
Development of
a New 3D Reconstruction Algorithm

for Computed Tomography (CT)

Amadeo Iborra Carreres

Advisors

Dra. Maŕıa José Rodŕıguez Álvarez

Dr. Antonio Soriano Asensi

Doctorado en Investigación Matemática
Instituto de Instrumentación para Imagen Molecular July, 2015

a Blanca

Fairy tales are more than true,
not because they tell us dragons exist,

but because they tell us dragons can be beaten.

G. K. Chesterton

Abstract

Model-based computed tomography (CT) image reconstruction is dominated by
iterative algorithms. Although long reconstruction times remain as a barrier in
practical applications, techniques to speed up its convergence are object of investi-
gation, obtaining impressive results. In this thesis, a direct algorithm is proposed
for model-based image reconstruction. The model-based approximation relies on
the construction of a model matrix that poses a linear system which solution is
the reconstructed image. The proposed algorithm consists in the QR decomposi-
tion of this matrix and the resolution of the system by a backward substitution
process. The cost of this image reconstruction technique is a matrix vector multi-
plication and a backward substitution process, since the model construction and
the QR decomposition are performed only once, because of each image reconstruc-
tion corresponds to the resolution of the same CT system for a different right hand
side.

Several problems regarding the implementation of this algorithm arise, such
as the exact calculation of a volume intersection, definition of fill-in reduction
strategies optimized for CT model matrices, or CT symmetry exploit to reduce the
size of the system. These problems have been detailed and solutions to overcome
them have been proposed, and as a result, a proof of concept implementation has
been obtained.

Reconstructed images have been analyzed and compared against the filtered
backprojection (FBP) and maximum likelihood expectation maximization (MLEM)
reconstruction algorithms, and results show several benefits of the proposed algo-
rithm. Although high resolutions could not have been achieved yet, obtained re-
sults also demonstrate the prospective of this algorithm, as great performance and
scalability improvements would be achieved with the success in the development
of better fill-in strategies or additional symmetries in CT geometry.

Resumen

En la reconstrucción de imagen de tomograf́ıa axial computerizada (TAC), en
su modalidad model-based, prevalecen los algoritmos iterativos. Aunque los al-
tos tiempos de reconstrucción aún son una barrera para aplicaciones prácticas,
diferentes técnicas para la aceleración de su convergencia están siendo objeto de
investigación, obteniendo resultados impresionantes. En esta tesis, se propone
un algoritmo directo para la reconstrucción de imagen model-based. La aproxi-
mación model-based se basa en la construcción de una matriz modelo que plantea
un sistema lineal cuya solución es la imagen reconstruida. El algoritmo propuesto
consiste en la descomposición QR de esta matriz y la resolución del sistema por
un proceso de sustitución regresiva. El coste de esta técnica de reconstrucción de
imagen es un producto matriz vector y una sustitución regresiva, ya que la con-
strucción del modelo y la descomposición QR se realizan una sola vez, debido a
que cada reconstrucción de imagen supone la resolución del mismo sistema TAC
para un término independiente diferente.

Durante la implementación de este algoritmo aparecen varios problemas, tales
como el cálculo exacto del volumen de intersección, la definición de estrategias
de reducción del relleno optimizadas para matrices de modelo de TAC, o el a-
provechamiento de simetŕıas del TAC que reduzcan el tamaño del sistema. Estos
problemas han sido detallados y se han propuesto soluciones para superarlos, y
como resultado, se ha obtenido una implementación de prueba de concepto.

Las imágenes reconstruidas han sido analizadas y comparadas frente a los al-
goritmos de reconstrucción filtered backprojection (FBP) y maximum likelihood
expectation maximization (MLEM), y los resultados muestran varias ventajas del
algoritmo propuesto. Aunque no se han podido obtener resoluciones altas aún, los
resultados obtenidos también demuestran el futuro de este algoritmo, ya que se
podŕıan obtener mejoras importantes en el rendimiento y la escalabilidad con el
éxito en el desarrollo de mejores estrategias de reducción de relleno o simetŕıas en
la geometŕıa TAC.

Resum

En la reconstrucció de imatge tomografia axial computerizada (TAC) en la seua
modalitat model-based prevaleixen els algorismes iteratius. Tot i que els alts temps
de reconstrucció encara són un obstacle per a aplicacions pràctiques, diferents
tècniques per a l’acceleració de la seua convergència estàn siguent objecte de inves-
tigació, obtenint resultats impressionants. En aquesta tesi, es proposa un algorisme
direct per a la recconstrucció de image model-based. L’aproximació model-based es
basa en la construcció d’una matriu model que planteja un sistema lineal quina
sol·lució es la imatge reconstruida. L’algorisme propost consisteix en la descom-
posició QR d’aquesta matriu i la resolució del sistema per un procés de substitució
regresiva. El cost d’aquesta tècnica de reconstrucció de imatge es un producte
matriu vector i una substitució regresiva, ja que la construcció del model i la de-
scomposició QR es realitzen una sola vegada, degut a que cada reconstrucció de
imatge suposa la resolució del mateix sistema TAC per a un tèrme independent
diferent.

Durant la implementació d’aquest algorisme sorgixen diferents problemes, tals
com el càlcul exacte del volum de intersecció, la definició d’estratègies de reducció
de farcit optimitzades per a matrius de model de TAC, o el aprofitament de sime-
tries del TAC que redueixquen el tamany del sistema. Aquestos problemes han
sigut detallats y s’han proposat solucions per a superar-los, i com a resultat, s’ha
obtingut una implementació de prova de concepte.

Les imatges reconstruides han sigut analitzades i comparades front als algo-
rismes de reconstrucció filtered backprojection (FBP) i maximum likelihood ex-
pectation maximization (MLEM), i els resultats mostren varies ventajes del al-
gorisme propost. Encara que no s’han pogut obtindre resolucions altes ara per
ara, els resultats obtinguts també demostren el futur d’aquest algorisme, ja que es
prodrien obtindre millores importants en el rendiment i la escalabilitat amb l’éxit
en el desemvolupament de millors estratègies de reducció de farcit o simetries en
la geometria TAC.

Contents

1 Introduction 1
1.1 Context of medical imaging . 1

1.1.1 Medical imaging modalities 1
1.2 Computed tomography image reconstruction review 7
1.3 Motivation . 9
1.4 Objectives . 10

2 Introduction to linear systems 13
2.1 Systems of linear equations . 13

2.1.1 Triangular systems . 14
2.1.2 Overdetermined systems . 15
2.1.3 Sensitivity of linear systems 15

2.2 The least squares problem . 16
2.2.1 Sensitivity of the least squares problem 18

3 The CT image reconstruction as a linear system 19
3.1 Modeling the CT . 20

3.1.1 X-ray source . 20
3.1.2 X-ray detection . 20
3.1.3 X-ray attenuation . 21
3.1.4 The CT reconstruction problem 22
3.1.5 Computation of the volume intersection 25

3.2 Properties of the CT linear system 35
3.3 Exploiting symmetries . 38

4 Implementation of data structures 41
4.1 Sparse matrix data structures . 41
4.2 Binary search tree . 44

4.2.1 Balanced Binary search tree 48
4.3 Implementation of the BST sparse matrix 50

4.3.1 Performance improvements 53

i

ii Contents

5 Implementation of the QR algorithm 55
5.1 The QR algorithm . 55
5.2 Rotations and reflections . 56

5.2.1 Householder reflections . 56
5.2.2 Givens rotations . 58

5.3 Implementation . 59
5.3.1 Givens rotations . 60
5.3.2 Givens QR decomposition 62
5.3.3 Q storage . 66

6 Fill-in in the QR decomposition 71
6.1 Standard fill-in reduction . 71

6.1.1 Standard fill-in reduction strategies 73
6.1.2 Standard fill-in reduction performance 74

6.2 Fill-in reduction alternative . 79
6.2.1 Heuristic strategy . 80
6.2.2 Heuristic implementation . 81
6.2.3 Heuristic performance . 87

7 Parallelization of the QR algorithm 93
7.1 Fine-grained subtasks . 93
7.2 Coarse-grained subtasks . 96
7.3 Parallelization of the backward substitution process 99

8 The QR solution of the linear system 101
8.1 Image quality . 101
8.2 Standard deviation noise analysis 114
8.3 Sharpness analysis . 121

8.3.1 In vivo performance . 133
8.4 Noise power spectrum analysis . 138

8.4.1 Multidimensional NPS framework 138
8.4.2 NPS results . 140

8.5 Time complexity of the QR solution 147

9 Conclusions 149

Chapter 1

Introduction

1.1 Context of medical imaging

The main goal of medical imaging is to obtain an image representing relevant infor-
mation of the interior of the body. This information is used to improve diagnoses,
to locate internal structures or lesions, or to guide procedures such as surgery
among other applications, becoming a key tool in the clinical practice. The medi-
cal imaging main advantage is that its images are obtained in a non-invasive way.
It is not necessary to perform surgery or introduce any instrument inside the body
to obtain the information.

Obtained information is related to a physical parameter of interest inside the
body of the patient. Therefore, the diagnostic utility of a medical image relies in
its technical quality. This quality is determined by the accuracy of the represented
physical parameter and the accuracy in its spatial distribution through the body.

Different types of medical images can be made considering a different physical
parameter of interest. The different modes of making images are referred to as
modalities and each modality has its own applications in medicine.

1.1.1 Medical imaging modalities

Medical imaging requires some form of energy capable of penetrating tissues. The
general idea is to detect energy that has passed through the body and experienced
some type of interaction with the internal anatomy. Then, using that information,
the internal anatomy is reconstructed. The existing medical imaging modalities
differ from one another in the types of energies and the detection technology used.

1

2 Chapter 1. Introduction

Radiography

Radiography was the first medical imaging technique and it came through the
discovery of x-rays in 1895 by the physicist Wilhelm Roentgen, who also made
the first radiographic images of human anatomy. Radiography is based in the
transmission of x-rays through the body. It is performed with an x-ray source and
an x-ray detector. The x-ray source produces an x-ray beam that passes through
the patient and reaches the detector. The radiographic image is a picture of the
resulting x-ray distribution. The attenuation properties of tissues such as bone,
soft tissue, and air inside the patient are very different. Therefore, the measured
attenuation map in the detector contains anatomical information of the internal
structures of the body (see Figure 1.1).

Radiographic images are 2D projections of the body along the x-ray beam. In-
ternal structures at different depths along the x-ray beam appear superimposed in
the resulting 2D image. Radiographic images are useful for the diagnosis of broken
bones, lung cancer, cardiovascular disorders, among other medical indications.

Figure 1.1: Radiographic image made by Roentgen of his wife’s hand. The bones
of her hand as well as two rings on her finger are clearly visible.

Fluoroscopy

Fluoroscopy refers to the continuous acquisition of a sequence of radiographic im-
ages over time, using rapid x-ray detector systems (see Figure 1.2). Fluoroscopy is

1.1. Context of medical imaging 3

often used for positioning catheters in arteries, visualizing contrast agents (liquids
that are ingested or injected to the patient and have high attenuation coefficients),
or for other medical applications where real-time image feedback is required.

(a) (b) (c)

Figure 1.2: Three different frames (a), (b) and (c), of a fluoroscopic image of a
human neck during a barium sulfate swallow [1].

Magnetic resonance imaging

The magnetic resonance imaging (MRI) is based in the magnetic properties of the
hydrogen nuclei, abundant in biological tissues. It is performed by introducing
the patient inside a high electromagnetic field and variable radio-frequency fields.
These magnetic fields align the protons of the hydrogen atoms. When the radio-
frequency fields disappear, the aligned protons regain their original state, emitting
radio signals. The MRI system uses the frequency and phase of the returning radio
waves to determine the position of each signal from the patient. The resulting
information is processed in a computer to form an image. Because different types
of tissue have different local magnetic properties, images made using MRI contain
anatomical information of the internal structures of the body (see Figure 1.3).

MRI produces a set of 2D images depicting slices through the patient, forming
a 3D image. MRI is extensively used in neurological imaging (head and spine)
or for musculoskeletal applications (such as imaging knee injuries) among other
medical indications. However, due to the use of electromagnetic fields, MRI should
not be performed on patients who have internal ferromagnetic implants, such as
metal plates or cardiac pacemakers.

4 Chapter 1. Introduction

Figure 1.3: Sagittal projection of a brain MRI (Neuro-Ophthalmology unit of
Vargas de Caracas Hospital, Venezuela).

Ultrasound imaging

Ultrasound refers to high-frequency sound below the human audible spectrum. Ul-
trasound imaging is based in the propagation of the mechanical energy of the sound
through the tissue and in the reflection of the sound waves by internal structures
inside the body. It is performed by the echo detection after an ultrasound pulse
using piezoelectric materials for the ultrasound emission and echo detection. The
Ultrasound imaging system uses the echo delay and amplitude to form an image
(see Figure 1.4). Produced images can be 2D tomographic slices, 3D images, or
motion studies. Because this modality is thought to be less harmful to a growing
fetus than others (as x-ray ionizing radiation, for example), ultrasound imaging is
extensively used in obstetrical patients.

1.1. Context of medical imaging 5

Figure 1.4: Ecography using ultrasound imaging. Hospital Universitario La Fe,
Valencia, España.

Nuclear medicine imaging

Nuclear medicine imaging is a form of functional imaging that provides informa-
tion about a wide range of biological processes that take place inside the body.
The basic principle of operation is to give to the patient orally, by injection or
by inhalation a compound with a radioactive isotope (commonly gamma emitting
or positron emitting isotope). The gamma rays emitted during radioactive decay
of the isotope are detected outside of the patient body. This technique produces
3D images which contain information of the spatial concentration of the given
compound inside the body, from which biological information is derived (see Fig-
ure 1.5). Nuclear medicine imaging has become a routine diagnostic tool for cancer
staging and has applications in oncology, cardiology or neurology.

6 Chapter 1. Introduction

Figure 1.5: Transaxial slice of a brain [2] taken with positron emission tomography
(PET). Red areas show more accumulated tracer substance and blue areas are
regions where low to no tracer have been accumulated.

Computed tomography

A computed tomography (CT) scan is a medical imaging technique that combines
a series of x-ray images taken from different angles and uses computer processing
to create cross-sectional images of the bones, blood vessels and soft tissues inside
the body of a patient (see Figure 1.6). Is based in the same principle as the
radiography, that is, the anatomical structures inside the body will produce an
attenuation map in the x-ray beam that reach the detector.

In 1971, G. N. Hounsfield presented the first CT scanner in the Atkinson Morley
Hospital, London, England. In 1979, Hounsfield and A. M. Cormack were awarded
with the Nobel Prize in Medicine for the development of the diagnostic technique
of x-ray CT. Nowadays, the x-ray CT has become an important tool for diagnostic
evaluation regarding internal injuries or bone fractures, the location of a tumor,
infection or blood clot, the detection and monitoring of diseases and conditions
such as cancer, heart disease, lung nodules or liver masses, and to guide procedures
such as surgery, biopsy and radiation therapy.

1.2. Computed tomography image reconstruction review 7

Figure 1.6: A CT study [3]. Clockwise from top-left: Volume rendering overview,
axial slices, coronal slices and sagittal slices.

This thesis is devoted to the CT imaging modality and it will be further de-
scribed in the following sections.

1.2 Computed tomography image reconstruction

review

Since the first CT scanners, CT technology has evolved, driven by clinical demands.
Advances in x-ray CT technologies have been accompanied by advances in image
reconstruction algorithms. In the first CT systems, the algebraic reconstruction
technique (ART) [4] was used. ART is based on the resolution of a linear system
of equations. The large size of the linear systems encouraged the development
of faster reconstruction algorithms. The algorithmic development has been gen-

8 Chapter 1. Introduction

erally classified into two major categories: analytical reconstruction and iterative
reconstruction.

The analytical reconstruction approach, in general, try to formulate the so-
lution in a closed-form equation. This problem, in its general form, was solved
by J. Radon in 1917 [5]. The filtered backprojection (FBP) algorithm was devel-
oped originally by Feldkamp, Davis, and Kress in 1984 [6]. FBP is based in a
rewrite of the Radon transform for two dimensions in the form of a convolution
and a backprojection yielding an approximate 3D reconstruction algorithm from
2D projection data. A detailed introduction to this algorithm can be found in the
third chapter of Hsieh’s book Computed Tomography [7]. The image quality and
efficiency of the FBP algorithm established it as the standard CT reconstruction
algorithm. As the CT technology evolved, modifications to the FBP algorithm
have been proposed, to further improve its efficiency [8] or to adapt it to various
CT scanning patterns such the backprojection-filtration (BPF) [9], among many
others [10, 11, 12, 13, 14, 15]. For further details in analytical reconstruction
approaches see [16].

Iterative reconstruction tries to formulate the final result as the solution ei-
ther to a set of equations or the solution of an optimization problem, which is
solved in an iterative fashion. The simultaneous iterative reconstruction technique
(SIRT) [17] proposed the update of the solution at the end of each iteration, once
all equations have been considered. Then, the update of an element of the solution
was the average of all changes computed for that element in the iteration. The
simultaneous ART (SART) [18] was developed to combine the advantages of ART
and SIRT. Among its main features, SART introduced a bilinear interpolation to
reduce errors in the computation of the coefficients of the linear system regarding
the CT geometry. Also, the update of its solution was simultaneously applied for
an entire CT view.

Statistical methods have been contributed to the CT image reconstruction as
well. The principle of statistical methods is to consider the photons involved in
the reconstruction process Poisson distributed. The maximum likelihood expec-
tation maximization (MLEM) algorithm consists in an expectation step, which
computes the expectation of the log-likelihood using its current estimate, and a
maximization step, which finds the next estimate through maximizing the expected
log-likelihood. MLEM algorithm was first introduced to emission tomography [19]
(becoming a prominent reconstruction algorithm in the field, especially in positron
emission tomography [20]) and then, extended to CT [21].

Methods based on iterative coordinate descent (ICD) [22] are the contribution
to the image reconstruction of optimization algorithms. These algorithms work
by iteratively updating individual elements of the estimate image (or coordinates)
to minimize a cost functional. Among its main features, ICD can be efficiently

1.3. Motivation 9

applied to the log-likelihood expressions (from MLEM) and converges quickly when
initialized with a preliminary reconstruction.

The use of ordered subsets (OS) reduced the reconstruction times further by
accelerating the convergence of the iterative process. The OS method consists in
the division of the projection data into groups called subsets. Then, the update of
the solution is performed for each group instead of the complete set of projections.
The OS method has been applied to SIRT (OS-SIRT) [23], MLEM (OSEM) [24],
and ICD (OS-ICD) [25], increasing significantly its convergence speed.

The model-based designation emerged to classify the methods which consider a
model of the problem to obtain the solution. Statistical methods can be classified
inside model-based methods, as they model the reconstruction process as Poisson
distributed. However, refined models can be proposed, such as finer geometric
modeling or physical modeling. In geometric modeling, the device and the image
are modeled as three dimensional objects. Within the CT system, the focal spot
of the x-ray tube, the detector pixels comprising the detector panel, or the x-ray
path through the volumetric elements of the scanned object can be modeled to a
convenient degree of accuracy. In physical modeling, the interactions of photons
in the measured object are addressed. Within these physical processes, the poly-
chromatic nature of the x-ray beam, and the beam hardening or scatter effects,
can be addressed to some level of detail. Regarding the most physical processes
that can be modeled, their major challenge is that they require prior knowledge of
the material composition of each volumetric element of the scanned object (or at
least an approximation) which in turn, is the information that we wish to obtain in
the first place. While model-based reconstruction algorithms obtain a better im-
age quality by taking into account the above-mentioned considerations [16, 26], in
general, they require to find a good balance between the computational complexity
and the obtained improvements in the quality of the reconstructed image.

1.3 Motivation

Iterative reconstruction has exclusively accompanied model-based reconstruction
to the point that the former is usually referred to model-based iterative recon-
struction (MBIR). This is due to the high computational cost of the model-based
algorithms, which was only tractable in an iterative fashion. In fact, there has been
a large effort not only in the image quality improvement, but in the acceleration
of the convergence speed.

The aim of this thesis is to provide an alternative to the iterative reconstruction
of model based algorithms through the direct resolution of a linear system that
models the CT device. While focusing to keep the superior image quality that
MBIR obtains through a careful modeling of the CT system, this thesis provides a

10 Chapter 1. Introduction

proof of concept method and implementations for a MB direct image reconstruc-
tion via the well known QR decomposition procedure to obtain the least squares
solution of an overdetermined system of equations.

Currently considered as an intractable problem, the direct solution of such
linear system would provide an alternative to the current iterative search of the
solution yielding to a faster image reconstruction. The contributions in this the-
sis are, therefore, oriented to the specializations and optimizations of the direct
solution of the system for a matrix that models a CT, considering its definition,
its sparse structure or the required operations to perform the QR-decomposition.
Also, an image quality analysis of the reconstructed images and a comparison of
its results against the prevailing reconstruction algorithm FBP and a state of the
art model based iterative reconstruction algorithm MLEM, are included to con-
firm the image quality advantages of the MB reconstruction and, particularly, the
advantages of the modeled processes that have been included.

1.4 Objectives

The main objective of this thesis is to provide an alternative to the iterative re-
construction of model based algorithms through the direct resolution of a linear
system that models the CT device. This ambitious objective should be achieved
through the development of the specific goals described in this section.

In order to define the linear system that will solve the image reconstruction
problem, the computation of the volume intersection between the basic elements
of the CT model must be addressed to compute the elements of the system matrix.

Considering the CT model, the size of the entire resulting matrix is intractable.
This leads to the research in symmetries of this matrix to obtain a smaller sys-
tem. Moreover, the obtained results must be compatible with the application of
transformations to the matrix to reduce it to triangular form in order to exploit
the advantages offered by the QR-decomposition.

The CT modeling process is subject to several parameters that will define the
linear system for the image reconstruction. The effect of these parameters in the
sensitivity of the system must be studied, in order to obtain knowledge of their
impact on the reconstructed image quality.

Even achieving a reduction of the system matrix exploiting inherent symme-
tries in the CT model, the resulting matrix will have large dimensions and will
be sparse. Moreover, it will be subject to massive numerical modifications dur-
ing the QR-decomposition procedure. A sparse matrix scheme adapted to these
requirements must be implemented; not only to assure the optimization of the
required transformations for the QR-decomposition, but to gain full access to the
structural information of the matrix (such as the number of non-zero elements in

1.4. Objectives 11

a given row or the column index or the first and last non-zero elements) with an
optimum performance.

Implementations of the QR-decomposition procedures must be up-to-date to
the state of the art implementations of the most accepted scientific computation
libraries, such as BLAS or LAPACK. However, they must make optimum use of
the defined sparse matrix scheme previously mentioned.

In addition, due to the nature of the transformations performed by the QR-
decomposition procedure in the sparse system matrix, fill-in will be produced.
Taking advantage of the sparse matrix scheme implemented, an heuristic strategy
to minimize the fill-in during the reduction to triangular form must be imple-
mented. It must outperform the standard fill-in reduction procedures exploiting
structural properties of the CT model matrix and provide insight in the fill-in
problem, in order to allow further research in this subject.

A parallelization strategy must be provided for the most critical (time con-
suming) procedure of the new algorithm from the point of view of the user: the
matrix vector product. Not necessary pursuing the optimum performance, but
demonstrating a proof of concept implementation and providing insight in the
parallelization of this procedure in order to be further investigated and improved.

The quality of the reconstructed images must be assessed against the industry
standard, the FBP and a state of the art model based iterative reconstruction
algorithm, the MLEM, in order to assure that image quality will not be lost.

A bound of the required time for the image reconstruction process as a function
of the number of rotations needed to reduce the system matrix to triangular form
is required to demonstrate the potential in reconstruction time reduction with
further research in the development of better fill-in reduction strategies.

Finally, a proof of concept implementation of a CT image reconstruction al-
gorithm must be obtained demonstrating correct image reconstruction and the
potential of its advantages over the existing reconstruction methods.

12 Chapter 1. Introduction

Structure of the thesis

After this introductory reading about medical imaging, Chapter 2 covers the pre-
liminaries regarding linear systems that will be needed along this thesis. The CT
image reconstruction via a linear system and the computation of the CT model
matrix are covered in Chapter 3. In Chapter 4, a sparse matrix allocation scheme
is proposed and detailed. The different procedures of the QR decomposition are
implemented in Chapter 5. Chapter 6 is devoted to the problem of fill-in during
the QR decomposition and to the proposal of an alternative strategy for CT ma-
trices. Some details on the parallelization of the QR decomposition are shown in
Chapter 7. In Chapter 8, an image quality assessment of the proposed algorithms
is performed and compared against the FBP and MLEM. Finally, the conclusions
of the thesis are gathered in Chapter 9.

Chapter 2

Introduction to linear systems

The problem of solving a linear system is central to scientific computation, and it
has been widely addressed in the literature. Among the best introductions to this
problem are those of G. Golub and C. Van Loan [27] or D. S. Watkins [28]. This
chapter summarizes both introductions, addressing only a few topics that will be
needed along this thesis. A more detailed treatment of these topics can be found
in [27, 28, 29, 30].

2.1 Systems of linear equations

The basic problem we will work with, is a system of m linear equations in n
unknowns

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3
...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm,

(2.1)

where the coefficients aij and bi are given and we wish to find a x1, . . . , xn that
satisfy the equations. For convenience and from now on, the System (2.1) will be
written as a matrix equation

Ax = b, (2.2)

13

14 Chapter 2. Introduction to linear systems

where

A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

. . .
...

am1 am2 am3 · · · amn

 x =


x1
x2
x3
...
xn

 b =


b1
b2
b3
...
bm

 .

In our case, the coefficients (aij and bi) are real numbers and we seek a real
solution. Suppose m = n (A is a square matrix) and A is nonsingular (A−1 exists).
Then Equation (2.2) has a unique solution that can be obtained by

Ax = b

A−1Ax = A−1b

Ix = A−1b

x = A−1b,

where I is the n×n identity matrix. However, this method implies the computation
of A−1 which is computationally costly or unfeasible for most large problems.

2.1.1 Triangular systems

When A has a particular form, linear systems could be easy to solve. Let

A =


a11 a12 a13 · · · a1n
0 a22 a23 · · · a2n
0 0 a33 · · · a3n
...

...
...

. . .
...

0 0 0 · · · ann

 ,

where aij = 0 whenever i > j. That is, all elements of A below its main diag-
onal are zero. Then, provided that A is nonsingular (aii 6= 0 for i = 1, . . . , n),

2.1. Systems of linear equations 15

Equation (2.2) is particularly easy to solve by backward substitution as follows

xn =
bn
ann

xn−1 =
bn−1 − an−1nxn

an−1n−1
...

x3 =
b3 − a34x4 − a35x5 − · · · − a3nxn

a33

x2 =
b2 − a23x3 − a34x4 − · · · − a2nxn

a22

x1 =
b1 − a12x2 − a33x3 − · · · − a1nxn

a11
,

or equivalently

xi =
bi −

∑n
j=i+1 aijxj

aii
for i = n, n− 1, . . . , 3, 2, 1. (2.3)

2.1.2 Overdetermined systems

Suppose the previous assumption m = n does not hold and instead, there are
more equations than unknowns, i.e. m > n. Then, Equation (2.2) might not
have an exact solution, especially if b comes from a collection of experimental
measurements, which are subject to errors. In this case may be interesting to find
an x such that the residual r = Ax− b is small for some norm.

The strategy to find x in order to obtain a satisfactory r or the election of a
particular norm are most problem dependent. In our case, we will wish to minimize
r for the 2-norm, which is known as the least squares problem, considered in §2.2.

2.1.3 Sensitivity of linear systems

The sensitivity of a linear system is the effect that small perturbations in the
coefficients have on the solution of a system. Suppose that we have a perturbed
instance of the System (2.2)

Ax̂ = b+ δb (2.4)

where δb is a small (relative to b) perturbation, x̂ is the obtained solution for the
perturbed system, and moreover, x̂ = x + δx where δx is the perturbation in the
solution.

16 Chapter 2. Introduction to linear systems

We are interested in the definition of the condition number

κ2(A) = ‖A‖2‖A−1‖2 =
σmax(A)

σmin(A)
, (2.5)

where σmax(A) and σmin(A) are the largest and smallest singular values of A re-
spectively, since we will make use of orthogonal transformations which preserve
the 2-norm and obtain the condition of non-square matrices.

There is a useful bound for ‖δx‖‖x‖ in terms of ‖δb‖‖b‖ using the condition number

(κ(·)) of A
‖δx‖2
‖x‖2

≤ κ2(A)
‖δb‖2
‖b‖2

. (2.6)

Bound (2.6) indicates that the relative error in x can be κ(A) times the relative

error in b. Because it is desirable that if ‖δb‖‖b‖ is small, then ‖δx‖
‖x‖ would be also

small, it is desirable to have a system matrix with a low condition number (as
nearest to 1 as possible).

2.2 The least squares problem

In presence of an overdetermined system (where m > n) Equation (2.2) might not
have an exact solution. Let ai be the i-th row of the system matrix A. Then, the
residual r produced by a given solution x is

ri = aix− bi. (2.7)

We will be interested in a solution that produces a small r, so we have to choose
a norm to measure r. If we choose the 2-norm, then we have

‖r‖2 =

√√√√ m∑
i=1

(aix− bi)2, (2.8)

so we seek an x that minimizes ‖r‖2. The same x that minimizes Equation (2.8)
will minimize

‖r‖22 =
m∑
i=1

(aix− bi)2. (2.9)

Thus, we seek an x that minimizes the sum of the squares of the residuals and for
this reason the problem of minimizing ‖r‖2 is called the least squares problem. The
solution to this problem can be obtained either with an iterative procedure (until
some acceptable tolerance is achieved or minimizing a cost functional [22, 25]) or
by the reduction of A to various canonical forms (including the triangular form).

2.2. The least squares problem 17

Suppose A ∈ Rm×n has full rank and we have a procedure to factor A into two
matrices, say R ∈ Rm×n and Q ∈ Rm×m. And moreover, suppose this procedure
only involves orthogonal transformations (under which the 2-norm is preserved).
Then we can pose a system equivalent to System (2.2)

QRx = b (2.10)

and because only orthogonal transformations have been used, their residuals will
be equivalent under the 2-norm

‖QRx− b‖2 = ‖Ax− b‖2,

so we can seek the least squares solution of System (2.2) using the System (2.10).
It would be most convenient if we can ask for Q to be an orthogonal matrix so
that QTQ = I were I is the identity matrix and for R to have a canonical form,
say upper triangular. Provided that this factorization procedure also meets these
requirements, we can pose an equivalent system to System (2.2)

Rx = QT b (2.11)

by multiplying both sides by QT and their residuals will still be equivalent under
the 2-norm

‖Rx−QT b‖2 = ‖Ax− b‖2.

Moreover, as we asked for R to be an upper triangular matrix

R =

[
R1

0

]
n

m− n and if QT b =

[
c
d

]
n

m− n

we have

‖Ax− b‖22 = ‖Rx−QT b‖22 = ‖R1x− c‖22 + ‖d‖22
and the least squares solution can be obtained solving the upper triangular system

R1x = c (2.12)

by a backward substitution process and its Residual (2.9) will be

‖r‖22 = ‖d‖22.

Such a factorization of A into Q and R exists and is known as the QR decompo-
sition. It is detailed in §5.1 along with its computer implementation.

18 Chapter 2. Introduction to linear systems

2.2.1 Sensitivity of the least squares problem

The effect that small perturbations in the coefficients have on the solution is greater
for the least squares problem than for linear systems.

Suppose δA and δb are small perturbations to the coefficients of System (2.2).
Suppose that A and A+ δA are m-by-n matrices with m ≥ n and have full rank.
Let

x minimize ‖Ax− b‖2, r = Ax− b,
x̂ minimize ‖(A+ δA)x̂− (b+ δb)‖2, r̂ = (A+ δA)x̂− (b+ δb), and

ε = max(‖δA‖2‖A‖2 ,
‖δb‖2
‖b‖2).

Then
‖x̂− x‖2
‖x‖2

≤ εκ2(A)

1− εκ2(A)

(
2 + (κ2(A) + 1)

‖r‖2
‖A‖2‖x‖2

)
(2.13)

and
‖r̂ − r‖2
‖r‖2

≤ 1 + 2εκ2(A) (2.14)

are bounds for the perturbed solution and residual [31]. Bound (2.13) may be
interpreted as follows. If ‖r‖2 is zero or very small then the effective condition
number is ≈ 2κ2(A), similar to Bound (2.6) for the perturbed solution of a linear
system. However, as ‖r‖2 grows (but still far from ‖b‖2), the effective condition
number becomes ≈ κ22(A). Finally, if ‖r‖2 is near to ‖b‖2, then, changes in the
solution due to perturbations become unbounded even if κ2(A) is small. When
‖r‖2 = ‖b‖2 (solution is zero), any small change that produces a slightly different
x̂ will yield an infinitely large relative change.

The accuracy of the least squares solution is governed by the residual. Most
least squares problems will have an imposed A, but if A comes from a modeling
process, this is a good reason to demand a model as compatible as possible with
b (aside of well conditioned), in order to produce a small residual least squares
problem.

The effective condition number of the least squares problem also depends on
the solution strategy. Previously, System (2.2) has been transformed into the
equivalent System (2.11) by the reduction of A to an upper triangular matrix R. It
is shown that κ2(A) = κ2(R) [32]. But there are other methods that produce larger
condition numbers. For example, suppose that we seek the least squares solution
through the equivalent system (ATA)x = AT b. Then, the accuracy depends on
κ2(A

TA) = κ22(A). Therefore, even if ‖r‖2 is zero or very small, the effective
condition number of the least squares problem will be ≈ κ22(A).

Chapter 3

The CT image reconstruction as a
linear system

After the introduction on some topics of linear systems, this chapter will be devoted
to the definition of the CT image reconstruction problem. The description will be
conducted through the principle of operation of the devices involved in a CT
system. The definition of the CT system described, corresponds to the third
generation scanners, that are the commonest nowadays.

Differing of most introductions, this chapter will focus in the computation of a
system matrix instead of relating the CT measurement process to the Fourier slice
theorem and deriving the filtered backprojection algorithm. A linear system of
equations will be obtained by doing so, and some details on the particular system
of the CT reconstruction will also be addressed, such as symmetries or the effect
in κ2(A) produced by choices in the modeling of several CT components. The
resolution of the linear system will be addressed later in §5. A more detailed
treatment of the topics addressed in this chapter can be found in [7, 33].

The idea of using a linear system of equations for CT image reconstruction is
the base of the ART [4] reconstruction method, used in the firstCT systems. How-
ever, the linear system derived in the following section adds several features (such
as the cone beam factor [34]) which allow to classify it as a model-based recon-
struction method. A tool to efficiently compute the volume intersection between
two polyhedra is then needed. Although in the literature [34] more complicated
and restrictive algorithms are available, in the following section an algorithm with
a more general input (only the two polyhedra) will be addressed, and while it uses
well known procedures in 3D object modeling, to the best of our knowledge, this
is the first work that uses them to compute the volume intersections required to
derive the linear system that solves the CT image reconstruction problem.

19

20 Chapter 3. The CT image reconstruction as a linear system

3.1 Modeling the CT

In this section, the linear system that solves the CT image reconstruction prob-
lem will be derived. In addition, the necessary tools to compute it will also be
addressed, such as a generic volume intersection algorithm, in order to illustrate
the computation of each aij, elements of matrix A, for a general third generation
CT geometry.

3.1.1 X-ray source

An x-ray is an electromagnetic waveform. X-ray photons are produced by striking
a target with high-speed electrons. The kinetic energy of electrons is transformed
in electromagnetic radiation. X-ray energy is usually expressed in the unit of eV.
1 eV is the amount of kinetic energy with which an electron is accelerated across
an electrical potential of 1 V.

X-ray energy depends on the amount of kinetic energy that is given off during
interactions of accelerated electrons with the target. Since various interactions are
possible, the produced x-ray photons of maximum energy will result of the accel-
erated electrons that suffered a total loss of their kinetic energy. But this is not
always the case. Not all the kinetic energy of electrons is lost in all interactions.
In fact, a continuous x-ray spectrum is produced (due to the bremsstrahlung pro-
cess). For example, an x-ray source that accelerates electrons across an electrical
potential of 120 kV, will produce x-ray photons with an energy of 120 keV or less.

The x-ray source is placed inside a housing with an aperture called port in
order to prevent any x-ray photon to escape except for the port. After the port, a
collimator is placed. The collimator adjusts the size and shape of the x-ray field
that emerges from the housing port. Usually, the collimator is composed of two
pairs of parallel-opposed blades that define a rectangular field.

3.1.2 X-ray detection

This section is devoted to illustrate the principle of operation of a flat panel x-ray
detector, which is the commonest technology implemented in modern CT scanners.
A flat panel detector is divided into individual detector elements arranged in a
matrix. A detector element includes an electronics area and a sensitive area. The
sensitive area will produce a charge proportional to the number of x-ray photons
that arrives to the detector element (i.e. to the incident x-ray intensity). This
charge will be stored into a capacitor in the electronics area. During an exposure
time, the charge will be accumulated in the capacitor. When exposure is complete,
a readout process starts; the capacitor will be discharged through a connection to
outside of the active area of the panel. The voltage will be amplified and digitalized

3.1. Modeling the CT 21

to obtain the detector element measurement. Readout is usually organized in a
sequential fashion (one row / column at a time), and when completed, a new
exposure starts, and so on.

There are two main categories in the implementation of the sensitive area: di-
rect and indirect detectors. Indirect detectors have a layer of a scintillator material
to convert x-rays photons into light photons. A photosensitive area placed below
the scintillator detects the generated light. Direct detectors have a layer of semi-
conductor material that produces electron-hole pairs which produces a charge in
the detector in proportion to the incident x-ray intensity.

As a result of each pair of exposure and readout processes, a matrix of measured
intensities is produced which is called a view or projection. A collection of views
is gathered to feed the reconstruction algorithm.

3.1.3 X-ray attenuation

X-ray photons interact with matter. As a result of the x-ray photons interactions,
some of the photons are absorbed or scattered when they pass through a material.
The importance of these interactions is proportional to some material characteris-
tics and dependent on the x-ray beam energy. Usually, this is condensed in a single
parameter µ (as a function of the material and the x-ray beam energy) referred as
the attenuation coefficient.

Suppose we have a monoenergetic, narrow collimated, and parallel x-ray beam
that passes through a material with a uniform attenuation coefficient. The atten-
uation of the x-ray beam can be expressed by an exponential relationship known
as the Beer–Lambert law:

I = I0e
−µx, (3.1)

where I0 and I are the original (entrance) and attenuated (exit) x-ray beam in-
tensities respectively, µ is the attenuation coefficient of the material, and x is the
length of the x-ray beam in the material.

Now suppose we have nonuniform object (with different attenuation coeffi-
cients). If we divide the object into n small regions so that the lengths of the
beam in the regions are x1, x2, . . . , xn and assume that if the largest xi is suffi-
ciently small, each region can be considered as a uniform object (with an attenua-
tion coefficient µi), then, the total attenuation can be calculated with the repeated
application of the Beer–Lambert law, yielding

I = I0e
−µ1x1e−µ2x2e−µ3x3 · · · e−µnxn = I0e

−
∑n

i=1 µixi . (3.2)

An alternative form for Equation (3.2) can be obtained

p = − ln

(
I

I0

)
=

n∑
i=1

µixi (3.3)

22 Chapter 3. The CT image reconstruction as a linear system

by dividing both sides by I0 and taking logarithms. p is known as a projection
measurement and is (the logarithm of) the ratio between entrance and exit x-
ray beam intensities. The Beer–Lambert law says that p represents the result of
the integration of the attenuation coefficients (of the different previously defined
regions) along the x-ray beam path. This is known as a pencil beam.

The Relationship (3.1) relies in the assumption that the x-ray beam is mo-
noenergetic, which is, all of the x-ray photons have the same energy. However, in
practice, x-ray beam is polyenergetic due to bremsstrahlung processes. Moreover,
low-energy x-ray photons have a higher probability of being absorbed than high-
energy x-ray photons (mainly due to the photoelectric process). As a result, the
x-ray beam spectrum averages a higher energy as it passes through material. This
phenomenon is known as beam hardening.

Considering that µ values range significantly with the beam energy and that
for most materials showing the same characteristics, their µ values decrease as the
beam energy increases (high-energy x-ray photons have a lower probability of being
absorbed), Equation (3.3) will yield an overestimated value p̂ for a polyenergetic
x-ray beam. Two main approaches reduce the beam hardening phenomenon and
restore the Relationship (3.1):

• Beam filtration [35, 36]: a thin layer of material placed between the beam
source and the scanned object in order to absorb (filter) low-energy x-ray
photons.

• Estimation process [37, 38, 39]: considering the total attenuation, p̂, of a
polyenergetic x-ray beam, a function f such that f(p̂) is the total attenuation
that a monoenergetic beam would have been suffered along the same path
(p in Equation (3.3)).

The discrepancy between predicted monoenergetic beam attenuation and polyen-
ergetic beam attenuation changes with the scanned object material, shape or x-ray
source. The implementation of these strategies requires experimentation, calibra-
tion and testing. Therefore, an adjustment of parameters and / or filter must be
made in case of the replacement of the x-ray source of the device, for example, and
in a clinical environment, different protocols are defined for head or chest scans,
for instance.

After the careful application of these techniques, polyenergetic x-ray beam
attenuation measurements will be sufficiently close to monoenergetic beam atten-
uations to consider the Relationship (3.1), and therefore Equation (3.3), valid.

3.1.4 The CT reconstruction problem

Consider an object placed between an x-ray source and an x-ray detector, divide
the space occupied by the object into n regions (a regular grid for instance), and

3.1. Modeling the CT 23

consider Equation (3.3). Then, a formulation of the CT reconstruction problem
can be stated as follows: compute the attenuation coefficient of each of the n
previously defined regions using the information provided by the detector as the
attenuation of monoenergetic x-ray beams.

Lets start directly with a 3D model of the problem. Suppose we have a flat
panel composed of d detector elements which have a square shape, are arranged
as a matrix and located on the Y Z plane (x = 0) such that the X axis crosses
the plane at the center of the flat panel (the center of the flat panel is located at
{0, 0, 0}). Let the collimator of the x-ray source has a rectangular area sufficiently
small to be considered as a point (from now on, this point will be referred as the
x-ray source) and located on the X axis at a distance D from the detector plane (at
{D, 0, 0}). Then, we define a line of response (LoR) as a pyramid such as its base
matches a detector and its apex matches the x-ray source (see Figure 3.1). This
way, the x-ray field from the x-ray source to the flat panel detector is composed
of d LoRs, each one with its base in one detector element. This shape of the x-ray
field is known as cone beam geometry. Let Rdet(i) be the distance between the
center of the detector element i and the x-ray source. Let the n regions in which
the space occupied by the object is divided into, have a cubic shape and form
a three dimensional regular grid. Then, we define a voxel as each one of these
regions and (as before) µ is assumed to be constant over a voxel. Let Rvox(j) be
the distance between the center of the voxel j and the x-ray source.

Detectors

Scanned
object

x-ray
source

LoR

Figure 3.1: Illustration of a single LoR, from the x-ray source to one of the detector
elements.

We need to extend the concept of pencil beam of Equation (3.3) to a volume
integral. In order to do so, it is assumed that a LoR consists in infinitely many

24 Chapter 3. The CT image reconstruction as a linear system

beam paths, form the x-ray source to the detector that defines the LoR. Let

bi = − ln

(
I(i)

I0(i)

)
be (the logarithm of) the ratio between the intensity of the attenuated LoR that
arrives to the detector element i (I(i)) and the intensity of the LoR that arrives
to the detector element i when it is not attenuated (I0(i)). Then

bi =
n∑
j=1

µjaij (3.4)

represents the result of the integration of the attenuation coefficients of the voxels
along the LoR volume following the Beer–Lambert law, where

aij = c(i, j)vij,

and vij is the volume intersection between the i-th LoR and the j-th voxel (vij = 0
if the i-th LoR does not intersect the j-th voxel). In practice, aij is usually re-scaled
by the voxel volume and the detector element area in order to control numerical
error in the computation.

The term

c(i, j) =
DRdet(i)

(D −Rvox(j))
2

is referred as the cone beam factor [34]. The cone beam factor represents the
divergence of the x-ray cone beam emanating from a point source. In fact, if we
consider a parallel geometry where D → ∞, then R → D and follows that in
parallel beam geometry aij is simply proportional to vij.

From Equation (3.4) a system of linear equations can be derived in order to
obtain the attenuation coefficients µ1, µ2, . . . , µn. d equations can be obtained
from a single projection, and different projections can be obtained by rotating the
x-ray source and detector along the scanned object. Let b ∈ RdP be a collection
of d detector element measurements consisting in P projections, such that bi is a
detector element measurement in one of the P projections. Let A ∈ R(dP)×n be a
matrix such that each aij ∈ A is the volume intersection of the i-th LoR (defined
by a detector element in one projection) with the j-th voxel, corrected by the cone
beam factor c(i, j). Then, finding the solution to the linear system

Aµ = b (3.5)

solves the CT reconstruction problem, provided that System (3.5) has a unique
solution. §3.2 is devoted to the analysis of the matrix A.

3.1. Modeling the CT 25

3.1.5 Computation of the volume intersection

The computation of the volume intersection between a LoR (in an arbitrary pro-
jection) and a voxel is not straightforward. Usually, this procedure has been
accomplished by a carefully decomposition of the voxel into volume-known regular
polyhedra [34] or approximated computing the volume intersection with an angular
invariant volume inscribed inside the voxel (as a cylinder [40], for example).

An algorithm will be defined below, consisting of well known procedures, for
the computation of the exact volume intersection between a LoR and a voxel. The
input of this algorithm are the voxel and LoR polyhedra, and it is a three step
process: a clipping, a capping, and a tessellation stages.

First, the polyhedron intersection between the LoR and the voxel must be
obtained. To do so, the four faces of the LoR (the pyramid base is not considered)
are used to discard (clip) all voxel vertices outside its volume. Cases arise in
which vertices have to be created in the intersection between the voxel edges and
the plane, in order to complete the faces of the clipped polyhedron. Once the
clipped polyhedron is contained inside the LoR, the possible holes created in it are
covered (capped). The four faces of the LoR (and their normals) are used to detect
the holes and to create new faces with their vertices in counterclockwise (CCW)
order. This procedure is known as clipping and capping [41]. An implementation
in C++ of this procedure is provided in Code 3.1 (construction of the original voxel
and LoR polyhedra), Code 3.2 (edge wise voxel clipping), Code 3.3, (consideration
for the edge formed by the last and first vertices and removal of invalid faces) and,
Code 3.4 (capping stage). Also, an illustration of the cases when new vertices have
to be created from intersections is shown in Figure 3.2 for clarification.

The last step is the actual volume computation. It is obtained from the tessella-
tion of the previously computed intersection polyhedron into irregular tetrahedra,
which volume, V , is

V =
|~a · (~b× ~c)|

6
, (3.6)

where ~a, ~b, and ~c are three vectors from the same vertex to each one of the other
three vertices respectively (see Figure 3.3).

The usual tessellation procedure of a polyhedron is illustrated in Figure 3.4.
The process starts with the selection of one vertex called vapex. Their adjacent ver-
tices (those which share an edge with vapex) are found. According to the definition
of a polyhedron in Codes 3.1, 3.2, 3.3, and 3.4, the search for adjacent vertices
should be performed in a face wise manner. For each face, if vapex is present,
its predecessor and successor in the CCW ordering are considered their adjacent.
These two adjacent vertices are treated not as a pair of vertices but as a line seg-
ment. Once the adjacent vertices search is complete, a collection of line segments

26 Chapter 3. The CT image reconstruction as a linear system

Polyhedron Geometry3D::polyhedron_intersection(const Pixel3D& voxel, const LoR3D& LoR){

// obtain the normals of the LoR planes
Point3D normal_plane_LoR[4];
normal_plane_LoR[0] = Geometry3D::normal_plane(LoR.v1, LoR.v2, LoR.v4);
normal_plane_LoR[1] = Geometry3D::normal_plane(LoR.v3, LoR.v0, LoR.v4);
normal_plane_LoR[2] = Geometry3D::normal_plane(LoR.v0, LoR.v1, LoR.v4);
normal_plane_LoR[3] = Geometry3D::normal_plane(LoR.v2, LoR.v3, LoR.v4);

// form a Polyhedron from the voxel vertices (assuming that is a cube)
Polyhedron polyhedron_voxel, polyhedron_tmp;
polyhedron_voxel.clear();
// the vertex in each face are ordered conuter clock wise
Polyhedron_voxel.add_face(voxel.v0, voxel.v1, voxel.v2, voxel.v3);
Polyhedron_voxel.add_face(voxel.v1, voxel.v5, voxel.v6, voxel.v2);
Polyhedron_voxel.add_face(voxel.v3, voxel.v2, voxel.v6, voxel.v7);
Polyhedron_voxel.add_face(voxel.v0, voxel.v1, voxel.v5, voxel.v4);
Polyhedron_voxel.add_face(voxel.v4, voxel.v0, voxel.v3, voxel.v7);
Polyhedron_voxel.add_face(voxel.v7, voxel.v6, voxel.v5, voxel.v4);

// new (clipped) faces will be computed to replace the originals
Face3D face_tmp, face_new;
// in each step, two vertices and its intersection in the plane will be computed
Point3D vA, vB, intersection;
// also, its distances to the plane will be of use
double DvA, DvB;

// [unfinished] code continues

Code 3.1: C++ definition of a method to compute the polyhedron that results
of the intersection of a voxel (a cube) and a LoR (a pyramid). Source code is
incomplete and continues in Code 3.2. A convention has been followed for the
definition of v1, v2, . . ., vn (voxel and LoR vertices), such that all the faces
defined in this source code have their vertices in CCW order. The Point3D class
contains three attributes to define a three dimensional point, and its operator=
has been overloaded to copy the three attributes. The Polyhedron class consists
of a list of faces, where a face consists of a list of vertices in CCW order. And
the normal plane() static method computes the normal of a plane defined by
three points, provided that its parameters are supplied in CCW order.

3.1. Modeling the CT 27

// for each LoR plane normal
for(int p = 0; p < 4; ++p){
// reset polyhedron that is going to be built
polyhedron_tmp.clear();

// for each face ’c’ of the polyhedron
for(int c = 0; c < polyhedron_voxel.get_size(); ++c){

// retrieve a face for clipping
face_tmp = polyhedron_voxel.get_face(static_cast<unsigned int>(c));
face_new.clear();

// check that current face has at least two vertices
if(face_tmp.get_size() > 2){

// for each vertex of the current face ...
for(int v_idx = 0; v_idx < (face_tmp.get_size()-1); ++v_idx){

// ... select two consecutive vertices ...
// (vertices were ordered counter clock wise, so they form an edge of the

face)
vA = face_tmp.get_vertex(static_cast<unsigned int>(v_idx));
vB = face_tmp.get_vertex(static_cast<unsigned int>(v_idx + 1));

// ... compute its ’’distance’’ to the current clipping plane of the LoR ...
DvA = Geometry3D::distance_point_plane(vA, LoR.v4, normal_plane_LoR[p]);
// point ˆ | ˆ point on the plane | ˆ normal of

the plane
DvB = Geometry3D::distance_point_plane(vB, LoR.v4, normal_plane_LoR[p]);
// this is not exactly a distance, since it has a sign:
// negative -> below the plane, positive -> above the plane

// check if the plane intersects with the edge
if((DvA > 0) && (DvB < 0)){ // if vA is above and vB is below

intersection =
Geometry3D::intersection_line_plane(vB, vA, LoR.v4, normal_plane_LoR[p]);

face_new.add_vertex(intersection);
}

if((DvA <= 0) && (DvB <= 0)){ // if vA and vB are below
face_new.add_vertex(vA);

}

if((DvA < 0) && (DvB > 0)){ // if vA is below and vB is above
face_new.add_vertex(vA);
intersection =
Geometry3D::intersection_line_plane(vB, vA, LoR.v4, normal_plane_LoR[p]);

face_new.add_vertex(intersection);
}

if((DvA == 0) && (DvB > 0)){ // if vA is the actual intersection and vB is
above

face_new.add_vertex(vA);
}

} // [for each vertex] all vertices except one have been processed

// [unfinished] code continues

Code 3.2: C++ definition of a method to compute the polyhedron that results
of the intersection of a voxel (a cube) and a LoR (a pyramid). Source code
is the continuation of Code 3.1 and continues in Code 3.3. A new polyhe-
dron is built using the faces of the voxel clipped by all the LoR planes. The
distance point plane() static method computes the distance (with a sign)
of a point, P , to a plane. The plane is defined by a point, P plane, and a nor-
mal, Nplane. This method computes Nplane

x (Px − P plane
x) + Nplane

y (Py − P plane
y) +

Nplane
z (Pz −P plane

z), and the sign shows if P is above or below the plane. if cases
are illustrated in Figure 3.2.

28 Chapter 3. The CT image reconstruction as a linear system

// the edge vertex(n-1) -> vertex(0) has not been processed yet ...
vA = face_tmp.get_vertex(static_cast<unsigned int>(face_tmp.get_size()-1));
vB = face_tmp.get_vertex(0);

// ... compute its ’’distance’’ to the current clipping plane of the LoR ...
DvA = Geometry3D::distance_point_plane(vA, LoR.v4, normal_plane_LoR[p]);
DvB = Geometry3D::distance_point_plane(vB, LoR.v4, normal_plane_LoR[p]);

// check if the plane intersects with the edge
if((DvA > 0) && (DvB < 0)){ // if vA is above and vB is below
intersection =
Geometry3D::intersection_line_plane(vB, vA, LoR.v4, normal_plane_LoR[p]);

face_new.add_vertex(intersection);
}

if((DvA <= 0) && (DvB <= 0)){ // if vA and vB are below
face_new.add_vertex(vA);

}

if((DvA < 0) && (DvB > 0)){ // if vA is below and vB is above
face_new.add_vertex(vA);
intersection =
Geometry3D::intersection_line_plane(vB, vA, LoR.v4, normal_plane_LoR[p]);

face_new.add_vertex(intersection);
}

if((DvA == 0) && (DvB > 0)){ // if vA is the actual intersection and vB is
above

face_new.add_vertex(vA);
}

} // [if(face_tmp.get_size() > 2)] the entire polyhedron face has been clipped

// the clipped face has been stored in ’face_new’
// if it has not been entirely clipped ...
if(face_new.get_size() > 0){

// append it to the clipped polyhedron
polyhedron_tmp.add_face(face_new);

}

} // [for each face]

// all faces of the original polyhedron have been clipped by the first LoR plane
// and are stored in ’polyhedron_tmp’
// so the original polyhedron is overwritten in order to continue clipping
// the partially clipped polyhedron
polyhedron_voxel = polyhedron_tmp;

} // [for each LoR plane]

// removes invalid faces:
// removes repeated vertices and faces that have only two (or less) vertices
polyhedron_voxel.remove_invalid_faces();

// [unfinished] code continues

Code 3.3: C++ definition of a method to compute the polyhedron that results
of the intersection of a voxel (a cube) and a LoR (a pyramid). Source code is
the continuation of Code 3.2 and continues in Code 3.4. This code processes the
last edge of a face, formed by vertices n − 1 and 0. The original polyhedron is
overwritten before continuing with the LoR plane loop in order to continue clipping
the partially clipped polyhedron. Finally, all faces that remained with two or less
vertices are removed and the clipping procedure is finished.

3.1. Modeling the CT 29

// clipping stage is finished: now capping starts
bool face_needed_Q;
face_new.clear();
face_tmp.clear();

// if a face is needed it will be on one LoR plane
// for each LoR plane
for(int p = 0; p < 4; ++p){

// suppose that a new face is needed ...
face_needed_Q = true;
face_new.clear();

// for each face ’c’ of the polyhedron (and provided that a new face is still
needed) ...

for(int c = 0; (c < polyhedron_voxel.get_size()) && face_needed_Q; ++c){

// retrieve the current face
face_tmp = polyhedron_voxel.get_face(static_cast<unsigned int>(c));
face_needed_Q = false;
// if all vertices of the current face are on the LoR plane, capping is not

needed
// check that not all vertices of the current face are on the current LoR plane
// for each vertex of the current face ...
for(int i = 0; i < face_tmp.get_size(); ++i){

// retrieve a vertex and compute its ’’distance’’ to the LoR plane
vA = face_tmp.get_vertex(static_cast<unsigned int>(i));
DvA = Geometry3D::distance_point_plane(vA, LoR.v4, normal_plane_LoR[p]);

// only one vertex outside the LoR plane will be sufficiente to confirm
// that a new face is still needed
face_needed_Q = face_needed_Q || (DvA != 0);

// in case that a new face is needed, their vertices will be those that
// are in the LoR plane
if(DvA == 0){
face_new.add_vertex(vA);

}
} // an entire face has been checked
// if a new face is not needed, code will continue for the next LoR plane

} // all faces have been checked

// if a new face is not needed, code will continue for the next LoR plane
if(face_needed_Q && (polyhedron_voxel.get_size() > 0)){

// if a face is needed, it is composed of all vertices in the LoR plane
// remove repeated vertices and sort them in a counter clock wise order
// (according to the LoR plane) ...
face_new.fix_face(normal_plano_LoR[p]);
// ... and if after the fix is useful, append it to the polyhedron
if(face_new.get_size() > 0){

polyhedron_voxel.add_face(face_new);
}

}
} // [for each LoR plane]
// return the intersection
return polyhedron_voxel;

}

Code 3.4: C++ definition of a method to compute the polyhedron that results of
the intersection of a voxel (a cube) and a LoR (a pyramid). Source code is the
continuation of Code 3.3. This code implements the capping procedure and uses
the LoR planes to build the necessary faces. The vertex of a new face will be in
a LoR plane that previously clipped the polyhedron. A check to avoid duplicate
faces is also implemented with the face needed Q variable. The final result is a
polyhedron intersection between the voxel and LoR given.

30 Chapter 3. The CT image reconstruction as a linear system

Normal

LoR plane

vAb

vBb

⊕ intersection

(a)

Normal

LoR plane

vBb

vAb

(b)

Normal

LoR plane

vBb

vAb

⊕ intersection

(c)

Normal

LoR plane

vBb

vAb

(d)

Figure 3.2: Illustration of the if cases that appear in Codes 3.2 and 3.3, where
vA and vB are the initial and final vertices of an edge respectively, and the dashed
area represents the region of space inside the LoR. if cases select vA and / or
an intersection point to be vertices of the new face that is clipped by the LoR
plane. When vA is above and vB is below the plane (a), only the edge intersection
should be part of the new face. When vA and vB are below the plane (b), only
vA should be considered for the new face. When vA is below and vB is above the
plane (c), vA and the edge intersection should be part of the new face. When vA
is the actual intersection (d), vA should be a vertex of the new face.

3.1. Modeling the CT 31

b

b

b

b

b

a

c

vapex

~c = c− vapex
~b = b− vapex

a− vapex = ~a

Figure 3.3: Illustration of the vertex naming used for the computation of the
volume of a tetrahedron. vapex is used to define the three vectors that will be used
to obtain the volume, according to Equation (3.6).

is obtained. These line segments are then ordered such that the last point of a
segment matches the first point of the next, until a closed polyline is obtained.

For now, suppose that only three adjacent vertices, a, b, and c, are found (a
more general case will be addressed later). Then, the obtained polyline is converted
into a new face (by a duplicate vertex removal and assurance of CCW ordering).
vapex is removed from the polyhedron and the new face is appended to it to cap
the produced hole, and by doing so, a properly defined polyhedron is obtained
after the vapex removal. The polyhedron volume loss is equal to the tetrahedron
defined by vapex, a, b, and c, which volume is computed with Equation (3.6) (see
Figure 3.3). This procedure is repeated until no vertices remain. The aggrega-
tion of the volumes of the obtained tetrahedra yields the volume of the original
polyhedron.

The general case can be solved with little modifications to the previously de-
tailed base case if some restrictions are imposed. First, the polyhedron that is
going to be tessellated must be convex, i.e., a line connecting any two (noncopla-
nar) points on its surface always lies in the interior of the polyhedron. And second,
after a vertex removal (during the tessellation process) the resulting polyhedron
must remain convex. It is useful to define a convex polyhedron as the set of
solutions x ∈ R3 to a finite system of linear inequalities

Mx ≤ b,

where M ∈ Rk×3 and b ∈ Rk. As for the CT problem, a LoR (a pyramid) and
a voxel (a cube) are convex polyhedra, let Mvoxel, bvoxel, MLoR, and bLoR define a
voxel and a LoR respectively. Its polyhedron intersection is the set of solutions x

32 Chapter 3. The CT image reconstruction as a linear system

(a) (b) (c)

(d) (e) (f)

Figure 3.4: Illustration of the tessellation procedure. For simplicity, a cube has
been used in this illustration (a). First, a vertex vapex (green vertex in the illustra-
tion) is selected (b). Also, its adjacent vertices are found (c). Its adjacent vertices
are then stored in CCW ordering and an edge is defined between two consecutive
vertices (d). This leads to two separated polyhedra (e) a tetrahedron and the
rest of the cube (a gap has been place between them for clarity). The volume of
the tetrahedron is computed (as shown in Figure 3.3) and vapex is deleted from
the cube (f). The removal of the tetrahedron produces a hole in the remaining
polyhedron, so an additional face consisting of the vapex adjacent vertices is added
to cap the hole. The process is repeated until no vertices remain.

3.1. Modeling the CT 33

to the system [
MLoR

Mvoxel

]
x ≤

[
bLoR
bvoxel

]
,

and, therefore, the first condition always holds.
The adjacent vertices of the selected vapex during the tessellation must be copla-

nar, in order to guarantee the second condition. This can be seen as an imposition
in the vapex removal to reduce it to the case previously detailed, where the poly-
hedron was clipped by one of the LoR planes. In fact, if the polyhedron under
tessellation is defined by Mpoly and bpoly, and the clipping plane is defined by Mclip

and bclip, the clipped polyhedron will be the set of solutions x to the system[
Mpoly

Mclip

]
x ≤

[
bpoly
bclip

]
,

and, therefore, provided that the adjacent vertices of the selected vapex are copla-
nar, the second condition will hold.

The implementation of the criteria to choose the vapex vertex is derived from the
second condition. The vertex with the minimum adjacent vertices will be checked
to be vapex. Hopefully, it will have three adjacent vertices. If not, its adjacent
vertices will be coplanar. If not, next vertex with less adjacent vertices is checked
to be vapex. If no vertex is a valid candidate, the code stops. We have been unable
to find a case in which no vertex was eligible to be vapex. However, we also have
been unable to provide a general proof which assures the existence of an eligible
vertex in each phase of the tessellation.

The last case remaining is when vapex has more than three adjacent vertices
that are coplanar. The capping stage needs no modifications since adjacent vertices
are coplanar, the polyline construction and the face conversion are independent of
the number of line segments involved. However, the polyhedron formed with the
adjacent vertices is not a tetrahedron. This can be reduced to the base case due to
the CCW ordering of the face formed by the vertices adjacent to vapex splitting the
clipped volume into various tetrahedra. Namely, let v0, v1, v2, v3, . . ., vn−2, vn−1
be the n adjacent vertices of an eligible vapex. Then, the clipped volume of the
polyhedron under tessellation can be computed with the repeated application of the
Equation (3.6), naming {a, b, c} consecutively the vertices {v0, v1, v2}, {v0, v2, v3},
and so on. Generally, if V (i, j, k) equals Equation (3.6) being a = vi, b = vj,
c = vk, then the total volume is

n−2∑
i=1

V (0, i, i+ 1).

In Figure 3.5 the bases of the obtained tetrahedra are shaded in different textures
for clarification.

34 Chapter 3. The CT image reconstruction as a linear system

b

b

b

b

b

b

v0

v1

v2

v3

vn−2

vn−1

Figure 3.5: Bases of the different tetrahedra (in different textures) formed
with vapex (not present in the figure) and vertices {v0, v1, v2}, {v0, v2, v3}, . . .,
{v0, vn−2, vn−1}. Face edges are represented with a thin black line joining the
vertices.

It should be noted that the enumeration of these tetrahedra can be performed
blindly, following the CCW order, because of the face formed by the adjacent ver-
tices to an eligible vapex is convex, i.e., a line connecting any two points on its
edges always lies in the interior of the face. This is due to the fact that this face is
also defined by the clipping of the (convex) polyhedron under tessellation with a
given plane. Volume overestimation could occur otherwise (see Figure 3.6). How-
ever, imposed restrictions (a convex polyhedron and coplanar adjacent vertices)
guarantee the construction of a convex face.

This closes the definition of a procedure to compute the exact volume of the
intersection of a LoR and a voxel that only requires the LoR and a voxel polyhedra
with their faces stored in CCW order. Polyhedra which can be trivially defined
when coming from a regular grid as the voxellation of the space occupied by the
object under a CT scan, or the matrix of detector elements that form a CT flat
panel. However, this algorithm allows more complicated voxellations that could be
of some advantage, being the only problem for the exact volume computation, the
definition of the voxel and LoR polyhedra with their faces stored in CCW order.

3.2. Properties of the CT linear system 35

b

b

b

v0

v1

v2

v3

vn−2

vn−1

b

b

b

Figure 3.6: Illustration of volume overestimation if adjacent vertices form a non-
convex face. Red texture represent the base of a tetrahedron formed with vapex
(not present in the figure), that will be accounted twice for the total volume while
it lies outside of the face. Face edges are represented with a thin black line joining
the vertices.

3.2 Properties of the CT linear system

In §3.1, all the necessary tools to obtain the System (3.5)

Aµ = b

that solves the CT reconstruction problem have been detailed, where the space
occupied by the object under scan is voxellated in n regions, d detector elements are
considered in the detector flat panel, P views of the object are taken, A ∈ R(dP)×n,
µ ∈ Rn, and b ∈ RdP . It is useful to summarize several properties of A in order to
specify the linear system to solve.

The most general definition of A is that in each element aij ∈ A is quantified
the contribution of the voxel j to the attenuation measured in a detector element
dk during a projection Pv, such that dkPv = i. It is easily seen that not all of the n
voxels will contribute to the measured attenuation. A is then a sparse matrix. We
can roughly estimate the sparsity of A by picturing how many voxels contribute to
a single LoR. Suppose the length of an edge of a voxel and an edge of a detector
element are approximately the same. Then, if the voxellation is performed as
a regular cubic grid (n1/3 · n1/3 · n1/3 = n), we can assume that each LoR will
transverse O(n1/3) out of n voxels.

36 Chapter 3. The CT image reconstruction as a linear system

Intuitively, as long as sufficient projections are taken, there will be enough
information to uniquely solve the µ distribution of the object. Often, sufficient
projections imply (dP) > n (see [7]) and System (3.5) becomes overdetermined.
Moreover, we seek to to uniquely solve µ, so we want to define a set of projections
that does not produce mainly linearly dependent rows in A. In other words, by
enough information we are referring to A having full rank.

Considering the same voxellation of the scanned object, there are different
choices of d and P that produce a sparse matrix A which has full rank. However,
the election of d and P affects to κ2(A), and therefore, it has an effect on the
solution of the overdetermined system. Suppose we have a flat panel consisting of
d detector elements of a given size. We could model a flat panel with a different
number of detector elements by performing a rebinning process in the measurement
(in order to ease the computational cost, for example) and obtain a modeled flat
panel with d/4 detector elements of an edge size twice the original. Similarly, we
can ask the CT system for obtaining certain number of views.

We modeled the Albira µCT system [42] with different d and P for the same
voxellation of the scanned object (1.28 mm cubic grid), and computed the condition
number of the resulting A, in order to estimate how the election of these parameters
influence the solution. Figure 3.7 shows κ2(A) for different configurations. In
Figure 3.7 (a) is reflected that increasing the number of projections from 100 to
400 with detectors of 0.8 mm produces a condition number comparable to that
obtained with the reduction of the detector size from 0.8 mm to 0.4 mm with 100
projections. Increasing the number of projections and decreasing the detector size
produce a growth on the number of equations of the model. As the number of
equations grows the condition number tends to stabilize. Although, the condition
number is reduced by the number of projections and the detector size, it decreases
faster to its limit as the detector size is reduced. Similar results were obtained
with voxel edges from 2.13 mm to 0.91 mm and varying d and P proportionally.
These results have been published in the journal IEEE Transactions on Nuclear
Science [43].

3.2. Properties of the CT linear system 37

C
o

n
d

it
io

n
 N

u
m

b
er

 (
2
)

0

20

40

60

80

100

120

140

Number of projections

100 150 200 250 300 350 400

 0.8 mm

 0.4 mm

(a)

C
o
n
d
it

io
n
 N

u
m

b
er

 (
2
)

20

40

60

80

100

120

Size of modelled detectors

0.8 mm 0.64 mm 0.53 mm 0.46 mm 0.4 mm

100

200

300

(b)

Figure 3.7: Variation of the condition number of the system matrix as a function
of the number of projections (a) and the modeled size of detector elements (b).
System models have been configured with voxels of 1.28 mm, modeled detectors
of 0.8 mm and 0.4 mm, and 100, 200 and 300 projections.

38 Chapter 3. The CT image reconstruction as a linear system

3.3 Exploiting symmetries

Finding symmetries in the contribution of the voxels to the measured attenuations
could reduce the computational burden of the reconstruction process. It could
lead to the computation of a small matrix, which properly rotated or reordered,
would express the entire A, avoiding allocation space and repeated calculations.

However, the reduction of A to a triangular form will break some symmetries,
because of the transformations applied. An advantageous symmetry would be one
such that a transformation in one symmetry would be reflected into the rest, taking
the entire A one step closer to the triangular form.

Suppose that only one half of the flat panel (along the axial coordinate) is con-
sidered. In Figure 3.8 is depicted the considered x-ray field of various projections.
Intuitively, it is quickly seen that only half of the scanned object will be recon-
structed. Nevertheless, (in a scatter free situation) it brings the attention to the
fact that no voxel of the other half of the object has contributed to the measured
attenuation in any projection. In other words, the same columns (half of the total)
contain zeros in the half of the matrix rows, regardless of the projection. This can
be expressed as

PA =

(
A1 0
0 A2

)
,

were A1 and A2 are two matrices with half the rows and columns of A, and P is
a permutation matrix. Also, this implies that System (3.5) is composed of two
independent linear systems

A1µ1 = b1

A2µ2 = b2,

where

µ′ =

[
µ1

µ2

]
b′ =

[
b1
b2

]
are µ and b after applying some reordering.

In addition, A2 is equal to A1 under some permutation, due to the axial sym-
metry of the CT geometry. In Figure 3.9 is shown the exact row correspondence
of the flat panel illustrated in Figure 3.8. Of course, the permutation depends on
the flat panel logical ordering, but to clarify the symmetry, let be i0, i2, . . . , i9 a
detector row. Then, A1µ1 = b1, where A1 and b1 contain only white detector rows
and the white measurements of the detector elements in a proper order respec-
tively, and µ1 is a half of the object. Moreover, A1µ2 = b2, if b2 contains only the
green measurements of the detector elements in a reverse detector row order, and
µ2 is the other half of the object with its slices reversed.

The symmetry exploit allows to solve the entire system by the reduction to
triangular form of a half rows, half columns matrix. The additional cost is the

3.3. Exploiting symmetries 39

Figure 3.8: Illustration of one half of the x-ray field (in green) emerging form the
source, going through the object, and arriving to the flat panel. Four superimposed
projections are shown. This figure shows that there is no LoR arriving to the lower
part of the flat panel that transverses the upper part of the object.

resolution of the same system for two right hand sides (applying a reordering to
b2), but it is much lower than the cost of the reduction to triangular form of a
matrix four times larger.

Other matrix symmetries [44] are detailed in the literature, based on the rota-
tion of a submatrix to compute the entireA. However, to the best of our knowledge,
this is the first work that describes a symmetry that expresses A as a block matrix
and therefore, allows methods like QR-decomposition to take advantage of it.

40 Chapter 3. The CT image reconstruction as a linear system

i0 i1 i2 i3 i4 i5 i6 i7 i8 i9

i10 i11 i12 i13 i14 i15 i16 i17 i18 i19

i20 i21 i22 i23 i24 i25 i26 i27 i28 i29

i30 i31 i32 i33 i34 i35 i36 i37 i38 i39

i40 i41 i42 i43 i44 i45 i46 i47 i48 i49

i40 i41 i42 i43 i44 i45 i46 i47 i48 i49

i30 i31 i32 i33 i34 i35 i36 i37 i38 i39

i20 i21 i22 i23 i24 i25 i26 i27 i28 i29

i10 i11 i12 i13 i14 i15 i16 i17 i18 i19

i0 i1 i2 i3 i4 i5 i6 i7 i8 i9

Figure 3.9: Row correspondence of the flat panel illustrated in Figure 3.8.

Chapter 4

Implementation of data structures

The amount of space needed to store a sparse matrix in full-length arrays is often
prohibitive. Therefore, it is required a compact representation for sparse matrices.
The aim of this chapter is to define a suitable data structure for holding sparse
matrices. There is no one best data structure; the suitability of a data structure
is highly related to the operations to be performed on the matrices.

Matrix operations needed in the QR decomposition are element wise (access,
deletion and insertion), due to zeroing positions and fill-in during the matrix re-
duction to triangular form. The storage scheme must meet a space complexity of
O(n0), where n0 is the number of non-zero values in the sparse matrix. It would
be desirable to have at most O(log n) time complexity for element access, inser-
tion and deletion, where n is the average number of non-zero values in the sparse
matrix rows.

4.1 Sparse matrix data structures

There are commonly used schemes for storing sparse matrices that meet the re-
quirements for some of the operations and are simple to implement. The simplest
scheme for storing a sparse matrix A is the coordinate list (COO) [29]. It consists
in an unordered set of elements {aij, i, j}, ∀ai,j 6= 0 ∈ A, where aij is the value of
A in row i and column j.

This is commonly done by maintaining three arrays, one for aij values (VAL),
one for i values (IRN) and one for j values (JCN). Given a subscript e, VALe,
IRNe and JCNe contain its respective information of a non-zero element of A (see
figures 4.1a and 4.1b). The complexity analysis for our required operations is
O(n0) for access, O(1) for insertion, O(n0) for deletion and O(n0) of required
space. As the easiest scheme to implement, it has the drawback of searching over
all the non-zero elements of the matrix.

41

42 Chapter 4. Implementation of data structures

A refinement of the COO scheme is the compressed sparse row (CSR) [29].
This format is probably the most popular for storing general sparse matrices. It
is equivalent to the COO but the row information is not stored explicitly; called
compressed sparse column (CSC) [29] if the column information is not stored
explicitly.

This is commonly done by maintaining three arrays, one for aij values (VAL),
one for j values (JCN) and one for the subscript of VAL and JCN in which the i-th
row starts (IRS). This requires that the information of non-zero elements in VAL
and JCN were ordered by rows consecutively in ascending order (see figures 4.1a,
4.1c and 4.1d). The complexity analysis for our required operations is O(n) for
access, O(n0) for insertion, O(n0) for deletion and O(n0) of required space. As a
refinement of COO, the ordering of the elements by rows (or columns), eases the
access cost but it has the drawback of inserting and deleting elements.

There are other commonly used schemes for storing sparse matrices that can
be found in [45, 30, 46] along with a more detailed explanation of COO, CSR and
CSC. In the following section we present and define an easy to implement scheme
that meet the requirements proposed: O(log n) for element wise access, insertion,
and deletion operations and a space complexity of O(n0).

4.1. Sparse matrix data structures 43

A =


0 3 0 0
4 1 0 0
0 5 9 2
6 0 0 5


(a) Example of a sparse matrix.

subscript 0 1 2 3 4 5 6 7
IRN 0 1 1 2 2 2 3 3
JCN 1 0 1 1 2 3 0 3
VAL 3 4 1 5 9 2 6 5

(b) Sparse matrix A expressed in COO
scheme. Elements have been inserted in
the array, from left to right, top to bot-
tom, but there is no need of a particular
order.

subscript 0 1 2 3 4 5 6 7
IRS 0 1 3 6
JCN 1 0 1 1 2 3 0 3
VAL 3 4 1 5 9 2 6 5

(c) Sparse matrix A expressed in CSR
scheme. Row elements have been in-
serted in the array, from left to right,
but there is no need of a particular or-
der inside a row.

subscript 0 1 2 3 4 5 6 7
JCS 0 2 5 6
IRN 1 3 0 1 2 2 2 3
VAL 4 6 3 1 5 9 2 5

(d) Sparse matrix A expressed in CSC
scheme. Column elements have been in-
serted in the array, from top to bottom,
but there is no need of a particular order
inside a column.

Figure 4.1: Representation of the sparse matrix A (a) in the COO (b), CSR (c)
and CSC (d) schemes.

44 Chapter 4. Implementation of data structures

4.2 Binary search tree

A binary tree is a data structure recursively defined as either being empty or
consisting of a node called the root, together with two binary trees called the left
and right subtrees, respectively.

A binary search tree (BST) [47] labels each node in a binary tree with a single
key such that keys in the left subtree are smaller than the key in the root node
and keys in the right subtree are greater than the key in the root node. The left
and right subtrees of a BST are also BSTs.

A BST node is a data structure consisting of a key, a value and two node
references called left and right, respectively (see Code 4.1). A BST node may have
none, one or two children, depending on none, one or both of its left and right
references are pointing to another node. A node that has no children is called a
leaf node.

struct node{
unsigned int key;
<T> value;
node *left;
node *right;

};

Code 4.1: C++ definition of a BST node, where <T> is the type of the value
stored. Negative key values are not allowed, since node keys will map sparse array
indexes.

An example of BST is illustrated in figure 4.2. The level of a node is calculated
as the number of node references that have been followed to reach it from the root.
Therefore, the root node always has level zero, its children have level one and so
on.

The height of a BST is calculated as the maximum level of the tree nodes. A
BST with n nodes may have height between a maximum of n and a minimum of
log n, depending on the BST structure. For example, if all nodes (except the leaf)
have only one child, the BST will have height n and if all nodes have two children,
the BST will have height log n. In a balanced BST the levels of all leafs have a
maximum difference of 1. Otherwise, the BST is called unbalanced. A balanced
BST with n nodes has a height of log n. This property is desirable since BST
operations cost depends on tree height.

Three basic operations must be implemented for storing and retrieving data in
a BST: search, insert and delete a BST node (see Code 4.2).

When searching for a specific key ksearch in a BST, the root node (which has a
key kroot) is visited. If ksearch < kroot, then left node is visited next, if ksearch > kroot,
then right node is visited next, if ksearch = kroot, then the search ends successfully

4.2. Binary search tree 45

2

4

5

10

Node, root

Root left subtree

Root right subtree

Leafs

Node 4 at tree level 0

Nodes 2 and 5 at tree level 1

Node 10 at tree level 2, tree height 2

Figure 4.2: Example of a BST with four nodes, two leafs, two levels and therefore
height two. The root node, its left and right subtrees and the two leaf nodes are
indicated.

class BSTree{
node *root;
<T> search_tree(unsigned int _key);
void insert_node(unsigned int _key, <T> _value);
void delete_node(unsigned int _key);

};

Code 4.2: C++ definition of a BST, where <T> is the type of the value stored.
Three basic operations are needed to store data: search, insert and delete.

and the value of this node is returned. This process is repeated for visiting the
next node until the search is successful or there is no remaining node. In the last
case, the search is unsuccessful and there is no node with key ksearch in the BST.
Code 4.3 is an implementation of this procedure. As we will use BSTs to store
non-zero values of sparse data, unsuccessful search return a zero value. Search
algorithm runs in O(h) time, where h denotes the height of the tree.

For example, suppose v denotes a sparse vector and T denotes an empty BST.
v will be stored in T if ∀vi 6= 0 ∈ v a node is inserted in T with key i and value
vi. A search for a node with key i is performed in T in order to retrieve the i-th
element vi. If the search is successful, the node value is returned. Zero is returned
otherwise.

A search procedure for kinsert is performed to insert a node with key kinsert and
value vinsert in a BST. A reference to the last visited node nlast during the search
must be stored. If the search is successful, the node already exists and its value is
updated to vinsert (duplicate keys are not allowed since a key represent a non-zero
element index in sparse data). Otherwise, a new node is placed on nlast left or
right, depending on kinsert < klast or kinsert > klast, respectively. Where klast is
the key of nlast. Code 4.4 is an implementation of this procedure. Creating a new
node and linking it into the tree is a constant-time operation after the search has

46 Chapter 4. Implementation of data structures

<T> BSTree::search_tree(unsigned int _key){
node *target = root;
while(target != NULL){

if(_key < target->key){
target = target->left;

}else if(_key > target->_key){
target = target->right;

}else {
return target->value;

}
}
// key is not found,
// the element must be zero.
return 0;

}

Code 4.3: C++ definition of a node search in a BST, where <T> is the type of
the value stored. This is an iterative version of a BST search. The search ends
when the reference to the next node is NULL.

been performed in O(h) time.

Suppose v denotes a sparse vector, T denotes a BST and v is stored in T .
When the value of vi changes from voldi to vnewi 6= 0, an insertion of a node with
key i and value vnewi in T is performed. If voldi 6= 0, a node already exists in the
BST and its value is updated to vnewi . Otherwise, a new node will be created at
the end of the search path. An insertion of vnewi = 0 is considered a deletion.

When deleting a node n with key kdelete from a BST, three cases arise: n has
no children, one child or two children. As with the insertion, deletion starts with
a search for n, and a reference to the last visited node nlast must be stored during
the search. Once n is located, the first two cases are straightforward. If n has no
children, the reference in nlast of n must be cleared, and n must be deleted. If n has
one child, the reference in nlast of n must be updated to point to n’s child, and n
must be deleted. Otherwise, n has two children, then it has left and right subtrees.
Let c denote the leftmost node in n right subtree and kc denote its key. For the
labeling properties of BSTs, kdelete < kc as c is in n right subtree and kc is the
smallest key in the n right subtree as c is its leftmost node. These two conditions
allow to swap n and c key and value (not subtree references) without violating the
properties of the BST. Therefore, in the case that n has two children, c is found, the
key and value of n and c are swapped, and c is deleted. As c is the leftmost node in
n right subtree, it is only possible that it has none or one (right) child, as otherwise
its left child would be the leftmost node in the subtree. Code 4.5 and Figure 4.3
are an implementation and an illustration of this procedure, respectively. Deleting
a node, updating its parent references or swapping the key and the value of two

4.2. Binary search tree 47

void BSTree::insert_node(unsigned int _key, <T> _value){
// search the tree
node** p = &root;
while((*p) != NULL){

if(_key < (*p)->key){
p = &((*p)->left);

} else if(_key > (*p)->key){
p = &((*p)->right);

} else {
(*p)->value = _value;
return;

}
}
// node not found,
// (*p) is a good place to store the new node
(*p) = new_node();
if((*p) != NULL){
(*p)->key = _key;
(*p)->value = _value;
return;

}
}

Code 4.4: C++ definition of a method for a node insertion in a BST, where
new node() returns a reference to a new node and <T> is the type of the value
stored. This is an iterative version of a BST insertion.

48 Chapter 4. Implementation of data structures

3

1

8

9

106

(a)

3

1 106

9

8

(b)

3

1 6

9

8

31

6 9

8

1

6 9

8
Node to be deleted

Right subtree left most node

Value swap

3

Node deletion:
one child case7 7 7

(c)

Figure 4.3: The three cases of BST node deletion: deletion of a BST node with no
children (a), deletion of a BST node with one child (b), deletion of a BST node
with two children (c).

nodes are constant-time operations after the search has been performed in O(h)
time.

Suppose v denotes a sparse vector, T denotes a BST and v is stored in T .
When the value of vi changes from voldi to vnewi = 0, a deletion of a node with key
i in T is performed. If voldi = 0, the node does not exist in the BST and does not
need to be deleted. Otherwise, a deletion of the node with key i is performed.

4.2.1 Balanced Binary search tree

The operations search, insert and delete a node, can end up with an unbalanced
BST. These operations (as implemented in Codes 4.3, 4.4 and 4.5) only assure
that the BST properties hold, regardless of the tree height. A more sophisticated
implementations of self balanced tree data structures, such as AVL (named after
Georgy Adelson-Velsky and E. M. Landis) or red-black trees are available. These
implementations guarantee that the height of the tree always will be O(log n)
but they are more complex and the height of the tree is maintained incrementally
during each operation. In the framework of sparse array data storing, we know the
operations used by the algorithm that are going to be applied to the matrix (for
example, a Givens rotation of two rows). Then, an estimation of how much these

4.2. Binary search tree 49

void BSTree::delete_node(unsigned int _key){
// search the tree
node** p = &root;
bool found = false;

while(((*p) != NULL) && (!found)){

if(_key < (*p)->key){
p = &((*p)->left);

} else if(_key > (*p)->key){
p = &((*p)->right);

} else {
found = true;

}
}

if(found){
node* n = (*p);

// no children
if((n->left == NULL) && (n->right == NULL)){

(*p) = NULL;
delete n;

// left child only
} else if((n->left != NULL) && (n->right == NULL)){

(*p) = (*p)->left;
delete n;

// right child only
} else if((n->left == NULL) && (n->right != NULL)){

(*p) = (*p)->right;
delete n;

// both
} else {

// search for the left-most node of the right subtree
// * all the right subtree keys are greater than n key
// * all the right subtree keys are greater than
// the left-most key of the right subtree
node** aux = &(n->right);
while((*aux)->left != 0){

aux = &((*aux)->left);
}

// copy left-most node
n->key = (*aux)->key;
n->value = (*aux)->value;

// old left-most node has to be deleted
n = (*aux);

// replace (if any) left-most node by its child
(*aux) = n->right;

delete n;
}

}

// not found, nothing to do
return;

}

Code 4.5: C++ definition of an iterative version of a node deletion in a BST. The
deletion procedure has three cases depending on the number of children of the
node that has to be deleted.

50 Chapter 4. Implementation of data structures

operations unbalance the BST together with an algorithm to balance the BST
would lead to an efficient and simple code. Moreover, the cost of the balance can
be amortized over many operations. In 1986 was published [48] the Day–Stout–
Warren (DSW) algorithm to balance a basic BST. This algorithm was designed
by Q. Stout and B. Warren, based on work done by C. Day and is optimal, both
in space (performed in-place with O(1) additional space) and time (runs in O(n)).
As the DSW algorithm is well known, and no modifications are needed to fit our
implementation of BST, it will be not detailed here, but is explained in detail
in [49].

The estimation of how much the BST is unbalanced, from the BST point of
view, can be obtained with two additional attributes in the tree: unsigned int
tree height and unsigned int tree nodes.

• tree nodes is constructed with a value of zero, this value is incremented
each time new node() is called in Code 4.4 and is decremented each time
delete is called in Code 4.5.

• tree height is constructed with a value of zero and this value is updated in
reference to a local variable unsigned int search depth in each search
procedure performed in the insertion and deletion. search depth is initial-
ized to zero at the beginning of a search and incremented when the search
reaches the next level of the BST. If search depth > tree height,
tree height is updated to the value of search depth. When a DSW
balancing is applied, tree height is reset to the value of log2 tree nodes.

This is an approximation, as it is never assured that a particular search path
would be the longest, but it stores the worst search performed on the BST be-
tween balances. While tree height ≈ log tree nodes, it can be assumed
that the BST is balanced. As tree height tends to the value of tree nodes,
we get proof that the BST is unbalanced. The tolerances and limits of the above
conditions have to be considered regarding each use case of the BST, but when
tree height = tree nodes holds, next search procedure (present in the three
basic operations) will run in O(n) and a DSW balance (which have the same cost)
will speed up next basic operations.

4.3 Implementation of the BST sparse matrix

Using the definitions of the previous section, in which a BST and its operations
are defined for effectively manage a sparse array, the implementation of a sparse
matrix structure based on BST is now straightforward. As a matrix is an array of
arrays of the same length, a sparse matrix structure can be implemented as a list of

4.3. Implementation of the BST sparse matrix 51

b

b

b

0

1

M-1

3

1 6

8

2

4

5

108

9

10

(a)

b b b

b b b

b b b

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

b
b
b

0 1 2 3 4 5 6 7 8 9 10

0

1

M-1

(b)

Figure 4.4: Example of storage of a sparse matrix (b) in a list of balanced BSTs (a).
Each element of the array stores a reference to a tree that stores non-zero elements
of a row. The elements are sorted in the tree by their column index.

(balanced) BSTs. Each element of the list represents a matrix row, and non-zero
elements of a row are values of a balanced tree, sorted by its column index (see
figure 4.4).

Using this storage format, matrix element access, modification, deletion and
insertion run in O(h) time, where h denotes the height of the tree in which element
is stored. If the tree is balanced, then h = log n, where n is the number of non-zero
elements in a row (a BST must remain balanced in order to maintain operations
at this cost). The space required to store the whole matrix is O(n+M), where n
is the number of non-zero elements and M is the number of rows of the matrix.
Code 4.6 is an implementation of a list of BSTs to store a matrix.

An element aij can be accessed (through the get() method, see Code 4.7) by
a search for j in the tree referenced by the i-th position of the array. If the search
is successful, the node value is obtained. If j is not found, the element must be
zero.

For the insertion (modification or deletion, through the set() method, see
Code 4.8) of an element aij in this format, first, the position i of the array is
accessed in order to obtain a tree reference. Then, an insertion with key j is
performed in the obtained tree. If the key is found during the insertion, the
value of the node is updated. If it is no found, a new node is created. We will
suppose that an insertion of aij = 0 is actually a deletion. For the deletion of
an element (i, j), a tree reference is obtained from the i-th position of the array.
Then, a search for j is performed in the obtained tree. If the search is successful,
the node is deleted. If j is not found, the deletion is not necessary.

52 Chapter 4. Implementation of data structures

class BSTMatrix{
BSTree *row_bst;
unsigned int rows;
unsigned int columns;

BSTMatrix(unsigned int _rows, unsigned int _columns);
˜BSTMatrix();
<T> get(unsigned int i, unsigned int j);
void set(unsigned int i, unsigned int j, <T> value);

};

BSTMatrix::BSTMatrix(unsigned int _rows, unsigned int _columns){
rows = _rows;
columns = _columns;
row_bst = new BSTree[rows];
return;

}

BSTMatrix::˜BSTMatrix(){
rows = 0;
columns = 0;
delete[] row_bst;
return;

}

Code 4.6: C++ definition of a list of BSTs to store a matrix. Attributes rows
and columns are considered for further use (as matrix bounds checking). get()
and set() methods are needed to read and write in the matrix.

<T> BSTMatrix::get(unsigned int i, unsigned int j){
return row_bst[i].search_tree(j);

}

Code 4.7: C++ definition of the get() method used to read elements from the
matrix. The implementation of this method relies on the tree search method
and assumes that zero will be returned if the element does not exist in the tree.

4.3. Implementation of the BST sparse matrix 53

void BSTMatrix::set(unsigned int i, unsigned int j, <T> value){
if(value != 0){
// insertion
row_bst[i].insert_node(j, value);

} else {
// deletion
row_bst[i].delete_node(j);

}
return;

}

Code 4.8: C++ definition of the set() method used to write elements on the ma-
trix. The implementation of this method relies on the tree insert and delete
methods. A value 6= 0 is considered an insertion or modification and otherwise
a deletion.

4.3.1 Performance improvements

The methods get(i, *) and set(i, *, *) run in O(log n) time, where n is
the number of non-zero elements of the i-th row, as the location of the i-th BST
runs in constant time. In general, best performance will be achieved if, in average,
there are less non-zero elements in a row than in a column and the rows of the
matrix are stored in the BSTs (or vice versa).

The BST based sparse matrix can be modified to improve run time or space. As
usual, improvement in run time will compromise space and improvement in space
will compromise run time. The choice between space and run time improvement
relies on the problem to solve, for example, the QR decomposition of a large sparse
matrix requires a large number of rotations that will require an even larger number
of matrix element access, although there may be no space available to store a dense
list of references for each row.

Suppose that there are less non-zero elements in a row than in a column and
for all rows, their non-zero elements can be divided in k sets of approximately the
same size. Further run time improvement can be achieved if the columns of the
matrix are divided in k sets. If k = 2, A ∈ RM×N is the matrix that is going to be
stored and for all rows, the number of non-zero elements in the first N

k
columns

are approximately the same as the number of non-zero elements in the last N
k

columns, then two arrays (s and t), of M BST references each, can be used and
non-zero elements with column indexes j < N

k
are stored (and searched) in trees

referenced by s and non-zero elements with column indexes j ≥ N
k

are stored (and
searched) in trees referenced by t. The corresponding tree for a matrix element is
still found in constant time and its search runs, in average, in O(log n

k
) time. But

this approach uses kM additional space and the division in k sets of approximately
the same number of non-zero elements for all rows is a condition that many sparse

54 Chapter 4. Implementation of data structures

matrices do not hold (for example, a band matrix).
Considering large sparse matrices in which not all rows contain non-zero values,

using an array of M BST references may be a waste of space, as a sparse array will
be stored in a dense structure. Applying the same principle as in §4.2, the array
containing the BST references may be stored in a BST Tr. get(i, *) method
must assume now that if there is no node with key i in Tr, returned value must be
zero. set(i, *, *) method must assume that the insertion of the first element
of the i-th row implies the creation of a node with key i in Tr and the deletion of
the last element of the i-th row implies the deletion of the the node with key i in
Tr. With this approach, the methods get(i, *) and set(i, *, *) run in
O(logm+ log n) time, where n is the number of non-zero elements of the i-th row
and m is the number of rows that contain at least one non-zero element.

Finally, the interface of this data structure allows an extension in order to
extract a whole row, which may be useful for some problems. Assuming enough
space is provided to this new method to store all non-zero elements of a row,
once located its corresponding BST, the well known in-order traversal algorithm
(see [47]) will fill the provided space with the non-zero elements of the row (sorted
by their column index) in O(n) time, where n is the number of non-zero elements
of the row. The same does not apply in order to extract a whole column, in which
case for each row, a certain column index must be searched in its corresponding
BST, running in O(Mn) time, where M is the number of rows and n is the average
number of non-zeros in a row.

Summarizing, a sparse matrix data structure based on BSTs has been defined,
and will be used to store and work with sparse matrices during the rest of this thesis
as a black box. This data structure is easy to implement and offers the methods
get() and set() for data manipulation. In one hand, the space required to store
the whole matrix is O(n0 +M), where n0 is the number of non-zero elements and
M is the number of rows of the matrix, which is comparable to traditional sparse
matrix data structures like CSC. On the other hand, the methods get(i, *) and
set(i, *, *) run in O(log n) time, where n is the number of non-zero elements
of the i-th row, which is an order of magnitude lower than element access run
time of traditional sparse matrix data structures like CSC (O(n)). Furthermore,
space and time complexities can be adjusted to meet the requirements of certain
problems, for example, run time improvement ofO(log n

k
) with a space requirement

of O(n0 + kM) or space improvement of O(n0) with a run time drawback of
O(logm + log n) time, where m is the number of rows that contain at least one
non-zero element.

Chapter 5

Implementation of the QR
algorithm

In §3.1, we proposed the problem of CT reconstruction, through an overdetermined
linear system. Consider the linear system Ax = b, where A ∈ RM×N , x ∈ RN ,
b ∈ RM and M > N . And suppose that

A =

(
R11

A21

)
;

(
R11

A21

)
x =

(
b1
b2

)
where R11 is upper triangular and nonsingular, so we can obtain an x applying
backward substitution to R11x = b1. However, an overdetermined system may have
no solution. This x will only be solution of the overall system if A21(R

−1
11 b1) = b2,

that is, x solves the rest of the system. Otherwise, we need to find an x that fits in
the linear system and makes Ax− b small enough to approve x as a solution. This
problem is studied in detail in [27, 28, 29] among others, and during this chapter
we are going to collect the required tools to solve it and propose an efficient
implementation to compute our solution. Although the QR factorization has been
widely used to solve least squares problems, to the best of our knowledge, this is
the first work that uses the QR factorization for image reconstruction in CT.

5.1 The QR algorithm

The QR factorization of a matrix A ∈ RM×N is given by

A = QR (5.1)

where R ∈ RM×N is upper triangular with positive main-diagonal entries and
Q ∈ RM×M is orthogonal, which means that QQT = I, so Q has an inverse, and

55

56 Chapter 5. Implementation of the QR algorithm

Q−1 = QT (proof for uniqueness of Q and R can be found in [28]). The general idea
for solving a linear system Ax = b is to perform the factorization 5.1, exploiting the
easy calculation of Q−1 = QT and applying the backward substitution algorithm
(see §2.1.1) in the equivalent system 5.2d to obtain x.

Ax = b (5.2a)

QRx = b (5.2b)

QTQRx = QT b (5.2c)

Rx = QT b (5.2d)

In §3.1 we obtained an overdetermined linear system Ax = b, where A ∈ RM×N ,
b ∈ RM , x ∈ RN and M > N , which solution x will be the reconstructed image
from a CT measurement. As usual, this overdetermined system has no exact
solution, so we need to minimize ||Ax− b||p for some p. The solution of the least
squares (LS) problem (for p = 2)

min
x∈RN

‖Ax− b‖2 (5.3)

can be obtained via the equivalent problem as in 5.2

min
x∈RN

‖Rx− (QT b)‖2 (5.4)

because the 2-norm is preserved under orthogonal transformations. Also, there is
an unique LS solution for 5.4 (proof for uniqueness can be found in [27]) and it is
the solution we are looking for.

5.2 Rotations and reflections

Only orthogonal transformations are allowed to perform the QR decomposition.
Since those transformations will be applied to a large sparse matrix, the chosen
transformation must preserve the sparsity of the matrix as much as possible and
lead to intermediate results during the QR decomposition that can be held in
memory. In this section we are going to introduce the Householder and Givens
transformations considering these factors.

5.2.1 Householder reflections

A reflection, Householder transformation or Householder reflection [50] H = I −
γuuT is a linear transformation that reflects a vector through a hyperplane P ,
where I is the identity matrix, u is a non-zero vector orthogonal to P and γ = 2

‖u‖22

5.2. Rotations and reflections 57

(see Davis [27], §5). It can be used to create zeros in the first column of a matrix
A ∈ RM×N , M > N .

H


a11
a21
...
an1

 =


−τ
0
...
0



H1A =


−τ1 â12 . . . â1n

0
... Â1

0


Leaving the first row and the first column unchanged, a second reflection can be
computed to create zeros in the second column of A,

H2 =

(
1 0

0 I − γ2u(2)u(2)T
)

H2Â1 =


−τ2 â23 . . . â2n

0
... Â2

0


and in general in the j-th column of A with

Hj =

(
Ij−1 0

0 I − γju(j)u(j)T
)

where Ij−1 is the identity matrix of dimension j−1. AfterN steps, HNHN−1 . . . H1 =
QT and A = QR, where R ∈ RM×N is upper triangular. The QR decomposition
through Householder transformations runs in O(MN2) time. Note that there is
no need to calculate the matrix Q explicitly (see Watkins [28], §3.2, algorithm
3.2.40), only γj and uj have to be stored.

In the sparse case, the QR decomposition through Householder transformations
may not be convenient. This depends on the non-zero pattern of A. The non-zero
pattern of each row modified by a Householder transformation will be the set
union of non-zero patterns of all rows modified by the Householder transformation
(see Davis [29], §5). For some sparse matrices (as the matrix A described in §3.1,
for example) Â1 will be less sparse than A, Â2 will be less sparse than Â1 and in
general, at the early stages of the QR decomposition, Âj will become a full matrix.
In our case, there is simply not enough space to hold and work with a full version
of A, so we need to make use of a more selectively transformation to zero elements.

58 Chapter 5. Implementation of the QR algorithm

5.2.2 Givens rotations

A rotation, Givens transformation or Givens rotation [51] is a linear transformation
that rotates a vector through an angle θ. It can be represented by a matrix

Gji =



i j

1
. . .

1
i cos θ − sin θ

1
. . .

1
j sin θ cos θ

1
. . .

1



(5.5)

where blank entries are zeros, and used to zero the element aji of A.
For example, consider x ∈ R2 and suppose we want to find G21 so that GT

21x
has a zero in its second component, where

G21 =

(
cos θ − sin θ
sin θ cos θ

)
x =

(
x1
x2

)
GT

21x =

(
y
0

)
GT

21x =

(
cos θ sin θ
− sin θ cos θ

)(
x1
x2

)
=

(
(cos θ)x1 + (sin θ)x2
−(sin θ)x1 + (cos θ)x2

)
and

(cos θ)x2 − (sin θ)x1 = 0 (5.6)

There is no need to calculate θ to compute a rotation in order to zero x2. We
only need cos θ and sin θ to determine G. If we take

cos θ =
x1√
x21 + x22

and sin θ =
x2√
x21 + x22

(5.7)

equation 5.6 will be satisfied and there is a unique θ ∈ [0, 2π) for which choice 5.7
holds.

Consider now A ∈ RM×N , M > N and we want to find Q so that QTA is a
triangular matrix. As in the above example, we must compute rotations GT

M1, . . .,
GT

31, G
T
21 in order to zero the first column of A except a11.

GT
21G

T
31 . . . G

T
M1A =


â11 â12 . . . â1N
0
... Â1

0



5.3. Implementation 59

Then, as for the first column, we must compute rotations GT
M2, . . ., G

T
42, G

T
32 in

order to zero the second column except a12 and a22.

GT
32G

T
42 . . . G

T
M2Â1 =


â22 â23 . . . â2N
0
... Â2

0


After N steps, GT

N+1,N . . . G
T
32G

T
42 . . . G

T
M2G

T
21G

T
31 . . . G

T
M1 = QT and A = QR,

where R ∈ RM×N is upper triangular. Note that (as in Householder reflections)
there is no need to calculate the matrix Q explicitly, it is sufficient to store the
values of i, j, cos θ and sin θ to define a rotation and store rotations in the same
order that they were applied to A.

For simplicity, we generated the rotations column-oriented, bottom to top, but
the QR decomposition with Givens rotations can be implemented row-oriented
(left to right), or in any order while the two rows involved in the rotation have
their first non-zero element in the same column. The QR decomposition through
Givens transformations also runs in O(MN2) time, but choosing carefully the rows
involved in the rotations (see §6) we can maintain Â1, Â2, . . . , ÂN relatively sparse.
Consider that GTA changes two rows, i and j, to zero element aji of A. This is
convenient because brings the possibility of choosing rows i and j to have similar
sparsity pattern in order to reduce fill-in and maintain the sparsity of A. This
will be treated in §6, and, for now, lets suppose that the sparsity of A will be
damaged but not lost during the QR decomposition, so Givens rotations will be
our transformation of choice.

Numerical properties of rotations and reflections are excellent. Along with
a detailed error analysis of rotations and reflections, Wilkinson [52] has shown
that the computation of QTA (where Q is either a rotation or a reflection) is
normwise backward stable. That is, the computed result of QTA is the exact
result of applying QT to a slightly different matrix A + E, where ‖E‖2‖A‖2 is small.
This stability is preserved under repeated applications of rotations or reflections,
so the QR decomposition is also normwise backward stable.

5.3 Implementation

The QR decomposition using Givens rotations is the appropriate algorithm to
solve our problem. General implementations of this algorithm may not cover all
required features such as using a custom sparse matrix scheme or control over the
sequence of rotations to reduce the matrix to triangular form, so we implemented in
C++ the whole algorithm from scratch. Our implementation uses the BST sparse

60 Chapter 5. Implementation of the QR algorithm

matrix scheme and is organized in three blocks: the computation of a Givens
rotation (§5.3.1), the reduction to triangular form of a matrix (§5.3.2) and the
storage of the rotations applied to the matrix along with a especialized procedure
to compute QT b (§5.3.3).

5.3.1 Givens rotations

The implementation of a Givens rotation(
c s
−s c

)(
x1
x2

)
=

(
r
0

)
where c = cos θ, s = sin θ and x1, x2, r ∈ R, is available in standard software
packages of linear algebra such as BLAS [53] or LAPACK [54]. In this imple-
mentations, given {x1, x2}, {c, s, r} are computed. The numerical stability of this
procedure has two key points: x1 and x2 must be scaled to avoid underflow or
overflow in the computation of formulas 5.7 and (as Anderson [55] observed) there
are implementations of this procedure that have discontinuity in the value of r.
This section is a review of the Anderson’s algorithm (see Code 5.1) to implement
a Givens rotation avoiding underflow or overflow and assuring continuity in the
computation of r.

inputs: x1, x2
outputs: c, s, r
if (|x1| > |x2|) then

t = x2 / x1
u = sgn(x1) * sqrt(1 + (t * t))
c = 1 / u
s = t * c
r = x1 * u

else

t = x1 / x2
u = sgn(x2) * sqrt(1 + (t * t))
s = 1 / u
c = t * s
r = x2 * u

end if

Code 5.1: Pseudocode of Anderson’s algorithm to implement a Givens rotation,
where sgn(x) returns −1 if x < 0 and 1 otherwise and sqrt(x) returns

√
x.

Overflow or underflow may occur in the computation of the formulas 5.7. When
|x| < √Rmin, where Rmin is the smallest positive floating-point number repre-
sentable on the machine, x2 will underflow and when |x| > √Rmax, where Rmax

5.3. Implementation 61

is the largest positive floating-point number representable on the machine, x2 will
overflow. In Code 5.1, x1 and x2 are scaled to 1 and t ∈ [0, 1], avoiding overflow or
underflow on the computation of x21 and x22. Suppose that |x1| > |x2| then t = x2

x1
,

c =
x1√
x21 + x22

=
1

1
x1

√
x21 + x22

=
1√

1
x21

(x21 + x22)
=

1√
1 + t2

s =
x2√
x21 + x22

=
x2
x1

1
1
x1

√
x21 + x22

= tc

and similarly when |x1| ≤ |x2|.
There are implementations of the Givens rotation that may have discontinuity

in the value of r, produced by changes in its sign when, for example, x2 = −x1.
Note that

r = cx1 + sx2 =
x21√
x21 + x22

+
x22√
x21 + x22

=
x21 + x22√
x21 + x22

=
√
x21 + x22 (5.8)

is always positive. In Code 5.1,

sgn(r) =

{
sgn(x1)sgn(x1) if |x1| > |x2|
sgn(x2)sgn(x2) if |x1| ≤ |x2|

is always positive, since
√

1 + t2 is always positive.
Finally, there are three especial cases that have to be considered. When x1 ≥ 0

and x2 = 0 there is no need of a rotation. The computation of this rotation will
produce c = 1, s = 0 (the identity matrix) and r = x1. When the sparse matrix to
be reduced to triangular form is sufficiently large, as our case, performing unneeded
rotations will increase considerably the required storage space for Q, the required
computation time of the reduction to triangular form and the required computation
time of the operation QT b (see 5.2). For these reasons, in Code 5.1 there is no
consideration for the case x1 = 0 and x2 = 0 (that will end in a division by zero)
and the users of this algorithm must avoid calling it in this case.

When x1 < 0 and x2 = 0, Code 5.1 will produce c = −1, s = 0 and r = |x1|.
This is to ensure that all computed values of r will be positive (see 5.8). It
may be considered to detect this especial case and avoid calling this algorithm,
storing separately a especial operation instead. This operation consists of at least
two elements: the row index in which the change of sign will be performed and
its relative order with the rest of rotations, which is half the space needed for
a rotation. But this leads to a drawback of maintaining a second structure of
operations which leads to a more complicated programming than consider it a
rotation and a continuous check on the number of rotations already applied in the
computation of QT b. Therefore, we will store a rotation for this case.

62 Chapter 5. Implementation of the QR algorithm

In the last especial case, when x1 = 0 and x2 6= 0, Code 5.1 will produce c = 0,
s = +/ − 1 and r = |x2|. This, in fact, will perform a swap of the rows in the
matrix that contain x1 and x2, automatically taking care of the sign of r. The
same consideration as the previous especial case can be made. But in this case,
the especial operation will be formed, at least, by the two row indexes to swap, the
sign to assure r will be positive and its relative order with the rest of rotations,
which is the same space needed for a rotation. Therefore, there is no advantage
considering this case separately.

5.3.2 Givens QR decomposition

Using Code 5.1 of previous section it is possible to introduce zeros in a matrix
A ∈ RM×N to reduce it to triangular form. For simplicity on following codes, we
define the function givens as Code 5.1 which computes c and s, the function rotate
as

rotate(c, s, A, j, i) : A({j, i}, ∗) =

(
c s
−s c

)
A({j, i}, ∗)

where A({j, i}, ∗) is the submatrix of A formed by the rows i and j (with all
its columns) and the function store which saves {c, s, j, i} for later use (such as
performing QT b operations).

There are different strategies to introduce zeros in a matrix. Perhaps, the
most intuitive strategy is select the first N rows, one by one from top to bottom,
and then zero the column under its left-most element, from bottom to top. This
strategy is depicted in Figure 5.1.

In the sparse case, may have sense to establish a sequence to introduce the
zeros in a column, based on the sparsity pattern of each row, in order to minimize
the fill-in (see §6). In cases that an effective ordering can not be found, like our
case, this strategy will use O(MN) intermediate space to store elements produced
by the fill-in during the reduction to triangular form. Even if some of the elements
in a column are zero, the fill-in will spread for the most of the matrix, requiring
more rotations to zero the rest of the columns, which in turn will produce more
fill-in.

If M � N , this may be a critical problem. Consider M � N , such that
there is enough space to store a RN×N matrix but not a RM×N matrix. Row-wise
zeroing strategy is suitable for this case. This strategy is depicted in Figure 5.2,
and introduces zeros, row by row, until the matrix main-diagonal is reached. Once
the first N rows are reduced to triangular form (first three steps of Figure 5.2),
each remaining row will be zeroed completely against the first N rows (last three
steps of Figure 5.2). This constraints the fill-in in the matrix and use O(N2)

5.3. Implementation 63

intermediate space to store elements produced by the fill-in during the reduction
to triangular form, so we commit to the Figure 5.2 strategy.

The especial cases viewed in §5.3.1 are of interest in the sparse case. Both
strategies in Figure 5.1 and Figure 5.2 have a guard against zeroing an element
A(i, j) that is already zero. This leaves two especial cases:

• Element A(j, j) = 0 and A(i, j) 6= 0, in which case Code 5.1 will perform
a swap of rows automatically taking care of the sign of the swapped A(j, j)
thus, leaving A(i, j) = 0.

• Element A(j, j) < 0 and A(i, j) = 0, in which case no rotation is applied
and it is expected that, further in the reduction process, a rotation involving
A(j, j) and A(i, j) will be issued such that A(i, j) 6= 0, in order to take care
of the sign of A(j, j).

As this might not happen, at the end of the reduction, a search for elements
A(j, j) < 0 must be performed and a rotation {c, s} = givens(A(j, j), A(j+1, j))
must be applied to A if any. Note that this rotation will leave A(j + 1, j) = 0 and
will take care of the sign of A(j, j). In practice, this last especial case is rare, as
it implies there is no element to rotate with A(j, j) and A(j, j) will not produce
fill-in. That is, A(j, j) is the only non-zero element in its column and its left non-
zero elements of its row (if any) are the only non-zero elements in their respective
columns.

The next step in the implementation of the QR decomposition with Givens
rotations is the implementation of rotate(c, s, A, j, i). The time complexity for
the QR decomposition using Givens rotations given in §5.2 assumes that the access
of a element of the matrix A ∈ RM×N is a constant time operation, which means
that A is fully stored. For large sparse matrices, this may be not convenient nor
possible. The time complexity considering the use of a sparse matrix scheme is
O(MN) times the cost of rotate(c, s, A, j, i) (see Code 5.2).

Due to fill-in, note that some of the A.set() calls will end up in a insertion
in A rather than a modification. Considering the time complexity of the CSR
operations (§4.1), rotate(c, s, A, j, i) runs in O(Nn0), where n0 is the number
of non-zeros in A. Modifications can be made to Code 5.2 to operate with the
entire two rows of A instead of each element separately, leading to a cost of O(n0),
but also requiring to dynamically manage the space in the CSR structure to store
the rotated rows, which likely will have more elements due to fill-in. In our case,
the determination of a tight upper bound for the space required by the upper
triangular matrix R is not trivial (see §6).

Considering the time complexity of the BSTMatrix methods of §4.3,
rotate(c, s, A, j, i) runs in O(N log n), where n is the average number of non-
zeros in each row of A. Modifications can be made to Code 5.2 to operate with

64 Chapter 5. Implementation of the QR algorithm

for j = 1 to n
for i = m to j+1 in steps of -1

if(A(i, j) != 0) // avoid needless rotations in the sparse case
{c, s} = givens(A(j, j), A(i, j))
rotate(c, s, A, j, i)
store(c, s, j, i)

end if
end for

end for 
⊗ ⊗ ⊗
× × ×
× × ×
0 ⊗ ⊗

→

⊗ ⊗ ⊗
× × ×
0 ⊗ ⊗
0 × ×

→

⊗ ⊗ ⊗
0 ⊗ ⊗
0 × ×
0 × ×

→

× × ×
0 ⊗ ⊗
0 × ×
0 0 ⊗

→

× × ×
0 ⊗ ⊗
0 0 ⊗
0 0 ×

→

× × ×
0 × ×
0 0 ⊗
0 0 0


Figure 5.1: Reduction to triangular form using column-wise strategy. Rotations
QT

41, Q
T
31, Q

T
21, Q

T
42, Q

T
32, Q

T
43 are applied. In each stage of the reduction, framed

rows are involved in its corresponding rotation and circled elements are susceptible
of fill-in.

the entire two rows of A instead of each element separately, leading to a cost of
O(kn). This can be achieved by making use of the in-order traversal of a BST
to compute an array of pairs <column index, element value> and a modification
of the set union algorithm (provided in the C++ stl library, for example) to
iterate over the indexes and perform rotations of two elements (if found in both
sets) or one element with a zero (if found only in one set). As the explanation
suggests, the efficient implementation of this modification is not simple and will
determine the value of k, which is not negligible. Furthermore, this will imply the
destruction, reconstruction and balance of the two BST involved in the rotation.
The overhead of the memory allocations and destructions will likely overwhelm
the improvement on the time complexity.

Suppose that n0 ≈ Mn, where n0 is the number of non-zero elements of
A ∈ RM×N and n is the average number of non-zero elements per row in A.
Balancing the costs of access and insertion/deletion in the BSTMatrix methods
we obtained a cost of O(N log n) in the rotation procedure, which is an entire order
of magnitude less that the implementation using CSR scheme, even with a row-
wise implementation of the rotation, which time complexity is O(n0) ≈ O(Mn).
Moreover, if M � N , that is our case, the time cost benefit is even larger.

5.3. Implementation 65

for i = 2 to m
for j = 1 to min(i-1, n)
if(A(i, j) != 0) // avoid needless rotations in the sparse case

{c, s} = givens(A(j, j), A(i, j))
rotate(c, s, A, j, i)
store(c, s, j, i)

end if
end for

end for


⊗ ⊗ ⊗
0 ⊗ ⊗
× × ×
× × ×

→

⊗ ⊗ ⊗
0 × ×
0 ⊗ ⊗
× × ×

→

× × ×
0 ⊗ ⊗
0 0 ⊗
× × ×

→

⊗ ⊗ ⊗
0 × ×
0 0 ×
0 ⊗ ⊗

→

× × ×
0 ⊗ ⊗
0 0 ×
0 0 ⊗

→

× × ×
0 × ×
0 0 ⊗
0 0 0


Figure 5.2: Reduction to triangular form using row-wise strategy. Rotations QT

21,
QT

31, Q
T
32, Q

T
41, Q

T
42, Q

T
43 are applied. In each stage of the reduction, framed rows

are involved in its corresponding rotation and circled elements are susceptible of
fill-in.

66 Chapter 5. Implementation of the QR algorithm

void QRDecomposition::givens_rotation(float c, float s, BSTMatrix& A, int j, int i){

int N = A.columns;

// through all N columns (element before column j will be zero)
// for(int col = 0; col < N; ++col){
// starting from column j (first non-zero elements of the rows)
for(int col = j; col < N; ++col){

// retrieve values from matrix
ajj = A.get(j, col);
aij = A.get(i, col); // element to be zeroed

// rotate values
rjj = (c * ajj) + (s * aij);
rij = -(s * ajj) + (c * aij); // if col = j then rij = 0

// save values
A.set(j, col, rjj);
A.set(i, col, rij);

}

return;
}

Code 5.2: Element-wise implementation in C++ (as a method of the class QRDe-
composition) of the operation rotate(c, s, A, j, i) that appears in Figure 5.1 and
Figure 5.2.

In conclusion, the total cost of the QR decomposition process, making use
of the BSTMatrix in a element-wise access is O(MN2 log n) which is near the
optimum cost of O(MN2) using full matrices.

5.3.3 Q storage

The orthogonal matrix QT is composed of the Givens rotations used to reduce A
to triangular form. Later, QT will be used in the operation QT b to solve the linear
system. In the previous implementation of the QR decomposition algorithm, we
stored QT implicitly with the procedure store(c, s, j, i). We intentionally left
the implementation of this procedure open because its strong dependence of the
dimensions of the problem to solve with the QR decomposition. Suppose that this
procedure stores each rotation in the data structure of Code 5.3. For example, it
is a matter of how many rotations are performed to determine if rotations are held
in memory and written to disk at the end of the process, or there is a need for
some kind of buffered writing to disk during the decomposition. Moreover, if it
is planned to solve a single linear system, and enough memory is available, is no
even necessary to write them to disk.

In our case, we use the data structure of Code 5.3 to store a rotation. The

5.3. Implementation 67

struct GivensRotation{
int e; // from "element": row index of the element to be zeroed
int p; // from "pivot": row index of the element not to be zeroed
float c; // from "cosine": cosine of the rotation
float s; // from "sine": sine of the rotation

};

Code 5.3: Data structure to hold a Givens rotation (not in compact form). e and
p are chosen to be int because it is expected that system matrices have at most
≈ 230 rows. c and s are chosen to be float because the expected precision of
the solution is float. This structure has a size of 4× 32 bits = 16 Bytes.

problem of CT reconstruction requires to solve different systems with the same
matrix (the CT) and different right hand sides (CT measurements), so we need
to store the rotations to disk. The system matrix will be sufficiently large to
expect that there will be not enough memory available for all the rotations, so
we need a buffered writing to disk during the decomposition. We especialized the
givens rotation method for the computation of the operation QT b, which has
b as input, uses a buffered reading and overwrites b with QT b (see Code 5.4). The
time complexity of this method is O(g), where g is the number of Givens rotations
that have to be applied. It is difficult to express g in terms of matrix dimensions M
and N . Considering n0 ≈Mn, where n0 is the total number of non-zero elements
of the matrix and n is the average number of non-zero elements of a matrix row,
Mn ≤ g ≤MN and g will depend on the fill-in minimization success.

The details of the file writing and the buffer size determination are left to the
user to optimize them for their platform. Instead, we are going to discuss the use of
a compact representation of a rotation. The values of c and s can be represented in
a single value ρ [56]. This means that a rotation can be stored in three rather than
four elements using a floating point division to encode and a floating point square
root to decode them (see Golub [27], §5.1.11, algorithms 5.1.9 and 5.1.10). The
only advantage of the compact representation is the space saving (see Figure 5.3).
It has to be considered if the space saving compensates the impact of the additional
operations. In relative terms, compact representation supposes a 25% less of space
required and one additional operation will increase the computational cost of a
rotation by a ≈ 15%, in the case of the operation QT b (since each non-compact
rotation needs four products and two sums for this operation). In absolute terms,
for example, in order to store 108 rotations, 1.12GB and 1.5GB will be required
for compact and non-compact representations respectively. It is very likely that
if 1.12GB are available, then 1.5GB will be also available and as a drawback, 108

floating point square roots will be additionally performed. In many applications
we want to wait as little as possible to obtain the solution of a system, especially
if it is repeatedly solved against different right hand sides, so it is desirable to

68 Chapter 5. Implementation of the QR algorithm

void QRDecomposition::compute_QtB(float* QtB){

float temp_p, result_p, temp_e, result_e;
GivensRotation g; // next rotation to apply

// cond flag is false if EOF is reached, true otherwise
bool cond = get_G_element(&g); // extraction of the next rotation

while(cond){ // while not EOF

// rotate
temp_e = QtB[g.e];
temp_p = QtB[g.p];

// new values are calculated
result_p = (g.c * temp_p) + (g.s * temp_e);
result_e = -(g.s * temp_p) + (g.c * temp_e);

// store the result
QtB[g.p] = result_p;
QtB[g.e] = result_e;

// extraction of the next rotation
cond = get_G_element(&g);

}
return;

}

Code 5.4: Implementation in C++ of the computation of QT b. float* QtB must
be a reference to the vector b that is used as input and is overwritten with QT b and
get G element() performs a buffered reading from disk. This method assumes
that the class QRDecomposition already has a file pointer to the QT matrix file.

5.3. Implementation 69

avoid as much computation as possible in the operation QT b. For these reasons
we choose to store the givens rotations in non-compact representation.

In conclusion, we complemented our implementation of the QR decomposition
with the implementation of the computation of a Givens rotation that assures
continuity in the computation of r, the selection of a zeroing strategy that reduces
the required space of intermediate results, the implementation of the rotation of
two rows that introduces a zero in a matrix, a data structure for the representation
of the Givens rotations and the implementation of the rotation of two elements
of a vector that computes QT b. Also, extra computation in the QT b process is
avoided selecting the non-compact representation of the Givens rotations.

70 Chapter 5. Implementation of the QR algorithm

1 ´ 108 2 ´ 108 3 ´ 108 4 ´ 108

Number

of rotations

1

2

3

4

5

6

GB

(a) Linear scale.

1 100 10
4 10

6
10

8

Number

of rotations

10
-6

10
-4

0.01

1

GB

Non-compact

Compact

(b) Logarithmic scale.

Figure 5.3: Space needed to store Givens rotations in compact and non-compact
representations. Both representations need to store the two row indexes. Non-
compact representation uses two float for c and s (16 Bytes) and compact rep-
resentation uses one float for ρ (12 Bytes).

Chapter 6

Fill-in in the QR decomposition

The fill-in accounts, in general, for the creation of new non-zeros in a sparse
matrix during a transformation. In §5, we used Givens rotations to gradually
transform our system matrix A in an upper triangular matrix R, producing fill-in.
As a sparse matrix has a considerable amount of zero elements, it is expected
that computational costs and space requirements will be eased. However, the fill-
in can equate these costs to those with a full matrix. In this chapter, we are
going to discuss several strategies to reduce the impact of fill-in during the QR
decomposition of our system matrix, using Givens rotations. We are going to apply
four of the most commonly used strategies to reduce the fill-in and compare them
with an ad hoc strategy for our system matrix. To the best of our knowledge,
this is the first work that presents a specialized fill-in reduction strategy for sparse
matrices derived from the CT image reconstruction problem.

6.1 Standard fill-in reduction

The problem of fill-in reduction is to find a row and column ordering such that
the fill-in produced during the factorization is minimized. Minimizing the fill-in is
NP-complete [57], so, in practice, different strategies are used to reduce it.

The success on the fill-in reduction depends on the propagation of the fill-in
caused by the transformation and the structure of the sparse matrix. A Givens
rotation produces fill-in as follows: the sparsity pattern of each row involved in
the rotation will be the union of both rows sparsity pattern, except for the zeroed
element (see Figure 6.1). The structure of the sparse matrix may promote the
occurrence of fill-in with sparsity patterns that are heavily filled by the transfor-
mation (see Figure 6.2).

Regarding the QR decomposition, in which an upper triangular matrix R is
computed, the term fill-in is usually used to refer to new non-zero elements that

71

72 Chapter 6. Fill-in in the QR decomposition

(
� 0 � 0 0
� � 0 0 �

)
→

(
� � � 0 �
0 � � 0 �

)

Figure 6.1: Example of fill-in produced in two rows by a Givens rotation. Left
and right represent before and after the rotation respectively. For both rows, the
resulting sparsity pattern is the union of both sparsity patterns.


� � � �
� � 0 0
� 0 � 0
� 0 0 �

 →


� � � �
0 � � �
0 � � �
0 � � �


(a)

� 0 0 �
0 � 0 �
0 0 � �
� � � �

 →


� � � �
0 � � �
0 0 � �
0 0 0 �


(b)

Figure 6.2: Example of fill-in produced in the arrow sparse matrix. There are two
different sparse matrix structures illustrated: up arrow structure (a) and down
arrow structure (b). In each illustration, left and right represent before and after
the application of three rotations respectively.

occur in the upper triangular part of A and intermediate fill-in refers to new
non-zero elements that occur below the main diagonal of A and will become zero
again later, during the decomposition. Hereinafter, we will use this distinction
because these two types of new non-zeros have different effects. Essentially, fill-in
increases the required space for intermediate and final results (see Figure 6.2b),
while, intermediate fill-in increases the required space for intermediate results and
the number of rotations needed to transform A in R (see Figure 6.2a). Due to
intermediate fill-in, matrix of Figure 6.2a is at 50% of the QR decomposition,
and has already became a full matrix. Instead, matrix of Figure 6.2b has already
completed the QR decomposition and only suffered fill-in above the main diagonal.

6.1. Standard fill-in reduction 73

6.1.1 Standard fill-in reduction strategies

There are three basic approaches to minimize fill-in: nested dissection, minimum
degree, and band reduction (see [29] §7 for details). Nested dissection separates
the sparse matrix in blocks, then, recursively, tries to separate each block again,
so the fill-in will be contained in small submatrices. Minimum degree focuses in
the structural properties of rows (which amount of fill-in will they generate, for
example), so the firstly eliminated rows do not generate much fill-in. The band
reduction strategy tries to organize non-zero elements in a band, so fill-in is avoided
below and above the band.

The structure of our sparse matrix is not appropriated for strategies related
with nested dissection. We tried several nested dissection orderings, such as clique
and node separators (see [58] for details), without being able to reduce the fill-in.
However, the non-zero elements of our matrix can be rearranged in a band. This
band is drawn between the upper left and the lower right corners of the matrix
(not necessary along the main diagonal) and its bandwidth w is measured as the
maximum value of jlst − jfst + 1 of all rows, where aijfst and aijlst are the first
and last non-zero elements respectively. The idea behind the band ordering is to
obtain a band as narrow as possible, automatically skip the rotations below the
band and try to keep the upper right corner without fill-in.

We selected the three better-performing (in our case) band ordering strategies
and the Modified Minimum Degree to test with our system matrix, as these four
approaches gave the best results for the standard fill-in reduction. Fill-in reduction
strategies reviewed here rely on graph theory to compute different row and column
orderings and to do so, they process matrices as graphs. A graph is a pair G =
(V,E), where V is a set of nodes and E is a set of pairs (vi, vj) | vi, vj ∈ V
that represents edges between nodes. Let A be a sparse matrix, the graph nodes
represent the rows and columns of A and there will be an edge connecting nodes
vi and vj of G for each non-zero element aij ∈ A. Provided that A is symmetric,
G is built from A directly. For non-symmetric matrices, such our case, G is built
from

B =

(
0 A
AT 0

)
There are some terms from graph theory that are needed for the fill-in reduction

strategies. Two nodes of G are said to be adjacent if they are connected by an
edge. Nodes vi and vj are adjacent if aij 6= 0. The degree of a node vi is the
number of edges that contain vi. As a node can represent a row or a column, its
degree is the number of non-zero elements in the corresponding row or column of
A.

The following four algorithms have been tested with our system matrix. We
introduce them with a brief summary:

74 Chapter 6. Fill-in in the QR decomposition

• The Cuthill–McKee ordering [59] selects a starting node which might be a
node of minimum degree. Then, the nodes adjacent to this node are selected
in the order of their increasing degree. The procedure is repeated starting
with the nodes adjacent to ones selected, in sequence, until all nodes have
been selected. The Reverse Cuthill–McKee ordering reverses the previous
computed ordering because often this improves the fill-in reduction [60].

• The Minimum Bandwidth ordering is a variant of the Reverse Cuthill–McKee
algorithm which breaks the tie between nodes that have the same degree,
based on ordered sequence of already selected adjacent nodes.

• The King’s ordering [61] is a variant of the Reverse Cuthill–McKee algorithm
which instead of selecting the nodes based on their total degree, nodes are
selected in the order of how many already selected adjacent nodes they have.

• The Minimum Degree ordering selects a node of minimum degree, eliminates
it and updates the degrees of the uneliminated nodes. The procedure is
repeated until all nodes are eliminated. The Modified Minimum Degree or-
dering [62] improves the overall performance of the previous algorithm by
eliminating a subset of nodes, all at the same time.

An efficient implementation of the Minimum Bandwidth ordering is available
in [63] and simplified pseudocode of the rest is available in [64]. The result of
the application of these ordering strategies is represented in Figure 6.3.

6.1.2 Standard fill-in reduction performance

We consider three parameters in order to assess the effectiveness of these strategies
with the system matrix: the fill-in, the intermediate fill-in and the number of ro-
tations needed to perform the QR decomposition. A low resolution system matrix
has been used for this comparison, but similar results have been obtained with
higher resolutions. The test matrix models a system with a flat panel consisting
of 32 × 32 detectors, 40 views and 8 × 8 × 8 voxels. Sizes of the resulting matrix
are 18432 rows, 128 columns, and 151592 non-zero elements.

First, we will focus on the fill-in. This parameter can be easily evaluated as the
number of non-zero elements in R once the QR decomposition is finished. Results
for our test matrix are illustrated in Figure 6.4. Results are, at best, as those
obtained without any ordering. Specifically, Reverse Cuthill–McKee and King’s
ordering generate more fill-in than the system matrix with no ordering, but with
matrices as narrow as ours, the differences between shown strategies (5000 ∼ 7000)
are almost negligible as the process started with a system matrix of ∼ 150000 non-
zero elements. Therefore, this parameter does not have a significant impact in final
and intermediate results size.

6.1. Standard fill-in reduction 75

(a) (b) (c) (d) (e)

Figure 6.3: The system matrix as it was generated, with no ordering applied (a)
and ordered with Reverse Cuthill–McKee (b), Minimum Bandwidth (c), King’s (d),
and Modified Minimum Degree (e).

76 Chapter 6. Fill-in in the QR decomposition

(a) (b) (c)

(d) (e)

N HN+1L
2

0

2000

4000

6000

8000

Number of

non-zero elements

Minimum Bandwidth ordering

Modified Minimum Degree

King's ordering

Reverse Cuthill-McKee

No ordering

(f)

Figure 6.4: The R factor of the QR decomposition of a system matrix with no
ordering applied (a) and ordered with Minimum Bandwidth (b), Modified Min-
imum Degree (c), King’s (d), and Reverse Cuthill–McKee (e) algorithms. For
better comparison between matrices, the number of non-zero elements in each R
is presented (f). Dashed line indicates the total number of non-zero elements of
an upper triangular full matrix.

6.1. Standard fill-in reduction 77

The intermediate fill-in is a more limiting parameter, as it will be the most
space consuming during the decomposition. This is due to the narrowness of our
sparse matrix: fill-in produced below the main diagonal might be of three orders
of magnitude greater than the fill-in produce above. Even if intermediate fill-in is
eliminated after, during the reduction, it had to be stored in the sparse matrix.
In other words, with our matrix dimensions, it is possible to work with a full
triangular matrix, but it is not possible to work with all elements below the main
diagonal.

We evaluated the intermediate fill-in by monitoring the number of non-zero
elements in the matrix in each step of the process. These measurements consist
of both the fill-in and the intermediate fill-in, but as said before, intermediate fill-
in is almost entirely the overall fill-in. Results for this parameter are illustrated
in Figure 6.5. In both Figures 6.5a and 6.5b, the number of non-zero elements
generated in the matrix without ordering has been plotted for reference. Strictly
from the point of view of the required space, the peak value for each ordering is
its required space for the QR decomposition. Also, the entire curve is interesting
in order to assess possible overhead creating and destroying matrix elements, or
additional costs in the rotations, as the element access time depends on the total
number of non-zero elements in the accessed rows. For example, suppose that,
with the same peak value, two different curves are presented: one that quickly
grows to an almost constant number of non-zeros and other that stays low the
majority of the process and shows a narrow pulse. With the same peak value,
the second curve describes a better performance than the first, because it shows
reduced access costs during the majority of the process. The measured curves
have shapes that are not as obvious as the example presented. In this sense, the
area below a curve (presented in Figure 6.5c) is a good quantifier for comparison
between them.

Regarding to the number of rotations needed for the entire QR decomposition,
the results for each fill-in reducing strategy are compiled in Figure 6.6. As the Q
factor is saved implicitly (consisting of a list of four values representing a rotation),
the evaluation of this parameter is a matter of counting the rotations contained in
the file. This parameter reflects the computation time needed for the QR decom-
position and, also, represents the space needed to store the Q matrix, which in
high resolution systems is in the order of Giga Bytes. Not only all strategies exceed
the number of rotations needed to complete the process without any ordering, but
in all cases, needed rotations are closer to their upper bound than to their lower
bound.

All approaches considered have similar or higher results in the evaluated param-
eters than applying no orderings. These algorithms have proven its effectiveness
with general sparse matrices, but in our case do not produce any effective fill-in,

78 Chapter 6. Fill-in in the QR decomposition

0 20 40 60 80 100

Progress of the

decomposition
0

0.2

0.4

0.6

0.8

1.0

1.2

Number of non zero

elements of the matrix

No ordering

Modified Minimum Degree

Minimum Bandwidth ordering

(x 10⁶)

(a)

0 20 40 60 80 100

Progress of the

decomposition
0

0.2

0.4

0.6

0.8

1.0

1.2

Number of non zero

elements of the matrix

No ordering

Reverse Cuthill McKee

King's ordering

(x 10⁶)

(b)

0

10

20

30

40

50

60

number of

non zero elements

Minimum Bandwidth ordering

Modified Minimum Degree

King's ordering

Reverse Cuthill McKee

No ordering

X

(x 10⁶)

(c)

Figure 6.5: Number of non-zero elements during the QR decomposition of our
system matrix with Modified Minimum Degree (a), Minimum Bandwidth (a), Re-
verse Cuthill–McKee (b), and King’s orderings (b). For better comparison between
curves, their totalized number of non-zero elements is presented (c). Dashed line
indicates the totalized number of non-zero elements of the QR decomposition of
our system matrix with no ordering.

6.2. Fill-in reduction alternative 79

M n

M N

0

0.5

1.0

1.5

2.0

Number of

rotations

Minimum Bandwidth ordering

Modified Minimum Degree

King's ordering

Reverse Cuthill McKee

No ordering

(x 10⁶)

Figure 6.6: Number of Givens rotations needed for the entire QR decomposition
depending on which ordering has been applied. Dashed lines represent theoretical
upper and lower bounds of the number of rotations needed, where M is the number
of rows, N is the number of columns, and n is the average number of non-zero
elements in each row.

intermediate fill-in or number of rotations reduction. This is due to the structure
and narrowness of our system matrix combined with band orderings with high
bandwidth. When the QR decomposition reaches certain rows, the intermedi-
ate fill-in propagates throughout most of the matrix (it is appreciated as sudden
growths in the number of non-zeros in Figures 6.5a and 6.5b).

The performance of classical approaches is not affordable in practice. The in-
termediate fill-in is not properly reduced in the QR decomposition of our sparse
matrix and along with its extra space required to store the intermediate results,
this extra intermediate fill-in increases the total number of rotations of the fac-
torization. Therefore, this motivates the development of an ad hoc heuristic to
reduce intermediate fill-in.

6.2 Fill-in reduction alternative

The standard fill-in reduction approaches do not reduce intermediate fill-in in our
matrix structure. Provided that the sparse matrix is ordered as a band matrix,
during the decomposition, the first non-zero element of a row will be eliminated as
the rest of the elements will probably generate intermediate fill-in. An heuristic has
been developed to limit the propagation of the intermediate fill-in to approximately
the bandwidth.

80 Chapter 6. Fill-in in the QR decomposition

6.2.1 Heuristic strategy

Suppose that our system matrix A ∈ RM×N is ordered as a band matrix with a
bandwidth w in the sense of §6.1, during the decomposition, intermediate fill-in
can be bounded if the last non-zero elements of a row involved in a rotation do not
increase w. Suppose we have a group of m rows such that m > w and for each of
these rows, its last non-zero element is in the same column. Let G ∈ Rm×N be a
submatrix composed of these m rows. Then, G also has a bandwidth wg ≤ w and
has an interesting structural property: Givens rotations required to reduce G to
upper triangular form will not increase w. We call G a group. Intermediate fill-in
will still occur in G, but in this case with an upper bound of

mw (6.1)

elements, due to the criteria applied to column indexes of last non-zero elements
of its rows. Moreover, provided that we started the reduction to triangular form
of G from its first column that has any non-zero element (ignoring the columns
that are entirely zero), after the reduction, at most,

w(w + 1)

2
(6.2)

non-zero elements will remain in G and m − w rows will have been eliminated.
These rows will never be part of a rotation or produce any fill-in.

Suppose now that we have two groups G1 and G2 of m1 and m2 rows re-
spectively, with w1 and w2 bandwidths respectively, j1 and j2 are its rightmost
columns that contain any non-zero element respectively, j1 ≤ j2 and both have
been reduced to triangular form. If we join them in

G12 =

(
G1

G2

)
based on Equation 6.2, in the worst case G12 will have w1(w1+1)

2
+ w2(w2+1)

2
non-zero

elements and reducing G12 to triangular form with Givens rotations will produce
no intermediate fill-in and a fill-in of

w1(j2 − j1) (6.3)

elements in the reduced G12. Provided that we performed the reduction to trian-
gular form of G12 ignoring the columns that are entirely zero, we have completely
eliminated all non-zero rows (w1 + w2) but the non-zero rows of G1 (w1) plus a
number of rows equal to the difference between the rightmost non-zero columns of
both groups (j2 − j1)

(w1 + w2)− (w1 + j2 − j1) = w2 + j1 − j2

6.2. Fill-in reduction alternative 81

which is almost the entire G2 if j1 and j2 are close.
Consider that the reduction to triangular form of A will be composed of the

reductions of Gi, then, the fill-in produced for the different Gi account as inter-
mediate fill-in produced in the reduction of A. Therefore, the entire reduction of
these two groups into one, in triangular form, has produced a number of elements
of intermediate fill-in with an upper bound of

m1w1 +m2w2 + w1(j2 − j1)

based on its both bandwidths (see Equation 6.1) and the fill-in produced between
its rightmost non-zero columns (see Equation 6.3).

An optimal group would have m as large as possible and w as small as possible,
so almost the m rows are completely eliminated producing little intermediate fill-
in. Once reduced, an optimal pair of groups would have close j1 and j2 for the
same reason. However, it is too optimistic to ask for the last non-zero element
in all rows of a group to be in the same column. Instead, j will be considered
the highest column index of the elements of the group and the rest of the rows
will be asked to have its last non-zero element close to j (see Figure 6.7a for an
illustration of the groups, joined groups reduction, and its associated intermediate
fill-in).

As an example of our heuristic workflow, we present in Figure 6.7 the reduction
to triangular form of the top part of a low resolution sparse matrix. In Figure 6.7a
is shown the process driven by the group making and in Figure 6.7b is shown the
process without it. The intermediate fill-in produced in the next step of each case
is highlighted in red, while in Figure 6.7c the fill-in avoided by the row grouping is
highlighted in green. The effect of the intermediate fill-in reduction is mitigated,
as we are only considering here the top part of the matrix, but it is sufficiently
large to be appreciated. Approximately a 25% of the intermediate fill-in is avoided
if groups are used. In Figure 6.7c can be observed in the two green zones that
intermediate fill-in has not been propagated outside of the groups in the first step
and this propagation could be larger if a greater section of the matrix would be
considered. In addition, and thanks to the band ordering, the intermediate fill-in
produced by the paired groups reduction is scarce.

6.2.2 Heuristic implementation

The first step of the implementation of our heuristic is the band ordering. The aim
is to compute an ordering that organizes the non-zero elements of A in a band. This
ordering locally holds that last non-zero element of rows are approximately in the
same column. This band ordering is implemented in Code 6.1 and makes use of the
non-zero structure of the sparse matrix, contained in a class MatrixStructure.

82 Chapter 6. Fill-in in the QR decomposition

(a)

(b)

(c)

Figure 6.7: Fill-in produced during the reduction to triangular form of the first
rows of our sparse matrix ordered with our heuristic. Four groups (a) and only
one group (b) have been considered. In (a) and (b), each frame represents a stage
of the process and it has been highlighted in red the fill-in that will be produced
in the next step. In (c), a single frame is presented with the original sparse
matrix (black), all the fill-in produced in (a) (red) and all the fill-in avoided in (a)
regarding (b) (green). In this case, (a) produces a ∼ 25% less of fill-in than (b).

6.2. Fill-in reduction alternative 83

This class contains a list of all rows. Each element of this list is composed of its
index, its number of non-zero elements and a link to another list with its column
indexes.

void Orderings::band_ordering(MatrixStructure& matrix){

matrix.first_nzidx_ordering(); // initial row reordering

matrix.transpose();
matrix.first_nzidx_ordering(); // initial column reordering
matrix.transpose();

for(int i = 0; i < (50); ++i){ // iterative process

matrix.first_nzidx_ordering(); // row reordering

matrix.transpose();
matrix.node_centroid_ordering(); // column reordering
matrix.transpose();

}

matrix.first_nzidx_ordering(); // final row reordering

return;
}

Code 6.1: Implementation of our band ordering heuristic in C++. Class
MatrixStructure received as input contains the row and column indexes
of non-zero elements. Its method transpose() swaps the row and col-
umn indexes of these elements. first nzidx ordering() method, re-
order the matrix rows in their first non-zero column index ascending order.
node centroid ordering() method is a modification of the standard node
centroid algorithm, but without considering the current row index for the new
row ordering. We experimentally determined that beyond 50 iterations there is no
further improvement in bandwidth reduction.

We used the MatrixStructure class for two reasons: fast row swapping and
to ease the transpose() method. Regarding the row swapping, this method
swaps the number of non-zero elements and the link to the list with its column
indexes. Regarding the transpose() method, all of number of non-zero elements
of transposed rows are computed iterating once over the old rows list with their
column indexes. The required space for the new structure (to hold the transposed
matrix) is then allocated and the list of all transposed rows with their column
indexes are computed. In one iteration over the old rows list with their column
indexes, each old row index is stored as a new column index in its corresponding list
regarding the old column index. This process has both time and space complexities
of O(Mn), where M is the number of rows and n is the average number of non-zero
elements in rows.

84 Chapter 6. Fill-in in the QR decomposition

The band ordering makes use of two different orderings. The first nzidx or-
dering algorithm (from first non-zero index) that sorts each row by the column in-
dex of its first non-zero element, in ascending order and a modified node centroid
ordering algorithm [65] that sorts each row by the average of their column indexes
and the current row index itself, in ascending order. Our modification does not
consider the current row index for the new row ordering (see Code 6.2).

The band ordering procedure has two parts: an initialization ordering of rows
and columns and an iterative process. The initialization sorts the non-zero ele-
ments in a wide band and the iterative part reduces it as much as possible. The
advantage of this ordering is not a high bandwidth reduction but the local align-
ment of the last non-zero element of rows around a column (see Figure 6.8). This
allows the determination of j locally (see §6.2.1) as the highest column index of
the nearby rows, which will have its last non-zero element close to j.

Once we have the band ordering, the next step of the implementation of our
heuristic is the group making. We developed a simple greedy algorithm to deter-
mine j and select a group of nearby rows as large as possible, without rearranging
the row order. For better performance, this algorithm has a parameter that allows
some of last non-zero element of nearby rows to be larger than j. This increases
considerably the number of rows selected per group while the user stills in control
of the degradation of the bandwidth, assessing the intermediate fill-in that this
bandwidth degradation would cause. It was experimentally determined that a 1%
of the total columns (for our matrix) is a good compromise between the additional
intermediate fill-in produced and the additional rows added per group. The group
making algorithm works as follows:

1. Determines the next group free row, based on last row of previous group.

2. Selects a minimum number of rows, based on the width of the first row,
where the width of a row is jend − jini + 1, being jini and jend the column
index of the first and last non-zero elements of the row respectively.

3. Determines j for this preliminary group of rows.

4. Extends the preliminary group of rows as follows: “add a new row while
the column index of its last non-zero element is less or equal to j plus the
bandwidth degradation parameter”.

5. End when there are no more free rows.

The result of the algorithm is the number of groups created and an array such
that the row index stored in its i-th position is the last row of the i-th group (see
Code 6.3). This algorithm uses as input an array row info that contains in its
i-th position the first and last non-zero column index of the i-th row, in order to

6.2. Fill-in reduction alternative 85

// pair {row index, row weight}
struct w_t{

int row; // row index
float w; // row weight

};

// comparison functor for w_t type
bool order_for_w_t(const w_t& a, const w_t& b){

return (a.w < b.w);
}

void Orderings::node_centroid_ordering(MatrixStructure& matrix){

int number_of_rows = matrix.rows; // get the number of rows
w_t* w_list = new w_t[number_of_rows]; // create a list for row scores
int* new_row_ordering = new int[number_of_rows]; // new row index ordering

for(int i = 0; i < number_of_rows; ++i){

// initialization of the row score
w_list[i].row = i;
w_list[i].w = 0;

// if there is any non-zero element ...
if(matrix.number_nonzeros_in_each_row[i] != 0){

// sum its column indexes ...
for(int j = 0; j < matrix.number_nonzeros_in_each_row[i]; ++j){

w_list[i].w += matrix.column_indices_per_row[i][j];
}

// and compute their average value as its score
w_list[i].w = w_list[i].w / static_cast<float>(matrix.number_nonzeros_in_each_row

[i]);
}

}

// reorder rows by their score
std::sort(w_list+0, w_list+number_of_rows, order_for_w_t);

// extract row ordering
for(int i = 0; i < number_of_rows; ++i){
new_row_ordering[i] = w_list[i].row;

}

// apply row ordering
matrix.set_row_ordering(new_row_ordering);

delete[] w_list;
delete[] new_row_ordering;
return;

}

Code 6.2: Implementation in C++ of our modification of the node centroid al-
gorithm. Our modification excludes the current row index for the row new or-
dering. Namely, in our version w list[i].w is not updated with the value
of i before its average value is computed. The final row order is stored in the
new row ordering array and then applied to the input matrix. Also, the pair
{row index, row score} with its comparison functor are included. The functor is
provided to the std::sort() algorithm in order to obtain the new ordering.

86 Chapter 6. Fill-in in the QR decomposition

(a) (b)

Figure 6.8: The system matrix as it is generated, with no ordering applied (a) and
ordered with our heuristic (b).

6.2. Fill-in reduction alternative 87

avoid matrix lookups (its computation is excluded form Code 6.3 for simplicity).
This group making algorithm has both time and space complexities of O(M),
where M is the number of rows.

The final step in this implementation is the definition of a group pair making
policy. Once all groups have been reduced they must be joined in pairs, so the
reduction to triangular form can be continued. Consider three groups, Ga with ja,
Gb with jb and Gc with jc, such that they are contiguous. The best pair for Gb

will be one of its two contiguous neighbors (the band ordering make them have
the smallest distance between its j) and it will be a matter of choose Ga or Gc

based on which |ja − jb| or |jc − jb| is lower.

6.2.3 Heuristic performance

We consider the same three parameters as in §6.1.2 to assess the performance of
our heuristic and compare it with the standard fill-in reduction strategies: the
fill-in, the intermediate fill-in and the number of rotations needed to perform the
QR decomposition. The same low resolution system matrix has been used for this
comparison and also, similar results have been obtained with higher resolutions.

In the evaluation of the performance parameters, two versions of our heuristic
have been included: one, with our heuristic making groups as large as possible (five
groups will be generated for this test matrix) and other, with our heuristic forced
to make no groups (the triangular reduction will be of all the matrix at once). It
is interesting to highlight the importance of the group making and discard that
the ordering itself reduces any kind of fill-in. Moreover, the corresponding results
of the standard fill-in reduction strategies have also been included in figures below
for comparison.

The fill-in results of our test matrix are illustrated in Figure 6.9. Both heuristic
versions produced the same non-zero pattern for the R factor. Even if this R seems
sparser than those obtained with previous strategies, it has the same number of
non-zeros present in the better performing standard strategies.

Nevertheless, the intermediate fill-in is considerably reduced by our heuristic
(see Figure 6.10). The version of our heuristic without group making presents poor
results comparable to those obtained by the standard approaches. However, the
group making effectively contains the spread of intermediate fill-in over the matrix.
The number of non-zero elements of the matrix has a distinctive evolution when
the group making is used: until approximately the 60% of the decomposition, the
bandwidths of the different groups are progressively filled as they are reduced to
triangular form, then, the number of non-zero elements drops and remain low while
the reduced groups are joined in pairs and reduced again. The fill-in produced in
this final part of the process is remarkably low. Moreover, the first part of the
evolution of this curve is smoother than the other approaches. This smoothness

88 Chapter 6. Fill-in in the QR decomposition

void Orderings::make_groups(const MatrixStructure& matrix){

int number_of_rows = matrix.rows; // get the number of rows
int number_of_columns = matrix.columns; // get the number of columns
double inflation = 0.01; // allowed bandwidth degradation percentage
int mark_width = static_cast<int>(floor(static_cast<double>(number_of_columns) *

inflation));
int width, j, mark;
bool sentinel;
// group limits inicialization
number_of_groups = 0;
for(int i = 0; i < number_of_rows; ++i){

last_row_of_group[i] = -1;
}

// overall starting point
int starting_row;
int ending_row = -1;
while(ending_row < (number_of_rows - 1)){ // beginning of the "main loop"

// current group starting point
starting_row = ending_row + 1;
// the width of the first row will be the minimum number of rows of the group ...
width = row_info[starting_row].last_nozero - row_info[starting_row].first_nozero +

1;
// but taking care of not exceeding matrix dimensions
ending_row = std::min(starting_row + width, number_of_rows - 1);
// compute the leftmost non-zero column index of the group "j"
j = row_info[starting_row].last_nozero;
for(int i = starting_row; (i < number_of_rows) && (i <= ending_row); ++i){

if(row_info[i].last_nozero > j){
j = row_info[i].last_nozero;

}
}
// this mark defines the criteria to enter in the current group
mark = j + mark_width;
// now try to increase the number of rows in the current group
// with rows that meet previous criteria
sentinel = true;
while(sentinel){

// if next row is inside the matrix dimensions and meets previous criteria ...
if((ending_row < (number_of_rows - 1)) &&

(row_info[ending_row].last_nozero <= mark)){
// ... it can join current group
sentinel = true;
++ending_row;

// search for new rows is over
} else {

sentinel = false;
}

}
// current group is completed, so we save its last row
last_row_of_group[number_of_groups] = ending_row;
// in next "main loop" we will define the next group
// and its first row will be current ending_row + 1
++number_of_groups;

}
return;

}

Code 6.3: Implementation in C++ of the algorithm that assigns rows to groups,
with a cost O(M), where M is the number of rows. When finished, this algo-
rithm has generated number of groups groups (from G0 to Gnumber of groups−1).
Group G0 starts in row 0 and ends in row last row of group[0]
and Group Gi starts in row last row of group[i-1] and ends in row
last row of group[i].

6.2. Fill-in reduction alternative 89

(a) (b)

N HN+1L
2

0

2000

4000

6000

8000

Number of

non-zero elements

Five groups

No groups

Minimum Bandwidth ordering

Modified Minimum Degree

King's ordering

Reverse Cuthill-McKee

No ordering

(c)

Figure 6.9: The R factor of the QR decomposition of a system matrix with no
ordering applied (a) and ordered with our heuristic (b). For better comparison
between matrices, the number of non-zero elements in each R is presented (f). Five
groups represents the results of our heuristic making groups as large as possible.
No groups represents the results of our heuristic forced to make no groups, and
corresponds to the triangular reduction of the entire matrix at once. Moreover,
the corresponding results of the standard fill-in reduction strategies have been also
included for comparison. Dashed line indicates the number of non-zero elements
of an upper triangular full matrix.

90 Chapter 6. Fill-in in the QR decomposition

will benefit the QR decomposition algorithm, as it will not face massive memory
allocations or intense filled rows. Finally, the maximum value reached by this
curve reveals the minimum space requirements of all studied strategies.

The results of the number of rotations needed for the entire QR decomposition
are shown in Figure 6.11. These results confirm those obtained with the number of
non-zero elements: the ordering of our heuristic itself does not reduce the number
of rotations needed, but the use of group making reduces it compared to the rest
of strategies and brings it closer to the lower bound than to the upper bound. This
reduction will not only affect the time cost of the QR decomposition, but, also,
the space needed for the Q storage and the time cost of the QT b product.

Unfortunately, the intermediate fill-in reduction obtained with our heuristic is
not sufficient for the practical QR decomposition of systems of high resolution.
Even with this reduction, the time needed for the decomposition, the space re-
quired or the size of the generated Q file are excessive for its use in commercially
available computers. Nevertheless, our heuristic brings the possibility of perform-
ing the QR decomposition in bigger low resolution systems compared with the
standard fill-in reduction strategies or no ordering at all.

6.2. Fill-in reduction alternative 91

0 20 40 60 80 100

Progress of the

decomposition
0

0.2

0.4

0.6

0.8

1.0

1.2

Number of non zero

elements of the matrix

No ordering

No groups

Five groups

(x 10⁶)

(a)

0

10

20

30

40

50

60

number of

non zero elements

Five groups

No groups

Minimum Bandwidth ordering

Modified Minimum Degree

King's ordering

Reverse Cuthill McKee

No ordering

(x 10⁶)

X

(b)

Figure 6.10: Number of non-zero elements during the QR decomposition of our
system matrix with our heuristic (a). For better comparison between curves,
their totalized number of non-zero elements are presented (b). Moreover, the
corresponding results of the standard fill-in reduction strategies have been also
included for comparison. Dashed line indicates the totalized number of non-zero
elements of the QR decomposition of our system matrix with no ordering.

92 Chapter 6. Fill-in in the QR decomposition

M n

M N

0

0.5

1.0

1.5

2.0

Number of

rotations

Five groups

No groups

Minimum Bandwidth ordering

Modified Minimum Degree

King's ordering

Reverse Cuthill McKee

No ordering

(x 10⁶)

Figure 6.11: Number of Givens rotations needed for the entire QR decomposition
depending on which ordering has been applied. Dashed lines represent theoretical
upper and lower bounds of the number of rotations needed, where M is the number
of rows, N is the number of columns, and n is the average number of non-zero
elements in each row.

Chapter 7

Parallelization of the QR
algorithm

Modern computers have multiple processing cores that enable parallel execution of
different tasks. Nowadays, commercially available processors implement between
four and eight cores. It makes sense to consider the parallelization of procedures
to ease their computation time. The speed-up S of a procedure produced by its
parallelization is given by

S =
Tseq
Tpar

where Tseq is its execution time with sequential computations and Tpar is its execu-
tion time with parallel computations. There are two main strategies to parallelize
a procedure. A fine-grained approach consisting of a large amount of small sub-
tasks with little requirements and a coarse-grained approach composed of a small
amount of large subtasks that may require significant computation resources.

7.1 Fine-grained subtasks

Fine-grained strategies consist in the decomposition of the procedure in small
subtasks that have no dependence on each other. Each subtask will demand little
computation resources and will produce small intermediate results, which are easy
to store or send to other subtasks. Usually, the subtask creation and communica-
tion have an associated overhead that becomes non-negligible with this strategy
as it creates a large amount of subtasks.

The reduction to triangular form of a matrix A ∈ RM×N is performed by
means of a series of rotations. A rotation Gij only affects rows i and j of A and is
independent of another rotation Gkl if and only if i 6= j 6= k 6= l. So a fine-grained

93

94 Chapter 7. Parallelization of the QR algorithm

0.0 0.5 1.0 1.5 2.0

Α

t f

1

2

3

4

5

6

7

8

Speed-up

Figure 7.1: Speed-up of a procedure with eight subtasks executed in parallel, as a
function of the ratio between the parallel subtask overhead (α) and its amount of
computation (tf). In this case, α

tf
varies between zero (theoretical optimal case)

and two (non-negligible performance loss).

subtask consists in a rotation of two rows of A and two subtasks can be executed
in parallel if the above condition holds.

Suppose that the rows of A have, in average, n non-zero elements, then, the
time complexity of this subtask is O(N log n). The entire reduction to triangular
form will be composed of g subtasks, where Mn < g < MN . Let tf be the average
time to compute a fine-grained subtask. If all subtasks are executed sequentially,
this process will be completed in

Tseq = gtf

Consider that there are c = 2, 4, 8, . . . cores available, so we are going to execute c
subtasks in parallel. Now, the reduction to triangular form will be completed in

Tpar =
g(α + tf)

c

where α is the overhead associated to the execution of a subtask in parallel, which
mostly depends of the hardware and the operative system. Therefore, the paral-
lelization of this procedure achieves a speed-up of

S =
ctf

α + tf
(7.1)

Theoretically, if we could achieve an α = 0, we would obtain a speed-up equal to
the number of cores. But in practice α will be non-negligible. In fact, fine-grained

7.1. Fine-grained subtasks 95

subtasks must be defined carefully, so that α will not overwhelm its amount of
computation (see Figure 7.1). In our implementation, when fine-grained strategy
is used with matrices of 64 × 64 × 64, experimental results show that α

tf
≈ 0.4.

These experimental results where obtained with an Intel Core i7-2600 processor
and suggest that fine-grained strategy is not suitable for smaller matrices.

In terms of space, the QR decomposition using the row-wise strategy requires
O(N2). Each fine-grained subtask will require two rows as input and will produce
two rows as output, that is O(N) space, so, all c tasks in parallel will require
O(cN) additional space, which is negligible considering the requirements overall
reduction to triangular form.

The Givens rotations generated by the QR decomposition must be stored and
applied in the same order that they were generated and applied to the reduced
matrix. Executing fine-grained subtasks in parallel will produce several rotations
at the same time. Suppose there are two rotations Gij and Gkl, where i 6= j 6= k 6= l
and they are computed and applied in parallel. In this case, Gij and Gkl can be
stored and applied in any order. In other words, the second rotation will no see
the changes performed by the first. Suppose now there are c independent rotations
computed and applied in parallel. As before, they can be stored and applied in
any order, but they need to be serialized in order to be written in file. After c
rotations are executed in parallel, we need to store the rotations in some kind of
shared buffer and synchronize the executions, in order to assure that all c rotations
have been saved, so, the next c rotations can share rows with the previous. The
synchronization between the different subtasks leads to a bigger overhead, but
simplifies the row selection for new subtasks. Moreover, if the save operation in
the shared buffer is fast, the additional overhead will be lowered. An array of
rotations with a shared mutex combined with the small size of a rotation structure
will lead to an easy and fast enough implementation of this shared buffer.

Aside of the independence of the subtasks by assuring they affect to different
rows, mutual exclusion must be achieved. In §4.3 we implemented a sparse matrix
scheme based on BSTs. Each row is stored in an independent BST, so, subtasks
can read/write freely. But, given a row, to obtain its BST, all subtasks must
seek in the list of BSTs by the row index. This list can be implemented as an
array (if there is enough memory) or as another BST (see §4.3.1). Therefore, a
mutex must be placed on the list of rows to prevent race conditions while different
subtasks access this list at the same time. Again, the mutex will lead to a bigger,
but tolerable, overhead, as the time complexity to obtain the appropriate BST
reference is constant (in the array implementation) or logarithmic (in the BST
implementation).

96 Chapter 7. Parallelization of the QR algorithm



r1
r2
r3
r4
...

rk−1
rk


→



r1∪2

r3∪4

...
rk−1∪k


→



r1∪2∪3∪4

...
rk−3∪k−2∪k−1∪k


→


r⋃k

i=1 i



Figure 7.2: Subtasks in the different stages of the QR decomposition using coarse-
grained strategy. Subtask ri∪j will not be computed until subtasks ri and rj finish.

7.2 Coarse-grained subtasks

Coarse-grained strategy consists in the decomposition of the procedure in big
subtasks that have no dependence on each other. As few subtasks are created, their
associated overhead becomes negligible. But big subtasks will demand significant
computation resources and produce large intermediate results, which are difficult
to store or send.

A coarse-grained subtask consists in the reduction to triangular form of a set
r of rows of A ∈ RM×N . The reduction to triangular form of the rows in r1 will
be independent of the reduction of the rows in r2 if and only if r1 and r2 are
disjoint. Therefore the reduction to triangular form of the rows in r1 and r2 can
be executed in parallel if the above condition holds. Suppose now that all M rows
are distributed in k disjoint sets r1, r2, . . ., rk of approximately the same number
of rows, so k subtasks can be executed in parallel. Following the previous example,
after completing the subtasks related with r1 and r2, the next subtask to execute
will be the reduction to triangular form of the rows in the set r1∪2 = r1

⋃
r2 (see

Figure 7.2). Note that r1∪2 and the rest of the sets r3, r4, . . ., rk are disjoint, so
they can be executed in parallel. In fact, the only dependence would be between
r1∪2 and r1 or r2, but as r1∪2 will be computed as a result of r1 and r2, these
subtasks will never coexist. This way, the entire reduction to triangular form will
be completed in g subtasks, where

g = k +
k

2
+
k

4
+ . . .+ 1 =

log2 k∑
i=0

k

2i
= 2k − 1

Suppose that the rows of A have, in average, n non-zero elements, then, the
time complexity of a coarse-grained subtask is O(|r|N2 log n), where |r| is the
number of rows in r. For now, we assume |r| ≈ N . If we compare the time

7.2. Coarse-grained subtasks 97

complexity of coarse and fine-grained subtasks

O(|r|N2 log n)

O(N log n)
=
O(N3 log n)

O(N log n)
= O(N2)

we obtain that coarse-grained subtasks have a cost two orders of magnitude greater
than fine-grained subtasks. Let tc be the average time to compute a coarse-grained
subtask. We can derive from above cost that tc ≈ 100tf . Consider that there are
c = 2, 4, 8, . . . cores available, so we are going to execute c subtasks in parallel.
The speed-up achieved with the parallelization of this procedure will be the same
of 7.1,

S =
ctc

α + tc
but the cost of a subtask computation tc makes α negligible. In Figure 7.3 is
represented the speed-up of a procedure when ranging the subtask overhead as we
did for fine-grained subtasks, but considering now tc.

0.000 0.005 0.010 0.015 0.020

Α

tc
1

2

3

4

5

6

7

8

Speed-up

Figure 7.3: Speed-up of a procedure with eight subtasks executed in parallel, as
a function of the ratio between the parallel subtask overhead (α) and its amount
of computation (tc). In this case, the same subtask overhead than fine-grained
subtasks has been considered, but with tc ≈ 100tf .

Unlike the fine-grained strategy, coarse-grained has one additional parameter
to define: the number of rows of each set. In §6.2 we defined a strategy to reduce
the fill-in based on performing the QR decomposition separately in different sets of
rows, instead of in the whole matrix. We use these sets as the ri in coarse-grained
strategy. There will be different |ri| established by the fill-in reduction criterion,
but experimental data show that, in average, |ri| ≈ N which is compatible with
our time complexity calculation.

98 Chapter 7. Parallelization of the QR algorithm

Figure 7.4: Non-zero elements of the CT model matrix, as they are generated (left)
and reordered with the band ordering discussed in §6.2 (right). Highlighted zones
mark columns of zeros that are useful to reduce the size of intermediate results of
coarse-grained subtasks.

7.3. Parallelization of the backward substitution process 99

In terms of space, each subtask will require a set of rows (submatrix) as input
and will produce a set of rows (upper triangular submatrix) as output. This will
require O(N2) space at most. Less space will be needed if, for example, we de-
mand the last i columns be zero for all rows of the subtask, needing O((N − i)2).
If i is sufficiently large, the space requirement will be considerably eased. The
band ordering discussed in §6.2 can be used to make this row selection (see Fig-
ure 7.4). After the ordering is applied to A, first rows will have their last columns
zero (Figure 7.4: 1), last rows will have their first columns zero (Figure 7.4: 3)
and beginning and ending columns will be zero for the rows located in between
(Figure 7.4: 2).

In the previous section, we synchronized fine-grained subtasks in order to save
the simultaneously generated Givens rotations. In the case of coarse-grained sub-
tasks, there is no need of synchronization, as we defined the sets of rows in a way
that all subtasks always will be independent of each other. In other words, all
rotations applied by each subtask will not see the changes made by any rotation
of coexistent subtasks. Instead, inside each subtask, the next rotation will not be
generated until the current rotation is saved.

No further considerations than made for fine-grained strategy are needed to
achieve mutual exclusion. The same shared buffer can be used in order to save
the rotations of all subtasks and a mutex in the list of BSTs will allow all parallel
subtasks to search for rows in the sparse matrix scheme.

7.3 Parallelization of the backward substitution

process

The backward substitution process is the final stage of the image reconstruction.
As the QR decomposition A ∈ RM×N and A = QR is computed a priori, the
backward substitution of

Rx = QT b (7.2)

will be the process that defines the reconstruction time form the user’s point
of view. Therefore, the optimization of this task is of the utmost importance.
There are five subtasks to complete the image reconstruction that are inherently
sequential between them:

1. The CT measurement loading, which will initialize b (O(M)).

2. The reordering of b according to any ordering applied to the rows of A before
the QR decomposition (see §6) (O(M)).

100 Chapter 7. Parallelization of the QR algorithm

3. The computation of the right hand side QT b (see Equation 7.2). The right
hand side is obtained by applying to b the Givens rotations used to reduce
A to R (see §5.3.3) (O(g), where g is the total number of Givens rotations).

4. The computation of the solution x by backward substitution (O(N2)).

5. The reordering of x according to any ordering applied to the columns of A
before the QR decomposition (see §6) in order to form an image (O(N)).

Our strategy consists in the implementation of a circular buffer as the reading
buffer that is used to load the QT file. Two subtasks will manage this buffer, one
that will load from disk to the available space in buffer (producing rotations), and
other that will apply the rotations stored in the buffer to an array (consuming
rotations). Several contiguous sections must be defined within the buffer to assure
mutual exclusion between the two subtasks, while the consuming task is applying
the rotations stored in a section, the producing task can be loading the next
rotations freely in the other sections.

Each section must have a different mutex, so if a subtask depletes or completely
fills the buffer, it will be paused in behalf of the complementary subtask. In our
case, we experimentally determined that the better performance was achieved with
a circular buffer size of 16 MB divided in four equally spaced sections.

Regarding the forth subtask, as a standard backward substitution process,
its parallelization is already implemented in the Intel MKL PARDISO [66], for
example. The third and forth subtasks are the most time consuming and little or
nothing can be done for the rest. The main advantage of this approach is that it
is simple and fast to implement.

Chapter 8

The QR solution of the linear
system

Reconstructed images are the solution to the CT model matrix considering a par-
ticular CT measurement. It is important to perform an analysis from the image
quality point of view to assess the suitability of QR as a CT reconstruction al-
gorithm. In this Chapter, two measurements will be analyzed: a phantom with
homogeneous materials and a mouse. Different features will be studied from both
cases such as correct translation of the x-ray attenuation coefficients, image con-
trast, noise, sharpness, or fine feature reproducibility, yielding a complete assess-
ment of the QR reconstruction algorithm.

8.1 Image quality

Measurements for the assessment of the image quality were obtained with an Al-
bira µCT [42], which is a trimodal PET/SPECT/CT scanner. The CT subsystem
is a cone beam CT that uses a microfocus x-ray source with a focal spot size of
35 µm and a CMOS flat-panel with an active area of 120× 120 mm2 that consists
of a 2400 × 2400 pixelated array sensors. Fixed distances from the x-ray tube to
the isocenter (290 mm) and x-ray detector (425 mm) lead to a magnification factor
of 1.46. This geometry allows a transaxial field of view (FoV) of about 80 mm in
diameter and an axial FoV of 65 mm. As discussed in Section 3.1, the detectors
can be projected to the isocenter, in order to avoid considering the magnification
factor. Thus, from now on, this projection will be considered and sensor pixels will
be dimensioned accordingly. Following this correction, the 2400 × 2400 pixelated
array sensor will be considered with an active area of 82.2 × 82.2 mm2 and each
sensor pixel will be considered with an edge size of 34.2 µm.

Unfortunately, a model based approach considering a sensor of a 2400 × 2400

101

102 Chapter 8. The QR solution of the linear system

pixels is, now a days, not viable computationally for QR reconstruction. Therefore,
two measure configurations have been defined, depending on the binning of the
device sensor pixels. On one hand, the device sensor has been rebinned to a 256×
256 pixelated array. This renders sensor pixels with an edge size of 0.3 mm. On
the other hand, the device sensor has been rebinned to a 392×392 pixelated array.
This renders sensor pixels with an edge size of 0.2 mm. These configurations allow
to produce 3D images with voxel sizes up to 0.3 mm in the first case and 0.2 mm in
the second case for FBP and MLEM reconstruction methods. Regarding the QR,
These configurations allow to produce 3D images with voxel sizes of 1.28 mm in the
first case and 0.8 mm in the second case. As discussed in Section 3.2, smaller voxel
sizes will lead to near-rank-deficient system matrix (because of linearly dependent
rows generated by this CT modeling), and therefore, a break down in the back-
substitution phase can be expected. Hence, in this chapter, QR generated 3D
images of 1.28 mm voxel size and 0.3 mm detector size will be compared against
FBP and MLEM generated 3D images of 0.3, 0.8, and 1.2 mm voxel size and
0.3 mm detector size. In the same way, QR generated 3D images of 0.8 mm voxel
size and 0.2 mm detector size will be compared against FBP and MLEM generated
3D images of 0.2, 0.5, and 0.8 mm voxel size and 0.2 mm detector size.

Before the image comparison, it is necessary to consider the configuration of
the FBP and MLEM algorithms. The reconstruction filter function used in the
FBP implementation is a band-limited ramp filter, using the Gaussian apodization
function e−x

2/(2σ2) where σ is chosen so that the Gaussian apodization function
has a full width at half maximum of 0.8. The MLEM is configured to perform 40
iterations and no regularization is applied.

A phantom with homogeneous materials was used, in order to produce 3D
images with homogeneous volume of interest (VoI). Mean and standard deviation of
the voxel values of these VoIs will be useful to obtain image quality metrics related
to signal and noise. Mean and the standard deviation are computed according to
equations (8.1) and (8.2)

µv =
1

Nv

Nv∑
i=1

xi (8.1)

σv =

√√√√ 1

Nv − 1

Nv∑
i=1

(xi − µv)2 (8.2)

where Nv is the number of pixels in the VoI and xi is the value of each voxel.
The phantom used for these measurements (see Figure 8.1) consists on a

PMMA cylinder of 50 mm height and 55 mm in diameter and contains cylin-
ders of different materials. The center of each cylinder is 16 mm off the axis and
are 8 mm in diameter. Aside of the container cylinder of PMMA, the rest of cylin-

8.1. Image quality 103

Figure 8.1: Phantom of PMMA with inserts of PMMA (*) for alignment purposes,
air (1), PTFE (or Teflon) (2), PE (3), and POM (4), which model regions filled
with air inside the body, soft bone, adipose tissue, and organs tissue, respectively.

ders are made of air, PTFE (or Teflon), PE and POM. These materials model
air regions, PMMA for soft tissue, PTFE for soft bone, PE for adipose tissue and
POM for organs tissue, inside the human body.

The correct translation of the attenuation coefficients of all the considered
materials has to be evaluated before the signal and noise analysis. A plot of the
calculated attenuation coefficients versus the nominal attenuation coefficients of
the phantom materials is used to verify the translation of the coefficients of the
reconstruction algorithm. This is often called linearity check [67] and ideally, the
graph of the calculated versus the phantom attenuation coefficients should be
related with the same line. The nominal attenuation coefficients of the phantom
materials have been obtained from [68, 69].

Measurements of phantom shown in Figure 8.1 allow the calculation of atten-
uation coefficients of materials with well known nominal attenuation coefficients.
In Figures 8.2, 8.3, and 8.4, a linearity check of the QR algorithm is presented
(Figure 8.2) alongside of a linearity check of the FBP and MLEM algorithms (Fig-
ures 8.3 and 8.4) which are important references in the field of CT reconstruction.
In Figures 8.2, 8.3, and 8.4 can be observed that the air values are above the ideal
line in all cases. This is due to the fact that the air VoI is inside the phantom body
of PMMA. The air VoI is positioned inside the phantom because of the difficulties
experienced by some reconstruction methods emptying image areas corresponding
to areas of air inside a body. Unless the atypically high value of air, the rest of
the materials are translated accordingly to their nominal attenuation coefficients.

As a general comparison, in Figure 8.5, the central slices of the 3D reconstruc-
tions of the phantom showed in Figure 8.1 are presented. Each row corresponds
to a different reconstruction method, while each column corresponds to a different

104 Chapter 8. The QR solution of the linear system

Air

PE

PMMA

Teflon

C
al

cu
la

te
d

μ
(c

m
-1
)

0

0.1

0.2

0.3

0.4

0.5

0.6

Nominal μ (cm-1)
0 0.1 0.2 0.3 0.4 0.5 0.6

Calculated μ (QR)
Nominal μ

Figure 8.2: Relationship between the nominal and the reconstructed attenuation
coefficients (at 40 kV) of the phantom inserts (see Figure 8.1) air, PE, PMMA,
and Teflon. Reconstructed attenuation coefficients were obtained using QR.

8.1. Image quality 105

Air

PE

PMMA

Teflon

C
al

cu
la

te
d

μ
(c

m
-1
)

0

0.1

0.2

0.3

0.4

0.5

0.6

Nominal μ (cm-1)
0 0.1 0.2 0.3 0.4 0.5 0.6

Calculated μ (FBP)
Nominal μ

Figure 8.3: Relationship between the nominal and the reconstructed attenuation
coefficients (at 40 kV) of the phantom inserts (see Figure 8.1) air, PE, PMMA,
and Teflon. Reconstructed attenuation coefficients were obtained using FBP.

106 Chapter 8. The QR solution of the linear system

Air

PE

PMMA

Teflon

C
al

cu
la

te
d

μ
(c

m
-1
)

0

0.1

0.2

0.3

0.4

0.5

0.6

Nominal μ (cm-1)
0 0.1 0.2 0.3 0.4 0.5 0.6

Calculated μ (MLEM)
Nominal μ

Figure 8.4: Relationship between the nominal and the reconstructed attenuation
coefficients (at 40 kV) of the phantom inserts (see Figure 8.1) air, PE, PMMA,
and Teflon. Reconstructed attenuation coefficients were obtained using MLEM.

8.1. Image quality 107

voxel size. Specifically, top to bottom, are the QR, MLEM, and FBP methods,
and left to right, are 0.3, 0.8, and 1.2 mm. In the case of the QR, only 0.8 and
1.28 mm are available, due to the computational cost of the 0.3 mm voxel size
reconstruction.

In terms of visual (subjective) quality, the QR reconstruction with 1.28 mm
can be placed in between the 0.8 and 1.2 mm reconstructions of FBP and MLEM.
Likewise, the QR reconstruction with 0.8 mm can be placed in between the 0.3
and 0.8 mm reconstructions of FBP and MLEM. This is significant in the sense
that large voxel size has an important role in the degradation of the image quality.
In this case, a large voxel size (∼ 1.2 mm) refers to the relation between the voxel
edge size and each insert diameter (8 mm) which leaves ∼ 6 voxels in diameter for
each insert. With so few voxels, the reconstruction algorithms should perform a
fine estimate of the attenuation coefficients, in order to correctly translate curved
edges (between materials) and avoid blurring. This effect is mostly appreciated
in the FBP reconstruction with 1.2 mm voxels and is less evident in the QR and
MLEM reconstructions with 1.28 and 1.2 mm. The better performing of QR and
MLEM is mainly due to the fact that they are model based methods.

The first step for the numerical analysis of the reconstructed images is the
definition of meaningful VoIs. All VoIs will be cylindrical along the axial axis with
a height of approximately 38 mm (in order to maximize the number of considered
slices in all image configurations). Moreover, all VoIs will have a diameter of 4 mm
(inside each insert which is 8 mm in diameter), so that the exterior 2 mm of each
insert is excluded in order to avoid considering voxels that are part of transition
between materials. In this case, selected VoIs are the following:

• Air, centered in its insert, will be a measure of high contrast low valued
region. Also, this VoI will demonstrate the ability for each algorithm to
reproduce empty regions inside the body.

• Bone, centered in the Teflon insert, will be a measure of high contrast high
valued region.

• Adipose tissue, centered in the PE insert, will be a measure of low contrast
low valued region.

• Organs, centered in the POM insert, will be a measure of low contrast high
valued region.

• Soft tissue, PMMA, displaced 16 mm off the axis (likewise the rest of in-
serts), will be a measure representing background to compute contrast mea-
surements.

108 Chapter 8. The QR solution of the linear system

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 8.5: Central slice of a 3D reconstructed phantom (see Figure 8.1) with
different reconstruction methods and voxel sizes: QR 0.8 mm (a), QR 1.28 mm (b),
MLEM 0.3 mm (c), MLEM 0.8 mm (d), MLEM 1.2 mm (e), FBP 0.3 mm (f),
FBP 0.8 mm (g), FBP 1.2 mm (h).

8.1. Image quality 109

Regarding the mean values obtained from VoIs, in the case of air, reconstruc-
tion algorithms must obtain a value close to zero. Specifically, the attenuation
coefficient for air at 40 kV is approximately 3 × 10−4 cm−1. In practice, the re-
construction algorithms produce greater values. A figure of merit is how close
to zero the reconstructed values of an air region inside the object are. In Fig-
ure 8.6, mean and standard deviation for the air VoI are shown. MLEM algorithm
presents the highest air mean values. Taking MLEM as reference, in the case of
0.3 mm detectors, QR algorithm offers a reduction of 45.9% while FBP algorithm
obtains a reduction up to 67.3% (in the best case scenario) of MLEM air mean
value (which remains constant for all voxel sizes). In the case of 0.2 mm detectors,
almost the same result is obtained (although, with slightly higher mean air values
in all cases). The QR algorithm offers a reduction of 42.9% while FBP algorithm
obtains a reduction up to 66.7% (in the best case scenario) of MLEM air mean
value (which remains almost constant for all voxel sizes).

The complementary high contrast VoI is made of Teflon, modeling soft bone
tissue. The attenuation coefficient for Teflon at 40 kV is approximately 0.6 cm−1.
In this case, reconstruction algorithms tend to obtain values lower than expected.
In Figure 8.7, mean and standard deviation of the reconstructed attenuation coef-
ficients for the Teflon VoI are shown. FBP algorithm presents the highest Teflon
mean values. Taking Teflon nominal attenuation coefficient as reference, in the
case of 0.3 mm detectors, QR algorithm reaches a 96% of the expected value while
MLEM obtains a 97% and FBP obtains a 98.8% both with 0.8 and 0.3 mm voxels.
In the case of 0.2 mm detectors, almost the same result is obtained (although,
with slightly lower mean Teflon values in all cases). QR reaches a 95.5% of the
expected value while MLEM obtains a 96.8% and FBP obtains a 98.6% both re-
maining almost constant for all voxel sizes.

The results of the low contrast VoIs are shown in Figures 8.8 and 8.9. The
expected attenuation coefficient for PE is displayed as a horizontal dashed line
(POM nominal value was not available in [68]). In all cases, mean similar and
close to the expected nominal attenuation coefficient.

As a result summary, the success in the translation of the attenuation coeffi-
cients of the different materials are collected in Table 8.1.

A notable increase of the standard deviation (see Section 8.2) of all VoI values
appears in images with 0.2 mm detector and voxel sizes. This increase is even
greater in the case of FBP. The detector rebinning performed to ease computa-
tional cost has a cancellation effect of the noise in measured data. As smaller
detectors are considered, this cancellation effect tends to disappear. A similar
effect is present regarding the voxel size. Larger voxels integrate the attenuation
coefficients of near regions of the image space and also, noise cancellation occurs.
This cancellation effect also tends to disappear as smaller voxels are considered.

110 Chapter 8. The QR solution of the linear system

R
ec

on
st

ru
ct

ed
 a

tt
en

ua
ti

on
 c

oe
ffi

ci
en

t
μ

(c
m

-1
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Voxel size (mm)
1.2 0.8 0.3

QR
FBP
MLEM

(a)

R
ec

on
st

ru
ct

ed
 a

tt
en

ua
ti

on
 c

oe
ffi

ci
en

t
μ

(c
m

-1
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Voxel size (mm)
0.8 0.5 0.2

QR
FBP
MLEM

(b)

Figure 8.6: Reconstructed attenuation coefficients for the air insert, for detector
sizes of 0.3 mm (a) and 0.2 mm (b). Expected attenuation coefficient is close to
zero (approximately 3× 10−4 cm−1).

8.1. Image quality 111

R
ec

on
st

ru
ct

ed
 a

tt
en

ua
ti

on
 c

oe
ffi

ci
en

t
μ

(c
m

-1
)

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

Voxel size (mm)
1.2 0.8 0.3

QR
FBP
MLEM

(a)

R
ec

on
st

ru
ct

ed
 a

tt
en

ua
ti

on
 c

oe
ffi

ci
en

t
μ

(c
m

-1
)

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

Voxel size (mm)
0.8 0.5 0.2

QR
FBP
MLEM

(b)

Figure 8.7: Reconstructed attenuation coefficients for the Teflon insert, for detector
sizes of 0.3 mm (a) and 0.2 mm (b). Expected attenuation coefficient is represented
by a horizontal dashed line.

112 Chapter 8. The QR solution of the linear system

R
ec

on
st

ru
ct

ed
 a

tt
en

ua
ti

on
 c

oe
ffi

ci
en

t
μ

(c
m

-1
)

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

Voxel size (mm)
1.2 0.8 0.3

QR
FBP
MLEM

(a)

R
ec

on
st

ru
ct

ed
 a

tt
en

ua
ti

on
 c

oe
ffi

ci
en

t
μ

(c
m

-1
)

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

Voxel size (mm)
0.8 0.5 0.2

QR
FBP
MLEM

(b)

Figure 8.8: Reconstructed attenuation coefficients for the PE insert, for detector
sizes of 0.3 mm (a) and 0.2 mm (b). Expected attenuation coefficient is represented
by a horizontal dashed line.

8.1. Image quality 113

R
ec

on
st

ru
ct

ed
 a

tt
en

ua
ti

on
 c

oe
ffi

ci
en

t
μ

(c
m

-1
)

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

Voxel size (mm)
1.2 0.8 0.3

QR
FBP
MLEM

(a)

R
ec

on
st

ru
ct

ed
 a

tt
en

ua
ti

on
 c

oe
ffi

ci
en

t
μ

(c
m

-1
)

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

Voxel size (mm)
0.8 0.5 0.2

QR
FBP
MLEM

(b)

Figure 8.9: Reconstructed attenuation coefficients for the POM insert, for detector
sizes of 0.3 mm (a) and 0.2 mm (b). Expected attenuation coefficient was not
available in [68].

114 Chapter 8. The QR solution of the linear system

Table 8.1: Mean attenuation coefficients translation summary. Results in air col-
umn are the percentage of reduction over the MLEM obtained mean value. Teflon
and PE columns are the percentage of the mean value obtained over the nominal
attenuation coefficient.

Algorithm
0.3 mm detectors 0.2 mm detectors

Air Teflon PE Air Teflon PE
QR 45.9% 96% 101% 42.9% 95.5% 101%
FBP 67.3% 98.8% 99% 66.7% 98.6% 99.2%
MLEM N/A 97% 101% N/A 96.8% 101.5%

The 0.2 mm detector, 0.2 mm voxel configuration minimizes cancellation in both
sides and therefore, standard deviation increase is particularly present in this con-
figuration. In the next Section, a detailed analysis of the standard deviation will
be performed.

8.2 Standard deviation noise analysis

Noise is a key characteristic in image analysis. In the field of CT images, two main
directions have been consolidated to address this issue: standard deviation related
analysis and spectral analysis. A standard deviation related analysis will follow
now and in Section 8.4 a noise spectral analysis will be performed. In this section,
two of figures of merit related with noise have been considered:

• The coefficient of variation (CV): is a measure of the variability between
voxel values in a VoI. CV is divided by µv in order to obtain a dimensionless
measure.

CV =
σv
µv

100 (8.3)

• The contrast to noise ratio (CNR) [70]: is a measure of the relation between
contrast (difference between means) and noise (standard deviation) of a VoI
and the PMMA background.

CNR =
2 |µv − µb|
σv + σb

(8.4)

where µb and σb represent the CT number and the standard deviation of
PMMA background respectively.

These two measures complement each other. On one hand, the CNR gives a
value of how much a value difference can be seen through the noise that is present.

8.2. Standard deviation noise analysis 115

In other words, this measure answers the following question: will the current noise
level let see image features with a certain contrast? The result is a percentage
representing the visibility of the considered VoI. The larger the CNR, the better
the visibility. A result close to 0% means that the considered VoI is invisible in
presence of the current noise. Of course, this measure also increases with contrast
and the following results must be divided in two types (comparable among them):
high contrast (air and Teflon) and low contrast (PE and POM).

On the other hand, the CV gives a voxel variability independent of its mean
value, in order to get a noise measure comparable between VoIs. As our VoIs are
defined over homogeneous regions this accounts directly for the noise present (a
result close to 0% will mean that the considered VoI has almost constant voxel
values). When analyzing CNR, this measure will answer the following question:
how much of the CNR variation is due to the noise increase/decrease and not to a
possible change of contrast? The combination of these two measures illustrates the
amount of noise present and its influence in the interpretation in the reconstructed
image.

In Figures 8.10 and 8.11, results measured in the low contrast VoIs are presented
(PE and POM, respectively). In all cases, degradation in CNR results is due to
increase in CV. The comparison between QR and FBP or MLEM shows QR having
poor CNR results using 0.8 mm voxels (same voxel size) or even with 0.5 mm voxels.
CNR and CV results obtained with QR (0.8 mm voxels) are only comparable to
those obtained by FBP or MLEM using 0.2 mm voxels.

In Figure 8.12, results measured in the high contrast Teflon VoI are presented.
The low noise present in the Teflon measurements (due to its high attenuation
coefficient) should be taken into account. In this case, CV result obtained with
QR (0.8 mm voxels) can be comparable to those obtained with FBP or MLEM
with 0.5 and 0.2 mm voxels. The discrepancy between CNR and CV is mainly due
to the fact that attenuation coefficients obtained with QR in the Teflon VoI do
not reach those obtained by FBP or MLEM (see Figure 8.7). Regarding the CV,
QR obtains approximately two times the CV results obtained by FBP or MLEM
using 0.8 mm (while in the low contrast cases were more than two or three times)
and the difference between methods decreases with the voxel size, as well. Even
the increase in CV suffered by the FBP using 0.2 mm voxels is mitigated in the
case of Teflon.

The air VoI presents a different case (see Figure 8.13). First of all, the great
influence of noise in the air VoI (due to its extremely low attenuation coefficient)
should be taken into account. In previous cases, the CV obtained with FBP and
MLEM increase as the voxel size decreases. In this case, the minimum CV is
obtained with 0.5 mm voxels. Regarding the FBP results with 0.8 mm voxels,
although the VoIs have been defined with a 2 mm margin in order to avoid voxels

116 Chapter 8. The QR solution of the linear system

C
on

tr
as

t
to

 N
oi

se
 R

at
io

 (
%

)

5

10

15

20

25

30

35

Voxel size (mm)
0.8 0.5 0.2

QR
FBP
MLEM

(a)

C
oe

ffi
ci

en
t

of
 V

ar
ia

ti
on

 (
%

)

0

1

2

3

4

5

6

Voxel size (mm)
0.8 0.5 0.2

QR
FBP
MLEM

(b)

Figure 8.10: CNR (a) and CV (b) of the PE VoI for each algorithm and voxel
size (using 0.2 mm detector size). CV is presented alongside CNR, in order to
highlight noise contribution to CNR reduction.

8.2. Standard deviation noise analysis 117

C
on

tr
as

t
to

 N
oi

se
 R

at
io

 (
%

)

5

10

15

20

25

30

Voxel size (mm)
0.8 0.5 0.2

QR
FBP
MLEM

(a)

C
oe

ffi
ci

en
t

of
 V

ar
ia

ti
on

 (
%

)

0

1

2

3

4

Voxel size (mm)
0.8 0.5 0.2

QR
FBP
MLEM

(b)

Figure 8.11: CNR (a) and CV (b) of the POM VoI for each algorithm and voxel
size (using 0.2 mm detector size). CV is presented alongside CNR, in order to
highlight noise contribution to CNR reduction.

118 Chapter 8. The QR solution of the linear system

C
on

tr
as

t
to

 N
oi

se
 R

at
io

 (
%

)

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Voxel size (mm)
0.8 0.5 0.2

QR
FBP
MLEM

(a)

C
oe

ffi
ci

en
t

of
 V

ar
ia

ti
on

 (
%

)

0

1

2

3

Voxel size (mm)
0.8 0.5 0.2

QR
FBP
MLEM

(b)

Figure 8.12: CNR (a) and CV (b) of the Teflon VoI for each algorithm and voxel
size (using 0.2 mm detector size). CV is presented alongside CNR, in order to
highlight noise contribution to CNR reduction.

8.2. Standard deviation noise analysis 119

that are part of transition between materials, some voxels inside the air VoI are
influenced by surrounding PMMA. Regarding the MLEM results with 0.8 mm
voxels, the CNR obtained is mainly due to the fact that attenuation coefficients
obtained in the air VoI do not reach the low values obtained by FBP. Otherwise,
QR results are comparable (as in low contrast VoIs) to those obtained by FBP or
MLEM using 0.2 mm voxels.

As a summary, noise present in the reconstructed images with QR using 0.8 mm
voxels is comparable to noise present in reconstructed images with FBP or MLEM
using 0.2 mm voxels.

120 Chapter 8. The QR solution of the linear system

C
on

tr
as

t
to

 N
oi

se
 R

at
io

 (
%

)

20

25

30

35

40

45

50

55

60

65

70

75

80

Voxel size (mm)
0.8 0.5 0.2

QR
FBP
MLEM

(a)

C
oe

ffi
ci

en
t

of
 V

ar
ia

ti
on

 (
%

)

0

5

10

15

20

25

30

35

40

45

50

Voxel size (mm)
0.8 0.5 0.2

QR
FBP
MLEM

(b)

Figure 8.13: CNR (a) and CV (b) of the air VoI for each algorithm and voxel size
(using 0.2 mm detector size). CV is presented alongside CNR, in order to highlight
noise contribution to CNR reduction.

8.3. Sharpness analysis 121

8.3 Sharpness analysis

Several metrics have been proposed in the literature for the quantification of blur
in an image. For example, variance [71] or kurtosis [72, 73] based metrics, among
many others [74], have been proposed. However, these metrics are influenced by
the amount of noise in the reconstructed image and in our case, are more sensitive
to changes in voxel size or reconstruction algorithm than blur.

One of the effects of blur is the spread of the edges in an image. QR, FBP and
MLEM show different definition in their reconstructed images. In Figures 8.14
(a), (b), (c), and 8.15 (a), (b), (c) are shown the central slices of the homogeneous
regions phantom reconstructed with QR, FBP, and MLEM using a voxel size of
0.8 mm. In this case, differences in the edge definition can be perceived even with
a naked eye. The idea of an analysis of the spread of the edges [75] has been
adopted and adapted to our particular case, in order to quantify the definition of
the reconstruction algorithms.

In Figures 8.14 and 8.15 is shown a line profile through the high contrast and
low contrast inserts respectively. Also, the line profiles of FBP and MLEM are
compared to the line profile of QR. Differences in smoothness of the transition
between materials can be noticed. Regarding the blur, the main feature of the
transition between materials is how quickly it is made. Ideally, transitions should
be quickly and therefore, abrupt. However, smooth transitions can be observed,
for example, in the case of Teflon insert reconstructed with FBP or air insert
reconstructed with MLEM.

The Sobel operator [76] provides a gradient estimate at an image point by the
vector summation of the 4 possible gradient estimates obtainable in a 3× 3 point
neighborhood. This operator has been widely used in image processing and nowa-
days, is available in almost every image software. Applying the Sobel operator to
the central slice image of the homogeneous region phantom (see Figure 8.16 (a))
will lead to an image (see Figure 8.16 (b)) in which the transitions between mate-
rials can be easily characterized.

In Figure 8.16, a summary of the analysis of the spread of the edges is illus-
trated. The Sobel filter is applied to the original image, obtaining the gradient
estimate image. Then, the same line profiles as applied in Figures 8.14 and 8.15
are applied to the gradient estimate image. These line profiles, now, show peaks
in transitions between materials. The four central peaks (transitions into and out
of the inserts) are selected (by cutting off the leftmost and rightmost peaks) and
then, four Gaussian distributions are fitted to them (as seen in Figure 8.16 (c)).
The full width at half maximum (FWHM) of these distributions represents the dis-
tance needed for the reconstruction algorithms to perform the transition between
materials. Finally, the two FWHMs of the two transitions involving an insert are
averaged, in order to obtain a single value for each material.

122 Chapter 8. The QR solution of the linear system

(a) (b) (c)
A

tt
en

ua
ti

on
 c

oe
ffi

ci
en

t
(μ

)

0

0.2

0.4

0.6

Line position (mm)
10 20 30 40 50 60 70 80

QR 0.8 mm
FBP 0.8 mm

(d)

A
tt

en
ua

ti
on

 c
oe

ffi
ci

en
t

(μ
)

0

0.2

0.4

0.6

Line position (mm)
10 20 30 40 50 60 70 80

QR 0.8 mm
MLEM 0.8 mm

(e)

Figure 8.14: Line profiles through high contrast inserts at central slice of images
reconstructed with QR (a), FBP (b), and MLEM (c). Line profiles have been
separated into QR vs. FBP (d) and QR vs. MLEM (e), in order to simplify the
plots. In the first valley (around 35 mm) are located the line values through the
air insert and in the first peak (around 50 mm) are located the line values through
the Teflon insert. Smooth transitions can be observed in the FBP profile of Teflon
or the MLEM profile of air.

8.3. Sharpness analysis 123

(a) (b) (c)

A
tt

en
ua

ti
on

 c
oe

ffi
ci

en
t

(μ
)

−0.1

0

0.1

0.2

0.3

0.4

Line position (mm)
10 20 30 40 50 60 70

QR 0.8 mm
FBP 0.8 mm

(d)

A
tt

en
ua

ti
on

 c
oe

ffi
ci

en
t

(μ
)

−0.1

0

0.1

0.2

0.3

0.4

Line position (mm)
10 20 30 40 50 60 70

QR 0.8 mm
MLEM 0.8 mm

(e)

Figure 8.15: Line profiles through low contrast inserts at central slice of images
reconstructed with QR (a), FBP (b), and MLEM (c). Line profiles have been
separated into QR vs. FBP (d) and QR vs. MLEM (e), in order to simplify
the plots. In the first peak (around 30 mm) are located the line values through
the POM insert and in the first valley (around 45 mm) are located the line values
through the PE insert. Smooth transitions can be observed in the FBP and MLEM
profiles of both inserts.

124 Chapter 8. The QR solution of the linear system

(a)

(b)

A
tt

en
ua

ti
on

 c
oe

ffi
ci

en
t

(μ
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Line position (mm)
10 20 30 40 50 60 70

Line profile (QR 0.8 mm)
Gradient approximation fit

(c)

Figure 8.16: Illustration of the characterization of transition between materials.
In this example, image has been reconstructed with QR using 0.8 mm voxels. A
line profile through the high contrast inserts at central slice (a) is selected, and
shown as a filled curve in (c). In the first valley (around 35 mm) are located
the line values through the air insert and in the first peak (around 50 mm) are
located the line values through the Teflon insert. A Sobel operator is applied to
the central slice to obtain a gradient estimate image (b) and the previous line
profile is reevaluated to yield gradient estimates. Only the line segment between
25 and 57 mm (where the transitions involving inserts are located) is considered.
Four Gaussian distributions are fitted to this line segment and shown in (c). The
FWHM of the Gaussian distributions will be considered as the transition width.

8.3. Sharpness analysis 125

The Gaussian distribution fit reasonably well to the gradient estimates, both
to the high contrast gradients (see Figure 8.17) and to the low contrast gradients
(see Figure 8.18). In our case, the most important feature of the gradient peaks
is its width. Thin peaks represent short transitions, and therefore, sharp edges.
The FWHM is a commonly used parameter that describes the width of a curve.
Once fitted, the FWHM is a good choice to represent the width of the gradient
estimate peaks. In Figures 8.17 and 8.18, the fit of gradient estimates from images
with 0.8 mm voxels are shown (high contrast and low contrast respectively). The
different peaks represent, from left to right, transitions inside and outside the first
insert and inside and outside the second insert (air and Teflon in the high contrast
case and POM and PE in the low contrast case).

For a better comparison between algorithms, fits to all gradients (high and
low contrast) from images using 0.8 mm voxels are shown in Figures 8.19 (a)
and 8.20 (a) respectively. In all cases, QR algorithm produces thinner gradients.
And gradients produced by QR using 0.8 mm voxels are comparable to those pro-
duced by FBP or MLEM using 0.5 mm voxels (see Figures 8.19 (b) and 8.20 (b)).
Considering this last case, it has to be noted that in some cases, FBP and MLEM
produce thinner gradients than QR, but the increase in image size (from 0.8 to
0.5 mm) is considerable. In other words, with fewer voxels, QR is able to produce
transitions as narrow as FBP or MLEM with almost half sized voxels.

Until now, a pair of gradient estimates have been shown for each material. As
mentioned before this is due to the fact that an insert produces two transitions: one
from the background to the insert and the other from the insert to the background
again. Both transitions related to the same insert have similar FWHMs. This
is best seen, for example, in the case of high contrast inserts (air and Teflon)
reconstructed with MLEM (see Figure 8.17 (f)), due to the difference between the
smoothness of the transitions involving air and Teflon. Therefore, the two FWHMs
related to the same insert have been averaged, in order to produce an estimate of
each material.

The final considerations of this analysis can be made from the transition width
of each material, for each algorithm, as a function of the voxel size. These mea-
surements are compiled in Figure 8.21. QR results correspond to images using
0.8 mm voxels (the only voxel size available for QR) and kept constant for the rest
of voxel sizes for a better visual comparison (gray dashed line).

FBP results appear as continuous lines. Its results for low contrast materials
using 0.2 mm voxel size are not included due to amount of noise present in the
reconstructed image. The gradient width can not be estimated with this tech-
nique due to the similarity and proximity between gradients produced by noise
fluctuations and gradients produced by transitions between low contrast materi-
als. Nevertheless, narrow transitions are achieved (less than 1.5 mm FWHM).

126 Chapter 8. The QR solution of the linear system

(a) (b) (c)

G
ra

di
en

t
ap

pr
ox

im
at

io
n

of
 μ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Line position (mm)
25 30 35 40 45 50 55

Line profile
Gaussian fit

(d)

G
ra

di
en

t
ap

pr
ox

im
at

io
n

of
 μ

0

0.2

0.4

0.6

0.8

1

Line position (mm)
25 30 35 40 45 50 55

Line profile
Gaussian fit

(e)

G
ra

di
en

t
ap

pr
ox

im
at

io
n

of
 μ

0

0.2

0.4

0.6

0.8

1

Line position (mm)
25 30 35 40 45 50 55

Line profile
Gaussian fit

(f)

Figure 8.17: Gradient estimate fitting of line profiles through high contrast inserts.
Gradient estimates of 0.8 mm voxel images reconstructed with QR (a), FBP (b),
and MLEM (c) are shown. Gradient estimates of transitions involving inserts (air
and Teflon) and obtained from QR (d), FBP (e), and MLEM (f) are plotted in
dashed lines. Gaussian fits to each peak are plotted in continuous lines. The
different peaks represent, from left to right, transitions inside and outside the air
insert and inside and outside the Teflon insert, respectively.

8.3. Sharpness analysis 127

(a) (b) (c)

G
ra

di
en

t
ap

pr
ox

im
at

io
n

of
 μ

0

0.1

0.2

0.3

0.4

Line position (mm)
25 30 35 40 45 50 55

Line profile
Gaussian fit

(d)

G
ra

di
en

t
ap

pr
ox

im
at

io
n

of
 μ

0

0.1

0.2

0.3

0.4

Line position (mm)
25 30 35 40 45 50 55

Line profile
Gaussian fit

(e)

G
ra

di
en

t
ap

pr
ox

im
at

io
n

of
 μ

0

0.1

0.2

0.3

0.4

Line position (mm)
25 30 35 40 45 50 55

Line profile
Gaussian fit

(f)

Figure 8.18: Gradient estimate fitting of line profiles through low contrast inserts.
Gradient estimates of 0.8 mm voxel images reconstructed with QR (a), FBP (b),
and MLEM (c) are shown. Gradient estimates of transitions involving inserts
(POM and PE) and obtained from QR (d), FBP (e), and MLEM (f) are plotted
in dashed lines. Gaussian fits to each peak are plotted in continuous lines. The
different peaks represent, from left to right, transitions inside and outside the POM
insert and inside and outside the PE insert, respectively.

128 Chapter 8. The QR solution of the linear system

G
ra

di
en

t
ap

pr
ox

im
at

io
n

of
 μ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Line position (mm)
25 30 35 40 45 50 55

QR (0.8 mm)
FBP (0.8 mm)
MLEM (0.8 mm)

(a)

G
ra

di
en

t
ap

pr
ox

im
at

io
n

of
 μ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Line position (mm)
25 30 35 40 45 50 55

QR (0.8 mm)
FBP (0.5 mm)
MLEM (0.5 mm)

(b)

Figure 8.19: Gradient estimate fit comparison between QR, FBP, and MLEM,
all from 0.8 mm voxel images (a) and QR from 0.8, and FBP and MLEM from
0.5 mm voxel images (b). Gradients represent transitions in a line profile through
the high contrast inserts (air and Teflon).

8.3. Sharpness analysis 129

G
ra

di
en

t
ap

pr
ox

im
at

io
n

of
 μ

0

0.1

0.2

0.3

0.4

Line position (mm)
25 30 35 40 45 50 55

QR (0.8 mm)
FBP (0.8 mm)
MLEM (0.8 mm)

(a)

G
ra

di
en

t
ap

pr
ox

im
at

io
n

of
 μ

0

0.1

0.2

0.3

0.4

Line position (mm)
25 30 35 40 45 50 55

QR (0.8 mm)
FBP (0.5 mm)
MLEM (0.5 mm)

(b)

Figure 8.20: Gradient estimate fit comparison between QR, FBP, and MLEM,
all from 0.8 mm voxel images (a) and QR from 0.8, and FBP and MLEM from
0.5 mm voxel images (b). Gradients represent transitions in a line profile through
the low contrast inserts (POM and PE).

130 Chapter 8. The QR solution of the linear system

Figure 8.22 presents the gradient estimate line profile through the low contrast
inserts.

Dotted lines correspond to MLEM results. The extremely low level of noise
fluctuations present in MLEM reconstructions allow to identify gradient estimates
even from low contrast profiles of images using 0.2 mm voxels (while it is not
possible with FBP).

As mentioned before, the FWHMs plotted for each material are the result of
the average of two FWHM (produced entering and exiting each insert) and more-
over, FWHM is not intended to quantify the exact distance needed for a transition.
FWHM should be considered as an estimator that remains almost invariable to
changes in noise level and other characteristics (introduced by changing the re-
construction algorithm or the voxel size, for example), and therefore, is specially
useful in our case.

Similar results have been obtained for all materials aside of the air insert.
Specifically, using 0.8 mm voxels, FBP needs approximately 2.5 mm to perform
a transition, MLEM needs approximately 2 mm, and QR needs approximately
1.5 mm to change between materials. The case of air is slightly different. As in
the case of Teflon with 0.8 mm in which FBP performed above 2.5 mm (smoother
than with other materials), in the case of air with 0.8 mm, MLEM performed
above 2 mm, obtaining approximately the same result as FBP. However, QR
shown gradients around 1.5 mm width for all materials.

Concluding, considering 0.5 mm voxels, FBP and MLEM carry out transitions
approximately in 1.5 mm. These results show that QR reproduces image edges as
sharp as FBP or MLEM using almost twice the voxel size.

8.3. Sharpness analysis 131
FW

H
M

 (
m

m
)

0.5

1

1.5

2

2.5

Voxel size (mm)
0.8 0.7 0.6 0.5 0.4 0.3 0.2

QR
FBP
MLEM

(a)

FW
H

M
 (

m
m

)

0.5

1

1.5

2

2.5

3

Voxel size (mm)
0.8 0.7 0.6 0.5 0.4 0.3 0.2

QR
FBP
MLEM

(b)

FW
H

M
 (

m
m

)

0.5

1

1.5

2

2.5

Voxel size (mm)
0.8 0.7 0.6 0.5 0.4 0.3 0.2

QR
FBP
MLEM

(c)

FW
H

M
 (

m
m

)

0.5

1

1.5

2

2.5

Voxel size (mm)
0.8 0.7 0.6 0.5 0.4 0.3 0.2

QR
FBP
MLEM

(d)

Figure 8.21: The average FWHM of the transition obtained for air (a), Teflon (b),
POM (c) and PE (d) as a function of voxel size. QR results correspond to images
using 0.8 mm voxels and kept constant for the rest of voxel sizes for a better visual
comparison. The average FWHM of each material is the result of the average of its
two FWHM (corresponding to the transition inside and outside the insert). POM
and PE (low contrast inserts) are not available in the case of FBP (see Figure 8.22).

132 Chapter 8. The QR solution of the linear system

G
ra

di
en

t
ap

pr
ox

im
at

io
n

of
 μ

0

0.1

0.2

0.3

0.4

Line position (mm)
25 30 35 40 45 50 55

FBP (0.2 mm)

Figure 8.22: Line profile through low contrast inserts of the gradient estimate
image obtained from the FBP reconstruction with 0.2 mm voxels. In this case,
image noise produces gradients that obscure the transitions between materials and
a Gaussian fit will provide FWHMs not related to the edge spreading. Neverthe-
less, lower edge spreading than QR (with 0.8 mm) can be assumed.

8.3. Sharpness analysis 133

8.3.1 In vivo performance

A common definition of image resolution is the smallest distance between two
distinguishable objects. Image resolution is influenced by the spread of the edges,
in the sense that two close peak could be indistinguishable if their transitions are
smooth enough.

An in vivo measurement of a mouse has been reconstructed with all three
methods, in order to verify the previously detailed results. This verification is
carried out selecting a line profile through a fine feature region in knee of the mouse
(see Figure 8.23). Specifically, 3D image reconstructions have been performed for
each method (QR, FBP, and MLEM) and for 0.8, 0, 5, and 0.2 mm voxel sizes.
The same slice in the axial direction has been selected in all images, yielding a
cross section in the mouse femur, tibia, and fibula (see Figure 8.24).

Considering the size of the detectors (0.2 mm) used for these reconstructions,
the soft bone tissue of the mouse femur (∼ 1 mm) must be observed, surrounded
by the femur hard bone tissue (∼ 1 mm to the left and to the right), and hard
bone tissue for the tibia and fibula (∼ 0.7 mm) must also be present. The femur
has been considered as a coarse feature and the fibula has been considered as a
fine feature. A line profile through the femur and fibula is enough to observe the
presence of these coarse and fine features. This line profile must present peaks in
hard bone regions and valleys in soft bone regions (or between bone pieces).

Three different resolution levels are expected. One, in which the femur is
present (∼ 3 mm total width), although, its interior soft bone tissue is not ob-
servable, due, partly, to the spread of the edges of the hard bone peaks. Other,
in which the femur is present, its interior soft bone tissue is observable, but the
fibula is not, due, partly, to the impossibility of the production of thin peaks
with smooth transitions. Finally, a level of resolution in which all features are
observable, namely, femur soft and hard bone and fibula hard bone tissues.

In Figure 8.25, the results of this test are summarized. Figure 8.25 (a) and
Figure 8.25 (b) show axial slices obtained from 3D reconstructions performed with
QR (0.8 mm voxels) and MLEM (0.5 mm voxels). As previous results indicated,
these two images have comparable sharpness. Visually, almost the same features
can be observed in the two images, with the exception of some regions with low at-
tenuation coefficients, which are translated differently by these two algorithms. As
the FWHMs obtained previously, QR can produce images as sharp and feature rich
as MLEM, while using almost twice its voxel size. Numerically, in Figure 8.25 (f),
the line plots for these two images are shown (black thick line for QR and joined
squares with a green dashed line for MLEM). Its numerical values are similar, while
MLEM values are closer to the desired result. The hard bone peaks translated by
QR are not exactly where they should, due to the undersampling produced for the
use of large voxel sizes. Also, MLEM numerical results show a small peak in the

134 Chapter 8. The QR solution of the linear system

(a)

(b)

Figure 8.23: 3D reconstruction of a mouse using QR method. 0.8 mm voxels have
been used. The entire mouse (a) and an axial cut (b) are shown. The mouse is
on a stretcher that provides it with anesthesia. The mouse left knee is pointed by
an arrow in both cases. In the axial cut can be appreciated the soft bone tissue
surrounded by hard bone in the mouse femur section. Soft and hard tissues have
been enhanced for a better visibility of this feature.

8.3. Sharpness analysis 135

Figure 8.24: Illustration of a mouse knee anatomy† features present in the axial
cut under study. As the mouse has been scanned with its leg bent, three bone
sections will be appreciated: femur, tibia, and fibula. FBP with 0.2 mm voxels
reconstruction (axial section) is also show to illustrate the bone piece correspon-
dence. FBP has been used for this figure because, together with MLEM, are able
to reconstruct all the features of interest (using 0.2 mm).
†Mouse knee 3D render was obtained from Bruker Corp. website: www.bruker.com .

136 Chapter 8. The QR solution of the linear system

fibula region while QR not, and both translated the femur soft bone tissue.
Figure 8.25 (a) and Figure 8.25 (c) are axial slices obtained from 3D reconstruc-

tions performed with QR (0.8 mm voxels) and FBP (0.5 mm voxels) respectively.
While previous results estimated that these two configurations are similar, there
are wider differences between QR and FBP than between QR and MLEM. Visually,
FBP slice presents a lower edge definition than QR slice and, therefore, less fea-
tures can be observed or there are more difficulties to observe them. Using almost
twice the voxel size, QR reconstructs a sharper image than FBP. Numerically, in
Figure 8.25 (e), the line plots for these two images are shown (black thick line for
QR and joined squares with a green dashed line for FBP). The main numerical
difference is in the transition involving the femur soft bone tissue. While QR is
able to reproduce it, the FBP reconstruction is not. Numerical results obtained
for the rest of tested voxel sizes are also included in Figure 8.25 (e) and 8.25 (f).

The highest resolution level proposed previously has not been achieved by the
QR reconstruction. As FBP and MLEM are able to produce images with smaller
voxel sizes, these two methods achieved it flawlessly while QR not. Although, one
of the QR advantages is that has been able to produce images with approximately
the same quality than MLEM or FBP with approximately twice its voxel size
(0.8 mm vs. 0.5 mm). In conclusion, the reconstruction performed by the QR
algorithm is more efficient in terms of image features (image information) / space,
but always considering its limitation on the voxel size. In other words, with eight
times (half in each dimension) less image sizes (or image points).

8.3. Sharpness analysis 137

(a) (b) (c) (d)

H
U

2,000

4,000

6,000

8,000

10,000

12,000

mm
9 10 11 12 13 14

QR 0.8 mm
FBP 0.8 mm
FBP 0.5 mm
FBP 0.2 mm

(e)

H
U

2,000

4,000

6,000

8,000

10,000

12,000

mm
9 10 11 12 13 14

QR 0.8 mm
MLEM 0.8 mm
MLEM 0.5 mm
MLEM 0.2 mm

(f)

Figure 8.25: Line profiles through mouse femur and fibula. Profiles have been
measured in the same axial coordinate from various images reconstructed with
QR, MLEM, and FBP, using 0.8, 0.5, and 0.2 mm voxels (QR with 0.8 (a), MLEM
with 0.5 (b), FBP with 0.5 (c), and FBP 0.2 mm (d) are shown). Profile plots
begin right before entering the femur and end right after leaving the fibula. FBP
plots (e) and MLEM plots (f) are separated for better visibility. The QR line
profile is present in both plots for reference (thick black line). From left to right,
in the 0.2 mm voxel reconstructions (joined triangles with blue dashed lines), three
peaks can be appreciated. First and second correspond to hard bone entering and
leaving the femur and third represents the fibula.

138 Chapter 8. The QR solution of the linear system

8.4 Noise power spectrum analysis

The power spectrum of an image determines the power of image signal at each
spatial frequency and it is obtained through the discrete Fourier transform. When
obtained from a noise image is called noise power spectrum (NPS) and determines
the noise power at each spatial frequency. NPS is considered an analysis that
completes the statistical noise analysis in an image quality study [77]. Information
derived from NPS can be used to quantify image quality parameters such as noise
grain (fine or coarse) or object detectability among others. Different frameworks
that make use of the NPS have been treated in the literature: to evaluate the effects
produced by sampling [78], by the aperture of the fan beam [79], or optimizing the
image quality for a certain spatial frequencies of interest [80]. In the next section
a more general multidimensional framework, also present in the literature, will
be introduced. This framework will be used to compute the NPS of the images
reconstructed with QR algorithm.

8.4.1 Multidimensional NPS framework

A multidimensional analysis of the NPS has been performed, following the guide-
lines described in [81]. Volumetric realizations have been extracted form 3D recon-
structed images, their 3D NPS have been obtained and averaged to avoid statistical
fluctuations, and, finally, the resulting 3D NPS has been analyzed. Reconstructed
images have been converted to Hounsfield units (HU), in order to obtain the NPS
in a more understandable units.

Specifically, three consecutive air measurements (IA, IB, and IC) have been
obtained in a short period of time to preserve similar scanning conditions. Each
measurement has been reconstructed with QR, FBP, and MLEM. Real measure-
ments are not ideal, and even from air measurements, result in reconstructions
with non random noise structures. These noise structures would produce an in-
crease in the low frequency regions when applying the discrete Fourier transform
and even more, would led to inaccuracy in the NPS computation. Most of these
noise structures will be eliminated if DQR

A , DQR
B , and DQR

C are considered for the
NPS computation, defined as:

DQR
A = IQRA − IQRB

DQR
B = IQRA − IQRC

DQR
C = IQRB − IQRC

(8.5)

where IQRA , IQRB , and IQRC are the 3D reconstructed images with the QR algorithm,
from IA, IB, and IC measurements (and analogously for the FBP and MLEM
algorithms).

8.4. Noise power spectrum analysis 139

Even with these cancellations, some noise structures would be present. In
Figure 8.26 a slice of the air reconstruction using the QR algorithm is shown in the
background. Contrast has been enhanced around air values to better appreciate
noise patterns. A non random noise structure can be easily identified: a circle of
approximately the size of the FoV (pixels outside of this circle are said to be outside
the FoV in the sense that they are not covered by all the projections). Also, from
this circle towards the image edges a variety of artifacts can be observed with this
contrast level. These image regions, including the circle, must be avoided in the
computation of the NPS. Moreover, a very attenuated ring artifact could appear in
some slices producing an almost inappreciable noise structure in the center of the
slice. Previous considerations motivated the election of the volumetric realization
locations.

Figure 8.26: Illustration of twenty transaxial locations of the 3D realizations
(transaxial cut). Image slice shown correspond to an air measurement recon-
structed with QR method. This realization has been kept through the axial direc-
tion (perpendicular to the image).

In Figure 8.26 the transaxial locations of the realizations are illustrated. The
realizations consist in 51×51×51 image elements and are located forming a circle
through the transaxial direction, at the same radial distance (32 mm) to the image
center, and have been allowed to overlap between them (as in [82]). This transaxial
distribution has been kept along the axial direction and conflicting image regions

140 Chapter 8. The QR solution of the linear system

previously described have been avoided.
A total of 120 realizations have been obtained for each reconstruction algorithm

and have been zero-mean detrended by a 3D polynomial fit to

p(x, y, z) = a1x
3 + a2x

2 + a3x+ a4y
3 + a5y

2 + a6y+ a7z
3 + a8z

2 + a9z + a10 (8.6)

where x, y, and z are coordinates inside a realization. A window function has been
applied to the realizations, in order to smoothly bring its edges down to zero. The
Hann window function has been considered for this matter:

h(x) =

{
1
2

+ 1
2

cos(2πx) : |x| ≤ 1
2

0 : |x| > 1
2

(8.7)

where x is the distance to the center of the realization, considered to range from
−1 to 1. While the result of the application of this window function to an 1D
realization is intuitive, the 2D and 3D cases are illustrated in Figure 8.27 for
clarification.

At this point, a collection of zero-mean detrended data has been gathered and
its power spectrum can be evaluated according to

S =
bxbybz

2NxNyNz

〈|DFT (d)|2〉 (8.8)

where d is a realization, b is the voxel width, N is the number of voxels in the
realization, and brackets indicate the ensemble average to reduce fluctuations in the
computed NPS. It must be noted that the normalization coefficient in Equation 8.8
is divided by 2. This accounts for the definition of images in Equation 8.5 in which
each image contains the noise of two measures.

As a summary of the whole process, the square of the modulus of the 3D
discrete Fourier transform of each 3D realization is computed. These results form
a statistical ensemble, and are averaged in order to reduce statistical fluctuations.
Finally, a normalization is applied, and the 3D NPS is obtained.

8.4.2 NPS results

NPS is obtained in volumetric space and there are several representations ex-
tracted from the 3D NPS that help with the interpretation of the spectral density.
For example, the central slice in the axial axis (XY plane), contains information
about the distribution of noise in the transaxial plane. Usually, this information
is presented as a line profile of the NPS from the zero frequency to the Nyquist
frequency. In Figure 8.28, this plot is shown containing the results obtained from
the same measurement reconstructed with QR (black joined triangles), FBP (red
joined circles), and MLEM (green joined squares). In all cases, a small spectral

8.4. Noise power spectrum analysis 141

0 10 20 30 40 50

-4

-2

0

2

4

(a)

0 10 20 30 40 50

-4

-2

0

2

4

(b)

(c) (d)

(e) (f)

Figure 8.27: Realization examples. 1D (a), 2D (c), and 3D (e) zero mean de-
trended realizations and its results after the application of the Hann window (see
Equation 8.7) (b), (d), and (f) respectively.

142 Chapter 8. The QR solution of the linear system

Sp
ec

tr
al

 d
en

si
ty

 (
H

U
2

m
m

3)
 ×

10
-2

0

0.5

1

1.5

2

2.5

3

Spatial frequency (mm-1)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

QR
FBP
MLEM

Figure 8.28: Profile plot of NPS through X axis in the central slice of the 3D
NPS (SX). Noise predominance can be observed around mid frequencies for FBP
and MLEM (although with a very low spectral density in the case of MLEM). QR
noise is shifted to higher frequencies and with the highest spectral density of all
three methods.

density can be observed in the zero frequency, due to the failure to remove com-
pletely all noise trends.

Regarding the FBP, its shape corresponds to previous analysis performed in
the literature by other authors [83], characteristic of images reconstructed by cone-
beam FBP. Spectral density increases at low and mid-frequencies because of images
reconstructed with FBP are ramp filtered. The spectral density decay at high
frequencies is due to band-limiting processes such as image blur or the application
of the Hann window (the same Hann window has been applied to the realizations of
all three algorithms). The FBP NPS can be classified as spectrally green (spectrum
has its highest values at mid-frequencies). This expected result will be of use as
a reference to compare against QR, as image characteristics of cone-beam FBP
reconstructions are well known [7].

QR curve, shown in Figure 8.28 reveals a shifted spectral density to high fre-
quencies. With comparable (although slightly lower) mid frequencies, high fre-
quency values are notably higher than FBP. The QR NPS can be viewed as spec-
trally bluer (spectrum has its highest values at high-frequencies) than NPS of FBP

8.4. Noise power spectrum analysis 143

due to spectrum peak position, but there it is also a decay at high frequencies due
to the application of the Hann window.

On one hand, in Section 8.2 where a comparative study of CV and CNR be-
tween QR, FBP, and MLEM is shown, QR exhibits notably higher noise level than
FBP, but NPS locates this noise at higher frequencies. Therefore, QR produces a
higher level of noise than FBP but finer grained. On the other hand, QR seems
to produce less blurry images, as supported in Section 8.3 (where a comparative
study of the edge spreading between QR, FBP, and MLEM is shown), where QR
presented finer feature translation than FBP. This decrease in blurring could be
one of the factors of the accentuated spectral density at high frequencies. In other
words, higher NPS at high frequencies could reflect the ability to reproduce fine
structures.

Regarding the MLEM, its spectral density peak is close to the peak of the
FBP. Although, the most remarkable feature is the lower spectral density in all
frequencies, compared to FBP or QR. Nevertheless, not all the high-frequency
spectral density should be attributed to the fine feature translation. In fact, in
Section 8.3, MLEM showed transitions as fine as those produced with QR (or even
finer) and its spectral density at high frequencies is almost null. This could be
due to an incomplete background trend removal. Evidences that its NPS is not
radially symmetric in the transaxial plane can be found in the corresponding NPS
slice (see Figure 8.31). Considering gathered data from Figures 8.28 and 8.31 it
could be possible that incomplete background trend removal may have corrupted
the NPS spectrum [84].

In Figures 8.29 and 8.30 orthogonal slices of 3D NPS obtained from QR and
FBP reconstructions are shown. The QR and FBP distributions of the 3D NPS
are similar, except for the shift to higher frequencies in the XY plane (as seen in
Figure 8.28) and the shape of the NPS in the Z axis. In the case of FBP, the shape
of the NPS in the Z axis tends to be whiter (keeps certain spectral power through
almost all frequencies) since FBP ramp filter is not applied over Z. Although, in
the case of QR, NPS shape along Z tends to decrease at high frequencies (as in X
or Y directions). This produces a cube shaped 3D NPS for QR, while a cylinder
shaped 3D NPS is obtained with FBP.

144 Chapter 8. The QR solution of the linear system

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Spatial frequency X (mm−1)

S
p
at

ia
l

fr
eq

u
en

cy
Y

(m
m
−
1
)

(a) SXY

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Spatial frequency Y (mm−1)
S
p
at

ia
l

fr
eq

u
en

cy
Z

(m
m
−
1
)

(b) SY Z

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Spatial frequency X (mm−1)

S
p
at

ia
l

fr
eq

u
en

cy
Z

(m
m
−
1
)

(c) SXZ (d) SXY Z (isometric)

Figure 8.29: Representation of the 3D NPS obtained from the QR air reconstruc-
tion. Orthogonal views are presented, corresponding to XY (a), Y Z (b), and
XZ (c), along with a 3D render (d) of the 3D NPS in a isometric view. The 3D
NPS render has emphasized and slightly shaded surface for visualization purposes.

8.4. Noise power spectrum analysis 145

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Spatial frequency X (mm−1)

S
p
at

ia
l

fr
eq

u
en

cy
Y

(m
m
−
1
)

(a) SXY

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Spatial frequency Y (mm−1)

S
p
at

ia
l

fr
eq

u
en

cy
Z

(m
m
−
1
)

(b) SY Z

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Spatial frequency X (mm−1)

S
p
at

ia
l

fr
eq

u
en

cy
Z

(m
m
−
1
)

(c) SXZ (d) SXY Z (isometric)

Figure 8.30: Representation of the 3D NPS obtained from the FBP air recon-
struction. Orthogonal views are presented, corresponding to XY (a), Y Z (b), and
XZ (c), along with a 3D render (d) of the 3D NPS in a isometric view. The 3D
NPS render has emphasized and slightly shaded surface for visualization purposes.

146 Chapter 8. The QR solution of the linear system

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Spatial frequency X (mm−1)

S
p
at

ia
l

fr
eq

u
en

cy
Y

(m
m
−
1
)

(a) SXY

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Spatial frequency Y (mm−1)
S
p
at

ia
l

fr
eq

u
en

cy
Z

(m
m
−
1
)

(b) SY Z

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Spatial frequency X (mm−1)

S
p
at

ia
l

fr
eq

u
en

cy
Z

(m
m
−
1
)

(c) SXZ (d) SXY Z (isometric)

Figure 8.31: Representation of the 3D NPS obtained from the MLEM air recon-
struction. Orthogonal views are presented, corresponding to XY (a), Y Z (b), and
XZ (c), along with a 3D render (d) of the 3D NPS in a isometric view. The 3D
NPS render has emphasized and slightly shaded surface for visualization purposes.

8.5. Time complexity of the QR solution 147

8.5 Time complexity of the QR solution

Time required to obtain the reconstructed image is a key feature of the reconstruc-
tion algorithm. Nowadays, reconstructed images are demanded in a short period
of time after the measurement is finished, and this is crucial to the efficiency of a
CT service. QR algorithm offers a valuable advantage in this matter. As seen in
Section 2.2, its computational load is performed once the CT system is modeled
as a matrix (A) to compute the factorization (A = QR). In the reconstruction
time only two processes need to be addressed: the update of the measurement,
b, (applying the stored rotations to b) obtaining Qtb and a back substitution to
obtain the reconstructed image (x) for the previously computed vector.

Usually, time complexity of the whole process is presented in the literature for
dense matrices [27]. Let A ∈ Rm×n and m > n then, the whole process requires
O(mn2) (for the factorization), plus O(mn) (for the update of b), plus O(n2) (for
the back substitution). This cost is governed by the factorization time and it is
said that the entire computation of a solution requires O(mn2). However, in the
CT image reconstruction, the factorization is computed a priori and therefore,
image reconstruction time is governed by the update of b that requires O(mn).

This time complexity analysis overestimates the time required to obtain a so-
lution in the sparse case. The number of Givens rotations needed for the entire
factorization should be considered to characterize a tighter bound to the sparse
case. In fact, one of the advantages of Givens QR in the sparse case is its flexibil-
ity to introduce zeros anywhere in A and Section 6.2 is devoted to alternatives to
minimize the fill-in during the factorization process of CT system matrices.

Let r be the number of rotations needed for the factorization A = QR then
the whole process requires O(rn) (for the factorization), plus O(r) (for the update
of b), plus O(n2) (for the back substitution). In the dense case O(r) = O(mn),
required times agree with those previously mentioned, and as m > n the image
reconstruction process is still governed by the update of b. In the sparse case (for
CT model matrices), and considering the best case scenario where an ideal strategy
that avoided all fill-in during the factorization is applied, O(r) = O(nnnz), where
nnnz is the number of non-zeros present in the CT model matrix. Then,

O(nnnz) < O(r) < O(mn) (8.9)

is the time complexity of the reconstruction process expressed as a function of the
number of Givens rotations needed.

From this point of view follows that time required for image reconstruction
strongly depends on the model and the fill-in avoidance strategy. CT system model
matrices that present symmetries (such as presented in Section 3.3), combined with
well suited fill-in reduction strategies that take advantage of its non-zero structure
would drastically decrease the time required to produce images.

148 Chapter 8. The QR solution of the linear system

In order to clarify the performance of the implemented algorithm, reconstruc-
tion times have been measured in a computer with an Intel Core i7–4930K with
12 threads at 3.9 GHz clock frequency. FBP and MLEM algorithms are fully par-
allelized, making use of 11 of the 12 available threads in the processor, while the
current implementation of the QR algorithm has a naive back substitution process
without any parallelization and a QT b product using one thread for computation
and other for data loading into memory. Obtained computation times are 0.125 s
in the case of FBP, 9 s in the case of MLEM (0.225 s / iteration), and 163 s
in the case of QR (79 s for the Qtb product and 84 s for the back substitution).
Although obtained reconstruction times may seem to be a drawback of the QR-
decomposition algorithm, the difference between the FBP and MLEM, and QR
times is not only an inferior (or non) parallelization of the current implementa-
tion, but to the amount of fill-in produced during the reduction of the system
matrix to triangular form.

This computation times, together with the complexity analysis carried out in
this section, offer a view of the potential reconstruction time reduction with the
research of better fill-in reduction strategies.

Chapter 9

Conclusions

Considering the proposed objectives, the major solutions implemented to achieve
them will be summarized in this section.

The computation of the volume intersection between a LoR (in an arbitrary
projection) and a voxel is not straightforward. In §3.1.5, an algorithm has been
defined for the computation of the exact volume intersection between a LoR and a
voxel. This procedure only requires the LoR and a voxel polyhedra with their faces
sored in CCW order, which can be trivially defined when coming from a regular
grid as the voxellation of the space occupied by the object under a CT scan, or the
matrix of detector elements that form a CT flat panel. Moreover, this algorithm
allows more complicated voxellations that could be of some advantage, being the
only problem for the exact volume computation, the definition of the voxel and
LoR polyhedra. To the best of our knowledge, this is the first work that proposes
an algorithm with such a general input.

In §3.3, during the definition of the linear system that solves the CT reconstruc-
tion problem, a symmetry common to all third generation CT has been detailed.
The exploit of this symmetry allows solving the entire system by the reduction to
triangular form of a half rows, half columns matrix. Its drawback is the resolution
of the same system for two right hand sides, but this additional cost is much lower
than the cost of the reduction to triangular form of a matrix four times larger. To
the best of our knowledge, this is the first work that describes a symmetry that
expresses the system matrix as a block matrix and therefore, allows methods like
QR-decomposition to take advantage of it.

The evolution of the condition number of the linear system has been also stud-
ied. The accuracy in the solution depends on the condition number, and the
condition number tends to decrease as the number of equations increases. This
evolution performs at different speed, depending on the equations coming from
new projections or from the reduction of the size of the detector elements in the
flat panel. Results show advantageous condition numbers when considering equa-

149

150 Chapter 9. Conclusions

tions defined by a large number of detector elements rather than a large number
of projections.

Any reduction process, as the QR decomposition, requires a large amount
of modifications in the values of the original matrix. In §4.3, a sparse matrix
scheme has been entirely detailed, from its elementary operations to a get(i,j) /
set(i,j) interface to operate with the matrix as a black box. This scheme is easy to
implement (maintain and update) and C++ source code has been provided to avoid
ambiguities. The main advantage of this scheme over other existing schemes is its
fully orientation to offer balanced and reduced costs in all operations, including
the element deletion (storing a zero and releasing memory) or creation (replacing a
zero with a non-zero value). All operations run in O(log n), where n is the number
of non-zero elements of the row involved in the operation.

Code for the rotation of two rows of a generic matrix has been provided in §5.3.
The code assures the continuity in the computation of the rotation as up-to-date
implementations in BLAS or LAPACK. Also, an heuristic strategy to minimize
the fill-in during the reduction has been detailed in §6.2. This strategy selects the
rows to be rotated exploiting the particular structure of the system matrix. A
bound of the fill-in produced using this strategy has been obtained and its perfor-
mance has been compared to the standard fill-in reduction strategies in realistic
CT model matrices, outperforming standard methods in this case. To the best of
our knowledge, this is the first work that presents an specialized fill-in reduction
strategy for sparse matrices derived from the CT image reconstruction problem.
All implementation details have been addressed and C++ source code has been
provided to remove ambiguities.

A basic and simple-to-implement strategy to parallelize the QT b product, criti-
cal in the time consumption of the image reconstruction process, has been provided
in §7.3. The parallelization consists of a circular buffer to address the loading cost
of the likely large QT file.

The details of the image quality of the solution of the linear system through
the QR decomposition are shown in Chapter 8. A complete analysis has been per-
formed considering a linearity check of the attenuation coefficients, noise measures
based on the standard deviation, noise power spectrum analysis, and performance
with measured CT data of a mouse. All results have been compared against the
CT image reconstruction dominant algorithm, FBP, and a state of the art model
based iterative reconstruction algorithm, MLEM. Also, an image blurring analysis
has been performed, showing that the QR algorithm introduces less burring in the
reconstructed images if an equal voxellation is imposed, and showing the potential
of the QR algorithm.

A bound of the required time for the image reconstruction process as a function
of the number of rotations needed to reduce A to triangular form is shown at the

151

end of Chapter 8. This bound shows the potential cost reduction if better fill-in
reduction strategies are developed.

Finally, as a result, a proof of concept implementation of a CT image recon-
struction algorithm has been obtained. This algorithm is model based, and does
not relies on an iterative procedure to obtain the reconstructed image. Instead, the
image is obtained by a matrix vector multiplication and a backward substitution
process. A QR decomposition must be previously performed, but it is required only
once, since each image reconstruction corresponds to the resolution of the same CT
system for a different right hand side. Although high resolutions could not have
been achieved yet, obtained results also demonstrate the prospective of this algo-
rithm, as great performance and scalability improvements would be achieved with
the success in the development of better fill-in strategies or additional symmetries
in CT geometry.

Bibliography

[1] “Normal barium swallow.” Obtained from Wikimedia Commons. Available at:
https://commons.wikimedia.org/wiki/File:Normal barium swallow animation.gif
[Accessed Nov. 2015].

[2] J. Langner, Event-Driven Motion Compensation in Positron Emission Tomog-
raphy: Development of a Clinically Applicable Method. PhD thesis, Faculty
of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany,
November 2008.

[3] J. Cal-González, J. L. Herraiz, S. España, E. Vicente, A. Sisniega, J. J. Va-
quero, and J. M. Ud́ıas, “Extraction of Information from CT Images for PET
and Radiotherapy Planning.” IV Encuentro de F́ısica Nuclear, El Escorial,
Madrid, Spain, September 2010.

[4] R. Gordon, R. Bender, and G. T. Herman, “Algebraic Reconstruction Tech-
niques (ART) for three-dimensional electron microscopy and X-ray photogra-
phy,” Journal of Theoretical Biology, vol. 29, pp. 471–481, Dec. 1970.

[5] J. Radon, “On determination of functions by their integral values along
certain multiplicities,” Ber. der Sachische Akademie der Wissenschaften
Leipzig,(Germany), vol. 69, pp. 262–277, 1917.

[6] L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algo-
rithm,” Journal of the Optical Society of America A, vol. 1, p. 612, June
1984.

[7] J. Hsieh, Computed Tomography, Second Edition. 1000 20th Street, Belling-
ham, WA 98227-0010 USA: SPIE, 2nd ed. ed., Oct. 2009.

[8] S. Basu and Y. Bresler, “O(N(2)log(2)N) filtered backprojection reconstruc-
tion algorithm for tomography.,” IEEE transactions on image processing : a
publication of the IEEE Signal Processing Society, vol. 9, pp. 1760–73, Jan.
2000.

153

154 Bibliography

[9] Y. Ye, S. Zhao, H. Yu, and G. Wang, “A general exact reconstruction for
cone-beam CT via backprojection-filtration,” IEEE Transactions on Medical
Imaging, vol. 24, pp. 1190–1198, Sept. 2005.

[10] A. Katsevich, “Theoretically Exact Filtered Backprojection-Type Inversion
Algorithm for Spiral CT,” SIAM Journal on Applied Mathematics, vol. 62,
pp. 2012–2026, Jan. 2002.

[11] A. Katsevich, “Analysis of an exact inversion algorithm for spiral cone-beam
CT,” Physics in Medicine and Biology, vol. 47, pp. 2583–2597, Aug. 2002.

[12] Y. Zou and X. Pan, “Exact image reconstruction on PI-lines from minimum
data in helical cone-beam CT,” Physics in Medicine and Biology, vol. 49,
pp. 941–959, Mar. 2004.

[13] H. Yu, Y. Ye, S. Zhao, and G. Wang, “A backprojection-filtration algorithm
for nonstandard spiral cone-beam CT with an n -PI-window,” Physics in
Medicine and Biology, vol. 50, pp. 2099–2111, May 2005.

[14] Y. Zou, X. Pan, and E. Y. Sidky, “Theory and algorithms for image recon-
struction on chords and within regions of interest,” Journal of the Optical
Society of America A, vol. 22, no. 11, p. 2372, 2005.

[15] S. Cho, D. Xia, C. A. Pelizzari, and X. Pan, “Exact reconstruction of vol-
umetric images in reverse helical cone-beam CT,” Medical Physics, vol. 35,
pp. 3030–3040, July 2008.

[16] M. Beister, D. Kolditz, and W. A. Kalender, “Iterative reconstruction meth-
ods in X-ray CT.,” Physica medica : PM : an international journal devoted
to the applications of physics to medicine and biology : official journal of the
Italian Association of Biomedical Physics (AIFB), vol. 28, pp. 94–108, Apr.
2012.

[17] P. Gilbert, “Iterative methods for the three-dimensional reconstruction of an
object from projections,” Journal of Theoretical Biology, vol. 36, pp. 105–117,
July 1972.

[18] A. H. Andersen and A. C. Kak, “Simultaneous Algebraic Reconstruction Tech-
nique (SART): A Superior Implementation of the Art Algorithm,” Ultrasonic
Imaging, vol. 6, pp. 81–94, Jan. 1984.

[19] L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission
tomography.,” IEEE transactions on medical imaging, vol. 1, pp. 113–22, Jan.
1982.

Bibliography 155

[20] G. Kontaxakis and L. G. Strauss, “Maximum likelihood algorithms for image
reconstruction in positron emission tomography,” Mediterra, Athens., pp. 73–
106, 1998.

[21] K. Lange and R. Carson, “EM reconstruction algorithms for emission and
transmission tomography.,” Journal of computer assisted tomography, vol. 8,
pp. 306–16, Apr. 1984.

[22] C. A. Bouman and K. Sauer, “A unified approach to statistical tomography
using coordinate descent optimization.,” IEEE transactions on image process-
ing : a publication of the IEEE Signal Processing Society, vol. 5, pp. 480–92,
Jan. 1996.

[23] F. Xu, W. Xu, M. Jones, B. Keszthelyi, J. Sedat, D. Agard, and K. Mueller,
“On the efficiency of iterative ordered subset reconstruction algorithms for
acceleration on GPUs.,” Computer methods and programs in biomedicine,
vol. 98, pp. 261–70, June 2010.

[24] S. H. Manglos, G. M. Gagne, A. Krol, F. D. Thomas, and R. Narayanaswamy,
“Transmission maximum-likelihood reconstruction with ordered subsets for
cone beam CT,” Physics in Medicine and Biology, vol. 40, pp. 1225–1241,
July 1995.

[25] S.-J. Lee, “Accelerated coordinate descent methods for Bayesian reconstruc-
tion using ordered subsets of projection data,” vol. 4121, pp. 170–181, Oct.
2000.

[26] J. Hsieh, B. Nett, Z. Yu, K. Sauer, J.-B. Thibault, and C. a. Bouman, “Recent
Advances in CT Image Reconstruction,” Current Radiology Reports, vol. 1,
pp. 39–51, Jan. 2013.

[27] G. H. Golub and C. F. V. Loan, Matrix Computations. Johns Hopkins Uni-
versity Press, 2013.

[28] D. S. Watkins, Fundamentals of Matrix Computations. John Wiley and Sons.
Inc., 2002.

[29] T. A. Davis, Direct methods for sparse linear systems. Society for Industrial
and Applied Mathematics, 2006.

[30] A. k. Björck, Numerical Methods for Least Squares Problems. Society for
Industrial and Applied Mathematics, Jan. 1996.

[31] J. W. Demmel, Applied Numerical Linear Algebra. Society for Industrial and
Applied Mathematics, Jan. 1997.

156 Bibliography

[32] N. J. Higham, “A Survey of Condition Number Estimation for Triangular
Matrices,” SIAM Review, vol. 29, pp. 575–596, Dec. 1987.

[33] J. T. Bushberg, J. A. Seibert, E. M. Leidholdt, and J. M. Boone, The Essential
Physics of Medical Imaging. Lippincott Williams & Wilkins, Dec. 2011.

[34] W. Yao and K. Leszczynski, “Analytically derived weighting factors for trans-
mission tomography cone beam projections.,” Physics in medicine and biology,
vol. 54, pp. 513–33, Feb. 2009.

[35] R. A. Brooks and G. D. Chiro, “Beam hardening in X-ray reconstructive
tomography,” Physics in Medicine and Biology, vol. 21, pp. 390–398, May
1976.

[36] R. J. Jennings, “A method for comparing beam-hardening filter materials for
diagnostic radiology,” Medical Physics, vol. 15, p. 588, July 1988.

[37] R. C. Chase, “An improved image algorithm for CT scanners,” Medical
Physics, vol. 5, p. 497, Nov. 1978.

[38] G. T. Herman, “Correction for beam hardening in computed tomography,”
Physics in Medicine and Biology, vol. 24, pp. 81–106, Jan. 1979.

[39] J. Hsieh, R. C. Molthen, C. A. Dawson, and R. H. Johnson, “An iterative ap-
proach to the beam hardening correction in cone beam CT,” Medical Physics,
vol. 27, p. 23, Jan. 2000.

[40] M.-J. Rodŕıguez-Álvarez, F. Sánchez, A. Soriano, A. Iborra, and C. Mora,
“Exploiting symmetries for weight matrix design in CT imaging,” Mathemat-
ical and Computer Modelling, vol. 54, pp. 1655–1664, Oct. 2011.

[41] M. B. Stephenson and H. N. Christiansen, “A polyhedron clipping and cap-
ping algorithm and a display system for three dimensional finite element mod-
els,” ACM SIGGRAPH Computer Graphics, vol. 9, pp. 1–16, Sept. 1975.

[42] F. Sánchez, A. Orero, A. Soriano, C. Correcher, P. Conde, A. González,
L. Hernández, L. Moliner, M. J. Rodŕıguez-Alvarez, L. F. Vidal, J. M.
Benlloch, S. E. Chapman, and W. M. Leevy, “ALBIRA: A small animal
PET/SPECT/CT imaging system,” Medical physics, vol. 40, p. 051906, May
2013.

[43] A. Iborra, M. J. Rodriguez-Alvarez, A. Soriano, F. Sanchez, P. Bellido,
P. Conde, E. Crespo, A. J. Gonzalez, L. Moliner, J. P. Rigla, M. Seimetz,

Bibliography 157

L. F. Vidal, and J. M. Benlloch, “Noise Analysis in Computed Tomogra-
phy (CT) Image Reconstruction using QR-Decomposition Algorithm,” IEEE
Transactions on Nuclear Science, vol. 62, pp. 869–875, June 2015.

[44] C. Mora, M. J. Rodŕıguez-Álvarez, and J. V. Romero, “New pixellation
scheme for CT algebraic reconstruction to exploit matrix symmetries,” Com-
puters and Mathematics with Applications, vol. 56, no. 3, pp. 715–726, 2008.
Mathematical Models in Life Sciences and Engineering.

[45] I. Duff, A. Erisman, and J. Reid, Direct Methods for Sparse Matrices. Claren-
don Press, 1986.

[46] Y. Saad, Iterative Methods for Sparse Linear Systems. Society for Industrial
and Applied Mathematics, 2003.

[47] C. Shaffer, Data Structures & Algorithm Analysis in C++. Dover Publica-
tions, 2011.

[48] Q. F. Stout and B. L. Warren, “Tree rebalancing in optimal time and space,”
Communications of the ACM, vol. 29, pp. 902–908, Sept. 1986.

[49] A. Drozdek, Data Structures and Algorithms in C++. Cengage Learning,
Sept. 2004.

[50] A. S. Householder, “Unitary Triangularization of a Nonsymmetric Matrix,”
Journal of the ACM, vol. 5, pp. 339–342, Oct. 1958.

[51] W. Givens, “Computation of Plain Unitary Rotations Transforming a General
Matrix to Triangular Form,” Journal of the Society for Industrial and Applied
Mathematics, vol. 6, pp. 26–50, Mar. 1958.

[52] J. H. Wilkinson, The algebraic eigenvalue problem. Clarendon Press, 1965.

[53] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic linear
algebra subprograms for fortran usage,” ACM Trans. Math. Softw., vol. 5,
pp. 308–323, Sept. 1979.

[54] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK Users’ Guide. Philadelphia, PA: Society for Industrial and Applied
Mathematics, third ed., 1999.

[55] E. Anderson, “Discontinuous plane rotations and the symmetric eigenvalue
problem,” 2000.

158 Bibliography

[56] G. Stewart, “The economical storage of plane rotations,” Numerische Math-
ematik, vol. 25, no. 2, pp. 137–138, 1976.

[57] M. Yannakakis, “Computing the Minimum Fill-In is NP-Complete,” SIAM
Journal on Algebraic Discrete Methods, vol. 2, no. 1, pp. 77–79, 1981.

[58] A. George, J. Liu, and E. Ng, “Row-ordering schemes for sparse givens trans-
formations. I. bipartite graph model,” Linear Algebra and its Applications,
vol. 61, pp. 55–81, 1984.

[59] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric ma-
trices,” in Proceedings of the 1969 24th national conference on -, (New York,
New York, USA), pp. 157–172, ACM Press, 1969.

[60] J. A. George, Computer Implementation of the Finite Element Method. PhD
thesis, 1971. Department of Computer Science, Stanford University, Stanford,
California.

[61] I. P. King, “An automatic reordering scheme for simultaneous equations de-
rived from network systems,” International Journal for Numerical Methods
in Engineering, vol. 2, no. 4, pp. 523–533, 1970.

[62] J. W. H. Liu, “Modification of the minimum-degree algorithm by multiple
elimination,” ACM Transactions on Mathematical Software, vol. 11, no. 2,
pp. 141–153, 1985.

[63] Wolfram Research, Inc., “Mathematica 9,” 2013.
http://reference.wolfram.com.

[64] C. Mueller, “Sparse matrix reordering algorithms for cluster identification,”
2004. For I532, Machine Learning in Bioinformatics.

[65] A. Lim and B. Rodrigues, “A centroid-based approach to solve the bandwidth
minimization problem,” in 37th Annual Hawaii International Conference on
System Sciences, 2004. Proceedings of the, p. 6 pp., IEEE, Jan. 2004.

[66] Online Reference Manual for Intel Math Kernel Library 11.2, “In-
tel MKL PARDISO – Parallel Direct Sparse Solver Interface.”
https://software.intel.com/en-us/node/521677 – Last visited in Septem-
ber 2014.

[67] E. Busemann Sokole, A. P lachćınska, and A. Britten, “Acceptance testing
for nuclear medicine instrumentation.,” European journal of nuclear medicine
and molecular imaging, vol. 37, pp. 672–81, Mar. 2010.

Bibliography 159

[68] J. H. Hubbell and S. M. Seltzer, “Tables of X-Ray Mass Attenuation Coef-
ficients and Mass Energy-Absorption Coefficients from 1 keV to 20 MeV for
Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest,”
2004.

[69] R. Nowotny, “XMuDat: Photon attenuation data on PC,” 1998.

[70] J.-Y. Jin, L. Ren, Q. Liu, J. Kim, N. Wen, H. Guan, B. Movsas, and I. J.
Chetty, “Combining scatter reduction and correction to improve image qual-
ity in cone-beam computed tomography (CBCT),” Medical Physics, vol. 37,
p. 5634, Nov. 2010.

[71] S. J. Erasmus and K. C. A. Smith, “An automatic focusing and astigmatism
correction system for the SEM and CTEM,” Journal of Microscopy, vol. 127,
pp. 185–199, Aug. 1982.

[72] N. Zhang, A. Vladar, M. Postek, and B. Larrabee, “A kurtosis-based statis-
titcal measure for two-dimensional processes and its application to image
sharpness,” Proc. section of physical and engineering sciences of American
Statistical Society, pp. 4730–4736, 2003.

[73] J. Caviedes and F. Oberti, “A new sharpness metric based on local kurto-
sis, edge and energy information,” Signal Processing: Image Communication,
vol. 19, no. 2, pp. 147–161, 2004.

[74] R. Ferzli and L. J. Karam, “A no-reference objective image sharpness metric
based on the notion of just noticeable blur (JNB).,” IEEE transactions on
image processing : a publication of the IEEE Signal Processing Society, vol. 18,
pp. 717–28, Apr. 2009.

[75] P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi, “A no-reference per-
ceptual blur metric,” in Proceedings. International Conference on Image Pro-
cessing, vol. 1, pp. III–57–III–60, IEEE, 2002.

[76] I. Sobel and G. Feldman, “A 3x3 isotropic gradient operator for image pro-
cessing,” 1968. Unpublished, presented as a talk within the Stanford Artificial
Intelligence Project.

[77] K. L. Boedeker, V. N. Cooper, and M. F. McNitt-Gray, “Application of the
noise power spectrum in modern diagnostic MDCT: part I. Measurement of
noise power spectra and noise equivalent quanta.,” Physics in medicine and
biology, vol. 52, pp. 4027–46, July 2007.

160 Bibliography

[78] M. F. Kijewski and P. F. Judy, “The noise power spectrum of CT images.,”
Physics in medicine and biology, vol. 32, pp. 565–75, May 1987.

[79] J. Baek and N. J. Pelc, “The noise power spectrum in CT with direct fan
beam reconstruction,” Medical Physics, vol. 37, no. 5, p. 2074, 2010.

[80] D. J. Tward and J. H. Siewerdsen, “Noise aliasing and the 3D NEQ of
flat-panel cone-beam CT: Effect of 2D/3D apertures and sampling,” Medi-
cal Physics, vol. 36, no. 8, p. 3830, 2009.

[81] J. H. Siewerdsen, I. a. Cunningham, and D. a. Jaffray, “A framework for
noise-power spectrum analysis of multidimensional images,” Medical Physics,
vol. 29, no. 11, p. 2655, 2002.

[82] S. N. Friedman, G. S. K. Fung, J. H. Siewerdsen, and B. M. W. Tsui, “A
simple approach to measure computed tomography (CT) modulation transfer
function (MTF) and noise-power spectrum (NPS) using the American Col-
lege of Radiology (ACR) accreditation phantom.,” Medical physics, vol. 40,
p. 051907, May 2013.

[83] D. A. Jaffray and J. H. Siewerdsen, “Cone-beam computed tomography with
a flat-panel imager: Initial performance characterization,” Medical Physics,
vol. 27, no. 6, p. 1311, 2000.

[84] M. B. Williams, P. A. Mangiafico, and P. U. Simoni, “Noise power spectra
of images from digital mammography detectors,” Medical Physics, vol. 26,
p. 1279, July 1999.

Acronyms

ART algebraic reconstruction technique. 7, 8, 19

BPF backprojection-filtration. 8

BST binary search tree. 44–54, 59, 64, 95, 99

CCW counterclockwise. 25, 26, 31–34, 149

CNR contrast to noise ratio. 114–120, 143

COO coordinate list. 41–43

CSC compressed sparse column. 42, 43, 54

CSR compressed sparse row. 42, 43, 63, 64

CT computed tomography. 6–12, 19, 20, 23, 24, 31, 34–36, 38, 55, 56, 67, 71, 98,
99, 101–103, 114, 147, 149–151

CV coefficient of variation. 114–118, 120, 143

FBP filtered backprojection. 8, 10–12, 102, 103, 105, 107–109, 115, 119, 121–123,
125–133, 135–138, 140, 142, 143, 145, 148, 150

FoV field of view. 101, 139

FWHM full width at half maximum. 121, 124, 125, 130–133

HU Hounsfield units. 138

ICD iterative coordinate descent. 8, 9

LoR line of response. 23–31, 33–35, 39, 149

MBIR model-based iterative reconstruction. 9

161

MLEM maximum likelihood expectation maximization. 8–12, 102, 103, 106–109,
114, 115, 119, 121–123, 125–130, 133, 135–138, 140, 142, 143, 146, 148, 150

MRI magnetic resonance imaging. 3, 4

NPS noise power spectrum. 138–140, 142–146

OS ordered subsets. 9

PE polyethylene. 103–107, 109, 112, 114–116, 123, 125, 127, 129, 131

PET positron emission tomography. 6, 101

PMMA polymethyl methacrylate. 102–107, 114, 119

POM polyoxymethylene. 103, 107, 109, 113, 115, 117, 123, 125, 127, 129, 131

PTFE polytetrafluoroethylene. 103

SART simultaneous ART. 8

SIRT simultaneous iterative reconstruction technique. 8, 9

VoI volume of interest. 102, 103, 107, 109, 114–120

Acknowledgments /
Agradecimientos

Me gustaŕıa expresar mi gratitud a mis directores. En especial a la Dra. Maŕıa
José Rodŕıguez Álvarez, que con su experiencia y conocimientos me ha propor-
cionado una inestimable ayuda durante toda esta investigación; y que con su in-
finita paciencia me ha guiado durante este largo camino, de la forma más amable y
diligente. No hay espacio aqúı para transmitir mi aprecio, pero le debo mi eterna
gratitud.

He tenido la suerte de coincidir y colaborar con excelentes compañeros a lo
largo de esta investigación, tanto en el Instituto de Instrumentación para Imagen
Molecular como en el Instituto de Matemática Multidisciplinar. A todos ellos
gracias. Especialmente al director del Instituto de Instrumentación para Imagen
Molecular, Profesor de Investigación José Maŕıa Benlloch Baviera, que siempre me
ha mostrado su apoyo, ayuda y optimismo.

De entre los compañeros con los que he tenido la suerte de coincidir, quiero
agradecer especialmente a Pablo Bellido Millán que me haya dedicado largas char-
las en las que tuvo la paciencia y amabilidad de exponer su profundo conocimiento
de la f́ısica frente a mis triviales dudas de forma que las pudiese entender, reve-
lándome claves sin las cuales no hubiese podido llevar a buen término esta inves-
tigación y permitiéndome participar de su pragmatismo y buen hacer. Mi más
sincero agradecimiento. A Pablo Conde Castellanos, me gustaŕıa agradecerle el
tiempo que me ha dedicado, en el que con su vasto conocimiento de la fisica y la
electrónica, ha tenido la paciencia de arrojar luz sobre muchos de los numerosos
vaćıos que he ido llenando durante este camino, y conduciéndome amablemente
hacia el camino de la eficiencia, rapidez y buen hacer. Mi más profundo agradec-
imiento. Y a Sebastián Sanchez Goez, quiero agradecerle que haya compartido
su amplio conocimiento de la f́ısica conmigo, siempre tomando de forma seria y
metódica mis dudas, por simples que fuesen y compartiendo razonamientos que han
completado mi experiencia durante estos últimos años. Mi más sentido agradec-
imiento.

163

Quiero agradecer a mi familia, que siempre haya estado a mi lado. Particular-
mente, a mi compañera y mejor amiga, Blanca, su incondicional apoyo, su ánimo
y su cariño; en las largas noches de trabajo, en el d́ıa a d́ıa y en todo momento.
No sólo su aura de bondad e inteligencia me han hecho ser mejor persona, sino
que sin su compañ́ıa, respirar seŕıa simplemente el marcar de un reloj.

