
Hindawi Publishing Corporation
The Scientific World Journal
Volume 2013, Article ID 402196, 10 pages
http://dx.doi.org/10.1155/2013/402196

Research Article
Multisensor Network System for Wildfire Detection Using
Infrared Image Processing

I. Bosch, A. Serrano, and L. Vergara

Signal Processing Group, Institute of Telecommunications and Multimedia Applications (iTEAM), Universitat Politècnica de València,
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This paper presents the next step in the evolution ofmulti-sensor wireless network systems in the early automatic detection of forest
fires. This network allows remote monitoring of each of the locations as well as communication between each of the sensors and
with the control stations. The result is an increased coverage area, with quicker and safer responses. To determine the presence of
a forest wildfire, the system employs decision fusion in thermal imaging, which can exploit various expected characteristics of a
real fire, including short-term persistence and long-term increases over time. Results from testing in the laboratory and in a real
environment are presented to authenticate and verify the accuracy of the operation of the proposed system.The systemperformance
is gauged by the number of alarms and the time to the first alarm (corresponding to a real fire), for different probability of false
alarm (PFA). The necessity of including decision fusion is thereby demonstrated.

1. Introduction

Conserving unique natural areas should be a priority for
advanced societies in our time. One of the biggest threats
faced by these natural areas is wildfire devastation.The unfor-
tunate reality is that most of these areas are unprotected, or at
most, only monitored during certain months of the year and
then, only during certain times of day, leaving the nighttime
periods more vulnerable without proper monitoring. The
entire system suffers from teams of workers woefully ill
equipped in terms of manpower and technology.

In response to these limitations, we have developed
different ways to help these teams in their complex yet
tedious task of forest monitoring. The literature has focused
extensively on technical aspects of the problem with the aim
of discovering solutions.

Various authors have focused on solutions derived from
specialized satellite infrastructure available today [1, 2]. Due
to the nature of nongeosynchronous satellites [3], these
proposals present four principal technical difficulties: the
limited availability to cover the desired area, the effective
resolution cell (taking into account the distances at which the
sensors are positioned), (especially), the effective detection
times and the times between satellite positioning.

Another option includes ground implementation, which
entails designing specialized systems for the desired cov-
erage area [4]. These designs employ different processing
techniques that are typically divided into two major families
(based on the type of information processed): the first is
limited to collecting data with infrared sensors [5, 6]; the
second encompasses working with visible images (such as
[7, 8]), looking for specific types of fire in these images (as
in [9] or [10]) and improving computer vision [11–13].

As part of ground implementation, additional consid-
eration must often be given to expanding the inherently
limited coverage area of these systems [14], thereby creating
opportunities for wireless sensor networks as in [15, 16] with
cameras or other specialized sensors [17, 18].

Another broad field includes the efforts of researchers to
detect smoke [19] in visible images, [20, 21], to distinguish
between the flame of the fire focus and smoke [22], and to
use video to detect fires at night [23].

To address these issues, this paper presents the next step
in the evolution of multisensor wireless network systems
employed in terrestrial forest fire detection. This system
has been under development for the last ten years as part
of multiple research projects within the Signal Processing
Group (GTS), part of the Institute of Telecommunication



2 The Scientific World Journal

and Multimedia Applications (iTEAM) at the Universitat
Politècnica de València (UPV). Our system exploits different
expected characteristics of a real fire, including persistence
and increases over time [24], in infrared images, while
concurrently detecting smoke in visible images.

Research in the area of fire detection began with an
initial processing scheme, as presented in [25]. It employed
infrared radar as part of a linear scanning surveillance
designed to detect wide-area, uncontrolled fires. The pro-
posed scheme includes a linear predictor, and a subspace
model with a prewhitening filter for the signal to be detected
and introduces a simple procedure for improving linear
prediction, as described in [26]. This scheme was applied to
real infrared data collected by a passive infrared radar, located
in a mountainous area in Southeast Spain (Alcoy, Alicante).
Electronic range scanning and an azimuthmechanical system
were likewise used.

In [27], we presented a general scheme for the automatic
detection of events in surveillance systems; it consisted of the
initial basic scheme but extended to include nonlinear pre-
diction and an increase detector. As part of the same project
[27], exhaustive research was conducted on the design of
the predictor, with the first theoretical considerations on the
matched subspace detector and the increase detector being
subsequently introduced.The need for decision fusion for the
two detectors to make a final decision was likewise presented
for the first time. Real-data experiments validated the interest
of the proposed scheme. Results in a real operating system
were shown, specifically those from several testswith real fires
and from day-to-day operations in the Albufera Natural Park
(Valencia).

Once the proposed schemes were installed in several real
scenarios, we realized that the processing times of the various
detectors needed to be considered. Consequently, detection
algorithms were the focus of [28], with a special emphasis on
the fusion of different decisions in order to exploit both the
short-term persistence and the long-term increases found in
uncontrolled fires. In [29, 30], we added a linear predictor
to use a reference image for prediction, rather than previous
images (used in earlier systems). System delays in alarm
detection of controlled fire were also evaluated. Temporary
evolution of false and true alarms is presented in [31, 32], part
of a long-termperformance evaluation carried out in the Font
Roja Natural Park in Alcoy (Alicante, Spain).

In this paper, we focus on verifying the improve-
ments made in the processing scheme for real fire signals.
Section 2 presents a description of the system, with real-data
results presented in Section 3. Finally, conclusions about the
improvements of the proposed scheme are then offered.

2. System Detector Scheme

The proposed system consists of a wireless sensor network
with a central monitoring station. This sensor network is
strategically positioned to significantly expand the effective
coverage of the system, with several areas of overlap between
the different coverages to verify alarms, especially when the
distances increase considerably (tens of kilometers).

Each sensor is comprised of two cameras (thermal and
visible); a motor with different presets to sweep a larger area
of coverage; and an integrated system of capture, processing
and communication (see Figure 1).This sensor scheme allows
autonomous monitoring of portions of the coverage area as
well as in situ processing, generation, and transmission of
alarms to the other elements in the wireless sensor network
and to the central station. The said station can monitor the
proper operation of the system and locate the position of each
sensor with a geographic information system (GIS).

It is important to note that the system requirements are
minimal: it is not necessary to use high-resolution cameras or
show temperatures values, it does not require fast processing
times, since it is better that the times between capture are
seconds apart to have a margin for growth.

As mentioned above, the original system has been imple-
mented and tested in real scenarios [27, 31] and shown to
operate properly [32]. Thus, this paper proposes upgrading
the original processing scheme with some improvements
described in detail below and further verification with con-
trolled fire experiments.

The new processing scheme is shown in Figure 2, where
each infrared image is converted into a matrix of pixels.
Each pixel is associated with a resolution cell corresponding
to certain coordinates of rank and azimuth; pixel-by-pixel
processing is performed to then generate vectors describing
the time history of each resolution cell.

The sensor motor is initially placed in one of the presets
and, assuming no fire, the patternw is calculated by acquiring
a predefined number of images, which in turn, are used to
generate the vectorwD (ideally composed only of noise).This
vector wD is sorted from low to high, the least representative
of the extremes are removed, and the average of the remaining
values is calculated, thereby yielding the searching patternw.
The system is also calibrated with the same images used in the
pattern to generate the variables required in the subsequent
processing stages.

This pattern w is now introduced in the linear prediction
stage, represented by matrixH, to obtain the estimated noise
signal 𝑥p = H ⋅ w.

Now, in normal operation, the infrared images are cap-
tured and generate the vector x = s + wd, composed of both
signal s and noise wd. These values are then used to form
vector e = x− xp, subtracting the previously estimated vector
xp from this vector x, which will ideally contain only signal s
if they are predicted correctly.

This vector e has a Gaussian probability distribution [25],
therefore a prewhitening stage must be performed using the
matrix, Rzz, to optimize the calculation of the threshold for
a given PFA. Thus, we obtain the vector u = Rzz ⋅ e, which is
used as input for the subsequent detection stages.

We established four levels for risk of fire detection
(ranging from low to high), with each corresponding to the
following four alarms:

(i) Type 1: signal level alarm,

(ii) Type 2: persistence in the signal level alarm (green in
the figures of results),
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Figure 2: Processing Scheme.

(iii) Type 3: increasing alarm (orange),

(iv) Type 4: thermal saturation alarm (red).

The first type of alarm is designed to detect any change
in the signal level. It is calculated from the vector u with a
matched subspace filter (1), which uses an identity matrix
I as a signal estimator. It thus becomes a simple signal-
level detector to compare against a threshold, 𝜆

𝑐
, optimally

calculated for a given PFA
𝑐
[25]:

𝑐
𝑖
= u𝑇
𝑖
Iu
𝑖
≷ 𝜆
𝑐
. (1)

The second type of alarm is designed to observe the
permanence of the change in the signal level, thus avoiding
false alarms triggered by random changes or low persistence
elements (e.g., a hot element moving into the infrared
coverage area). It is calculated again from the vector u using
a matched subspace filter, but now a projection matrix, P, is
employed as a signal estimator, as designed in [25]. Assuming
that the fire signature is inside a “low pass” subspace, the
resulting estimator, r (2), with a 𝜒2

𝑝
distribution (chi-square

probability density function (pdf) with 𝑝 degrees of freedom,
where 𝑝 is the subspace dimension), is compared with

a second threshold, 𝜆
𝑝
, optimally calculated for a given PFA

𝑝

[25]:

𝑟
𝑖
= u𝑇
𝑖
Pu
𝑖
≷ 𝜆
𝑝
. (2)

The third type of alarm is designed to detect the presence
of increasing trends over a longer term.Thus, the observation
period of time is increased from the 𝐷 images used in the
previous alarms to the 𝐿 overlapped groups of 𝐷 images,
as seen in Figure 3. To accomplish this, we first generate
an estimator vector 𝑧 = [𝑟

1
⋅ ⋅ ⋅ 𝑟
𝐿
]
𝑇, from the 𝐿 previous

persistence detectors results, ri, leaving only a margin of
nu images without persistence detection to avoid sporadic
decreases, according to the fusion rule implemented in [28].

Then, an increase estimator is generated from the decision
fusion of the 𝐿 persistence detectors, z, each compared with
the threshold 𝜆

𝑖
. As in the previous cases, this threshold is

optimally obtained from [27] for a required PFA
𝑖
, according

to the following expression (3):

z𝑇Q(𝑛)𝑇(Q(𝑛)Q(𝑛)𝑇)
−1

sn
√2𝑝s𝑇
𝑛
(Q(𝑛)Q(𝑛)𝑇)−1sn

≷ 𝜆
𝑖
, (3)
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where 𝑠
𝑛
= [1 ⋅ ⋅ ⋅ 1]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐿−𝑛

𝑇, and the difference matrix is defined by

Q(𝑛) = Q
𝐿−𝑛+1

⋅ ⋅ ⋅Q
𝐿−1
⋅ Q
𝐿
. Where matrix Q

𝐿
is defined by

(4)

Q
𝐿
=

[

[

[

[

[

−1 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 −1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

...
0 0 0 ⋅ ⋅ ⋅ −1 1

]

]

]

]

]

}
}
}
}

}
}
}
}
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𝐿

𝐿 − 1 (4)

Finally, the fourth type of alarm is the thermal saturation
alarm, which is activated if the saturation level of the IR
camera is surpassed.

These four types of detectors generate the corresponding
four alarm types, but in practice it has been observed that they
may be fused together (see detection scheme in Figure 3) as
follows.

(i) Type 1, signal level alarm, is used as a requirement for
all other alarms, thus preventing any observation of a
low-level signal.

(ii) Type 2, persistence level signal alarm, is used as a
condition for checking the increase in the persistence
in the type 3 alarm. With the nu parameter, it allows
a number of controlled images without increased
detection, and thereby avoids being too restrictive. A
more comprehensive study on this condition can be
found in [31].

(iii) Type 3, increasing alarm, is activated when Type 1
(signal level alarm) and Type 2 (persistence alarm)

LevelSpan
(30)
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Level +

span/2 = 40

Figure 4: Change of level and span to leave sufficient margin of fire
growth.

have each been previously activated. This is a good
indication of a possible source of fire.

(iv) Type 4, thermal saturation alarm, is also used as an
indication of fire if Types 1 and 2 have been previously
activated. This is because, if the system is calibrated
correctly, the level and span parameters of the IR
camera must be artificially increased (e.g., 50% of the
span, as shown in Figure 4). The fire level will then
have a margin for growth. In Type 4, the thermal
saturation level is only achievable if the signal level
has been growing. In this case, Type 3 likewise fails
because it does not possess any margin for growth.
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Figure 5: Capture of processing example in laboratory simulation.

3. Experiments

The system improvements were tested both in the laboratory,
with known conditions, and in a controlled fire test. Addi-
tionally, results from a live-burn test in a real environment
are shown to demonstrate the effectiveness of the proposed
system.

In the laboratory experiments, the system was tested
using a high power resistor supplied by a DC power source.
Initially, with the power off, the systemwas calibrated and the
pattern was generated. Subsequently, we activated the power
supply and increased the voltage applied to the resistor; the
increased radiated temperature simulated a possible source
of heat.

In this case, we had to adjust the system parameters
to simulate a fire at close range. Also, we had to add
Gaussian noise onto the images with which the patternw was
calculated, because the span values were too small, and this
caused numerical errors in the calculation of the calibration
matrices. The added noise had a zero mean, and the variance
was adjusted by taking into account the range of values of the
camera signal (span).

Figure 5 shows captures of processing examples in the
laboratory simulation.The left section displays a logwith each
iteration of the normal programoperation.The right contains
four images as follows: in the top left, the pattern used to
detect the alarms is displayed; the top right shows the image
captured by the thermal camera, as it is being processed;
the bottom left shows the detected alarms; and the bottom
right shows these detected alarms over the visible image.
We can see how only the simulated fire is detected when
generating the different types of alarms. Furthermore, on the
bottom right, detected alarms are overlapped in the visible
image, in order to locate them more easily. This process was

performed using a projective transformation of the thermal
image coordinates to the corresponding coordinates of the
visible image.This transformation was calculated beforehand
by manually defining equivalent locations in both images. In
this case, alarms are not perfectly located on the visible image,
because the distances with respect to the cameras are small,
and the transformation error is large. Finally, a frame is also
drawn to delimit the area in which all the alarms occur.

A controlled fire test was then performed in a real
environment. The simulated fire was generated in a small
container at a distance of 100m (Figure 6).

In Figure 6, the captured thermal image (FLIR
ThermoVision A20-V, Focal Plane Array (FPA), uncooled
microbolometer with spectral range: 7,5 to 13 𝜇m) can be seen
on the left, and the visible image with overlapped alarms, on
the right. Also, a closer view of the camera mounting and the
source of the fire is shown in both images, respectively. The
figure shows how the system properly detected the simulated
fire and, in this case, correctly located it on the visible image.
Several tests were performed with different levels of system
sensitivity; in all cases, early detection of the fire was attained.

Finally, we tested the system in two real environments,
with real controlled fires under firefighter supervision. In this
case, the infrared data was recorded, and these recordings
were subsequently processed in the laboratory to simulate a
real-time operating environment, thereby allowing a com-
prehensive examination of the system performance to be
conducted, based on different parameters.

The first test was held in the Font Roja Natural Park in
Alcoy (Alicante). It was a fire at a distance of 800meters
(Figure 7), and the fire can be seen in the image to start
approximately 50 seconds into the recording.The second one
was held in the Valencian town of Ayora. It was a fire at
a greater distance (about 1500meters), and the fire can be
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Figure 6: Controlled fire test in real environment.

Figure 7: Example of controlled fire detection in real environment.

seen in the image to start approximately 30 seconds into the
recording.

A comprehensive analysis of the alarm evolutionwas then
carried out for a fixed PFA using independent detectors and
the fusion rules implemented in the system (developed and
discussed in Section 2). The results of this analysis of the
experiments in Font Roja and Ayora are shown in Figures 8
and 9, respectively, as a comparison between independent
detectors (a) and fused detectors (b). At the top of each
subfigure, the state of the detected alarms for a given time
is seen. The middle graph displays the evolution over time of
the total number of alarms of different types for the whole
image. The bottom subfigure graphs the evolution of alarms
for a given pixel over time.

Looking specifically at the alarm images located at the top
of these figures, the spatial distribution of the fire at a given
instant (indicated by the vertical black line) can be deduced.

From these, it can be verified that these are two fires moving
spatially, because the increasing alarms are located at one end
of the fire. Namely, in Figure 8, a fire is moving toward the
left, while in Figure 9, displacement is to the right.

The bottom of each figure displays the time evolution for
the different alarms of the same fire for a particular pixel,
which has been chosen in order to observe all types of alarms.
In both cases, it can be seen how, at this point, the fire
temperature increased until reaching saturation. During this
time, various types of alarms were generated, depending on
whether the fusion of detectors was being used or not.

In the nonfusion case, it can be observed how the increas-
ing alarms may be activated before the persistence alarm,
which could lead to an advantage in detection time. However,
this may generate a greater number of false detections, as
seen in the alarms that appear on the bottom-right portion
of the alarms image in Figure 8(a) and, in the early detections
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Figure 8: Fire alarm evolution for a fixed PFA with independent detectors (a) and fused detectors (b) in Font Roja.
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Figure 9: Fire alarms evolution for a fixed PFA with independent detectors (a) and fused detectors (b) in Ayora.

appear in the evolution of the number of alarms in the same
figure.These are not observed in the case of the fused scheme
(see Figure 8(b)).

We can conclude that, for a fixed PFA, the probability
of fire detection of the system can be greatly enhanced if
these increasing alarms are preceded by persistence alarms,
although a detection delay is introduced.That is, the necessity
of using the implemented fusion rules and how this use
introduces a significant improvement in a real environment
are verified.

While working with the fused detector scheme, an anal-
ysis was likewise performed on the evolution of the total
number of alarms (Figure 10) and the time to the first alarm

(Figure 11), depending on the required system PFA and the
type of alarm.

The results shown in Figure 10 verify that, in practice,
the number of persistence and increasing alarms rises as the
PFA increases, independently of the saturation alarms. This
is logical: as the PFA increases, more true or false alarms are
present in the system. Thus, once again, the control exerted
over the PFA is verified.We can also observe that the number
of alarms is considerably greater in the case of Font Roja, since
it was a fire at a smaller distance than in Ayora.

From Figure 11 we can verify in practice how, as the
PFA increases, the time to the first alarm decreases. This
is evident in the two graphs but particularly noticeable in
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Figure 10: Number of alarms versus PFA, for different types of alarms, in Font Roja (a) and Ayora (b).
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Figure 11: Time of the first alarm versus PFA for persistence (Alarm-p) and increasing (Alarm-i) alarms, in Font Roja (a) and Ayora (b).

the green line (persistence alarms) in Font Roja (Figure 11(a)),
where the first alarms in the highest PFA were false, likewise
observed in Figure 8(a). In Figure 11(b), this aspect is more
clearly observed. The delay in the appearance of increasing
alarms with respect to persistence ones is nearly constant and
independent of the PFA.

4. Conclusions

We present the next step in the evolution of the multisensor
wireless network system, based on infrared and advanced
image sensors for automatic wildfire detection. This paper
focuses on the description of the sensor and the processing
scheme, highlighting the improvements in both.

The different types of detectors are described and spe-
cial emphasis is given to the decision fusion rules for the

persistence and increase detectors, which can exploit short-
and long-term characteristics expected in a real fire.

The functionality of the system is verified in diverse,
controlled real-environment tests in order to authenticate
the accuracy of the proposed system. Spatial and tempo-
rary evolutions of the alarms are likewise shown as part
of an evaluation of the system in a real environment.
Through a comprehensive analysis of different processing
schemes, the necessity of including decision fusion is demon-
strated. The performance of the system is also evaluated
by measuring the number of alarms and the time to
the first alarm corresponding to a real fire, for different
PFA.

The results obtained reveal a high potential for this system
in aiding human surveillance. Future research will include
detecting smoke generated by a fire in the visible image.
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“Real-time fire and flame detection in video,” in Proceedings of
the IEEE 30th International Conference on Acustics, Speech and
Signal Processing (ICASSP ’05), pp. 669–672, 2005.

[11] J. R. Martinez-de Dios, B. C. Arrue, A. Ollero, L. Merino, and
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