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Greedy and K-Greedy algorithms for the Multi
Target Tracking and Data Association Problem

Federico Perea, Huub W. de Waard

Abstract—The multidimensional assignment (MDA) problem
is a combinatorial optimization problem arising in many appli-
cations, for instance Multi Target Tracking (MTT). The obje ctive
of a MDA problem is to match groups of d ∈ N objects (also
called d-tuples) in such a way that the solution with the optimum
total cost is found. It is well-known that the MDA problem is
NP-hard. In this paper three new heuristics to solve the MDA
problem arising in MTT are presented. They are all based on
the semi-greedy approach introduced in an earlier research. The
three heuristics of polynomial complexity. Experimental results
on the accuracy and speed of the proposed algorithms in MTT
problems are provided in the last section of the paper.

Index Terms—OR in telecommunications, OR in military, De-
cision support systems, Combinatorial optimization, Heuristics.

I. I NTRODUCTION

According to Bar-Shalom and Xiao 1995,tracking is the
processing of measurements obtained from a target in order
to maintain an estimate of its current state, which typically
consists of:

• Kinematic components - position, velocity, acceleration,
turn rate, etc.

• Feature components - radiated signal strength, spectral
characteristics, radar cross-section, target classification,
etc.

• Constant or slowly varying parameters - aerodynamic
parameters, etc.

One of the major difficulties in the application of multi-
target tracking involves the problem of associating measure-
ments received by a sensor, also called plots, with the ap-
propriate target, forming a so-calledtrack hypothesis. It is
assumed that each target in the coverage of the scanning radar
can produce a maximum of one measurement during a radar
scan. To determine which measurements are likely candidates
to originate from a certain track hypothesis, a correlationgate
is positioned at the predicted position of the track hypothesis
in the measurement space(Blackman 1986). The measurement
is said to correlate with the track hypothesis if it falls within
the defined correlation gate. As an example consider a trackt.
In the new scan two new measurements are received,p1 and
p2. In Figure 1, the square represents the predicted position of
track t, and the dots are the measurementsp1, p2 . The circle
represents the gate that corresponds to trackt. In this example
plot p1 correlates with trackt while plot p2 does not.
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Fig. 1. Correlation gate.

The data association problem (DAP) for a number of data
sets ≥ 3 is mathematically termedNP-hard (Deb et al.
1992 and Spieksma and Woeginger 1996). Here a data set
corresponds with the data collected during a full scan. More
precisely, the computational cost to determine an optimal
solution, which assigns measurements to track hypotheses,can
grow at a rate much faster than polynomial as the number of
observations contained in the data sets increases. Since the
pioneering work of Sittler 1969, who coined the term data
association, a number of algorithms has been developed over
the past35 years to solve the DAP. (For an overview of
different algorithmic approaches see Pattipati et al. 2000).

An elegant and efficient approach to solve the DAP is
based on the application of assignment algorithms. In this
approach the data association problem is formulated as a
Multidimensional Assignment (MDA) problem. MDA prob-
lems are extensions of the classical Assignment problems to
higher dimensional cases. In Multi-Target Tracking (MTT),
the coefficients of the corresponding objective function are
computed using the results of the state estimator. An early
reference to the MDA problem can be found in Pierskalla
1968.

Morefield 1977 showed that the multi-target multi-scan data
association problem could be expressed as a discrete optimiza-
tion problem, for which mathematical programming methods
are applicable, see Blackman and Popoli 1999. Morefield 1977
employed the branch-and-bound algorithm to solve the data
association problem for a very sparse scenario, see Pattipati et
al. 2000. Pattipati et al. 1989 and 1990 and later Poore 1992
and 1994, formulated the multi-target (multi-sensor) tracking
problem as a MDA problem, and developed a multistage
Lagrangian relaxation approach, following the work by Frieze
and Yadegar 1981, to solve the MDA problem as a series of
classical (two dimensional) assignment problems which are
solvable in polynomial time. Rijavec et al. 1992 introduceda
sliding window technique to consider only the lastW data sets
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(scans or frames). The problem is to find solutions for the op-

W = 3 

M       M+1        M+2        M+3       M+4

Fig. 2. The sliding window contains only three data sets:d = 3.

timization problem, using the measurements contained within
the window and the track hypotheses which already exist out-
side the window. In Figure 2 those track hypotheses are related
with the data sets with a number≤M . Poore and Drummond
1996 presents a more general moving formulation for MHT.
Given d data sets, the objective is to find the assignment of
measurements to track hypotheses (targets) which optimizes
the defined cost function. The measurements in theW data
sets are associated with the list of track hypotheses, resulting
in a (W + 1)-dimensional data association problem. Capponi
2004 used a fast semi-greedy polynomial time algorithm to
generate a set of required solutions from which the best
solution was selected. He provided a theoretical upper bound
for the difference in cost value between the unknown optimal
solution and the first returned solution. In this paper we prove
that this upper bound is tight. Another variation of greedy
algorithms for the MTT problem is the GRASP algorithm
proposed by Murphy et al. 1998. Greedy algorithms have been
widely used to solve problems such as set-packing problems,
set-covering problems, travelling salesman problem, etc., see
Vazirani 2001. Despite their vast use, for some instances they
should not be used, see Bang-Jensen et al. 2004 for a detailed
description of cases in which the Greedy algorithm not only
fails in finding the optimal solution but it obtains the worst
possible one. Nevertheless, in this paper we present Greedy
algorithms for their suitability to MTT problems and extend
them toK-greedy versions, see Hausmann and Korte 1978 for
an early reference onK-greedy algorithms.

The rest of the paper is organized as follows. Section II is
devoted to formulate the MTT problem as a MDA problem.
In Section III the three greedy-based algorithms presentedin
this paper are introduced, which are extended toK-greedy
in Section IV. Section V summarizes the experimental results
obtained. The paper concludes with a brief summary of the
contributions of this work.

II. PRELIMINARIES: MTT AS A MDA PROBLEM

In this section the multi-target tracking problem is formu-
lated as a MDA problem. A more complete description of this
process can be found in Reid 1979 and Poore 1994. Let us
first describe the MTT problem.

Suppose that a sensor starts observing the airspace period-
ically at a timey0 = 0. During the first scan, corresponding
with the time interval[y0, y1), the first set of measurements

is received. Parametery1 denotes the point in time in which
the first scan of the sensor finishes and the second one begins.
Analogously, the second set of measurements, corresponding
with the second scan is received within the interval[y1, y2),
and so on. The set of measurements collected at scank
is defined asZ(k) = {zk

i }
Mk

i=1, ∀ k = 1, . . . , N , where
Mk denotes the total number of measurements received dur-
ing scank and zk

i is the ith measurement received within
scank. The cumulative data set forN scans is defined as
ZN = {Z(1), . . . , Z(N)}. A track hypothesis t is defined as
a set of measurements ofZN such that it contains at most
one measurement of each scan and consists of at least one
measurement. This can be mathematically expressed as:

t ⊂ ZN : |t| ≥ 1, |t ∩ Z(k)| ≤ 1 ∀ k = 1, . . . , N. (1)

A feasible partition ofZN is a set of track hypothesesδ =
{t1, . . . , t|δ|} satisfying two conditions:

1) It must cover the whole data setZN , ZN =

|δ|
⋃

j=1

tj .

2) Any two track hypotheses belonging to the same parti-
tion must not have common measurements, that is, they
must be disjoint,ti ∩ tj = ∅ ∀ i 6= j, i, j = 1, . . . , |δ|.

For the sake of readability, in the rest of the paper we will
refer to feasible partitions as partitions. The set of all possible
partitions ofZN is denoted by∆(ZN ).

After having defined what track hypotheses and partitions
are, the goal is to find a best partition ofZN , which needs not
be unique. We will consider that “a best partition” is a partition
that is most likely to correspond with the actual situation.To
get such a partition a quality measureQ(t) is assigned to
each track hypothesist ⊂ ZN , which expresses how well
each measurement oft fits the target’s assumed dynamical
model. Reid 1979 was one of the first to introduce a likelihood
functionQ(t) for each track hypothesist. A similar approach
can be found in Poore 1994 and Storms and Spieksma 2003.
Since the objective is to find a partition that is most likely to
be true, it is necessary to maximize

∏

t∈δ Q(t) over the set of
all possible partitions∆(ZN ).

In order to write the DAP as a MDA problem, a linear
objective function has to be defined. When for each track
hypothesist of ZN the track formation cost is defined as
w(t) = log(Q(t)), the partition that maximizes

∏

t∈δ Q(t)
also maximizes

∑

t∈δ w(t), since the logarithm is a monotonic
function. An added benefit is also to reduce round-off errors
that result from multiplying small numbers, such as likelihood
functions. If with each partitionδ = {t1, . . . , t|δ|} a weight
W (δ) =

∑|δ|
i=1 w(ti) is associated, the goal is to find a

partition δ∗ such that:

W (δ∗) = max
δ∈∆(ZN )

W (δ). (2)

Since the number of track hypotheses of the problem
explosively grows with the number of scans, a sliding window
approach is used. The main idea behind the sliding window
technique consists of considering only the measurements of
the lastd scans, assuming that the assignments of the previous
scans are fixed (see Figure 2). So, if a new scan is performed
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the window slides one scan onwards, discarding the oldest scan
of the previous window. The otherd−1 scans are maintained.
After including the new scan, the number of scans within the
window is again restored tod scans. So, each time a set of
measurements is received, the number of considered scans
remains constant and the complexity of the corresponding
MDA problem does not increase. A description of the method
is provided by Poore 1992.

Now we are in a position to formulate the MTT problem
as a MDA problem. A trackt = {z0

i0
, z1

i1
, . . . , zd

id
} is either

present in a partitionδ or it is not, whereZ(0) = {z0
i }

M0

i=1

is the set of previously established tracks. This corresponds
to a 0-1 decision, which can be represented by the following
decision variables:

xi0,i1,...,id
=

{

1 if t = {z0
i0

, z1
i1

, . . . , zd
id
} ∈ δ

0 otherwhise
(3)

Let ci0,i1,...,id
be the weight of trackt = {z0

i0
, z1

i1
, . . . , zd

id
}.

Then, the formulation of the MTT problem as a MDA problem
is:

max

M0
∑

i0=1

M1
∑

i1=1

· · ·
Md
∑

id=1

ci0,i1,...,id
xi0,i1,...,id

s.t.:
d

∑

j = 0
j 6= k

Mj
∑

ij=1

xi0,...,id
= 1, ik = 1, . . . , Mk, k = 1, . . . , d.

xi0,i1,...,id
∈ {0, 1} ∀ i0, i1, . . . , id.

(4)
The constraints of the problem force each measurement to be
in one, and only one, track hypothesis. That is, a measurement
cannot originate from two different objects.

The size of the problem can also be reduced by excluding
implausible track hypotheses. To do so, a target is only associ-
ated with a measurement if and only if the measurement falls
within the gate or validation region for the target, as explained
in Figure 1. The final set of track hypotheses considered is
denoted byTR.

Although the problem size is reduced by considering only
the lastd scans and by excluding implausible track hypotheses,
the resulting MDA problem is stillNP-hard for window sizes
d ≥ 2, since this leads to a(d + 1)−dimensional assignment
problem. When tracking multiple targets, a solution to the
MDA problem must be given before the following scan of
the sensor begins. This justifies the development of efficient
approximation algorithms that provide good solutions for
MDA problems.

The equivalence of the MHT (Multi-Hypotheses Tracking)
formulation of MTT as a MDA problem was demonstrated in
the work of Poore 1994. In this paper, a general formulation
was presented for the multiple target tracking problem. It
also discusses the LP formulation of Morefield 1977 in more
depth. Specifically, the latter LP formulation is more general
than the MDA problem since it can address different types of
assignments such as merged measurements and some types of

multiassignment. Algorithms for the multidimensional assign-
ment problem on the other hand can be orders of magnitude
faster than those for a general LP zero-one solver.

III. T WO NEW GREEDY-BASED ALGORITHMS

In this section the three algorithms under discussion are
presented. The first one is algorithm SGTS (Semi Greedy
Track Selection) introduced in Capponi 2004. The other two
algorithms are variations of SGTS. In those algorithms, named
Multi Greedy (MG) and Multi Greedy Rewarded (MGR), the
way of choosing the best track at each step differs from
algorithm SGTS.

A. SemiGreedy Track Selection algorithm

In this section we briefly recall algorithm SGTS presented
in Capponi 2004. This algorithm first sorts the elements in
TR by decreasing weight. Afterwards it chooses the first track
hypothesis inTR as the first track of the solution. Then it
removes fromTR all the track hypotheses intersecting the
selected one. At this point, it selects the track hypothesisx
with maximum weight from the remaining set and removes all
track hypotheses intersectingx. SGTS keeps doing that until
there is no track hypothesis to be selected. This part of SGTS
is called SGTS1, and provides a set of tracks that constitute
the first solution of the algorithm. A pseudocode of SGTS1
is:

SGTS1(TR)
ps = {}

i← 0
Ti ← TR

repeat
i← i + 1
xi ← t ∈ Ti−1 that maximizesω(t)
ps ← ps ∪ xi

Ei ← {t ∈ Ti−1 : xi ∩ t 6= ∅}
Ti ← Ti−1 \ Ei

until Ti = ∅
return ps

To obtain a larger variety of solutions, algorithm SGTS runs
again from the completeTR but starting with the first trackti
in TR that has not yet been included in any of the previous
solutions, which guarantees a new solution. The algorithm
stops either when no other new solution can be generated or
when we have run out of computational time. After that it
chooses the solution with the highest weight among those that
have been calculated, which does not have to beps necessarily.

1) Approximation factor: In Capponi 2004 it is proven that
the value of the solution generated by SGTS1 approximates the
value of the optimal one within a guaranteed factor depending
only on the dimension of the window used.

Let OPT be an optimal partition. LetS1 be the parti-
tion obtained as the solution returned by SGTS1. Denote
by W (OPT) and W (S1) the values of the optimal solution
and the first solution computed by SGTS respectively. It is
proven that for a fixedd-dimensional assignment problem
W (OPT) ≤ dW (S1).
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The following question arises in the context of improving
the approximation guarantee: can the approximation guarantee
of algorithm SGTS be improved by a better analysis? The
following example states that the answer to this question is
“no”, i.e., the upper bound presented above for algorithm
SGTS is tight.

Example 3.1: Consider the following data.

Track Plot 1 Plot 2 ... Plotd Weight
t1 1 0 ... 0 1
t2 0 1 ... 0 1
... ... ... ... ... ...
td 0 0 ... 1 1

td+1 1 1 ... 1 1+ε

TABLE I
T IGHT EXAMPLE.

Suppose that the data sets coming fromd different scans
consist of exactly one measurement in each scan. In Table I
the track hypotheses that have been formed are shown. Track
ti is constituted by ploti ∀ i = 1, . . . , d and tracktd+1 is
formed by all plots. The weights corresponding with all tracks
are represented in the last column.

One may check that the set of pairwise disjoint tracks
maximizing the sum of weights is OPT ={t1, . . . , td}. Nev-
ertheless, the solution generated by SGTS1 would be the set
consisting of only one track,S1 = {td+1}. It follows that
W (OPT) = d andW (S1) = 1 + ε. Thus, one has that:

W (OPT ) =
d

1 + ε
W (S1) ∀ ε > 0. (5)

Making ε → 0 in the previous example concludes that the
bound presented cannot be improved.

B. Multi-Greedy algorithm

In this section, the second approximation algorithm for
solving the MDA problem is presented, named MG (Multi-
Greedy). The only difference with algorithm SGTS is that,
instead of selecting tracks that maximize weights, there will be
chosen tracks that maximizeeffectiveness. Therefore, MG1 is
the part of algorithm MG that finds the first solution. We define
the effectiveness of a track hypothesis as the quotient between
its weight and the number of measurements that constitute it.
In other words, for everyt track hypothesis, the effectiveness
of t is defined as

α(t) =
w(t)

|t|
. (6)

In the rest of the algorithm, the steps taken are analogous
to those taken in SGTS.

1) Approximation factor for algorithm Multi-Greedy: De-
note byd and OPT the dimension of the window used and
an optimal solution to the corresponding MDA problem. For
every iterationi, define OPTi to be the set of track hypotheses
that are part of the optimal solution and have measurements
in common with the tracks inEi, OPTi = OPT ∩ Ei.
Remember thatxi denotes the track hypothesis with highest
efficiency andEi denotes the set of available tracks that
intersectxi, at each stepi of the algorithm. The following
lemma is proven in Capponi 2004.

Lemma 3.1: The number of track hypotheses contained
in the set OPTi is less than or equal to the number of
measurements contained inxi, that is,|OPTi| ≤ |xi|.

Afterwards, an analogous result to the Proposition 1 Cap-
poni 2004 follows.

Theorem 3.1: Algorithm MG1 is ad factor approximation
algorithm for ad-dimensional assignment problem, i.e.,

W (OPT ) ≤ dW (SMG1), (7)

whereSMG1 is the first solution found by algorithm MG1.
Proof: For all i, we have thatw(t)

|t| ≤
w(xi)
|xi|

∀ t ∈ Ti−1.
Therefore

W (OPTi) =
∑

t∈OPTi
w(t) ≤

∑

t∈OPTi

w(xi)
|xi|
|t|

= w(xi)
|xi|

∑

t∈OPTi
|t| ≤ w(xi)

|xi|
d|OPTi|.

(8)

From Lemma 3.1 and the equation above we deduce that
W (OPTi) ≤ dw(xi). Thus, one has that

W (OPT ) =
∑

i

W (OPTi) ≤ d
∑

i

w(xi) = dW (S1). (9)

And the result follows.
The following example shows that the approximation guar-

antee is tight.
Example 3.2: Consider the MTT problem described in Ex-

ample 3.1, with weightsw(t1) = 1
d
, w(t2) = w(t3) = · · · =

w(td) = 0, w(td+1) = 1− ε.
It is not difficult to see that the optimal solution and the

solution returned by MG1, and their respective values, are:

OPT = {td+1}, W (OPT ) = 1−ε, S1 = {t1, t2, . . . , td}, W (S1) =
1

d
.

(10)
Suppose that the approximation factor given in Theorem 3.1
can be improved tod′ < d. Then it should be satisfied that
W (OPT ) ≤ d′W (S1). Considerε > 0 such thatε < 1− d′

d
.

Then one has:

W (OPT ) = 1− ε = (1− ε)dW (S1)

> (1− (1 − d′

d
))dW (S1) = d′W (S1).

(11)

This contradicts the fact thatd′ is an approximation factor
for algorithm MG1, and we conclude that the approximation
factor d for algorithm MG1 cannot be improved.

C. Multi-Greedy Rewarded algorithm

Now the third approach for solving the MDA problem
is presented, named MGR (Multi-Greedy Rewarded). It is
again a greedy-based algorithm. The idea is based on the
fact that for some MDA problems the more elements the
associations have the better. For MTT this means that tracks
with many plots are preferred to those that contain only a
few measurements. This reasoning seems to be logical, and
will be tested in Section V. Therefore, at each step we choose
t ∈ Ti−1 that maximizes|t|ω(t)
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1) Guarantee bound: Following the same reasoning as we
did for algorithms SGTS and MG, see sections III-A1 and
III-C1, we conclude the following result.

Theorem 3.2: Algorithm MGR1 is ad2 factor approxima-
tion algorithm for ad-dimensional assignment problem, i.e.,

W (OPT ) ≤ d2W (S1). (12)

Proof: For all i, we have thatw(t)|t| ≤ w(xi)|xi| ∀ t ∈
Ti−1. Therefore

W (OPTi) =
∑

t∈OPTi
w(t) ≤

∑

t∈OPTi

w(xi)
|t| |xi|

= w(xi)|xi|
∑

t∈OPTi

1
|t| ≤ w(xi)|xi||OPTi|.

(13)
From Lemma 3.1 and the equation above we deduce that
W (OPTi) ≤ w(xi)|xi|2. Thus, one has that

W (OPT ) =
∑

i

W (OPTi) ≤ d2
∑

i

w(xi) = d2W (S1).

(14)
And the result follows.
The following example shows that the given guarantee bound
is tight.

Example 3.3: Consider the instance of Example 3.1 with
the following weight functionw: w(t1) = · · · = w(td) =
d and w(td+1) = 1 + ε. Then MGR would taketd+1 with
total weight 1 + ε since |ti|w(ti) = d ∀ i = 1, . . . , d and
|td+1|w(td+1) = d(1 + ε) while {t1, . . . , td} is an optimal
solution with total weightd2.

IV. K -EXTENSIONS OF OUR GREEDY ALGORITHMS

The three proposed heuristics can be extended in the fol-
lowing way. At each step the track hypothesis with the highest
value among all available track hypotheses is not selected.
Instead, we choose at each step a group ofK disjoint track
hypotheses, just namedK-group. Such a group is constituted
by K track hypotheses with no measurements in common
maximizing the sum of weights,K being a positive integer.
After selecting this firstK-group, we remove everyK-group
of track hypotheses that has at least one measurement in
common with the previously selected group.

It could happen that there is no group ofK disjoint
hypotheses available and there still are measurements that
have not been assigned to any track hypothesis yet. Then,
the maximum weight(K − 1)-group is selected. We continue
reducing the size of the groups until all measurements have
been assigned to track hypotheses. This procedure generates
a first partition of the set of measurementsZN , that is, a first
feasible solution.

Afterwards, to obtain a larger variety of feasible solutions,
we start the algorithm from thatK-group with the highest
value among allK-groups that have at least one track that has
not been included in any previous solution. Note that this pro-
cess always generates new solutions since we are including,at
least, one new track in the solution. This procedure is repeated
until X ∈ N different solutions have been generated or the
allowed computational time has been consumed. This kind of
algorithms is knwon in the literature asK-Greedy algorithms,
see Hausmann and Korte 1978 for an early reference.

In the rest of the section we apply this extension to the
algorithms previously presented: SGTS, MG and MGR.

A pseudocode of the algorithm that generates the first
solution returned byK-SGTS, from now on calledK-SGTS1,
is:

K-SGTS1(TR)
n = K
ps = {}
while TR 6= ∅

i← 0
Ti ← TR

T n
i ← {(t

1, . . . , tn) : tj ∈ TR, tj ∩ th = ∅, ∀ j, h}
repeat

i← i + 1
xi ← t ∈ T n

i−1 that maximizes
∑n

j=1 ω(tj)
ps ← ps ∪ xi

Ei ← {t ∈ Ti−1 : ∪n
j=1(x

j
i ∩ t) 6= ∅}

T n
i ← {t ∈ T n

i−1 : tj /∈ Ei ∀ j = 1, . . . , n}
Ti ← Ti−1 \ Ei

until T n
i = ∅

TR ← Ti

n← n− 1
end
return ps

In the pseudocode above,ps denotes the solution thatK-
SGTS1 generates. Note that the size of the groups (n) de-
creases every time we cannot find a feasible group but there
still are some measurements that have not been assigned to
tracks. The algorithm stops, at the latest, whenn = 1.

In order to study the complexity ofK-SGTS, the following
notation will be used:

• K denotes the size of the group of track hypotheses at
the beginning of the algorithm,K ∈ N− {0}.

• d denotes the number of scans considered,d ∈ N−{0, 1}.
• l = |TR| is the number of plausible track hypotheses,l ∈

N. Note that this number can be very large and depends
on the number of measurements, the number of scans and
the method used to discard implausible tracks.

• In each scans there areMs measurements,Ms ∈ N,
s = 1, . . . , d.

To begin with, the complexity of the algorithmK-SGTS1 is
determined. In this analysis we will calculate the computa-
tional complexity ofK-SGTS1 in its first loop, that is, when
n = K (the cases corresponding with other values ofn are
analogous). Several steps can be differentiated:

1) Building T K
0 .

For each possible group ofK track hypotheses, we have
to check if all the measurements that constitute them
are different. In each track hypothesis there are at most
d measurements, each of them coming from different
scans. Therefore, the total number of operations to be
done in order to check the feasibility of aK group is,
in the worst case, equal toKd. Since there are

(

l
K

)

possibleK-groups of track hypotheses, the number of
comparisons for buildingT K

0 is

dK

(

l

K

)

. (15)
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2) OrderingT K
0 .

Mergesort or Heapsort algorithms sort a list of elements
with complexity O(n log n). Therefore the number of
operations for orderingT K

0 is
(

l

K

)

log

(

l

K

)

. (16)

3) Taking the first group ofK track hypotheses.
This step takes a constant amount of time.

4) Selecting the otherK-groups of track hypotheses. The
algorithm checks for everyK-groupt ∈ T K

0 that every
measurementj contained int has not been selected yet.
If t satisfies this condition, it is chosen to be part of the
solution. If not, the following element ofT K

0 is checked
and so on. The maximum number of operations to be
done is

dK(

(

l

K

)

− 1). (17)

Joining the previous steps, the complexity of this part of the
algorithm follows:

O(lK log l). (18)

Analogously, the complexity of the loop corresponding with
any other value ofn is:

O(ln log l). (19)

Thus, the total complexity ofK-SGTS1 is given by,

K
∑

n=1

O(ln log l) = O(l log l+· · ·+lK−1 log l+lK log l) = O(lK log l).

(20)
Proposition 4.1: K-SGTS1 is aO(lK log l) algorithm.

Proof: The discussion above.
The complexity ofK-SGTS has not been calculated yet.

To do so, we have to consider that the algorithm calculates
not only one solution butX solutions. The computational
complexity of finding solutioni, i > 1, can easily be
calculated from the fact that only steps 3 and 4 have to be
performed (T K

0 needs not to be built and sorted again). So,
the reader may note that the computational complexity of
generating solutioni is O(lK) ∀ i = 2, . . . , X.

Theorem 4.1: For a fixed sizeK ∈ N, the computational
complexity of algorithmK-SGTS is polynomial, and given
by O(lK log l).

Proof: Let Gi be the maximum number of operations to
find solution i, i = 1, . . . , X . Then, the complexity ofK-
SGTS is

X
∑

i=1

Gi = O(lK log l) +

X
∑

i=2

O(lK) = O(lK log l). (21)

Algorithms MG and MGR can be generalized following a
similar reasoning as in Section??. Again, the main idea is
to take at each step the group ofK disjoint track hypotheses
that maximize the sum of effectiveness, instead of taking only
the one that individually maximizes the effectiveness. These
heuristics shall be calledK-MG andK-MGR, respectively.

Following the same steps as in the proof for the complexity
of K-SGTS in??, the following results are proven.

Theorem 4.2: For a fixedK ∈ N, the computational com-
plexity of algorithmsK-MG and K-MGR is polynomial,
given by O(lK log l), where l denotes the number of track
hypotheses considered at the beginning of the algorithm.

Corollary 4.1: Algorithms MG and MGR are of polyno-
mial complexity, given byO(l log l).

V. EXPERIMENTAL RESULTS

In this section, the most relevant results obtained from the
multi-target tracking problems tested are presented. In those
experiments, the performance of algorithms2-MGR, MGR,
2-SGTS, SGTS,2-MG and MG is analyzed.

For these experiments we used three kinds of data:

1) Simulated scenarios 1 (sim1). These scenarios consisted
of groups of planes that start flying in straight lines from
different points in the space to the same area. Afterwards
they keep their trajectory until they disappear from the
radar coverage. The number of planes in those scenarios
vary from 48 till 80.

2) Simulated scenarios 2 (sim2). The same as sim1 but the
number of planes vary from 2 till 10.

3) Real data (real). Those data were collected in October
2005, on a vessel 40 miles from the Dutch shore in
the North Sea. The used radar sensor has a maximum
detection range of250 km.
Figure 3 shows a picture of the real situations under
consideration, where each arrow represents a flying ob-
ject. The objective is to associate the new measurements

Fig. 3. Planes flying over the North Sea.

received in every scan to existing flying objects, to new
targets or to false alarms.
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d = 4 d = 5 d = 6
sim1 524 528 573
sim2 223 229 237
real 1648 1607 1589

TABLE II
NUMBER OF MDA PROBLEMS SOLVED

All scenarios were tested for window sizesd = 4, 5, 6, gen-
erating this way 5, 6 and 7 dimensional assignment problems
respectively. The number of MDA problems solved in each
case is summarized in table II (in total 7158).

For each MDA problem, the following algorithms were
executed:

• an optimal solution was found by using the free optimiza-
tion softwarelp solve, which uses a branch and bound
(B&B) algorithm.

• SGTS algorithm generating 100 solutions,X = 100.
• 2-SGTS algorithm generating 100 solutions,X = 100.
• MG algorithm generating 100 solutions,X = 100.
• 2-MG algorithm generating 100 solutions,X = 100.
• MGR algorithm generating 100 solutions,X = 100.
• 2-MGR algorithm generating 100 solutions,X = 100.

In the rest of the section, a summary of the performance of
each algorithm is shown.

Table III shows the average computation time necessary
to find the optimal solution and to find the first solution of
the four approximation algorithms considered. It can be seen

Algorithm B&B MGR 2-MGR
CPU time (seconds) 0.01604 0.00073 0.00079

Algorithm 2-MG SGTS 2-SGTS MG
CPU time (seconds) 0.00116 0.00072 0.00075 0.00123

TABLE III
COMPUTATION TIME.

that the approximation algorithms found a first feasible near-
optimal solution around 100 times faster than the branch and
bound algorithm. Another conclusion is that no significant
difference in computation time was found between the six pro-
posed approximation algorithms when changing fromK = 1
to K = 2.

But not only speed is important in an approximation algo-
rithm. The accuracy of the generated solution should be also
considered. Table IV shows the frequency in which each of the
algorithms proposed found the optimal solution. Additionally,
in order to give a more complete result, the third rows show
a measurement of the accuracy of each algorithm, which is
calculated by the formula100ALGORITHM VALUE

OPTIMAL VALUE . Remember
that for every algorithm the first 100 solutions were calculated.
Note that the performances of the six algorithms in their first
solution are also shown in the third and fifth columns of each
table.

From table IV it can be noted that the fact of generating
not only one solution but more than one is justified as the
performance of each algorithm significantly improves when
generating more than one solution. The following question

Algorithm MGR MGR1 2-MGR 2-MGR1
Frequency of optimality 70.41% 64.80% 69.03% 61.66%

Accuracy 98.95% 98.22% 98.94% 98.06%

Algorithm MG MG1 2-MG 2-MG1
Frequency of optimality 30.32% 22.20% 33.32% 22.25%

Accuracy 94.63% 92.57% 94.99% 92.66%

Algorithm SGTS SGTS1 2-SGTS 2-SGTS1
Frequency of optimality 70.62% 65.92% 69.47% 62.67%

Accuracy 99.01% 98.25% 99.02% 98.08%

TABLE IV
QUALITY OF SOLUTIONS.

regarding this matter arises: how many solutions should be
generated to assure an acceptable guarantee that the best
solution of the algorithm is found? One approach to answer
this question is to calculate the frequencies in which the
best solution generated by each algorithm is one of the
first i solutions,i = 1, . . . , 100. In table V, the cumulated

Solution number MGR 2-MGR MG 2-MG SGTS 2-SGTS
10 79.76% 78.29% 48.94% 44.95% 85.57% 85.41%
20 82.98% 81.63% 57.46% 52.68% 90.52% 90.21%
30 85.63% 84.37% 64.51% 51.28% 92.81% 92.50%
40 88.05% 84.37% 69.73% 59.79% 94.61% 94.39%
50 90.03% 86.88% 73.61% 69.65% 95.87% 95.61%
60 92.04% 89.02% 78.50% 74.61% 97.00% 96.80%
70 94.65% 91.34% 83.99% 80.90% 97.89% 97.70%
80 96.84% 94.53% 90.15% 87.70% 98.79% 98.57%
90 98.60% 98.27% 94.39% 92.80% 99.51% 99.24%
100 100% 100% 100% 100% 100% 100%

TABLE V
POSITION OF THE BEST SOLUTION FREQUENCIES.

frequencies in which the best solution of each algorithm was
found among thei first ones, wherei is the number in the
first cell of each row, are shown. For instance, according to
our experiments, to obtain the best solution between the first
100 solutions with a probability greater than or equal to 0.9,
it will be necessary to calculate:

• 50 solutions for algorithm MGR.
• 70 solutions for algorithm 2-MGR.
• 80 solutions for algorithm MG.
• 90 solutions for algorithm 2-MG.
• 20 solutions for algorithm SGTS.
• 20 solutions for algorithm 2-SGTS.

A quick look at the results shown in this section suggests
that algorithmsK-SGTS andK-MGR perform much better
than algorithmsK-MG in Multi Target Tracking problems, for
K = 1, 2. A reason for that could be that inK-MG algorithm
tracks constituted by a small number of measurements are
rewarded. This fact is illogical for MTT problems, althoughit
could be valid in general MDA problems. It is surprising for
the authors that the fact of rewarding tracks with great number
of plots does not seem to give an improvement, asK-SGTS
andK-MGR seem to perform likewise.

Since there seems to be no difference in time from one
algorithm to another, and the highest accuracy of our experi-
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ments was given by2-SGTS, we suggest choosing algorithm
2-SGTS for MTT problems. From the tests performed, running
algorithm 2-SGTS generating only 20 solutions seems to be a
good trade-off between speed and accuracy.

CONCLUSIONS

In this paper three heuristics for solving the multidimen-
sional assignment problem are presented, namedK-SGTS,
K-MG and K-MGR. Theoretical analysis prove that the
three heuristics are of polynomial complexity. Besides, upper
bounds showing that the solution given by the algorithm is
“close” to the optimal solution are provided for the three
algorithms. Although the algorithms are presented in a MTT
context, as well as the experiments, the theoretical reasonings
are valid for every MDA problem in general.

In order to show their applicability, the algorithms presented
were tested for multi-target tracking problems. No significant
difference in accuracy from the caseK = 1 to the caseK = 2
was observed for any of the three classes presented.

The difference in computational time was not significant
from the caseK = 1 to K = 2, nor between the different
heuristics.

To finish the paper we recommend to run algorithm 2-SGTS
generating only 20 solutions, since that seems to be a good
trade-off between speed and accuracy.
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