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Greedy and K-Greedy algorithms for the Multi
Target Tracking and Data Association Problem

Federico Perea, Huub W. de Waard

Abstract—The multidimensional assignment (MDA) problem p:
is a combinatorial optimization problem arising in many appli-
cations, for instance Multi Target Tracking (MTT). The obje ctive
of a MDA problem is to match groups of d € N objects (also
called d-tuples) in such a way that the solution with the optimum
total cost is found. It is well-known that the MDA problem is
NP-hard. In this paper three new heuristics to solve the MDA
problem arising in MTT are presented. They are all based on
the semi-greedy approach introduced in an earlier researchThe
three heuristics of polynomial complexity. Experimental results
on the accuracy and speed of the proposed algorithms in MTT
problems are provided in the last section of the paper.

; — . - Fig. 1. C lati te.
Index Terms—OR in telecommunications, OR in military, De-  © orrelation gate

cision support systems, Combinatorial optimization, Heuistics.

The data association problem (DAP) for a number of data
sets > 3 is mathematically termed\NP-hard (Deb et al.
. INTRODUCTION 1992 and Spieksma and Woeginger 1996). Here a data set

According to Bar-Shalom and Xiao 1996acking is the corresponds with the data collected during a full scan. More

processing of measurements obtained from a target in orgéTC'SEIy' the computational cost to determine an optimal

to maintain an estimate of its current state, which typyr:allS ution, which assigns measurements to .track hypotheses,
consists of- grow at a rate much faster than polynomial as the number of

observations contained in the data sets increases. Siece th
« Kinematic components - position, velocity, accelerationioneering work of Sittler 1969, who coined the term data
turn rate, etc. . . association, a number of algorithms has been developed over
« Feature components - radiated signal strength, specti@l past35 years to solve the DAP. (For an overview of
characteristics, radar cross-section, target classditat gjtferent algorithmic approaches see Pattipati et al. 2000
etc. _ ~ An elegant and efficient approach to solve the DAP is
« Constant or slowly varying parameters - aerodynamigised on the application of assignment algorithms. In this
parameters, etc. approach the data association problem is formulated as a
One of the major difficulties in the application of multi-Multidimensional Assignment (MDA) problem. MDA prob-
target tracking involves the problem of associating mezsutems are extensions of the classical Assignment problems to
ments received by a sensor, also called plots, with the apgher dimensional cases. In Multi-Target Tracking (MTT),
propriate target, forming a so-calladack hypothesis. It is the coefficients of the corresponding objective functior ar
assumed that each target in the coverage of the scanning ragdanputed using the results of the state estimator. An early
can produce a maximum of one measurement during a radgfierence to the MDA problem can be found in Pierskalla
scan. To determine which measurements are likely candidal®68.
to originate from a certain track hypothesis, a correlagate Morefield 1977 showed that the multi-target multi-scan data
is positioned at the predicted position of the track hypsithe association problem could be expressed as a discrete aptimi
in the measurement space(Blackman 1986). The measuremignt problem, for which mathematical programming methods
is said to correlate with the track hypothesis if it falls it are applicable, see Blackman and Popoli 1999. Morefield 1977
the defined correlation gate. As an example consider a traclemployed the branch-and-bound algorithm to solve the data
In the new scan two new measurements are recejvednd association problem for a very sparse scenario, see Radtpa
p2. In Figure 1, the square represents the predicted positionad. 2000. Pattipati et al. 1989 and 1990 and later Poore 1992
track ¢, and the dots are the measurements, . The circle and 1994, formulated the multi-target (multi-sensor) kiag
represents the gate that corresponds to ttatk this example problem as a MDA problem, and developed a multistage
plot p; correlates with track while plot p, does not. Lagrangian relaxation approach, following the work by Eeie
and Yadegar 1981, to solve the MDA problem as a series of
F. Perea Departamento de Matematica Aplicada Il. Escusei®r de  classical (two dimensional) assignment problems which are
Ingenieros. Camino de los descubrimientos sn. 41092, I8€8pain) Tel.: . s " .
+34 654111231 Fax: +34 954486175 perea@us.es. solvable in polynomial time. Rijavec et al. 1992 introdueed
H.W. de Waard huub.dewaard@nl.thalesgroup.com. sliding window technique to consider only the |&Btdata sets
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(scans or frames). The problem is to find solutions for the ofs received. Parameter denotes the point in time in which

the first scan of the sensor finishes and the second one begins.
Analogously, the second set of measurements, corresppndin
with the second scan is received within the intereal y2),
— and so on. The set of measurements collected at gcan

w Lt | weal sl e is defined asZ(k) = {zF}M%, ¥V k = 1,...,N, where

M, denotes the total number of measurements received dur-
ing scank and 2 is the i'" measurement received within
scank. The cumulative data set faV scans is defined as
ZN ={Z(1),...,Z(N)}. A track hypothesis ¢ is defined as

a set of measurements @f¥ such that it contains at most
one measurement of each scan and consists of at least one
measurement. This can be mathematically expressed as:

Fig. 2. The sliding window contains only three data selts: 3.

timization problem, using the measurements containediwith + - zV [t|>1, tnZk)|<1VYk=1,...,N. (1)
the window and the track hypotheses which already exist out- ) - )
side the window. In Figure 2 those track hypotheses areetlaf* feasible partition ofZ™ is a set of track hypotheses=
with the data sets with a number M. Poore and Drummond {t1:- -+ 5|} satisfying two conditions:
1996 presents a more general moving formulation for MHT. 181
Given d data sets, the objective is to find the assignment of1) It must cover the whole data s&t¥, zV = | ] ¢; .
) . et

the cefined cost functon. The measurements inHheiata 2) ANy wo track hypotheses belonging 1o e Same part:
sets are associated with the list of track hypotheses,tiegul tion must rth _have common meagurements, that is, they
in a (W + 1)-dimensional data association problem. Capponi ~ Must be disjointy; N #; = Ovi#j i5=1....19 _
2004 used a fast semi-greedy polynomial time algorithm fgr the sake of readability, in the rest of the paper we will
generate a set of required solutions from which the bergfer_to feasible partitions as partitions. The set of aigible
solution was selected. He provided a theoretical upper doupdrtitions of Z% is denoted byA(Z*).
for the difference in cost value between the unknown optimal After having defined what track hypotheses and partitions
solution and the first returned solution. In this paper wevpro&re, the goal is to find a best partition 8", which needs not
that this upper bound is tight. Another variation of greedge unique. We will consider that “a best partition” is a ptéoti
algorithms for the MTT problem is the GRASP aIgoritthat is most likely to correspond with the actual situati®o.
proposed by Murphy et al. 1998. Greedy algorithms have be@@t such a partition a quality measuf¥t) is assigned to
widely used to solve problems such as set-packing probleri@ch track hypothesis C Z*, which expresses how well
set-covering problems, travelling salesman problem, ste each measurement df fits the target's assumed dynamical
Vazirani 2001. Despite their vast use, for some instanceg tHnodel. Reid 1979 was one of the first to introduce a likelihood
should not be used, see Bang-Jensen et al. 2004 for a detditgtion Q(t) for each track hypothesis A similar approach
description of cases in which the Greedy algorithm not ongan be found in Poore 1994 and Storms and Spieksma 2003.
fails in finding the optimal solution but it obtains the worsPince the objective is to find a partition that is most likedy t
possible one. Nevertheless, in this paper we present Gre@true, it is necessary to maximigg,; Q(t) over the set of
algorithms for their suitability to MTT problems and extendll Possible partitions\ (Z7).
them toX -greedy versions, see Hausmann and Korte 1978 forln order to write the DAP as a MDA problem, a linear
an early reference ok -greedy algorithms. objective function has to be defined. When for each track

The rest of the paper is organized as follows. Section 11 fyypothesist of Z™ the track formation cost is defined as
devoted to formulate the MTT problem as a MDA problento(t) = log(Q(t)), the partition that maximize$], s Q(t)
In Section IIl the three greedy-based algorithms preseinted@lso maximizes _, s w(t), since the logarithm is a monotonic
this paper are introduced, which are extendediktegreedy function. An added benefit is also to reduce round-off errors
in Section IV. Section V summarizes the experimental resuffat result from multiplying small numbers, such as liketi

obtained. The paper concludes with a brief summary of tienctions. If with each partitiod = {t1,...,¢5} a weight
contributions of this work. W) = Zlilw(ti) is associated, the goal is to find a
partition 6* such that:
Il. PRELIMINARIES: MTT AS A MDA PROBLEM W(5*) = max W(). )

In this section the multi-target tracking problem is formu- SEA(ZM)

lated as a MDA problem. A more complete description of this Since the number of track hypotheses of the problem
process can be found in Reid 1979 and Poore 1994. Let axplosively grows with the number of scans, a sliding window
first describe the MTT problem. approach is used. The main idea behind the sliding window
Suppose that a sensor starts observing the airspace pertedhnique consists of considering only the measurements of
ically at a timey, = 0. During the first scan, correspondinghe lastd scans, assuming that the assignments of the previous
with the time intervalyo, y1), the first set of measurementsscans are fixed (see Figure 2). So, if a new scan is performed
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the window slides one scan onwards, discarding the oldast senultiassignment. Algorithms for the multidimensionaligss

of the previous window. The othel— 1 scans are maintained.ment problem on the other hand can be orders of magnitude
After including the new scan, the number of scans within tHaster than those for a general LP zero-one solver.

window is again restored td scans. So, each time a set of

mea;urements is received, the number of considered SCans ||| Two NEW GREEDY-BASED ALGORITHMS

remains constant and the complexity of the corresponding ) ) ) ) )

MDA problem does not increase. A description of the method !N this section the three algorithms under discussion are

is provided by Poore 1992. presented. The first one is algorithm SGTS (Semi Greedy
Now we are in a position to formulate the MTT problemTraCk Selection) introduced in Capponi 2004. The other two
as a MDA problem. A track = {20z} 241 is either algorithms are variations of SGTS. In those algorithms, &m
20771177 T g

M, Multi Greedy (MG) and Multi Greedy Rewarded (MGR), the

present in a partitiod or it is not, whereZ(0) = {z{}.29 . .
is the set of previously established tracks. This corregponV@y Of choosing the best track at each step differs from

to a 0-1 decision, which can be represented by the foIIowit’?égorithm SGTS.
decision variables:

A. SemiGreedy Track Selection algorithm
i e={=0 a2l el 3 In this section we briefly recall algorithm SGTS presented
Tiosiia =10 otherwhise ©) in Capponi 2004. This algorithm first sorts the elements in
Tr by decreasing weight. Afterwards it chooses the first track

Let ci i, ....i, b€ the weight of track = {z), 2} ,...,2}. hypothesis inTx as the first track of the solution. Then it
Then, the formulation of the MTT problem as a MDA problememoves fromT}; all the track hypotheses intersecting the
is: selected one. At this point, it selects the track hypothesis
with maximum weight from the remaining set and removes all
Mo M, My track hypotheses intersecting SGTS keeps doing that until
max Z Z .. Z CioinosinTio v oia there is no track hypothesis to be selected. This part of SGTS

fomliim1  ig=1 is called SGTS1, and provides a set of tracks that constitute
d the first solution of the algorithm. A pseudocode of SGTS1

M
s.t. Tioio=1,0p,=1,..., My, k=1,...,d5:
Do D Tiowia

j=0 b=l SGTS1(r)
itk ps ={}
Tig iy ... iq < {0,1} Vio,il,...,id. i 0
(4) T, —Tr
The constraints of the problem force each measurement to be repeat
in one, and only one, track hypothesis. That is, a measuremen te—i+1
cannot originate from two different objects. x; « t € T;_1 that maximizesv(t)
The size of the problem can also be reduced by excluding Ps — ps Ux;

implausible track hypotheses. To do so, a target is onlycasso E,—{teT,1:z;Nt#0}
ated with a measurement if and only if the measurement falls T, —Ti—1\E;
within the gate or validation region for the target, as ekmd until 7; =0
in Figure 1. The final set of track hypotheses considered is return ps
denoted byTg. To obtain a larger variety of solutions, algorithm SGTS runs

Although the problem size is reduced by considering ongain from the complet@y but starting with the first track;
the lastd scans and by excluding implausible track hypotheses, T that has not yet been included in any of the previous
the resulting MDA problem is stilNP-hard for window sizes solutions, which guarantees a new solution. The algorithm
d > 2, since this leads to & + 1)—dimensional assignmentstops either when no other new solution can be generated or
problem. When tracking multiple targets, a solution to thehen we have run out of computational time. After that it
MDA problem must be given before the following scan o€hooses the solution with the highest weight among thoge tha
the sensor begins. This justifies the development of efficidmave been calculated, which does not have tp Jogecessarily.
approximation algorithms that provide good solutions for 1) Approximation factor: In Capponi 2004 it is proven that
MDA problems. the value of the solution generated by SGTS1 approximages th

The equivalence of the MHT (Multi-Hypotheses Trackingyalue of the optimal one within a guaranteed factor dependin
formulation of MTT as a MDA problem was demonstrated ionly on the dimension of the window used.
the work of Poore 1994. In this paper, a general formulationLet OPT be an optimal partition. Lef; be the parti-
was presented for the multiple target tracking problem. fibpn obtained as the solution returned by SGTS1. Denote
also discusses the LP formulation of Morefield 1977 in motey W (OPT) and W (.S;) the values of the optimal solution
depth. Specifically, the latter LP formulation is more gaherand the first solution computed by SGTS respectively. It is
than the MDA problem since it can address different types pfoven that for a fixedd-dimensional assignment problem
assignments such as merged measurements and some typ&g @PT) < dW (S1).
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The following question arises in the context of improving Lemma 3.1: The number of track hypotheses contained
the approximation guarantee: can the approximation gteeanin the setOPT; is less than or equal to the number of
of algorithm SGTS be improved by a better analysis? Theeasurements contained:in, that is,|OPT;| < |z;|.
following example states that the answer to this question isAfterwards, an analogous result to the Proposition 1 Cap-
“no”, i.e., the upper bound presented above for algorithgoni 2004 follows.

SGTS is tight. . _ Theorem 3.1: Algorithm MGL1 is ad factor approximation
Example 3.1: Consider the following data. algorithm for ad-dimensional assignment problem, i.e.,

Track | Plot 1 __Plot2 .. Plod | Weight ,
e e W(OPT) < dW (SME1), @)
to 0 1 0 1
S ooy where SMG1 s the first solution found by algorithm MG1.

1 1 . w(zy
tdtil 1 1 1 14e Proof: For all i, we have thaf% < I;J) ViteT; 1.
TABLE T Therefore

TIGHT EXAMPLE.

W(OPT,) = Y,copr, w(t) < Yicopr, Tl
Suppose that the data sets coming frdndifferent scans = % Ycopr, It < “"iﬁ)d|OPTZ—|.
consist of exactly one measurement in each scan. In Table |
the track hypotheses that have been formed are shown. Tracékm Lemma 3.1 and the equation above we deduce that
t; is constituted by plot vV 7 = 1,...,d and trackty 1 is W(OPT;) < dw(x;). Thus, one has that
formed by all plots. The weights corresponding with all ksac

(8)

are represented in the last column. W(OPT) = ZW(OPTi) < dZw(wi) =dW(S1). (9)
One may check that the set of pairwise disjoint tracks i i
maximizing the sum of weights is OPT &1,...,¢;}. Nev-
ertheless, the solution generated by SGTS1 would be the 8¢ the result follows. =
consisting of only one trackS; = {t4.1}. It follows that The_foII.owmg example shows that the approximation guar-
W(OPT) =d andW(S;) = 1 + . Thus, one has that: antee is tight.
d Example 3.2: Consider the MTT problem described in Ex-
W(OPT) = 1—+5W(S1) Ve>0. (5) ample 3.1, with weightsu(t1) = 4, w(ts) = w(ts) = - =

. _ _ w(ty) =0, w(tagr1) =1—¢.
Making e — 0 in the previous example concludes that the |t js not difficult to see that the optimal solution and the

bound presented cannot be improved. solution returned by MG1, and their respective values, are:
B. Multi-Greedy algorithm OPT = {tgi1}, W(OPT) =1—¢, Sy = {t1,t2,...,ta}, W(S1) = E
In this section, the second approximation algorithm for (10)

solving the MDA problem is presented, named MG (MultiSuppose that the approximation factor given in Theorem 3.1
Greedy). The only difference with algorithm SGTS is thatan be improved tel’ < d. Then it should be satisfied that
instead of selecting tracks that maximize weights, thetiebei W (OPT) < d'W(S;). Considers > 0 such that: < 1 — %.
chosen tracks that maximizéfectiveness. Therefore, MG1 is Then one has:

the part of algorithm MG that finds the first solution. We define

the effectiveness of a track hypothesis as the quotientdmrw W(OPT) =1-e=(1 o e)dW (51)

its weight and the number of measurements that constitute it > (1= (1= 4))dw(S1) = dW(S).

In other words, for every track hypothesis, the effectiveness_ ) . ) .
of ¢ is defined as This contradicts the fact that’ is an approximation factor

~w(t) 6 for algorithm MG1, and we conclude that the approximation
al(t) = It| ©6) factor d for algorithm MG1 cannot be improved.

(11)

In the rest of the algorithm, the steps taken are analogous
to those taken in SGTS. . .
1) Approximation factor for algorithm Multi-Greedy: De- C. Multi-Greedy Rewarded algorithm

note byd and OPT the dimension of the window used and Now the third approach for So|ving the MDA prob|em
an optimal solution to the corresponding MDA problem. FOg presented, named MGR (Multi-Greedy Rewarded). It is
every iteration;, define OPTto be the set of track hypotheseggain a greedy-based algorithm. The idea is based on the
that are part of the optimal solution and have measuremefigt that for some MDA problems the more elements the
in common with the tracks int;, OPT; = OPT N E;. associations have the better. For MTT this means that tracks
Remember that; denotes the track hypothesis with highesgith many plots are preferred to those that contain only a
efficiency andE; denotes the set of available tracks thaew measurements. This reasoning seems to be logical, and
intersectz;, at each step of the algorithm. The following will be tested in Section V. Therefore, at each step we choose
lemma is proven in Capponi 2004. t € T;_; that maximizegt|w(t)
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1) Guarantee bound: Following the same reasoning as we In the rest of the section we apply this extension to the
did for algorithms SGTS and MG, see sections IlI-Al andlgorithms previously presented: SGTS, MG and MGR.
[1I-C1, we conclude the following result. A pseudocode of the algorithm that generates the first

Theorem 3.2: Algorithm MGR1 is ad? factor approxima- solution returned by<-SGTS, from now on called-SGTSI,
tion algorithm for ad-dimensional assignment problem, i.e.,is:

K-SGTS1
W(OPT) < d*W(S1). (12) s )
Proof: For all i, we have thatw(t)[t| < w(z;)|x;| ¥V ¢ € bs = {}
T;_,. Therefore while T # (
10
W(OPT;) =2 copr, w(t) < Xicorr, % | T; — Tk _ _
= ’w(.%'l)lle ZtGOPTi ﬁ < w($l)|$1||0PTl| Tzn — {(tl, ce ,tn) 1t € Tgr,t9 N th = @, v 4, h}
(13) repeat
From Lemma 3.1 and the equation above we deduce that i—i+1
W (OPT;) < w(z;)|z;|*. Thus, one has that x; « t € T/, that maximizes) ', w(t/)
Ps — Ps Ux;
W(OPT) =Y W(OPT;) < d*Y w(x;) = d*W(S)). B, {teTiy: UL, (alnt) 0}
i i (14) ﬂnH{tETlﬁ_lZt'l7¢EiVj:1,...,7’L}
And the result follows. ] ) Ti =Tia \ Ei
The following example shows that the given guarantee bound until 73" =0
is tight. Th < T;
Example 3.3: Consider the instance of Example 3.1 with nen—1
the following weight functionw: w(t;) = --- = w(ty) = end
return p,

d and w(ty41) = 14 e. Then MGR would taket ;1 with
total weight1 + ¢ since [t;|w(t;)) = d Vi =1,...,d and
[tar1|w(tar1) = d(1 + €) while {t1,...,tqs} is an optimal
solution with total weightd?.

In the pseudocode abovg, denotes the solution thak'-
SGTS1 generates. Note that the size of the groupsdé-
creases every time we cannot find a feasible group but there
still are some measurements that have not been assigned to
tracks. The algorithm stops, at the latest, whes 1.
In order to study the complexity dK-SGTS, the following
The three proposed heuristics can be extended in the fabtation will be used:
lowing way. At each step the track hypothesis with the highes , g denotes the size of the group of track hypotheses at
value among all available track hypotheses is not selected. the peginning of the algorithnds € N — {0}.
Instead, we choose at each step a grougkofligoint track  , ; denotes the number of scans consideried,N— {0, 1}.
hypotheses, just namefd-group. Such a group is constituted , ; — |7y| is the number of plausible track hypotheses,
by K track hypotheses with no measurements in common , Note that this number can be very large and depends

IV. K-EXTENSIONS OF OUR GREEDY ALGORITHMS

maximizing the sum of weightsi{' being a positive integer. on the number of measurements, the number of scans and
After selecting this first-group, we remove everi-group the method used to discard implausible tracks.

of track hypotheses that has at least one measurement iQ |y each scans there areM, measurementsM, € N,
common with the previously selected group. s=1,....d.

It could happen that there is no group 6f disjoint - -, begin with, the complexity of the algorithdf¥-SGTS1 is
hypotheses available and there still are measurements rmined. In this analysis we will calculate the computa-

have not been assigned to any track hypothesis yet. Thﬁgnal complexity of K-SGTS1 in its first loop, that is, when

the maximum weigh{ KX — 1)-group is selected. We continue ~_ - (the cases corresponding with other valuesiodire

reducing the size of the groups until all measurements haé(ﬁalogous) Several steps can be differentiated:
been assigned to track hypotheses. This procedure generat%) Buildi;lg TK .
o

a first partition of the set of measuremeit¥, that is, a first .
P For each possible group @f track hypotheses, we have

feasible solution. to check if all th ts that Hitute th
Afterwards, to obtain a larger variety of feasible solusipn 0 check 1t a € measurements that constitute them
are different. In each track hypothesis there are at most

we start the algorithm from thak’-group with the highest : .

value among all-groups that have at least one track that has d measurements, each of them coming fro”? different
not been included in any previous solution. Note that thes pr scans. Therefore, the total num.b(.e.r of operatlons_ to be
cess always generates new solutions since we are incluating, _done in order to check the feaS|p|I|ty offd grouplls,
least, one new track in the solution. This procedure is regea n th_e worst case, equal té(d. Since there are(K)

until X € N different solutions have been generated or the pos&ble_zK—groups (_)f _tracl;( hypotheses, the number of
allowed computational time has been consumed. This kind of comparisons for buildingy* is
algorithms is knwon in the literature ds-Greedy algorithms, dK( l )

see Hausmann and Korte 1978 for an early reference. K (15)
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2) OrderingT{. Following the same steps as in the proof for the complexity
Mergesort or Heapsort algorithms sort a list of elementd K-SGTS in??, the following results are proven.
with complexity O(nlogn). Therefore the number of Theorem 4.2: For a fixedK € N, the computational com-

operations for orderin@/~ is plexity of algorithms K-MG and K-MGR is polynomial,
I I given by O(i¥ log1), where! denotes the number of track
(K) log (K) (16) hypotheses considered at the beginning of the algorithm.

_ _ Corollary 4.1: Algorithms MG and MGR are of polyno-

3) Ta!<|ng the first group of< track hypothgses. mial complexity, given byO(l log1).
This step takes a constant amount of time.

4) Selecting the otheK-groups of track hypotheses. The
algorithm checks for every<-groupt € T that every . ] ]
If ¢ satisfies this condition, it is chosen to be part of thEulti-target tracking problems tested are presented. éseh
solution. If not, the following element of X is checked €xperiments, the performance of algorithm$IGR, MGR,

and so on. The maximum number of operations to BeSGTS, SGTS2-MG and MG is analyzed.

V. EXPERIMENTAL RESULTS

done is For these experiments we used three kinds of data:
dK(( ¢ ) —1). (17) 1) Simulated scenarios 1 (siml). These scenarios consisted
K of groups of planes that start flying in straight lines from

Joining the previous steps, the complexity of this part ef th different points in the space to the same area. Afterwards
algorithm follows: they keep their trajectory until they disappear from the

O(1* 1og1). (18) radar coverage. The number of planes in those scenarios
. ) i vary from 48 till 80.
Analogously, the complexity of the loop corresponding with 2y simulated scenarios 2 (sim2). The same as sim1 but the

any other value of: is: number of planes vary from 2 till 10.
N 3) Real data (real). Those data were collected in October
O(" logl). (19) 2005, on a vessel 40 miles from the Dutch shore in
Thus, the total complexity of¢-SGTS1 is given by, the North Sea. The used radar sensor has a maximum

detection range 0250 km.

Figure 3 shows a picture of the real situations under
O@™°8Y) = O(llog I+ - +15Log 1+1% log 1) = O(I* log]). _consideratio_n, v_vhe.re each arrow represents a flying ob-

ject. The objective is to associate the new measurements

K

n=1

(20)
Proposition 4.1: K-SGTSL1 is aO(I¥ log!) algorithm.
Proof: The discussion above. [ |
The complexity of K-SGTS has not been calculated ye
To do so, we have to consider that the algorithm calculat
not only one solution butX solutions. The computational
complexity of finding solutioni, ¢ > 1, can easily be
calculated from the fact that only steps 3 and 4 have to
performed (X needs not to be built and sorted again). S¢,
the reader may note that the computational complexity [
generating solutiori is O(I%) vV i=2,..., X. ‘
Theorem 4.1: For a fixed sizek € N, the computational |
complexity of algorithmX-SGTS is polynomial, and given |
by O(I¥ log1). '
Proof: Let G; be the maximum number of operations t
find solutioni, i« = 1,..., X. Then, the complexity ofK-
SGTS is
X X
> G =00 logl)+ Y 0(1%) =0("logl). (21)

=1 =2

4
Display a window with sensor preferences

| bmsmht0

[ |
Algorithms MG and MGR can be generalized following ¢
similar reasoning as in Sectidh?. Again, the main idea is
to take at each step the group &f disjoint track hypotheses Fig. 3. Planes flying over the North Sea.
that maximize the sum of effectiveness, instead of taking on
the one that individually maximizes the effectiveness. Sehe received in every scan to existing flying objects, to new
heuristics shall be calle&-MG and K-MGR, respectively. targets or to false alarms.
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d=4|d=5|d=6 Algorithm MGR MGR1 | 2-MGR | 2-MGR1
siml | 524 528 573 Frequency of optimality| 70.41% | 64.80% | 69.03% | 61.66%
sim2 | 223 229 237 Accuracy 98.95% | 98.22% | 98.94% | 98.06%
real | 1648 | 1607 | 1589
Algorithm MG MG1 2-MG 2-MG1
TABLE Il Frequency of optimality| 30.32% | 22.20% | 33.32% | 22.25%
NUMBER OF MDA PROBLEMS SOLVED Accuracy 94.63% | 92.57% | 94.99% | 92.66%
Algorithm SGTS | SGTS1 | 2-SGTS| 2-SGTS1
Frequency of optimality| 70.62% | 65.92% | 69.47% | 62.67%
Accuracy 99.01% | 98.25% | 99.02% | 98.08%

All scenarios were tested for window sizéds= 4,5, 6, gen-
erating this way 5, 6 and 7 dimensional assignment problems TABLE IV
respectively. The number of MDA problems solved in each QUALITY OF SOLUTIONS.
case is summarized in table Il (in total 7158).

For each MDA problem, the following algorithms were

executed: . . . .
. . _ .. regarding this matter arises: how many solutions should be

« an optimal solution was found by using the free 0pt'm'zéfenerated to assure an acceptable guarantee that the best
tion softwarelp_solve, which uses a branch and boundy tion of the algorithm is found? One approach to answer
(B&B) algor!thm. , ) this question is to calculate the frequencies in which the
« SGTS algorithm generating 100 solutiod,= 100. best solution generated by each algorithm is one of the

« 2-SGTS algorithm generating 100 solutiod$,= 100. et ; solutions,i = 1,...,100. In table V, the cumulated
« MG algorithm generating 100 solution&; = 100.

+ 2-MG algorithm generating 100 solutionX, = 100. Solution number] MGR | 2-MGR | MG | 2-MG | SGTS | 2-SGTS
o MGR algorithm generating 100 solutionk, = 100. 10 79.76% | 78.29% | 48.94% | 44.95% | 85.57% | 85.41%
) ; ; ; _ 20 82.98% | 81.63% | 57.46% | 52.68% | 90.52% | 90.21%
« 2-MGR algorithm generatmg 100 solutionk, = 100. 3 e e R I By e
In the rest of the section, a summary of the performance [of 40 88.05% | 84.37% | 69.73% | 59.79% | 94.61% | 94.39%
each algorithm is shown. 50 90.03% | 86.88% | 73.61% | 69.65% | 95.87% | 95.61%
. : j 60 92.04% | 89.02% | 78.50% | 74.61% | 97.00% | 96.80%
Tgble 1" sh(_)ws the average com.putat|on_t|me necessary =0 94 65% | 9134% | 83.99% | B0.90% | 97 89% |97 70%
to find the optimal solution and to find the first solution of 30 96.84% | 94.53% | 90.15% | 87.70% | 98.79% | 98.57%
the four approximation algorithms considered. It can bensele 90 98.60% | 98.27% | 94.39% | 92.80% | 99.51% | 99.24%
100 100% | 100% | 100% | 100% | 100% | 100%
Algorithm B&B MGR 2-MGR
CPU time (seconds) 0.01604 | 0.00073| 0.00079 TABLE V
Algonthm MG SGTS | 2.SGTS | MG POSITION OF THE BEST SOLUTION FREQUENCIES
CPU time (seconds) 0.00116| 0.00072] 0.00075| 0.00123
TABLE Il frequencies in which the best solution of each algorithm was

COMPUTATION TIME. . g .. .
found among the first ones, where is the number in the

first cell of each row, are shown. For instance, according to
that the approximation algorithms found a first feasiblerned?U" €xperiments, to obtain the best solution between the firs

optimal solution around 100 times faster than the branch ahfC solutions with a probability greater than or equal to, 0.9

bound algorithm. Another conclusion is that no significadt Will b& necessary to calculate:
difference in computation time was found between the six pro « 50 solutions for algorithm MGR.
posed approximation algorithms when changing fram= 1 « 70 solutions for algorithm 2-MGR.
to K = 9. « 80 solutions for algorithm MG.
But not only speed is important in an approximation algo- * 90 solutions for algorithm 2-MG.
rithm. The accuracy of the generated solution should be alsoe 20 solutions for algorithm SGTS.
considered. Table IV shows the frequency in which each of thes 20 solutions for algorithm 2-SGTS.
algorithms proposed found the optimal solution. Additibna A quick look at the results shown in this section suggests
in order to give a more complete result, the third rows shotlat algorithmsK-SGTS andK-MGR perform much better
a measurement of the accuracy of each algorithm, whichtigan algorithms<-MG in Multi Target Tracking problems, for
calculated by the formuld 002 C2RITHMYALLE - Remember K = 1,2. A reason for that could be that i¥-MG algorithm
that for every algorithm the first 100 solutions were calteda tracks constituted by a small number of measurements are
Note that the performances of the six algorithms in theit firsewarded. This fact is illogical for MTT problems, althouigh
solution are also shown in the third and fifth columns of eadould be valid in general MDA problems. It is surprising for
table. the authors that the fact of rewarding tracks with great nermb
From table IV it can be noted that the fact of generatingf plots does not seem to give an improvement/aSGTS
not only one solution but more than one is justified as thend K-MGR seem to perform likewise.
performance of each algorithm significantly improves when Since there seems to be no difference in time from one
generating more than one solution. The following questiaigorithm to another, and the highest accuracy of our experi
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ments was given bg-SGTS, we suggest choosing algorithni2] Pattipati, K.R. and Bar-Shalom, Y. and Washburn, R.B990) Pas-

2-SGTS for MTT problems. From the tests performed, running sive multisensor data association using a new relaxatigorighm.

. . . In: Multitarget-Multisensor Tracking: Advanced Appligats (ed: Bar-
algorithm 2-SGTS generating only 20 solutions seems to be shalom, Y.), pp. 219-246.

good trade-off between speed and accuracy. [13] K.R. Pattipati, R.L. Popp and T. Kirubarajan (2000)n&y of assign-

ment techniques for multitarget tracking. In: Y. Bar-Simaland W.D. Blair,

Editors, Multitarget-Multisensor Tracking: Advanced Aigptions vol. I,

CONCLUSIONS Artech House, Boston, pp. 77-159 (Chapter 2).

In this paper three heuristics for solving the muItidimer{}4itimSP§é§';jlih(igeﬁ)pTz‘gzﬂ‘ggd'me”S'O”a' assignirgmoblem. Oper-

sional assignment problem are presented, namie8GTS, [15] Poore, A.B. (1994) Multidimensional Assignment Fotation of Data

K-MG and K-MGR. Theoretical analysis prove that the Association Problems Arising from Multitarget and Multiser Tracking.

ot ; ; ; Computational Optimization and Applications 3, pp. 27-57.
three heuristics are of polynomlal complexny. BeS|despeup [16] Poore, A.B. and Drummond, O.E., (1996) Track Initiatiand Mainte-

bounds showing that the solution given by the algorithm IS nance Using Multidimensional Assignment Problems, Netw@ptimiza-
“close” to the optimal solution are provided for the three tion, (Editors) P.M. Pardalos, Et Al, Springer-Verlag. o
algorithms. Although the algorithms are presented in a MTH’) Poore, AB., Rijavec, N. and Barker, T. N. (1992) Dataaasation for

. . . track initiation and extension using multiscan windows Phoceedings of
context, as well as the experiments, the theoretical réagén  the SPIE Signal and data processing of small targets. SBEB. Drlando,
are valid for every MDA problem in general. FL, pp. 432-441.

; ; iH ; aeen [18] Reid, D.B. (1979) An Algorithm for Tracking Multiple Tgets. IEEE
In order to show their appllcablhty, the algorlthms pr Transactions on Automatic Control, AC-24,6, pp. 843-854.

were tested for multi-target tracking problems. No sigaifit [19] Rijavec, Barker, T. and Poore, A. (1992). Data assimidior track initi-
difference in accuracy from the cagé= 1 to the casdy = 2 ation and extensio nusing multiscan windows, Signal and Pabcessing
was observed for any of the three classes presented. of Small Targets 1992, Proc. SPIE 1698, pp. 432-441.

. . . . g r%20] Sittler, R.W. (1964) An optimal Data Association Preil in surveil-
The difference in computational time was not significant jance theory. IEEE Trans. Mil. Electron 8, pp. 125-139.

from the caseK’ = 1 to K = 2, nor between the different [21] Spieksma, F.C.R. and Woeginger, G.J. (1996) Geomethiee-

heuristics dimensional assignment problems. European Journal ofdfipes Re-
L . search 91, pp. 611-618.

To finish the paper we recommend to run algorithm 2-SGTi%] storms, P.P.A. and Spieksma, F.C.R. (2003) An LP-basigdrithm

generating only 20 solutions, since that seems to be a goodor the data association problem in multitarget trackingnuters &

_ Operations Research 30, pp. 1067-1085.
trade-off between SpeEd and accuracy. [23] Vazirani, V.V. (2001) Approximation Algorithms. Smger.
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