
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/59700

Taylor & Francis

Herrera Fernández, AM.; García-Díaz, JC.; Izquierdo Sebastián, J.; Pérez García, R. (2011).
Municipal water demand forecasting: Tools for intervention time series. Stochastic Analysis
and Applications. 29(6):998-1007. doi:10.1080/07362994.2011.610161.



MUNICIPAL WATER DEMAND FORECASTING: 
TOOLS FOR INTERVENTION TIME SERIES 

 
M. Herrera1*, J. C. García-Díaz2, J. Izquierdo1, R. Pérez-García1 

 
1Fluing – Instituto de Matemática Multidisciplinar, 

Universitat Politècnica de València, Edificio 5C, C. de Vera s/n, 46022 Valencia 
 

2Centro de Gestión de la Calidad y del Cambio, 
Universitat Politècnica de València, Edificio 7A, C. de Vera s/n, 46022 Valencia 

 
 

Abstract 
 
This paper introduces some approaches to common issues arising in real cases of water demand prediction. 
Occurrences of negative data gathered by the network metering system, and demand changes due to closure 
of valves or changes in consumer behavior are considered. Artificial neural networks (ANNs) have a 
principal roll modeling both circumstances. First, we propose the use of ANNs as a tool to reconstruct any 
anomalous time series information. Next, we use what we call interrupted neural networks (I-NN) as an 
alternative to more classical intervention ARIMA models. Besides, the use of hybrid models that combine 
not only the modeling ability of ARIMA to cope with the time series linear part, but also to explain 
nonlinearities found in their residuals, is proposed. These models have shown promising results when tested 
on a real database, and represent a boost to the use and the applicability of ANNs. 
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1. Introduction 
 
The most important consideration for the planning and the operation of a water distribution system is to 

satisfy consumer demands. Thus, it is imperative to provide consumers with quality water in adequate 

amounts, at reasonable pressure and at all the times, ensuring some degree of reliability into the water 

distribution system. Efficient operation and management of an existing water supply system requires short-

term water demand forecasts as a crucial input. The estimation of future municipal water demand is central to 

the planning of a regional water supply (Zhou et al., 2002), becoming an essential tool for design, operation 

and management of the system. These predictions are fundamental in taking decisions in water management 

issues such as pricing policies and planning new developments or system expansions, and estimating the size 

and operation of reservoirs and pumping stations (Bougadis et al., 2005). Thus, short-term demand 

projections help water managers to make more informed water management decisions and to balance the 

needs of water supply of residential and industrial demands (Jain and Ormsbee, 2002). 

 

In this paper, our analysis is based on hourly water demand data in a village of south-east Spain. Water 

demand around the Mediterranean basin is growing at an alarming rate. Like many Mediterranean regions, 

south-east Spain is suffering from large stress in the use of groundwater from its major aquifers. This region 

is a prime example of an area where the aquifers are under pressure and groundwater supplies essential needs 

for agriculture and tourism. The time series data we consider here have different singularities and appear 

with certain frequency in Hydraulics. One characteristic is that negative demands are observed during the 

period for which the time series of water demand is under study. We propose the use of an artificial neural 

network (ANN) to interpolate these anomalies.  Also, we address the occurrence of some changes affecting 

the level of the demand average. This issue suggests the use of intervention analysis to model the series. We 

study two options: an intervened ARIMA and a new concept of interrupted ANN. Finally, to analyze the 

series we apply a hybrid methodology that improves the achieved results. This is performed by fitting an 

intervened ARIMA to the data and using an ANN to explain its residuals. 

 
The paper is organized as follows. In Section 2, the forecasting procedures are described. As regards time 

series analysis, the considered techniques include ANN and ARIMA models. Transfer functions and 

intervention analysis also are introduced because they are useful to represent the impact of special events on 



water demand. In Section 3, a case study based on water demand historical hourly data for six months is 

analyzed in detail. This instance serves as a working line to propose different alternatives to classical issues 

of the considered forecasting tools. Section 4 summarizes the conclusions of this paper. 

 
2. Water demand forecasting methods 
 
 
2.1  ARIMA models 
 
Water demand can be considered as a random process {X(t)} in continuous time, from which a time series 

{xt} is obtained by sampling at discrete times. The symbol t denotes the time. The stochastic nature of water 

demand as a function of time has frequently been modeled with seasonal ARIMA models (Yamada et al., 

1992). 

 

The multiplicative seasonal ARIMA or SARIMA(p,d,q)(P,D,Q)s model is given by 

             (1) 

where xt is the water demand in period t; c is a constant term; s is the number of periods in the seasonal 

cycle; B is the lag operator ; is the difference operator ; is the seasonal 

difference operator ; d an D are the orders of differencing; at is a zero-mean white noise error 

term; and are polynomial functions of orders p, P, q and Q, respectively (Peña et al., 2000). 

 

The Box-Jenkins methodology (Box and Jenkins, 1976) provides a step-by-step procedure for ARIMA 

analysis to find the best fit of a time series to past values of this time series, in order to give forecasts. 

 

Fuzzy logic, rough sets and decision rules (Fernández-Baizán, 2000) are proposed as an alternative to the 

ARIMA models, but the data requirements are very large and different variables such as wind direction, air 

temperature or humidity need to be measured; on the other hand, in ARIMA just the time sequence is 

necessary to achieve suitable results. Other predictive alternatives are discussed by Herrera et al., 2010. 

 

2.2 Transfer function and intervention analysis methodology 

Univariate ARIMA models are useful for analysis and forecasting of single time series. In such situations, 



one can only relate the series to its own past and does not explicitly use the information contained in other 

pertinent time series. However, a time series is not only related to its own past, but may also be influenced by 

the present and past values of other related time series. This class of models is referred to as transfer function 

models by Box and Jenkins (1976). A special case of transfer function models is called intervention model 

class, which can be used to evaluate the effect of the external events, or to incorporate the interventions into 

a time series model to possibly improve parameter estimates or forecasts (McLeod and Vingilis, 2005). This 

class of models is typically used as a means to assess the impact of a discrete intervention on a time series. In 

the following we shall assume that the time t at which the change (or intervention) occurs is known. 

 

Usual transfer functions are instantaneous or gradual and can have permanent or transitory effects. The time 

series analyzed in this paper (see Section 3) is affected by a step function, in view of its permanent effects. If 

the step jump is sharp, then it will be of instantaneous character. The effect of a step function on the yt series, 

that follows an ARIMA model, can be represented by the intervention model: , where f is the 

transfer function, Nt is a stationary model, and is a pulse function. If xt and yt are two stationary time 

series, xt being the input or cause variable, and yt the output or response variable; and Nt is an uncorrelated 

noise with the input series xt that is modeled as ARIMA, then the final model is expressed by: 

        (2) 

The operator is called transfer function and the weights i are the system pulse weights, as 

see in expression (2). 

 

This model undergoes the problem of infinite parameters. One alternative is the V(B) polynomial truncating, 

that is: yt = 0xt + 1xt-1 + . . . + hx-h + Nt, where h is chosen so that the effect of the not considered 

posterior delays is negligible. Nevertheless, truncating this series it is a difficult decision that can be avoided 

by establishing V(B) as the next polynomial rate: 
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  being a white noise process. 

 

If disturbance does not exist, that is, if Nt = 0, the model becomes: (1- B -...- rB
r)yt = (w0 + w1B +... + 

wsB
s)xt. That is to say, an ARIMA model is a particular case of a dynamical model of transfer function in 

which the input is a white noise. In addition, disturbance does not exist and the function of transference is the 

quotient of two polynomials corresponding to the moving average (MA) part (the numerator) and to the auto-

regressive (AR) part (the denominator). Thus, the conditions of a stationary and invertible process for the 

transfer function are the same than those for the ARIMA models, namely, the roots of the polynomials w(B) 

and B) fall out of the unit circle. 

 

Box and Tiao, 1976, introduced a model for intervention analysis that has the same form as the transfer 

function model (eq. 2), except that the input {Xt} and the coefficients {tj} are chosen in such a way that the 

changing level of the observations of {Yt} is well represented by the sequence . Then, for {Yt} with 

EYt = 0 for  and EYt a as t , a suitable input series is the step function of equation 2. 

 

Having chosen an appropriate form for Xt and possible values of b, q and p by inspection of the data, the 

estimation of the parameters and the fitting of the model for {Nt} can be carried out by using the next steps: 

1. Input model with r = s = 0 where the least square estimation of w0 is obtained. The residuals are 

saved as the first {Nt} estimators. 

2. Fit a seasonal ARIMA model to the residuals data (with no mean correction and using maximum 

likelihood estimators). 

3. Run step 1 using the estimate and the {Nt} found in 2. 

4. Test the new residual series for whiteness and, after passing all the tests, conclude that the model in 

equation 4 is satisfactory. 



 

2.3 Artificial neural networks 

An artificial neural network (ANN) is an interconnected group of artificial neurons that uses a mathematical 

model or computational model for information processing based on nodes interconnected in a series layers. 

In most cases, an ANN is an adaptive system that changes its structure based on external or internal 

information that flows through the network (Bishop, 1995). In more practical terms, neural networks are 

non-linear statistical data modeling tools. They can be used to model complex relationships between inputs 

and outputs or to find patterns in data by exploiting its main advantage, namely, the capability of the network 

to self-learn. Knowing the inputs and desired output(s), the ANN model will try to reproduce the observed 

outputs through a series of iterations. The most common ANN network is the feedforward network, which 

uses the back-propagation algorithm for training. 

 

Multi-layer networks use a variety of learning techniques, the most popular being back-propagation 

(Bougadis et al., 2005). Usually, a typical three-layer feedforward model is used for forecasting purposes 

(Lingireddy and Ormsbee, 1998). On the one hand, the input nodes may contain both important co-variables 

at the current time and the previous time series lagged observations. On the other hand, the output provides 

the forecast for the future values. Hidden nodes with appropriate non-linear transfer functions are used to 

process the information received by the input nodes. Finally, the model can be written as (Zhang and Qi, 

2005): 

 

where p is the number of input nodes, h is the number of hidden nodes, f is a sigmoid transfer function; , 

with j = 0, 1, ..., h, is the vector of the weights from the hidden to the output nodes and , with i = 0, 1, ..., p 

and j = 1, 2, ..., h, are the weights from the input to hidden nodes. and are the weights of the arcs 

leaving from the bias terms. 

 

3. Forecasting tools applied to water demand predictions 

 
3.1 Case study 



This paper introduces a case study of a water demand time series for a small town close to the city of Murcia 

(located in south-east Spain). It has a population of about 5000 inhabitants and an extension close to 8 km². 

The water demand data was taken as the average difference between flows entering and leaving this town. A 

failure on the metering stations originated that the data showed negative demands throughout several 

consecutive days (see Fig. 1). This fact led us to propose the use of an ANN as a tool for interpolation and 

reconstruction of such anomalous information. Once purified, the data series is analyzed by the methodology 

ARIMA, in this case by intervention, since from April the average changes sharply. This intervention is due 

to the modified record in the testing pressures of the pumping stations. Field measurements were conducted 

at the treatment and control sites from January 2005 to June 2005. 

 

 

[ FIGURE 1 ] 

 

The database can be used to supply the average water consumption on a hourly basis for a sample of 

costumers, using the information on a six-month time period. To estimate the model parameters we use 6 

months of hourly data: from January 1, 2005 to May 31, 2005. The last month is reserved to evaluate our 

forecasts. The data suggests a simple level change that can be modeled using intervention analysis. 

 

3.2 Interpolation data using ANN 

An ANN model is developed for interpolating water demand (Fariñas and Pedreira, 2002) along 3 days in 

April, namely 10, 11 and 12. During these days negative demands were observed (Fig. 1). The sample data 

are divided into training part (first 2275 items) and validation part (next 100 items). The interpolation lags 

are items from 2376 to 2447. The validation part is the last 10 days observations before interpolation time. 

The training sample is used to estimate the parameters for any specific model architecture, and the validation 

sample is then used to select the best among all the considered models. Because of the number of input data 

(and then the training samples) is so long, there is no problem with over-training. In this case the training is 

the so-called “asymptotic training”. 

 

The proposed ANN is a feedforward three-layer perceptron (Zealand et al., 1999; Wang et al., 2006). The 



input layer is composed by three nodes: hour, week day and weekend (this last node gives the information 

whether the day is a holiday or not). The tested hidden nodes vary from 4 to 14, with a logistic transfer 

function for them, and the identity function for the output node. Two learning rates were probed each time: 

0.01 and 0.1. Finally, the best architecture in the sense of root mean square error (RMSE), and mean absolute 

error (MAE), is a 3-8-1 scheme, with learning rate of 0.1 (Kneale et al., 2001). The errors obtained were 7.53 

m³ in RMSE terms and 5.59 m³ in MAE. These results are reinforced when the parameters number is 

considered, as in the Akaike (AIC) and Bayesian (BIC) criteria (see Table 1). 

 

[ TABLE 1 ] 

 
3.3 Modeling data using intervention analysis 

Once the data has been properly interpolated, it is important to seek a time series stationary condition: 

constant mean and variance. A transformation of the original data is usually applied to attain a more 

variance-stable data, while simple and seasonal difference operators can be used to obtain a more stable 

mean. In this case, the logarithmic transformation was used for achieving stationarity. Besides of this, the 

data proposes a simple level change, which can be modeled using intervention analysis. The jump in the 

average suddenly happens at noon on April 22nd. The consequences directly affect the data average, which 

exceeds the 19 m3 to become stable around 32 m3. Their corresponding variances also grow from 8.4 to 16. 

The suitable transfer function in this case will be classified as instantaneous and their effects will be 

permanent. 

 

In this intervention process, we first take (defined in subsection 2.2) equal to 3.47 (32 m3, in the original 

units), the Log of the series mean after the jump, as an initial estimation of w0. Next, we perform a least 

squares regression of the series output, and we get the estimated value of 0.63. The noise of this series 

estimates {Nt} in the model. Maximum likelihood estimation gives the SARIMA(1,1,1)(1,1,1)24. Their 

residuals are white noise and offers initial estimations for the final model. Then, using the found estimate of 

w0 and the given model for Nt leads to the model: 
26760.57 t t t tY I x N , which we specify in Table 2. 

 
[ TABLE 2 ] 



 

3.4 Proposing alternative models 

There are various ways to formalize the validation about the previously obtained results. The Peña and 

Rodríguez portmanteau test (Peña and Rodríguez, 2002; Peña and Rodríguez, 2006), the classical Ljung and 

Box test (Ljung and Box, 1978), and the Monti and Hong tests (Monti, 1994) are known examples. In our 

case-study we do not validate the intervention model using the first Peña and Rodríguez test, but we obtain 

that the residuals are white noise using the support of Ljung-Box test and a graphical inspection. In addition, 

the results will depend on the working sample and on the validation set. This ambiguity motivates the 

introduction of some bootstrap time series methodologies to avoid bias and achieve robustness in the 

proposed models (Herrera et al., 2010). Next subsections show alternative solutions on the study of an 

intervention time series process. 

 

3.4.1 Interrupted neural networks 

A first proposed alternative is forecasting with a neural network (it is arranged under similar conditions that 

the proposed ANN in Subsection 2.3 and used as an interpolation tool in 3.2). On one hand, the case of 

approaching an intervened time series suggests the use of two neural networks. But on the other hand, 

although there are two different time series, both have a common origin. Thus, we propose what we call an 

Interrupted Neural Network (I-NN). It consists in arranging two different ANN, one for each part of the 

series (pre and post-intervened). The I-NN particularity is that the second ANN automatically inherits the 

architecture of the first one, and it is initialized with the weights of the final solution of this pre-intervened 

network. In this way, we can achieve better algorithmic convergence. 

 

Turning back to our case-study, we apply a 3-8-1 architecture in the I-NN proposed. Using the model to 

predict the water consumption in the 24 hours of the first day of June, we obtain a RMSE of 11.62 m³ and 

MAE of 9.74 m³. We can see a summary of these results in Table 3. 

 

3.4.1 Hybrid models 

This proposal exploits the strengths of traditional ARIMA time series approaches and artificial neural 

networks (Wang et al., 2006; Zhang, 2005). The idea consists in using an ARIMA model to analyze the linear 



part of the problem and an ANN to model their residuals. The joint model captures different forms of 

relationship in the time series data, maintaining the ARIMA interpretation but modeling the nonlinear 

patterns that can appear. The proposed hybrid model is then composed by a linear and a nonlinear component 

as see in equation 5: 

         (5) 

where yt denotes the original time series, Lt denotes the linear component and Nlt denotes the nonlinear 

component. Lt is estimated by an ARIMA model and residuals obtained from the ARIMA model, 

, are estimated by an ANN. 

 

We test this methodology in our case-study to predict the water demand of the first day of June. Then, adding 

to our intervened ARIMA model (see Subsection 3.3) a 3-8-1 ANN to fit their residuals, we obtain errors 

such as a 7.69 m³ in RMSE and 5.18 m³ in MAE. Table 3 summarizes the results. 

 

[ TABLE 3 ] 

 

The best results are achieved with the analysis by a hybrid model. Then, the final model is a 

SARIMA(1,1,1)(1,1,1)24, for the linear part and an additional 3-8-1 ANN modeling their residuals. The 

forecasts are shown in Figure 2. 

 

 

[ FIGURE 2 ] 

 

4. Conclusions 

This paper has analyzed a model to forecast the municipal water demand in a town of Spain using the 

ARIMA models. To cope with the difficulties found on these data analysis we have proposed different tools, 

including some interesting conceptual approaches using artificial neural networks (ANN). 

 

For one thing, we have worked with some important quantity of negative data of water demand, which we 

need to interpolate. The use of artificial neural networks as tools for this interpolation fits perfectly in the 



philosophy of the ARIMA models, restoring automatically the necessary data to prolong the time series 

analysis. And for another, a simple level change found on the data has been modeled using intervention 

analysis. Nevertheless, the paper introduces a new alternative approach based on interrupted neural 

networks. This breed of ANN takes advantage of the a-priori model of the pre-intervened series to perform 

more suitably the model after the intervention. 

Other working line is the use of hybrid models in time series. These are based in linear ARIMA models, but 

they are able to gather possible nonlinearities by studying their residuals by an ANN. In a comparative 

process on our case-study, the obtained model by this hybrid approach exhibit higher predictive power. 
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Fig. 1. Original data of water demand in the case study 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

Figure 2. Forecasting with the hybrid model along the first day of June in the case-study 

 

 



 
 

 

Table 1. AIC and BIC table with the three best results of the architectures analyzed 

Architec. Alpha RMSE MAE AIC BIC M patterns N weights 

3-7-1 0.1 8.9 7.3 2120.9 2158.4 2175 28 

3-8-1 0.1 7.5 5.6 1967.3 2010.0 2175 32 

3-9-1 0.1 8.1 6.4 2047.9 2096.1 2175 36 

 

 



 
 

Table 2. Parameters estimated for the final model of the intervened ARIMA 

 AR1 MA1 SAR1 SMA1 

 0.75 -0.98 0.11 -0.94 

st. error 0.01 0.01 0.02 0.16 

 

 



 
 

Table 3. RMSE and MAE of the forecasting methods used 

 RMSE MAE 

intervened ARIMA 8.45 6.03 

interrupted ANN 11.62 9.74 

hybrid model 7.69 5.18 

 

 

 


