PART I: INTRODUCTION

Chapter 1. Introduction .. 1

Abstract .. 1

1.1. The Californian water-energy-food-environment relationship 2
 1.1.1. Introduction... 2
 1.1.2. Water itself... 2
 1.1.3. Water as energy consumer ... 7
 1.1.4. Water as an energy source ... 9
 1.1.5. Water and energy as food inputs .. 11
 1.1.6. Water, energy, food and the environment ... 12
 1.1.7. From local conclusions to global considerations ... 13

1.2. The water-energy nexus: a “bottom-up” approach for basin wide management .. 15
 1.2.1. Introduction ... 15
The Water-Energy Nexus: a bottom-up approach for basin-wide management

1.2.2. The water-energy nexus literature ... 15
 1.2.2.1. Energy use of urban water end-uses ... 16
 1.2.2.2. The urban water-energy relationship ... 18
 1.2.2.3. Energy consumption of agricultural water use ... 19
 1.2.2.4. Water use for energy generation ... 20
 1.2.2.5. The large-scale water-energy nexus .. 21
1.2.3. Research objectives .. 23
1.2.4. Research approach ... 24
1.2.5. Organization of the dissertation .. 25
1.3. References .. 26

PART II: RESEARCH PAPERS

Chapter 2. Modeling residential water and related energy, carbon footprint and costs in California ... 33

Abstract .. 33
2.1. Introduction ... 34
2.2. Methods ... 35
 2.2.1. Overall description ... 35
 2.2.2. Water end-use model .. 35
 2.2.3. Water-related energy model .. 37
 2.2.4. Carbon emissions ... 38
 2.2.5. Water and water-related energy costs ... 39
 2.2.6. Scenarios ... 39
2.3. Results ... 40
 2.3.1. Water end-use model .. 40
 2.3.2. Water-related energy model .. 41
2.3.3. California overall results ... 41
2.3.4. Heterogeneity in consumption and variability in location 43
 2.3.4.1. Water use ... 43
 2.3.4.2. Water-related energy use .. 43
 2.3.4.3. GHG emissions ... 44
 2.3.4.4. Water and water-related energy costs 46
 2.3.4.5. Results from scenario simulations 46
2.4. Insights for management and policy .. 47
 2.4.1. Differences in willingness to adopt conservation strategies 47
 2.4.2. Targeting ... 47
 2.4.3. Efficiency over the planning scales 49
2.5. Discussion .. 53
2.6. Conclusions ... 54
2.7. References .. 55
Appendix: Supporting information ... 58

Chapter 3. Optimal residential water conservation strategies considering related energy in California ... 77
Abstract .. 77
3.1. Introduction ... 78
3.2. The economics behind the model ... 80
3.3. Methods .. 84
 3.3.1. Water-Energy-CO2-Costs model ... 84
 3.3.2. Conservation actions .. 85
 3.3.3. Modeling savings and costs ... 86
 3.3.3.1. Technological improvements 86
Chapter 4. Evaluating demand and supply of urban water and energy systems accounting for water-related energy use and water-dependent generation in California

4.3.5. Adjusting hourly water demand and supply ... 115
4.3.6. GHG emissions .. 117
4.3.7. Energy costs ... 118
4.3.8. Simulations ... 119

4.4. Methods ... 120
4.4.1. Validating the model ... 120
4.4.2. Energy and GHG emissions of the urban water cycle 121
4.4.3. Residential water conservation effects .. 123

4.5. Discussion ... 125
4.6. Conclusions .. 126
4.7. References ... 127

Chapter 5. Modeling water resource systems accounting for water-related energy use, GHG emissions and water dependent generation in California.. 131

Abstract .. 131
5.1. Introduction .. 132
5.2. Necessity of the model and modeling objectives.................................... 134
5.3. Methods ... 135
5.3.1. Inflows ... 135
5.3.2. Demands ... 135
5.3.2.1. Urban demand ... 135
5.3.2.2. Agricultural demand ... 136
5.3.2.3. Energy demand .. 137
5.3.2.4. Environmental demand .. 137
5.3.3. Surface water management model.. 138
5.3.3.1. Reservoirs .. 138
5.3.3.2. Nodes ... 138
5.3.3.3. Natural streams .. 139
5.3.3.4. Artificial channels .. 139
5.3.3.5. Connectivity ... 139
5.3.3.6. Water allocation algorithm ... 139
5.3.4. Groundwater model .. 141
5.3.5. Surface and groundwater model integration .. 141
5.4. Case study: California intertied water system ... 142
5.4.1. Assembling the model ... 142
5.4.2. Data .. 144
5.4.3. Scenario simulations ... 145
5.5. Results ... 146
5.6. Discussion ... 149
5.7. Conclusions ... 151
5.8. References ... 152

PART III: GENERAL DISCUSSION AND CONCLUSIONS

Chapter 6. General discussion of the results .. 159
6.1. Summary of results’ discussion ... 159
 6.1.1. Residential water-energy nexus ... 159
 6.1.2. Urban water-energy nexus ... 161
 6.1.3. Basin-scale water-energy nexus ... 162
6.2. General discussion of the results ... 164
6.3. References ... 165
Chapter 7. Conclusions ... 167
 7.1. Introduction .. 167
 7.2. Initial objectives and research questions 167
 7.3. Summary of conclusions .. 169
 7.3.1. Thematic contributions .. 169
 7.3.2. Methodological contributions ... 171
 7.4. Accomplishment of objectives .. 172
 7.5. Further research ... 173
 7.6. References .. 174