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ABSTRACT 

The impact of climate change on the habitat suitability for large brown trout (Salmo trutta L.) was 

studied in a segment of the Cabriel River (Iberian Peninsula). The future flow and water temperature 

patterns were simulated at a daily time step with M5’ models’ trees (NSE of 0.78 and 0.97 

respectively) for two short-term scenarios (2011-2040) under the Representative Concentration 

Pathways (RCP 4.5 and 8.5). An ensemble of five strongly regularized machine learning techniques 

(generalized additive models, multilayer perceptron ensembles, random forests, support vector 

machines and fuzzy rule base systems) was used to model the microhabitat suitability (depth, 

velocity and substrate) during summertime and to evaluate several flows simulated with River2D©. 

The simulated flow rate and water temperature were combined with the microhabitat assessment to 

infer Bivariate Habitat Duration Curves (BHDCs) under historical conditions and climate change 

scenarios using either the Weighted Usable Area (WUA) or the Boolean-based Suitable Area (SA). 

The forecasts for both scenarios jointly predicted a significant reduction in the flow rate and an 

increase in water temperature (mean rate of change of ca. -25 % and +4 % respectively). The five 

techniques converged on the modelled suitability and habitat preferences; large brown trout selected 

relatively high flow velocity, large depth and coarse substrate. However, the model developed with 

support vector machines presented a significantly trimmed output range (Max.: 0.38), and thus its 

predictions were banned from the WUA-based analyses. The BHDCs based on the WUA and the SA 

broadly matched, indicating an increase in the number of days with less suitable habitat available 

(WUA and SA) and/or with higher water temperature (trout will endure impoverished environmental 

conditions ca. 82 % of the days). Finally, our results suggested the potential extirpation of the 

species from the study site during short time spans. 

 

Keywords: Bivariate habitat duration curves, machine learning, Mediterranean river, models’ 

ensemble, Salmo trutta, water temperature. 
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List of acronyms: 

ANN – Artificial Neural Network 

CART – Classification And Regression Tree 

CCI – Correctly Classified Instances 

CORDEX – Coordinated Regional Climate Downscaling Experiment 

FRBS – Fuzzy Rule Base System 

GA – Genetic Algorithm 

GAM – Generalized Additive Model. 

BHDC – Bivariate Habitat Duration Curve 

HMU – Hydro-Morphological Unit.  

HTS – Habitat Time Series 

IPCC – Intergovernmental Panel on Climate Change 

MLP – Multi-Layer Perceptron 

MLPE – Multi-Layer Perceptron Ensemble 

MSE – Mean Squared Error 

NSE – Nash-Sutcliffe Efficiency 

RCP – Representative Concentration Pathway 

RF – Random Forests 

SA – Suitable Area 

Sn – Sensitivity 

Sp – Specificity 

SRESs – Special Report on Emissions Scenarios 

SSP – Shared Socioeconomic Pathway 

SVM – Support Vector Machine 
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TSK – zero-order presence-absence Takagi-Sugeno-Kang fuzzy rule base system 

TSS – True Skill Statistic 

WUA – Weighted Usable Area. 

 

1 Introduction 

Worldwide, climate change poses a major threat to freshwater biodiversity (Dudgeon, 2014). 

Recent and long-term changes in climate have altered mean annual temperatures and precipitation 

patterns, which may have a suite of negative effects for fluvial ecosystems such as an altered flow 

regime or increased water temperature (Ficke et al., 2007; Palmer et al., 2009). Furthermore, the 

effects of climate change may interact with other anthropogenic impacts such as land use changes or 

the introduction of non-indigenous species; thus, different scenarios consistently indicate that 

biodiversity will continue to decline over the 21st century (Ficke et al., 2007). Consequently, it is a 

priority to identify which types of stressor combinations are likely to negatively affect species under 

current and forecasted climate scenarios. 

Predicting the impacts of climate change requires proactive management responses if valuable 

riverine ecosystems are to be preserved (sensu Palmer et al., 2008). Proactive management requires 

sound monitoring and predicting capabilities at the local scale (Palmer et al., 2009) because, for 

every river of the world, there is a natural flow regime representative of the unaltered landscape, 

precipitation and temperature (Poff et al., 1997). In accordance to these specific combinations of 

factors, some rivers would be consequently very stable, while others would be especially prone to 

alteration (Schneider et al., 2013). For instance, the Eastern Mediterranean region of the Iberian 

peninsula is likely to be characterized by a continued decrease in water yield (Chirivella Osma et al., 

2014; Salmoral et al., 2015), which may create a bottleneck for species survival.  

Experimental studies have provided scientists with the necessary knowledge about the key 

environmental factors and biotic processes to plan adequate mitigation and conservation actions 
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(Filipe et al., 2013). More specifically, the use of models to run scenarios that capture the spectrum 

of possible outcomes has become an invaluable tool for anticipating changes in hydrology and water 

temperatures (Palmer et al., 2008). Among the different available approaches, the physical habitat 

simulation approach (Bovee et al., 1998) has emerged as a powerful tool to quantify variations in the 

suitable habitat available for different river biota. Thus, this method can evaluate the effect of 

different management alternatives, restoration actions (Mouton et al., 2007) and the potential effects 

of climate change (Almodóvar et al., 2012; Hauer et al., 2013; Papadaki et al., 2016; Viganò et al., 

2015). The physical habitat simulation approach to evaluate the impact of climate change in 

unregulated river segments typically couples three different modelling components: 

(i) the hydrologic and water temperature models component 

(ii) the hydraulic model component 

(iii) the habitat suitability model component 

Regarding the first component, process-based (i.e. physically-based) models have traditionally 

been preferred (Van Vliet et al., 2012), and there is a myriad of capable models available for 

hydrologic simulation (Zhuo et al., 2015), some with specific modules dedicated to water 

temperature forecasting (e.g. Luo et al., 2013). However, machine learning-based approaches (data-

based) such as neuro-fuzzy rule base models (Lohani et al., 2012) or Artificial Neural Networks 

(ANNs) (Rabi et al., 2015) have recently gained appreciable visibility (Zhuo et al., 2015). Moreover, 

the Intergovernmental Panel on Climate Change (IPCC) has recently rendered a new set of climate 

change scenarios (IPCC, 2014), the so-called Representative Concentration Pathways (RCPs) 

scenarios, which superseded the Special Report on Emissions Scenarios projections published in 

2000 (Nakicenovic et al.). The main advantage of the new RCP over previous scenarios relies on the 

consideration of international policies to control greenhouse emissions. Actually, climate projections 

have been downscaled through the Coordinated Regional Climate Downscaling Experiment 

(CORDEX) (Christensen et al., 2014; Jones et al., 2011), and thus they are ready to be applied at the 
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local scales. The use of the latest scenarios established for climate change studies represents an 

update of previous forecasts (Santiago et al., 2015) since they have been demonstrated to play a 

paramount role in the final predictions about the impact of climate change in the flow regime (Döll 

and Schmied, 2012). Consequently, selecting the appropriate modelling approach for the hydrologic 

component of a climate change study represents a challenge by itself. 

Regarding the hydraulic model, there is also a large set of dedicated software packages for 

hydraulic modelling. In physical habitat studies, typically one- or two-dimensional hydraulic models 

are used (Jowett and Duncan, 2012) to simulate spatial and temporal variations to water depth, flow 

velocity, substrate and cover (Conallin et al., 2010). 

Finally, the last component is the habitat suitability model for the target species. This component, 

unlike the hydrological and water temperature component, has been typically addressed by machine 

learning approaches, and examples include, Classification And Regression Trees (CARTs) (Fukuda 

et al., 2014), Generalized Additive Models (GAMs) (Jowett and Davey, 2007), ANNs (Fukuda et al., 

2014; Muñoz-Mas et al., 2014b), Fuzzy Rule Base Systems (FRBSs) (Fukuda et al., 2013; Muñoz-

Mas et al., 2012), and Support Vector Machines (SVMs) (Fukuda et al., 2014; Lin et al., 2015). 

However, no consensus has been reached on the optimal machine learning technique since each one 

has its own unique structure and merits (Lin et al., 2015). Moreover, the strengths and weaknesses of 

every machine learning technique must be considered; otherwise, the selection of an inappropriate 

habitat suitability model may result in erroneous predictions (Lin et al., 2015). One method to 

overcome these limitations relies on the use of models’ ensembles (Bouska et al., 2015). Ensemble 

modelling consists of learning several models, each developed with a unique technique or with 

several different techniques, and combining their individual forecasts into a single prediction. Thus, 

almost every single technique has their ensemble counterpart; however, only Random Forests (RF) 

(Breiman, 2001), which is the CART ensemble counterpart, can be considered widespread in 

physical habitat simulation studies (e.g. Fukuda et al., 2014; Lin et al., 2015; Vezza et al., 2015). 
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Riparian vegetation, macroinvertebrates and fish species are effective indicators of ecological 

status (Magdaleno and Fernández, 2011); however, fish species present some advantages that make 

them especially suited for that purpose. Fish occupy high trophic levels, are relatively easy to sample 

and to identify, and generally are known to react quickly to instream habitat constraints (Lorenz et 

al., 2013). Furthermore, in the Iberian context, previous studies suggested that cold-water species, 

such as brown trout (Salmo trutta L. 1758), may suffer severe reductions in their distribution areas 

(Almodóvar et al., 2012; Santiago et al., 2015). Therefore, these species are an attractive ultimate 

target in climate change studies, particularly when the species occurs at the edge of its distribution 

area (Santiago et al., 2015).  

In the Iberian Peninsula, water temperature has been suggested to be the main driver of brown 

trout distribution (Almodóvar et al., 2012; Santiago et al., 2015), whereas in other alpine regions 

streamflow has also been stressed to potentially impact salmonids’ distributions (Papadaki et al., 

2016; Tisseuil et al., 2012; Viganò et al., 2015). Previous studies suggest that present-day droughts 

cause relatively small and transient changes to Mediterranean stream fish assemblages, whereas 

longer and more severe droughts – as those expected in the streams of the Jucar River basin 

(Chirivella Osma et al., 2014; Estrela et al., 2012; Salmoral et al., 2015) – may result in declines or 

local extinctions of the most sensitive species (Magalhães et al., 2007). 

The present study analysed the shifts in the suitable habitat available for the large brown trout 

(Salmo trutta L.) – body length > 20 cm – under two short-term (2011-2040) climate change 

scenarios (the Representative Concentration Pathways 4.5 and 8.5). The study was carried out in a 

segment of the Cabriel River (Iberian Peninsula) applying the physical habitat simulation approach. 

Hydrological modelling and water temperature modelling were carried out at a daily time step with 

M5’ predicting the flow rate and water temperature along the historical and climate change 

scenarios. Several flows were simulated with River2D© and were assessed with a models’ ensemble 

of presence-absence habitat suitability models that encompassed five different machine learning 
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techniques: generalized additive models, multi-layer perceptron ensembles, random forests, support 

vector machines and zero-order presence-absence Takagi-Sugeno-Kang fuzzy rule base systems. 

Standard habitat-flow curves were developed and simulated flows were transduced to habitat time 

series. Finally, the frequency and magnitude of the extreme events (i.e. droughts and temperature 

peaks) were analysed by means of bivariate habitat duration curves. 

 

2 Materials and methods 

2.1 The Cabriel River 

The Cabriel River is an unregulated tributary of the Jucar River (eastern Iberian Peninsula). Its 

river basin has been affected by a marked human depopulation which is likely to continue through 

2050 (INE, 2012), allowing us to neglect any potential change to the ecological status based on 

anthropogenic actions (e.g., future regulation, water abstraction or increased pollution). In total, the 

river is 220 km long, the catchment elevation ranges from 490 to 1790 m a.s.l. and its drainage area 

covers 4750 km2. The upper part of the basin, where the study site is located, has an average riverbed 

slope of 1.1% and the land cover – from the CORINE Land Cover classification – (Bossard et al., 

2000) mainly consists of forested areas (86%) and crops (12%). The study area has a typical 

mesomediterranean climate with a mean annual precipitation of ca. 500 mm, resulting in low flows 

and high evapotranspiration in summer and high flows in spring and autumn (Vezza et al., 2015). 

However, it has suffered a significant reduction in mean flow since the 1980’s (Estrela et al., 2012), 

which may be exacerbated if climate change scenarios are met. Furthermore, at the study site the 

Cabriel River does not contain any invasive species (Vezza et al., 2015), thus future changes in the 

ecosystem should be driven principally by changes in the flow regime and water temperature. 
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2.2 Large brown trout data collection 

The large brown trout data were retrieved from a previous study (Muñoz-Mas et al., 2014b) 

performed during summertime (2007-2009) in several rivers of the Tagus (Guadiela and Cuervo), 

Jucar and Senia River basins (eastern Iberian Peninsula) (Fig. 1). 

 

 

Fig. 1. Location of the large brown trout (Salmo trutta L.) sampling sites and location of the site where the 
shifts in the suitable habitat available under short-term (2011-2040) climate change scenarios were studied. 

 

The sampling unit was the microhabitat, which is defined as a localized area (from zero to few 

m2) – having relatively homogeneous conditions of depth, velocity, substrate, and cover – used by an 

aquatic organism for specific behaviours (e.g., feeding) (Bovee et al., 1998). The large brown trout 

sampling was undertaken by snorkelling because it proved to be superior to direct observation from 

the shoreline as well as electrofishing sampling. At this scale, direct observation tends to 

underestimate the number of individuals (Heggenes et al., 1990), whereas electrofishing is 

characterized by coarser resolution and introduces a bias related to displacement caused by 

galvanotaxis (Brosse et al., 2001). Furthermore, neither direct observation nor electrofishing allows 

the easy observation of fish behaviour, thus database could become noisy when including different 

activities (Heggenes et al., 1990). In this study, only large brown trout that were ‘feeding’ or 'holding 

a feeding position' were considered because it is assumed that they are occupying such positions 

because they are the most energetically profitable (Rincón and Lobón-Cerviá, 1993). 
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Microhabitat sampling was performed following a modification of the equal effort sampling 

approach (Johnson, 1980). The river segment was stratified in Hydro-Morphological Units (HMUs) 

(i.e. pool, glide, riffle and rapid) (Muñoz-Mas et al., 2012) and similar areas of slow and fast water 

HMUs – grouping pools with glides (slow) and riffles with rapids (fast) – were sampled. The diver 

carefully moved from downstream to upstream – ignoring disturbed fish – placing a weighted marker 

where trout were spotted. The hydraulic conditions (absence data) were measured along the selected 

HMUs in cross-sections whereas the presence data were measured at the markers. In the end, 98 

presence cases and 1457 absence cases were sampled resulting in a relatively low prevalence dataset 

(i.e. ratio of presence cases over the entire dataset of 0.06). 

Three variables were measured: mean flow velocity of the water column, depth and substrate. 

Velocity (m/s) was measured with an electromagnetic current meter (Valeport®, United Kingdom) 

and depth (m) was measured with a wading rod to the nearest cm. The percentage of each substrate 

class (i.e. bedrock, boulders, cobbles, gravel, fine gravel, sand, silt and vegetated soil) was visually 

recorded following the guidelines used in previous studies (Muñoz-Mas et al., 2012), and the data 

were converted into the substrate index (-) (Mouton et al., 2011) that typically ranges from zero to 

eight (Table 1 & Fig. 2).  
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Table 1. Summary of the principal statistics of the presence (large brown trout) and the absence datasets. 
Velocity (m/s) Depth (m) Substrate index (-) 

L
ar

ge
 b

ro
w

n 
tr

ou
t Min. 0.01 0.21 0.00 

1st Qu. 0.13 0.47 4.00 
Median 0.22 0.65 5.30 
Mean 0.26 0.69 4.92 

3rd Qu. 0.34 0.88 6.00 
Max. 1.00 1.45 8.00 

A
bs

en
ce

s 

Min. 0.00 0.03 0.00 
1st Qu. 0.04 0.31 2.80 
Median 0.12 0.50 5.60 
Mean 0.22 0.55 4.50 

3rd Qu. 0.29 0.74 6.40 
Max. 1.76 1.78 8.00 

 

 

Fig. 2. Distributions of the three input variables; velocity (m/s), depth (m) and substrate (-), discriminated 
between the presence and absence classes.  

 

2.3 Habitat suitability modelling 

Model reliability and transparency is a major concern in habitat suitability modelling (Austin, 

2007). Therefore, there are several common elements that must be considered in order to ensure the 

development of sound models. The first issue to avoid is the excessive parameterization, which tends 

to over-fit the data (reducing models’ generalization) and may overestimate further predictions 

(Wenger and Olden, 2012). Another issue is low prevalence, as the over-representation of the 

absence category may shift the balance of errors, increasing the number of serious mistakes (i.e., 

falsely predicted absences) (Platts et al., 2008). Each modelling technique presents different 

parameter settings – the number of neurons in Artificial Neural Networks (ANNs) or the number of 
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fuzzy sets in Fuzzy Rule Base Systems (FRBSs) – that condition the propensity of the technique to 

over-fitting (Merow et al., 2014), which may in turn also favour the assumption of the uncertain 

absence data as true negatives. To deal with such drawbacks, the number of parameters are limited 

and optimized by means of cross-validation approaches (Fukuda et al., 2013). This optimization 

usually takes place through performance criteria irrespective of prevalence – such as the True Skill 

Statistic (TSS [-1, 1]) (Mouton et al., 2009) and stimulating over-prediction by favouring a larger 

proportion of presence predictions in comparison with absence Sensitivity (Sn) > Specificity (Sp) 

(Fukuda et al., 2013). 

Following Austin’s suggestions (2007), the habitat suitability models in this study were 

regularized as much as possible to render unimodal or monotonic responses. For the modelling 

techniques that maximize the classificatory capability (e.g., RF), the parameter settings were adjusted 

to maximize the TSS (Sn > Sp), whereas the weighted Mean Squared Error (MSE) was minimized 

for those techniques (e.g., ANN) that are trained on the basis of the overall error. Finally, partial 

dependence plots (Friedman, 2001) implemented in the R package randomForest (Liaw and Wiener, 

2002) were used to graphically characterise the relationship between the input variables and the 

presence of large brown trout. Partial dependence plots yield easily interpretable univariate plots by 

depicting the influence of a given input on the output and account for the remaining variables within 

the model by averaging their effects. 

 

2.3.1 Generalized Additive Models – GAMs 

The Generalized Additive Model (GAM) (Hastie and Tibshirani, 1990) was implemented in R (R 

Core Team, 2015) with the mgcv package (Wood, 2004). A single tensor product was used to 

optimize the smooth curves because they are especially useful for representing covariate functions 

measured in different units (Wood, 2006). The maximum number of knots was limited to three, and 

the link function was set to binominal (i.e. logit link). Data prevalence has proved to significantly 
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impact the classificatory capability of GAMs (Platts et al., 2008). The way to deal with this 

limitation has typically focused on the modification of the classification threshold, but some authors 

have suggested that weighting cases may yield similar results (Platts et al., 2008). Consequently, in 

order to maximize GAMs’ performance, but keeping the discriminant threshold at 0.5, the case 

weights implemented in the function gam were adjusted following a 3 fold cross-validation scheme. 

The objective function searched the maximization of the TSS while stimulating over-prediction. The 

absence cases were iteratively weighted around the prevalence value (0.06) from 1 % to 10 % at an 

increment rate of 1 %, whereas the presence cases were inversely weighted to sum up to 100 %. 

Once the optimal case weights were obtained, a single GAM was trained with the entire dataset and 

used in the subsequent analysis. 

 

2.3.2 Multi-Layer Perceptron Ensembles – MLPE 

Multi-Layer Perceptron Ensembles (MLPE) (Hansen and Salamon, 1990) are the ensemble 

counterpart of ANNs. Its development typically follows the overproduce-and-choose approach 

(Partridge and Yates, 1996). First, a large pool of MLPs is trained, usually by bagging (resampling 

with replacement) the complete dataset, and the combination of MLPs that produces the best mean 

prediction (arithmetic mean) on the out-of-bag dataset is sought. 

During the overproduce phase, the MLP components were trained in R (R Core Team, 2015) with 

the package monmlp (Cannon, 2012) by minimising the Mean Squares Error (MSE). The number of 

nodes was restricted to two since it was demonstrated to be sufficient in habitat suitability modelling, 

and the hyperbolic tangent and logistic functions were used in the hidden and the output layers 

respectively (Muñoz-Mas et al., 2014a). MLPs have proved sensitive to data prevalence (Olden et 

al., 2002); therefore, to train every MLP, 66 % of the presences (i.e. 65 cases) and the same number 

of absences were randomly selected. The sample size did not allow training for all possible 



 

14 
 

combinations with a prevalence of 0.5. Therefore, 2000 MLPs were pooled in order to ensure that 

every presence case was faced to every absence case several times. 

The MLPs selection was performed with a Genetic Algorithm (GA) (Holland, 1992). GAs are 

search-and-optimization algorithms based on the process of natural selection (Olden et al., 2008). 

Several combinations of MLPs are encoded in bit strings (1 meaning selected and 0 discarded) 

corresponding to the population. The GA then searched for the minimization of the weighted MSE 

(i.e. 0.94 for presence cases and 0.06 for absence cases) in the out-of-bag dataset by evolving that 

population. The evolution takes place by more frequently reproducing (crossing) those individuals 

with better fitness (i.e. low weighted MSE) but regularly altering (mutating) the remainder of the 

individuals to properly sample the searching space. The selected GA was from the package rgenoud 

(Mebane Jr and Sekhon, 2011), and it considers nine operators driving the optimization which 

correspond to cloning, uniform mutation, boundary mutation, non-uniform mutation, polytope 

crossover, simple crossover, whole non-uniform mutation, heuristic crossover and local-minimum 

crossover. In the end, the whole set of operators were: 0.20, 0.75, 0.00, 0.00, 0.15, 0.75, 0.15, 0.35 

and 0.00 respectively, whereas the population size and the number of generations were both set to 

2000. Finally, the optimal MLPE was used to develop the partial dependence plots and to perform 

the habitat assessment. 

 

2.3.3 Random Forests – RF 

Random Forests (RF) (Breiman, 2001) is an ensemble machine learning technique based on the 

aggregation of a large set of Classification And Regression Trees (CARTs) (Breiman et al., 1984). 

CARTs recursively split the training dataset into two parts, maximizing the homogeneity in the two 

child nodes until the leaves are homogeneous or the maximum number of allowed partitions is 

achieved (Vezza et al., 2015). RF corrects many of the unpleasant issues of CARTs, such as over-

fitting, by aggregating awkward models. Thus, in every split, not all input variables are tested but a 
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few of them (Breiman, 2001). During the prediction phase, every CART performs its prediction and 

the Boolean output of RF is calculated by majority vote but also probabilistic outputs are possible. 

Despite these aforementioned improvements, they have not automatically turned RF into a technique 

immune to issues of data prevalence (Freeman et al., 2012). 

Consequently, to optimize the performance of RFs, we applied a resampling strategy favouring 

the presence class in the R package randomForests (Liaw and Wiener, 2002). The presence sample 

size (i.e. 98 cases) was used as the reference value, and all possible combinations between 5 % and 

95 % of that value were stepwise tested (at 5 % intervals) for the presence and absence sample sizes. 

Thus, the number of presence cases outnumbered absences in several trials. The number of tree 

components was kept sufficiently large (5000) to ensure convergence, and the selected sample sizes 

were those that maximized the TSS in the out-of-bag dataset (Sn > Sp). The RF trained with the 

optimal sample sizes was selected for subsequent analyses. 

 

2.3.4 Support Vector Machines – SVMs 

Support Vector Machines (SVMs) (Vapnik, 1995) are a non-probabilistic classificatory technique 

based on the construction of discriminant hyperplanes typically adjusted with radial basis kernel 

functions (Huang and Wang, 2006). However, in addition of the Boolean output, SVMs are actually 

able to render probabilistic outputs through the implementations of the Platt’s (2000) approach. 

SVMs produce very competitive results when compared with other benchmarking classification 

techniques by adjusting only few parameter settings (Fukuda et al., 2013). 

The SVM was developed in R (R Core Team, 2015) with the function svm implemented in the 

e1071 package (Dimitriadou et al., 2011). The parameters C and γ were optimized in a real value 

search using the aforementioned GA that maximized the TSS (Sn > Sp) in a 3 fold cross-validation 

scheme. The tested ranges were based on Huang and Wang (2006), who modelled a large range of 

different datasets, with C and γ ranging from 0 to 300 and from 0 to 10 respectively. In addition, to 
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improve generalization during the training of each SVM, 3 fold cross-validation was internally 

performed (i.e. in the end a 3 ൈ 3	cross െ validation scheme was followed). Data prevalence also 

affects the SVMs’ classification capability (Osuna et al., 1997). Therefore, the training cases were 

weighted accordingly to data prevalence: 0.06 for the absence class and 0.94 for presence. In this 

case, the population size and the number of generations were set to 100; the GA’s operators were set 

to 0.25, 0.75, 0.15, 0.10, 0.15, 0.75, 0.0, 0.35 and 0.0 respectively, disabling the use of derivatives in 

the searching process. Finally, once the optimal parameters were obtained, a SVM was trained with 

the optimal parameter setting, and the entire dataset and this model were used to develop the partial 

dependence plots and to perform the habitat assessment. 

 

2.3.5 Zero-order Takagi-Sugeno-Kang fuzzy rule base systems – TSK 

Fuzzy rule base systems (FRBSs) correspond to a specific part of fuzzy logic (Zadeh, 1965) that 

mimics human reasoning. Variables are discretized in fuzzy sets (e.g., Low velocity, Medium 

velocity, High velocity etc.) and due to the fuzzy nature of these sets a given value may belong with 

different proportions to two adjacent sets. The degree of membership of a given case to these fuzzy 

set is mathematized by means of membership functions, usually of trapezoidal or triangular shape 

(Fukuda, 2013; e.g. Muñoz-Mas et al., 2012). Additionally, the relationships between the different 

combinations of fuzzy sets are articulated in fuzzy rules (IF-THEN sequences) such as: IF velocity is 

Low and depth is High and substrate is High THEN the habitat suitability is High. Zero-order 

Takagi-Sugeno-Kang fuzzy rule base systems (TSK) (Takagi and Sugeno, 1985) are a special case 

within the TSKs where the consequents of the fuzzy rules correspond to singletons (i.e. real 

numbers). 

The TSK was implemented in R (R Core Team, 2015) with the help of the frbs package (Riza et 

al., 2015) and restricted the consequents to a dichotomous output: zero or one (i.e. absence or 

presence). Nevertheless, the TSKs provide probability-like outputs. The input variables were 
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discretized in three fuzzy sets with triangular membership functions. The vertices of these triangular 

fuzzy sets were located in concordance with variables’ quantiles (i.e. minimum, median and 

maximum values) because it helps to define the system over the entire universe of discourse (Muñoz-

Mas et al., 2012). The fuzzy rules were optimized three times (i.e. a zero or a one was assigned to 

every consequent) by maximizing the TSS (Sn > Sp). The optimisation was performed with the hill-

climbing algorithm (see Mouton et al., 2008 for further details) and the corresponding consequent 

(i.e. 0 or 1) was assigned by rounding up the mean value obtained through the three iterations. 

Finally, a value of 0.5 was assigned to the untrained fuzzy rules. 

The classificatory capability of the TSK was inspected by performing a 3 fold cross-validation 

and the ultimate consequents for the TSK were calculated by rounding up the mean value obtained in 

the nine iterations. Then, the partial dependence plots were developed and the habitat assessment was 

performed. 

 

2.4 Hydraulic modelling 

The hydraulic simulation was retrieved from Muñoz-Mas et al. (2012; 2014b). It encompassed an 

approximately 300 m long reach of the Cabriel River inserted within a catch and release fishing 

preserve that met different requirements such as abundance of large brown trout, habitat 

heterogeneity and representativeness. Furthermore, it proved to have a stable channel for more than a 

decade (Muñoz-Mas et al., 2014b). Data collection and model development followed standard 

procedures (Jowett and Duncan, 2012). The topographic data of the river channel and banks were 

collected using a Leica© Total Station with an average area of ca. 2 m2 per topographic 

measurement, and the substrate composition was collected co-ordinately as described above. The 

hydrometry was performed in 11 cross-sections, with depth and velocity measured along these 

sections and the resulting information used to gauge the flow rate. Measurements were performed at 

three different flow rates (0.54, 1.04 and 2.75 m3/s) and were used to calibrate the model. The 2D 
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hydraulic simulation was performed with River2D© (University of Alberta, 2002) by altering the bed 

roughness to adjust the outcomes to the measurements obtained during the hydrometric campaigns. 

Thirty-four different flows were simulated, ranging from 0.05 to 6.5 m3/s; in all cases the water level 

was below the bankfull stage of the river channel. 

 

2.5 Hydrology and water temperature modelling under the climate change scenarios 

2.5.1 Rainfall-runoff and water temperature modelling – M5’ 

For effective management of water and freshwater ecosystems, estimates of flow rate and water 

temperature at high temporal resolution, preferably on daily basis, are required (Van Vliet et al., 

2012). Process-based distributed models often render better performance, although they can be 

overly complicated requiring excessive data inputs, which may lead to over-fitting (Zhuo et al., 

2015). To cope with such limitations, the rainfall-runoff and the water temperature models were 

developed in R (R Core Team, 2015) with the M5’ algorithm (Quinlan, 1992) implemented in the 

package Cubist (Kuhn et al., 2014). This technique has previously been demonstrated to proficiently 

model daily flows (Solomatine and Dulal, 2003; Taghi Sattari et al., 2013) and presents interesting 

capabilities. The M5’ algorithm is encompassed in the group of recursive partition machine learning 

techniques (e.g., CARTs or RF) that divide the data space into smaller subspaces (Hothorn et al., 

2006). However, M5’ fits multi-linear regression models to the leaves of the tree instead of the 

average value provided by Breiman’s et al. CARTs (1984). The complete tree is effectively a 

piecewise linear model resulting in a model that can be seen as a committee of linear models, with 

each member specialized on particular subsets of the input space (Taghi Sattari et al., 2013). These 

linear models at the leaves confer M5’ the capability for extrapolation, in contrast to some other 

machine learning techniques that demonstrated a poor or null capacity to do so (Hettiarachchi et al., 

2005). The M5’ algorithm implemented in the Cubist package presents some ancillary functionalities 

that may improve generalization and accuracy. Cubist allows the development of M5’ models’ 
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ensembles by recursively boosting the subsequent models’ trees (i.e. the subsequent models are 

trained more intensely on the data that presented larger error). Predictions can be further assisted 

with similar training observations (i.e. neighbours), which may reduce the prediction of unreliable 

flows or temperatures, and it allows the control of the number of leaves in the ultimate model (i.e. 

the number of models in which the input space is eventually divided). 

Following previous studies, the rainfall-runoff model was trained using lagged data (rainfall and 

temperature) as input variables (Solomatine and Dulal, 2003; Taghi Sattari et al., 2013). Three sets 

of different lagged data encompassing the period 1971-2000 (9,873 days in total) were calculated 

using, daily, monthly and quarterly lags. These three groups of variables were intended to reflect the 

causes of peak, normal and base flows. Daily variables included the rainfall and temperature from 

the current day to the 7th preceding day (eight variables in total). The monthly variables were 

calculated using the moving average for the 12 previous months (twelve variables in total) and the 

previous year was calculated from the moving average for the 13th to the 24th previous months in a 

quarterly time step (four variables in total). Consequently, only the daily variables overlapped with 

the current month variable. No variable selection was performed, and thus correlated variables were 

included in the training dataset (Solomatine personal communication). 

The input data for the water temperature model encompassed daily data from two different 

periods – 2006-2008 and 2010-2011 (1,109 days in total) – that were measured at the study site with 

a HOBO Water Temp ProV2® (USA) data logger. Input variables were the air temperature and flow 

rate on the current day and air temperature on the previous day because they have been shown to 

develop accurate models (Santiago et al., 2015). 

In order to improve models’ generalization, the number of allowed leaves (from 1 to 25 or let M5’ 

to choose the optimal number), the number of M5’ models in the committee (from one to ten) and 

the number of neighbours data assisting in the ultimate prediction (from 0 to 5) were optimized with 

the GA included in the package rgenoud (Mebane Jr and Sekhon, 2011). In both cases, the 
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optimization sought the maximization of the Nash-Sutcliffe Efficiency (NSE) index (feasible range 

from −∞ to 1) in a 3 fold cross-validation scheme. The optimization sought among combinations of 

integers then, the population size and the number of generations were set to 10 and 25 respectively, 

and the GA’s operators were set to 0.10, 0.75, 0.15, 0.10, 0.15, 0.75, 0.0, 0.35 and 0.0. Once the 

optimal parameters were obtained, single M5’ models were developed to predict the flow rate and, 

subsequently, the water temperature under the historical and the climate change scenarios. 

 

2.5.2 Flow regime and water temperature under the short-term (2011-2040) climate change 

scenarios 

Two different climate change scenarios on the extremes of the available spectrum of 

Representative Concentration Pathways (RCPs) were used to feed the rainfall-runoff model and 

subsequently the temperature model: the RCP 4.5 (cautious) and RCP 8.5 (pessimistic). The RCP 4.5 

is a scenario in which total radiative forcing is stabilized shortly after 2100 without ever exceeding 

that value (Thomson et al., 2011). Conversely, the RCP 8.5 is characterized by increasing 

greenhouse gas emissions over time, thus it is representative of scenarios in the literature that lead to 

the highest greenhouse gas concentration levels (Riahi et al., 2007). 

The historical data were retrieved from Herrera et al. (2015), and the future rainfall and 

temperature time series (RCP 4.5 and RCP 8.5 scenarios) were obtained from simulations described 

in CORDEX (Christensen et al., 2014; Jones et al., 2011). Specifically, these simulations were based 

in the global circulation model CCCma-CanESM2 (regional circulation model RCA4) and the 

ICHEC-EC-EARTH (regional circulation model DMI-HIRHAM5). However, in order to correct any 

bias related with the climate models, the projected rainfall and temperature data were adjusted in R 

(R Core Team, 2015) following the quantile-quantile approach (fitQmapRQUANT function) 

implemented in the package qmap (Gudmundsson et al., 2012). Once the predictions were adjusted 

to the historical time series, the two series per scenario (RCP 4.5 or 8.5) were used to feed the 
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rainfall runoff model and, subsequently, the temperature model (Table 2). Finally, the comparison 

was restricted to summertime (i.e. from July to September) to fit the biological data and the two 

series per scenario treated as single realizations. 

 

Table 2 Mean monthly inter-annual rainfall (mm) and temperature (ºC) in the historical time series (1971-
2000) and the Representative Concentration Pathways (RCP) 4.5 and 8.5 (2011-2040). The corresponding 
percentages of variation appear between brackets. 

 Rainfall (mm) Temperature (ºC) 
Historical RCP 4.5 RCP 8.5 Historical RCP 4.5 RCP 8.5 

Oct 2.64 1.83 (-30.7%) 1.81 (-31.4%) 5.19 7.04 (35.6%) 6.97 (34.3%) 
Nov 3.11 1.49 (-52.1%) 1.68 (-46.0%) 6.60 7.57 (14.7%) 7.83 (18.6%) 
Dec 2.1 1.79 (-14.8%) 1.6 (-23.8%) 9.35 9.31 (-0.4%) 9.71 (3.9%) 
Jan 2.93 1.79 (-38.9%) 1.82 (-37.9%) 10.65 12.42 (16.6%) 12.51 (17.5%)
Feb 2.35 1.64 (-30.2%) 1.78 (-24.3%) 14.83 16.44 (10.9%) 15.84 (6.8%) 
Mar 1.15 1.45 (26.1%) 1.29 (12.2%) 19.23 21.32 (10.9%) 21.18 (10.1%)
Apr 0.27 0.52 (92.6%) 0.69 (155.6%) 23.22 25.90 (11.5%) 25.65 (10.5%)
May 0.40 0.83 (107.5%) 1.02 (155.0%) 22.61 24.66 (9.1%) 24.60 (8.8%) 
Jun 1.03 1.43 (38.8%) 1.65 (60.2%) 19.21 20.53 (6.9%) 20.19 (5.1%) 
Jul 2.25 1.62 (-28.0%) 1.46 (-35.1%) 14.00 15.05 (7.5%) 15.04 (7.4%) 

Aug 2.80 1.70 (-39.3%) 1.72 (-38.6%) 9.15 10.14 (10.8%) 10.32 (12.8%)
Sep 3.40 2.16 (-36.5%) 1.92 (-43.5%) 6.52 7.71 (18.3%) 7.92 (21.5%) 

 

2.6 Models’ selection and impact of climate change on large brown suitable habitat  

The analysis of potential shifts in the suitable habitat available was performed by developing 

Bivariate Habitat Duration Curves (BHDCs), an extension of the traditional HDCs (Milhous et al., 

1990). In its original conception, the HDCs depict the probability of exceedance of a given quantity 

of habitat. Therefore, such curves are very useful to evaluate the frequency and duration of suitable 

habitat, allowing conservationists or managers to discern the long term impact of different scenarios 

and possible bottlenecks for aquatic organisms (Parasiewicz, 2008). 

The BHDCs were built in a sequential procedure. First, for every simulated flow, a general 

indicator of the habitat suitability for the target species was calculated, all the tested techniques were 

able to render Boolean and probabilistic outputs, and consequently two different BHDCs were built. 

The first BHDC was based on the Weighted Usable Area (WUA) (Bovee et al., 1998). The WUA is 

the most renowned general indicator of aquatic habitat quality and quantity and is calculated as the 
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sum of the suitability (i.e. probability of presence) calculated for every set of hydraulics (velocity 

and depth) and the substrate multiplied by the corresponding area. The second BHDC was based on 

the Boolean outputs and corresponded to the sum of the areas where the models predicted the 

presence of the large brown trout, hereafter Suitable Area (SA). These general indicators (WUA and 

SA) were then gathered to develop the corresponding habitat-flow curves (i.e. WUA-flow and SA-

flow curves). The following step corresponded to the development of the Habitat Time Series (HTS), 

which are the interpolation of the different running flows (historical and RCP scenarios) provided by 

the M5’ rainfall-runoff model upon the WUA-flow and SA-flow curves. Finally, the BHDCs were 

built by calculating the probability of exceedance of the different values of WUA and SA 

interpolated from the HTS (only values from July to September) and the corresponding water 

temperature. In addition, in order to illustrate the potential deviations of the water temperature, two 

different thresholds were considered throughout the analysis. The first one (18.7 ºC), encompasses 

the thermal niche and was inferred in the central part of the Iberian Peninsula (Santiago et al., 2015), 

whereas the second one (25 ºC), approximately determines the physiological niche (threshold of 

incipient lethality) and was determined indoors (Elliott and Elliott, 2010). 

Traditionally in ensemble modelling, no models’ selection is usually performed, and thus all 

predictions are gathered in the ultimate forecast (Bouska et al., 2015). However, the different nature 

of the considered techniques – some of them principally of classificatory nature (e.g., SVM) and 

others principally addressed for regression (e.g., MLPE) – made it necessary to check significant 

differences in the predictions. Therefore, prior to developing the BHDCs, the bivariate boxplots for 

the values of WUA and SA included in the HTS (July to September) were compared using the 

package boxplotdbl (Tomizono, 2013), and thus only those predictions that were similar were kept 

for subsequent analyses. The boxplotdou function considers that two distributions are similar when 

the square which is surrounded by the first and third quartile has an overlap. 
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3 Results 

3.1 Habitat suitability modelling 

3.1.1 Performance 

In regards to the Boolean outputs, none of the considered techniques proved markedly superior to 

any other during the cross-validation phase. Support Vector Machines (SVMs) yielded the highest 

True Skill Statistic (TSS), whereas the zero-order Takagi-Sugeno-Kang fuzzy rule base system 

(TSK) yielded the lowest (Table 3). The TSK presented three untrained rules corresponding to the 

combinations of High velocity and High depth. The five techniques rendered varying Sensitivity (Sn) 

but always within the range from ca. 0.7 to ca. 0.8, whereas the range for Specificity (Sp) was 

narrower and, in any case, inferior to the Sn. The Multi-Layer Perceptron Ensemble (MLPE) 

optimization minimized the weighted Mean Squared Error (MSE) with eight MLPs, and thus it did 

not allow comparison. Conversely, the patterns on the performance of the ultimate models upon the 

complete dataset (i.e. the one without cross-validation) showed notable divergences. Random forests 

(RF) performed significantly better than any other technique, whereas the performance of the TSK 

was the worst. Regarding the probabilistic outputs, four out of five techniques rendered suitability for 

most of the feasible range (i.e. from zero to one), and only the SVM presented a significantly 

trimmed output range with a maximum value of 0.38. 

 

Table 3 Summary of the Boolean-related performance criteria; True Skill Statistics (TSS), Sensitivity (Sn), 
and Specificity (Sp), and ranges of probabilistic outputs calculated during the training phase (cross-validation) 
and for the ultimate models. 

Cross-validation Overall 
 തതതത Min Max TSS Sn Sp Min Max࢖ࡿ തതതത࢔ࡿ തതതതതࡿࡿࢀ

GAM 0.45 0.80 0.64 0.00 1.00 0.48 0.86 0.62 0.00 1.00 
MLPE weighted Mean Squared Error = 0.18 0.51 0.81 0.70 0.01 0.91 

RF 0.43 0.74 0.69 0.04 0.96 0.69 0.99 0.70 0.04 0.98 
SVM 0.49 0.78 0.70 0.01 0.35 0.49 0.80 0.69 0.01 0.38 
TSK 0.34 0.69 0.65 0.00 1.00 0.40 0.70 0.70 0.00 0.98 
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3.1.2 Partial dependence plots 

The partial dependence plots reflected the internalities of every technique. The plots for TSK 

presented piecewise liner segments caused by the triangular membership functions and the plots for 

RF presented erratic patterns induced by the aggregation of the component random trees (Fig. 3). All 

of them coincided in assigning low suitability to low velocity, increasing up to ca. 0.5 m/s, but the 

TSK’s achieved optimum suitability close to 1 m/s. For greater velocities, the techniques differed in 

the modelled suitability; SVM’s and TSK’s plots decreased whereas the other techniques persisted in 

high suitability. The partial dependence plots for depth showed a strong similarity across the 

techniques, but the SVM’s showed an optimum plateau from 0.5 m to 1.5 m depth, after which 

suitability decreased. Conversely, the rest of them suggested a monotonic increase in habitat 

suitability. The partial dependence plots for substrate showed the optima around four (approximately 

fine gravel). 

 

 

Fig. 3. Partial dependence plots calculated by means of the five techniques. The ones for the Support 
Vector Machine were depicted in a different scale because it rendered markedly inferior values. The 
corresponding axes appear depicted in the right side. 
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3.2 Hydrologic modelling 

3.2.1 Rainfall-runoff and water temperature modelling – M5’ 

The M5’ rainfall-runoff model optimization achieved the NSE of 0.78±0.14 with only nine multi-

linear models (i.e. leaves), using a committee of ten M5’ models and assisting the predictions with 

two neighbouring cases (Fig. 4). 

 

 

Fig. 4 Rainfall-runoff model performance (observed vs. predicted plot). Black dashed line depicts the 
highest simulated flow (6.5 m3/s). 

 

The M5’ water temperature model achieved almost perfect accuracy (NSE of 0.97 ± 0.00) for the 

three complete cycles (summer to spring) encompassed in the training data (Fig. 5). The ultimate 

model consisted of a committee of six members with 32 rules, whereas the predictions were assisted 

by nine neighbouring cases. 
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Fig. 5 Water temperature model performance (observed vs. predicted plot). Grey dashed line depicts the 
limit of the thermal niche (18.7 ºC). 

 

3.2.2 Summertime flow regime under the short-term (2011-2040) climate change scenarios 

The simulated daily flows for summertime (July to September) suggested a decrement of ca. -29 

% for the RCP 4.5 and of ca. -20 % for the RCP 8.5, although the maximum flow predicted for the 

RCP 8.5 was larger than the maximum observed in the historical flow series (Table 4).Error! 

Reference source not found. For the historical time series, the RCP 4.5 and the RCP 8.5 scenarios, 

2, 0.5 and 1 % of the predicted flows were beyond the largest simulated flow (i.e. 6.5 m3/s) (Fig. 6). 

The two scenarios predicted the complete depletion of river flow for several non-consecutive days 

(Table 4). The complete flow and water temperature series appear depicted in the Appendix A. 
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Fig. 6. Histogram of the summer daily flows for the historical time series and the Representative 

Concentration Pathways (RCP) 4.5 and 8.5. For the historical, the RCP 4.5 and the RCP 8.5 scenarios, 2, 0.5 
and 1 % of the predicted flows were beyond the largest simulated flow (i.e. 6.5 m3/s) – dashed line. 

 

During summertime, the water temperature model predicted increases of ca. +4.0% for the RCP 

4.5 and ca. +4.2% for the RCP 8.5. These predictions overtook the thermal niche threshold (18.7 ºC) 

more frequently than the historical temperature series, and even surpassed the physiological 

threshold (25 ºC) (Table 4). 

 

Table 4 Principal statistics of the summer daily flows and water temperature for the historical time series 
and the Representative Concentration Pathways (RCP) 4.5 and 8.5 scenarios. Between brackets the 
percentages of variation. 

 Flow (m3/s) Water temperature (ºC) 
Historical RCP 4.5 RCP 8.5 Historical RCP 4.5 RCP 8.5 

Min. 0.46 0.00 (-100.0%) 0.00 (-100.0%) 15.44 13.57 (-12.1%) 12.52 (-18.9%)

1st Qu. 1.52 0.98 (-35.5%) 0.97 (-36.2%) 18.44 18.80 (2.0%) 18.77 (1.8%) 

Median 2.17 1.48 (-31.8%) 1.61 (-25.8%) 19.07 19.87 (4.2%) 19.77 (3.7%) 

Mean 2.44 1.74 (-28.7%) 1.94 (-20.5%) 19.11 19.90 (4.1%) 19.81 (3.7%) 

3rd Qu. 3.10 2.27 (-27.0%) 2.58 (-17.0%) 19.80 21.07 (6.4%) 20.95 (5.8%) 

Max. 16.52 8.66 (-48.6%) 19.36 (14.9%) 24.67 25.50 (3.4%) 26.14 (6.0%) 
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3.3 Shifts in the suitable habitat for the large brown trout 

3.3.1 Habitat-flow curves 

The Weighted Usable Area (WUA) versus flow curves inferred with the five different techniques 

broadly coincided, except for SVM (Fig. 7). The WUA-flow curves predicted a parabolic increase of 

WUA in accordance with the flow rate, whereas the SVM’s presented a decrease beyond ca. 2 m3/s. 

The Suitable Area (SA) flow curves also exhibited a similar pattern. Therefore, nearly all techniques 

predicted a parabolic increase in SA with the flow rate, whereas the SVM predicted a significant 

decrease in SA for higher flows (i.e. beyond ca. 2 m3/s). To assign a value of WUA and SA beyond 

the highest simulated flow (6.5 m3/s), the curves were extrapolated using the smooth.spline function 

in R (R Core Team, 2015). 

 

 

Fig. 7. Weighted Usable Area (WUA) vs. flow and Suitable Area (SA) vs. flow curves inferred by means 
of the five machine learning techniques. Dashed segments correspond to the extrapolation performed to assess 
the highest predicted flows (i.e. beyond 6.5 m3/s). 

 

3.3.2 Models’ selection 

The WUA values obtained (interpolated) for the SVM clearly differed from those provided by 

the other techniques (Fig. 8). The boxplotdou function did not aggregate this distribution, 
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although it showed overlap in the y-axis (SA), and consequently, it remained in subsequent 

analysis based on the SA. 

 

 

Fig. 8. Bivariate boxplots depicting the similitude between the interpolated Weighted Usable Area (WUA) 
and Suitable Area (SA) inferred using the five machine learning techniques. The depicted values are restricted 
to summertime (July to September). 

 

3.3.3 Bivariate Habitat Duration Curves – BHDCs 

The scatterplot of the inferred WUA and the corresponding water temperatures suggested that the 

two scenarios (RCP 4.5 and 8.5) may exert similar alteration to the available suitable habitat (Fig. 9). 

Both scenarios predicted an increment in the number of days with smaller WUA and/or with higher 

temperature. The RCP 4.5 scenario predicted a slightly larger increase in temperature whereas the 

RCP 8.5 predicted an increase in the frequency of lower WUA values. The Bivariate Habitat 

Duration Curves (BHDCs) predicted worse habitat conditions during 86 % and 79 % of the days for 

the RCP 4.5 and 8.5 respectively. The rainfall-runoff predicted the complete depletion of the river for 

several isolated days, and consequently the study site would be unsuitable in such conditions. 
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Fig. 9. Scatterplot of Weighted Usable Area (WUA) vs. water temperature (left) and Bivariate Habitat 

Duration Curves (BHDCs) inferred for the historical and the Representative Concentration Pathways (RCP) 
4.5 and 8.5 (right). Iso-lines on the right plot represent the probability of exceedance. Grey dashed line depicts 
the limit of the thermal niche (18.7 ºC) and the black one the physiological niche (25 ºC). 

 

The scatterplot of SA values and water temperature suggested that the two scenarios (RCP 4.5 and 

8.5) may also exert similar alteration (increasing frequencies of low SA and high temperature) (Fig. 

10), although the predicted SA values were smaller than their WUA counterparts. The RCP 4.5 

predicted a slightly larger increase in temperature and the RCP 8.5 predicted lower values of SA. 

Consequently, the BHDCs predicted worse habitat conditions during 85 % (RCP 4.5) and 77 % 

(RCP 8.5) of the days on the basis of lower SA values and/or higher water temperature. In 

accordance with the Boolean nature of the SA, the study site was predicted to be more frequently 

unsuitable even without the complete depletion of river. 

Under the historical conditions, the study site experienced extended periods of time with the water 

temperature above the thermal niche threshold (18.7 ºC), but it never surpassed the physiological 

niche threshold (25 ºC). Conversely, the predicted water temperature in the RCP scenarios would 

extend the period beyond the threshold of the thermal niche and even surpass the physiological niche 

threshold (threshold of incipient lethality). 
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Fig. 10. Scatterplot of Suitable Area (SA) vs. water temperature (left) and Bivariate Habitat Duration 
Curves (BHDCs) inferred for the historical and the Representative Concentration Pathways (RCP) 4.5 and 8.5 
(right). Iso-lines on the right plot represent the probability of exceedance. Grey dashed line depicts the limit of 
the thermal niche (18.7 ºC) and the black one the physiological niche (25 ºC). 

 

4 Discussion 

4.1 Habitat suitability models’ reliability – Performance and ecological relevance 

4.1.1 Performance 

This study developed five regularized habitat suitability models that performed satisfactorily, and 

their predictive capability did not show significant differences. However, like in previous studies, 

Random Forests (RF) proved to be the most accurate approach and Fuzzy Rule Base Systems 

(FRBSs) – specifically the zero-order presence-absence Takagi-Sugeno-Kang FRBSs (TSK) – the 

least (Bouska et al., 2015; Fukuda et al., 2013). 

There is a controversy about the generalization capability of RF therefore, it is possible to 

encounter positive (Bouska et al., 2015; Vezza et al., 2015) and negative (Wenger and Olden, 2012) 

evidences. The number of allowed splits and the number of cases in the terminal nodes can currently 

be constrained (Liaw and Wiener, 2002); however, our experience suggested that, due to the random 
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nature of RF training, such restrictions become meaningless after the aggregation of the individual 

predictions. The volatility of RF causes of the erratic patterns depicted in the partial dependence 

plots that disagree with the precepts of the ecological gradient theory (Austin, 2007). Consequently 

from our personal viewpoint, and despite the higher predictive accuracy, such a technique should not 

automatically relegate the other alternatives. 

FRBSs underperformance is common (e.g. Fukuda et al., 2013); however, they are not necessarily 

outperformed by any other technique (Mouton et al., 2011). FRBSs such as the TSKs are potentially 

interpretable universal approximators (Castro, 1995; Fukuda et al., 2011b), but increasing accuracy 

typically relies on either increasing the number of fuzzy sets and/or in the modification of their 

membership functions, although such modifications tend to be detrimental to their interpretability 

(Fukuda et al., 2011b). Consequently, none of these modifications has been popularized, the number 

of fuzzy sets and membership functions are usually set beforehand, and the ultimate performance is 

based on that single trial (Fukuda et al., 2013; e.g. Mouton et al., 2009; Mouton et al., 2011; Muñoz-

Mas et al., 2012). Nevertheless, a model’s performance strongly depends on the problem at hand, 

and therefore testing the capabilities of FRBSs would be always worthwhile, especially in 

exploratory analysis for unknown species. 

The Generalized Additive Model (GAM) and the Multi-Layer Perceptron Ensemble (MLPE) 

posed no major concern because the actual implementation of the packages – mgcv and monmlp – 

allow fully control of the models’ complexity either by controlling the number of knots or the 

number of nodes. Their intermediate accuracy was in line with the larger regularization which 

rendered partial dependence plots ecologically sound. Setting aside the irregularities of RF’, the 

GAM’s and MLPE’s partial dependence plots fitted well the RF’ ones – with very little 

regularization – so they are likely to reflect the underlying relationships. 

Finally, the Support Vector Machine (SVM) presented the largest discrepancies. The probabilistic 

output of the SVM was strongly affected by class overlapping and low prevalence, and Platt’s (2000) 
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approach was unable to render comparable outputs. The use of class weights modifies the 

discriminant threshold, and consequently the Boolean outputs did not present such marked 

differences. Accordingly, the use of classificatory SVM in studies where a gradual (i.e. probabilistic) 

output is desired – for instance, to calculate Weighted Usable Area (WUA) – should be discouraged 

unless the different classes present an easy discrimination. 

 

4.1.2 Ecological relevance 

Regardless of the previous considerations, from an ecological viewpoint SVM rendered 

trustworthy results because several authors have suggested a pronounced decrease in habitat 

suitability beyond a water velocity of ca. 0.5 m/s (Ayllón et al., 2010; Jowett and Davey, 2007). That 

decrease is certainly reasonable because of the increased energy costs of standing higher velocities 

(Rincón and Lobón-Cerviá, 1993), and thus the patterns of the SVM’s and TSK’s partial dependence 

plots were considered credible. In contrast, the remaining techniques suggested high habitat 

suitability beyond 0.5 m/s. This pattern was previously discussed by Muñoz-Mas et al. (2014b), and 

it was hypothesized that the higher water temperature was playing an important role by enhancing 

the natatorial capacity of brown trout. It could be argued that the strong regularization handicapped 

the proper modelling by tightening the partial dependence plots. However, RF lacks of effective 

regularization and the corresponding partial dependence plot matched the ones for the GAM and the 

MLPE. Thus, the potential influence of the strong regularization was ruled out. Data on high 

velocities were scarce within the training dataset, and it was considered that using a models’ 

ensemble reduced the ultimate suitability assigned to high velocity, rendering predictions more 

consistent with the ecological knowledge about the species. 

In natural rivers, large brown trout has been reported to prefer pools (Armstrong et al., 2003; 

Ayllón et al., 2010), and consequently several authors suggested a monotonic increase in suitability 

related to depth (Ayllón et al., 2010). Others have suggested either a monotonic increase or slight 
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decrease beyond 3 m deep on the basis of several changes on the models’ settings (Jowett and 

Davey, 2007). Such patterns perfectly fit the ones depicted in the depth partial dependence plots, 

further supporting our modelled preferences. 

Finally, large brown trout has been observed occupying preferably medium-to-coarse substrates 

(Armstrong et al., 2003; Ayllón et al., 2010), which agrees with the patterns depicted in the partial 

dependence plots for substrate. 

In conclusion, the models’ ensemble in this study fit well with previous knowledge about brown 

trout. Moreover, the differences between the partial dependence plots and the consequent differences 

in the habitat suitability assessment would be attenuated by assembling the different predictions, 

highlighting the benefits of using models’ ensembles and increasing the reliability of the predicted 

subsequent shifts in suitable habitat. 

 

2.5 Flow regime alteration under the climate change scenarios 

The optimal rainfall-runoff and water temperature model were built with a relatively low number 

of multi-linear models (i.e. members in the committee and leaves in the tree components) and 

therefore presented good generalization. The Nash-Sutcliffe Efficiency (NSE) of the rainfall-runoff 

model (0.78) was superior than the median value ሺܰܵܧ෫ :	0.70ሻ of several approaches reported by 

Zhuo et al. (2015), whereas the water temperature model posed no major concern since the NSE was 

close to the maximum (NSE: 0.96). 

Regardless of the cautious or pessimistic nature of the Representative Concentration Pathways 

(RCPs), both proposed similar decreases in flow rate as well as increases in water temperature. The 

RCPs scenarios are based on the Fifth Assessment Report of the Intergovernmental Panel on Climate 

Change (IPCC, 2014). Therefore in accordance with Rogelj et al. (2012), the RCP 8.5 would better 

fit the A1FI and the RCP 4.5 the B1 scenarios of the Special Report on Emissions Scenarios (SRESs) 

(Nakicenovic et al., 2000). In the Iberian Peninsula, studies focused on the SRESs have been focused 
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principally in the A2 and B2 scenarios (Chirivella Osma et al., 2014; Estrela et al., 2012). As a 

consequence, comparisons should be based on general trends rather than specific values. 

Our results suggest similar decreases in the mean value of the running flow ca. -25 % (RCP 4.5: -

28.7 % and RCP 8.5; -20.5 %) than the year-round value predicted for the entire Jucar River basin 

using the B2 scenarios of the SRESs (ca. -20 %), but disagree with the predictions based on the A2, 

which suggested an increase (ca. +25 %) (Chirivella Osma et al., 2014). Unlike the SRESs that 

predicted divergent patterns of changes in rainfall (with increases in the A2 and decreases in the B2), 

the RCP scenarios broadly coincided with the predicted changes in rainfall and temperature. Thus, 

collectively, they should be viewed as the extension of the decreases in water yield observed in the 

Cabriel River basin, which has suffered a significant reduction in mean flow since 1980 (Estrela et 

al., 2012). Historically, the strong influence of the Mediterranean coastal convective phenomena has 

been poorly reproduced by the general circulation models probably causing the divergent predictions 

(Chirivella Osma et al., 2014). In this regard, our results would corroborate Santiago et al. (2015) 

statement that the use of the latest scenarios established for climate change studies represent a 

refinement over previous scenarios because they jointly predict a decrement of the flow rate. 

Though performed in alpine streams, the predicted decrease in running flows broadly coincided 

with those predicted in several studies on the topic performed abroad (e.g. Hauer et al., 2013; 

Papadaki et al., 2016; Viganò et al., 2015). Nevertheless, in a short time span, the RCP scenarios are 

going to be likewise superseded by the new Shared Socioeconomic Pathways (SSPs) (Kriegler et al., 

2012). The new SSPs consist of a framework for climate change research that combines the former 

RCPs with alternative pathways of socioeconomic development (O'Neill et al., 2014). Consequently, 

the results presented herein could be also superseded in the near future. 
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4.2 Shifts in the suitable habitat for the large brown trout 

The relationship between climate change, river flows and salmonid’s survival has been previously 

suggested (Tisseuil et al., 2012). However, in the Iberian context, the only available study that 

considered flow rate predicted stable carrying capacity and concluded that only temperature will 

affect the species distribution (Almodóvar et al., 2012). Conversely, our results highlighted the 

crucial impact of flow alteration, since we predicted unsuitable condition and even the complete 

depletion of the river segment. Our results are in line with some of the aforementioned studies 

performed in mountainous areas (Hauer et al., 2013; Papadaki et al., 2016) where significant 

reductions in flow rate were accompanied by pronounced reductions in the suitable habitat available. 

Channel morphology plays a fundamental role in the impact of flow decrease (Turner and 

Stewardson, 2014), and therefore others also predicted stable carrying capacity during summer 

(Viganò et al., 2015). Furthermore, the mesomediterranean region of the Iberian Peninsula is likely 

to experience a significantly larger reduction in water yield (Chirivella Osma et al., 2014; Salmoral 

et al., 2015) in comparison to those areas described by Almodóvar et al (2012), highlighting the need 

for detailed studies to combine the effect of climate change (i.e. flow rate) with river morphology. 

The WUA-based assessment rendered slightly more optimistic predictions than the SA-based one. 

This pattern was caused by the mean nature of the WUA indicator, since every area with a WUA 

value greater than zero adds a small quantity to the final summed prediction. Conversely, the 

Boolean output used in the calculation of the SA rules out any area with suitability inferior to 0.5 – 

independently of the suitability – and thus, lower values appear in the corresponding Bivariate 

Habitat Duration Curve (BHDC). In this regard, the WUA has been criticized because a large area of 

relatively unsuitable conditions can render similar values than one smaller but largely suitable area, 

and thus, in some cases, is an ambiguous indicator of overall suitability. It is indubitable that more 

gradual predictions are significantly more informative that Boolean predictions, and thus resulting in 

the typical preference for abundance-related indices over dichotomous ones (Fukuda et al., 2011a). 



 

37 
 

However, these differences were not as relevant in this study, and the ultimate shifts in the suitable 

habitat available should be between both BHDCs. 

Fluctuations in relative abundances have been significantly correlated with variables reflecting the 

severity of summer droughts (e.g. minimum flow) (Magalhães et al., 2007). Furthermore, it has been 

demonstrated that water temperature affects the feeding capability of brown trout (Elliott and Elliott, 

2010). Therefore it can be asserted that large brown trout is going to experience an increasing 

number of days (i.e. ca. 82 %) were the suitable habitat – physical or, specifically, thermal – is going 

to be noticeably impoverished. Furthermore, on the basis of the predicted flow depletion, the species 

could be even extirpated from the study site. Brown trout has been successfully introduced due to its 

ecological flexibility and has a worldwide distribution (Klemetsen et al., 2003), and thus, in regard to 

its applied thermal thresholds, we considered them only a general guideline for the extant population 

of brown trout (Muñoz-Mas et al., 2014b), as the study site typically has a water temperature above 

the threshold of the thermal niche (i.e. 18.7 ºC). Moreover, the threshold of the physiological niche 

(threshold of incipient lethality) depends on the dissolved oxygen – neglected in this study – and the 

specimens’ tolerance. Consequently, we could not suggest the species extirpation solely based on the 

increments in water temperature (mean increment of ca. +4 %). Previous studies may have different 

results by considering specific thermal thresholds (Almodóvar et al., 2012) or by considering 

climate-induced changes in the flow regime (Santiago et al., 2015). 

A recommendable method to enhance the resistance and resiliency of brown trout is to undertake 

mitigation and restoration measures focused on creating or facilitating access to thermal and 

hydraulic refugia (Almodóvar et al., 2012). Brown trout could search for refugia in deeper pools, as 

we confirmed their existence in previous studies (e.g. Vezza et al., 2015), if naturally permeable 

barriers do not become impassable due to reduced flows. However, in the Cabriel River, thermal 

refugia with the sufficient capacity to harbour an extant population are unlikely to be available 

because they should be located in the headwaters which may suffer the largest effect of decreased 
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flows (Tisseuil et al., 2012). In addition, brown trout cohabits with several cyprinid species (Costa et 

al., 2012; Vezza et al., 2015) that may compete with brown trout for space and trophic resources 

(Santiago et al., 2015). Besides, brown trout is a territorial fish (Ayllón et al., 2010) thus such a suite 

of inter- and intra-species competition for waning resources is likely to be fierce. Therefore, we can 

also assert that climate change, including global warming, could be particularly dramatic in the 

basins of the Iberian Peninsula flowing to the Mediterranean Sea due to the synergistic effects of 

warming and flow reduction and the consequent increase in the competition for resources (Santiago 

et al., 2015). 

In accordance with the limited capacity to manipulate the Cabriel River suggested by other 

authors (Palmer et al., 2008), we would appeal to increase the grade of protection of the Cabriel 

River basin and the frequency and extension of monitoring programmes to properly anticipate 

ecosystem bottlenecks. We acknowledge that the negative effect of climate change is unlikely to be 

supressed by such actions, although intensified surveillance should allow the proper implementation 

of adequate management actions (e.g., catch and release or re-stocking) to reduce the predicted 

impact of climate change in the Cabriel River. 

 

5 Conclusions 

The shifts in the suitable habitat available for the large brown trout (body length > 20 cm) under 

two short-term (2011-2040) climate change scenarios – Representative Concentration Pathways 

(RCPs) 4.5 and 8.5 – was studied in a segment of the Cabriel River following the physical habitat 

simulation approach. The use of a model’s ensemble of five different machine learning techniques 

(generalized additive models, multilayer perceptron ensembles, fuzzy rule base systems, random 

forests and support vector machines) reduced discrepancies in modelled habitat preferences. The 

ensemble had a superior fit to the prior knowledge of brown trout habitat preferences – selecting 

relatively high flow velocity, large depth and coarse substrate – and increased the reliability of the 
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predicted climate-change shifts in suitable habitat. Support Vector Machines (SVMs) were strongly 

affected by class overlapping and low prevalence, and thus the probabilistic output was deemed 

inappropriate, and banned in the ensemble, to calculate the Weighted Usable Area (WUA). The flow 

rate and water temperature were modelled with M5’ models trees achieving excellent performance 

(NSE of 0.78 and 0.97 respectively). M5’ predicted similar alteration for both RPCs scenarios (4.5 

and 8.5), mean summertime decrease in flow rate of ca. - 25 % and increase in water temperature of 

ca. +4 %. Furthermore the Bivariate Habitat Duration Curves (BHDCs) based on the WUA and the 

Suitable Area (SA) broadly matched, indicating an increase in the number of days with less suitable 

habitat and/or with higher water temperature. Large brown trout are predicted to endure worse 

habitat conditions ca. 82 % of the days; however, the trout in the Cabriel proved to tolerate higher 

temperatures than other extant populations in the Iberian Peninsula. Finally, in accordance with the 

forecasted depletion of river flow, we predicted a potential extirpation of the species from the study 

site during short time spans. This study represents a valuable example of the ultimate impacts of 

climate change in a cold-water species such as brown trout. Consequently, we would increases the 

grade of protection for the Cabriel River and the frequency and extent of the monitoring programs to 

anticipate ecosystem bottlenecks. 
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APPENDIX A 

Flow regime under the short-term (2011-2040) climate change scenarios 

The predicted flow time series under Representative Concentration Pathways (RCP) scenarios 

based on the ICHEC-EC-EARTH (RCP 4.5 and 8.5) showed low variability, whereas the CCCma-

CanESM2 roughly mimicked the historical time series but with lower flow rates (Fig. A 1). 

 

 

Fig. A 1 Flow time series for the historical and Representative Concentration Pathways (RCP) 4.5 and 8.5 
scenarios. Black dashed line depicts the highest simulated flow (i.e. 6.5 m3/s). 

 

Water temperature was determined by the current season (Fig. A 2), and therefore the water 

temperature predicted under the RCP scenarios (4.5 and 8.5) largely mimicked the historical time 

series but with higher temperature. The largest increase was predicted in winter whereas the 

predicted increase during summertime was of inferior magnitude. These predictions overtook the 

thermal niche threshold (18.7 ºC) more frequently than the historical temperature series, and even 

surpassed the physiological threshold (25 ºC). 
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Fig. A 2 Water temperature time series for the historical and Representative Concentration Pathways 
(RCP) 4.5 and 8.5 scenarios. Grey dashed line depicts the limit of the thermal niche (18.7 ºC) and the black 
one the physiological niche – threshold of incipient lethality – (25 ºC). 

 


