Table of contents

Abstract .. 1
Resumen 2
Resum 3

CHAPTER 1. CONTEXT, OBJECTIVES AND THESIS OUTLINE

1.1 Introduction... .6
 1.1.1 Citrus waste... 6
 1.1.2 Inhibition of anaerobic digestion of citrus waste by CEO .. 7
 1.1.3 Pre-treatments to overcome inhibition.. 8
 1.1.4 Summary 8
1.2 Objectives... ... 9
1.3 Thesis outline... .9
1.4 References... 11

CHAPTER 2. CITRUS ESSENTIAL OILS AND THEIR INFLUENCE ON THE ANAEROBIC DIGESTION PROCESS. AN OVERVIEW

2.1 Introduction... 15
 2.1.1 Citrus waste... 15
CHAPTER 3. EFFECT OF LIMONENE ON BATCH ANAEROBIC DIGESTION OF CITRUS PEEL WASTE

3.1 Introduction .. 53

3.2 Materials and methods ... 54
 3.2.1 Substrates and inocula ... 54
 3.2.2 Biochemical methane potential tests ... 55
 3.2.3 Analytical methods .. 56
 3.2.4 Data analysis .. 57

3.3 Results and discussion ... 58
 3.3.1 Biochemical methane potential of citrus waste .. 59
3.3.2 Effect of citrus essential oil on the batch anaerobic digestion of orange peel.......... 59
3.3.3 Effect of low limonene concentrations (50-200 mg·kg⁻¹) on the anaerobic digestion..... 63
3.3.4 Effect of high limonene concentrations (200-3000 mg·kg⁻¹) on the anaerobic digestion 65
3.3.5 Adaptation ... 68

3.4 Conclusions ... 71
3.5 Acknowledgements ... 72
3.6 References ... 72

CHAPTER 4. STRATEGIES TO AVOID INHIBITION OF ANAEROBIC DIGESTION OF CITRUS WASTE: EFFECT ON LIMONENE CONCENTRATION, METHANE POTENTIAL AND PRODUCTION RATE

4.1 Introduction ... 77
4.2 Materials and methods .. 78
 4.2.1 Substrates ... 78
 4.2.2 Analytical methods ... 78
 4.2.3 Pretreatments ... 79
 4.2.4 Biochemical methane potential (BMP) tests ... 80
 4.2.5 Energy balances .. 81

4.3 Results and discussion .. 82
 4.3.1 Biological treatment ... 82
 4.3.2 Steam distillation .. 86
 4.3.3 Extraction with ethanol ... 88
 4.3.4 Comparison of treatment results .. 89
 4.3.5 Energy balances .. 92

4.4 Conclusions ... 93
4.5 Acknowledgements ... 93
4.6 References ... 93
CHAPTER 5. CODIGESTION OF CITRUS WASTE WITH CHICKEN AND PIG MANURE AS A STRATEGY TO OVERCOME INHIBITION OF ANAEROBIC DIGESTION BY CITRUS ESSENTIAL OIL

5.1 Introduction ... 99

5.2 Materials and methods .. 100

5.2.1 Substrates and inoculum ... 100

5.2.2 Semi-continuous anaerobic digestion tests .. 101

5.2.3 Analytical methods ... 103

5.3 Results and discussion .. 103

5.3.1 Feeding mixture M1 ... 104

5.3.2 Feeding mixture M2 ... 113

5.3.3 Feeding mixture M3 ... 120

5.3.4 Comparison of results of M1, M2 and M3 ... 126

5.4 Conclusions .. 128

5.5 Acknowledgements .. 129

5.6 References ... 129

CHAPTER 6. THERMAL AND MECHANICAL PRETREATMENTS OF CITRUS FRUIT AND CODIGESTION WITH COW MANURE AS STRATEGIES TO OVERCOME INHIBITION OF ANAEROBIC DIGESTION BY CITRUS ESSENTIAL OIL

6.1 Introduction ... 133

6.2 Materials and methods .. 134

6.2.1 Substrates and inoculum ... 134

6.2.2 Semi-continuous anaerobic digestion tests .. 134

6.2.3 Analytical methods ... 135

6.3 Results and discussion .. 135

6.4 Conclusions ... 142

6.5 Acknowledgements .. 142

6.6 References ... 147
CHAPTER 7. BIOLOGICAL AND EXTRACTIVE PRETREATMENTS OF ORANGE PEEL AND CODIGESTION WITH COW MANURE AS STRATEGIES TO OVERCOME INHIBITION OF ANAEROBIC DIGESTION BY CITRUS ESSENTIAL OIL

7.1 Introduction ... 151

7.2 Materials and methods .. 152
 7.2.1 Substrates and inoculum ... 152
 7.2.2 Semi-continuous anaerobic digestion tests .. 152
 7.2.3 Pre-treatments ... 153
 7.2.4 Analytical methods ... 155

7.3 Results and discussion .. 155
 7.3.1 Chemical characteristics of the substrates ... 155
 7.3.2 OLR increase every 14th day (Test 14d) ... 157
 7.3.3 OLR increase every 28th day (Test 28d) ... 162
 7.3.4 Biological treatment and OLR increase every 14th day (Test 14dBT) 168
 7.3.5 Biological treatment and OLR increase every 28th day (Test 28dBT) 176
 7.3.6 Ethanol extraction (EE) .. 182

7.4 Conclusions ... 186

7.5 Acknowledgements ... 188

7.6 References ... 188

CHAPTER 8. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

8.1 Conclusions ... 192
 8.1.1 Review on anaerobic digestion of citrus peel and inhibition by citrus essential oil 192
 8.1.2 Inhibitory concentration of limonene in batch anaerobic digestion 192
 8.1.3 Screening of pre-treatments .. 193
 8.1.4 Anaerobic co-digestion of citrus waste and manure .. 193
 8.1.5 Combination of co-digestion and pre-treatments to overcome inhibition 194
 8.1.6 Synthesis ... 195

8.2 Suggestions for future research ... 195
List of tables

CHAPTER 2. CITRUS ESSENTIAL OILS AND THEIR INFLUENCE ON THE ANAEROBIC DIGESTION PROCESS. AN OVERVIEW

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Chemical composition of citrus pulp</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Chemical composition of citrus essential oils (%)</td>
<td>20</td>
</tr>
<tr>
<td>2.3</td>
<td>Chemical composition of citrus essential oils (%) (continued)</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Chemical composition of citrus essential oils (%) (continued)</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Physical and chemical properties of limonene (WHO, 1998; Sikkema et al., 1995; Hazra et al., 2002)</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Inhibitory effect of citrus essential oils or its components on microorganisms (in vitro tests)</td>
<td>30</td>
</tr>
<tr>
<td>2.7</td>
<td>Inhibitory effect of citrus essential oils or its components on microorganisms (in vitro tests) (continued)</td>
<td>31</td>
</tr>
<tr>
<td>2.8</td>
<td>Inhibitory effect of citrus essential oils or its components on microorganisms (in vitro tests) (continued)</td>
<td>32</td>
</tr>
<tr>
<td>2.9</td>
<td>Inhibitory effect of citrus essential oils or its components on microorganisms (in vitro tests) (continued)</td>
<td>33</td>
</tr>
<tr>
<td>2.10</td>
<td>Inhibitory effect of citrus essential oils or its components on microorganisms (in vitro tests) (continued)</td>
<td>34</td>
</tr>
<tr>
<td>2.11</td>
<td>Biotransformation of limonene</td>
<td>36</td>
</tr>
<tr>
<td>2.12</td>
<td>Effect of citrus essential oils or their components in anaerobic digestion.</td>
<td>42</td>
</tr>
</tbody>
</table>

CHAPTER 3. EFFECT OF LIMONENE ON BATCH ANAEROBIC DIGESTION OF CITRUS PEEL WASTE

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Summary of BMP tests</td>
<td>56</td>
</tr>
<tr>
<td>3.2</td>
<td>Chemical characteristics of citrus waste tested. All units are expressed in wet basis.</td>
<td>58</td>
</tr>
<tr>
<td>3.3</td>
<td>Main results of BMP tests on citrus waste (average values ± standard deviation)</td>
<td>59</td>
</tr>
<tr>
<td>3.4</td>
<td>Main results of BMP tests of ground and unground orange peel (average values ± standard deviation)</td>
<td>60</td>
</tr>
<tr>
<td>3.5</td>
<td>Main results of batch anaerobic digestion tests of microcrystalline cellulose with different doses of commercial limonene and different inocula (average values ± standard deviation)</td>
<td>63</td>
</tr>
</tbody>
</table>
CHAPTER 4. STRATEGIES TO AVOID INHIBITION OF ANAEROBIC DIGESTION OF CITRUS WASTE: EFFECT ON LIMONENE CONCENTRATION, METHANE POTENTIAL AND PRODUCTION RATE

Table 4.1. Pretreatments applied to the orange peel ... 79
Table 4.2. Summary of BMP tests .. 81
Table 4.3. Chemical characteristics of untreated and biologically treated orange peel and cow manure .. 83
Table 4.4. Results of biological treatment of orange peel and co-digestion experiments of orange peel and cow manure ... 85
Table 4.5. Results of steam distillation experiments (see Table 4.1 for treatment conditions). 87
Table 4.6. Results of solid-liquid extraction with ethanol experiments (see Table 4.1 for treatment conditions) .. 88

CHAPTER 5. CODIGESTION OF CITRUS WASTE WITH CHICKEN AND PIG MANURE AS A STRATEGY TO OVERCOME INHIBITION OF ANAEROBIC DIGESTION BY CITRUS ESSENTIAL OIL

Table 5.1. Summary of semi-continuous anaerobic digestion tests .. 102
Table 5.2. Chemical characteristics of animal manures and citrus waste used for the experiments. 103
Table 5.3. Summary of semi-continuous anaerobic digestion tests ... 104
Table 5.4. Main observations in semi-continuous anaerobic digestion of M1 109
Table 5.5. Results of semi-continuous anaerobic co-digestion test M1: average values and standard deviation in each period .. 112
Table 5.6. Main observations in semi-continuous anaerobic digestion of M2 118
Table 5.7. Results of semi-continuous anaerobic co-digestion test M2: average values and standard deviations in each period .. 119
Table 5.8. Main observations in semi-continuous anaerobic digestion of mixture M3 124
Table 5.9. Results of semi-continuous anaerobic co-digestion test M3. Each period corresponds to constant OLR and HRT. Average values and standard deviations are shown 125
Table 5.10. Summary of main results of tests M1, M2 and M3 .. 126
CHAPTER 6. THERMAL AND MECHANICAL PRETREATMENTS OF CITRUS FRUIT AND CODIGESTION WITH COW MANURE AS STRATEGIES TO OVERCOME INHIBITION OF ANAEROBIC DIGESTION BY CITRUS ESSENTIAL OIL

Table 6.1. Summary of semi-continuous anaerobic digestion tests. .. 135
Table 6.2. Chemical characteristics of cow manure and orange fruit. ... 136
Table 6.3. Feeding mixture properties for each anaerobic digestion test performed. 136
Table 6.4. Average values and standard deviation in each period of experiment A. 143
Table 6.5. Average values and standard deviation in each period of experiment B. 144
Table 6.6. Average values and standard deviation in each period of experiment C. 145
Table 6.7. Average values and standard deviation in each period of experiment D. 146

CHAPTER 7. BIOLOGICAL AND EXTRACTIVE PRETREATMENTS OF ORANGE PEEL AND CODIGESTION WITH COW MANURE AS STRATEGIES TO OVERCOME INHIBITION OF ANAEROBIC DIGESTION BY CITRUS ESSENTIAL OIL

Table 7.1. Summary of semi-continuous anaerobic digestion tests. .. 152
Table 7.2. Chemical characteristics of animal manures and citrus waste used for the experiments 14d, 14dBT, 28d and 28dBT.. 156
Table 7.3. Chemical characteristics of cow manure and orange peel after ethanol extraction, used for experiment EE.. 156
Table 7.4. Feeding mixture properties in the anaerobic digestion tests. .. 157
Table 7.5. Main observations in semi-continuous anaerobic digestion of experiment 14d. 161
Table 7.6. Results of semi-continuous anaerobic co-digestion experiment 14d: average values and standard deviation in each period. ... 162
Table 7.7. Main observations in semi-continuous anaerobic digestion of experiment 28d. 167
Table 7.8. Results of semi-continuous anaerobic co-digestion experiment 28d: average values and standard deviations in each period... 168
Table 7.9. Main observations in semi-continuous anaerobic digestion of 14dBT. 174
Table 7.10. Results of semi-continuous anaerobic co-digestion 14dBT: average values and standard deviation in each period... 175
Table 7.11. Main observations in semi-continuous anaerobic digestion of 28dBT. 180
Table 7.12. Results of semi-continuous anaerobic co-digestion 28dBT: average values and standard deviation in each period... 181

Table 7.13. Main observations in semi-continuous anaerobic digestion of EE.. 186

Table 7.14. Results of semi-continuous anaerobic co-digestion EE: average values and standard deviation in each period.. 187
List of figures

CHAPTER 2. CITRUS ESSENTIAL OILS AND THEIR INFLUENCE ON THE ANAEROBIC DIGESTION PROCESS. AN OVERVIEW

Figure 2.1. Structure of citrus (Iglesias et al., 2007).. 18
Figure 2.2. Seasonal variation of limonene concentration in the essential oil of clementine (Citrus reticulata), orange (Citrus sinensis) and red grapefruit (Citrus paradise) (based on data from Droby et al., 2008). Vertical bars indicate standard error................................. 18
Figure 2.3. Molecular formula of limonene... 19
Figure 2.4. Cell wall of Gram-positive bacteria (cronodon.com). .. 25
Figure 2.5. Cell wall of and Gram-negative bacteria (cronodon.com)... 25
Figure 2.6. Decrease of rumen gas production from acetic acid, cellulose and starch in mesophilic batch anaerobic conditions. Data from Crane et al. (1957).. 38

CHAPTER 3. EFFECT OF LIMONENE ON BATCH ANAEROBIC DIGESTION OF CITRUS PEEL WASTE

Figure 3.1. Laboratory set-up where biochemical methane potential tests were carried out.................. 56
Figure 3.2. Maximum slope calculation from the curves of cumulative biogas production.
The value for A in the linear regression equation $y = Ax - B$ is the maximum slope...... 58
Figure 3.3. Evolution of several parameters in BMP test of OP2/OPG2. From left to right and from up to down: VS, COD, acetic (HAc) and propionic (HPr) acid, total COD from the VFA, partial pressure of hydrogen in the biogas, and cumulative methane production............ 62
Figure 3.4. Evolution of the limonene concentration in the digesters in BMP test of OP2/OPG2 and its transformation into p-cresol and α-terpineol. .. 63
Figure 3.5. Cumulative methane production and partial pressure of hydrogen in the biogas from microcrystalline cellulose with 0 and 50 mg·kg⁻¹ of (S)-limonene. ... 65
Figure 3.6. Cumulative methane production and partial pressure of hydrogen in the biogas from microcrystalline cellulose with 0, 100 and 200 mg·kg⁻¹ of (S)-limonene.................. 65
Figure 3.7. Net results of the BMP tests of microcrystalline cellulose with the indicated high limonene concentrations, after substracting the methane production of the inoculum. Standard deviations are not shown, for clarity... 67
Figure 3.8. Cumulative methane production and partial pressure of hydrogen in the biogas for the indicated limonene concentration compared with the vials with no limonene............... 68
Figure 3.9. Cymene GC peak area in the vials of the experiment with high limonene concentrations, in day 113 (black squares) and in day 217 (grey diamonds). Note the different scales
of the two curves.. 70

Figure 3.10. Methane production and partial pressure of hydrogen in the biogas for the first and second run of the BMP experiments, for 600 and 1000 mg·kg⁻¹ of limonene........... 71

Figure 3.11. Percentages of the maximum MPR from cellulose with different concentrations of limonene in the digester. Vertical lines indicate IC50 values (423 mg·kg⁻¹ and 669 mg·kg⁻¹ of limonene for first and second run, respectively).......................... 72

CHAPTER 4. STRATEGIES TO AVOID INHIBITION OF ANAEROBIC DIGESTION OF CITRUS WASTE: EFFECT ON LIMONENE CONCENTRATION, METHANE POTENTIAL AND PRODUCTION RATE

Figure 4.1. BMP test of untreated and biologically treated OP1: cumulative methane production and partial pressure of hydrogen in the biogas... 85

Figure 4.2. BMP test of untreated and biologically treated OP2 in co-digestion with cow manure: cumulative methane production and partial pressure of hydrogen in the biogas.......... 86

Figure 4.3. BMP test of OP3 untreated and after steam distillation: cumulative methane production and partial pressure of hydrogen in the biogas. Standard deviations are not represented for clarity. ... 87

Figure 4.4. BMP test of OP3 untreated and after solid-liquid extraction with ethanol: cumulative methane production and partial pressure of hydrogen in the biogas. Standard deviations are not represented for clarity. ... 89

Figure 4.5. BMP and MPR increase in the batch anaerobic digestion of orange peel depending on the temperature of the pretreatment. ... 91

Figure 4.6. GC peak area of limonene and α-terpineol at the end of the batch anaerobic digestion of untreated and biologically treated OP2 in co-digestion with cow manure, mixtures M1 to M4 (see mixture compositions in Table 4.2).. 92

Figure 4.7. Thermal energy required for the pretreatments and potentially recovered from the methane generated with the pretreated orange peel. .. 93

CHAPTER 5. CODIGESTION OF CITRUS WASTE WITH CHICKEN AND PIG MANURE AS A STRATEGY TO OVERCOME INHIBITION OF ANAEROBIC DIGESTION BY CITRUS ESSENTIAL OIL

Figure 5.1. Laboratory set-up for the semi-continuous anaerobic digestion tests.......................... 101

Figure 5.2. Specific biogas and methane production, and methane content in the biogas (%-vol) of the mixture M1 for the five periods studied. Averages and standard deviations of the different periods are represented... 104

Figure 5.3. Methane production and concentration in the biogas from M1................................. 105
CHAPTER 6. THERMAL AND MECHANICAL PRETREATMENTS OF CITRUS FRUIT AND CODIGESTION WITH COW MANURE AS STRATEGIES TO OVERCOME INHIBITION OF ANAEROBIC DIGESTION BY CITRUS ESSENTIAL OIL

Figure 6.1. Laboratory set-up for the semi-continuous anaerobic digestion tests (LfL-ILT in Freising, Germany) .. 134

Figure 6.2. Specific methane production, and methane concentration in the biogas. Averages and standard deviations of the different periods are represented. .. 137
CHAPTER 7. BIOLOGICAL AND EXTRACTIVE PRETREATMENTS OF ORANGE PEEL AND CODIGESTION WITH COW MANURE AS STRATEGIES TO OVERCOME INHIBITION OF ANAEROBIC DIGESTION BY CITRUS ESSENTIAL OIL

Figure 7.1. Laboratory set-up for the semi-continuous anaerobic digestion tests. 153
Figure 7.2. Equipment used for the ethanol extraction of the citrus essential oil from the orange peel. .. 154
Figure 7.3. Experimental horizontal dryer used for the drying step after ethanol extraction of the orange peel. .. 154
Figure 7.4. Specific biogas and methane production and methane content in the biogas (%-vol) of the test 14d for the six periods studied. Averages and standard deviations of the different periods are presented. .. 157
Figure 7.5. Methane production and concentration in the biogas in test 14d. 158
Figure 7.6. Hydrogen and hydrogen sulphide in the biogas from test 14d. 158
Figure 7.7. Volatile fatty acids concentration in the digestate from test 14d. 159
Figure 7.8. pH (left) and alkalinity ratio (right) in the digestate from experiment 14d. 160
Figure 7.9. Ammonia nitrogen concentration in the digestate from experiment 14d. 160
Figure 7.10. Specific biogas and methane production and methane content in the biogas (%-vol) of the experiment 28d for the six periods studied. Averages and standard deviations of the different periods are presented. .. 163
Figure 7.11. Methane production and concentration in the biogas in test 28d. 164
Figure 7.12. Hydrogen and hydrogen sulphide in the biogas from experiment 28d. 164
Figure 7.13. Volatile fatty acids concentration in the digestate from experiment 28d. 165
Figure 7.14. pH (left) and alkalinity ratio (right) in the digestate from experiment 28d. 166
Figure 7.15. Ammonia nitrogen concentration in the digestate from experiment 28d. 166
Figure 7.16. Main GC peaks area in the CEO analysis of 28d digestate................................. 167

Figure 7.17. Specific biogas and methane production and methane content in the biogas (%-vol) of the experiment 14dBT for the five periods studied. Averages and standard deviations of the different periods are presented... 169

Figure 7.18. Methane production and concentration in the biogas, test 14dBT.......................... 170

Figure 7.19. Hydrogen and hydrogen sulphide in the biogas from 14dBT................................. 170

Figure 7.20. Volatile fatty acids concentration in the digestate from 14dBT............................... 171

Figure 7.21. pH (left) and alkalinity ratio (right) in the digestate from 14dBT.............................. 172

Figure 7.22. Ammonia nitrogen concentration in the digestate from 14dBT............................... 172

Figure 7.23. GC peak area of the CEO analysis in tests 14d and 14dBT (data from the digestate collected on day 64 of experiment)... 173

Figure 7.24. Specific biogas and methane production and methane content in the biogas (%-vol) of the experiment 28dBT for the five periods studied. Averages and standard deviations of the different periods are presented... 176

Figure 7.25. Methane production and concentration in the biogas, test 28dBT............................ 177

Figure 7.26. Hydrogen and hydrogen sulphide in the biogas from 28dBT................................. 177

Figure 7.27. Volatile fatty acids concentration in the digestate from 28dBT............................... 178

Figure 7.28. pH (left) and alkalinity ratio (right) in the digestate from 28dBT.............................. 179

Figure 7.29. Ammonia nitrogen concentration in the digestate from 28dBT............................... 179

Figure 7.30. Main GC peaks area in the CEO analysis of 28dBT digestate................................. 180

Figure 7.31. Specific biogas and methane production and methane content in the biogas (%-vol) of the experiment EE for the seven periods studied. Averages and standard deviations of the different periods are presented... 182

Figure 7.32. Methane production and concentration in the biogas in test EE.............................. 183

Figure 7.33. Hydrogen and hydrogen sulphide in the biogas from EE...................................... 183

Figure 7.34. Volatile fatty acids concentration in the digestate from EE..................................... 184

Figure 7.35. pH (left) and alkalinity ratio (right) in the digestate from EE................................. 184

Figure 7.36. Ammonia nitrogen concentration in the digestate from EE................................. 185

Figure 7.37. Main GC peaks area in the CEO analysis of EE digestate...................................... 185