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  11 

The disintegration under composting conditions of films based on poly(lactic acid)-12 

poly(hydroxybutyrate) (PLA-PHB) blends and intended for food packaging was studied. Two 13 

different plasticizers, poly(ethylene glycol) (PEG) and acetyl-tri-n-butyl citrate (ATBC), were 14 

used to limit the inherent brittleness of both biopolymers. Neat PLA, plasticized PLA and 15 

PLA-PHB films were processed by melt-blending and compression moulding and they were 16 

further treated under composting conditions in a laboratory-scale test at 58 ± 2 ºC. 17 

Disintegration levels were evaluated by monitoring their weight loss at different times: 0, 7, 18 

14, 21 and 28 days. Morphological changes in all formulations were followed by optical and 19 

scanning electron microscopy (SEM). The influence of plasticizers on the disintegration of 20 

PLA and PLA-PHB blends was studied by evaluating their thermal and nanomechanical 21 

properties by thermogravimetric analysis (TGA) and the nanoindentation technique, 22 

respectively. Meanwhile, structural changes were followed by Fourier transformed infrared 23 

spectroscopy (FTIR). The ability of PHB to act as nucleating agent in PLA-PHB blends 24 

slowed down the PLA disintegration, while plasticizers speeded it up. The relationship 25 

between the mesolactide to lactide forms of PLA was calculated with a Pyrolysis-Gas 26 

Chromatography-Mass Spectrometry device (Py-GC/MS), revealing that the mesolactide 27 

form increased during composting. 28 

 29 

Keywords: Poly(lactic acid); Poly(hydroxybutyrate); blend; biodegradable; plasticizers. 30 

 31 

*Corresponding author. Tel.: +34-966528433; fax: +34-966528433 32 

E-mail address: marrieta@itm.upv.es (M.P. Arrieta) 33 

  34 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

1- Introduction 35 

Poly(lactic acid), PLA, and poly-hydroxybutyrate (PHB) are two of the bio-based and 36 

biodegradable polymers which have focused some attention by their possibilities as 37 

environmentally-friendly food packaging materials. In this sense, PLA is currently the most 38 

used biopolymer in the food packaging sector for short shelf-life products [1-4], owing to its 39 

high mechanical strength, easy processability, superior transparency, availability and low 40 

cost. Poly(hydroxybutyrate) (PHB) is the most common representative of 41 

poly(hydroxyalkanoates) (PHA) [5], and it has been also proposed for short-term food 42 

packaging applications [6]. Conversely, there are not many commercial products of PHB by 43 

its narrow processing window, high brittleness, [5] and price [7].  44 

A considerable number of research work has been reported on the misicibility between 45 

PLA and PHB and possible applications in food packaging [8-11] It is known that PLA shows 46 

limited or partial miscibility with low molar mass PHB [10, 12]. The temperature used during 47 

the blend preparation has also significant influence in the miscibility between both polymers. 48 

In this sense Zhang et al. (1996) reported that PLA-PHB blends prepared at high temperature 49 

exhibited greater miscibility than those prepared by solvent casting at room temperature [13] 50 

since PLA-PHB systems are fully miscible in the melt state [11, 14]. This effect could be due 51 

to the transesterification reaction between PLA and PHB chains [13]. In addition, the 52 

miscibility between PLA and PHB is strongly dependent on their ratio in the blend. For 53 

instance, Furukawa et al. (2005) studied PLA/PHB films prepared by solvent casting in 54 

chloroform with blending ratios (w/w) 20/80, 40/60, 60/40, and 80/20 (PLA/PHB). They 55 

reported that PHB crystallized as very small spherulites that may act as nucleation sites of 56 

PLA in the 20/80 blend [8]. Similarly, Zhang and Thomas (2011) studied PLA/PHB blends in 57 

different proportions (100/0, 75/25, 50/50, 25/75 and 0/100, w/w) prepared by melt blending 58 

followed by compression moulding [9]. They found that PLA/PHB 75/25 films showed 59 

interesting properties for specific applications, with increased crystallinity and optimal 60 

miscibility between both polymers, resulting in improved tensile properties compared with 61 

neat PLA. More recently, Bartczak et al. (2013) proposed the modification of PLA by the 62 

addition of PHB up to 20 wt% for food packaging applications and they concluded that PHB 63 

can be considered as an effective impact modifier for PLA, increasing its impact resistance 64 

[10]. PLA-PHB blends (75:25, w/w) prepared by melt-blending and compression moulding 65 

have been proposed for films intended for food packaging [3, 5] and it was observed that the 66 

addition of 25 wt% of PHB improved PLA mechanical and barrier properties due to the 67 

ability of PHB to act as a nucleating agent at this PLA/PHB ratio [5]. 68 
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Films processed from PLA/PHB blends are still rigid and brittle, while their 69 

processing for films manufacturing remains an issue to avoid fractures [5]. This drawback can 70 

be overcome by plasticization to improve processability and ductility of these films [3, 5]. But 71 

not all plasticizers could be adequate for such application. It should be taken into account that 72 

plasticizers should satisfy the strict requirements applied to materials intended to be in contact 73 

with food. They should be also miscible with the polymer matrix [1, 15, 16] and stable at the 74 

high temperatures used during processing [16], providing suitable mechanical and barrier 75 

properties [15]. In this sense, poly(ethylene glycol) (PEG) and citrate esters have been 76 

proposed as efficient plasticizers for PLA [16, 17], while PHB has been successfully 77 

plasticized with PEG [18] and acetyl-tri-n-butyl citrate (ATBC) [19]. PEG is water-soluble 78 

[20] and ATBC is obtained from naturally occurring citric acid. Both are non-toxic 79 

plasticizers [21]. 80 

These blends are promising candidates for sustainable post-use waste treatments, such 81 

as composting [22]. Disintegration in compost is governed by aerobic fermentation that 82 

mostly results in humus-rich soil, while landfill disposal is mediated by anaerobic 83 

fermentation producing hazardous methane. Even if methane produced in landfills could be 84 

used as an energy source [22], it is known that the huge amount of plastic waste disposal in 85 

landfills must be reduced [23, 24]. Thus, composting would be adequate for short-term food 86 

packaging plastics as end-life option. 87 

Biodegradation in composting conditions of PLA [25-27] and PHB [5, 6] has been 88 

already reported. It is known that PLA degradation in compost takes place in two main and 89 

consecutive stages, i.e. the hydrolytic and enzymatic degradation [23]. PLA disintegration 90 

starts by surface hydrolysis [28] leading to polymer random decomposition [4], while PHB 91 

disintegration is firstly caused by microorganisms that erode the polymer surface and 92 

gradually spreading to the bulk [29]. Lemmouchi et al. (2009) reported that the disintegration 93 

of PLA in composting conditions was enhanced by the presence of plasticizers [5]. 94 

The influence of PHB and plasticizers on the PLA disintegrability in composting 95 

conditions was evaluated in this work. Plasticized PLA/PHB films were prepared by melt-96 

blending followed by compression moulding. The disintegration patterns during composting 97 

of plasticized PLA/PHB films were investigated and compared with their plasticized PLA 98 

counterparts. Disintegrability was followed by morphological, structural, nanomechanical and 99 

thermal analysis, with the main objective to obtain information on the compostability of 100 

plasticized PLA-PHB blends as end-life option for food packaging applications. 101 

 102 
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2. Experimental 103 

 104 

2.1. Materials 105 

Poly(lactic acid) (PLA Ingeo™ 4032D, Mn= 217 kDa, 2 wt% D-isomer, Mw/ Mn = 2) 106 

was supplied in pellets by NatureWorks LLC (Minnetonka, MIN, USA), 107 

Poly(hydroxybutyrate) pellets (PHB, P226, Mw = 426 kDa) was purchased from Biomer 108 

(Krailling, Germany). Poly(ethylene glycol) (PEG, Mn= 300 g mol-1) and acetyl-tri-n-butyl 109 

citrate (ATBC, M = 402 g mol-1, 98% purity) were purchased from Sigma-Aldrich (Madrid, 110 

Spain). 111 

 112 

2.2. Films preparation 113 

PLA-PHB blends were processed by mixing PLA (previously dried overnight at 80 ºC 114 

in a vacuum oven) and PHB pellets (treated for 4 hours at 40 ºC), in 75:25 wt% ratio in a 115 

Haake PolyLab QC mixer (Thermo Fischer Scientific Inc., Waltham, MA, USA) at 180 ºC 116 

and a rotation speed of 50 rpm for 4 min. ATBC and PEG were further added (15 wt%) after 117 

3 min once PLA or PLA-PHB blends had achieved the melt state. Each blend was then 118 

processed into films by compression moulding at 180 ºC in a hot press (Mini C 3850, Carver, 119 

Inc., Wabash, IN, USA). Blends were kept between the plates at atmospheric pressure for 2 120 

min until melting and they were further submitted to a pressure cycle of 3 MPa for 1 min, 5 121 

MPa for 1 min and finally 10 MPa for 2 min, with the aim to eliminate the trapped air bubbles 122 

[30]. These films were then quenched to room temperature. Five formulations were obtained: 123 

control neat PLA film, PLA plasticized with PEG or ATBC (PLA-PEG and PLA-ATBC), and 124 

plasticized PLA-PHB blends (PLA/PHB-PEG and PLA/PHB-ATBC). The films average 125 

thickness, measured with a Digimatic Micrometer Series 293 MDC-Lite (Mitutoyo, Japan) ± 126 

0.001 mm, was 200 ± 50 µm. Control films were stored at 25 ºC and 30% relative humidity 127 

(RH) in an acrylic desiccator cabinet before testing. 128 

 129 

2.3. Disintegration under composting conditions 130 

Disintegration under composting conditions was performed by following the ISO-131 

20200 standard [31]. Solid synthetic waste was prepared by mixing 10% of compost at pH 6.5 132 

(supplied by Mantillo, Spain), 30% rabbit food, 10% starch, 5% sugar, 1% urea, 4% corn oil 133 

and 40% sawdust and it was mixed with water in 45:55 ratio. Water was added periodically to 134 

the reaction container to maintain the relative humidity in the compost medium. Films were 135 

prepared (30 x 30 x 0.2 mm3) and they were buried 6 cm depth in plastic reactors containing 136 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

the solid synthetic wet waste. Each sample was contained in an iron mesh to allow their easy 137 

removal after treatment, but allowing the access of microorganisms and moisture [32]. 138 

Reactors were introduced in an air circulation oven (DO/200 Carbolite, Hope Valley, UK) at 139 

58 ºC for 35 days. The aerobic conditions were guaranteed by periodical gentle mixing of the 140 

solid synthetic wet waste [18, 25]. Films were recovered from the disintegration container at 141 

different times (7, 14, 21 and 28 days), washed with distilled water, dried in an oven at 37 ºC 142 

for 24 h, and weighed. Disintegrability was calculated by normalizing the sample weight at 143 

each time to the initial value [33], while photographs were taken to all samples once extracted 144 

from the composting medium. 145 

 146 

2.4. Characterization techniques 147 

2.4.1. Color properties 148 

Color properties of plasticized PLA and plasticized PLA/PHB films before and after 7 149 

days of incubation were studied by measuring CIELab colour coordinates L (lightness), a* 150 

(red-green) and b* (yellow-blue), with a KONICA CM-3600d COLORFLEX-DIFF2, 151 

HunterLab (Hunter Associates Laboratory, Inc, Reston, VA, USA) colorimeter. The 152 

yellowness index (YI) was also determined. The instrument was calibrated with a white 153 

standard tile. Measurements were carried out in quintuplicate at random positions over the 154 

films surface and average values were calculated. Total color differences (∆E) induced by 155 

disintegration in samples after 7 days in composting conditions with the control films were 156 

calculated by using Equation 1: 157 

 158 

∆� =	√∆�� +	∆	∗� +	∆�∗�         (1) 159 

 160 

2.4.2. Surface microstructure 161 

Differences in surface microstructures of plasticized PLA and plasticized PLA/PHB 162 

films before and after 21 days of treatment were evaluated by using a LV-100 Nikon Eclips 163 

optical microscope equipped with a Nikon sight camera at 20X magnification (Tokyo, Japan). 164 

The extended depth of field (EDF-z) imaging technique was used to improve resolution. 165 

Furthermore, surface microstructure of films before and after 14 and 21 days of disintegration 166 

was studied by Scanning Electron Microscopy (SEM) with a Phenom (FEI Company, 167 

Eindhoven, The Netherlands) operated at 10 kV. 168 

 169 

2.4.3. Fourier transformed infrared spectroscopy (FTIR) 170 
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FTIR analysis of films was carried out in the 600-4000 cm-1 range in attenuated total 171 

reflection (ATR) mode with a Perkin-Elmer BX IR spectrometer (Perkin Elmer Spain, S.L., 172 

Madrid Spain). Tests were performed at room temperature using 128 scans and 4 cm-1 173 

resolution. A background spectrum was obtained before each test to compensate by spectra 174 

subtraction the humidity effect and the presence of carbon dioxide. 175 

 176 

2.4.4. Thermogravimetric analysis (TGA) 177 

Thermogravimetric analysis was performed with a thermogravimetric analyzer 178 

TGA/SDTA-851e Mettler Toledo (Schwarzenbach, Switzerland). Tests were run under 179 

dynamic mode from 30 to 600 ºC at 10 ºC min-1 in nitrogen flow (50 mL min-1) to avoid 180 

thermo-oxidative degradation. The initial degradation temperatures (T0) were determined at 181 

5% mass loss while temperatures at the maximum degradation rate (Tmax) were calculated 182 

from the first derivative of the TG curves (DTG). 183 

 184 

2.4.5. Pyrolysis/ Gas Chromatography- Mass Spectrometry (Py/ GC-MS) 185 

The relationship between mesolactide and (D, L)-lactide forms in the PLA structure 186 

before and after 21 days under composting conditions was evaluated with a Pyrolysis-Gas 187 

Chromatography-Mass Spectrometry device (Py-GC/MS). Film samples were pyrolyzed at 188 

1000 ºC for 0.5 s with a Pyroprobe 1000 (CDS Analytical, Oxford, PA, USA), coupled to a 189 

gas chromatograph (6890N, Agilent Technologies, Spain S.L., Madrid, Spain) equipped with 190 

a 30 m long HP-5 (0.25 mm thickness) column and using helium as carrier gas with a 50:1 191 

split ratio. The GC oven was programmed as previously reported [34], the column program 192 

started at 40 ºC for 2 min, followed by a stepped increase of 5 ºC min-1 to 200 ºC (15 min 193 

hold), and further increase at 20 ºC min-1 to 300 ºC (5 min hold). Detection was carried out 194 

with an Agilent 5973N mass selective instrument. The transfer temperature from the GC to 195 

the MS was set at 180 ºC. The mass selective detector was programmed to detect masses 196 

between 30 and 650 amu. The identification of PLA and PHB degradation products was 197 

carried out by the characteristic fragmentation patterns observed in Py-GC/MS spectra. 198 

 199 

2.4.6. Nanomechanical properties 200 

Nanomechanical properties were measured with a nanoindenter machine G-200 201 

(Agilent Technologies, Santa Clara, CA, USA) with a previously calibrated Berkovich 202 

diamond tip. Experiments were carried out by Continuous Stiffness Measurement (CSM) [35, 203 

36] under a 70 Hz harmonic oscillation frequency and 2 nm of harmonic amplitude [36] 204 
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maintaining a constant 0.05 s-1 indentation rate. An array of 5 x 5 indentations distanced 50 205 

µm were programmed at a constant 2000 nm depth, calculating the average values between 206 

the 400 nm and 600 nm depth to avoid the roughness effect at the initial penetration depth. 207 

The reduced elastic modulus (Er) was calculated instead of the Young’s Modulus since the 208 

Poisson’s coefficient is unknown for these blends and plasticized polymers. 209 

 210 

3. Results and discussion 211 

Fig. 1 shows the visual appearance of samples recovered at different testing times. In 212 

general terms, all materials increased their opacity during composting even at the first tested 213 

time (7 days). It is noticeable that PHB slowed down the PLA disintegration rate, since 214 

formulations with PHB were still visible after 28 days, while those with no PHB were 215 

completely disintegrated at that time. It was observed that disintegrability under composting 216 

started in the polymers amorphous phase and this was mostly attacked by microorganisms at 217 

the initial stage of this process. This effect was apparent by the loss of transparency in films 218 

after treatment. The increase in crystallinity in all these materials decreased their degradation 219 

rate since the ordered structure in the crystalline fractions could retain the action of 220 

microorganisms. Thus, the addition of mostly crystalline PHB slowed down the disintegration 221 

of the PLA matrix. In fact, in a previous work we studied the disintegrability of neat PHB 222 

films in composting conditions and it was observed that it only reached 1.5% after 35 days 223 

[5]. On the other hand, the addition of plasticizers resulted in a clear increase in the 224 

disintegration phenomenon. 225 

Fig. 2 shows the colorimetric results obtained after 7 days of exposition to composting 226 

conditions. The characteristic high brightness of neat PLA decreased after 7 days in 227 

composting as evidenced by the decrease in the lightness value (L) (Fig. 2a). A similar trend 228 

was observed for PLA and PLA-PHB blends plasticized with ATBC. However, a different 229 

behaviour was observed for films plasticized with PEG. These samples showed some increase 230 

in lightness with testing time. This effect could be due to some plasticizer losses and the 231 

consequent compression of macromolecular chains. The addition of PHB to the PLA matrix 232 

produced the increase in clear amber tone in PLA-PHB blends. The yellowness index (YI) 233 

was measured and results are shown in Fig. 2b. No significant differences in YI were 234 

observed between neat and plasticized PLA films before and after 7 testing days. Plasticized 235 

PLA/PHB blends showed a clear decrease in YI values, being this effect more evident in the 236 

PLA/PHB-PEG film. In addition, positive values of b*, indicative of a deviation towards 237 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

yellow, as well as negative values of a*, indicative of a deviation towards green, corroborated 238 

this tendency to color change in PLA/PHB-PEG films (Fig. 2c). 239 

As can be seen in Fig. 1 some differences in visual appearance after 7 days of 240 

composting with respect to the corresponding formulation before the test start were observed. 241 

Total color difference (∆E) values indicated that neat PLA was the only sample with no 242 

apparent visual changes (∆E = 1.7), since ∆E values higher than 2.0 represent the threshold of 243 

the perceptible color difference for the human eye [37]. The ∆E values for PLA-PEG and 244 

PLA-ATBC films were 2.9 and 2.5, respectively, while they were 5.3 and 2.1 for PLA/PHB-245 

PEG and PLA/PHB-ATBC, correspondingly. In summary, all plasticized materials showed 246 

perceptible color changes after only 7 days of composting treatment. Changes in films color 247 

at the first stages of the composting test were related to the beginning of the hydrolytic 248 

degradation process, inducing some changes in the films refraction index as a consequence of 249 

water absorption and/or the presence of hydrolysis products [33]. At higher testing times, 250 

films color could not be determined in the same way due to the samples rupture into small 251 

pieces and their irregular surfaces. Nevertheless, some qualitative observations could be 252 

drawn, since it was clearly noticeable that apparent color changes were related to the 253 

degradation stage. PLA/PHB blends tended to yellow at high testing times (Fig. 1), due to the 254 

PLA disintegration and the consequent increase in the PHB proportion in these formulations. 255 

Finally, at 28 days, samples showed a clear yellowness pattern due to the total disintegration 256 

of the PLA matrix (Fig. 1). 257 

Visual observations were confirmed by calculating the disintegration degree (weight 258 

loss) as a function of time (Fig. 3) where 90% of disintegration was considered as the goal of 259 

samples disintegrability [33], as indicated in the current legislation for biodegradable 260 

materials [31]. No significant differences in weight loss were observed between samples after 261 

7 days, but after 14 days the disintegration rate clearly increased for all formulations. SEM 262 

micrographs (Fig. 4) showed deep fractures on the films surfaces after 7 testing days, and 263 

they were particularly notorious in plasticized materials. No significant differences were 264 

observed in plasticized PLA/PHB blends, but PLA-PEG showed higher disintegration rate 265 

than PLA-ATBC. This significant difference in plasticized PLA films could be explained by 266 

the hydrophilic nature of PEG, in contrast with the hydrophobic character of ATBC. Water 267 

absorption and diffusion through the polymer bulk in the initial phase of disintegration in 268 

PLA-PEG films was faster than in PLA-ATBC, resulting in higher hydrolysis in the polymer 269 

chain leading to small molecules (monomers and short-chain oligomers) that are available for 270 

the microorganisms attack [26]. However, PLA/PHB-ATBC blends showed higher 271 
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disintegration rate (up to 65%) after 21 days of composting than PLA/PHB-PEG (below 272 

50%). This different behaviour could be explained by the formation of acid groups during the 273 

plasticizer release in PLA/PHB-ATBC films, which are able to promote the hydrolysis of 274 

polymer chains [33] and consequently accelerating the disintegration process. This result was 275 

confirmed by FTIR analysis where the formation of hydroxyl groups (3200-3600 cm-1) in 276 

plasticized PLA-PHB blends showed higher intensity for the PLA/PHB-ATBC blend, as 277 

discussed below. Moreover, SEM micrographs of the PLA/PHB-ATBC blend after 21 days in 278 

composting conditions also showed evident signs of surface erosion with deep fractures, 279 

while the PLA/PHB-PEG blend showed a more regular surface. As observed in Fig.3, 280 

plasticized PLA films achieved more than 85% of disintegration after 21 days and all 281 

materials showed weight losses higher than 90% after 28 days, indicating the compostable 282 

nature of all these blends. 283 

The film surfaces were also investigated by optical microscopy and their roughness 284 

profiles were determined with the EDF-z technique (Fig. 5). In a previous work we observed 285 

that neat PLA films showed smooth surfaces which were rough in neat PHB films [5]. When 286 

applying this technique to PLA and plasticized PLA films, smooth surfaces were obtained 287 

(Fig. 5) in both cases, although plasticized PLA/PHB films showed some roughness. The 288 

more irregular surface profiles showed by films with PHB could be attributed to its higher 289 

crystallinity. After 21 days under composting conditions, all samples showed some increase 290 

in roughness when compared to the same formulation before the beginning of the test. 291 

Fig. 6 shows the FTIR spectra of each film at different testing times. All PLA based 292 

samples revealed the typical band at 1750cm-1 assigned to the asymmetric stretching of the 293 

carbonyl group (-C=O) by lactide [1, 25]. At 1180 cm-1 the -C-O- bond stretching in the -CH-294 

O- group of PLA was also observed [25]. The 1450 cm-1 band was assigned to the -CH3 295 

group [1, 38]. It was reported that the intensity of the -C=O band increased with the 296 

composting time due to the hydrolytic degradation, resulting in some increase in the number 297 

of carboxylic end groups in the polymer chains [25]. In these materials, the -C=O band 298 

intensity increased with the composting time in both, PLA and plasticized PLA samples, 299 

while it showed broader absorption in films containing PHB. This result was related to the 300 

crystalline carbonyl group stretching in PHB at 1735 cm-1 [29]. The good miscibility between 301 

PLA and PHB was related to the observation of a unique narrow band corresponding to the 302 

carbonyl group [9]. Two bands were clearly observed in the PLA/PHB-ATBC film at this 303 

wavenumber range at early disintegration stages (Fig. 6e). This observation could be related 304 

to some loss of interaction between both polymers with the increase in disintegration time. 305 
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Another important band was observed around 1600 cm-1, corresponding to the formation of 306 

carboxylate ions by the action of microorganisms, able to consume lactic acid and PLA 307 

oligomers on the film surface leaving carboxylate ions at the chain ends [33]. This behaviour 308 

was particularly noticeable in PLA-ATBC films after 21 days under composting (Fig. 6c). It 309 

should be also highlighted that this band appeared after 7 days in PLA and plasticized PLA 310 

samples and after 14 days in plasticized PLA/PHB films, confirming that PHB helps to slow 311 

down the PLA disintegration rate under composting conditions. Two more bands 312 

corresponding to the amorphous and crystalline phases of PLA were observed at 866 cm-1 313 

and 756 cm-1, respectively [38]. These bands seemed to be unmodified in all samples during 314 

the whole composting test with the exception of the PLA-ATBC film, in which the band at 315 

866 cm-1 clearly increased in intensity after 21 days (Fig. 6c). 316 

TG and DTG curves (not shown) revealed the complete weight loss of PLA and 317 

plasticized PLA films in a single degradation step, while plasticized PLA/PHB blends were 318 

degraded in two steps, where the first one was assigned to the PHB decomposition and the 319 

second one, at higher temperatures, was related to the PLA thermal degradation. The initial 320 

degradation temperature (T0) was calculated for decomposition degree (α) 0.05 and the 321 

maximum degradation temperatures (Tmax) were calculated from TG and DTG curves. The 322 

main results are summarized in Table 1. It was observed that both degradation temperatures 323 

decreased significantly with the disintegration time. While a slight decrease (around 0.3%) 324 

was observed for T0 of neat PLA after 7 days, plasticized PLA films showed higher 325 

reductions (around 11% in PLA-PEG and 10% in PLA-ATBC). Lower reductions were 326 

observed for PLA/PHB-PEG and PLA/PHB-ATBC blends (5% and 1% in T0, respectively). 327 

The decrease in T0 after 7 testing days could be related with the high plasticizer loss caused 328 

by hydrolysis during the initial disintegration stages. It was also observed that plasticizers 329 

were more efficiently retained by PLA/PHB blends than by neat PLA. After 7 days the 330 

reduction of Tmax in PLA did not show large differences between PLA, PLA-PEG and 331 

plasticized PLA/PHB blends (around 3-5%) but PLA-ATBC showed a considerable reduction 332 

in this value, close to 20%. The Tmax of PLA reached the maximum reduction (18-23%) after 333 

21 days in plasticized PLA films. The corresponding peak of DTG associated with the PLA 334 

thermal degradation almost disappeared in the PLA/PHB-PEG film after 21 days, suggesting 335 

the gradual disappearance of PLA in the blend by being preferentially attacked by 336 

microorganisms during composting. Conversely, the reductions of Tmax corresponding to the 337 

PHB thermal degradation only reached 8% after 21 days of disintegration. 338 
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Fig. 7a shows the chromatogram obtained after pyrolysis of the PLA/PHB-PEG film 339 

before composting. Py-GC/MS analysis of all films showed the typical thermal degradation 340 

products of PLA with the characteristic series of signals at m/z = 56 + (n x 72) attributed to 341 

the PLA degradation products [34]. Peaks at retention times 17.5 min and 18.5 min showed 342 

highly similar mass spectra for m/z = 56 + 72 (n=1) where the main fragments were those 343 

with m/z = 32, 43, 45 and 56 being assigned to mesolactide and (L,D)-lactide [34]. For 344 

PLA/PHB blends, the broad peak of crotonic acid showing the main fragmentation at m/z = 345 

39, 41, 68, 69, and 86, was observed [5]. The peak at 23 min retention time was only 346 

observed in films plasticized with PEG with m/z = 32, 41, 68, 87, 103, 154, corresponding to 347 

the thermal degradation products of PEG. On the other hand, blends plasticized with ATBC 348 

showed two main peaks corresponding to tributyl propene-1,2,3-tricarboxylate (m/z = 41, 57, 349 

112, 139, 156, 157, 168, 213 and 269) at 40.5 min and the characteristic peak of tributyl 350 

acetylcitrate (m/z = 29, 41, 57, 129, 139, 157, 185 and 259) at 42.5 min (Fig 7b and 7c). 351 

It was observed that PLA/PHB-ATBC samples before and after 21 days under 352 

composting conditions showed the same ratio for these two peaks, while the PLA-ATBC film 353 

showed some decrease in the intensity of the tributyl propene-1,2,3-tricarboxylate peak after 354 

21 days, suggesting that ATBC was easily released from the PLA matrix. This result is in 355 

agreement with the higher degradation rate in PLA-ATBC samples (Fig. 3). This behaviour 356 

could be explained by the preferential microorganisms attack to low molar mass fragments, 357 

which are more easily consumed when ATBC is available while these molecules are more 358 

difficult to reach in the non-plasticized PLA/PHB blend. Furthermore, smaller peaks at higher 359 

retention times also showed the characteristic series of signals of PLA (m/z = 56 + n x 72) 360 

with n = 2 and 3. Table 2 also shows the mesolactide to (D,L)-lactide ratio obtained from the 361 

Py-GC/MS chromatograms. These results showed the increase in the mesolactide fraction of 362 

all materials during composting and they could be related to the preferential selection of 363 

microorganisms to attack the L-lactide fraction of the polymer structure [39]. 364 

Nanomechanical properties were investigated with the nanoindentation technique. 365 

Only fresh samples (stored at 25ºC and 30% RH) and those after 7 disintegration days could 366 

be tested, since those after 14 and 21 days were too fragile. The calculated hardness (H) and 367 

reduced modulus (Er) in depth profiles are shown in Fig. 8 Neat PLA showed the highest H 368 

and Er values (around 200 MPa and 3500 MPa, respectively). The presence of either 369 

plasticizers or PHB in PLA formulations clearly reduced these parameters, even before the 370 

disintegration test, due to the plasticizer effect which reduced the inherent brittleness of both 371 

biopolymers [5]. All films after 7 testing days showed lower values than the fresh materials. 372 
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These results demonstrated that nanoindentation is a powerful tool to evaluate the loss in 373 

mechanical properties of biopolymers submitted to composting [40, 41]. The lowest values 374 

corresponded to plasticized films after 7 days, corroborating the observation of the higher 375 

degradation rate in plasticized materials. Although the reduction on mechanical properties is 376 

one of the main consequences of the degradation process occurring during composting, this 377 

process also favoured the microorganism’s action. This effect could be explained since the 378 

loss in mechanical properties after 7 composting days produced a brittle material consisting in 379 

broken pieces with a high defects density, such as cracks and porous structure, permitting the 380 

easy access of microorganisms to the polymer bulk. The optical inspection of nanoindented 381 

samples (Fig. 9) revealed these defects. 382 

Fig. 10 shows the H and Er values averaged between 400 and 600 nm depth for 383 

plasticized and unplasticized materials. The reduction in both parameters after 7 composting 384 

days was more evident in films plasticized with PEG. While neat PLA lost around 20% in H 385 

and Er, all other materials lost approximately 50%, with the exception of the PLA/PHB-386 

ATBC film that showed a similar behaviour than neat PLA. This result confirmed that ATBC 387 

increased the interaction between PLA and PHB and this blend showed higher mechanical 388 

resistance. 389 

 390 

Conclusions 391 

Formulations based on plasticized PLA/PHB blends were successfully disintegrated 392 

under composting conditions in less than one month, stating their biodegradable character. 393 

The ability of PHB to act as nucleating agent in PLA/PHB blends slowed down the PLA 394 

disintegration, while plasticizers speeded it up. TGA analysis revealed that plasticizers were 395 

mainly lost during the initial disintegration stages, while substantial losses in mechanical 396 

properties for all blends were also observed. The presence of plasticizers favoured the surface 397 

hydrolysis leading to the loss in mechanical properties, which also made disintegration easier. 398 

Py-GC/MS studies demonstrated the increase in the mesolactide form for all blends due to the 399 

high microorganism’s activity during composting. In summary, plasticized PLA/PHB blends 400 

may offer good perspective for biodegradable food packaging industry by improving the 401 

polymer performance in films manufacturing and use. 402 
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Figure captions 523 

 524 

Fig. 1. Visual aspect of plasticized PLA and PLA-PHB films at different disintegration times 525 

 526 

Fig. 2. Colorimetric parameters of plasticized PLA and PLA-PHB films before and after 7 527 

days (7d) under composting conditions from the CIELab space: a) Lightness (L) values, b) 528 

yellowness index (YI) and c) a* and b* coordinates. 529 

 530 

Fig. 3. Degree of disintegration of: control PLA film, plasticized PLA and plasticized PLA-531 

PHB films under composting conditions as a function of time. 532 

 533 

Fig. 4. SEM observations of neat PLA, plasticized PLA and plasticized PLA-PHB films at 534 

different degradation time under composting conditions. 535 

 536 

Fig. 5. EDF-z profiles of films before and after 21 days under composting. 537 

 538 

Fig. 6. Infrared spectra (2000-700 cm-1) of: a) PLA, b) PLA-PEG, c) PLA-ATBC, d) PLA-539 

PHB-PEG and e) PLA-PHB-ATBC at different disintegration times under composting 540 

conditions. f) Infrared spectra (4000-2500 cm-1) of plasticized PLA-PHB blends at day 0 and 541 

21. 542 

 543 

Fig. 7. a) Chromatogram obtained after pyrolysis of PLA-PHB-PEG.  544 

ATBC degradation products obtained after pyrolysis of: b) PLA-ATBC and c) PLA-PHB-545 

ATBC before and after 21 days composting test. 546 

 547 

Fig. 8. a) Hardness and b) modulus curves obtained by nanoindentation of fresh films 548 

and those after 7 days in composting conditions. 549 

 550 

Fig. 9. Optical micrographs of the films surface of fresh films and after 7 composting days.  551 

Fresh PLA film shows the imprints of the Berckovich indenter. 552 

 553 

Fig. 10. Summary of H and Er results for each film calculated (400-600 nm) in depth 554 

 555 
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Table 1. TG and DTG parameters for films at different disintegration times 

Formulation Disintegration time (days) T0(ºC) Tmax PHB (ºC)  Tmax PLA (ºC)  

PLA 

0 332 - 366 
7 331 - 363 
14 261 - 346 
21 240 - 341 

PLA-PEG 

0 271  366 
7 240  350 
14 233  325 
21 218  298 

PLA-ATBC 

0 280  364 
7 253  278 
14 228  291 
21 224  278 

PLA-PHB-PEG 

0 269 285 324 
7 255 280 314 
14 224 282 337 
21 221 262 - 

PLA-PHB-ATBC 

0 272 290 361 
7 269 290 346 
14 220 271 332 
21 220 268 285 
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Table 2. Ratio between mesolactide and D,L-Lactide Py-GC/MS areas 

 
Formulation Disintegrability day mesolactide : D,L-Lactide 

PLA 
0 1 : 3.08  

21 1 : 1.66 

PLA-PEG 
0 1 : 7.15 

21 1 : 5.61 

PLA-ATBC 
0 1 : 6.33 

21 1 : 2.47 

PLA-PHB 
0 1 : 7.86 

21 1 : 2.62 

PLA-PHB-PEG 
0 1 : 7.36 

21 1 : 5.43 

PLA-PHB-ATBC 
0 1 : 4.43 

21 1 : 3.39 
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