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Abstract

With the rise of cloud computing, data centers have been called to play a main role in the

Internet scenario nowadays. Despite this relevance, they are probably far from their zenith yet due

to the ever increasing demand of contents to be stored in and distributed by the cloud, the need of

computing power or the larger and larger amounts of data being analyzed by top companies such

as Google, Microsoft or Amazon.

However, everything is not always a bed of roses. Having a data center entails two major

issues: they are terribly expensive to build, and they consume huge amounts of power being,

therefore, terribly expensive to maintain. For this reason, increasing the energy efficiency (and

hence reducing the carbon footprint) of data centers has been one of the hottest research topics

during the last years. In this master thesis we propose different techniques that can have an impact

in the maintenance costs of data centers of any size, from small scale to large flagship data centers.

We target energy efficiency in data centers as the main target of this master thesis. We first

make a characterizing the power requirements of a data center server given that, in order to prop-

erly increase the energy efficiency of a data center, we first need to understand how energy is

being consumed. We present an exhaustive empirical characterization of the power requirements

of multiple components of data center servers, namely, the CPU, the disks, and the network card.

To do so, we devise different experiments to stress these components, taking into account the mul-

tiple available frequencies as well as the fact that we are working with multicore servers. In these

experiments, we measure their energy consumption and identify their optimal operational points.

Our study proves that the curve that defines the minimal power consumption of the CPU, as a

function of the load in Active Cycles Per Second (ACPS), is neither concave nor purely convex.

Moreover, it definitively has a superlinear dependence on the load. We also validate the accu-

racy of the model derived from our characterization by running different Hadoop applications in

diverse scenarios obtaining an error below 4.1% on average.

The second topic we study is the Virtual Machine Assignment problem (VMA), i.e., optimiz-

ing how virtual machines (VMs) are assigned to physical machines (PMs) in data centers. Our

optimization target is to minimize the power consumed by all the PMs when considering that

power consumption depends superlinearly on the load. We study four different VMA problems,

depending on whether the number of PMs and their capacity are bounded or not. We study their

complexity and perform an offline and online analysis of these problems. The online analysis is
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complemented with simulations that show that the online algorithms we propose consume sub-

stantially less power than other state of the art assignment algorithms.
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Chapter 1

Introduction

Internet has revolutionized our world. In 15 years it has passed from being hardly found in

any home to be hardly not found in any pocket. We have become Internet-addicts and got used to

continuously check our emails, videos, photos,. . . Through Google, Facebook, Twitter, we learn

about what is happening with our friends or in any remote corner of the world, we are able to

contrast news, we have access to any kind of information we are curious about. At the same time,

Internet has also overturned the business world, simplifying and reducing the costs of sharing

information in and between companies, and allowing any company, no matter how small it is, to

have customers all over the world.

This has become real thanks to new concepts like the Internet of things, social networks,

or cloud computing. However, at the end of the day, what Internet has done is putting huge

amounts of data available to everyone. One of the keys of this availability of data has been the

proliferation of data centers. Although some data centers are not necessarily large, like the ones

usually deployed at many universities, companies or government institutions, large companies

such as Google, Facebook, Amazon or Microsoft, among others, are building large scale data

centers all over the world.

A large scale data center can be defined, in a nutshell, as an integrated facility housing a

large amount of high end servers, up to the order of tens of thousands, interconnected by a dense

network, hosting petabytes of data and consuming up to various tens of mega Watts. According

to Belady [22], the building costs of a data center is between $8M-$30M/MW, being the average

around $20M/MW, depending on the kind of facility. These numbers lead to costs of $100−150M

for small/mid size facilities, while huge data centers, like Facebook’s or Google’s, can be in the

order of $600M.

However, although building a data center is expensive, they can be even more expensive to

maintain. As we noted above, their average power consumption can be around 20MW per year,

which unveils a second problem, their energy consumption. In a recent study, Van Heddeghem et

al. [55] estimate that, between 2005 and 2012, worldwide aggregated data center energy consum-

ption increased almost a 50%, reaching 270TWh from the previous 200TWh. This is roughly a

3



4 Introduction

Figure 1.1: Worldwide use phase electricity consumption of data centers from 2005 to 2012 and
the total worldwide electricity use from 2008 to 2012. Data center consumption is shown as the
aggregation of its main consumers, servers, storage, communication and infrastructure.

1.5% of the total worldwide electricity consumption, and with a compound annual growth rate of

a 4.4%.

Therefore, it is easy to see why greening data centers has emerged as one of the main targets

of the research community during the last years. Greening data centers has, in fact, a two-fold

objective, reducing operation costs, i.e., saving money; and improving data center sustainability,

i.e., reducing the amount of energy consumption attributed to data centers. In the same way,

efficiency of several data center components, for instance cooling systems, may lead to a reduction

on the building costs.

Data center research has become a broad field of research. Even when we restrain ourselves to

reducing building cost or increasing energy efficiency, the complexity and variety of subsystems

that can be found in a data center result in a huge amount of particular problems. Even if we

restrain ourselves to the increasing the energy efficiency of the different data center subsystems

topic, the body of related work is overwhelming. In fact, if we look at some data provided by

Barroso et al. [18, 19] we can see how the research in the field has contributed to change the en-

ergy consumption breakdown of data centers. In Figure 1.2 we can find the energy consumption

breakdowns of a legacy data center with a PUE1 value of around 2.0 in 2009 and 2013, in sub-

figures 1.2(a) and 1.2(b) respectively. Similarly, in subfigures 1.2(c) and 1.2(d), we can also see

the evolution on the distribution of peak power usage in a hardware subsystem in a Google’s data

1PUE responds to Power Usage Efficiency and it is one of the most commons and broadly accepted efficiency
metrics. It measures the amount of cooling power needed versus the amount of electricity to run the IT infrastructure.
An ideal ratio is 1.0.
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42%

12%

14%

5%

4%

8%

15%

CPUs

DRAM

HDD

Networking

Misc.

Power Overhead

Cooling Overhead

(d) Approximate distribution of peak power usage in a
hardware subsystem in a Google’s data center in 2012.

Figure 1.2: Evolution of the breakdown of a data center energy consumption and a hardware
system between 2007-2013.

center between 2007 and 2012. This evolution is the result of intense research in multiple fields

concerning each one of the pieces of hardware, usage policies or interaction between them.

However, although this evolution on the power requirements can be extended to many data

centers, as for instance the (each time more) energy proportional servers, they can not be applied

to all of them. One of the variables that conditions the application of these latest techniques is,

for instance, the size of the data center. Big companies proudly exhibit the very low PUEs of

their flagship data centers, like Facebook’s PrineVille and Luleå, with 1.06− 1.08 and 1.07 PUE,

or Google’s Hamina, with 1.14 PUE. However, the resources which can be devoted to the design

and construction of these data centers are not the same devoted to smaller ones or by smaller

companies. Similarly, these low PUEs are usually achieved because of some particular aspects of

the location of the data center, like the use of Finland’s gulf water in Hamina. According to the

Uptime Institute [88], the average PUE is around 1.8 − 1.89, which gives a better idea of how

much energy efficiency can still be improved.

Moreover, although a bit outdated, Bayley et al. [13], in 2007, presented a study quantify-
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Table 1.1: Classification of Data Center types according to their size.

Server
Closet

Server Room Localized
Data Center

Mid-Tier
Data Center

Enterprise Class
Data Center

Size [sq ft] < 200 < 500 < 1.000 < 5.000 > 5.000
# Servers (2005) 1.657.947 1.942.214 1.674.648 1.511.999 3.074.424
Estimated Energy consumption 11% 24% 21% 19% 24%
# Servers (est. 2009) 2.135.538 3.057.834 2.107.592 1.869.595 3.604.678

ing the amount of servers in different facilities according to their size. Some of the results of

that study are presented in Table 1.1, showing the different categories, the estimated number of

servers per category in 2005 as well as the distribution of energy consumption among them, and

a prediction of the evolution of these numbers for 2009. These numbers show how most of the

energy consumed is not necessarily in large enterprise data centers, but in smaller environments

in which, in most cases, the PUE does not match the ones achieved by Facebook’s or Google’s

flagship data centers. Nevertheless, it is important to remark that industry has become aware of

this problem and more and more solutions are being provided each day to companies that only

need small sized data centers, like Modular or Containerized Data Centers [5, 94] or integrated

box solutions like IBM’s Integrated Server Room [59]. In addition to this, Containerized Data

Centers could even help to reduce the building costs of large data centers avoiding over built

capacity and helping with over time scalability [89].

This master thesis is divided in two parts, a Background part, which includes this introduction

and the state of the art of the two different, but related, problems we addressed in this document;

and a second part, Understanding and Reducing Energy Consumption in Data Centers, that de-

scribes our work in both problems. This study intends to help to a better understanding of how

energy is consumed in data centers as well as providing solutions which can be applied to data

centers in any size range, from server closets to large enterprise data centers. We know provide

some insights about what will be covered in this master thesis.

1.1 Understanding and Reducing Energy Consumption in Data
Centers

As we have already mentioned, improving the energy efficiency of data centers has become

an issue of capital importance both for economic and of environmental reasons. Due to this

importance, the amount of techniques that have been proposed to help in this area is so huge that

it is impossible to present them in just one document. Hence, we now only introduce some of the

techniques which are relevant for this master thesis.

1.1.1 How Servers Use Power

Servers are like puzzles where each one of its pieces has its own share of power consumption.

At the same time, the global power consumption of a each one of these pieces is not constant, it
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depends on the stress we introduce in each one of them. Depending on the amount of accesses we

do to disk, to memory, on the amount of data we send to or receive from the network and on the

amount of processing we do or the heat we generate, the power required by Hard Drives, Memory,

Network, CPU or cooling units will vary. There are also more components, as we saw in Figure

1.2, but those are usually assumed to be the major contributors to the power consumption of data

center servers.

However, servers are not power proportional [17], i.e., the total power consumed is not pro-

portional to the amount of load being processed, and usually, the main contributor to power con-

sumption is the fact of having the machine switched on. In the recent past, the amount of power

consumed by an idle machine compared to the power consumed when it worked at full speed

could easily add up to a 70% of its total power consumption. If we focus in the last 7 years, we

can consult the available public data from the SPEC power benchmark web [38]. Comparing re-

sults from the last quarter of 2007 against the last available ones (second quarter of 2014), we can

see a reduction on the power consumption of servers when idle compared to its peak consumption

from barely a 60% in most servers to roughly a 20− 25% of power consumption.

If we consider only the active range, i.e., the power variation between the idle state and the

peak consumption, it has been traditionally assumed that most of the power is consumed by

the CPU. Similarly to what happens with servers, processors do not consume power linearly,

in proportion to the load. Although processor power consumption has usually been modeled

in a linear fashion, everything changed with the arrival of multicore processors able to work at

multiple frequencies. Multicore processors introduced multiple changes. First, cpus in the same

processor are able to share on-chip and on-die resources, increasing,hence, the synergies and

reducing power requirements [21]. Also, there are new parameters to be considered as variable

voltages and frequencies that determine CPU speed and, therefore, power requirements. Due to

this new complexity, being able to understand how servers consume power has become a must if

we want to devise any technique or strategy that intends to reduce power or energy consumption.

In this master thesis, we will present an empirical study were some of these aspects were

analyzed and we were able to shed some light about the behavior of multicore and multifrequency

machines based on real data. This knowledge can be applied in multiple techniques devoted to

reduce the aggregated power and energy consumption of data centers. Not understanding the

effect that placing a task in a server is going to have on its power consumption will result in

non-optimal, in the best case, or in completely non-efficient, in the worst case, implementations

of techniques such as speed scaling policies or virtualization strategies. We will now discuss

about the latter two practices, speed scaling and virtualization, which are well known examples

of techniques used to reduce the aggregated power and energy consumption in data centers.

1.1.2 Speed Scaling Based Techniques

Speed scaling is based on the ability of a processor to change its operating voltage and speed

(frequency), and hence the speed and power consumption of the server. It is important to note that
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the values of voltage and frequency are not independent from one another. There is an intimate

relation between them as, usually, the voltage conditions the range of available frequencies. In

Table 1.2 we can find the different combinations of frequencies and voltages available for different

processors.

Table 1.2: Relation between frequency and voltage for different processors

Processors
AMD Opteron 6276 Intel Xeon W3530 Intel Xeon E5606

Voltages Frequencies Voltages Frequencies Voltages Frequencies

0.9375V
to

1.3125V

1.4 GHz,
1.6 GHz,
1.8 GHz,
2.1 GHz,
2.3 GHz,
2.3 GHz

0.750V
to

1.350V

1.596 GHz,
1.729 GHz,
1.862 GHz,
1.995 GHz,
2.128 GHz,
2.261 GHz,
2.394 GHz,
2.527 GHz,
2.666 GHz,
2.793 GHz,
2.794 GHz

0.800V
to

1.375V

1.2 GHz,
1.333 GHz,
1.467 GHz,
1.6 GHz,
1.733 GHz,
1.867 GHz,
2 GHz,

2.133 GHz

One well known and extended implementation of speed scaling is Dynamic Voltage and Fre-

quency Scaling (DVFS) which can be usually be found in the ample majority of servers which can

be found nowadays in the market. DVFS can be configured with different governors or operating

policies which will condition the way frequency adapts to the load in the system.

However, it is important to note that we can not just reduce the frequency as much as we want

as it will affect the performance of the tasks being run in the machine. For this reason, usually,

commercial implementations of DVFS have conservative policies whose main target is reduce

operating frequency, and hence the consumption, of the machine when idle.

Most of the research in this field is devoted to find efficient policies which allow to reduce

power consumption or energy consumption. It is important to remark the difference between both

targets, let us give an easy example. Assume that we have a task that needs a time T to complete.

If we reduce the operating frequency of the system, and hence the power consumption is reduced

from C to C ′, it might happen that the task being run in our machine now needs a time T ′ to be

run. If the total energy consumed T · C is larger than T ′ · C ′ we will have reduced the power

consumption during a period of time, but spent more energy. This is neither good nor bad, both

policies have their applications in different scenarios. However, we must remember that it is not

trivial to optimize the power required and it is needed to carefully design the policies to be used.
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1.1.3 Virtualization Based Techniques

We have already mentioned two important aspects of modern servers: that, with almost no

exception, they are multicore and multifrequency servers, and that we pay a high cost in terms of

power, just for having them idle, (i.e., powered on but not doing any task). However, think now,

just for a second, that, years ago, running multiple tasks in a machine was through multithreading,

i.e., running them in parallel with no isolation. When a task required some isolation, for security

or other reasons, it had to be run alone in a server, what implies that the server resources not be-

ing used by that task were wasted. Keep in mind also that, in old servers the percentage of power

used just for having them powered on was larger than nowadays. Additionally, there were some

problematic situations with multithreading, as the existence of resource-greedy users or tasks. In

order to tackle this situation we use Virtualization. Although virtualization was originally de-

veloped in the 1960s by IBM, it was forgotten and then recovered again in the 1990s. We can

define virtualization as “a technology that combines or divides computing resources to present

one or many operating environments using methodologies like hardware and software partition-

ing or aggregation, partial or complete machine simulation, emulation, time-sharing, and many

others” [35]. We call each one of these operating environments a Virtual Machine (VM). Hence,

instead of running tasks in a per server basis or use multithreading sharing the resources pool,

virtualization allows us to run tasks in a per VM basis, therefore running multiple tasks (with

limited resources) independently in the same server.

Nevertheless, virtualization only opened the door for future improvements in how to reduce

the power consumption of data centers from a server perspective. Two of these consequences

were consolidation and virtual machine allocation techniques.

Consolidation is probably the most straightforward consequence of virtualization. Since we

gained the ability of putting multiple virtual machines in one server it is logic trying to maximize

the efficiency of servers. Consolidation aims to either maximize the aggregated number of tasks

being run keeping a constant number of active servers, or minimize the number of servers needed

to run a set of tasks. In both cases, the contribution of virtualization to increase the productivity

and the energy efficiency of data centers is clear.

Similarly, and intimately related with consolidation, we have virtual machine allocation tech-

niques. Given that the assignment of virtual machines to servers is an NP-hard problem (it can

be easily reduced to problems such as bin packing or 3-partition for instance, as we will see in

Chapter 4), multiple heuristics and algorithms have been devised to tackle the online version of

the problem. Algorithms like First Fit, Packing, Most (Least) Loaded First . . . try to obtain the

best assignment of tasks to servers according to a certain magnitude, like cost, energy consum-

ption. . . although in general try to minimize the number of active servers.

However, most of these algorithms are based on linear models for the power consumption

of cores. Based on the insights we got with the characterization of a data center server we will

study the effect of assuming a non-linear power consumption model for data centers servers.

Based on this model, we will perform a competitive analysis of different VM to physical machine
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power aware assignment strategies under different hypothesis, like the capacity or the number of

available physical machines. We will propose our own strategies and compare their power and

energy consumption with the ones of some of the aforementioned algorithms (first fit, packing. . . ).

1.2 Overview and Summary of Contributions

In the previous section we have enumerated several problems and challenges related to data

centers. However, although each one of them are broad research topics, they are only a small

subset of the challenging problems that are to be solved in such an ecosystem. We know present

the problems in which we worked and the contributions we made for each one of them.

Focusing on the field of energy consumption in data center networks, we studied how energy

is spent in physical machines. As we mentioned in Subsection 1.1.2, in order to devise wise

consolidation algorithms or speed scaling policies for our systems, the first step is to properly

understand how power is consumed in our physical machines. With the irruption of multicore

servers we find a certain inconsistency in the literature as it is usual to find works that assume

linear models of consumption for servers, while some others assume models different from linear

(such as superlinear models). To shed some light in this problem, we performed an empirical

study with 3 different servers of different architectures (Intel Xeon and AMD Opteron). Our first

contribution was showing that the metric used to express load matters, and, hence, using relative

magnitudes, like load percentage, might lead to deceiving results. We introduced the Active

Cycles Per Second (ACPS) metric, which is an absolute magnitude, related to the frequency of

operation, and that denotes the amount of computer cycles used to process load by a server per

second. Our study analyzed the contribution to the total power consumption of three different

components of data center servers, namely, CPU, disks, and network, and their dependencies in

certain parameters, like the frequency. The most important contribution of this work is showing

that the curve that defines the minimal CPU power as a function of the load is neither linear

nor purely convex as has been previously assumed. Similarly, we also study the effects of the

operating frequency and other parameters in the power consumption of disks and network. We

validate our model by means of computing the PageRank metric of a graph and a WordCount

application in a Hadoop platform, first without network activity, next with bulky network activity,

and finally with a two-server cluster. We find that the energy can be estimated with an error that

is below 4.1% on average and never worse than a 10%.

One of the conclusions of the previous work is that there exists an optimal point of operation

distinct from the 100%. This means, in simple words, that running a server at full load and full

speed, is not always optimal. This also contradicts some statements that have been traditionally

assumed to be true regarding how much load has to be processed by a server.

Based on the latter study and the conclusions which can be extracted from it, a question that

immediately follows is how to assign virtual machines to physical machines in a power efficient

way. Our last contribution consists of an analytical study of what we call the Virtual Machine



1.3 Roadmap 11

Assignment (VMA) problem. We study this problem from different points of view, imposing, or

not, restrictions on the number of physical machines or on their CPU capacity. Namely, we study

4 models, (·, ·)-VMA (no restrictions in CPU capacity or number of servers), (C, ·)-VMA (CPU

capacity is finite, number of servers is infinite), (·,m)-VMA (CPU capacity is finite, number of

servers is bounded) , and (C,m)-VMA (both CPU capacity and number of servers are finite).

We show that the decision version of the (C,m)-VMA problem is strongly NP-complete. We

show as well that the (C, ·)-VMA, (·,m)-VMA and (·, ·)-VMA problems are strongly NP-hard.

Hence, there is no FPTAS for these optimization problems. We also show the existence of a

PTAS that solves the (·, ·)-VMA and (·,m)-VMA offline problems. On the other hand, we prove

lower bounds on the approximation ratio of the (C, ·)-VMA and (C,m)-VMA problems. With

respect to the online version of these problems, we prove upper and lower bounds on the compet-

itive ratio of the (·, ·)-VMA, (C, ·)-VMA, (·,m)-VMA, and (C,m)-VMA problems. Finally, we

compare our algorithm to a modified version to other real approaches and show its advantages by

simulation.

1.3 Roadmap

The rest of the master thesis is structured as follows. We start with a Background part, includ-

ing this Introduction Chapter and Chapter 2, which presents an overview of the state of the art for

each one of the problems we have mentioned. Part II, Understanding and Reducing Energy Con-

sumption in Data Centers is divided in two chapters. In Chapter 3, we introduce a characterization

of how energy is consumed in a physical machine by 3 of its main components, namely, CPU,

disk and network. The second chapter, Chapter 4, presents an analytic study about how virtual

machines should be assigned to physical machines in order to reduce the energy consumption in

data centers and propose different algorithms tackling this problem. Finally, Chapter 5 concludes

this master thesis with a summary of our main results, a discussion on the implications of these

results and future research directions.

This master thesis covers contributions from the following literature:

• Jordi Arjona Aroca, Angelos Chatzipapas, Antonio Fernández Anta and Vincenzo

Mancuso. “A Measurement-based Analysis of the Energy Consumption of Data Center

Servers”. International Conference on Future Energy Systems (ACM e-Energy) 2014, 63-

74. June 2014.

• Jordi Arjona Aroca, Antonio Fernández Anta, Miguel A. Mosteiro and Christopher

Thraves. “Power-efficient Assignment of Virtual Machines to Physical Machines”. Work-

shop on Adaptive Resource Management and Scheduling on Cloud Computing (ARMS-

CC).

• Jordi Arjona Aroca, Antonio Fernández Anta. “Empirical Comparison of Power-

efficient Virtual Machine Assignment Algorithms”. 4th IFIP Conference on Sustainable
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Internet and ICT for Sustainability (SustainIt 2015).

• Jordi Arjona Aroca, Antonio Fernández Anta, Miguel A. Mosteiro and Christopher

Thraves. “Power-efficient Assignment of Virtual Machines to Physical Machines”. Ac-

cepted for Publication in Future Generation Computer Systems Journal (FGCS), Special

issue on “Advanced Topics in Resource Management for Ubiquitous Cloud Computing: an

Adaptive Approach”.

• Jordi Arjona Aroca, Angelos Chatzipapas, Antonio Fernández Anta and Vincenzo

Mancuso. “A Measurement-based Characterization of the Energy Consumption in Data

Center Servers”. Accepted for publication in IEEE Journal on Selected Areas of Commu-

nications - Series on Green Communications and Networking (JSAC-SGCN).



Chapter 2

Related Work

2.1 Characterizing the Energy Consumption of Data Center Servers

2.1.1 Background

The literature in the field of energy efficiency for data centers is, as we mentioned in the

introduction in Chapter 1, simply overwhelming. For this reason, we focus our efforts in our

particular problem, concentrating our attention on the characterization of data center servers and

the energy they consume.

Indeed, although many energy saving techniques have been proposed during the recent years,

such as virtualization plus consolidation or scheduling optimization [65, 78], in order to obtain

full benefit of them it is crucial to have a good characterization of the servers in the data center,

as a function of the utilization of the server’s components. That is, it is necessary to know and

understand the energy and power consumption of servers and how this changes under the differ-

ent configurations. There is a large body of literature on characterizing servers’ energy and power

consumption. However, the existing literature does not jointly consider phenomena like the irrup-

tion of multicore servers and dynamic voltage and frequency scaling (DVFS) [96], which are key

to achieve scalability and flexibility in the architecture of a server. With these new parameters,

more variables come into play in a server configuration. Learning how to deal with these new

parameters and how they interact with other variables is important since this may lead to larger

savings.

It has been traditionally considered that the CPU is responsible for most of the power being

consumed in a server, as we saw in Figure 1.2, and that this power increases linearly with the load.

As we could see in that same figure, the power consumed by the CPU is significant, but the power

incurred by other elements of the server, like disks and NICs (Network Interface Cards) is not

negligible, and have to be taken into account. Moreover, we believe that the assumption that CPU

power consumption depends linearly from the load in a server may be too simplistic, especially

when the server has multiple cores and may operate at multiple frequencies. In fact, even the

way load is expressed has to be carefully defined (e.g., it cannot be defined as a proportion of

13
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the maximal computational capacity of the CPU, since this value changes with the operational

frequency). Therefore, more complex/complete models for the power consumed by a server are

necessary. In order to be consistent, these models have to be based on empirical values. However,

we found that there is a lack of empirical work studying servers energy behavior.

The study we present in Chapter 3 tries to partially fill this void by proposing a measurement-

based characterization of the energy consumption of a server components with DVFS and multiple

cores.

2.1.2 Related Work

There is a large body of work in the field of modeling server energy consumption and its

components, both theoretically and empirically. The consumption of servers has been assumed

as linear, e.g., by Wang et al. [95], Mishra et al. [76] or Beloglazov et al. [24], who assumed

models in which energy consumption mainly depends linearly on CPU utilization. Based on the

models, they proposed bin-packing-like algorithms to reduce energy consumption. Other works

like the ones from Andrews et al. [10] or Irani et al. [62] proposed non-linear models, claiming

that energy could be saved by running processes at the lowest possible speed.

Moving to the empirical field, we first classify works in two different groups, depending on

whether they consider the effect of frequency in their analysis. We start with works not con-

sidering frequency. In this category we find articles proposing models where server components

follow a linear behavior, like in [64,70,91] or more complex ones, like in [20,40,69]. In [70], Liu

et al. proposed a simple linear model and evaluate different hardware configurations and types

of workloads by varying the number of available cores, the available memory, and considering

also the contribution of other components such as disks. Vasan et al. [91] monitored multiple

servers on a datacenter as well as the energy consumption of several of the internal elements of

a server. However, they considered that the behavior of this server could be approximated by a

model based only on CPU utilization. Similarly, Krishnan et al. [64] explored the feasibility of

lightweight virtual machine power metering methods and examined the contribution of some of

the elements that consume energy in a server like CPU, memory and disks. Their model depends

linearly on each of these components. In [40], Economou et al. proposed a non-intrusive method

for modeling full-system energy consumption by stressing its components with different work-

loads. Their resulting model is also linear on the utilization of server components. Finally, Lewis

et al. [69] and Basmasjian et al. [20] presented much more complex models which, apart from the

contribution of different components of the server, consider extra parameters like temperature and

cache misses as well as multiple cores. In particular, Lewis et al. [69] reported also an extensive

study on the behavior of reading and writing operations in hard disk and solid state drives.

Next we move to the works which also consider frequency in their analysis. Miyoshi et

al. [77] analyzed the runtime effects of frequency scaling on power and energy. Brihi et al. [28]

presented an exhaustive study of DVFS using a cpufrequtils as we do. Main differences

with our work were that they studied four different power management policies under DVFS and
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centered their study on the relationship between CPU and power utilization. However, they also

presented interesting results about disk consumption that match partially our results, showing a

flat consumption in reading operations and variations in the writing ones that they attribute to the

size of the files being written. Although it was not the main objective of their work, Raghavendra

et al. [85] performed a per-frequency and core CPU power characterization of two different blade

servers. However, they claimed that CPU power depends linearly on its utilization. The main

difference with our analysis is that we consider that the load supported by a server increases with

the number of active cores and, hence, this load should not be represented in percentage. Gandhi

et al. [46] published an analysis of global energy consumption versus frequency, based on DVFS

and DFS and gave some intuition about the non-linearity of this relation.

Moreover, there are studies that model the energy consumption behavior for clouds and try

to balance the load in order to operate the cluster in its most efficient load-power combination.

MUSE [33] is one of the first works that consider a resource management architecture for data

centers. Its energy efficient approach dynamically assigns jobs to the servers based on the work-

load (for CPU and disk) and the potential energy consumption. The authors measure the energy

consumption of servers and switches involved in the cluster and conclude that at least 29% of

the energy can be saved by MUSE for typical web workloads. In [87] the authors proposed a

consolidation algorithm that considers the workloads of the servers in the cloud in order to find

the least possible energy consumption point. Their study shows that the energy consumption of a

server using variable loads for CPU and disks has an optimal operating point. Given the data from

the various servers the algorithm can estimate the ideal load distribution among the servers. The

authors in [14] modeled the energy consumption of data centers equipment (i.e., servers, storage,

switches) for cloud computing based on existing energy consumption measurements or publicly

available data sheets for each of the components (CPU, disk, network, switches). The model es-

timates the energy consumption per bit from the data center to the user and further analyzes the

energy consumption for different types of services, i.e., storage, software, processing. However,

existing works on clouds lack experimental inputs on energy consumption.

We conclude with some works that also consider frequency but do not model the energy

consumption of a server. First of them, the work from Le Sueur et al. [67] presented an analysis of

the evolution of the effectiveness of DVFS and how it is reduced in the newest and most optimized

servers. They show that DVSF might be soon obsoleted by the adoption of ultra low power sleep

modes. Ge et al. proposed PowerPack [49], a framework that includes a set of toolkits to perform

an exhaustive profile of the power utilization of servers and its components. Their analysis is

centered in showing the contribution of multicore system to the efficiency of several applications

and, hence, no power characterization is presented. Finally, Basmadjian et al. [21] published an

in deep analysis of the components of a processor and its contribution to the energy consumption

of the CPU, shedding some light on the behavior of multicore servers. Some of their conclusions

are very relevant to our work, as they show, for instance, that the energy consumption of multiple

cores performing parallel computations is not equal to the sum of the power of each of those
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active cores. Our experiments and model support their findings and shed light on the nature of

such effect.

2.2 Power Aware Assignment of Virtual Machines to Physical Ma-
chines

2.2.1 Background

The current pace of technology developments, and the continuous change in business re-

quirements, may rapidly yield a given proprietary computational platform obsolete, oversized, or

insufficient. Thus, outsourcing has recently become a popular approach to obtain computational

services without incurring in amortization costs. Furthermore, in order to attain flexibility, such

service is usually virtualized, so that the user may tune the computational platform to its particu-

lar needs. Users of such service need not to be aware of the particular implementation, they only

need to specify the virtual machine they want to use. This conceptual approach to outsourced

computing has been termed cloud computing, in reference to the cloud symbol used as an ab-

straction of a complex infrastructure in system diagrams. Current examples of cloud computing

providers include Amazon Web Services [1], Rackspace [4], and Citrix [2].

Depending on what the specific service provided is, the cloud computing model comes in dif-

ferent flavors, such as infrastructure as a service, platform as a service, storage as a service, etc.

In each of these models, the user may choose specific parameters of the computational resources

provided. For instance, processing power, memory size, communication bandwidth, etc. Thus, in

a cloud-computing service platform, various virtual machines (VM) with user-defined specifica-

tions must be implemented by, or assigned to1, various physical machines (PM)2. Furthermore,

such a platform must be scalable, allowing to add more PMs, should the business growth re-

quire such expansion. In this work, we call this problem the Virtual Machine Assignment (VMA)

problem.

The optimization criteria for VMA depends on what the particular objective function sought

is. From the previous discussion, it can be seen that, underlying VMA, there is some form of

bin-packing problem. However, in VMA the number of PMs (i.e., bins for bin packing) may

be increased if needed. Since CPU is generally the dominant power consumer in a server, as

shown in Figure 1.2 and as we will show in Chapter 3, VMA is usually carried out according to

CPU workloads. With only the static power consumption of servers considered, previous work

related to VMA has focused on minimizing the number of active PMs (cf. [23] and the references

therein) in order to minimize the total static energy consumption. This is commonly known as VM

consolidation [66, 79]. However, despite the static power, the dynamic power consumption of a

1The cloud-computing literature use instead the term placement. We choose here the term assignment for consis-
tency with the literature on general assignment problems.

2We choose the notation VM and PM for simplicity and consistency, but notice that our study applies to any
computational resource assignment problem, as long as the minimization function is the one modeled here.
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server, which has been shown to be superlinear on the load of a given computational resource [15,

53], is also significant and cannot be ignored. Since the definition of load is not precise, we use the

definition we provide in Chapter 3 and define the load of a server as the amount of active cycles per

second a task requires, an absolute metric independent of the operating frequency or the number of

cores of a PM. The superlinearity property of the dynamic power consumption is also confirmed

by the results that we show in Chapter 3. As a result, when taking into account both parts of

power consumption, the use of extra PMs may be more efficient energy-wise than a minimum

number of heavily-loaded PMs. This inconsistency with the literature in VM consolidation is

supported by the results that will be presented in Chapter 3 and, hence, we claim that the way

consolidation has been traditionally performed has to be reconsidered. In this work, we combine

both power-consumption factors and explore the most energy-efficient way for VMA. That is, for

some parameters α > 1 and b > 0, we seek to minimize the sum of the α powers of the PMs

loads plus the fixed cost b of using each PM.

Physical resources are physically constrained. A PMs infrastructure may be strictly con-

strained in the number of PMs or in the PMs CPU capacity. However, if usage patterns indicate

that the PMs will always be loaded well below their capacity, it may be assumed that the capacity

is unlimited. Likewise, if the power budget is very big, the number of PMs may be assumed

unconstrained for all practical purposes. These cases yield 4 VMA subproblems, depending on

whether the capacity and the number of PMs is limited or not. We introduce these parameters de-

noting the problem as (C,m)-VMA, where C is the PM CPU capacity, m is the maximum number

of PMs, and each of these parameters is replaced by a dot if unbounded.

2.2.1.1 Problem Definition

We describe the (·, ·)-VMA problem now for a better understanding of some of the works

presented in the following related work section. Given a set S = {s1, . . . , sm} ofm > 1 identical

physical machines (PMs) of capacity C; rational numbers µ, α and b, where µ > 0, α > 1 and

b > 0; a set D = {d1, . . . , dn} of n virtual machines and a function ` : D → R that gives the

CPU load each virtual machine incurs3, we aim to obtain a partition π = {A1, . . . , Am} of D,

such that `(Ai) ≤ C, for all i. Our objective will be then minimizing the power consumption

given by the function

P (π) =
∑

i∈[1,m]:Ai 6=∅

(
µ
( ∑
dj∈Ai

`(dj)
)α

+ b

)
. (2.1)

Let us define the function f(·), such that f(x) = 0 if x = 0 and f(x) = µxα + b otherwise.

Then, the objective function is to minimize P (π) =
∑m

i=1 f(`(Ai)). The parameter µ is used for

consistency with the literature.

3For convenience, we overload the function `(·) to be applied over sets of virtual machines, so that for any set
A ⊆ D, `(A) =

∑
dj∈A `(dj).
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We also define several special cases of the VMA problem, namely (C,m)-VMA, (C, ·)-VMA,

(·,m)-VMA and (·, ·)-VMA. (C,m)-VMA refers to the case where both the number of available

PMs and its capacity are fixed. (·, ·)-VMA, where (·) denotes unboundedness, refers to the case

where both the number of available PMs and its capacity are unbounded (i.e., C is larger than the

total load of the VMs that can ever be in the system at any time, or m is larger than the number

of VMs that can ever be in the system at any time). (C, ·)-VMA and (·,m)-VMA are the cases

where the number of available PMs and their capacity is unbounded, respectively.

2.2.2 Related Work

To the best of our knowledge, previous work on VMA has been only experimental [34,71,74,

90] or has focused on different cost functions [7,23,32,37]. First, we provide an overview of pre-

vious theoretical work for related assignment problems (storage allocation, scheduling, network

design, etc.). The cost functions considered in that work resemble or generalize the power cost

function under consideration here. Secondly, we overview related experimental work.

Chandra and Wong [32], and Cody and Coffman [37] study a problem for storage allocation

that is a variant of (·,m)-VMA with b = 0 and α = 2. Hence, this problem tries to minimize the

sum of the squares of the machine-load vector for a fixed number of machines. They study

the offline version of the problem and provide algorithms with constant approximation ratio.

A significant leap was taken by Alon et al. [7], since they present a PTAS for the problem of

minimizing the Lp norm of the load vector, for any p ≥ 1. This problem has the previous one as

special case, and is also a variant of the (·,m)-VMA problem when p = α and b = 0. Similarly,

Alon et al. [8] extended this work for a more general set of functions, that include f(·) as defined

above. Hence, their results can be directly applied in the (·,m)-VMA problem. Later, Epstein et

al. [42] extended [8] further for the uniformly related machines case. We will use these results in

Chapter 4 in the analysis of the offline case of (·,m)-VMA and (·, ·)-VMA.

Bansal, Chan, and Pruhs minimize arbitrary power functions for speed scaling in job schedul-

ing [15]. The problem is to schedule the execution of n computational jobs on a single processor,

whose speed may vary within a countable collection of intervals. Each job has a release time, a

processing work to be done, a weight characterizing its importance, and its execution can be sus-

pended and restarted later without penalty. A scheduler algorithm must specify, for each time, a

job to execute and a speed for the processor. The goal is to minimize the weighted sum of the flow

times over all jobs plus the energy consumption, where the flow time of a job is the time elapsed

from release to completion and the energy consumption is given by sα where s is the processor

speed and α > 1 is some constant. For the online algorithm shortest remaining processing time

first, the authors prove a (3 + ε) competitive ratio for the objective of total weighted flow plus

energy. Whereas for the online algorithm highest density first (HDF), where the density of a job

is its weight-to-work ratio, they prove a (2 + ε) competitive ratio for the objective of fractional

weighted flow plus energy.

Recently, Im, Moseley, and Pruhs studied online scheduling for general cost functions of the
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flow time, with the only restriction that such function is non-decreasing [61]. In their model, a

collection of jobs, each characterized by a release time, a processing work, and a weight, must

be processed by a single server whose speed is variable. A job can be suspended and restarted

later without penalty. The authors show that HDF is (2 + ε)-speed O(1)-competitive against the

optimal algorithm on a unit speed-processor, for all non-decreasing cost functions of the flow

time. Furthermore, they also show that this ratio cannot be improved significantly proving impos-

sibility results if the cost function is not uniform among jobs or the speed cannot be significantly

increased.

A generalization of the above problem is studied by Gupta, Krishnaswamy, and Pruhs in [53].

The question addressed is how to assign jobs, possibly fractionally, to unrelated parallel machines

in an online fashion in order to minimize the sum of the α-powers of the machine loads plus the

assignment costs. Upon arrival of a job, the algorithm learns the increase on the load and the cost

of assigning a unit of such job to a machine. Jobs cannot be suspended and/or reassigned. The

authors model a greedy algorithm that assigns a job so that the cost is minimized as solving a

mathematical program with constraints arriving online. They show a competitive ratio of αα with

respect to the solution of the dual program which is a lower bound for the optimal. They also

show how to adapt the algorithm to integral assignments with a O(α)α competitive ratio, which

applies directly to our (·,m)-VMA problem. References to previous work on the particular case

of minimizing energy with deadlines can be found in this paper.

Similar cost functions have been considered for the minimum cost network-design problem.

In this problem, packets have to be routed through a (possibly multihop) network of speed scal-

able routers. There is a cost associated to assigning a packet to a link and to the speed or load

of the router. The goal is to route all packets minimizing the aggregated cost. In [9] and [10]

the authors show offline algorithms for this problem with undirected graph and homogeneous

link cost functions that achieve polynomial and poly-logarithmic approximation, respectively.

The cost function is the α-th power of the link load plus a link assignment cost, for any con-

stant α > 1. The same problem and cost function is studied in [53]. Bansal et al. [16] study

a minimum-cost virtual circuit multicast routing problem with speed scalable links. They give

a polynomial-time O(α)-approximation offline algorithm and a polylog-competitive online algo-

rithm, both for the case with homogeneous power functions. They also show that the problem is

APX-hard in the case with heterogeneous power functions and there is no polylog-approximation

when the graph is directed. Recently, Antoniadis et al. [11] improved the results by providing a

simple combinatorial algorithm that is O(logα n)-approximate, from which we can construct an

Õ(log3α+1 n)-competitive online algorithm. The (·,m)-VMA problem can be seen as a especial

case of the problem considered in these papers in which there are only two nodes, source and

destination, and m parallel links connecting them.

To the best of our knowledge, the problem of minimizing the power consumption (given

in Eq.2.1) with capacity constraints (i.e., the (C,m)-VMA and (C, ·)-VMA problems) has re-

ceived very limited attention, in the realm of both VMA and network design, although the ap-
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proaches in [10] and [16] are related to or based on the solutions for the capacitated network-

design problem [31].

The experimental work related to VMA is vast and its detailed overview is out of the scope

of this paper. Some of this work does not minimize energy [29, 72, 75] or it applies to a model

different than ours (VM migration [80, 87], knowledge of future load [73, 87], feasibility of al-

location [23], multilevel architecture [63, 74, 80], interconnected VMs [26], etc.). On the other

hand, some of the experimental work where minimization of energy is evaluated focus on a more

restrictive cost function [63, 93, 97].

In [63], for an energy cost model that is linear, the authors evaluate experimentally the alloca-

tion of VMs to clusters following 9 placement policies, some of them included in popular cloud

platforms [44, 84]. Namely, Round Robin, Striping, Packing, Load Balancing (free CPU count),

Load Balancing (free CPU ratio), Watts per Core, Cost per Core. We adapt 5 of these policies

(defined later in Chapter 4) to our model and cost function for the purpose of simulations.

In [87], the authors focus on an energy-efficient VM placement problem with two require-

ments: CPU and disk. These requirements are assumed to change dynamically and the goal is to

consolidate loads among servers, possibly using migration at no cost. In our model VMs assign-

ment is based on a CPU requirement that does not change and migration is not allowed. Should

any other resource be the dominating energy cost, the same results apply for that requirement.

Also, if loads change and migration is free, an offline algorithm can be used each time that a load

changes or a new VM arrives. In [87] it is shown experimentally that energy-efficient VMA does

not merely reduce to a packing problem. That is, to minimize the number of PMs used even if

their load is close to their maximum capacity. For our model, we show here that the optimal load

of a given server is a function only of the fixed cost of being active (b) and the exponential rate of

power increase on the load (α). That is, the optimal load is not related to the maximum capacity

of a PM.
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Chapter 3

Analysis of the Energy Consumption of
Data Center Servers

3.1 Overview

The work presented in this chapter is motivated by our disagreement with some of the models

that have been previously proposed in the literature which state that power consumption of data

center servers depends linearly on the load. Our belief is that more complex/complete models for

the power consumed by a server are necessary. In order to be consistent, these models have to be

based on empirical values. However, we found that, despite the large body of work in the field,

there is a lack of empirical work studying servers energy behavior.

Our work tries to partially fill this void by proposing a measurement-based characterization —

which is the first of its kind— of the energy consumption of a server components with DVFS and

multiple cores. We evaluate here different server machines and evaluate what is the contribution

to their power consumption of the CPU, hard drive disk, and network card (NIC). Our approach

captures the influence of the processing frequency and the multiple cores, not only to the CPU

power consumption, but also to that of disk input/output (I/O) and NIC activity.

Our contribution is threefold: (i) we propose a methodology to empirically characterize the

energy consumption of a server, (ii) we provide novel, experimental-based, insights on the energy

consumption behavior of the most relevant server’s components, and (iii) we propose an accurate

technique to estimate the energy consumption of cloud applications.

As concerns the methodology, we propose active CPU cycles per second (ACPS) as a new and

more convenient metric for CPU load in multi-core/multi-frequency architectures. We show how

to isolate the contribution of energy consumption due to CPU, disk I/O operations, and network

activity by just measuring server’s total energy consumption and a few activity indicators reported

by the operating system. We also show that the baseline energy consumption of a server — i.e.,

the energy consumed just because the server is turned on — has a strong impact on server’s total

consumption.

23
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As concerns the components’ energy characterization, we show that, besides the baseline

consumption, the CPU has the largest impact among all components, and its energy consumption

is not linear with the load. Disk I/O operations are the second highest cause of consumption,

and their efficiency is strongly affected by the I/O block size used by the application. Eventually,

network activity plays a minor yet not negligible role in the energy consumption, and the network

impact scales almost linearly with the network transmission rate. All other components (e.g.,

memory, fans, GPU, etc.) can be accounted for the baseline energy consumption, which is subject

to minor variations under different operational conditions. Specifically, the main results of our

measurement campaign are listed below:

• The CPU power utilization depends on the number of working cores, the CPU fre-

quency, and the CPU load (in ACPS units). Our measurements confirm that the energy

consumption with a single working core at constant frequency can be closely approximated

by a linear function of the CPU load. However, given a CPU frequency, the energy con-

sumption in multicore architectures is a concave function of the CPU load and can be

approximated by a low-order polynomial. The energy consumption for a fixed CPU load

is, in general, minimized by using the highest number of cores and the lowest frequency at

which the load can be served. However, the minimum achievable energy consumption is a

piecewise concave function of the CPU load.

• The energy consumed by hard disks for reading and writing depends on the CPU

frequency and the I/O block sizes. Both reading and writing energy costs increase slightly

with the CPU frequency. While the energy consumption due to reading is not affected

by block size, the energy consumption due to writing increases with the block size. The

reading efficiency (expressed in MB/J) is barely affected by the CPU frequency, while

writing efficiency is a concave function of the block size since it boosts the throughput of

writing until a saturation value is reached.

• The energy consumption and the efficiency of the NIC, both in transmission and re-

ception, depends on the CPU frequency, the packet size, and the transmission rate. The

efficiency of data transmission increases almost linearly with the transmission rate, with

steeper slopes corresponding to lower CPU frequencies. Although a linear relation be-

tween transmission rate and efficiency holds for data reception as well, small packet sizes

yield higher efficiency in reception.

Overall, supported by our measurements, we provide a holistic energy consumption model

that only requires a few calibration parameters for every different server architecture which we

want to evaluate (a universal energy model will be too simplistic and inaccurate). We validate

our model by means of a server computing the PageRank metric of a graph and a WordCount

application in a Hadoop platform, first without network activity, next with bulky network activity,
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and finally in the cloud. We will find that the error of our energy estimates is below 4.1% on

average and never worse than a 10%.

RoadMap The rest of the chapter is organized as follows. Section 3.2 describes the method-

ology we used for our experiments. Section 3.3 presents our measurement campaign, for every

single component which we tested. In Section 3.4 we model the energy consumption of the

servers based on a few calibration parameters which we find during our measurement campaign.

In Section 3.5 we discuss our findings and their implications. Finally, Section 3.6 concludes the

chapter.

3.2 Methodology

In this section we introduce the measurement techniques we used to characterize the power

requirements of CPU activity, disk access (read and write operations), and network activity. Our

measurements start characterizing the CPU power consumption, from where we obtain informa-

tion about the baseline power consumption of the system. After CPU and baseline characteriza-

tion, we follow with experiments for the other two components, namely, disk and network. Note

that CPU and baseline measurements are of capital importance in order to evaluate the other com-

ponents, because any operation run in a machine is like a puzzle with multiple pieces and we must

know what is the contribution of each one of these pieces. Consider that, we are paying a cost

just for having a server switched on and the operating system running on it. Similarly, every time

we run a task in the system, some CPU cycles are needed in order to execute it as well as to use

the component that has to perform the task. Hence, in order to understand the contribution of any

component, we first need to identify the contribution of the CPU and compute the difference with

respect to the aforementioned baseline.

To explore the possible parameters which determine the power consumption of a server and

to obtain statistical consistency, we run our experiments multiple times. Similarly, we run these

experiments in different servers and architectures in order to validate our results and give consis-

tency to our conclusions.

3.2.1 Collecting System Data and Fixing Frequency Parameters

One prerequisite for our experiments is to have Linux machines due to the kind of commands

and benchmarks we wanted to use and, mainly, because of the possibility of adding some kernel

modules and utilities,1 which allow us to change CPU frequencies at will. In a Linux system,

CPU activity stats are constantly logged, so we can periodically record the core frequency and

the number of active and passive CPU ticks at each core.2 Once we have the number of ticks and

1For instance cpufrequtils, acpi-cpufreq.
2File /proc/stat reports the number of ticks since the computer started devoted to user, niced and system

processes, waiting (iowait), processing interrupts (i.e., irq and softirq), and idle. In our experiments we count both
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the core frequency, since a tick represents a hundredth of second, cycles can be calculated as 100

ticks/frequency.

We use active cycles per second (ACPS) instead of CPU load percentage to characterize CPU

load. ACPS depend on the CPU frequency used, as the higher the frequency the more the work

that can be processed. In contrast, CPU load percentages cannot be compared when different

frequencies are used, while the amount of ACPS that can be processed can be considered as an

absolute magnitude. In order to get (set) information about the operative frequency of the system

we used the cpufrequtils package.3 With those tools, we can monitor the CPU frequency

at which the system works and assign different frequencies to the cores. However, to limit the

number of possible combinations to characterize, we assign the same frequency to all cores.

3.2.2 CPU

In order to evaluate the CPU power utilization we prepared a script based on a benchmark

application, namely lookbusy.4 Note that lookbusy allows us to load one or more CPU

cores with the same load.Our lookbusy-based experiment follows the next steps: we first fix

the CPU frequency to the lowest possible frequency in the system; then we run lookbusy with

fixed amount of load for one core during timeslots of 30 seconds, starting with the maximum load

and then decreasing the load gradually. After the last lookbusy run we measure the power used

during an additional timeslot with no lookbusy load offered. We register the active cycles and

the power used during each timeslot.

After taking these different samples for one frequency we move to the immediately higher

frequency (we can list and change frequencies thanks to cpufrequtils) and repeat the pre-

vious steps. After going through all the available frequencies, we restart the whole process but

increasing by one the number of active cores. We repeat this whole process until all the cores of

the server are active. Note that when we change the frequency of the cores we change it in all of

them, active or not, for consistency. Similarly, when more than one core is active, the load for all

the active cores is the same.

Once explained the scheme of our experiments, we must clarify the meaning of running a

timeslot with no load. Note that zero-load is clearly not possible as there is always going to be

load in the system due to, e.g., the operating system. However, during the timeslot in which we

do not run lookbusy, we measure the power corresponding to the operational conditions which

are as close as possible to the ones of an idle system. Moreover, the decision of using timeslots

of 30 seconds is to guarantee enough, yet not excessive, time for the measurements. In fact, as

we start and stop lookbusy at the beginning and end of the timeslots, we need to ignore the

first and the last few seconds of measurements in each timeslot to avoid measurement noise due

to power ramps and operational transitions.

waiting and idle ticks as passive ticks, while we denote the aggregated value of the rest of ticks as active.
3https://wiki.archlinux.org/index.php/CPU_Frequency_Scaling
4http://www.devin.com/lookbusy.

https://wiki.archlinux.org/index.php/CPU_Frequency_Scaling
http://www.devin.com/lookbusy
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The measured values of load (in ACPS) and power in each timeslot are used to obtain a least

squares polynomial fittings curve. These fittings characterize the CPU power utilization for each

combination of frequency and number of active cores. We will use as baseline power utilization

of each one of these configurations the zero-order coefficient of the polynomial of these fittings

curves.

3.2.3 Disks

The power consumption of the hard drive was evaluated using 2 different scripts (for reading

and writing) based on the dd linux command.5 We chose dd as it allows us to read files, write

files from scratch, control the size of the blocks we write (read), control the amount of blocks

written (read) and force the commit of writing operations after each block in order to reduce the

effect of operating system caches and memory. We combine this tool with flushing the RAM and

caches after each reading experiment.

In both our scripts we perform write (read) operations for a set of different I/O block sizes

and for different data volumes to be written (read). In each case we record the CPU active cycles,

the total power and time used in each one of these operations for each combination of block size

and available frequency.

Finally, we identify the contribution of the hard drive to the total power utilization by sub-

tracting the contribution of both the baseline and the CPU requirements from the measured total

power.

Disk I/O experiments shed light on the relevance of the block sizes when reading or writing

as well as whether there is an influence of the frequency on these operations.

3.2.4 Network

In order to evaluate the contribution of the network to the power requirements of a server, we

devised a set of experiments based on a client-server C script devised on purpose for this task.

There are several aspects that we consider relevant in order to characterize the impact of the

NIC on the total power requirements of a server and that led us to choose these two tools. First,

the ability of performing tests in which the server under study acts as sender or as receiver during

a network connection, and therefore we can observe server’s power requirements while sending

data or receiving it. To clarify the terms, sender is the server which injects traffic to the network,

and receiver is the server which accepts traffic from the network. Second, the ability of those

tools to change several parameters that we consider relevant for the energy characterization of the

servers, namely, the packet size and the offered load, jointly with the frequency of the system.

Our experiments consist, then, on measuring the achieved data rate, the CPU active cycles

per second (ACPS) and the total power required by the server under study either as sender or as

5http://linux.die.net/man/1/dd.

http://linux.die.net/man/1/dd
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Table 3.1: Characteristics of the servers under study

Component Servers
Survivor Nemesis Erdos

CPU (# cores) 4 4 64
# freqs 8 11 5

Freqs List (GHz)
1.2, 1.333, 1.467,
1.6, 1.733, 1.867, 2,
2.133

1.596, 1.729, 1.862,
1.995, 2.128, 2.261,
2.394, 2.527, 2.666,
2.793, 2.794

1.4, 1.6, 1.8,
2.1, 2.3

RAM 4 GB 4 GB 512 GB

Disk 2 TB 2 + 3 TB
2× 146GB
4× 1 TB

Network 1 Gbps 3× 1 Gbps
4× 1 Gbps
2× 10 Gbps

Architecture Intel Intel AMD

receiver using different packet sizes and different transfer rates. We run each experiment multiple

times for statistical consistency.

Finally, using the CPU active cycles per second which were measured during the experiment,

we identify the power required by the CPU. Subtracting both CPU power requirements and the

baseline power from the total energy consumption of the experiment, we can isolate the power

requirements of the network.

3.3 Measurements

3.3.1 Devices and Setup

In order to monitor and store the instantaneous power required by a server during the different

experiments we used a Voltech PM1000+ power analyzer6, which is able to measure the total

instantaneous power required by the server under test on a per-second basis. In Fig. 3.1 we

show a schematic representation of the setup we used and the components under testing. More

specificaly, in order to take our measurements we connected the server being measured to the

power analyzer and the latter to the power supply.In the case of servers with power redundancy

one of the two power sources was unplugged to ensure that the power measurement was correct.

In the experiments where the network was not involved (CPU and disk), we disconnected the

server from the network, which has an impact on the power requirements as the port goes idle. In

the network based experiments we established an Ethernet connection between the server under

study and a second machine in order to study the server behavior, both as receiver as well as as

sender.

We evaluated three different servers: Survivor, Nemesis, and Erdos. We will now

6More information about the PM1000 can be found in http://www.farnell.com/datasheets/
320316.pdf

http://www.farnell.com/datasheets/320316.pdf
http://www.farnell.com/datasheets/320316.pdf
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Figure 3.1: Schematic representation of our setup when Nemesis is being measured. Red arrows
show the alternative scheme to measure Survivor (or Erdos).

present these servers although their main characteristics, including their sets of available CPU

frequencies, can be also found in Table 3.1. Survivor has an Intel Xeon E5606 4-core proces-

sor, with 4 GB of RAM, a 2 TB Seagate Barracuda XT hard drive and a 1 Gigabit Ethernet card

integrated in the motherboard. Nemesis is a Dell Precision T3500 with an Intel Xeon W3530

4-core processor, 4 GB of RAM, 2 hard drives (a 2 TB Seagate Barracuda XT and a 3 TB Seagate

Barracuda), a 1 Gigabit Ethernet card integrated in the motherboard, and a separate Ethernet card

with two 1 Gigabit ports. In this study we only evaluate the Seagate Barracuda XT disk and the

integrated Ethernet card. Both Survivor and Nemesis use the Ubuntu Server edition 10.4

LTS Linux distribution. Finally, Erdos is a Dell PowerEdge R815 with 4 AMD Opteron 6276

16-core processors (i.e., 64 cores in total), 512 GB of RAM, two 146 GB SAS hard drives config-

ured as a single RAID1 system (which is the “disk” analyzed here) and four 1 TB Near-line SAS

hard drives. It also includes four 1 Gigabit and two 10 Gigabit ports. Erdos is a high-end server

and uses Linux Debian 7 Wheezy.

3.3.2 Baseline and CPU

As we mentioned in Section 3.2, for each server we have measured the power it uses with

neither disk accesses nor network traffic. We assume that the power utilization observed is the

sum of the baseline consumption plus the power used by the CPU. We have obtained samples

of the power consumed under different configurations that vary in the number of active cores

used, the frequency at which the CPU operates (all cores operate at the same frequency), and

the active cores load (all active cores are equally loaded). The list of available and tested CPU

frequencies and cores can be found in Table 3.1. We tune the total load ρ by using lookbusy, as

described in the previous section. Each experiment lasts 30 s and it is repeated 10 times. Results
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are summarized in terms of average and standard deviation. Specifically, in the figures reported in

this section, the power utilization for each tested configuration is depicted by means of a vertical

segment centered on the average power utilization measured, and with segment size equal to two

times the standard deviation of the samples.

The results of these experiments for each of the 3 servers are presented in Figure 3.2 (the

measurements for some frequencies and some number of cores are omitted for clarity). Here, for

each configuration of number of active cores, frequency, and load in ACPS, the mean and standard

deviation of all the experiments with that configuration are presented. Also the least squares

polynomial fitting curve for the samples is shown for each number of cores and frequency. The

curves shown are for polynomials of degree 7, but we observed that using a degree 3 polynomial

instead does not reduce drastically the quality of the fit (e.g., the relative average error of the fitting

increases from 0.7% with 7-th degree polynomials to 1.5% with degree equal to 3 for Erdos,

while it remains practically stable and below 0.7% for Nemesis). In general, we can use an

expression like the following to characterize the CPU power consumption:

PBC(ρ) =

n∑
k=0

αkρ
k, n ≤ 7, (3.1)

where PBC includes both the baseline power utilization of the servers and the power used by the

CPU, and ρ is the load expressed in active cycles per second. Therefore, coefficient α0 in Eq. 3.1

represents the consumption of the system when the CPU activity tends to 0, and we can thereby

interpret α0 as the baseline power utilization of the system. Note that the polynomial fitting, and

hence the baseline power utilization α0, depends on the particular combination of number of cores

and frequency adopted. However, for sake of readability, we do not explicitly account for such a

dependency in the notation.

A first observation of the fitting curves for each particular server in Figure 3.2 reveals that the

power for near-zero load is almost the same in curves (e.g., for Nemesis this value is between

84 and 85 W). Observe that it is impossible to run an experiment in which the load of the CPU is

actually zero to obtain the baseline power utilization of a server. However, all the fitting curves

converge to a similar value for ρ → 0, which can be assumed to represent the baseline power

utilization.

A second observation is that for one core the curves grow linearly with the load. However,

as soon as two or more cores are used, the curves are clearly concave, which implies that for a

fixed frequency the efficiency grows with the load (we will discuss later the efficiency in terms of

number of active cycles per energy unit).

A third observation is that frequency does not significantly impact the power consumption

when the load is low. In contrast, at high load, the power clearly increases with the CPU frequency.

More precisely, the power consumption grows superlinearly with the frequency, for a fixed load

and number of cores. This is particularly evident in the curves characterizing Erdos, which is

the most powerful among our servers.
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Figure 3.2: Power consumption of 3 servers (Survivor, Nemesis, and Erdos) for baseline
and CPU characterization experiments.
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Figure 3.3: CPU performance bounds of Nemesis.

From the previous figures it emerges that the power consumption due to CPU and baseline

can be minimized by selecting the right number of active cores and a suitable CPU frequency.

Similarly, we can expect that the energy efficiency, defined as number of active cycles per energy

unit, can be maximized by tuning the same operational parameters. We graphically represent the

impact of operation parameters on power consumption and energy efficiency in Figures 3.3 and

3.5 respectively for Nemesis and Erdos (results for Survivor are similar to the ones shown

for Nemesis and are omitted).

In particular, Figures 3.3(a) and 3.5(a) report all possible fitting curves for the power consum-

ption measurements, plus a curve marking the lowest achievable power consumption at a given
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load. We name such a curve “minimal power curve” Pmin(ρ), and we observe that (i) it only

depends on the load ρ, and (ii) it is a piecewise concave function, which makes it suitable to

formulate power optimization problems. Finally, to evaluate the energy efficiency of the CPU,

we report in Figures 3.3(b) and 3.5(b) the number of active cycles per energy unit obtained from

our measurements respectively for Nemesis and Erdos. We compute the power due to active

cycles as the power PBC − α0, i.e., by subtracting the baseline consumption from PBC , and we

obtain the efficiency ηC by dividing the load (in active cycles per second) by the power due to

active cycles:

ηC =
ρ

PBC(ρ)− α0
. (3.2)

Also in this case we show the curve that maximizes the efficiency at a given load, which we

name “Maximal efficiency curve” ηmax(ρ). Interestingly, we observe that (i) ηmax(ρ) presents

multiple local maxima, (ii) for a given configuration of frequency and number of active cores,

the efficiency is maximized at the highest achievable load, (iii) all local maxima corresponds to

the use of all available active cores, but (iv) the absolute maximum is not achieved neither at the

highest CPU frequency nor at the lowest.

3.3.3 Disks

We now characterize the power and energy consumption of disk I/O operations. During the

experiments, we continuously commit either read or write operations, while keeping the CPU

load ρ as low as possible (i.e., we disconnect the network and we do not run other tasks). Still,

the power measurements obtained during the disk experiments contain both the power used by

the disk and power due to CPU and baseline. Indeed, Figure 3.6 shows, for each experiment, the

total measured power Pt, the power PBC computed according to Eq. 3.1 at the load ρ measured

during the experiment, and the power due to disk operations, computed as:

P xD = Pt − PBC(ρ), x ∈ {r, w}, (3.3)

where superscripts r and w refer to reading and writing operations, respectively. We test sequen-

tially all the available frequencies for each server (see Table 3.1), and I/O block sizes ranging

from 10 KB to 100 MB. Figure 3.6 shows average and standard deviation of the measures over 10

experiment repetitions for each one of our servers. Indeed, it can be easily seen that Survivor

and Nemesis have similar disks and file systems, while Erdos is equipped with SAS disks with

RAID. In all cases shown in the figure, the disk power is small but not negligible with respect to

the baseline consumption. Furthermore, we can observe that the two servers presented behave

differently. Indeed, while the power consumption due to writing is affected both by the block size

B for both machines, we observe that both Nemesis and Survivor’ disk writing power PwD
is not affected by the CPU frequency, while Erdos’ results show an increase with the frequency.

Moreover, the results obtained with Erdos are affected by a substantial amount of variability
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in the measurements, which we believe is due to the caching operations enforced by the RAID

mechanism in Erdos.

Similarly to what was described for the CPU, we now comment on the energy efficiencies

ηrD and ηwD of disk reading and writing operations. Figure 3.7 reports efficiency as a function of

the I/O block size, and shows one line per each CPU frequency7. The efficiency is computed by

subtracting the baseline power from the total power, and by measuring the volume V of data read

or written in an interval T :

ηxD =
V

P xDT
, x ∈ {r, w}. (3.4)

We can observe that results are similar for all the servers. Specifically, reading efficiency is almost

constant at any frequency and for each block size, while writing is more efficient with large block

sizes. We also observe that the efficiency changes very little with the adopted CPU frequency.

Another observation is that the efficiency saturates to a disk-dependent asymptotic value, which

is due to the mechanical constraints of the disk (e.g., due to the non-negligible seek time, the

number of read/write operations per second is limited). In addition, although not visible in the

figure due to the log-scale adopted, ηwD is a concave function of the block size B.

3.3.4 Network

The last server component that we characterize via measurements is the network card. Sim-

ilarly to the cases described previously, we run experiments in which only the operating system

and our test scripts are active. In this case, we run a script to either transmit or receive UDP

packets over a gigabit Ethernet connection and count the system active cycles ρ. We measure the

total power consumption Pt during the experiment, so that the power due to network activity can

be then estimated as follows:

P xN = Pt − PBC(ρ), x ∈ {s, r}, (3.5)

where superscripts s and r refer to the sender and the receiver cases, respectively.

In the experiments, we sequentially test all the available frequencies for each server (see

Table 3.1), and fix the packet size and the transmission rate within the achievable set of rates

(which depends on the packet size, e.g., < 950 Mbps for 1470-B packets). We report results for

the network energy consumption in terms of efficiencies ηsN and ηrN (volume of data transferred

per unit of energy). These efficiencies are computed as follows:

ηxN =
R

P xN
, x ∈ {s, r}, (3.6)

where R is the transmission rate during the experiment.

Figures 3.8, 3.9 and 3.10 show the network efficiencies of Survivor, Nemesis and

7For readability, results for Survivor are omitted.
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Figure 3.6: Instantaneous power consumption for reading/writing operations. Results are pre-
sented for every frequency and for 4 different block sizes for each one of our servers.
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Figure 3.7: Disk reading and writing efficiencies for Erdos (red dotted lines) and Nemesis
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Erdos, respectively, averaged over 5 samples per transmission rate R.8 9 For the sake of read-

ability, the figures only show results for the biggest and smallest packet sizes, i.e., 64-B and

1470-B packets. For Nemesis and Survivor we report four CPU frequencies: the lowest, the

highest, the most efficient (according to Figures 3.3(b) and 3.4(b)) and an intermediate one. For

Erdos all five available frequencies are shown. The figure also reports the polynomial fitting

curves for efficiency, which we found to be at most of second order. Since the efficiency is rep-

resented in terms of network activity only, in the fitting we force the zero-order coefficient of the

polynomials to be 0. Therefore, we can use the following expression to characterize the network

efficiencies of our servers:

ηxN = β1R+ β2R
2, x ∈ {s, r}, (3.7)

where the βi coefficients are computed by minimizing the least square error of the fitting.

It can observed in Figures 3.8, 3.9 and 3.10 that efficiencies are almost linear or slightly su-

perlinear with the transfer rate, e.g., the receiving efficiency of Survivor exhibits an evident

quadratic behavior. Indeed, our measurements show that the network power consumption is in-

dependent from the throughput, which is a well known result for legacy Ethernet devices. In

fact, the NICs of our servers are not equipped with power saving features like, e.g., the recently

standardized IEEE 802.3az [60].

In all cases, the efficiency is strongly affected by the selected CPU frequency. Moreover,

efficiency is also affected by packet size, although the impact of packet size changes from server

to server, e.g., Survivor sending efficiency is only slightly affected by it.

Another observation is that, depending on the packet size and frequency used, sending can

8Network results are obtained by using a point-to-point Ethernet connection between two controlled servers.
9Due to technical and regulation reasons it was only possible to complete the sender part for Erdos, obtaining

only partial results which, because of this partiality, are not published.
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Figure 3.8: Network efficiencies for Survivor under different frequencies and 64-B and 1470-
B packets.
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Figure 3.10: Network efficiencies for Erdos under different frequencies and 64-B and 1470-B
packets.

be more energy efficient than receiving at a given transmission rate, and using the highest CPU

frequency is never the most efficient solution. Note also that the efficiency decreases with the

packet size, although this effect is particularly evident at the receiver side, while it only slightly

impacts the efficiency of the packet sender. However, network activity also causes non-negligible

CPU activity, as shown in Figure 3.11 for a few experiment configurations for all three servers.

Overall, the lowest CPU frequency yields the lowest total power consumption during network

activity periods.

3.4 Estimating Energy Consumption

While the results presented in the previous sections are useful to understand the energy con-

sumption pattern of CPU, disk and network, we believe that a much more important use of these

results is to estimate the energy consumption of applications. In this section we describe how this

can be done from simple data about the application. Moreover, we validate the proposed approach

by estimating the energy consumed by several map-reduce Hadoop computations.
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Figure 3.11: Power utilization with network activity for Erdos, Nemesis and Survivor (64-
B experiments were run with a transmission rate R = 150 Mbps, while R = 400 Mbps for the
experiments with 1470-B packets).
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3.4.1 Energy Estimation Hypothesis

The approach we propose to estimate the energy Eapp consumed by an application lays on the

basic assumption that the energy is essentially the sum of the baseline energy EB (baseline power

times application running time), the energy consumed by the CPU EC , the energy consumed by

the disk ED, and the energy consumed by the network interface EN :

Eapp = EB + EC + ED + EN . (3.8)

Hence, the process of estimating Eapp is reduced to estimating these four terms. In order to

estimate the first two terms, we need to know the total number of active cycles that the application

will execute, Capp, and the load ρapp (in ACPS) that the execution will incur in the CPU. From

this, the total running time Tapp can be computed as

Tapp = Capp/ρapp.

Then, once the number of cores and the frequency that will be used have been defined, it is also

possible to estimate the baseline power plus CPU power, PBC , from the fitting curves of Fig. 3.2.

This allows to estimate the sum of the first two terms of Eq. 3.8 as

EB + EC = PBCTapp = PBCCapp/ρapp. (3.9)

The energy consumed by the disk is simply the energy consumed while reading and writing,

i.e., ED = ErD +EwD. To estimate these latter values, the block size to be used has to be decided,

from which we can obtain an estimate of the efficiency of reading, ηrD, and writing, ηwD (see

Figure 3.7). These, combined with the total volume of data read and written by the application,

denoted as V r
D and V w

D respectively, allow to obtain the estimate energy as

ED =
V r
D

ηrD
+
V w
D

ηwD
. (3.10)

Finally, to estimate EN , the transfer rate R and the packet size S have to be chosen, which

combined with the frequency used, yield sending and receiving efficiencies ηsN and ηrN (see Figu-

res 3.8, 3.9 and 3.10). Then, if the total volumes of data to be sent and received are V s
N and V r

N ,

respectively, the energy spent due to network is as follows:

EN =
V s
N

ηsN
+
V r
N

ηrN
. (3.11)

All is left to do to obtain the estimate Eapp is to add up the values obtained in Equations 3.9, 3.10,

and 3.11.
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3.4.2 Applications and Scenarios for Validation

In this subsection we present the applications and scenarios we experimented with in order

to validate the model presented in Section 3.4.1. Our goal was to be able to estimate the energy

consumed by an application deployed on a data center based on the usage of its different com-

ponents. For that, we executed two different Hadoop applications, PageRank and WordCount, in

three different scenarios: first with an Isolated Server (no network), second with a server con-

nected to the network, and finally with a two-server cloud. For the first two scenarios we used

Nemesis, whereas, for the cloud case, we used both Nemesis and Survivor. We describe

applications and scenarios in detail below.

Our first application is a Hadoop Map-Reduce PageRank based application that follows the

approach from Castagna [30]. This application, that we denote PageRank for simplicity, computes

several iterations of the pagerank algorithm on an Erdos-Renyi random (directed) graph with 1

million nodes and average degree 5 (Our PageRank algorithm assigns one input graph to each

mapper so, in order to have one map task in each machine, two instances of this graph had to be

used in the cluster scenario).

The execution of the PageRank application has three phases: preprocessing, map-reduce,

and postprocessing. On its side, the map-reduce phase is a sequence of several homogeneous

iterations of the PageRank algorithm that runs until a certain threshold is met. For simplicity,

we only estimate the energy consumed during the map-reduce phase of the pagerank algorithm,

which we force to run 10 times.

Our second application is the Hadoop Map-Reduce WordCount. This is a simple program

that reads text files and counts how often words occur. For WordCount we use a few hundreds of

books as input and estimate the energy consumed for the whole map-reduce process.

As we have mentioned above, these applications are run in 3 different scenarios. In the first

scenario, denoted as Isolated Server, we run Hadoop in Nemesis keeping it disconnected from

the network. When we run our applications in this scenario we are basically measuring the impact

on the energy consumption of the baseline, CPU and hard disk.

In the second scenario, denoted as Connected Server, we run Hadoop in Nemesis while

it exchanges data on a gigabit LAN. In order to measure the effect of the network on the energy

consumption, we evaluate 4 different cases for each application. These cases result from com-

bining 2 different behaviors, depending on whether Nemesis acts as a sender or as a receiver of

data, with 2 different packet sizes, 64 and 1470 bytes. To do so, we run Iperf, as a server or as a

client according to the case, in parallel with Hadoop.

Finally, in the third scenario, denoted as Cloud, we set up a two-server Hadoop cluster with

Nemesis and Survivor. In this scenario Nemesis is configured as the master node of the

cluster and Survivor as a slave node. The execution of the applications is shared by both nodes

so Hadoop itself exchanges traffic between both servers, and we do not insert additional network

traffic in this case. Finally, in order to have a better control of the experiment, we force the reduce

tasks to be mandatorily run in Nemesis, which also conditions the way the data is exchanged
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between Nemesis and Survivor.

Observe that all 3 scenarios are based on Hadoop. This implies that, apart from the map and

reduce tasks due to the applications being run, there are some extra processes executed in the

servers we are using. The most important processes that we can find in Nemesis are NameNode

(the process that keeps the directory tree of all files in the file system, and tracks where across

the cluster the file data is kept), Secondary NameNode (that performs periodic checkpoints of the

NameNode), DataNode (the process that is in charge of storing data in the Hadoop File System

(HDFS)), JobTracker (that receives the jobs and submits MapReduce tasks to the cluster nodes)

and TaskTracker (a per node process that can accept a determined number of MapReduce tasks).

On its side, Survivor runs, in the cloud scenario, DataNode and TaskTracker.

3.4.3 Experiments and Observed Results

For the sake of consistency in the results, we ran both applications 10 times per frequency for

each one of the considered scenarios and averaged the results.

We start by describing the Isolated Server scenario. For each run i we record the total number

of active cycles executed Ciapp, the time spent T iapp and the volume of data read (written), V r,i
D

(V w,i
D ). Since we cannot measure the instantaneous CPU load, we assume that the CPU load is

the same during the run for a given frequency. Hence, the CPU load can be estimated as

ρiapp = Ciapp/T
i
app.

Then, from ρiapp we obtain the estimate of the instantaneous power P iBC using the fitting curves

as described in Section 3.3. Finally, using Eq. 3.9 we compute the estimate EiB + EiC . In order

to estimate the energy consumed by the disk operations, we use the fact that Hadoop uses a block

size of 64 MB. This allows us to estimate the reading (writing) efficiencies, ηr,iD (ηw,iD ) that we

compute, in Joules per byte. Combining these values with the measured volume of data read and

written (V r,i
D and V w,i

D ), as described in Eq. 3.10, we obtain EiD.

The total estimated energy of the application in run i, Eiapp, is obtained by summing up the

energy of the different components used in run i, as stated in Eq. 3.8 (remember that, in the

Isolated Server the network is not used). Then, by summing the values of the ten runs of an

experiment, we obtain the total estimated energy as

Eapp =
10∑
i=1

Eiapp.

The (approximated) total real energy Êiapp consumed in run i is computed by the average value of

the power samples which we registered with the power analyzer during the run, and we multiply
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it with the run time Tapp. Finally, the total energy consumed by the experiment is obtained as

Êapp =

10∑
i=1

Êiapp.

The estimation error for each experiment is then computed as Êapp − Eapp.
We show the results obtained for the Isolated Server scenario with the minimum, the maxi-

mum, and the most efficient10 frequencies (the results for the remaining frequencies are similar)

in Figure 3.12. The figure shows the results for both PageRank and WordCount. As can be seen,

the error is relatively small, except for the case when we run WordCount at the maximum fre-

quency. Errors are of 4%, 4%, 7%, 5%, 7% and 10% respectively, following the same order as in

Figure 3.12.

Figure 3.12: Energy consumption of Nemesis in the Isolated Server scenario.

We move now to the Connected Server scenario. As we described in the previous section, this

scenario is studied in 4 different cases depending on whether Nemesis acts as sender or receiver

and whether the size of the packets is of 64 or 1470 bytes. Of course, another relevant parameter

is the rate at which these packets are sent. The rates used are 150 and 400 Mbps when using

packets of 64 or 1470 bytes, respectively.

The total energy consumed in these cases is computed in the same way as we did for the

Isolated Server scenario but adding the contribution of the network. In order to estimate the net-

work consumption in one run with Nemesis sending traffic (resp., receiving traffic), the sending

efficiency ηsN , (resp., receiving efficiency ηrN ) is obtained from the transfer rate R, the frequency

and packet size used (see Figures 3.9). The amount of data sent (resp., received) can be obtained
10Respectively 1.596, 2.128 and 2.794 GHz, according to the results shown in Section 3.3.
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(a) PageRank, sender side.

(b) PageRank, receiver side.

Figure 3.13: Energy consumption of Nemesis running PageRank in the Connected Server sce-
nario, with either small or big packets.
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(a) WordCount, sender side.

(b) WordCount, receiver side.

Figure 3.14: Energy consumption of Nemesis running WordCount in the Connected Server
scenario, with either small or big packets.
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Table 3.2: Error measured in the different cases of the Connected Server scenario.

Packet Size Freq Cases
PR - Send PR - Rec WC - Send WC - Rec

64-B
1.596 0.5% 6.0% 2.9% 2.7%
2.128 2.0% 4.7% 6.4% 1.5%
2.794 0.5% 2.9% 4.0% 2.9%

1470-B
1.596 0.7% 6.9% 1.6% 6.5%
2.128 1.1% 6.5% 5.8% 5.8%
2.794 3.8% 0.3% 0.9% 1.5%

from the server itself by consulting the OS registers11. Therefore, the energy of the network for

an run i, EiN , is obtained using Eq. 3.11. Then, including EiN for each run in the computation of

Eiapp we can obtain the total energy consumed by the application. Following the same steps as

in the previous scenario, we get the results shown in Figure 3.13 and 3.14. The error measured

is again relatively smaller for PageRank than for WordCount. The error measured for each of the

cases can be found in Table 3.2.

We finally analyze the Cloud scenario. In this scenario we set up a cluster with two servers,

Nemesis and Survivor, and run the 2 aforementioned Hadoop applications in it. This sce-

nario may seem relatively similar to the Connected Server scenario, but it has is a major dif-

ference. While in the previous scenario we were the ones controlling the network traffic, here

the traffic is controlled by Hadoop. Specifically, we know that, in this scenario, there are two

main sources of traffic: requesting input data when it is not present in a server, and sending the

mapper tasks outputs to the reducer tasks. The only condition we impose in the server to have

some control over the traffic is related to this later aspect, we force the reducers to be always in

Nemesis.

Although we are able to retrieve the total amount of data received or sent by each server, we

know neither the size of the packets used nor the rate. Therefore, we can compute neither the

sending efficiency ηsN nor the receiving efficiency ηrN . In order to be able to compute both the

sending and receiving efficiencies we analyze the traffic exchanged by both servers for each one

of the applications. Figure 3.15 shows the amount of packets of each size that were exchanged by

both servers (and the direction of the exchange) for both applications. The results show the vast

majority of packets are either small (64 bytes) or big (1470 bytes). Moreover, it shows that most

of the packets sent from Nemesis to Survivor are small packets for both applications, while

big packets are sent in the opposite direction.

Given these results, we approximate the energy consumed by the network assuming that all the

packets exchanged are of the same size and that the rate is the maximum achievable rate for each

packet size according to the results from Section 3.3. For instance, we consider roughly 30 Mbps

when Survivor receives 64-Byte packets and roughly 970 Mbps if it sends 1470-Byte packets.

These assumptions allow us to compute now ηsN and ηrN . The remaining parameters are computed

11We can read the registers rx bytes, rx packets, tx bytes or tx packets from
/sys/class/net/eth0/statistics.
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Figure 3.15: Distribution of the sizes of the packets exchanged between Nemesis and
Survivor for both PageRank and WordCount in the Cloud scenario.

as for the other scenarios, so to determine Êapp and Eapp. The results are shown in Figure 3.16.

As in the previous scenarios, errors are relatively low. In particular, the error in Nemesis when

running PageRank is 3.1% and 1.4% for 2.128 GHz and 2.794 GHz, respectively, and of a 9.7%

and a 6.5% for 2.128 GHz and 2.794 GHz when running WordCount. On the other hand, the

measured errors for Survivor are 3.3% and 3.6% for 1.867 GHz and 2.133 GHz when running

PageRank and 5.1% and 5.2%, respectively, when running WordCount.

3.5 Discussion

We discuss now some of the implications of our results. We start with consolidation as a

technique for energy saving. It has been often assumed that the best way of saving energy is

by using the highest frequency available and applying consolidation (which is to fill servers as

much as possible). This reduces the total number of servers being used, allowing to switch off the

rest. This assumption has led to proposing bin-packing based solutions [24,76,82,95]. However,

the results presented in Figures 3.3(b), 3.4(b) and 3.5(b) show that the highest frequency is not

always the most efficient one, and this has been found to be true for two different architectures

(Intel and AMD). This implies that, by running servers at the optimal amount of load, and the

right frequency, a considerable amount of energy could be saved.

A second relevant aspect is the baseline consumption of servers. The results presented for

all 3 servers show that their baselines are within a 30-50% of the maximum consumption. Then,

it is obvious that more effort has to be done for reducing baseline consumption. For instance, a

solution could consist in switching off cores in real time, not just disabling them, or in introducing

very fast transitions between active and lower energy states, i.e., to achieve real suspension in idle

state.

There is another relevant issue related to the CPU load associated to disk and network activity.
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(a) Nemesis

(b) Survivor

Figure 3.16: Energy consumption of Nemesis and Survivor in the Cloud scenario.
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It can be observed in Figure 3.6 that disks do not incur much CPU overhead. In fact, the power

used by the CPU plus baseline does not change much across the experiments. Instead, the energy

consumed by the CPU due to network operations is even larger than the energy consumed by the

NIC (see Figure 3.11). Some works, like [47], have already pointed out that the way packets are

handled by the protocol stack is not energy efficient. Our results reinforce this feeling and point

out that building a more efficient protocol stack would certainly reduce the amount of energy

consumed due to the network.

Finally, it is worth to mention that in this work we have assumed that the power utilization of

the RAM memory is included in the baseline. The characterization experiments have been run

in such a way that there were few memory accesses, so its power utilization did not affect our

measurements. However, RAM memory became an uncontrolled source of power utilization in

Section 3.4.3 when we validated our proposed model. In fact, all the Hadoop processes that run in

the servers consume significant RAM memory. This impacts more significantly the memory used

by the cluster’s master node, since it runs internal Hadoop processes (such as the NameNode or the

JobTracker) whose memory requirement increases with the number of mappers and reducers. This

cost is, therefore, paid only in Nemesis, the master node of our cluster, and not in Survivor,

which explains the different accuracy of the model for the two servers. This error is particularly

evident when when WordCount is run, due to the fact that the required number of mappers for

WordCount is larger than for PageRank and, therefore, the RAM required in Nemesis increases

and so does the uncontrolled energy consumption.

3.6 Conclusions

In this chapter we have reported our measurement-based characterization of energy and power

consumption in a server. We have exhaustively measured the power consumed by CPU, disk, and

NIC under different configurations, identifying the optimal operational levels, which usually do

not correspond to the static system configurations commonly adopted. We found that, besides the

baseline component, which does not changes significantly with the operational parameters, the

CPU has the largest impact on energy consumption among all the three components. We observe

that CPU consumption is neither linear nor concave with the load, i.e., the systems are not energy

proportional. Disk I/O is the second larger contributor to power consumption, although perfor-

mance changes sensibly with the I/O block size used by the applications. Finally, the NIC activity

is responsible for a small but not negligible fraction of power consumption, which scales almost

linearly with the network transmission rate. In general, most of the energy/power performance

figures do not scale linearly with the utilization, in contrast to what is commonly assumed in the

literature. We have then shown how to predict and optimize the energy consumed by an applica-

tion via a concrete example using 2 different Hadoop applications, PageRank and WordCount, in

three different scenarios. First We ran both applications without network activity, next with bulky

network activity, and finally in a two-server cluster. Our model achieves very accurate energy
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estimates, within 4.1% from the measured total power consumption on average and never worse

than a 10%.





Chapter 4

Efficient Assignment of Virtual
Machines to Physical Machines

4.1 Overview

Having studied how nowadays servers use power, we now show a way in which this knowl-

edge can be useful. In this chapter we will apply the concept of the optimal operational point of a

server to the Virtual Machine Assignment problem (VMA), which basically consists in deciding

in which server we want to place a new task arriving to a system. Having an optimal operational

point conditions drastically the way we must load a server in order to optimize the energy which

is being consumed.

Having this in mind, we study, in particular, the hardness and online competitiveness of the

four versions of the VMA problem that we described in Chapter 2. This 4 versions of VMA

differed in whether we considered PMs with bounded or unbounded capacity C or a limited or

unlimited number of PMs m in the system. We denoted these versions as (·, ·)-VMA, (C, ·)-

VMA, (·,m)-VMA and (C,m)-VMA1.

We start by showing various lower and upper bounds on the offline approximation of VMA.

The first fact we observe is that there is a hard decision version of (C,m)-VMA: Is there a feasible

partition π of the set D of VMs? By reduction from the 3-Partition problem, it can be shown that

this decision problem is strongly NP-complete. We then show that the (·, ·)-VMA, (C, ·)-VMA,

and (·,m)-VMA problems are NP-hard in the strong sense, even if α is constant. This result

implies that VMA problems do not have a fully polynomial time approximation scheme (FPTAS),

even if α is constant. Nevertheless, using previous results derived for more general objective

functions, we notice that (·, ·)-VMA and (·,m)-VMA have a polynomial time approximation

scheme (PTAS), while the (C, ·)-VMA problem can not be approximated beyond a ratio of 3
2 ·

α−1+( 2
3
)α

α (unless P = NP). On the positive side, we show how to use an existing Asymptotic

PTAS [45] to obtain algorithms that approximate the optimal solution of (C, ·)-VMA. All our

1The central dots (·) imply unboundedness.

55
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offline results as well as the online ones can be seen in Table 4.1.

Then we move on to online VMA algorithms. We show various upper and lower bounds

on the competitive ratio of the four versions of the problem. Observe that the results are often

different depending on whether x∗ is smaller thanC or not. In fact, when x∗ < C, there is a lower

bound of (3/2)2α−1
2α−1 that applies to all versions of the problem. Rather than attempting to obtain

tight bounds for particular instances of the parameters of the problem (C,m,α, b) we focus on

obtaining general bounds, whose parameters can be instantiated for the specific application. The

bounds obtained show interesting trade-offs between the PM capacity and the fixed cost of adding

a new PM to the system. For clarity, we will consider µ = 1 throughout the whole chapter. All

the results presented apply for other values of µ.

The resulting bounds are shown in Table 4.1. As can be observed, the resulting upper and

lower bounds are not very far in general. To give some intuition on the tightness of these bounds,

we instantiate them for a realistic value of α = 3, and normalized values of b = 2 and C ∈ {1, 2}.
These values for α are obtained from the servers we studied in Chapter 3, in particular from the

ones denoted as Erdos and Nemesis. In them the values for α are close to 1.5 and 3 and

x∗ values of 0.76C and 0.9C respectively (x∗ denotes the load that minimizes the ratio power

consumption against load.). The bounds based on these realistic values are shown in Table 4.2.

RoadMap The rest of the chapter is organized as follows. Section 4.2 includes some prelimi-

nary results that will be used throughout the chapter. The offline and online analyses are included

in Section 4.3 and 4.4 respectively. In Section 4.5 we compare different state of the art allocation

policies and compare them with the algorithms proposed in Section 4.4. Section 4.6 discusses

some practical issues and provides some useful insights regarding real implementation. Section

4.7 concludes the Chapter.

4.2 Preliminaries

The following claims will be used in the analysis. We call power rate the power consumed per

unit of load in a PM. Let x be the load of a PM. Then, its power rate is computed as f(x)/x. The

load at which the power rate is minimized, denoted x∗, is the optimal load, and the corresponding

rate is the optimal power rate ϕ∗ = f(x∗)/x∗. Using calculus we get the following observation.

Observation 1. The optimal load is x∗ = (b/(α− 1))1/α . Additionaly, for any x 6= x∗,

f(x)/x > ϕ∗.

The following lemmas will be used in the analysis.

Lemma 1. Consider two solutions π = {A1, . . . , Am} and π′ = {A′1, . . . , A′m} of an instance

of the VMA problem, such that for some x, y ∈ [1,m] it holds that

• Ax 6= ∅ and Ay 6= ∅;
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VMA subprob. x∗ < C x∗ ≥ C

(C, ·) offline
ρ ≥ 3

2
α−1+(2/3)α

α ρ ≥ 3
2
α−1+(2/3)α

α

ρ < m
m∗

(
1 + ε+ 1

α−1 + 1
m

)
ρ < 1 + ε+ Cα

b + 1
m

(C, ·) online
ρ ≥ (3/2)2α−1

2α−1 ρ ≥ Cα+2b
b+max{Cα,2(C/2)α+b}

ρ = 1 if Ds = ∅, else

ρ ≤
(
1− 1

α

(
1− 1

2α

)) (
2 + x∗

`(Ds)

) ρ ≤ 2b
C

(
1 + 1

(α−1)2α

)(
2 + C

`(D)

)

(C,m) online
ρ ≥ (3/2)2α−1

2α−1 ρ ≥ Cα+2b
b+max{Cα,2(C/2)α+b}

(·, ·) online
ρ ≥ (3/2)2α−1

2α−1 not applicable
ρ = 1 if Ds = ∅, else

ρ ≤
(
1− 1

α

(
1− 1

2α

)) (
2 + x∗

`(Ds)

)
(·,m) online ρ ≥ max{ (3/2)2

α−1
2α−1 , 3α

2α+2+ε
} not applicable

ρ ≤ O(α)α In [53]

(·, 2) online
ρ ≥ max{ 3α

2α+1 ,
(3/2)2α−1

2α−1 , 3α

2α+2+ε
}

not applicable
ρ = 1 if `(D) ≤ α

√
b/(2α − 2), else

ρ ≤ max{2,
(
3
2

)α−1}
Table 4.1: Summary of bounds on the approximation/competitive ratio ρ. All lower bounds are
existential. The number of PMs in an optimal (C, ·)-VMA solution is denoted asm∗. The number
of PMs in an optimal Bin Packing solution is denoted as m. The load that minimizes the ratio
power consumption against load is denoted as x∗. The subset of VMs with load smaller than x∗

is denoted as Ds.

• A′x = Ax ∪Ay, A′y = ∅, and Ai = A′i, for all i 6= x and i 6= y; and

• `(Ax) + `(Ay) ≤ min{x∗, C}.

Then, P (π′) < P (π).

Proof : Let `(Ai) = x and `(Aj) = y. First we notice that π′ is feasible because x+ y ≤ C.

Now, using that x+ y ≤ x∗, we have

b = (x∗)α(α− 1) ≥ (x+ y)α(α− 1) > (x+ y)α ≥ (x+ y)α − (xα + yα)

where the second inequality comes from the fact that α > 1. The above inequality is equivalent

to

2b+ xα + yα > b+ (x+ y)α,
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VMA subprob. x∗ < C x∗ ≥ C

(C, ·) offline
ρ ≥ 11

9 ρ ≥ 11
9

ρ < m
m∗

(
3
2 + ε+ 1

m

)
ρ < 3

2 + ε+ 1
m

(C, ·) online
ρ ≥ 11

7 ρ ≥ 20
17

ρ ≤ 17
12

(
1 + 1

2`(Ds)

)
ρ ≤ 17

2

(
1 + 1

2`(D)

)
(C,m) online ρ ≥ 11

7 ρ ≥ 20
17

(·, ·) online
ρ ≥ 11

7 not applicable
ρ ≤ 17

12

(
1 + 1

2`(Ds)

)
(·,m) online ρ ≥ 11

7 not applicable

(·, 2) online
ρ ≥ 11

7 not applicable
ρ ≤ 9

4

Table 4.2: Summary of bounds on the approximation/competitive ratio ρ for α = 3, b = 2, and
C = 2 on the left and C = 1 on the right.. All lower bounds are existential. The number of
PMs in an optimal (C, ·)-VMA solution is denoted as m∗. The number of PMs in an optimal Bin
Packing solution is denoted as m. The load that minimizes the ratio power consumption against
load is denoted as x∗. The subset of VMs with load smaller than x∗ is denoted as Ds.

which implies the lemma. �

From this lemma, it follows that the global power consumption can be reduced by having 2

VMs together in the same PM, when its aggregated load is smaller than min{x∗, C}, instead of

moving one VM to an unused PM. When we keep VMs together in a given partition we say that

we are using Lemma 1.

Lemma 2. Consider two solutions π = {A1, . . . , Am} and π′ = {A′1, . . . , A′m} of an instance

of the VMA problem, such that for some x, y ∈ [1,m] it holds that

• Ax ∪Ay = A′x ∪A′y, while Ai = A′i, for all x 6= i 6= y;

• none of Ax, Ay, A′x, and A′y is empty; and

• |`(Ax)− `(Ay)| < |`(A′x)− `(A′y)|.

Then, P (π) < P (π′).

Proof : From the definition of P (·), to prove the claim is it enough to prove that

`(Ax)α + `(Ay)
α < `(A′x)α + `(A′y)

α.
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Let us assume wlog that `(Ax) ≤ `(Ay) and `(A′x) ≤ `(A′y). Let us denote

L = `(Ax) + `(Ay) = `(A′x) + `(A′y),

and assume that `(Ax) = δ1L and `(A′x) = δ2L. Note that δ2 < δ1 ≤ 1/2. Then, the claim to be

proven becomes

(δ1L)α + ((1− δ1)L)α < (δ2L)α + ((1− δ2)L)α

δα1 + (1− δ1)α < δα2 + (1− δ2)α

Which holds because the function f(x) = xα + (1− x)α is decreasing in the interval (0, 1/2). �

This lemma carries the intuition that balancing the load among the used PMs as much as

possible reduces the power consumption.

Corollary 1. Consider a solution π = {A1, . . . , Am} of an instance of the VMA problem with

total load `(D), such that exactly k of the Ax sets, x ∈ [1,m], are non-empty (hence it uses k

PMs). Then, the power consumption is lower bounded by the power of the (maybe unfeasible)

solution that balances the load evenly, i.e.,

P (π) ≥ kb+ k(`(D)/k)α.

4.3 Offline Analysis

4.3.1 NP-hardness

As was mentioned, it can be shown that deciding whether there is a feasible solution for an

instance of the (C,m)-VMA problem is NP-complete or not, by a direct reduction from the 3-

Partition problem. However, this result does not apply directly to the (C, ·)-VMA, (·,m)-VMA,

and (·, ·)-VMA problems. We show now that these problems are NP-hard. We first prove the

following lemma.

Lemma 3. Given an instance of the VMA problem, any solution π = {A1, . . . , Am} where

`(Ai) 6= x∗ for some i ∈ [1,m] : Ai 6= ∅, has power consumption P (π) > ρ∗`(D) =

ρ∗
∑

d∈D `(d).

Proof : The total cost of π is P (π) =
∑

i∈[1,m] f(`(Ai)) which, from Observation 1, satisfies

P (π) >
∑

i∈[1,m]:Ai 6=∅

`(Ai)ρ
∗

= ρ∗
∑

i∈[1,m]:Ai 6=∅

∑
d∈Ai

`(d) = ρ∗
∑
d∈D

`(d).

�
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We show now in the following theorem that the different versions of the (C,m)-VMA prob-

lem with unbounded C or m are NP-hard.

Theorem 1. The (C, ·)-VMA, (·,m)-VMA and (·, ·)-VMA problems are strongly NP-hard, even if

α is constant.

Proof : We show a reduction from 3-Partition defined as follows [48], which is strongly NP-

complete.

INSTANCE: Set A of 3k elements, a bound B ∈ Z+ and, for each a ∈ A, a size s(a) ∈ Z+

such that B/4 < s(a) < B/2 and
∑

a∈A s(a) = kB.

QUESTION: can A be partitioned into k disjoint sets {A1, A2, . . . , Ak} such that∑
a∈Ai s(a) = B for each 1 ≤ i ≤ k?

The reduction is as follows. Given an instance of 3-Partition on a set A = {a1, . . . , a3k} with

bound B, and given a fixed value α > 1, we define an instance I of (·, ·)-VMA as follows: D =

{a1, . . . , a3k}, `(·) = s(·), and b = Bα(α− 1) (i.e., x∗ = B). (For the proof of the (C, ·)-VMA

and (·,m)-VMA problems it is enough to set C = B and m = k when required.) We show now

that the answer to the 3-Partition problem is YES if and only if the output π = {A1, A2, . . . , Am}
of the (·, ·)-VMA problem on input I is such that

∑m
i=1 f(`(Ai)) = kf(B).

For the direct implication, assume that there exists a partition {A1, A2, . . . , Ak} of A such

that for each i ∈ [1, k],
∑

a∈Ai s(a) = B. Then, in the context of the (·, ·)-VMA problem,

such partition has cost
∑m

i=1 f(`(Ai)) = kf(B). We claim that any partition has at least cost

kf(B). In order to prove it, assume for the sake of contradiction that there is a partition π′ =

{A′1, A′2, . . . , A′m} of (·, ·)-VMA on input I with cost less than kf(B). Then, there is some

i ∈ [1,m] such that A′i 6= ∅ and `(A′i) 6= B. From Lemma 3, P (π′) > ρ∗`(D) = (f(x∗)/x∗)kB.

Since B = x∗, we have that P (π′) > kf(B), which is a contradiction.

To prove the reverse implication, assume an output π = {A1, A2, . . . , Am} of the (·, ·)-VMA

problem on input I such that P (π) =
∑m

i=1 f(`(Ai)) = kf(B). Then, it must be ∀i ∈ [1,m] :

Ai 6= ∅, `(Ai) = B. Otherwise, from Lemma 3, P (π) > kf(B), a contradiction. �

It is known that strongly NP-hard problems cannot have a fully polynomial-time approxima-

tion scheme (FPTAS) [92]. Hence, the following corollary.

Corollary 2. The (C, ·)-VMA, (·,m)-VMA and (·, ·)-VMA problems do not have fully polynomial-

time approximation schemes (FPTAS), even if α is constant.

In the following sections we show that, while the (·,m)-VMA and (·, ·)-VMA problems have

polynomial-time approximation schemes (PTAS), the (C, ·)-VMA problem cannot be approxi-

mated below 3
2 ·

α−1+(2/3)α

α .

4.3.2 The (·,m)-VMA and (·, ·)-VMA Problems Have PTAS

We have proved that the (·,m)-VMA and (·, ·)-VMA problems are NP-hard in the strong

sense and that, hence, there exists no FPTAS for them. However, Alon et al. [8], proved that if a
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function f(·) satisfies a condition denoted F∗, then the problem of scheduling jobs in m identical

machines so that
∑

i f(Mi) is minimized has a PTAS, where Mi is the load of the jobs allocated

to machine i. This result implies that if our function f(·) satisfies condition F∗, the same PTAS

can be used for the (·,m)-VMA and (·, ·)-VMA problems. From Observation 6.1 in [42], it can

be derived that, in fact, our power consumption function f(·) satisfies condition F∗. Hence, the

following theorem.

Theorem 2. There are polynomial-time approximation schemes (PTAS) for the (·,m)-VMA and

(·, ·)-VMA problems.

4.3.3 Bounds on the Approximability of the (C, ·)-VMA Problem

We study now the (C, ·)-VMA problem, where we consider an unbounded number of ma-

chines with bounded capacity C. We will provide a lower bound on its approximation ratio,

independently on the relation between x∗ and C; and upper bounds for the cases when x∗ ≥ C

and x∗ < C.

4.3.3.1 Lower bound on the approximation ratio

The following theorem shows a lower bound on the approximation ratio of any offline algo-

rithm for (C, ·)-VMA.

Theorem 3. No algorithm achieves an approximation ratio smaller than 3
2 ·

α−1+( 2
3
)α

α for the

(C, ·)-VMA problem unless P = NP.

Proof : The claim is proved showing a reduction from the partition problem [48]. In the

partition problem there is a set A = {a1, a2, . . . , an} of n elements, there is a size s(a) for each

element a ∈ A, and the sum M =
∑

a∈A s(a) of the sizes of the elements in A. The problem

decides whether there is a subset A′ ⊂ A such that
∑

a∈A′ s(a) = M/2.

From an instance of the partition problem, we construct an instance of the (C, ·)-VMA prob-

lem as follows. The set of VMs in the system is D = {a1, a2, . . . , an}, the load function is

`(·) = s(·), the capacity of each PM is set to C = M/2, and b is set to b = Cα(α − 1) (i.e.,

x∗ = C). Let us study the optimal partition π∗ such that the total power consumption P (π∗) is

minimized. If there is a partition of D such that each subset in this partition has load M/2 then,

from Observation 1, π∗ has all the VMs assigned to two PMs. Otherwise, π∗ needs at least 3

PMs to allocate all the VMs. From Corollary 1, the power consumption of this solution is lower

bounded by the power of a (maybe unfeasible) partition that balances the load among the 3 PMs

as evenly as possible. Formally,

∃A′ :
∑
a∈A′

s(a) = M/2 ⇒ P (π∗) = 2b+ 2

(
M

2

)α
= 2b+ 2Cα

@A′ :
∑
a∈A′

s(a) = M/2 ⇒ P (π∗) ≥ 3b+ 3

(
M

3

)α
= 3b+ 3

(
2C

3

)α
.
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Comparing both values we obtain the following ratio.

ρ =
3b+ 3

(
2C
3

)α
2b+ 2Cα

=
3Cα(α− 1) + 3

(
2C
3

)α
2Cα(α− 1) + 2Cα

=
3

2
·
α− 1 + (23)α

α
.

Therefore, given any ε > 0, having a polynomial-time algorithm A with approximation ratio

ρ− ε would imply that this algorithm could be used to decide if there is a subset A′ ⊂ A such that∑
a∈A′ s(a) = M/2. In other words, this algorithm would be able to solve the partition problem.

This contradicts the fact that the partition problem is NP-hard and no polynomial time algorithm

solves it unless P = NP. Therefore, there is no algorithm that achieves a ρ−ε = 3
2 ·

α−1+( 2
3
)α

α −ε
approximation ratio for the (C, ·)-VMA problem unless P = NP. �

4.3.3.2 Upper bound on the approximation ratio for x∗ ≥ C

We study now an upper bound on the competitive ratio of the (C, ·)-VMA problem for the case

when x∗ ≥ C. Under this condition, the best is to load each PM to its full capacity. Intuitively, an

optimal solution should load every machine up to its maximum capacity or, if not possible, should

balance the load among PMs to maximize the average load. The following lemma formalizes this

observation.

Lemma 4. For any system with unbounded number of PMs where x∗ ≥ C the power consumption

of the optimal assignment π∗ is lower bounded by the power consumption of a (possibly not

feasible) solution where `(D) is evenly distributed among m PMs, where m is the minimum

number of PMs required to allocate all VMs (i.e., the optimal solution of the packing problem).

That is,

P (π∗) ≥ m · b+m(`(D)/m)α.

Proof : Denote the number of PMs used in an optimal (C, ·)-VMA solution π∗ by m∗. By

Corollary 1, we know that

P (π∗) ≥ m∗b+m∗(`(D)/m∗)α.

Given that m ≤ m∗, we know that `(D)/m∗ ≤ `(D)/m ≤ C ≤ x∗. Thus, for evenly-balanced

loads the power consumption is reduced if the number of PMs is reduced, that is

m∗b+m∗(`(D)/m∗)α ≥ m · b+m(`(D)/m)α.

Hence, the claim follows. �

Now we prove an upper bound on the approximation ratio showing a reduction to bin pack-

ing [48]. The reduction works as follows. Let each PM be seen as a bin of capacity C, and each
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VM be seen as an object to be placed in the bins, whose size is the VM load. Then, a solution for

this bin packing problem instance yields a feasible (perhaps suboptimal) solution for the instance

of (C, ·)-VMA. Moreover, using any bin-packing approximation algorithm, we obtain a feasible

solution for (C, ·)-VMA that approximates the minimal number of PMs used. The power con-

sumption of this solution approximates the power consumption of the optimal solution π∗ of the

instance of (C, ·)-VMA. In order to compute an upper bound on the approximation ratio of this

algorithm, we will compare the power consumption of such solution against a lower bound on the

power consumption of π∗. The following theorem shows the approximation ratio obtained.

Theorem 4. For every ε > 0, there exists an approximation algorithm for the (C, ·)-VMA problem

when x∗ ≥ C that achieves an approximation ratio of

ρ < 1 + ε+
Cα

b
+

1

m
,

where m is the minimum number of PMs required to allocate all the VMs.

Proof : Consider an instance of the (C, ·)-VMA problem. If `(D) ≤ C, the optimal solution is

to place all the VMs in one single PM. Hence, we assume in the rest of the proof that `(D) > C.

Define the corresponding instance of bin packing following the reduction described above. Let

the optimal number of bins to accommodate all VMs be m. As shown in [45], for every ε > 0,

there is a polynomial-time algorithm that fits all VMs in m̂ bins, where m̂ ≤ (1 + ε)m+ 1. From

Lemma 2, once the number of PMs used m̂ is fixed, the power consumption is maximized when

the load is unbalanced to the maximum. I.e., the power consumption of the assignment is at most

m̂b + (`(D)/C)Cα. On the other hand, as shown in Lemma 4, the power consumption of the

optimal (C, ·)-VMA solution is at least m · b + m
(
`(D)
m

)α
. Then, we compute a bound on the

approximation ratio as follows.

ρ ≤
m̂b+

(
`(D)
C

)
Cα

m · b+m
(
`(D)
m

)α (4.1)

<
m̂b+

(
`(D)
C

)
Cα

m · b+m
(
C
2

)α , (4.2)

where the second inequality comes from `(D)/m > C/2. (If `(D)/m ≤ C/2, there must be two

PMs whose loads add up to less than C, which contradicts the fact that m is the number of bins

used in the optimal solution of bin packing.) Let γ = (x∗/C)α. Then, replacing b = γCα(α−1),
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in Eq. (4.1) we have

ρ <
m̂γCα(α− 1) +

(
`(D)
C

)
Cα

mγCα(α− 1) +m
(
C
2

)α
=

m̂γ(α− 1) +
(
`(D)
C

)
mγ(α− 1) +m

(
1
2

)α ≤ m̂γ(α− 1) +m

mγ(α− 1) +
(
m
2α

) (4.3)

≤ (m(1 + ε) + 1))γ(α− 1) +m

mγ(α− 1) +
(
m
2α

) (4.4)

=
(1 + ε)γ(α− 1) + 1

γ(α− 1) +
(

1
2α

) +
γ(α− 1)

mγ(α− 1) +
(
m
2α

)
=

2α((1 + ε)γ(α− 1) + 1)

2αγ(α− 1) + 1
+

2αγ(α− 1)

m(2αγ(α− 1) + 1)

<
(1 + ε)γ(α− 1) + 1

γ(α− 1)
+

1

m

= 1 + ε+
1

γ(α− 1)
+

1

m
= 1 + ε+

Cα

b
+

1

m

Inequality (4.3) follows from `(D)/C ≤ m, Inequality (4.4) from the approximation algorithm

for bin packing, and the last inequality is because m > 0. �

4.3.3.3 Upper bound on the approximation ratio for x∗ < C

We study now the (C, ·)-VMA problem when x∗ < C. In this case, the optimal load per PM

is less than its capacity, so an optimal solution would load every PM to x∗ if possible, or try to

balance the load close to x∗. In this case we slightly modify the bin packing algorithm described

above, reducing the bin size from C to x∗. Then, using an approximation algorithm for this bin

packing problem, the following theorem can be shown.

Theorem 5. For every ε > 0, there exists an approximation algorithm for the (C, ·)-VMA problem

when x∗ < C that achieves an approximation ratio of

ρ <
m

m∗

(
(1 + ε) +

1

α− 1

)
+

1

m∗
,

wherem∗ is the number of PMs used by the optimal solution of (C, ·)-VMA, andm is the minimum

number of PMs required to allocate all the VMs without exceeding load x∗ (i.e., the optimal

solution of the bin packing problem).

Proof : Consider an instance of the (C, ·)-VMA problem. If `(D) ≤ x∗ then the optimal

solution is to assign all the VMs to one single PM. Then, in the rest of the proof we assume that

`(D) > x∗. Assuming m∗ to be the number of PMs of an optimal (C, ·)-VMA solution π∗ for

load `(D), from Corollary 1, we can claim that the power consumption P (π∗) can be bounded as

P (π∗) ≥ m∗b+m∗(`(D)/m∗)α.
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Now, let m be the minimum number of PMs required to allocate all the VMs of the (C, ·)-

VMA problem without exceeding load x∗. As shown in [45], for every ε > 0, there is a

polynomial-time algorithm that fits all VMs in m̂ bins, where m̂ ≤ (1+ε)m+1. From Lemma 2,

this approximation results in a power consumption no larger than m̂b+ (`(D)/x∗)(x∗)α. Hence,

the approximation ratio ρ of the solution obtained wit this algorithm can be bounded as follows.

ρ ≤
m̂b+

(
`(D)
x∗

)
(x∗)α

m∗b+m∗
(
`(D)
m∗

)α . (4.5)

Since `(D) > x∗, we know that `(D)/m∗ > x∗/2, since otherwise there are two used PMs

whose load is no larger than x∗, contradicting by Lemma 1 the definition of m∗. Also, from the

definition of m, it follows that `(D) ≤ m · x∗. Finally, recall that b = (x∗)α(α − 1). Applying

these results to Eq. (4.5) we have the following.

ρ <
m̂(x∗)α(α− 1) +

(
x∗m
x∗

)
(x∗)α

m∗(x∗)α(α− 1) +m∗
(
x∗

2

)α
=

m̂(α− 1) +m

m∗(α− 1) +m∗
(
1
2

)α ≤ (m(1 + ε) + 1)(α− 1) +m

m∗(α− 1) + m∗

2α

=
m(1 + ε)(α− 1) +m

m∗(α− 1) + m∗

2α
+

α− 1

m∗(α− 1) + m
2α

=
m

m∗
2α((1 + ε)(α− 1) + 1)

2α(α− 1) + 1
+

2α(α− 1)

2αm∗(α− 1) +m∗

≤ m

m∗

(
(1 + ε) +

1

α− 1

)
+

1

m∗
,

where the first inequality comes from applying the results aforementioned, and second one from

using m̂ = m(1 + ε) + 1, while the last one results from simplifying the previous equation. �

4.4 Online Analysis

In this section, we study the online version of the VMA problem, i.e., when the VMs are

revealed one by one. We first study lower bounds and then provide online algorithms and prove

upper bounds on their competitive ratio.

4.4.1 Lower Bounds

In this section, we compute lower bounds on the competitive ratio for (·, ·)-VMA, (C, ·)-

VMA, (·,m)-VMA, (C,m)-VMA and (·, 2)-VMA problems. We start with one general con-

struction that is used to obtain lower bounds on the first four cases. Then, we develop special
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constructions for (·,m)-VMA and (·, 2)-VMA that improve the lower bounds for these two prob-

lems.

4.4.1.1 General Construction

We prove lower bounds on the competitive ratio of (·, ·)-VMA, (C, ·)-VMA, (·,m)-VMA

and (C,m)-VMA problems. These lower bounds are shown in the following two theorems. In

Theorem 6, we prove a lower bound on the competitive ratio that is valid in the cases when C is

unbounded and when it is larger or equal than x∗. The case C ≤ x∗ is covered in Theorem 7.

Theorem 6. There exists an instance of problems (·, ·)-VMA, (·,m)-VMA, (C, ·)-VMA and

(C,m)-VMA when C > x∗, such that no online algorithm can guarantee a competitive ratio

smaller than (3/2)2α−1
2α−1 .

Proof : We consider a scenario where, for any online algorithm, an adversary injects VMs

of size εx∗ (ε > 0 is an arbitrarily small constant) to the system until the algorithm starts up a

new PM. Let us assume that the total number of VMs injected is k. According to the adversary’s

behavior, the assignment of the VMs should be that all the VMs except one are allocated to a

single PM while the second PM has only one VM. Depending on what the optimal solution is, we

discuss the following two cases:

Case 1: k ≤ 1
ε

(
α−1

1−21−α

)1/α
. The optimal solution will allocate all the VMs to a single PM.

Consequently, the competitive ratio of the online algorithm satisfies

ρ(k) ≥ lim
ε→0

(
((k − 1)εx∗)α + (εx∗)α + 2b

(kεx∗)α + b

)
.

It can be easily verified that function ρ(k) is monotone decreasing with k. That is, ρ(k) is mini-

mized when k = 1
ε

(
α−1

1−21−α

)1/α
. As a result, we obtain,

ρ(k) ≥ lim
ε→0


((

α−1
1−21−α

)1/α
x∗
)α

+ (εx∗)α + 2b((
α−1

1−21−α

)1/α
x∗
)α

+ b



=

((
α−1

1−21−α

)1/α
x∗
)α

+ 2(x∗)α(α− 1)((
α−1

1−21−α

)1/α
x∗
)α

+ (x∗)α(α− 1)

=
3− 21−α

2− 21−α
=

(3/2)2α − 1

2α − 1
.

Case 2: k > 1
ε

(
α−1

1−21−α

)1/α
. The optimal solution will use two PMs with k/2 PMs assigned to
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each PM. Accordingly, the competitive ratio of the online algorithm satisfies

ρ(k) ≥ lim
ε→0

(
((k − 1)εx∗)α + (εx∗)α + 2b

2
(
kεx∗

2

)α
+ 2b

)
.

Similarly, we observe that ρ(k) is monotone increasing with k. Consequently, the following

inequality applies.

ρ(k) ≥ lim
ε→0


((

α−1
1−21−α

)1/α
x∗
)α

+ (εx∗)α + 2b

2

(
1
2

(
α−1

1−21−α

)1/α
x∗
)α

+ 2b



=

((
α−1

1−21−α

)1/α
x∗
)α

+ 2(x∗)α(α− 1)

2

(
1
2

(
α−1

1−21−α

)1/α
x∗
)α

+ 2(x∗)α(α− 1)

=
3− 21−α

2− 21−α
=

(3/2)2α − 1

2α − 1

Note that it can also happen that C <
(

α−1
1−21−α

)1/α
x∗. In this case, k is smaller than

1
ε

(
α−1

1−21−α

)1/α
. Therefore, the competitive ratio is always larger than (3/2)2α−1

2α−1 , proving the

lower bound. �

Theorem 7. There exists an instance of problems (C, ·)-VMA and (C,m)-VMA when C ≤ x∗

such that no online algorithm can guarantee a competitive ratio smaller than (Cα + 2b)/(b +

max(Cα, 2(C/2)α + b)).

Proof : Similarly to the proof of Theorem 6, we prove the result by considering an adversarial

injection of VMs of size εC. This injection stops when a new PM started up by an online algo-

rithm. We discuss the following two cases:

Case 1: k ≤ 1/ε. In this case, the optimal algorithm will assign all the VMs to a single PM. The

competitive ratio of the online algorithm satisfies

ρ(k) ≥ lim
ε→0

((k − 1)εC)α + (εC)α + 2b

(kεC)α + b

≥ lim
ε→0

(1− ε)αCα + 2b

Cα + b

≥ Cα + 2b

Cα + b
≥ 2− 1

α

The second inequality results from applying k ≤ 1/ε, which is observed from the monotone

decreasing property of function ρ(k). The last inequality comes from computing the limit when ε

goes to 0 and by applying b ≥ Cα(α− 1).

Case 2: k > 1/ε. In this case, the adversary stops injecting VMs as there will be, mandatorily,
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two active PMs, one of them not capable to allocate more VMs and the second one hosting one

single VM. Since all the VMs can not be consolidated to a single PM. The optimal solution would

use also two PMs but evenly balancing the loads among them. The competitive ratio of the online

algorithm satisfies

ρ(k) = lim
ε→0

(
((k − 1)εC)α + (εC)α + 2b

2
(
kεC
2

)α
+ 2b

)

= lim
ε→0

(
Cα + (εC)α + 2b

2
(
C+εC

2

)α
+ 2b

)

=
Cα + 2b

2
(
C
2

)α
+ 2b

.

Hence, combining the results from both cases 1 and 2 we obtain the bound presented in Theorem

7. �

4.4.1.2 Special Constructions for (·,m)-VMA and (·, 2)-VMA

We show first that form PMs there is a lower bound on the competitive ratio that improves the

previous lower bound when α > 4.5. Secondly, we prove a particular lower bound for problem

(·, 2)-VMA, that improves the previous lower bound when α > 3.

Theorem 8. There exists an instance of problem (·,m)-VMA such that no online algorithm can

guarantee a competitive ratio smaller than 3α/(2α+2 + ε) for any ε > 0.

Proof : We prove the result by giving an adversarial arrival of VMs. We evaluate the competi-

tive ratio of any online algorithm ALG with respect to an algorithm OPT that distributes the VMs

among all the PMs “as evenly as possible”. We define a value β > 1 such that ε ≥ (α − 1)/βα

for some value ε > 0. Note that such value β can be defined for any ε > 0. The adversarial arrival

follows. In a first phase, m VMs arrive, each with load βx∗.

Let π be the partition given by ALG. We show first that if π uses less than 3m/4 PMs2 or

some PM is assigned more than 2 VMs there exists another partition that can be obtained from π,

it uses exactly 3m/4 PMs, no PM is assigned more than 2 VMs, and the power consumption is

not worse.

If π uses less than 3m/4 PMs, then there exists another partition π′ that uses exactly 3m/4

PMs with a power consumption that is not worse than P (π). To see why, notice that there are

PMs in π that are assigned more than one VM and that each load is βx∗ > x∗. Then, applying

repeatedly Lemma 1 until 3m/4 PMs are used, where `1 and `2 are the loads of any pair of VMs

assigned to the same PM, a partition π′ such that P (π′) ≤ P (π) can be obtained.

If in π′ some PM is assigned more than 2 VMs, then there exists another partition π′′ where

no PM is assigned more than 2 VMs with a power consumption that is not worse than P (π′). To

2For clarity we omit floors and ceilings in the proof.



4.4 Online Analysis 69

see why, consider the following reassignment procedure. Repeatedly until there is no such PM,

locate a PM si with at least 3 VMs. Then, locate a PM sj with one single VM (which exists by

the pigeonhole principle). Then, move one VM from si to sj . From Lemma 2 each movement

decreases the power consumed. Hence, π′′ is still a partition that uses 3m/4 PMs, each PM has

at most 2 VMs assigned, and P (π′′) ≤ P (π′).

Then, we know that P (π) is not smaller than the power consumption of a partition where

exactly 3m/4 PMs are used and no PM is assigned more than 2 VMs. On the other hand, OPT

would have assigned each VM to a different PM. Thus, using that x∗ = (b/(α − 1))1/α, the

competitive ratio is

ρ ≥ (2βx∗)αm/4 + (βx∗)αm/2 + 3mb/4

m(βx∗)α +mb

≥ (2α−2 + 1/2)βα

βα + (α− 1)
≥ 2α−3 + 1/4,

where the last inequality follows from βα ≥ (α − 1). Finally, observe that 2α−3 + 1/4 ≥
3α/(2α+2 + ε) for α > 1. No more VMs arrive in this case.

Let us consider now the the case where ALG assigns the m initial VMs to more than 3m/4

PMs. Then, after ALG has assigned the first m VMs, a second batch of m/2 VMs arrive, each

VM with load 2βx∗. Let π be the partition output by ALG after this second batch is assigned. If

in π two of the second batch VMs are assigned to the same PM si, by the pigeonhole principle

there is at least one PM sj with at most load βx∗. Then, from Lemma 2, the power consumed is

reduced if one of the new VMs is moved from si to sj . After repeating this process as many times

as possible, a partition π′ is obtained where each of the VMs of the second batch is assigned to a

different PM, and P (π′) ≤ P (π). Since ALG used more than 3m/4 PMs in the first batch, in π′,

there are at least m/4 PMs with load 3βx∗. On the other hand, OPT can distribute all the VMs

in such a way that each PM has a load of 2βx∗. Thus, the bound on the competitive ratio is as

follows.

ρ ≥ m(3βx∗)α/4

m(2βx∗)α +mb
≥ 3α

2α+2 + ε
,

where the last inequality follows from ε ≥ (α− 1)/βα. �

Now, we show a stronger lower bound on the competitive ratio for (·, 2)-VMA problem.

Theorem 9. There exists an instance of problem (·, 2)-VMA such that no online algorithm can

guarantee a competitive ratio smaller than 3α/2α+1.

Proof : We prove the result by showing an adversarial arrival of VM. We evaluate the com-

petitive ratio of any online algorithm ALG with respect to an optimal algorithm OPT that knows

the future VM arrivals. The adversarial arrival follows. In a first phase two VM d1 and d2 arrive,

with loads `(d1) = `(d2) = 6x∗ (Recall from Section 4.2 that x∗ = (b/(α− 1))1/α).
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If ALG assigns both VMs to the same PM, the power consumed will be (12x∗)α+ b, whereas

OPT would assign them to different PMs, with a power consumption of 2((6x∗)α + b). Hence,

the ratio ρ would be

ρ =
(12x∗)α + b

2((6x∗)α + b)
>

12α

2(6α + α− 1)

>
12α

2(6α + 2α)
=

6α

2(3α + 1)
,

where the first inequality follows from α > 1 and the second from α− 1 < 2α for any α > 1. It

is enough to prove that 6α/(2(3α + 1)) ≥ (3/2)α /2, or equivalently 4α ≥ 3α + 1, which is true

for any α > 1. Then, there are no new VM arrivals.

If, otherwise, ALG assigns each VM d1 and d2 to a different PM, then a third VM d3 arrives,

with load `(d3) = 12x∗. Then, ALG must assign it to one of the PMs. Independently of which

PM is used, the power consumption of the final configuration is (18x∗)α + (6x∗)α + 2b. On

its side, OPT assigns d1 and d2 to one PM, and d3 to the other, with a power consumption of

2((12x∗)α + b). Hence, the competitive ratio ρ is

ρ =
(18x∗)α + (6x∗)α + 2b

2((12x∗)α + b)
>

18α + 6α

2(12α + α− 1)

>
18α + 6α

2(12α + 4α)
≥ (3/2)α /2,

where the first inequality follows from α > 1, the second from α − 1 < 4α for any α > 1, and

the third from (9α + 3α)/(6α + 2α) ≥ (3/2)α, what can be checked to be true. Then, there are

no new VM arrivals and the claim follows. �

4.4.2 Upper Bounds

Now, we study upper bounds for (·, ·)-VMA, (C, ·)-VMA, and (·, 2)-VMA problems. We start

giving two online VMA algorithms, that we denote as VMA1 and VMA2 and that can be found in

Algorithm 1 and Algorithm 2. We study algorithm VMA1 for both (·, ·)-VMA and (C, ·)-VMA

problems while VMA2 is only studied for the (·, ·)-VMA case. These algorithms use the load

of the new revealed VM in order to decide the PM where it will be assigned. The behaviour of

both algorithms is similar. In algorithm VMA1, if the load of the revealed VM is strictly larger

than min{x∗, C}/2, the algorithm assigns this VM to a new PM without any other VM already

assigned to it. Otherwise, the algorithm schedules the revealed VM to any loaded PM whose

current load is smaller or equal than min{x∗,C}
2 . Hence, when this new VM is assigned, the load

of this PM remains smaller than min{x∗, C}. If there is no such loaded PM, the revealed VM is

assigned to a new PM. On the other hand, algorithm VMA2 shares the same behaviour but uses a

different threshold. In this case, if the load of the revealed VM is strictly larger than min{x∗, C},
the algorithm assigns this VM to a new PM. If the load is smaller than x∗, VMA2 schedules the
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new VM to the most loaded PM whose load is smaller than x∗.

Note that, since the case under consideration assumes the existence of an unbounded number

of PMs, there exists always one new PM. As mentioned, a detailed description of these algorithms

is shown in Algorithm 1 and Algorithm 2. As before, Aj denotes the set of VMs assigned to PM

sj at a given time.

Algorithm 1: Online algorithm VMA1 for (·, ·)-VMA and (C, ·)-VMA problems.

for each VM di do
if `(di) > min{x∗,C}

2 then
di is assigned to a new PM

else
di is assigned to any loaded PM sj where `(Aj) ≤ min{x∗,C}

2 . If such loaded PM
does not exist, di is assigned to a new PM.

Algorithm 2: Online algorithm VMA2 for the (·, ·)-VMA problem.

for each VM di do
if `(di) ≥ x∗ then

di is assigned to a new PM
else

di is assigned to the PM sj such that `(Ak) ≤ `(Aj) < x∗ for all k. If such loaded
PM does not exist, di is assigned to a new PM.

4.4.2.1 Upper Bounds for the (·, ·)-VMA and (C, ·)-VMA problems

We prove the approximation ratio of Algorithm 1 in the following two theorems.

Theorem 10. There exists an online algorithm for (·, ·)-VMA and (C, ·)-VMA when x∗ < C that

achieves the following competitive ratio:

ρ = 1, if no VM di has load such that `(di) < x∗,

ρ ≤
(
1− 1

α

(
1− 1

2α

)) (
2 + x∗

`(Ds)

)
, otherwise.

Proof : We proceed with the analysis of the competitive ratio of Algorithm 1 shown above.

Let us first consider an optimal algorithm, that is, an algorithm that gives an optimal solution

for any instance. Let us denote by π∗ the optimal solution obtained by the optimal algorithm,

and Ai the load assigned to PM si in that solution, for a particular instance of VMA problem.

Furthermore, load Ai is decomposed in di1 , di2 , . . . , diki , where each dij is a VM that π∗ assigns

to si. Using simple algebra, it holds:

f(`(Ai)) =
f(`(Ai))

`(Ai)
(`(di1) + `(di2) + · · ·+ `(diki )).
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It is possible now to split the set Ai in two sets, one with those VMs assigned to si whose load

is strictly smaller than x∗ and a second set that contains those VMs assigned to si whose load is

bigger than x∗. In terms of notation, we say that Ai is split in Bi and Si (where B stands for Big

loads and S stands for Small loads). Therefore, it also holds:

f(`(Ai)) =
∑
dij∈Bi

f(`(Ai))

`(Ai)
`(dij ) +

∑
dij∈Si

f(`(Ai))

`(Ai)
`(dij ).

On the other hand, by definition of x∗, it holds that:

f(`(Ai))/`(Ai) ≥ f(x∗)/x∗

for all i (indeed, for any load). Moreover, if a PM has been assigned with a load `(dij ) bigger

than x∗, it also holds that

f(`(Ai))/`(Ai) ≥ f(`(dij ))/`(dij ).

Hence, we obtain the following inequality:

f(`(Ai)) ≥
∑
dij∈Bi

f(`(dij )) +
∑
dij∈Si

f(x∗)

x∗
`(dij ).

In order to lower bound the power consumption of the solution π∗, we plug the above inequal-

ity into the corresponding equation:

P (π∗) =
∑
Ai 6=∅

f(`(Ai))

≥
∑
Ai 6=∅

∑
dij∈Bi

f(`(dij )) +
f(x∗)

x∗

∑
Ai 6=∅

∑
dij∈Si

`(dij ),

or, equivalently expressed in more compact notation:

P (π∗) ≥
∑

di:`(di)≥x∗
f(`(di)) +

f(x∗)

x∗

∑
di:`(di)<x∗

`(di). (4.6)

Consider now Algorithm 1. Let us denote by π a solution that Algorithm 1 gives for a par-

ticular instance. Also, let us denote by Âi the load assigned by Algorithm 1 to PM si. Note that

due to the design of the algorithm, after the last VM has been assigned, either there is only one

loaded PM whose current load is smaller than x∗/2, or every loaded PM has a load at least x∗/2.

We study these two cases separately.

Case 1: `(Âi) ≥ x∗/2 for all i. In this case, in a solution provided by π there are PMs with two

types of load: those that are loaded with one VM whose load is no smaller than x∗, and those that
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are loaded with VMs whose load is strictly smaller than x∗, nonetheless, their total load is bigger

than x∗/2. Note that due to the design of the algorithm, none of the PMs in the second group has

a load bigger than x∗. Let us denote by B the set of VMs with load at least x∗, and Ds the set of

VMs with load less than x∗. Therefore, it holds:

P (π) =
∑
d∈B

f(`(d)) +
∑

x∗
2
≤`(Âi)≤x∗

f(`(Âi))

≤
∑
d∈B

f(`(d)) +
f(x

∗

2 )
x∗

2

`(Ds).

Computing the ratio ρ between P (π) and P (π∗), we obtain the following inequality:

ρ ≤

∑
d∈B f(`(d)) +

f(x
∗
2
)

x∗
2

`(Ds)∑
d∈B f(`(d)) + f(x∗)

x∗ `(Ds)

≤

f(x
∗
2
)

x∗
2

`(Ds)

f(x∗)
x∗ `(Ds)

= 2
f(x

∗

2 )

f(x∗)
= 2

(
1− 1

α

(
1− 1

2α

))
.

Case 2: there exists si such that `(Âi) < x∗/2. In this case, π gives solutions with three types

of loaded PMs: those that are loaded with one VM whose load is bigger than x∗, those that are

loaded with VMs whose load is strictly smaller than x∗, but which total load is at least x∗/2,

and one PM whose total load is is strictly smaller than x∗/2. Let us denote such a PM by s′.

Therefore, it holds:

P (π) =
∑
d∈B

f(`(d)) +
∑

x∗
2
≤`(Âi)≤x∗

f(`(Âi)) + f(`(Âs′))

≤
∑
d∈B

f(`(d)) +
f(x

∗

2 )
x∗

2

(
`(Ds)− `(Âs′)

)
+ f(`(Âs′))

=
∑
d∈B

f(`(d)) +
f(x

∗

2 )
x∗

2

(
`(Ds)− `(Âs′)

)
+ `(Âs′)

α + b.

Let us denote the latter expression by Π(π). Computing the ratio ρ between P (π) and P (π∗), we
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obtain the following inequality:

ρ ≤ Π(π)∑
d∈B f(`(d)) + f(x∗)

x∗ `(Ds)

≤ 2

(
1− 1

α

(
1− 1

2α

))
+
`(Âs′)

α − `(Âs′)
f(x
∗
2
)

x∗
2

+ b

f(x∗)
x∗ `(Ds)

≤ 2

(
1− 1

α

(
1− 1

2α

))
+
`(Âs′)

α + b
f(x∗)
x∗ `(Ds)

≤ 2

(
1− 1

α

(
1− 1

2α

))
+

(x
∗

2 )α + b
f(x∗)
x∗ `(Ds)

=

(
1− 1

α

(
1− 1

2α

))(
2 +

x∗

`(Ds)

)
.

Since x∗/`(Ds) is always positive, the competitive ratio of Algorithm 1 is equal to 2α−1 +

x∗/`(Ds). Observe that, when no VM d has load `(d) < x∗, i,e., S = ∅, P (π) and P (π∗)

are equal. Hence, the competitive ratio is 1. �

Theorem 11. There exists an online algorithm for (C, ·)-VMA when x∗ ≥ C that achieves com-

petitive ratio ρ ≤ 2b
C

(
1 + 1

(α−1)2α

)(
2 + C

`(D)

)
.

Proof : We proceed with the analysis of the competitive ratio of Algorithm 1 in the case when

x∗ ≥ C. The analysis uses the same technique used in the proof for the previous theorem. Hence,

we just show the difference.

On the one hand, when x∗ ≥ C, it holds that f(`(Ai))/`(Ai) ≥ f(C)/C due to the fact

that f(x)/x is monotone decreasing in interval (0, C]. It is also obvious that all the PMs will be

loaded no more C. As a result, the optimal power consumption for (C, ·)-VMA can be bounded

by

P (π∗) ≥ f(C)

C
`(D).

On the other hand, the solution given by Algorithm 1 can also be upper bounded. We consider

the following two cases.

Case 1: `(Âi) ≥ C/2 for all i. In this case, every PM will be loaded between C/2 and C.

Consequently,

P (π) =
∑

C
2
≤`(Âi)≤C

f(`(Âi)) ≤
f(C2 )
C
2

`(D).

The competitive ratio ρ then satisfies

ρ ≤

f(C
2
)

C
2

`(D)

f(C)
C `(D)

= 2
f(C2 )

f(C)
≤ 2b

C

(
1 +

1

(α− 1)2α

)
.
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Case 2: there exists si such that `(Âi) < C/2. In this case, it holds:

P (π) =
∑

C
2
≤`(Âi)≤C

f(`(Âi)) + f(`(Âs′))

≤
f(C2 )
C
2

( ∑
di:`(di)≤C

`(di)− `(Âs′)
)

+ f(`(Âs′))

=
f(C2 )
C
2

(
`(D)− `(Âs′)

)
+ `(Âs′)

α + b.

The competitive ratio ρ then satisfies

ρ ≤ P (π)
f(C)
C `(D)

≤ 2b

C

(
1 +

1

(α− 1)2α

)
+

+
`(Âs′)

α − `(Âs′)
f(C

2
)

C
2

+ b

f(C)
C `(D)

≤ 2b

C

(
1 +

1

(α− 1)2α

)
+
`(Âs′)

α + b
f(C)
C `(D)

≤ 2b

C

(
1 +

1

(α− 1)2α

)
+

(C2 )α + b
f(C)
C `(D)

=
2b

C

(
1 +

1

(α− 1)2α

)(
2 +

C

`(D)

)
.

�

4.4.2.2 Approximation Ratio for Algorithm VMA2

We prove the approximation ratio of Algorithm 2 in the following theorem.

Theorem 12. For a system with unbounded number of PMs, Algorithm 2 achieves a competitive

ratio of 1 if no VM di has `(di) < x∗, and of 2α−1 + x∗
/∑

di:`(di)<x∗
`(di), otherwise.

Proof : Maintaining the same notation we used for proving Theorem 10, let us denote by π a

solution that Algorithm 2 gives for a particular instance and by Âi the load assigned by Algorithm

2 to PM si. Note that due to the design of the algorithm, after the last VM has been assigned,

either there is only one loaded PM whose current load is smaller than x∗, or every loaded PM has

a load bigger than x∗. We study these two cases separately.

Case 1: `(Âi) ≥ x∗ for all i. In this case, in a solution provided by π there are PMs with two

types of load: those that are loaded with one VM whose load is no smaller than x∗, and those that

are loaded with VMs whose load is strictly smaller than x∗, nonetheless, their total load is bigger

than x∗. Note that due to the design of the algorithm, none of the PMs in the second group has a

load bigger than 2x∗. Let us denote by B the set of demands with load at least x∗, and S the set
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of demands with load less than x∗. Therefore, it holds:

P (π) =
∑
d∈B

f(`(d)) +
∑

x∗≤`(Âi)≤2x∗
f(`(Âi))

≤
∑
d∈B

f(`(d)) +
f(2x∗)

2x∗

∑
`(d∈S

`(d).

Computing the ratio ρ between P (π) and the expression for P (π∗) from Eq. (4.6), we obtain

the following inequality:

ρ ≤
∑

d∈B f(`(d)) + f(2x∗)
2x∗

∑
d∈S `(d)∑

d∈B f(`(d)) + f(x∗)
x∗

∑
d∈S `(d)

≤
f(2x∗)
2x∗

∑
d∈S `(d)

f(x∗)
x∗

∑
d∈S `(d)

≤ 2α−1. (4.7)

Case 2: there exists si such that `(Âi) < x∗. In this case, π gives solutions with three types

of loaded PMs: those that are loaded with one VM whose load is bigger than x∗, those that are

loaded with VMs whose load is strictly smaller than x∗, but which total load is bigger than x∗, and

one PM whose total load is is strictly smaller than x∗. Let us denote such a PM by s′. Therefore,

it holds:

P (π) =
∑
d∈B

f(`(d)) +
∑

x∗≤`(Âi)≤2x∗
f(`(Âi)) + f(`(Âs′))

≤
∑
d∈B

f(`(d)) +
f(2x∗)

2x∗

(∑
d∈S

`(d)− Âs′
)

+ f(`(Âs′))

=
∑
d∈B

f(`(d)) +
f(2x∗)

2x∗

(∑
d∈S

`(d)− Âs′
)

+ `(Âs′)
α + b.

Let us denote the latter expression by Π(π). Computing the ratio ρ between P (π) and P (π∗),

we obtain the following inequality:

ρ ≤ Π(π)∑
d∈B f(`(d)) + f(x∗)

x∗
∑

d∈S `(d)
(4.8)

≤ 2α−1 +
`(Âs′)

α − Âs′ f(2x
∗)

2x∗ + b
f(x∗)
x∗

∑
d∈S `(d)

≤ 2α−1 +
`(Âs′)

α + b
f(x∗)
x∗

∑
d∈S `(d)

≤ 2α−1 +
(x∗)α + b

f(x∗)
x∗

∑
d∈S `(d)

= 2α−1 +
x∗∑

d∈S `(d)
.
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Since x∗/
∑

d∈S `(d) is always positive, the competitive ratio of Algorithm 1 is equal to

2α−1 + x∗/
∑

d∈S `(d). Observe that, when no VM d has load `(d) < x∗, i,e., S = ∅, equations

(4.7) and (4.8) become P (π)
P (π∗) ≤ 1. �

4.4.2.3 Upper Bounds for (·, 2)-VMA problem

We now present an algorithm (detailed in Algorithm 3) for (·, 2)-VMA problem and show an

upper bound on its competitive ratio. A1 and A2 are the sets of VMs assigned to PMs s1 and s2,

respectively, at any given time.

Algorithm 3: Online algorithm for (·, 2)-VMA.

for each VM di do
if `(di) + `(A1) ≤ (b/(2α − 2))1/α or `(A1) ≤ `(A2) then

di is assigned to s1;
else

di is assigned to s2;

We prove the approximation ratio of Algorithm 3 in the following theorem.

Theorem 13. There exists an online algorithm for (·, 2)-VMA that achieves the following com-

petitive ratios.

ρ = 1, for `(D) ≤
(

b

2α − 2

)1/α

,

ρ ≤ max

{
2,

(
3

2

)α−1}
, for `(D) >

(
b

2α − 2

)1/α

.

Proof : Consider Algorithm 3 shown above. If `(D) ≤ (b/(2α − 2))1/α, then the competitive

ratio is 1 as we show. Algorithm 3 assigns all the VMs to PM s1. On the other hand, the optimal

offline algorithm also assigns all the VMs to one PM. To prove it, it is enough to show that

`(D)α+b < `(A1)
α+`(A2)

α+2b. Using that `(A1)
α+`(A2)

α > 2 (`(D)/2)α and manipulating,

it is enough to prove `(D) < 2 (b/(2α − 2))1/α. This is true for `(D) ≤ (b/(2α − 2))1/α.

We consider now the case (b/(2α − 2))1/α < `(D) < 2 (b/(2α − 2))1/α. Within this range,

for the optimal algorithm is still better to assign all VMs to one PM, as shown. Then, the compet-

itive ratio ρ is

ρ =
`(A1)

α + `(A2)
α + 2b

`(D)α + b
≤ `(D)α + 2b

`(D)α + b
< 2. (4.9)

Consider any given step after `(D) ≥ 2 (b/(2α − 2))1/α. Within this range, the optimal

algorithm may assign the VMs to one or both PMs. If the optimal algorithm assigns to one PM,



78 Efficient Assignment of Virtual Machines to Physical Machines

Inequality 4.9 applies. Otherwise, the competitive ratio ρ is

ρ =
`(A1)

α + `(A2)
α + 2b

2(`(D)/2)α + 2b
≤ 2α−1

`(A1)
α + `(A2)

α

`(D)α

= 2α−1
`(A1)

α/`(A2)
α + 1

(`(A1)/`(A2) + 1)α
.

Then, in order to obtain a ratio at most xα/2, where x will be set later, it is enough to guarantee

2α−1
`(A1)

α/`(A2)
α + 1

(`(A1)/`(A2) + 1)α
≤ xα

2

(`(A1)/`(A2))
α + 1

(`(A1)/`(A2) + 1)α
≤
(x

2

)α
.

Without loss of generality, assume `(A1) ≤ `(A2). This implies that (`(A1)/`(A2))
α ≤

`(A1)/`(A2). Then, it is enough to have

`(A1)/`(A2) + 1

(`(A1)/`(A2) + 1)α
≤
(x

2

)α
.

Let us now define `(A1) + ` = `(A2) for some ` ≥ 0. Manipulating and replacing, it is enough

to show

`

`(A1)
≤ 2− (2/x)α/(α−1)

(2/x)α/(α−1) − 1
. (4.10)

If Inequality 4.10 holds the theorem is proved. Otherwise, the following claim is needed.

Claim 1. If `(D) ≥ 2 (b/(2α − 2))1/α, then there must exist a VM di in D such that `(di) ≥
|`(A2)− `(A1)|.

Proof : If `(A2) = `(A1) the claim follows trivially. Assume that `(A2) 6= `(A1). Consider

any given time when `(D) ≥ 2 (b/(2α − 2))1/α. For the sake of contradiction, assume that for

all di ∈ D it is `(di) < |`(A2)− `(A1)|. Let d1, d2, . . . , dr be the order in which the VMs were

revealed to Algorithm 3. And let the respective sets of VMs be calledDi = {dj |j ∈ [1, i]}, that is

Dr = D. Given that `(D) ≥ 2 (b/(2α − 2))1/α > (b/(2α − 2))1/α, the VM dr was assigned to

the PM with smaller load. Then, either `(dr) ≥ |`(A2)− `(A1)| which would be a contradiction,

or if `(dr) < |`(A2) − `(A1)| the PM with the smaller load before and after assigning dr is the

same. The argument can be repeated iteratively backwards for each dr−1, dr−2, etc. until, for

some j ∈ [1, r), either it is `(dj) ≥ |`(A2) − `(A1)| reaching a contradiction, or the total load

is `(Dj) < (b/(2α − 2))1/α. If the latter is the case, we know that for i ∈ [1, j] every di was

assigned to s1. Recall that for i ∈ (j, r] each di was assigned to the same PM. And, given that

dj+1 is the first VM for which the total load is at least (b/(2α − 2))1/α, that PM is s2. But then,

we have `(A2) < `(A1) < (b/(2α − 2))1/α, which is a contradiction with the assumption that

`(D) ≥ 2 (b/(2α − 2))1/α. �
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Using Claim 1 we know that there exists a di in the input such that

`(di) ≥ ` > `(A1)
2− (2/x)α/(α−1)

(2/x)α/(α−1) − 1
.

From the latter, it can be seen that if x ≥ 2(3/4)
α−1
α , then we have that ` > 2`(A1). Then, the

competitive ratio ρ is

ρ =
`(A1)

α + (`(A1) + `)α + 2b

(2`(A1))α + `α + 2b

≤ `(A1)
α + (`(A1) + `)α

(2`(A1))α + `α
.

Using calculus, this ratio is maximized for ` = 2`(A1) for ` ≥ 2`(A1). Then, we have ρ ≤
(1 + 3α)/(2 · 2α). Then, in order to obtain a ratio at most xα/2, it is enough to guarantee

(1 + 3α)/(2 · 2α) ≤ xα/2 which yields x ≥ ((1 + 3α)/2α)1/α.

Given that, for any α ≥ 1, it holds:

2(3/4)1−1/α ≥ ((1 + 3α)/2α)1/α .

Then, the competitive ratio is ρ ≤ (2(3/4)1−1/α)α/2 = (3/2)α−1. �

4.5 Experimental Evaluation

In this section we experimentally evaluate the performance of two of the online algorithms

proposed in Section 4.4.2, namely VMA1 and VMA2, and compare them to other state-of-the-art

online placement algorithms.

Both VMA1 and VMA2 have been extended to handle a bounded number of PMs when nec-

essary. This is achieved by assigning the incoming task to the least loaded machine when no

more new PMs are available. Similarly, VMA2 has also been extended to deal with the bounded

capacity case, when required, by using a threshold of min{x∗, C} and checking whether a new

load fits into the targeted PM. In case a new load does not fit, it is assigned to the first possible

PM with available resources. Although the competitive ratios of VMA2 are worse than the ones

from VMA1, it exhibits a better behavior in simulation.

4.5.1 Experimental Setup

The performance of both VMA1 and VMA2 is first compared with a lower bound, denoted

LBVMA, that is obtained as follows. The input VMs are sorted in non-increasing order of their

loads. Then, using this order, as many VMs as possible with load at least x∗ are assigned to

different PMs. Let L be total load of the VMs still unassigned. If there are bL/x∗c still unused
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PMs they will be used. Otherwise all PMs will be used. Finally, the load L is assigned among all

used PMs as if it could be infinitely divided (i.e., as a fluid), using a water-filling algorithm [27].

We evaluate both (·,m)-VMA and (C,m)-VMA problems, therefore, in the (C,m)-VMA

case a VM can only be assigned to a PM if the latter has sufficient capacity to host it. We test both

algorithms VMA1 and VMA2 and also compare them with the following algorithms proposed in

the literature:

• Random Fit (RF) [74]: It chooses a PM for each VM uniformly at random among the

PM. If the chosen PM cannot allocate the load of the VM, the process is repeated, until the

VM is assigned to a PM.

• Next Fit (NF) [74]: Starting initially at the first PM, each new VM is assigned to the

next PM after the latest PM to which a VM was assigned (in a cyclic fashion) and with

sufficient capacity to host it.

• Least Full First (LFF) [74]: Each new VM is assigned to (one of) the least loaded

PM(s) in the system with enough capacity to host it.

• Striping (S) [63]: Each new VM is assigned to (one of) the PM(s) with the smallest

number of VMs assigned and with enough capacity to host it.

• Watts per Core (WC) [63]: Assigns each new VM to the PM whose power would

suffer the smallest increase and with enough capacity to host it.

• First Fit (FF) [74]: Starting initially at the first PM, each new VM is placed in the first

PM that can host it.

• Round Robin (RR) [63]: Like FF but, after the first VM is assigned, the search starts

from the latest PM in which a VM was allocated.

• Packing (P) [63]: Each new VM is assigned to (one of) the PM(s) with the largest

number of VMs assigned provided that the PM can host it.

• Most Full First (MFF) [74]: Each new VM is assigned to the most loaded PM in

which it fits.

Observe that, given its nature, First Fit, Round Robin, Packing and Most Loaded First can

be only considered for the (C,m)-VMA problem. If PMs had infinite capacity, these algorithms

would place all VMs in only one PM. The remaining algorithms are evaluated for both (·,m)-

VMA and (C,m)-VMA.

The behavior of the aforementioned algorithms is evaluated by inputting the two sets of traces,

synthetic and real, shown in Figure 4.1. We call them Trace A and Trace B, respectively. Trace

A is generated by randomly choosing the load of each VM following a power-law distribution

with exponential cutoff, which has been chosen so 100% is the maximum task load of a VM.
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(a) Trace A (synthetic traces) (b) Trace B (Google traces)

Figure 4.1: VM load distributions used in the evaluations.

We randomly select 10000 integer loads using this distribution. This leads us to the VM load

distribution shown in Figure 4.1(a).

Trace B is obtained from public Google traces [57]. We extract all the tasks from these traces,

assuming that each task is an independent VM. The VMs (tasks) are sorted by the time at which

they join the system. The task load of a VM is the maximum CPU load of the task. The trace

then contains 124885 VMs with loads varying between 0.31% and 12.5%. The resulting VM load

distribution can be seen in Figure 4.1(b). The load values of the VMs for both distributions are

given in percentage in order to scale them up depending on the maximum capacity of a PM in the

(C,m)-VMA case or to an appropriate value in the (·,m)-VMA case.

Each execution of the algorithms is run with a fixed number of PMs. This number of PMs

increases from 1 to the number of VMs in the trace being used. This allows us to see how the

power consumption and how the algorithms behavior evolve when the number of available PMs

in the system varies. Finally, in order to evaluate both (·,m)-VMA and (C,m)-VMA, we emulate

different PMs by determining their α, b, µ and x∗ parameters as well as the PM maximum capacity

or the maximum task load when it corresponds. Then we run the proposed algorithms for each

one of these emulated PMs and compare the influence of the different values for these parameters

on the final results.

4.5.2 Experimental Results for (·,m)-VMA

We first evaluate (·,m)-VMA. The first step is to define the set of PMs that we are go-

ing to use to evaluate it. To do so, we fix the values of α, b and x∗ and compute µ de-

pending on the previous parameters. In particular, we used α = {1.5, 2, 2.5, 3} and x∗ =

{10, 30, 50, 75, 100, 130, 150, 300, 500, 750, 1000} (given in (Giga)Cycles per Second (GCPS)

following the conclusions from Chapter 3). The values of b are determined by interpolation of

the baseline costs of Nemesis, Survivor and Erdos, whose values for b (∼ 85 W, 67 W and

215 W) are known from the experiments performed in Chapter 3. As we mentioned, the values
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Table 4.3: Simulation parameters for a set of machines for the (·,m)-VMA case.

(·, ·)-VMA case
b x∗ [GCPS] α = 1.5 α = 2 α = 2.5 α = 3

73.05 10 1.46E-13 7.31E-19 4.87E-24 3.65E-29
92.15 30 3.55E-14 1.02E-19 3.94E-25 1.71E-30

111.25 50 1.99E-14 4.45E-20 1.33E-25 4.45E-31
135.125 75 1.32E-14 2.40E-20 5.85E-26 1.60E-31

159 100 1.01E-14 1.59E-20 3.35E-26 7.95E-32
187.65 130 8.01E-15 1.11E-20 2.05E-26 4.27E-32
206.75 150 7.12E-15 9.19E-21 1.58E-26 3.06E-32

350 300 4.26E-15 3.89E-21 4.73E-27 6.48E-33
541 500 3.06E-15 2.16E-21 2.04E-27 2.16E-33

779.75 750 2.40E-15 1.39E-21 1.07E-27 9.24E-34
1018.5 1000 2.04E-15 1.02E-21 6.79E-28 5.09E-34

of b, α and x∗ determine the value of µ. These combination of parameters results in 44 different

instances of PMs which are shown in Table 4.3.

Additionally, taking advantage of the fact that the task loads from Trace A and B are given

in percentage, and in order to study the importance of the x∗ to task load ratio, we define the

maximum VM load λ as the maximum load that a VM arriving to the system can have. Therefore,

the load of the VMs arriving to the system will be the product of the task load (in percentage) and

λ. λ will take the following values: 10, 30 and 100 GCPS.

We study three different scenarios. In the first one we study the effect of α for different

values of λ and x∗ when using VMA1, VMA2, and the lower bound LBVMA. Second and third

scenarios are devoted to compare our proposed algorithms with the state-of-the-art algorithms,

always keeping LBVMA as a reference. In the second scenario we study the relevance of λ while

keeping α and x∗ constant. Finally, in the third one, we study the effect of having different values

of x∗ while λ and α remain unaltered.

Scenario 1 compares the power consumed by partitions obtained with VMA1 or VMA2 and

for Trace A and Trace B. We compare these results to the ones achieved by LBVMA, that lower

bounds the optimal power consumption. The results obtained are presented as graphs in which

the power consumed is represented as a function of the number of PMs used.

Figure 4.2 and Figure 4.3 show the results for Trace A and Trace B, for 2 different values of

x∗, 30 and 300 GCPS, and 2 different values of λ, 10 and 100 GCPS. We can clearly see how

the power consumption is smaller for larger values of α once the optimal number of used PMs is

reached, mainly conditioned by how µ decreases as α increases (See Table 4.3. Also, as it can be

observed, there is no qualitative difference in the solutions when α varies for a given configuration

(Similar results are obtained with other values of x∗ and maximum task load).

Regarding the performance of the algorithms, we can see how the power consumed by the

partitions found with VMA2 is lower, in all cases, than the ones obtained by VMA1 and is always
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(a) 10 GCPS, x∗ = 30 GCPS (b) 10 GCPS, x∗ = 300 GCPS

(c) 100 GCPS, x∗ = 30 GCPS (d) 100 GCPS, x∗ = 300 GCPS

Figure 4.2: (·,m)-VMA: Comparing the power consumed by VMA1 and VMA2 with the lower
bound LBVMA for x∗ = {30, 300} GCPS, α = {1.5, 2.5} and λ = {10, 100} GCPS for Trace
A (Synthetic traces).

closer to the lower bound obtained by LBVMA. This shows that the performance of VMA2 is close

to the optimal for (·,m)-VMA. We can see how, in general, VMA1 is able to match the results

of VMA2 when the number of PMs is relatively low. However, due to the threshold imposed on

the load of the PMs for each algorithm, VMA2 is able to pack the load in less PMs. We only

find an exception in Figure 4.2(c), when x∗/λ < 1/3 and we are using synthetic traces. In

this case VMA2 exhibits a behavior relatively similar to VMA1, not being able to hold to its best

power consumption and reducing the quality of the solution when the number of PMs increases.

However, this flaw is not replicated when using Trace B, due to the smaller amount of big loads

in comparison with Trace B.

Scenario 2 compares the performance of LBVMA, VMA1 and VMA2 with the other assignment

algorithms proposed in the literature. Here, the values of x∗ and α are fixed to 30 GCPS and 2,

respectively, while the value of λ varies. In particular we use λ = {10, 30, 100} GCPS. Figures
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(a) 10 GCPS, x∗ = 30 GCPS (b) 10 GCPS, x∗ = 300 GCPS

(c) 100 GCPS, x∗ = 30 GCPS (d) 100 GCPS, x∗ = 300 GCPS

Figure 4.3: (·,m)-VMA: Comparing the power consumed by VMA1 and VMA2 with the lower
bound LBVMA for x∗ = {30, 300} GCPS, α = {1.5, 2.5} and λ = {10, 100} GCPS for Trace
B (Google traces).

4.4 and 4.5 present the results for Trace A and Trace B3.

We can easily see, in general, 3 different trends in Figures 4.4 and 4.5. The first trend would

include LBVMA, VMA1 and VMA2; then we have a second one including Striping, RF, NF and

LLF; and, finally, in some sort of no-man’s land, we have WC. These trends have their origin

in power awareness. While LBVMA, VMA1, VMA2 and WC are power aware, the rest are not.

According to Figures 4.4 and 4.5, power aware algorithms outperform the non power aware ones.

It is interesting to see how WC reduces its power consumption (for Trace A) as the ratio x∗/λ

decreases and even performs better than VMA1 for λ = 100 GCPS. This does not happen, though,

for Trace B due to the smaller average task load, that gives advantage to VMA1 and VMA2. With

Trace B, due to its nature, WC obtains partitions that use less PMs and hence, because of the

3For the sake of clarity, we do not show the power consumption resulting of using only one (or a few) machines
and center the figure into more relevant cases
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(a) λ = 10 GCPS

(b) λ = 30 GCPS

(c) λ = 100 GCPS

Figure 4.4: (·,m)-VMA: Comparing the power consumed by the different assignment algorithms
for x∗ = 30 GCPS, α = 2 and λ = {10, 30, 100} GCPS for Trace A (Synthetic traces).
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(a) λ = 10 GCPS

(b) λ = 30 GCPS

(c) λ = 100 GCPS

Figure 4.5: (·,m)-VMA: Comparing the power consumed by the different assignment algorithms
for x∗ = 30 GCPS, α = 2 and λ = {10, 30, 100} GCPS for Trace B (Google traces).
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superlinear dependence of the power consumption on the load, have higher power consumptions.

Similarly, we can observe that the results in Figure 4.4(c) are tighter. This is a consequence,

again, of the low value of x∗/λ, resulting in many PMs not allocating more than 1 or 2 VMs. In

fact, steady state for VMA1, VMA2, WC and even LBVMA is reached between the 4000 and the

5000 PMs while in the previous cases was reached before the 2000 PMs. Again, this behavior is

not replicated with Trace B due to its lower average task load.

Note also that the non power aware algorithms pay a higher power bill due to the use of a

larger amount of PMs (in general) with a smaller amount of load per PM, resulting in a very

inefficient usage of the available resources. This behavior is consistent for both Traces A and B.

Finally, observe how the larger the ratio x∗/λ, the larger the gap between our proposed algo-

rithms, VMA1 and VMA2, and the other ones. This would be the case when we have tasks that

consume a very small amount of CPU in the system.

Let us now analyze the results of the last scenario. Here we keep λ = 30 GCPS and α = 2

constant while we vary the value of x∗. These results are shown in Figure 4.6 for Trace A and in

Figure 4.7 for Trace B.

The results are similar for both traces. We can see how for the smallest value, x∗ = 10 GCPS

(x∗/λ = 1/3) all algorithms achieve a similar result. As the ratio x∗/λ increases, the results

obtained by VMA1 and VMA2 become better than the ones achieved by WC, LLF, NF, Striping,

and RF, that increase with x∗ and, therefore, lead to a larger power consumption. These results

are in line with the results from Scenario 1 and are is motivated by the fact that the state-of-the-art

algorithms tend to use a large amount of PMs keeping its average load low and, hence, paying a

high price because of the b parameter. This, however, is not the case of WC, which, on the other

hand, obtains a more packed partition, loading PMs beyond x∗ and paying an extra cost due to

the superlinearity of the power consumption with respect to the load.

4.5.3 Experimental Results for (C,m)-VMA

As we did with (·,m)-VMA in Subsection 4.5.2, we start by defining the set of PMs we are

going to work with. While for (·,m)-VMA we assumed that PMs had infinite capacity, in (C,m)-

VMA the PMs capacity is bounded. We denote the capacity as C. We define 3 sets of instances

that we name after 3 real PMs from our laboratory, Nemesis, Euler, and Erdos. We use, as

a reference, their maximum capacity, 11.2, 41.6, and 153.6 GCPS; and approximated idle cost b,

80, 100, and 200 Watts.

Jointly with C and b, we need a value of α and x∗ to compute each value of µ. We will

use α = {1.5, 2, 2.5, 3}, and x∗ = {0.5, 0.65, 0.75, 0.9, 1, 1.1} · C. We can now compute the

value of µ for each combination of these 4 parameters fully defining, then, our set of PMs. The

combination of values for each one of these PM instances can be found in Tables 4.5, 4.6 and

4.4. We base the performance analysis of our proposed algorithms and the other state of the art

assignment algorithms on these sets of PM instances.

Like for the (·,m)-VMA case, we also consider three different scenarios. In the first one we
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(a) x∗ = 10 GCPS (b) x∗ = 100 GCPS

(c) x∗ = 30 GCPS (d) x∗ = 300 GCPS

(e) x∗ = 50 GCPS (f) x∗ = 500 GCPS

Figure 4.6: (·,m)-VMA: Comparing the power consumed by the different assignment algorithms
for λ = 30 GCPS, α = 2 and increasing values of x∗ for Trace A (Synthetic traces).
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(a) x∗ = 10 GCPS (b) x∗ = 100 GCPS

(c) x∗ = 30 GCPS (d) x∗ = 300 GCPS

(e) x∗ = 50 GCPS (f) x∗ = 500 GCPS

Figure 4.7: (·,m)-VMA: Comparing the power consumed by the different assignment algorithms
for λ = 30 GCPS, α = 2 and increasing values of x∗ for Trace B (Google traces).
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Table 4.4: Simulation parameters for a set of machines with b and C similar to Erdos.

Erdos-like Family Max. Capacity C = 153.6 GCPS
b = 200 W

x∗ [GCPS] x∗[%C] α = 1.5 α = 2 α = 2.5 α = 3
76.8 50 1.88E-14 3.39E-20 8.16E-26 2.21E-31

99.84 65 1.27E-14 2.01E-20 4.23E-26 1.00E-31
115.2 75 1.02E-14 1.51E-20 2.96E-26 6.54E-32

138.24 90 7.78E-15 1.05E-20 1.88E-26 3.79E-32
153.6 100 6.64E-15 8.48E-21 1.44E-26 2.76E-32

168.96 110 5.76E-15 7.01E-21 1.14E-26 2.07E-32

Table 4.5: Simulation parameters for a set of machines with b and C similar to Nemesis.

Nemesis-like Family Max. Capacity C = 11.2 GCPS
b = 80 W

x∗ [GCPS] x∗[%C] α = 1.5 α = 2 α = 2.5 α = 3
5.6 50 3.82E-13 2.55E-18 2.27E-23 2.28E-28
7.28 65 2.58E-13 1.51E-18 1.18E-23 1.04E-28
8.4 75 2.08E-13 1.13E-18 8.25E-24 6.75E-29

10.08 90 1.58E-13 7.87E-19 5.23E-24 3.91E-29
11.2 100 1.35E-13 6.38E-19 4.02E-24 2.85E-29

12.32 110 1.17E-13 5.27E-19 3.17E-24 2.14E-29

Table 4.6: Simulation parameters for a set of machines with b and C similar to Euler.

Euler-like Family Max. Capacity C = 41.6 GCPS

b = 80 W
x∗ [GCPS] x∗[%C] α = 1.5 α = 2 α = 2.5 α = 3

20.8 50 5.33E-14 1.85E-19 8.55E-25 4.44E-30
27.04 65 3.60E-14 1.09E-19 4.44E-25 2.02E-30
31.2 75 2.90E-14 8.22E-20 3.10E-25 1.32E-30
37.44 90 2.21E-14 5.71E-20 1.97E-25 7.62E-31
41.6 100 1.89E-14 4.62E-20 1.51E-25 5.56E-31
45.76 110 1.63E-14 3.82E-20 1.19E-25 4.17E-31

b = 100 W
20.8 50 6.67E-14 2.31E-19 1.07E-24 5.56E-30
27.04 65 4.50E-14 1.37E-19 5.54E-25 2.53E-30
31.2 75 3.63E-14 1.03E-19 3.88E-25 1.65E-30
37.44 90 2.76E-14 7.13E-20 2.46E-25 9.53E-31
41.6 100 2.36E-14 5.78E-20 1.89E-25 6.95E-31
45.76 110 2.04E-14 4.78E-20 1.49E-25 5.22E-31

b = 120 W
20.8 50 8.00E-14 2.77E-19 1.28E-24 6.67E-30
27.04 65 5.40E-14 1.64E-19 6.65E-25 3.03E-30
31.2 75 4.35E-14 1.23E-19 4.65E-25 1.98E-30
37.44 90 3.31E-14 8.56E-20 2.95E-25 1.14E-30
41.6 100 2.83E-14 6.93E-20 2.27E-25 8.33E-31
45.76 110 2.45E-14 5.73E-20 1.79E-25 6.26E-31
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(a) C = 153.6 GCPS, x∗ = 0.65 · C (b) C = 153.6 GCPS, x∗ = 0.9 · C

Figure 4.8: (C,m)-VMA: Comparing the power consumed by VMA1 and VMA2 with the lower
bound LBVMA for x∗ = {0.65, 0.9} ·C, C = 153.6 GCPS, α = {1.5, 2.5} for Trace A (synthetic
traces).

compare again VMA1 and VMA2 with LBVMA for different values of α to evaluate its influence.

In the second scenario, we evaluate the performance of VMA1, VMA2, and LBVMA jointly with

FF, MLF, Packing, RR, RF, LFF, NF, Striping and WC when alpha, b and C are fixed and x∗

varies. Finally, in the third scenario, we evaluate the influence of b on the performance of the

different algorithms when α and C are fixed and different values of x∗ and b are considered.

Note that all experiments are run for both Trace A and Trace B. Similarly, observe that results

are presented, again, as graphs in which the power consumed is represented as a function of the

number of PMs used but, this time, these results do not start from 1 PM. Basically, each one of

the results of the different algorithms starts from the number of PMs for which it obtained a valid

solution and PMs where PMs do not have to be loaded beyond their capacity C.

The results for the first scenario, shown in Figures 4.8 and 4.9, throw very similar results

to the ones obtained for (·,m)-VMA. As for (·,m)-VMA, VMA2 performance is very close to

LBVMA when it does not match it. Similarly, VMA1 is again worse than VMA2 due to the fact

that it tends to pack less VMs per PM than VMA1.

The results for the second scenario are presented in Figure 4.10 and Figure 4.11 for Traces A

and B, respectively. In them we compare the performance of VMA1, VMA2, LBVMA, FF, MLF,

Packing, RR, RF, LFF, NF, Striping and WC for PMs such as the ones defined in Table 4.5. We

can easily observe, independently of the trace used, that RP, LFF, NF and Striping consistently

obtain partitions which result in a higher cost in Watts than the other algorithms. The nature of

this set of algorithms implies using a large number of PMs with a small amount of load per PM,

resulting, always, in a higher power consumption. For this reason, and for the sake of clarity

when plotting and comparing the other algorithms, we only show RP, LFF, NF and Striping in

subfigures 4.10(a), 4.10(b), 4.11(a) and 4.11(b) as an example. The rest of the subfigures from

Figure 4.10 and Figure 4.11 zoom in the results of the other algorithms.
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(a) C = 153.6 GCPS, x∗ = 0.65 · C (b) C = 153.6 GCPS, x∗ = 0.9 · C

Figure 4.9: (C,m)-VMA: Comparing the power consumed by VMA1 and VMA2 with the lower
bound LBVMA for x∗ = {0.65, 0.9} · C, C = 153.6 GCPS, α = {1.5, 2.5} for Trace B (Google
traces).

Oppositely to the (·,m)-VMA case, WC exhibits a better performance than VMA1, that also

loses in the comparison with the group formed by FF, MLF, Packing and RR in every case except

for Trace A and x∗ = 0.5 · C, shown in Figure 4.10(f)4. This worse performance of VMA1

is a consequence of the ability of the other algorithms to obtain more packed solutions whose

load is, additionally, closer to x∗ than VMA1’s solution. On the other hand, VMA2 results are

similar or slightly worse than FF, MLF, Packing and RR for Trace A when when x∗ > 0.75C

(Figures 4.10(a), 4.10(b) and 4.10(c)). However, VMA2 still outperforms the other algorithms

when x∗ ≤ 0.75C (Figures 4.10(d),4.10(e) and 4.10(f)) or when the average VM task load is

smaller, i.e., all the cases of Trace B. Once again, VMA2 stays close to the optimal and, in general,

performs better than the other algorithms.

We finally evaluate the influence of b when fixing other parameters. These results are shown

in Figures 4.12 and 4.13 for Traces A and B, respectively. We compare, again, the performance

of VMA1, VMA2, LBVMA, FF, MLF, Packing, RR, RF, LFF, NF, Striping and WC when α = 2,

C = 41.6 GCPS, x∗ = {0.65, 0.9} · C and b = {80, 100, 120} W. Similarly to what happened

in Scenario 2 (Figures 4.10 and 4.11), the results obtained by RP, LFF, NF and Striping are

consistently worse than the ones obtained by the other algorithms. Therefore, as in the previous

case, we only show them in the two first figures for each trace, namely Figures 4.12(a), 4.12(b),

4.13(a) and 4.13(b). The rest of the subfigures from Figures 4.12 and Figure 4.13 zoom in the

results of the other algorithms.

Observing these results we can barely appreciate any difference in behavior/shape between

the different algorithms when we x∗ remains constant. Of course there are differences in the

power consumed for each value of b, but this is mainly because of the contribution of b. The

4This behaviour is not replicated for Trace B because of the smaller average load of Trace B VMs.



4.5 Experimental Evaluation 93

(a) x∗ = 1.1 · C (b) x∗ = C

(c) x∗ = 0.9 · C (d) x∗ = 0.75 · C

(e) x∗ = 0.65 · C (f) x∗ = 0.5 · C

Figure 4.10: (C,m)-VMA: Comparing the power consumed by the different assignment algo-
rithms for C = 11.2 GCPS, α = 2 and different values of x∗ for Trace A (Synthetic traces).
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(a) x∗ = 1.1 · C (b) x∗ = C

(c) x∗ = 0.9 · C (d) x∗ = 0.75 · C

(e) x∗ = 0.65 · C (f) x∗ = 0.5 · C

Figure 4.11: (C,m)-VMA: Comparing the power consumed by the different assignment algo-
rithms for C = 11.2 GCPS, α = 2 and different values of x∗ for Trace B (Google traces).
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(a) b = 80 W, x∗ = 0.65 · C (b) b = 80 W, x∗ = 0.9 · C

(c) b = 100 W, x∗ = 0.65 · C (d) b = 100 W, x∗ = 0.9 · C

(e) b = 120 W, x∗ = 0.65 · C (f) b = 120 W, x∗ = 0.9 · C

Figure 4.12: (C,m)-VMA: Comparing the power consumed by the different assignment algo-
rithms fixing for C = 41.6 GCPS, α = 2 and 2 different values of x∗ while varying b for Trace
A (Synthetic traces).
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(a) b = 80 W, x∗ = 0.65 · C (b) b = 80 W, x∗ = 0.9 · C

(c) b = 100 W, x∗ = 0.65 · C (d) b = 100 W, x∗ = 0.9 · C

(e) b = 120 W, x∗ = 0.65 · C (f) b = 120 W, x∗ = 0.9 · C

Figure 4.13: (C,m)-VMA: Comparing the power consumed by the different assignment algo-
rithms for C = 41.6 GCPS, α = 2 and 2 different values of x∗ for Trace B (Google traces).
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reason for these results is basically a limitation of our model when trying to emulate different

PMs changing only the value of b. In this case, as µ depends also on b absorbs the changes on

its value, resulting in an identical behavior when x∗ is kept constant. The results are, therefore,

similar to the ones achieved in the second scenario.

4.6 Discussion

We discuss in this section practical issues that must be addressed to apply our results to pro-

duction environments.

Heterogeneity of Servers. For the sake of simplicity, we assume in our model that all servers

in a data center are identical. We believe this is reasonable, considering that modern data centers

are usually built with homogeneous commodity hardware. Nevertheless, the proposed model and

derived results are also amenable to heterogeneous data center environments. In a heterogeneous

data center, servers can be categorized into several groups with identical servers in each group.

Then, different types of applications can be assigned to server groups according to their resource

requirements. The VMA model presented here can be applied to the assignment problem of

allocating tasks from the designated types of applications (especially CPU-intensive ones) to each

group of servers. The approximation results we derive in this paper can be then combined with

server-group assignment approximation bounds (out of the scope of our work) for energy-efficient

task assignment in real data centers, regardless of the homogeneity of servers.

Consolidation. Traditionally, consolidation has been understood as a bin packing prob-

lem [75, 95], where VMs are assigned to PMs attempting to minimize the number of active PMs.

However, the results we derived in this chapter, as well as the results shown in Chapter 3, show

that such approach is not energy-efficient. Indeed, we showed that PM’s should be loaded up to

x∗ to reduce energy consumption, even if this requires having more active PMs.

VM arrival and departure. When a new VM arrives to the system, or an assigned VM

departs, adjustments to the assignment may improve energy efficiency. Given that the cost of

VM migration is nowadays decreasing dramatically, our offline positive results can also be ac-

commodated by reassigning VMs whenever the set of VM demands changes. Should the cost of

migration be high to reassign after each VM arrival or departure, time could be divided in epochs

buffering newly arrived VM demands until the beginning of the next epoch, when all (new and

old) VMs would be reassigned (if necessary) running our offline approximation algorithm.

Multi-resource scheduling. This work focuses on CPU-intensive jobs (VMs) such as

MapReduce-like tasks [39] which are representative in production datacenters. As the CPU is

generally the dominant energy consumer in a server, assigning VMs according to CPU workloads

entails energy efficiency. However, there exist types of jobs demanding heavily other computa-

tional resources, such as memory and/or storage. Although these resources have limited impact

on a server’s energy consumption, VMs performance may be degraded if they become the bottle-

neck resource in the system. In this case, a joint optimization of multiple resources (out of the
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scope of our work) is necessary for VMA.

Implementation on real systems. Most of the allocation algorithms that we have tested in

Section 4.5 are already available in popular cloud platforms like OpenNebula [84] or Eucalyp-

tus [44]. Including another allocation policy, such as our algorithms, in the cloud controllers of

these and other platforms (e.g. Apache Mesos [12]) is feasible. Introducing our algorithms would

make those platforms power efficient, providing power-aware allocation policies. This feature is

not found on any of the algorithms tested in Section 4.5 except for the Watts per Core algorithm

from [63]. We leave such integration for future work.

4.7 Conclusions

In this chapter, we have studied a particular case of the generalized assignment problem with

applications to Cloud Computing. We have considered the problem of assigning virtual machines

(VMs) to physical machines (PMs) so that the power consumption is minimized, a problem that

we call virtual machine assignment (VMA). In our theoretical analysis, we have shown that the

decision version of (C,m)-VMA problem is strongly NP-complete. We have shown as well that

the (C, ·)-VMA, (·,m)-VMA and (·, ·)-VMA problems are strongly NP-hard. Hence, there is no

FPTAS for these optimization problems. We have shown the existence of a PTAS that solves the

(·, ·)-VMA and (·,m)-VMA offline problems. On the other hand, we have proved lower bounds

on the approximation ratio of the (C, ·)-VMA and (C,m)-VMA problems. With respect to the

online version of these problems, we have proved upper and lower bounds on the competitive

ratio of the (·, ·)-VMA, (C, ·)-VMA, (·,m)-VMA, and (C,m)-VMA problems.



Chapter 5

Conclusions

Cloud computing is alive and probably no more than a toddler yet. However, even in this

early age we are already able to see many of the advantages, surely not all, that cloud computing

can offer us. Despite of all these advantages we must not forget about its drawbacks and this was

one of the targets of this master thesis.

The main objective of this master thesis was to face one of the main problems of data centers,

energy consumption, which was introduced in Part I. Reducing the costs associated to this issue

is not only an economical target but also an environmental problem. Power is generated at a cost

and, indefinitely increasing our power consumption will have a prejudicial effect on our world. It

is our duty, as researchers, to care about sustainability and ensure that future times will be better.

For these reasons we tried to provide of tools to directly or indirectly tackle these problems.

This master thesis presents our contributions to the field of energy consumption in data centers.

We studied how to reduce power consumption by optimizing how virtual machines are placed

in physical machines, the virtual machine assignment problem; and also studied how servers

consume power and energy in a data center, characterizing the contribution of each component

and confirming the superlinearity on the load that we assumed in the virtual machine assignment

problem.

Starting with servers, in Chapter 3 we characterized how different components of a data center

server consumes power. One of the most interesting aspects, and also differentiator from previous

works, is how we studied the effect of having multiple cores and how varying their frequency

affects, not only to their energy consumption, but also to other components. The main idea

to be extracted here is that a server is a puzzle, where each piece is a component, and some

pieces needed others to perform a task, thus, being affected by how those other pieces are being

operated. This study throw very interesting results as clearly confirming the superlinearity of

power consumption on the load in the server as well as showing that the Active Cycles per Second

are a proper unit to measure the load in a server. We concluded this part of the study showing

how the characterization of these components can be used to predict the energy consumption of

an application from its profiling.
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Then, taking advantage of some of the conclusions of the previous chapter, as the superlin-

earity of the power consumption on the load, we studied the virtual machine assignment problem

and how such a superlinear power consumption model affects it. We thoroughly analyzed four

different cases, depending on whether the capacity and the number of the servers where bounded

or not. For each one of them, when possible, we provided upper and lower bounds on the approx-

imation ratio, as well as upper and lower bounds on the competitive ratio of the algorithms we

proposed for them. We also proved, by simulation, that the algorithms we proposed can obtain

substantially cheaper solutions, from the point of view of power consumption of the system, than

other algorithms proposed in the literature.

In general we proved that huge amounts of energy can still be saved in data centers with no

need of updating the already deployed hardware, in some cases, and that new solutions are waiting

for the new generation of servers and network devices, ready to optimize the way energy is used

in data centers.

5.1 Future Work and Open Problems

As we said at the beginning of this section, Cloud Computing is still a toddler. This means

that the amount of open problems is practically unlimited and that, usually, an answer bring up

two more questions. Allow us, then, to focus only in the particular issues that we have worked at

during this master thesis.

We are aware that the characterization of power consumption we presented in Chapter 3 is

neither complete nor perfect. However, this is a key problem because the more accurately can we

predict the power required by a server in a particular situation or the energy it will consume when

a certain application is run, the better we will be able to assign tasks to servers or maneuver in case

moving virtual machines across our servers is needed in order to increase the efficiency of our data

center. In any case, we believe that some of the aspects we have proposed here will be helpful

for future works. The most obvious open problems in this case are, first, to properly characterize

the power consumption due to the RAM and, second, improve power characterizations so the

accuracy is increased.

Finally, regarding the virtual machine assignment problem presented in Chapter 4, our future

work will consider the possibility that the load incurred by a VM changes over time or that the

assignment of VMs to PMs is not final (and VMs can migrate, maybe at a cost). In fact, if the

migration of VMs is available for free, our offline positive results can also be used in these new

models, since an offline approximation algorithm can be run each time a load changes or a new

VM arrives. Then, the VMs can be redistributed accordingly. Another future extension of the

model will consider that the power consumption of a feasible solution of the VMA problem de-

pends on several parameters simultaneously (e.g., memory space or communication bandwidth, in

addition to processing load). Finally, as stated in Section 3.5, we plan to deploy our algorithm in a

cloud platform, probably OpenNebula, and compare the performance of our proposed algorithms
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against other state-of-the-art allocation algorithms such as the ones analyzed in Section 4.5.
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