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[1] A very efficient technique for the full-wave analysis and design of complex passive
waveguide filters, including rectangular cavities with metallic cylindrical posts and coaxial
excitation, is presented. This novel technique provides the wideband generalized admittance
matrix representation of the whole structure in the form of pole expansions, thus extracting the
most expensive computations from the frequency loop. For this purpose, the structure is
properly segmented into its key building blocks, all of them characterized in terms of
wideband admittance matrices. Then, an efficient iterative algorithm for combining these
matrices, and finally providing the wideband generalized admittance matrix of the complete
structure, is followed. In order to validate the accuracy and efficiency of this full-wave modal
technique, four different waveguide filters have been considered. In particular, the design of a
compact four-pole in-line filter with tuning screws and of an evanescent-mode filter, both
operating in the X-band and including a standard (vertical) coaxial excitation, are first
presented. Finally, two C-band six-resonator comb-line filters, one of them with a cross-
coupling configuration, and both excited with a collinear end-launcher transition based on a
disc-ended coaxial, are also designed. Numerical data from a commercial software, as well as
measurements of a manufactured prototype, are included for verification purposes.
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1. Introduction

[2] The fast-growing microwave and millimeter-wave
equipment market creates a constant demand for faster and
more efficient computer-aided design (CAD) tools that must
be able to meet the requirements of a computationally inex-
pensive design process. Moreover, modern high-capacity
telecommunication equipment is based on a wide variety of
waveguide components, which are usually fed using a coaxial
excitation [Uher et al., 1993]. For instance, standard coaxial
cavity filters (either with in-line or folded configurations) and
recently proposed orthogonal coaxial filters, all of them typi-
cally operating at low-frequency bands (i.e., L-, S- and C-
bands), are commonly excited using a collinear end-launcher
transition from a coaxial to a rectangular waveguide [Morini

et al., 2006, 2007; Höft and Yousif, 2011]. Evanescent-mode
filters, in-line filters, and thick-iris waveguide filters [Liang
et al., 1992] are also classically fed using a standard (vertical)
coaxial excitation. Besides, as it will be discussed afterward,
the integration of the coaxial excitation in the input and output
waveguides of the structure can be used to raise the order of
the designed filter (and then to enhance the response selectiv-
ity) without increasing its length. As a consequence, the coax-
ial-line to rectangular waveguide transition can be considered
as a basic building block of a wide variety of microwave and
millimeter-wave components, and its integration in general
CAD tools becomes crucial to ensure a rigorous and efficient
design of all these passive components.
[3] In addition, most of the aforementioned types of filters

usually include rectangular waveguide sections with partial-
height metallic posts, and this key building block is also found
in many other waveguide devices, such as adapters, mode-
launchers, comb-line, and interdigital filters [Ihmels and
Arndt, 1993; Levy et al., 1997]. Furthermore, this basic build-
ing block also allows to model real tuning screws, which are
widely employed in practical implementations of dual-mode
and direct-coupled rectangular waveguide filters [Chang and
Zaki, 1991; Boria et al., 1998]. The usual presence of these
practical filters in most of present communication systems
(e.g., mobile and satellite ones) demands the availability of
fast CAD tools, while preserving a high degree of accuracy.
[4] Several attempts to achieve the required efficient

and accurate CAD tools have been already performed.
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For instance, strictly numerical or mode-matching methods,
as well as the combination of both approaches in hybrid
solutions, have been tried [Yao et al., 1995; Gentili, 2001].
Although these techniques provide enough accurate results,
they cannot be optimal for CAD purposes because of their
required computing time. A very fast S-domain method for
the accurate modeling of rectangular cavities with several
conducting posts (arbitrarily placed and oriented) was proposed
by Mira et al. [2005a]. Then, a very preliminary contribution
for the analysis of standard (vertical) coaxial to rectangular
waveguide transitions was presented in reference San Blas
et al. [2006]. These works, based on the well-known 3D
boundary integral-resonant mode expansion (BI-RME)
method [Arcioni et al., 2002], provide a Y-matrix given in
the form of pole expansions in the frequency domain for
the accurate characterization of such two basic blocks.
[5] The numerical efficiency of these full-wave modal anal-

ysis techniques has been greatly improved by means of the so-
called segmentation technique [Mansour and MacPhie, 1986;
Alessandri et al., 1988, 1992; Guglielmi, 1994], which con-
sists on decomposing the analysis of a complete waveguide
structure into the characterization of its elementary key build-
ing blocks. The work proposed in referenceMira et al., 2005b
makes use of this segmentation technique by combining the
analysis of resonant cavities using the BI-RME method [Mira
et al., 2005a] with the integral equation technique for charac-
terizing planar waveguide junctions [Gerini et al., 1998].
However, in the above-mentioned work (i.e., Mira et al.
[2005b]), the analysis of the planar junctions and the cascade
connection of the different wideband matrices must be
performed at each frequency point, thus dramatically increas-
ing the computational cost of the design process.
[6] In this paper, the main objective consists of developing a

very efficient CAD tool, which must be able to avoid the
repetition of the cumbersome computations performed in the
frequency domain, for the analysis and design of complex
waveguide devices composed of rectangular cavities loaded
with partial-height metallic cylindrical posts, planar wave-
guide junctions, uniform waveguide sections, and boxed
resonators including a coaxial excitation (either vertical or
collinear). To this aim, the 3D BI-RMEmethod is first applied

to derive a wideband Y-matrix used to characterize boxed reso-
nators with inserted metallic posts that can be fed by a gener-
alized coaxial probe. Next, the new formulation proposed in
reference Mira et al. [2008] is used to characterize the planar
waveguide junctions of the structure, thus obtaining a Y-matrix
with the same form as the one provided by the BI-RME formu-
lation. Finally, the algorithm proposed in reference Arcioni and
Conciauro [1999], which has been extended to cope with
folded structures including cross-couplings, allows the wide-
band cascade connection of the previous key building blocks
preserving the same form of the pole expansions for the
Y-matrices. As a result, all themain computations are performed
out of the frequency loop, thus reducing the computational effort
of the new developed CAD tool. In addition, the Y-matrix in the
form of pole expansions is preserved for the whole structure,
allowing for a circuital representation of the device [Bozzi
et al., 2009], that can be very useful for synthesis and design
purposes. This CAD tool has been successfully used to design
four different waveguide filters, all of them including integrated
coaxial excitations and partial-height conducting posts: a com-
pact four-pole in-line filter with tuning screws, an evanescent-
mode filter with cylindrical posts, and two C-band comb-line
filters, one of them with a cross-coupling configuration.

2. Theoretical Description of Basic Blocks

[7] The structure under analysis is first segmented into its
basic building blocks. For instance, Figure 1 shows a wave-
guide structure that includes all these key building blocks,
that is, a boxed resonator with a conducting post and an
integrated coaxial excitation, different coupling windows,
uniform waveguide sections, and a resonant cavity loaded
with a partial-height metallic post. Our aim is to represent
each basic building block of such equivalent circuit in terms
of a wideband generalized admittance matrix (or Y-matrix)
in the form of pole expansions:

Y ¼ 1

j�k
Aþ jk

�
Bþ jk3

�
C Δ2 � k2U
� ��1

CT (1)

where k ¼ o
ffiffiffiffiffi
me

p
; � ¼ ffiffiffiffiffiffiffi

m=e
p

; and A, B, C, Δ, and U are
frequency-independent matrices. Specifically, A and B are

Figure 1. Segmentation strategy for the structure under study.
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square symmetric matrices of size N (N being the total
number of accessible modes considered in each waveguide
section); C is a matrix of size N�Q, Q being the number
of terms included in the pole expansion; Δ is a diagonal
matrix containing the values of the considered poles; and
U is the unitary matrix of size Q.
[8] According to Figure 1, we will compute the wideband

admittance matrices in the form of (1) for the boxed resonator
fed by the coaxial probe, the planar junctions, the uniform
waveguide sections, and the resonant cavities including
conducting posts. Next, we will derive the expressions for
computing the elements of all such matrices.

2.1. Planar Waveguide Steps

[9] First, we consider the planar junction between two arbi-
trary waveguides shown in Figure 2. Following the integral
equation technique described in reference Gerini et al.
[1998], such junction can be represented in terms of a general-
ized Y-matrix (Yst), and two sets of asymptotic modal impe-
dances (see Figure 2), which represent the impedances related
to higher-order modes and are determined as follows:

Ẑ dð Þ
m ¼ lim

m!1
Z dð Þ
m ¼ jk�=k dð Þ

m TE modes
k dð Þ
m �= jkð Þ TM modes

�
(2)

where Z dð Þ
m and k dð Þ

m represent, respectively, the modal imped-
ance and the cutoff wave number of the mth mode at wave-
guide port d (d = 1, 2), whose definitions for standard TE and
TM modes can be found in reference Marcuvitz, 1986. Note
that these asymptotic impedances will be also represented as
independent networks in the form of a Y-matrix, as it is
described in the next subsection.
[10] In order to yield the expressions for the elements of the

generalized Y-matrix of the planar junction (Yst in Figure 2),
an integral equation is first set up for the magnetic field at the
junction plane [Gerini et al., 1998]. Next, the procedure pro-
posed in reference Mira et al. [2008] is followed, and the
method of moments is then used to obtain a linear system,
whose solution is finally found by solving an eigenvalue prob-
lem to avoid the inversion of matrices for each frequency point.
As a result, the set of frequency-independent matrices present
in (1) is computed, and the desired expression in the form of
pole expansions for the generalized matrixYst is finally derived
(see more details in reference Mira et al. [2008]).

2.2. Asymptotic Impedances

[11] Each set of asymptotic modal impedances presented
in (2) can be seen as a two-port network, which can be easily

characterized by a generalized Y-matrix whose elements are
defined as follows:

Y d;gð Þ
m;n ¼ � dm;n

Ẑm

¼ dm;n
� k dð Þ

m

jk�
TE

� jk

k dð Þ
m �

TM

8>><
>>:

(3)

where dm,n stands for the well-known Kronecker’s delta (i.e.,
dm,n = 1 if m= n, and dm,n = 0 otherwise). The previous ex-
pression is suitable for the representation of the generalized
admittance matrix as indicated by (1). In this case, the pole
expansion is not present and, therefore, we can obtain the
following frequency-independent matrices:

A d;gð Þ
m;n ¼ dm;n

�k dð Þ
m

0
TE
TM

�
(4)

B d;gð Þ
m;n ¼ dm;n ¼ 0

�1=k dð Þ
m

TE
TM

�
(5)

[12] After considering the asymptotic impedances of the
waveguide steps, the uniform waveguide sections that intercon-
nect them must be solved. The expressions for the generalized
admittancematrix of a section of a uniformwaveguide of length
l can be found in reference Arcioni and Conciauro [1999].

2.3. Rectangular Cavities with Conducting Posts

[13] This key building block consists of a section of rectan-
gular waveguide containing multiple conducting posts of
cylindrical shape. The analysis of this basic block has been
performed following the method described in reference Mira
et al. [2005a]. This method, based on the BI-RME technique
[Arcioni et al., 2002], has been particularized for the proposed
structure to optimize the computation by reducing the number
of unknowns, and by solving analytically an important part of
the involved integrals, thus resulting in very reduced order
models that are of great utility for our CAD tool. The key point
of this approach is the inclusion in the algorithm of optimized
Green’s functions for rectangular domains [Bressan et al.,
2000], which allows to perform numerical integrations over
the surface of the conducting posts only, the use of special
basis functions for cylindrical surfaces, and the analytical
solution of the integrals over the waveguide access ports.
[14] The resulting Y-matrix has the form indicated in (1),

and the frequency-independent matrices A, B, and C include
the following terms:

Figure 2. Equivalent circuit representation of the planar waveguide junction.
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Mrp
1 ¼

Z
S

Z
S
Fr rð Þ�G r; r0ð Þ�Fp r0ð ÞdSdS0 (6)

Mrp
2 ¼

Z
S

Z
S
rS �Fr rð Þg r; r0ð Þr’

S �Fp r0ð ÞdSdS 0
(7)

Mmp
3 ¼

Z
S
Em rð Þ�Fp rð ÞdS (8)

Mmp
4 ¼

Z
S
em rð Þ�Fp rð Þp rð ÞdS (9)

where F represents the set of chosen basis functions to model
the current over the metallic post, G and g are the dyadic and
scalar Green’s functions of a standard rectangular (boxed)
resonator where the singularity has been previously extracted,
Em is the electric field related to the mth resonant mode of the
rectangular cavity, em is the mth normalized electric-type
vector mode function over the waveguide access ports, and
p(r) is the resulting function after performing the partial
analytical solution of the numerical integrals involving basis
functions over the conducting posts and the electromagnetic
fields over the waveguide access ports. It is important to
mention that all the integrals are performed only over the post
surfaces (S). In addition, an eigenvalue problem has to be
solved to obtain the corresponding eigenvalues included in
the pole expansion, and the related eigenvectors included in
matrix C. These eigenvalues represent the wave numbers of
the resonant modes of the cavity loaded with the post. The
size of this eigenvalue problem depends on the number of ba-
sis functions, and on the resonant modes considered for the
cavity. Typically, a few hundred of resonant modes and basis
functions are enough to obtain a good accuracy.

2.4. Generalized Y-Matrix of a Boxed Resonator with
an Integrated Coaxial Excitation

[15] The full-wave analysis of a rectangular cavity fed by
a coaxial probe is also performed following the 3D BI-
RME method. This technique is used to derive a wideband
generalized admittance matrix of a boxed resonator with
up to five rectangular waveguide ports and a coaxial access
port. To this aim, the authors have extended the theoretical
work developed in reference San Blas et al. [2006], thus
allowing to consider an increased number of access ports.
In particular, this novel theoretical extension allows placing
the coaxial waveguide port in any face of the considered
boxed resonator, while preserving the possibility of adding
a rectangular waveguide access port of arbitrary dimensions
on each of the remaining resonator sides. Thanks to the
flexibility of the implemented CAD tool, the characterization
of this key building block permits considering not only a
standard coaxial excitation configuration, but also a collinear
end-launcher transition from a coaxial line to the rectangular
waveguide, which is extensively used for feeding a wide
variety of practical microwave and millimeter-wave filters.
Furthermore, generalized coaxial probes such as a disc-ended
probe are also allowed. A representative example of the
described basic building block has been depicted in Figure 3.
However, if the coaxial probe was physically contacting
the first resonator, a more elaborated algorithm based on a
set of more general Rao-Wilton-Glisson basis functions, as
described in reference Quesada et al. [2010], should be used
to compute the Y-matrix of this block.

[16] In order to derive the Y-matrix of the structure in the
form of (1), the modal chart of the coaxial waveguide needs
to be first calculated. To this aim, the radial variation of
higher-order modes are expressed using sinusoidal functions
[Gimeno and Guglielmi, 1997], thus avoiding the more cum-
bersome Bessel functions. Next, we remind that the elements
of the 3D BI-RME matrices Gij and Tij needed to characterize
the device, and which are included in the matrices A and B of
expression (1) (see reference Arcioni et al. [2002] for more
details on these matrices), are singular when the modes i and j
are referred to the same waveguide port (the origin of this
singularity lies on the divergent behavior of the scalar and
dyadic Green’s functions). Although this singularity is easily
removed when the involved modes belong to a rectangular
waveguide access port [Mira et al., 2005a] (this is the
case of the previous section), its analytical treatment can be
really difficult when the modes are referred to the coaxial
waveguide port.
[17] To overcome this problem, the proposed strategy

consists of expanding the vector mode functions of the coax-
ial waveguide in terms of the vector mode functions of the
rectangular cavity port fed by the coaxial probe as follows
(this auxiliary rectangular waveguide has been marked with
the symbol "(R)" in the structure shown in Figure 3):

hTEM rð Þ ¼
XQTM

i¼1

υ TEMð Þ
i hTM Rð Þ

i rð Þ (10)

hTEm rð Þ ¼
XQTE

i¼1

s mð Þ
i hTE Rð Þ

i rð Þ þ
XQTM

j¼1

t mð Þ
j hTM Rð Þ

j rð Þ (11)

hTMm rð Þ ¼
XQTM

i¼1

n mð Þ
i hTM Rð Þ

i rð Þ (12)

[18] In these expressions, QTE and QTM represent, respec-
tively, the number of TE and TMmodes of the expansion con-
sidered in the rectangular waveguide fed by the coaxial probe;

hTE Rð Þ
i rð Þ and hTM Rð Þ

i rð Þ are the TE and TM normalized mag-
netic-type vector mode functions related to the corresponding

ith mode of this auxiliary rectangular waveguide; and υ TEMð Þ
i ,

s mð Þ
i , t mð Þ

i , and n mð Þ
i represent the corresponding coupling coef-

ficient between the mth mode of the coaxial waveguide port
(for m=1 we have the TEM mode) and the ith mode of the

Figure 3. Boxed resonator with an integrated coaxial
excitation. The cavity is loaded with a partial-height metallic
post, including a collinear end-launcher transition from a
disc-ended coaxial line to the rectangular waveguide.
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rectangular waveguide fed by the coaxial probe. The coupling
coefficients are readily calculated as:

υ TEMð Þ
i ¼

Z
S
h TEMð Þ rð Þ�hTM Rð Þ

i rð ÞdS (13)

s mð Þ
i ¼

Z
S
hTEm rð Þ�hTE Rð Þ

i rð ÞdS (14)

t mð Þ
i ¼

Z
S
hTEm rð Þ�hTM Rð Þ

i rð ÞdS (15)

n mð Þ
i ¼

Z
S
hTMm rð Þ�hTM Rð Þ

i rð ÞdS (16)

[19] Once the vector mode functions of the coaxial access
port have been expanded in this way, the singularity of the
3D BI-RME matrices can be easily removed as in the case
of the standard rectangular waveguide access ports, and the
Y-matrix in the form of (1) for the resonator including the
coaxial excitation can be readily derived following the 3D
BI-RME method.

3. Cascade Connection of the Y-Matrices

[20] Once the expressions for the Y-matrices of all the
elementary blocks of the structure shown in Figure 1 have
been derived, we make use of the efficient algorithm proposed
in reference Arcioni and Conciauro [1999] for cascading Y-
matrices in the form of pole expansions. In this section, we
only show the particular case of a cross-coupling configuration
(which is not included in reference Arcioni and Conciauro
[1999]), where internal ports must also be connected. In
addition, we propose a very efficient iterative algorithm for
characterizing devices composed of a large number of
cascaded planar waveguide junctions.

3.1. Internal Port Connection of Y-Matrices in the
Form of Pole Expansions

[21] Let us consider the four-resonator folded comb-line fil-
ter configuration shown in Figure 4 (note the cross-coupling
between the input and the output resonators), whose general-
ized Y-matrices are given in the form of pole expansions.
The algorithm proposed in reference Arcioni and Conciauro
[1999] can be applied for the consecutive connection of

cavities 1–2–3–4, where it is assumed that two building blocks
with external and internal ports are interconnected at each
stage. However, this is not the case for the example of Figure 4,
where after performing the consecutive cascade connection of
the four cavities, the resulting structure is a single block where
the two sets of internal ports to be connected belong to the
same block.
[22] For solving this particular case, we follow the net-

work representation depicted in the right side of Figure 4.
The currents and voltages at the external ports are grouped
into the vectors ie and ve, whereas the currents and voltages
at the interconnected ports are collected into the vectors i 1ð Þ

c ,
i 2ð Þ
c , v 1ð Þ

c and v 2ð Þ
c . If we consider that the currents are incom-

ing to the circuit we can write:

i 1ð Þ
c ¼ Y 1;1ð Þ

cc v 1ð Þ
c þ Y 1ð Þ

ce ve þ Y 1;2ð Þ
cc v 2ð Þ

c (17)

i 2ð Þ
c ¼ Y 2;1ð Þ

cc v 1ð Þ
c þ Y 2ð Þ

ce ve þ Y 2;2ð Þ
cc v 2ð Þ

c (18)

where the matrices on the right-hand side are obtained by a
suitable arrangement of the entries of matrix Y. Then, after
enforcing the continuity of the currents and voltages at the
interconnected ports (vc ¼ v 1ð Þ

c ¼ v 2ð Þ
c and i 1ð Þ

c ¼ �i 2ð Þ
c ), we

obtain the following expression:

Y 1;1ð Þ
cc þ Y 1;2ð Þ

cc þ Y 2;1ð Þ
cc þ Y 2;2ð Þ

cc

� �
vc ¼ � Y 1ð Þ

ce þ Y 2ð Þ
ce

� �
ve (19)

[23] The current at the external ports can be expressed as
follows:

ie ¼ Yeeve þ Y 1ð Þ
ec þ Y 2ð Þ

ec

� �
vc (20)

[24] We can easily arrange the previous set of equations
(19) and (20) into a linear system in matrix form:

ie ¼ Yeve þ Ysvc (21)

Ycvc ¼ �Ysve (22)

where the matrices Ye, Ys, and Yc are given by:

Ye ¼ Yee (23)

Ys ¼ Y 1ð Þ
ec þ Y 2ð Þ

ec (24)

Figure 4. Example of a filter with cross-coupling and its network representation.
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Yc ¼ Y 1;1ð Þ
cc þ Y 1;2ð Þ

cc þ Y 2;1ð Þ
cc þ Y 2;2ð Þ

cc (25)

[25] Our final goal is to obtain the overall matrix Ytot, relat-
ing the vectors ie and ve, in the form of (1). Proceeding in this
way, we will avoid repeating matrix multiplications and inver-
sions frequency by frequency. For such purposes, we first ex-
press the matrices Ye, Ys, and Yc in the form of pole expan-
sions. Taking into account the definitions of the matrices
included in Table 1, we can easily write that:

Ye ¼ 1

jk�
Ae þ jk

�
Be þ jk3

�
Ce Δ2 � k2U

� ��1
CT

e (26)

Ys ¼ 1

jk�
As þ jk

�
Bs þ jk3

�
Ce Δ2 � k2U

� ��1
CT

c (27)

Yc ¼ 1

jk�
Ac þ jk

�
Bc þ jk3

�
Cc Δ2 � k2U

� ��1
CT

c (28)

[26] At this point, the algorithm in reference Arcioni and
Conciauro [1999] is followed, where the partitioning of Ac,
Bc, Cc, As, and Bs matrices in terms of submatrices
involving the TE modes (submatrices with the superscript ’)
and the TMmodes (submatrices with the superscript ") is per-
formed as indicated in Table 2. Moreover, according to ap-
pendix A of Arcioni and Conciauro [1999], note that matri-
ces Ac and As are equal to 0 for indexes where TM modes
are involved. Then, an eigenvalue problem has to be solved
to derive the overall matrix Ytot in the desired form. Once
the internal ports have been connected, a new expression
for the Y-matrix is obtained from (1) considering:

Atot ¼ Ae � A
0
sA

0
c
�1A

0T
s (29)

Btot ¼ Eþ A
0
sVK

�4VTA
0T
s � A

0
sA

0 �1

c FT � FA
0 �1

c AT
s (30)

Ctot ¼ FVþGW� A
0
sVK

�2 (31)

where we have:

E ¼ Be � B
00
sB

00 �1

c B
00T
s (32)

F ¼ B
0
s � B

00
sB

00 �1

c BT
m (33)

G ¼ Ce � B
00
sB

00 �1

c C
00
c (34)

and K, V, and W are matrices related with the eigensolutions
of the problem. In particular,K is a diagonal matrix containing

the eigenvalues, whereas V and W contain the corresponding
eigenvectors.

3.2. Efficient Cascade Connection for Large Structures

[27] When two building blocks of a structure are cascaded,
the number of terms in the resulting pole expansion is equal
to the number of poles of each block plus the number of TE
accessible modes at the common port. If the structure is com-
posed of a large number of blocks, the overall number of poles
will become very high, thus reducing the efficiency of the
algorithm due to the size of the successive eigenvalue problems.
[28] For avoiding such drawback, we propose to limit the

number of eigenvalues considered after each connection.
The proposed method was successfully applied in reference
Mira et al. [2009] for the case of Z-matrices. When two
different blocks are connected, we obtain the entries of the
generalized Y-matrix in the following form:

Y d;gð Þ
m;n ¼ 1

jk�
A d;gð Þ
m;n þ jk

�
B d;gð Þ
m;n þ jk3

�

XQ
i¼1

C dð Þ
m;iC

gð Þ
n;i

k2i � k2
(35)

[29] In this equation, the higher terms of the sum have a
lower contribution to the final result. Due to this fact, we can
only consider Q0 eigenvalues in the sum and approximate
the contribution of the remaining Q�Q0 eigenvalues by:

jk3

�

XQ
i¼Q

0 þ1

C dð Þ
m;iC

gð Þ
n;i

k2i � k2
� jkk20

�

XQ
i¼Q

0 þ1

C dð Þ
m;iC

gð Þ
n;i

k2i � k20
(36)

where k0 corresponds to the value of k at the center point of the
frequency band. Proceeding in such a way, the eigenvalues
with lower weight are included within the linear term:

Y d;gð Þ
m;n � 1

jk�
A d;gð Þ
m;n þ jk

�
B d;gð Þ
m;n þ k20

XQ
i¼Q

0 þ1

C dð Þ
m;iC

gð Þ
n;i

k2i � k20

0
@

1
A

þ jk3

�

XQ0

i¼1

C dð Þ
m;iC

gð Þ
n;i

k2i � k2
(37)

thus obtaining a reduced size for the eigenvalue problem to be
solved during the next connection, whereas a good accuracy is
still preserved. This technique can also be applied to reduce
the number of poles involved in the Y-matrix characterization
of each single building block.

4. Validation Results

[30] In order to test the accuracy and efficiency of the pro-
posed method, the new CAD tool has been applied to the de-
sign of four different filters in waveguide technology: a com-
pact four-pole in-line filter with tuning screws, a five-pole
evanescent-mode filter, and two six-resonator folded comb-line
filters, one of them with a cross-coupling configuration. It is
important to note that all the proposed filters include an inte-
grated coaxial excitation, either standard (vertical) or collinear.
[31] The analysis of the designed filters is performed as

follows. First, the basic building blocks of each filter are
individually analyzed to derive their respective wideband
Y-matrix representations. Next, the cascade connection of
the obtained intermediate Y-matrices is performed. To this
aim, we start from the building block including the

Table 1. Definition of matrices

Ac ¼ A 1;1ð Þ
cc þ A 1;2ð Þ

cc þ A 2;1ð Þ
cc þ A 2;2ð Þ

cc

� 	
Bc ¼ B 1;1ð Þ

cc þ B 1;2ð Þ
cc þ B 2;1ð Þ

cc þ B 2;2ð Þ
cc

� 	
Cc ¼ C 1ð Þ

c þ C 2ð Þ
c

� 	
As ¼ A 1ð Þ

ec þ A 2ð Þ
ec

� 	
Bs ¼ B 1ð Þ

ec þ B 2ð Þ
ec

� 	

Table 2. Partitioning of matrices

Ac ¼ A0
c 0
0 0


 �
Bc ¼ B0

c Bm

BT
m B00

c


 �
Cc ¼ C0

c
C00
c


 �

As ¼ A0
s0

� 	
Bs ¼ B0

sB
00
s

� 	
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integrated coaxial excitation, and the next building blocks
are progressively attached. In the case of symmetrical struc-
tures, the building blocks may be added up to the center of
the filter and, afterward, we proceed with the cascade
connection of the Y-matrices of the two component halves.
In the particular case of filters with a cross-coupling config-
uration, the connection of the internal ports is applied once
all the key building blocks have been previously cascaded.
This part could be avoided in the case of symmetrical filters
when the two halves are cascaded. It is important to mention
that the developed CAD tool is general and can therefore
deal with completely asymmetrical structures. The cascade
connection has been carried out using 30 accessible modes
in all the designed filters, and a maximum number of reso-
nant modes for each cavity equal to 250 have been chosen.
[32] The first proposed example consists of a four-pole

in-line filter with inserted tuning screws (see Figure 5). It
is important to note that the integration of the coaxial line
and the insertion of the conducting posts in the input and
output waveguides of the device are used to raise the order
of the designed in-line filter without increasing its length.

Figure 5. Design of a compact in-line filter with tuning screws, whose dimensions (all in millimeters)
are: dci = 1.0, dco= 3.5, lci= 7.8, xc= 3.0, xp = 9.0, b1 = 24.0, a= b2 = 18.0, c = 9.525, lw= 2.0, w1 = 10.07,
w2 = 9.3, bw= 5.0, dp = 3.0, h1 = 2.45, h2 = 2.976.
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Figure 6. Scattering parameters of the compact in-line filter
with tuning screws of Figure 5.

Figure 7. Design of an evanescent-mode filter, whose dimensions (all in millimeters) are: dci= 1.3, dco =
3.0, lci= 5.5, a= b = 17.0, c = 10.16, l1 = 2.61, l2 = 10.44, l3 = 11.455, w= 8.8, dp= 2.5, h1 = 5.492,
h2 = 5.594, h3 = 5.59.
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In fact, the input and output sections of the filter have
been properly designed to behave as resonators to provide
the structure with two additional poles, thus resulting in a
more compact filter with enhanced response selectivity.
[33] The filter is fed using a coaxial probe whose imped-

ance is 50 Ω with a relative dielectric permittivity of 2.2.
The caption in Figure 5 shows all the physical dimensions

for this filter, where the two central cavities are of equal
dimensions and the tuning screws are placed in a centered
position. Because the filter is symmetrical, only the dimen-
sions of one half of the structure are described. The scatter-
ing parameters of this filter are shown in Figure 6, where a
frequency response centered at 10 GHz with a 3 dB
bandwidth of 600 MHz is shown. The total CPU time for a
full-wave analysis considering 401 frequency points was
112 s (notebook Intel i5-580M), thus demonstrating that
the implemented CAD tool is indeed very efficient. More-
over, the obtained results are successfully compared with
those provided by the commercial simulator Ansys HFSS
13.0, and only small differences are appreciated for the
pass-band reflection level.
[34] The next example deals with a five-pole evanescent-

mode filter (see topology in Figure 7). In this case, the reso-
nant frequencies are adjusted by means of the height values
of the screws, and the separation between the screws is
basically used to control the coupling levels. The impedance
of the coaxial probe is 50 Ω and it is air filled. This filter is
also symmetrical, and all the significative dimensions are
included in the caption of Figure 7. The scattering para-
meters of the designed filter are shown in Figure 8, and a
good agreement with HFSS data is observed. The obtained
frequency response is also centered at 10 GHz, as the previ-
ous designed band-pass filter, but in this case the bandwidth
is slightly narrower, with 400 MHz of 3 dB bandwidth. The
CPU time for the computation of a complete frequency
response with 401 points was 132 s.
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Figure 8. Scattering parameters of the evanescent-mode
filter of Figure 7.

Figure 9. Design of a folded comb-line filter with cross-coupling, whose dimensions (all in millimeters)
are: dci= 1.3, dco = 3.0, lci= 2.5, dcp = 3.2, lcp= 0.6, zc= 4.21, a = b = 10.0, c = 16.0, lw= 1.0, w1 = 9.7,
w2 = 6.99, w3 = 6.68, wc = 5.0, bw= 8.0, bc= 6.0, dp = 3.0, h1 = 13.015, h2 = 13.163, h3 = 13.22.
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[35] The third example consists of a C-band folded comb-
line filter composed of six cavities with a cross-coupling
configuration. As it can be seen in Figure 9, the normal cou-
pling between the cavities is magnetic, whereas we obtain an
electric coupling by placing the iris on the top of the cavity
to introduce a transmission zero. In this case, we have an

air-filled coaxial probe and we include a disc-ended coaxial
excitation with the aim of increasing the input coupling
level. The scattering parameters are shown in Figure 10 for
a frequency response centered at 4.75 GHz and a transmis-
sion zero placed at the upper side band. In this last example,
the CPU time was 197 s for the full-wave analysis of 601
frequency points.
[36] Finally, a C-band folded comb-line filter for satel-

lite applications, considering the presence of tuning
screws in the center of the resonant cavities, has been
successfully designed, manufactured, and measured. The
designed filter and its final dimensions can be found in
Figure 11. For validation purposes, a prototype of this
designed filter example has been manufactured (see
Figure 12). As it can be seen, tuning screws have also
been introduced in the coupling windows, for compensat-
ing mechanical manufacturing tolerances and fine tuning
of the in-band return losses.
[37] In Figure 13, the simulated and measured in-band

responses of the comb-line filter are well compared. Apart
from compensating the manufacturing tolerances, the tuning
screws of the coupling windows have been arranged to
enhance the in-band electrical response (return losses) of
the real structure. The complete simulation of the originally
designed comb-line filter (i.e., without considering the
presence of the tuning screws in the coupling windows)
has requested a CPU effort of 491 s for the full-wave analy-
sis of 601 frequency points.
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Figure 10. Scattering parameters of the folded comb-line
filter of Figure 9.

Figure 11. Design of the manufactured folded comb-line filter, whose dimensions (all in millimeters)
are: dci= 1.27, dco= 2.92, lci= 2.81, lco = 3.15 dcpi = 5.0, dcpo = 4.0, lcp = 0.8, zc= 8.0, a= b = 17.5,
c= 15.0, lw = 1.0, lw3 = 4.0, w1 =w2 = 15.0, w3 = 14.2, bw1 = 13.69, bw2 = 9.0, dp = 6.0, dt = 3.15, h1 = 9.98,
h2 = 9.93, h3 = 9.81, ht1 = 1.28, ht25 = 1.35, ht34 = 1.355, ht6 = 0.41.
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5. Conclusion

[38] In this paper, we have presented a very efficient proce-
dure to determine the wideband generalized admittance matrix
representation of complex waveguide filters (e.g., in-line
direct-coupled-resonator filters with tuning screws, evanes-
cent-mode filters with cylindrical conducting posts, as well
as folded configurations of real comb-line filters). These filter
structures, widely used in many practical applications, are
based on rectangular cavities loaded with partial-height
conducting posts, and can also integrate a standard (vertical)
or collinear coaxial excitation. The proposed method provides
the generalized Y-matrices of the key building blocks in the
form of pole expansions, which are then combined through
an iterative algorithm providing a global matrix representation
of the complete filter structure in the same form. Proceeding in
this way, the most expensive computations are performed

outside the frequency loop, thus widely reducing the computa-
tional effort required for the analysis of these complex geom-
etries with a high-frequency resolution. The accuracy and
numerical efficiency of this new technique have been success-
fully validated through the full-wave analysis and design of
four practical filters implemented in rectangular and coaxial
waveguide technologies.

[39] Acknowledgments. The authors would like to thank Thales
Alenia Space España, Madrid (Spain), for the manufacturing and testing
of the folded comb-line filter prototype.
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