressions in Ref. 24.
Figure 7 depicts the theoretically extracted bulk modulus
(continuous line) and its comparison with the values derived
from experimental data (symbols). A good agreement is
observed between theory and experiments. Note that the bulk
modulus is negative in the frequency region coincident with
the first band gap, which is defined by the gray region.
The extracted effective mass density is practically a constant
function with value p,, = 0.98 .

We conclude that the artificial structure under study behaves
as an effective medium that has a bulk modulus B, (w)
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with profile similar to that reported for the case of array of
Helmholtz resonators, and can be expressed in the form

2
Fuwyj ] ’ 21

B,'=B"|l- —F——
m 0 |: wr—w)+ilw

where F is a factor defining the band gap width, which is
determined by the frequencies wy < ® < wp+/1 + F, wy is the
resonant angular frequency, and I is the dissipation loss in the
resonating boreholes. The profile shown in Fig. 7 fits perfectly
this Fano-like profile by using the values wy = 27 x 8§74 Hz,
which is the frequency of the mode m = 1 of the closed tube,
and F = 0.556, which determines the band gap width. The loss
term (I' = 2 x 3.4 Hz) is the only fitted parameter and its
value is much lower than that reported (I' = 27 x 400 Hz) for
negative modulus metamaterials based on arrays of Helmholtz
resonators.” The losses in our structure are also lower than
that measured with one-dimensional arrays of side holes, a
structure that has been presented as low loss metamaterial
with negative modulus.’

It is important to point out that our proposed structures have
lower losses than those previously reported due to different
reasons. On the one hand, in comparison with those based
on Helmholtz resonators,”®!%!! our structures do not present
narrow channels where strong energy dissipation is expected
due to friction with the walls. On the other hand, in comparison
with the structures consisting of side holes,”!* our structures
do not present radiative losses since the ends of the holes are
closed.

IV. THE SKIN-DEPTH EFFECT AT THE
AIR/METAMATERIAL INTERFACE

Let us consider now the simple case in which we have a
interface between two semi-infinite mediums: Medium I is
the air with positive mass and modulus, whereas medium II
is the metamaterial under study with positive mass p, and
negative bulk modulus B,,. Hence, Eq. (17) particularized to
the metamaterial (medium II), which is defined in the region
x > 0, becomes

1 d?>P(x;w) w? o
R TR T e
The solution of this equation is
P (x;w) = Pye™"°, (23)

where P, denotes the pressure amplitude at x =0, the
air/metamaterial interface, and & defines the skin-depth of
the metamaterial, whose expression is quickly obtained by
substitution of Eq. (23) in Eq. (22),

1 [Bu()]

8% =
2 Pm

(24)
w

The wave equation for sound propagation in air (medium
I) is given by Eq. (18) and its solution is
Pl(x;w) = e*0* 4 re~ihor, (25)

where r is here the reflection coefficient.
The coefficient r is determined by applying the continuity
of the pressure and normal velocity at the air/metamaterial
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FIG. 8. (Color online) Pressure amplitude measured along the
x axis of a metamaterial slab made of seven layers of cylindrical
holes. The exponential decay is observed inside the metamaterial
slab (light-gray region).

interface. After easy algebra its expression can be cast as

_ ZO — lZm(a)) (26)
 Zo+iZy(w)

where Zy = +/Bopo and Z,,(w) = /| By, (w)|p, are the char-

acteristic impedances of air and metamaterial, respectively.

The expression for r indicates that the reflectance R(w) =
[r|> = 1 (total reflection) for any frequency. The reflectance
spectrum shown in Fig. 4(a), which has been taken for a finite
metamaterial sample, shows that this conclusion is true for a
wide frequency region within the band gap. We use this result
to analyze the wave transmission-reflection at the interface by
using the simple formulas obtained from the two semi-infinite
mediums.

Experimentally, we have employed a microphone to scan
the 2D WG along the x axis. Figure 8 depicts the pressure
amplitude as a function of the position for three different
frequencies inside the band gap. It is observed that the field
impinging the metamaterial is an oscillating function while
inside the metamaterial is a function exponentially decreasing.

The skin depth § has been experimentally determined by
adjusting the profiles in Fig. 8 to an exponential decaying
function. The resulting values are depicted by symbols in Fig. 9
and are compared with those (continuous line) obtained using
the formula given by Eq. (24). It can be concluded that §
increases monotonously in the region where the reflectance is
unity. For frequencies approaching the resonance of B,,(w), the
skin depth increases with frequency following an exponential
profile.

V. SUMMARY

In summary, we have introduced an intrinsically low loss
quasi-two-dimensional acoustic metamaterial with negative
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FIG. 9. (Color online) The skin depth § as a function of the
frequency. The symbols represent the values obtained by adjusting
the amplitude profiles shown in Fig. 8 to the function exponentially
decreasing shown in Eq. (23). The continuous lines are the values
predicted by the model in Eq. (24) in which we have employed the
parameters derived from experiments.

bulk modulus. The artificial structure consists of a 2D periodic
distribution of cylindrical boreholes opened to a 2D waveg-
uide. Measurements and an analytical model demonstrate that
the region of negative modulus develops an acoustic band gap
whose width is tunable with the geometrical parameters of
boreholes (radius and length). A complete characterization of
a sample has been reported including the skin-depth effect. It
can be concluded that this metamaterial can be used to filter
the sound propagating in waveguides with high efficiency.
On the other hand, the extraordinary sound amplitude ob-
tained inside the hole cavities can be used to design highly
absorbing devices by filling up the holes with dissipative
materials.

Starting from the structure reported here, a double neg-
ative metamaterial can be easily achieved by adding a
lattice of membranes as described in Ref. 6. Finally, let us
remark that these results can be extended to waveguides
consisting of the boreholes filled with water and a water
film on top. The resulting structure will also show inter-
esting properties in order to control and guide underwater
sound.
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