3 GPR images as tools for visualizing WSS components 49

3.1 Introduction to methodologies of visualization of objects in GPR images 53

3.1.1 GPR role in the analysis of WSS components 54

3.1.2 Factors influencing the visualization of objects in GPR images 55

3.2 Principles of the proposed visualization process – T_{14} and T_{15} matrices 56

3.2.1 WAV classification 60

3.2.2 WAV extraction 62

3.2.2.1 Generation of matrices D 63

3.2.2.2 Generation of matrices U 65

3.2.3 WAV accumulation 66

3.2.4 WAV rebuild 67

3.3 Experimental study – matrices T_{14} and T_{15} 69

3.3.1 Case 1. Simple case 70

3.3.2 Case 2. Complex case 72

3.4 Implementation issues 75

3.5 Summary and comments 75
4 Location of buried plastic pipes using multi-agent support based on GPR images

4.1 Automatic pipe location – multi-agent process
4.2 A brief introduction to multi-agent systems
4.3 Proposed multi-agent process
4.4 Experimental study – multi-agent process
 4.4.1 Customizing the multi-agent location process
 4.4.2 Case 1. Simple case
 4.4.3 Case 2. Complex case
4.5 Implementation issues
4.6 Summary and comments

5 Segmentation of GPR images of WSS components

5.1 Principles of the segmentation and cleaning proposed
5.2 Segmentation and cleaning methodology
 5.2.1 Binarization
 5.2.1.1 Standardizing traces
 5.2.1.2 Selecting trends
 5.2.2 Segmentation and cleaning
 5.2.2.1 Edge detection
 5.2.2.2 Horizontal straight lines detection – Hough transform
 5.2.2.3 Removing lines
 5.2.3 Refining
5.3 Density analysis
5.4 Experimental studies – segmentation and cleaning
 5.4.1 Segmentation and cleaning - pre-processing
 5.4.2 Density analysis
5.5 Summary and comments

6 Automatic generation of WSS pipeline layout maps based on GPR images

6.1 Introduction to the use of GPR for WSS component mapping
6.2 Proposal for detecting piping layout
CONTENTS

6.2.1 Approach 1 . 136
6.2.2 Approach 2 . 137
6.3 Approaches 1 and 2 – general aspects 139
6.4 Sampling of interest area . 141
 6.4.1 Latin square sampling (LSS) 141
 6.4.2 Training for pipe existence plausibility 143
 6.4.3 Adaptive sampling route 145
 6.4.4 Generation of probability maps 148
 6.4.4.1 Obtaining points of view 148
 6.4.4.2 Integration of points of view 150
6.5 Image pre-processing . 151
6.6 Analysis of the proposed system for detecting the piping layout in
 a case of an urban WSS . 153
 6.6.1 Case study - Approach 1 154
 6.6.2 Case study - Approach 2 156
6.7 Summary and comments . 162

7 Water supply system component evaluation from GPR radar-
 grams using a multi-agent approach 165
 7.1 Principles of the proposed pre-processing – Agents race 170
 7.2 Proposed pre-processing algorithm – Agents race 174
 7.2.1 Interpretation . 175
 7.2.2 Decision to move . 177
 7.2.3 Movement time . 177
 7.2.4 The race phases . 178
 7.3 Implementation issues and recommendations 179
 7.4 Experimental study – Agent race 181
 7.4.1 Case study . 181
 7.4.2 Data reduction percentages in GPR matrix data 183
 7.5 Summary and comments . 185
8 Hierarchical agglomerative clustering analysis of GPR data 187
 8.1 Motivation and principles of the proposed clustering method – Hierarchical agglomerative clustering 191
 8.2 Proposed system architecture 193
 8.3 Hierarchical Agglomerative Clustering 194
 8.3.1 Distance metrics 195
 8.3.2 Linkage methods 196
 8.3.3 Cophenetic correlation 197
 8.3.4 Cluster analysis 198
 8.4 Experimental Study – HAC 200
 8.5 Summary and comments 207

9 GPR-based water leak models in water supply systems 209
 9.1 Short introduction to the role of GPR to tackle leaks in WSSs 214
 9.2 Data capturing: design and layout of the laboratory tests 216
 9.3 Analysis of the location and identification of hyperbolas from the raw images 218
 9.3.1 Initial state: raw images 218
 9.3.2 Final state: raw images 220
 9.4 Analysis: contrast between raw images for the initial and final states 223
 9.5 Analysis of location and identification of anomalies in pre-processed images 226
 9.5.1 Data pre-processing and ordering algorithm 226
 9.5.2 Initial state: pre-processed images 229
 9.5.3 Final state: pre-processed images 231
 9.6 Analysis: contrast between pre-processed images 233
 9.7 3D comparison of the analysis of contrasts between raw and pre-processed images 235
 9.8 Analysis of field images: a case study 238
 9.9 Summary and comments 242
CONTENTS

10 Conclusions and future developments 245
10.1 Summary ... 247
10.2 Conclusions .. 251
10.3 Future developments 262

Appendices 265
A File structure: *.dzt .. 267
B Equipment configuration for the performed tests 271
C Contributions .. 279
References ... 289