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Abstract

We study Banach spaces of harmonic functions on open sets of RN

endowed with weighted supremum norms. We investigate the har-
monic associated weight defined naturally as the analogue of the holo-
morphic associated weight introduced by Biersted, Bonet, and Taski-
nen and we show that they are not equal in general. We study compo-
sition operators with holomorphic symbol between weighted Banach
spaces of pluriharmonic functions characterizing the continuity, the
compactness and the essential norm of composition operators among
these spaces in terms of associated weights.

1 Introduction

Weighted Banach spaces of holomorphic functions with weighted supre-
mum norms and composition operators between them have been studied
by Bierstedt, Bonet, Contreras, Domański, Galbis, Garćıa, Hernández-Dı́az,
Lindström, Maestre, Rueda, Sevilla-Peris and Taskinen and others, see [2, 5,
6, 7, 13, 14, 15] and the references therein.

Spaces of harmonic functions have been investigated by Shields andWilliams
[27], in connection with the growth of the harmonic conjugate of a func-
tion. In [26], they proved results of duality for weighted spaces of harmonic
functions on the open unit disk. Lusky also considers weighted spaces of
harmonic functions in [19, 20], where the isomorphism classes in the case of
radial weights on the disk are determined.

∗The research of the first author was partially supported by MEC and FEDER, Project
MTM2007-62643, and MEC, Project MTM2007-30904-E, and Conselleria d’Educació de
la GVA, Ajuda complementaria ACOMP/2009/253.
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In [9, 10, 11] Boyd and Rueda investigate in the geometry of hv0(G) where
G is an open set of the complex plane, examining topics such as the harmonic
and holomorphic v−boundary and v−peak points.

Our aim here is to study conditions making possible to extend some of the
known facts in weighted spaces of holomorphic functions to weighted spaces
of harmonic functions. First, in the next section, we introduce the harmonic
associated weight ṽh in these spaces in a natural way extending the work on
the corresponding spaces of holomorphic functions due to Bierstedt, Bonet
and Taskinen in [3, 1.A]. This is a very important tool for the study of these
spaces. It is better linked to the space than the original weight, for example
it has been used to study the most important properties between compo-
sition operators between weighted Banach spaces of holomorphic functions
with holomorphic symbol. We extend most of the results in that paper to
the harmonic case, and we check that in general the holomorphic and the
harmonic associated weight are different. We give also some conditions under
which they coincide. In section 3, the composition operators are analyzed
on weighted spaces of pluriharmonic functions, which is the convenient con-
text to consider the composition operator with holomorphic symbols. We
characterize the norm and the essential norm for some important weights,
extending results from [5, 22] to these spaces.

2 Harmonic associated weights.

Our notation for locally convex spaces and complex and functional anal-
ysis is standard. We refer the reader to [16, 17, 18, 21, 24, 25].

Let G be an open and connected set of RN (or in CN). We denote by
h(G) the space of complex valued harmonic functions on G. If G ⊂ CN

we denote by H(G) the space of holomorphic functions on G. We have the
inclusion H(G) ⊆ h(G). We denote by ∥ · ∥ the euclidian norm in RN or in
CN and | · | the modulus of a real or a complex number. Some times we make
an abuse of notation and | · | denotes an arbitrary norm in RN or in CN and
the modulus in R or C. A weight on G is a function v : G → R which is
strictly positive and continuous. Every weight has associated a function w
called growth condition defined by w := 1

v
. For a weight v the weighted

Banach spaces of holomorphic functions with weight v are defined by:

hv(G) : = {f ∈ H(G) : ∥f∥v := sup
z∈G

v(z) |f(z)| <∞}, and

hv0(G) : = {f ∈ H(G) : vf vanishes at infinity on G}
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We say that a function g : G→ C vanishes at infinity on G if for each ε > 0
there exists a compact set K ⊂ G such that |g(z)| < ε for each z ∈ G \K.
If G ⊆ CN , the corresponding spaces of holomorphic functions Hv(G) and
Hv0(G) have been deeply studied as we mentioned in the introduction. The
unit balls in these spaces are denoted by bv, bv0 , Bv and Bv0 . The balls Bv

and bv are compact if we endow them with the compact open topology τ0.
We say that two weights v1, v2 : G→ R are equivalent if there exist two

positive constants C and D such that Cv1 ≤ v2 ≤ Dv1 and we write v1 ∼ v2.
An open and connected set (domain) G of RN (or CN) is called balanced

if for each z ∈ G and for each λ ∈ R (λ ∈ C) with |λ| ≤ 1 we have λz ∈ G.
A weight v : G→ R on a balanced domain G is radial if v(z) = v(λz) for all
z ∈ G and for all |λ| = 1. It is called unitary for a norm | · | if there exists a
positive continuous function g : [0,∞[→]0,∞[ such that v(x) = g(|x|). We
say that v is unitary when it is unitary for the euclidian norm ∥ · ∥.

Let v be a weight on G and let w = 1/v be its related growth condition.
By w̃h, : G→ R we denote the function

w̃h(z) := sup {|f(z)| : f ∈ bv} ,

the harmonic weight associated with v is ṽh := 1
w̃h

. For each z ∈ G we

consider the function δz : (h(G), τ0) → C defined by δz(f) := f(z) (here τ0
denotes the compact open topology). This function is called the evaluation
at z and it is linear and continuous. The compactness of the unit ball bv in
(h(G), τ0) implies that the supremum in the definition is a maximum. Since
the norm topology on hv(G) is stronger than the one induced by τ0, we have
that the restriction δz : hv(G) → C is also linear and continuous. We denote
by hv(G)

′ the topological dual space of hv(G). From the very definition we
have w̃h(z) = ∥δz∥hv(G)′ . In case G ⊆ CN the holomorphic associated weight
is denoted by ṽH and its corresponding associated growth condition by w̃H .

We present below a list of properties satisfied by the the growth conditions
w,w1 and w2 and the weight v defined on G, extending the well known results
in the holomorphic case to to the harmonic case.

1. Let f ∈ h(G). Then |f | ≤ w ⇔ |f | ≤ w̃h. This yields that hv(G) and
hṽh(G) are isometric.

2. For each z0 ∈ G there exists fz0 ∈ h(G) such that |fz0(z)| ≤ w(z) for
all z ∈ G, |fz0(z0)| = w̃h(z0),

3. w̃h is continuous and subharmonic,

4. w1 ≤ w2 ⇒ w̃1h ≤ w̃2h,

3



5. (Cw) h̃ = Cw̃h for every constant C > 0,

6. (w̃h) h̃ = w̃h,

7. (min(w1, w2)) h̃ = (min (w̃1h, w̃2h)) h̃,

8. (max (w̃1h, w̃2h)) h̃ ≤ (max(w1, w2)h̃.

9. If G ⊆ CN then w̃H ≤ w̃h ≤ w.

10. If G is balanced (G is a ball or G = RN) then w̃h is radial (unitary)
whenever w is.

11. If w̃h is unitary in a ball B (or the whole space) for a norm | · | then
w̃h is non increasing.

12. If G bounded and v is bounded or G = Rn and v(z) tends to zero when
∥z∥ tends to infinity then hv(G) ̸= 0, and then ṽh is bounded.

13. If G is the unit ball for a norm | · | of Rn or G = Rn, v is unitary for
| · | and hv(G) ̸= 0 then supz∈G v(z) < ∞. If G is the euclidian ball
(or G = Rn) and v is unitary then supz∈G ṽh(z) < ∞. In case G = Rn

we have even lim|z|→∞ v(z) = 0. If v is unitary with respect to the
euclidian norm we also have lim∥z∥→∞ ṽh(z) = 0.

The first 9 properties are extensions to the harmonic case of [3, 1.A].
We do not give the proofs because they are completely analogous. All these
properties can be stated in terms of the weights instead of the growth con-
ditions. In particular, 9 will be used during the rest of the paper mainly in
the form v ≤ ṽh ≤ ṽH .

Let prove 10. For each orthogonal transformation T we have that f ◦ T
is harmonic (cf. [1, Chapter 1]). Moreover, since v is unitary, we have
v(x)|f(T (x))| = v(T (x))|f(T (x))| and from this it follows that composition
of functions in hv(G) with orthogonal transformations gives an isometry in
hv(G). Let 0 < r < 1. There exists f ∈ hv(G) with ∥f∥v = 1 such that
f(r, 0, . . . , 0) = w̃h(r, 0, . . . , 0). Let x0 ∈ G such that ∥x0∥ = r. If we consider
an orthogonal transformation T such that T (x0) = (r, 0, . . . , 0). Since f ◦ T
is in bv we get that w̃h(x0) ≥ f ◦ T (x0) = w̃h(r, 0, . . . , 0). If we assume that
there is g ∈ bv such that g(x0) > f ◦T (x0), then g(x0) = g ◦T−1 ◦T (x0) = g ◦
T−1(r, 0, . . . , 0) ≤ w(x0) = w(r, 0, . . . , 0) and g◦T−1 is in bv because T

−1 is an
orthogonal transformation. This contradicts f(r, 0, . . . , 0) = w̃h(r, 0, . . . , 0).

To see 11 we consider a weight v on a ball B with respect to a norm
| · | which is unitary. Let 0 < r1 < r2 and z1 ∈ B with |z1| = r1. We take
f0 ∈ bv such that |f0(z1)| = w̃h(z1). For the maximum modulus principle
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for harmonic functions [1, 1.8] there exists z2 such that |f0(z2)| ≥ |f0(z1)|.
Hence w̃h(z2) = supf∈bv |f(z2)| ≥ |f0(z1)| = w̃h(z1). Since w̃h is unitary with
respect to | · | we conclude. The proof obviously works for the holomorphic
case, and it seems that this property 11, despite it is quite obvious, is not
written in any paper so far. Properties 10 and 11 together mean that if v is
a unitary weight in the unit ball B (or B is the whole space) of (CN , | · |),
then ṽh is unitary and non increasing.

The last two properties are extensions of [8, Ob.1]. In both cases in 12
we have 1 ∈ hv(G) and ṽh ≤ ∥1∥v.

We see 13 seeking a contradiction, we suppose that v is not bounded. We
consider v(x) = g(|x|). Then, it exists a strictly increasing sequence (rn)n of
positive numbers such that (g (rn))n → ∞, rn → 1 when G is the unit ball
for | · |, and rn → ∞ when G = Rn. From hv(G) ̸= 0, we get hRv (G) ̸= 0. Let
u ∈ hRv (G), u ̸= 0 and M(r) = sup|z|=r |u(z)|.

sup
n∈N

g(rn)M(rn) ≤ sup
z∈G

v(z) |u(z)| = ∥u∥v <∞

and furthermore, the sequence (M(rn))n is increasing by the maximum mod-
ulus principle of harmonic functions [1, 1.8]. Hence,

M(rn) ≤
∥u∥v
g(rn)

, for all n ∈ N.

Taking limit when n tends to ∞ we get a contradiction since u ̸= 0. If
G = RN and we assume that there exists c and rn → ∞ such that v(rn) >
c, then we obtain that, for each f ∈ bv and |z| = rn we have |f(z)| ≤
1/c. Applying again the Maximum Modulus Principle for harmonic functions
we get a contradiction with Liouville Theorem for harmonic functions [1,
2.1]. The corresponding statements for ṽh when v = g(∥x∥) follow from the
equality hv(G) = hṽh(G) and the fact that ṽh is unitary (property 10 above).

To state the following result, we remark that if G is the unit ball of Rn (or
G = RN) and v is a unitary weight then Property 10 proved above implies
the existence of a positive function g such that ṽh(x) = g(∥x∥).

Proposition 2.1. Let g : [0, 1] → R+ (or g : [0,∞[→ R+) be a non increas-
ing positive function and let Gn be the unit ball of Rn (or Gn = Rn) for the
euclidian norm. Define vn(x) = g(∥x∥) for x ∈ Rn. Let gn : [0, 1] → R+ be
the function such that (ṽn)h(x) = gn(∥x∥) for each n ≥ 2. Then gn+1 ≤ gn
for each n ≥ 2.

Proof. We only give the proof for G being the unit ball. Let n ≥ 2, 0 < r < 1.
Denote rn = (r, 0 . . . , 0) ∈ Rn, and let f in the unit ball of hvn(Gn) such that
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1/gn(r) = f(rn). Such an f exists because property 2 above. Consider
f̃(x1, . . . , xn, xn+1) = f(x1, x2, . . . , xn). It is immediate that f̃ ∈ bvn+1 . We

have f̃(rn+1) = f(rn) = 1/gn(r) ≤ 1/gn+1(r).

Our aim is to connect this harmonic associated weight with the holomor-
phic one. First we observe that property 9 above is valid for the holomor-
phic case in the ball (or the whole space) with respect to any norm in CN .
Further, Bonet proved in [12, Proposition 2] that, for unitary weights, the
corresponding associated weight does not depend neither on the norm nor on
the dimension. We state this result below as we need it, the original result
is written in terms of entire functions on Banach spaces.

Proposition 2.2 (Bonet). Let g be a positive functions defined on positive
numbers. If we consider a norm | · | in Cn and a weight v = g(|z|) for
z ∈ Gn ⊂ Cn, Gn being the unit ball of Cn for | · | or Gn = Cn, then
ṽH(z) = g̃(|z|), where

g̃(t) = {sup |h(z)| : h ∈ H(G1) |h(z)| ≤ 1/g(|z|) for all z ∈ G1, |z| = t},

for G1 = D in case Gn the ball of (Cn, | · |n) or G1 = C if we are considering
Gn = Cn.

The argument given there does not work for the harmonic case since
f : Cn → C being harmonic does not imply that λ → f(λz) (λ ∈ C) is
harmonic. We look now for conditions which ensure that ṽH = ṽh.

A function f :]a, b[⊂]0,+∞[→ R is called is called convex in log r with
r ∈]a, b[, when the function ψ defined by ψ(t) := f(et) is a convex function
and is called log-convex when the function ψ defined by ψ(t) := log f(et),
for t ∈ log (]a, b[) is a convex function (i.e. log f is convex in log r). The
following lemma is [5, Lema 5].

Lemma 2.3 (Bonet,Domański, Lindström). Let v : [0, 1[→]0,+∞[ a decreas-
ing and continuous function with limr→1− v(r) = 0. Let v : D → [0,+∞[,
and consider the radial extension (v(z) = v(|z|)). If 1

v
is log-convex, then v

is equivalent to ṽH (and consequently also to ṽh)

As a clear consequence we have that for a radial weight v in D if limr→1− v(r) =
0 and 1

ṽh
is log-convex, then ṽh is equivalent to ṽH . In view of [7, Proposition

1.1], the hypothesis of limr→1− v(r) = 0 is equivalent to limr→1− ṽH(r) = 0.
Moreover, because of Proposition 2.2, if v = g(|z|) is equivalent to ṽH in D,
and we define vn(z) = g(|z|) for z in the unit ball Bn of (Cn, | · |), | · | being
a norm in Cn, Proposition 2.2 implies that there is g̃ not depending neither
on n nor on | · | such that (ṽn)H(z) = g̃(|z|). This implies the equivalence
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between vn and (ṽn)H for each n ∈ N. The order relation vn ≤ (ṽn)h ≤ (ṽn)H
between the associated weights implies that vn and (ṽn)h are also equivalent.
It seems remarkable that we do not know if (ṽn)h is unitary with respect to
an arbitrary norm | · | if it is not the euclidian.

Although we do not know if for unitary weights in the unit disc the asso-
ciated and the harmonic weights are equivalent, we have a negative answer
for the equivalence of associated weights in the disc with non radial weights.
This example is inspired by [3, Proposition 3.6]

Example 2.4. We define the function g : ∂D → R by: g(eit) = |1− eit|2, t ∈
[−π, π], g ∈ L1(∂D), is continuous, g(1) = 0 and g ≥ 0. Let w : D → R, The
Poisson Kernel of the function g, that is, w(z) = 1

2π

∫ π

−π
Re

(
eit+z
eit−z

)
g(eit)dt.

By [24, Theorem 11.7], w is harmonic in D. Furthermore, w is positive since

Re
(

eit+z
eit−z

)
= 1−|z|2

|eit−z|2 > 0 and g > 0 in ∂D \ {1}. Therefore, w is a growth

condition in D and w̃h = w.
On other hand, log g ∈ L1(∂D), since∫ π

−π

log
∣∣1− eit

∣∣2 dt = ∫ π

−π

log
(
(1− cos t)2 + sin2(t)

)
dt =

∫ π

−π

log (2 (1− cos t)) dt <∞

By applying [3, Corollary 3.7], w̃H = |Qg|, where Qg is the outer function

of g, that is, Qg(z) = exp

(
1
2π

π∫
−π

eit+z
eit−z

log g (eit) dt

)
. Since log |1− z|2 is

harmonic on D, we conclude |Qg(z)| = |1− z|2.
Let r ∈]0, 1[,

ṽH(r)

ṽh(r)
=
w̃h(r)

w̃H(r)
=

1

(1− r)2
1

2π

∫ π

−π

Re

(
eit + r

eit − r

) ∣∣1− eit
∣∣2 dt =

1

(1− r)2
1

2π

∫ π

−π

1− r2

|eit − r|2
∣∣1− eit

∣∣2 dt ≥ 1

(1− r)

1

2π

∫ π

−π

1 + r

(1 + r)2
∣∣1− eit

∣∣2 dt ≥
≥ 1

1− r2
1

2π

∫ π

−π

2(1− cos t)dt =
2

1− r2

Hence,

sup
r∈]0,1[

ṽH(r)

ṽh(r)
= ∞.

Therefore, the corresponding associated weights ṽH , ṽh are not equivalent.
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We can also obtain an analogous example with a radial weight considering
the punctured disc.

Example 2.5. Let G = {z ∈ C : 0 < |z| < 1}. Let consider the weight v :
G → R defined by v(z) := 1

− log|z| , and the corresponding growth condition

w := 1
v
.

Let f(z) = log |z|, z ∈ G. From f ∈ hR(G) and |f(z)| = w(z) = − log |z|
we obtain w̃h = w̃R

h = w.
If f ∈ H(G), |f(z)| ≤ w(z), for all z ∈ G then limz→a,|a|=1 f(z) = 0.

Moreover e|f(z)| ≤ e− log|z| = 1
|z| , for all z ∈ G, and then

∣∣zef(z)∣∣ ≤ 1, for

all z ∈ G. This implies that zef(z) can be holomorphically extended to a
function g on D with g(z) ̸= 0 if z ̸= 0. Hence there exists k ∈ N0 such

that ĝ(z) := g(z)
zk

is holomorphic on D and satisfies ĝ(0) ̸= 0. Now log |ĝ|
is a harmonic function that can be extended continuously to ∂D as 0. This
yields that log |ĝ| is identically null and consequently |ef(z)| = |z|k−1 for each
z ∈ D \ {0}. The unique k ∈ N0 which does not give contradiction is k = 1.
Thus f has to be constantly 0 because of the behaviour when going to the
boundary. This means w̃H ≡ 0.

The following result is inspired in the results of [10, Section 6]. Here,
besides putting the more general context, we remove from the weight the
condition of being twice differentiable.

Theorem 2.6. Let g : [0, 1] → R+ be a non increasing continuous function
such that g(1) = 0 and log(1

g
)|]0,1[ is convex. Let N ≥ 2. Consider the unitary

weight v : BRN → R+ defined by v(x) := g(∥x∥). Then v = ṽh. Moreover if
N = 2k is even and we consider v = g(|z|) for | · | being a norm in Ck and
z in the corresponding unit ball, then we have v = ṽH .

Proof. We restrict ourselves to the case v : D → R+, considering v(z) =
g(|z|). Proving the equality v = ṽH in this case, the statement is a conse-
quence of Proposition 2.1, Proposition 2.2 and the order relation v ≤ ṽh ≤
ṽH .

We fix r0 ∈ [0, 1[. Define Ψ := 1
v
|[0,1[. As Ψ is increasing and convex we

can get α0 ≥ 0 which depends on r0 such that Ψ(r) ≥ α0(r− r0)+Ψ(r0), for
all r ∈ [0, 1[. Now we compute

sup
0<r<1

v(r) exp(α0r) = exp

{
sup

0<r<1
{log v(r) + α0r}

}
≤

exp

{
sup

0<r<1
{−α0(r − r0)−Ψ(r0) + α0r}

}
= v(r0) exp(α0r0)
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Now we consider f0(z) := 1
v(r0) exp(α0r0)

exp(α0z) for z ∈ D. We have

v(r0) |f0(r0)| = 1
Let z ∈ D,

v(|z|) |f0(z)| ≤
v(|z|) exp(α0|z|)
v(r0) exp(α0r0)

≤ 1,

and this means f0 ∈ Hv(D) and ∥f0∥v = 1.

Remark 2.7. (a) From the given proof above it follows that for a weight
v(z) = g(|z|) defined on C for g : [0,∞[→ R+ continuous and such that
exp(αz) ∈ Hv(C) we have v = ṽH . This implies that, for such a function g
there exists g̃ : [0,∞[→ R+ such that if we define vn in Cn as vn(z) = g(|z|)
then (ṽn)H(z) = g̃(|z|) for each n ∈ N and for each norm | · | defined in Cn.

Examples 2.8. In [3, Examples 1.7] and in [10, Example 13] are given
weights v = g(∥z∥) defined on the euclidian unit ball of Cn which satisfy
that w = w̃H . We write below some of them for which we have w = g(|z|)
with log 1

g
convex and | · | being any norm in Cn.

(a) v(z) = exp(C/(1− |z|β), C > 0, β > 1
(b) v(z) = (1− |z|)α, α > 0
(c) v(z) = arccos(|z|),
(d) v(z) = cos(π

2
|z|)

3 Composition operators

Let G ⊆ CN be an open and connected subset. A function f : G → C of
class C2 is said to be pluriharmonic (see for instance [18, 2.2]) if for every
complex line l = {a+ bλ} the function λ→ f(a+ bλ) is harmonic on the set
Gl ≡ {λ ∈ C : a+ bλ ∈ Ω}. This condition is equivalent to:

∂2f

∂zj∂zk
≡ 0,∀j, k = 1, · · · , n

Let ph(G) denote the set of pluriharmonic functions on G. In this case
we have the inclusions H(G) ⊂ ph(G) ⊂ h(G) [1, 16, 18]. If v is a weight on
G then we can consider the corresponding weighted Banach space phv(G),
which has a compact unit ball bpv for the compact open topology. We consider
also the natural definition for the pluriharmonic associated weight ṽph. The
inclusions Hv(G) ⊆ phv(G) ⊆ hv(G) imply v ≤ ṽh ≤ ṽph ≤ ṽH . These
pluriharmonic associated weights share all the properties of the corresponding
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holomorphic associated weights. Even the argument of Proposition 2.2, which
is not valid for the harmonic case, works for the pluriharmonic associated
weight.

If G1 and G2 are open and connected subsets in CN and CM and φ :
G2 → G1 is a holomorphic function then we can consider the composition
operator Cφ : ph(G1) → ph(G2), Cφ(f) := f ◦ φ. It is in fact well defined,
since if f ∈ ph(G1), then f ◦ φ ∈ C2(G2) and f = u + iv with u, v in the
space ph(G1)

R of real valued pluriharmonic functions. By [18, proposition
2.2.3], u and v are locally real parts of holomorphic functions. Now, the
composition of holomorphic functions is a holomorphic function (see [16,
Theorem 5. Chap 1]). From this, it follows that u ◦ φ and v ◦ φ are also
locally real parts of holomorphic functions. Thus, by [18, Proposition 2.2.3],
u ◦φ, v ◦φ ∈ ph(G1)

R. Also, Cφ : (ph(G1), τ0) → (ph(G2), τ0) is a continuous
and linear map.

Proposition 3.1. Let v and w be weights on G1 and G2 respectively. The
following conditions are equivalent for the composition operator Cφ:

(a) Cφ : phv(G1) → phw(G2) is continuous,
(b) Cφ (phv(G1)) ⊂ phw(G2),

(c) supz∈G2

w(z)
ṽph(φ(z))

<∞,

Moreover, if these equivalences hold then ∥Cφ∥ = supz∈G2

w(z)
ṽph(φ(z))

.

Proof. The arguments are a simple adaptation of those used in [8] for spaces
of holomorphic functions. (a) and (b) are equivalent because of the Closed
Graph Theorem. We assume that (a) holds. If (c) does not hold then there

exists a sequence (zn)n ⊆ G2 such that w(zn)
ṽph(φ(zn))

tends to ∞. For each n ∈ N
we take fn ∈ bpv such that fn(φ(zn)) = 1

ṽph(φ(zn))
. This implies that, for all

n ∈ N, ∥Cφ∥ ≥ |Cφ(fn)| ≥ w(zn)|f(φ(zn))| = w(zn)
ṽph(φ(zn))

, a contradiction.

If (c) is true then for all f in the unit ball of bpv we have ∥Cφ(f)(z)∥w =

supz∈G2
w(z)|f ◦ φ(z)| ≤ supz∈G2

w(z)
ṽph(φ(z))

∥f∥v.
To estimate the norm of Cφ when it is es continuous we proceed in a sim-

ilar way as in [5] in the holomorphic case, obtaining a slight improvement.

From the above argument we have that ∥Cφ∥ ≤ supz∈G
w(z)

ṽph(φ(z))
. The trans-

pose Ct
φ is also continuous and for each z ∈ G2 we have w(z)δz ∈ bpw. Now,

for each z ∈ G2, ∥Cφ∥ = ∥Ct
φ∥ ≥ ∥Ct

φ(w(z)δz))∥ = w(z)∥δφ(z)∥ = w(z)
ṽph(z)

,

when ∥ · ∥ denotes both the operator norm and the dual norm.

For essential weights, i.e. those for which v ∼ ṽH , the continuity in the
weighted space of holomorphic functions is equivalent to the continuity in the
space of pluriharmonic functions For weights on the unit ball of CN endowed
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with an arbitrary norm | · |, defined by v(x) = g(|x|) with g :]0, 1[→ R+ being
continuous and non increasing this happens when t 7→ log(1/g)(et) is convex
by [5] and Proposition 2.1.

Given E and F normed spaces, and A : E → F a continuous linear map,
the essential norm of A is defined by ∥A∥e = inf{∥A−K∥ : K is compact }.
It is clear from the definition that A is compact if and only if ∥A∥e = 0.
Our purpose in the rest of the section is to extend the results in [5, 22] and
calculate the essential norm of the composition operator between spaces of
pluriharmonic functions.

We present below a generalization of [22, Proposition 2.1] to a wider
context. We remark that in the statement CN could be replaced by RN , but
we have preferred to restrict to the complex variables case because our natural
examples of spaces of functions satisfying the hypothesis are the spaces of
pluriharmonic and holomorphic functions.

Proposition 3.2. Let G be a balanced and connected open subset of CN and
let v be a weight on G which vanishes at infinity and such that there exists
M > 0 such that

sup
z∈G,0<r<1

v(z)

v(rz)
≤M.

Then there exists a sequence of operators (Tn) on (h(G), τ0) such that Tn :
hv(G) 7→ hv(G) is compact for each n ∈ N and the following conditions are
fulfilled:

(i) H(G) and ph(G) are invariant subspaces of Tn for each n ∈ N

(ii) τ0 − lim
n→∞

Tn = I

(iii) lim sup
n→∞

∥I − Tn∥ ≤ 1.

Proof. We assume without loss of generality v(x) ≤ 1 for all x ∈ G. The
same proof of Proposition 3.1 shows that the hypothesis on the weight is
equivalent to the existence of an M > 0 such that ∥Cr∥ ≤ M for each
0 < r < 1, the norm of the operators taken in L(hv(G)). For each 0 < r < 1
the operator Cr(f) = f(rz) is compact on hv(G). This can be checked
observing that the image of a bounded sequence pointwise (compact open)
convergent to zero is norm convergent to zero. This compactness and the
fact that Cr(hv(G)) ⊆ hv0(G) implies that for each 0 < r < 1 there exists
L ⊂ G compact such that v(z)|Cr(f)(z)| < ε for each for all z ∈ G \ L and
for all f ∈ bv. The standard compactness argument necessary to prove this is

11



the same used in [22, Lemma 2.1] for the space of one variable holomorphic
functions on the unit disc and a radial weight on it. Moreover, since G has
a fundamental sequence of compact sets which are balanced, it follows that
τ0 − limnCrn(f) = f for each f ∈ h(G) and for each sequence (rn)n ⊂]0, 1[
tending to 1. Hence the sequence (Crn)n tends uniformly on bv to the identity
for the compact open topology [21, Proposition 23.27], since this subset is
relatively compact in this topology.

Let (εn)n be a decreasing sequence of positive numbers tending to zero.
These facts above permit us to choose an increasing sequence of positive
numbers (rn)n tending to 1 and a fundamental sequence (Ln)n of compact
subsets of G such that

sup
f∈bv ,z∈Ln

|(I − Crn)(f)(z)| ≤ εn

and

sup
f∈bv,z∈G\Ln+1

v(z)|Crnf(z)| ≤ εn.

For each n ∈ N we choose m(n) ∈ N satisfying (1 +M)/m(n) < εn. We
define

Tn =
1

m(n)

n+m(n)∑
j=n

Crj

The construction implies that ∥Tn∥ ≤ M for each n ∈ N and (Tn)n is a
sequence convergent to the identity for τ0. We observe

I − Tn =
1

m(n)

n+m(n)∑
j=n

(I − Crj).

for n ≤ k ≤ n+m(n). For z ∈ G, let j0 ≥ n the minimum such that z ∈ Lj0 .
Then, for each f ∈ bv we compute

(a) v(z)|f(z)− Crj(f)(z)| ≤ |f(z)− Crj(f)(z)| ≤ εj for j0 ≤ j.

(b) v(z)|f(z)− Crj0−1
(f)(z)| ≤ ∥I − Crj0

∥ ≤ 1 +M .

(c) v(z)|f(z)−Crjf(z)| ≤ 1+supz∈G\Lj+1
v(z)|Crjf(z)| ≤ 1+εj if n ≤ j ≤

j0 − 2.

Altogether gives
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∥I − Tn∥ ≤ m(n)− 1

m(n)
(1 + εn) +

1 +M

m(n)
≤ 1 + 2εn,

which clearly implies (ii).

The next results extend the main theorems in [5, 22] to our context.

Theorem 3.3. Let G1 ⊂ CN be a balanced and connected open subset of CN

and let v be a weight on G which vanishes at infinity and such that there
exists M > 0 such that supz∈G,0<r<1

v(z)
v(rz)

≤ 1. Let G2 ⊂ CM a connected and
open set, let be w2 a weight on G2 and let φ : G2 → G1 be a holomorphic
function. For the composition operator Cφ : phv(G1) → phw(G2) and for any
fundamental sequence (Kn)n of compact subsets of G1 we have

(a) it holds

∥Cφ∥e ≤ lim
n→∞

sup
φ(z)∈G1\Kn

w(z)

ṽ(φ(z))
.

(b) Cφ is compact if and only if ∥Cφ∥e = lim
n→∞

sup
φ(z)∈G1\Kn

w(z)

ṽph(φ(z))
= 0.

The same result is true for the corresponding operator considered between the
spaces of holomorphic functions.

Proof. To prove (a) we get a sequence (Tn)n of compact operators defined by
Proposition 3.2. The invariance of ph(G1) and Tn(hv(G1)) ⊆ hv(G1) implies
that Tn|phv(G1) ∈ K(phv(G1)) for each n ∈ N. Therefore, Cφ ◦ Tn (we are
denoting by Tn the restriction) is also compact for each n. Thus,

∥Cφ∥e ≤ ∥Cφ − Cφ(Tn)∥ = ∥Cφ(I − Tn)∥ .

On the other hand, we have that for each j ∈ N:

∥Cφ(I − Tn)∥ = sup
f∈bpv

∥Cφ(I − Tn)f∥ = sup
f∈bpv

sup
z∈G2

w(z) |(I − Tn)f(φ(z))| ≤

≤ sup
f∈bpv

sup
φ(z)∈Kj

w(z) |(I − Tn)f(φ(z))|+ sup
f∈bpv

sup
φ(z)∈G1\Kj

w(z) |(I − Tn)f(φ(z))|

The first term above goes to 0 as n tends to ∞ because w is bounded, bpv is
τ0-compact and Tn − I is τ0 convergent to 0 [21, Proposition 23.27]. For the
second we have the estimate
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sup
f∈bpv

sup
φ(z)∈G1\Kj

w(z) |(I − Tn)f(φ(z))| ≤ sup
φ(z)∈G1\Kj

w(z)

ṽph(φ(z))
∥I − Tn∥.

Hence we conclude taking limit when n goes to infinity and from the fact
that the inequality is valid for each j ∈ N.

To show (b) we assume that there is c > 0 and a sequence (zj)j such

that φ(zj) ∈ G1 \ Kj and such that
w(zj)

ṽph(φ(zj))
≥ c. Since Cr(f) → f

pointwise as r → 1 and ∥Cr∥ ≤ M by hypothesis, taking a subsequence
of (zj)j if necessary we can get a sequence (fj)j ∈Mbpv ∩ phv0(G1) such that
|ṽph(zj)fj(zj)− 1| ≤ 1/4 and v(φ(zk))|fj(φ(zk))| < 1/4 for each k > j. This
last condition is possible since each fj is in hv0(G1) and (φ(zj))j tends to
infinity in the Alexandroff compactification of G1. This yields that (fj)j is a
bounded sequence in phv(G1) such that ∥Cφ(fj)− Cφ(fk)∥ ≥ 1/2 for j ̸= k,
an then Cφ is not compact.

Theorem 3.4. Let B be the unit ball of (CN , | · |) and let φ : G → B
a holomorphic function on an open and connected set G in CM . Let g :
[0, 1] → R+ be a continuous function with g(1) = 0 and let v(z) = g(|z|) be
weight on B such that ṽH = ṽph. Let w a weight on G which vanishes at ∞.
Suppose that the operator Cφ : phv(B) → phw(G) is continuous. Then

∥Cφ∥e = lim sup
|φ(z)|→1

w(z)

ṽ(φ(z))

where ṽ denotes the common associated weight for the spaces of holomorphic
and pluriharmonic functions.

Proof. Because of Theorem 3.3 we only have to show the lower bound of the
essential norm. Let consider a compact operator K : phv(B) → phw(G).
We show that the restriction Cφ − K to Hv(B) has norm not smaller than

lim sup|φ(z)|→1
w(z)

ṽ(φ(z))
, concluding from this that the norm of the operator

Cφ −K on phv(B) has the same lower bound.
We can find a sequence (zn)n in G with |φ(zn)| > 1− 1/n and

lim
n

w(zn)

ṽ(φ(zn))
= lim sup

|φ(z)|→1

w(z)

ṽ(φ(z))

Now, taking a subsequence if necessary, we can assume that there is a in
such that |a| = 1 and limφ(zn) = a. We apply Hahn Banach Theorem to
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get b ∈ CN satisfying ⟨a, b⟩ = 1 and |⟨x, b⟩| ≤ |x| for each x ∈ CN . We take
a sequence (α(n))n of natural numbers tending to ∞ such that

lim
n→∞

⟨φ(zn), b⟩α(n) = 1.

Let (εn)n be a decreasing sequence of positive numbers tending to 0. From
Bv = Bv0

τ0
[4, Example 2.1 (ii)], it follows that for each n ∈ N, we can find

fn ∈ Bv0 such that

|fn(φ(zn))| ≥
1

ṽ(φ(zn))
− εn.

We take hn(z) := ⟨z, b⟩α(n)fn(z), z ∈ B. The sequence (hn)n is in the unit
ball of Hv0(B) and converges to 0 in τ0. As we have H ′′

v0
(B) = Hv(B) as

a consequence of [4, Corollary 1.2,Example 2.1 (ii)], Ng construction of the
predual of Hv(B) [23] implies that the compact open (pointwise) topology τ0
agrees with the weak* topology on Bv0 ⊂ Bv , since it is Hausdorff. Then the
pointwise convergence of (hn)n implies the weak convergence of this sequence
in Hv0(B). Therefore, since K is a compact operator, it follows

lim
n→∞

∥K(hn)∥w = 0.

Now we compute

∥Cφ(hn)−K(hn)∥w ≥ ∥hn ◦ φ∥w−∥K(hn)∥w = sup
z∈G

w(z) |hn(φ(z))|−∥K(hn)∥w ≥

≥ w(zn)

ṽ(φ(zn))
|⟨φ(zn), b⟩|α(n) − w(zn) |T (φ(zn))|α(n) εn − ∥K(hn)∥w

We take limit when n tends to ∞ to get the desired inequality.

Concluding remarks. (a) The hypothesis of the above theorem are satisfied
by every weight v = g(|z|) for g : [0, 1] → R+ continuous with g(1) = 0 and
log(1/g) convex in (0, 1) because of Theorem 2.6.
(b) If v = g(|z|) with g no increasing and g(1) = 0 and no additional assump-
tions, then Proposition 3.2 can be applied for G = Hv(B). For φ : G → B
holomorphic and w being a weight on B vanishing at infinity, if we consider
the composition operator Cφ : Hv(B) → Hw(G) then the proof of Theorem
3.4 shows

∥Cφ∥e = lim sup
|φ(z)|→1

w(z)

ṽH(φ(z))
.
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(c) In the same situation, if we consider Cφ : phv(B) → phw(G), then we
have

lim sup
|φ(z)|→1

w(z)

ṽH(φ(z))
≤ ∥Cφ∥e ≤ lim sup

|φ(z)|→1

w(z)

ṽph(φ(z))
.

(d) Zheng proved in [28] that for an inner function φ : D → D, the essential
norm of the composition operator Cφ : H∞(D) → H∞(D) is either 0 or 1.
In the weighted Banach spaces of holomorphic and harmonic functions the
situation differs. Consider the typical weight v(z) = 1 − |z| in D and the
family of symbols φa,n(z) = zn

(
z+a
1+a

)
, n ∈ N, a ≥ 0. Since φa,n(0) = 0 each

φa,n is contractive because of Schwarz lemma, we have

∥Cφa,n∥ = sup
z∈D

v(z)

v(φa,n(z))
= 1,

where the maximum is attained at z = 0. For calculating the essential norm,
we observe that |φa,n(z)| ≤ φa,n(|z|) to compute

∥Cφa,n∥e = lim sup
|φa,n(z)|→1

v(z)

v(φa,n(z))
= lim

r→1−

1− r

1− φa,n(r)
=

1 + a

1 + n+ an
.

All the values in ]0, 1] are attained considering all a ≥ 0 and all n ∈ N.
Acknowledgement The authors are grateful to J. Bonet for several discus-
sions and suggestions about this paper.
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