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Abstract. We show that specially designed two-dimensional arrangements
of full elastic cylinders embedded in a nonviscous fluid or gas define (in
the homogenization limit) a new class of acoustic metamaterials characterized
by a dynamical effective mass density that is anisotropic. Here, analytic
expressions for the dynamical mass density and the effective sound velocity
tensors are derived in the long wavelength limit. Both show an explicit
dependence on the lattice filling fraction, the elastic properties of cylinders
relative to the background, their positions in the unit cell, and their multiple
scattering interactions. Several examples of these metamaterials are reported and
discussed.
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1. Introduction

Recently, there has been great interest in studying the properties of sonic crystals (SC), a name
that specifically defines periodic distribution of sound scatterers embedded in a fluid ofLh gas [
Their properties in the low-frequency limit (homogenization) have been studied by several
groups in the last few yearg]f[15] for their potential applications as refractive devices. The
refractive properties of these systems are controlled by their effective acoustic parameters; i.e.
the speed of sound.s, and the dynamical mass densiiy;. The problem of calculating the
effective parameters of a heterogeneous medium have been studied in th&6past, [but

always from a statistical point of view. The underlying periodicity of SC makes it possible to
calculatece from the acoustic band structure in the low frequency limit by using a plane wave
expansion (PWE)J], but this method does not provide the valuepgf. More recently, Mei

et al [10] working in the framework of multiple scattering theory (MST) were also able to
obtain from the acoustic band structures the expressions fordgptnd pe, and claim their
validity for any filling fraction. However, we demonstrate here that their expressions are only
valid at low volume fractions and coincide with those already obtained by these authors dealing
with finite systems11, 12].

In practical situations, SC are made by clusters with a finite number of cylinders, and
therefore their properties in the long wavelength limit have been studied by means of MST
without doing any averaginglfl, 12, 14]. In other words, each scatterer was considered
individually and their positions and mutual interactions into ideal hexagonal and square lattices
(isotropic lattices) were fully taken into account. Analytical expressions were obtained for the
isotropic mass density and sound velocity as a function of the SC parameters.

In the present work, we go a step further and develop an MST-based procedure to
characterize the homogenization of two-dimensional (2D) SC as a function of the positions
and elastic properties of a scatterer in the unit cell. We have derived rigorous expressions for the
dynamicper as well force that have been used to design anisotropic acoustic metamaterials
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whose properties can be tailored by changing the positions of the scatterers in the unit cell
and/or their material constituents.

Itis interesting to point out that quite recently Cummer and SchaBpHave predicted that
acoustic cloaking similar to that previously proposed for electromagnetic wa9ea(] should
be possible by means of acoustic materials having anisotropic mass density and sound speed.
In this regard, this work demonstrates that acoustic materials with anisotropic parameters are
physically realizable. So, in a future work we will look for the recipe to build acoustic materials
with the properties shown irip].

The paper is organized as follows. Sectigives a brief introduction to the basic equations
of acoustic wave propagation in anisotropic media. In secBowe summarize the main
ingredients of MST that will be used in the following sections. Particularly, we deduce the
secular equation from which the homogenization parameters are explicitly obtained.

Afterward, in sectiord, the effective parameters are rigorously derived by studying the
low frequency limit of the acoustic band structure given by the secular equation. Firstly, the
sound speed is analytically derived and an expression is obtained that depends on the so called
anisotropy factor of the lattice. Secondly, the well-known expression for effective bulk modulus,
Bett, IS demonstrated to be hold for the systems. Finally, the anisotropic mass density is also
derived from the previously knoway; andBeg. Results for parametecss andpes are explicitly
calculated for several lattices of rigid cylinders in air. Sectareports results for the case in
which the elastic properties of cylinders are fully taken into account. The work is summarized
in section6.

2. Anisotropic wave equation

An anisotropic acoustic medium can be characterized by its anisotropic mass densityggnsor,
and the scalar bulk moduluB, [21]. The state equations for the particle velocity vect@nd
for the acoustic pressure fieRi are

ax Zp“ =0 (1a)
81)] 10P
—+—-——=0. 1b
ijaxj' B ot ( )

As will be seen later, it is worth working with the reciprocal density tensor, so that equations (1)
can be cast as:

3P avk
2: o T =0 2
IO|(| aXI ’ ()

which has been obtained by using the unitary prop@jtyolglpij = byj.
Now, taking the derivative with respect x@ and adding in the subindéx

_, 9?P d vk
I AL Sl Y @
K XcdX; ot ” d Xy

From equationib) the wave equation for the acoustic pressure is finally obtained:

2P  192P
ot - ——=0. 4
;pk' %% B ot “)
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If we assume plane wave solutions with angular frequesicy
P, t) = P(w)e e, (5)
wherek = k cosfX +k sindy is the wavenumber. Then, its insertion in equatidngives:

[or COS 0 + pi1SIP 6 + (o + pyst) SiNG cOSH | K2 — % —o. (6)
And the speed of sound,= w/k, is

C*(0) = By, COS 6+ p 1 SIF 6 + (p} + py0) SiNG coso], (7)
which defines a tensog;;, such that

Cizj = B,oifl, (8)

this is the well-known Wood'’s lawZ22] generalized to the case of an anisotropic medium.

3. MST

A comprehensive account of MST can be found in textbodX3§ pnd articles 24, 25].

Therefore, this section briefly reports the basic ingredients to understand the rest of the paper.
Consider a cluster dN parallel cylinders with arbitrary transversal section locateRat

(witha =1, 2,..., N) and embedded in an acoustic medium characterized by its sound speed

Co. Let us also assume that an external fi€é, with frequencyw and wavenumbegimpinges

the cluster:

P(r, o1 k) = Y~ Ay (kr)e®, (9)
q

wherek = w/c, and(r, ¢) are the polar coordinates of an arbitrary point in the 2D space. The
total pressure field will be given blp = P+ P®, whereP¢is the total scattered field by all
the individuale cylinders:

P @)= > (AqHq(kr,)d®, (10)

a (g=—o0
where H, is theqth order Hankel function of first kind, an@,, ¢,) are the coordinates with

the origin translated to the center of aecylinder, i.er, = — R,, as shown in figuré. (A,)q
are the coefficients to be determined.
The total field impinging on the-cylinder can be expressed by

Pu(fa. @oi K) = Y (By)sJs(kr,) €%, (11)

where the coefficient6B, ), are related to théA, )y through theT matrix [26]:
(A)g =Y _(To)as(Bo)s. (12)
S

being (T,)qs the elements of th& matrix associated with the-cylinder. Expressions for the
T matrix for a fluid-like cylinder and for an elastic cylinder are known and can be found
elsewhere?5, 27).
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P(r, ¢)

N\

Figure 1. Definition of variables in the multiple scattering algorithm reported in
section3.

X

After a few manipulations, the solution of the problem is:

(Ada=D_ D> > (Mg (Sp)is A, (13)
B r S
where
(S)rs =) _(T)rgs_q(kR,)ED%, (14)
q
(Maﬂ)rs = 5r35aﬂ - (Gaﬂ)sra (14b)
and
(Gupdrs = (1= 80p)(To)rg Hy-s(KRy) €SP (15)

q

3.1. Band structure calculation

If the cylinders are ordered in a 2D lattice, thenpositions are defined by the Bravais lattice
R, = n1a; + n,a,, wheren; andn, are integers and, anda, are the primitive vectors:

a = X = ax, (16a)
a, = @, COSPX + a, Singy. (16b)

Bloch theorem relates tha&-coefficients at any arbitrary-site with those corresponding
to the cylinder at the origin of coordinates:

(Au)g = €T (Ag)q, (17)
whereK is a Bloch wavenumber. This relationship applied18) @llows to obtain:
(AO)r - Z(Ao)sérs = (S))rs ASXta (18)
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Figure 2. General lattice in the 2D spa®.anda, represent the primitive lattice
vectors an@ is the angle between them.

where

érs = Z Trq Z eiK.R’S Hq—s(k R)ﬁ)ei(&q)ﬂoﬂ (19)
g p#0
has been obtained by considering that all cylinders are equal{i2.T; V). Also, it can be
cast in terms of sums in the reciprocal lattice by using the method develope@|in [

Y T Hy (KR €07 = (—1)* ! (k, K), (20)
p#0
where
Sk K) = F(k K)+iS'(k, K), (21a)
S’ (k, K) = =30, (21b)
Y N ) 2 il £ JI+1(Gh Rmin) il6n
S (k, K)‘JI+1(k len) = |:Y| (k len) + ﬂkRnin:| dio 4 Vd Xh: Gh(Gﬁ . kz) e (210)

In these expression§, = K +h;b; + hyb, is a vector (in the reciprocal space) obtained by the

translation of primitive reciprocal lattice vectdsg andb, and adding the Bloch wavevectr.
Vg is the area of the 2D unit celMj = |a; x a,] in figure 2) and Ry, is the smaller distance
between corners of the unit cell.

With no external field A = 0), the equationi(8) becomes

A=) T (k K)A =0, (22)

where the subindex 0 has been omitted for simplification. This is a set of coupled linear

equations that in matrix form i81 - A = 0, the elements of th®l matrix are:
Mrs = (Srs - Z Trq (k) Slg_q- (23)
q

The solution of the secular equation ddt= 0 determines the acoustic bari€iéw).
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4. Effective parameters for lattices of rigid cylinders

In what follows, we present a rigorous derivation of the effective parameters for the general
case of lattice cylinders embedded in a nonviscous liquid or a gas. The theory developed here
is valid for all kind of material cylinders: rigid, fluidlike and full elastic cylinders. Firstly, the
effective speed of sound is obtained by studying the low frequency limit of acoustic bands.
Then, the effective bulk modulus is obtained frdgg, the first diagonal element of the T matrix
corresponding to a cluster that is anisotropic. Finally, the anisotropic effective mass density is
obtained from the relatiot; = Ber/ pefr-

In practical applications the condition of rigid cylinders (i@~ oo) is the common
situation encountered when working with solid cylinders (made of, for example, metals like
lead, iron or aluminium) embedded in air. So, in this section, we present a comprehensive
analysis of results for this particular case and results for elastic cylinders will be studied in
sectionb.

4.1. Effective speed of sound

In the long wavelength limitk — 0 (i.e. w — 0), the dispersion relatiork (), for sound
waves propagating in a periodic medium becomes linear and an effective speed of sound can be
obtained fromces = lim,,_.o(w/|K (w)]), which can also be cast as:

Eeff (24)

= Kdor
whereCest = Cett/Cp IS the effective speed of sound relative to that of the background. Hereatfter,
an overlined variable will be used to denote the corresponding quantity normalized to that of
the background. Moreoveék is the wavevector in the embedded backgroundki=e |k| = w/cp
andK (k) = K cosox + K singy (6 being the polar angle defined by).

To study this limit, it is convenient to define frequency-normalized coefficiéqtsuch
that

Aq(k) = Aq(k)k1aI=%a, (25)
Here, we are dealing with lattices of circular-shaped cylinders, which have diagonatrices.
Then, the equation for coefficients, is

Ag—Tq ) Sl kEmelime A =0 (26)
S
and we obtain for thé1 matrix:
Mgs = 8qs — Tq g Ko lal—t, (27)

It was shown in 15] that theT matrix elements for both the elastic and the fluid-like cylinders
have the same asymptotic form at large wavelengths. In fact, the elements can be given (in the
low frequency limit) as a function of quantitids, that are independent &f

Tq(k) = T4 k220, (28)

In this limit Ty ' kisHo=lal-00 ~ T §'KIsHal**=+o and, therefore, the dispersion relation is
determined from:

detM =0, (29)
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where the matrix elements @ are

1 e S Y | IsI+]q|+ds0+dqo
MQS—5QS_|TQ|I(ILnOSs—qk =

(30)

The secular equatior29) can be solved only numerically. The dimensiontfis determined
by the truncation on the angular momenta needed to get convergencay| KoQmax and
IS| < Qmax the dimension ofM is (2Qmaxt 1) x (2Qmaxt 1). Therefore, the calculation of
the dispersion relation is not an easy task and to obtain an analytical expressogs kprs
impossible if one follows this solving procedure. However, appeBdkows that there exists a
block matrix of dimension X 3 containing only the dependence®@a. Also, it is demonstrated
that solving detA— BD~1C) =0 is equivalent to solving de¢t/ =0. A— BD'C is the

following 3 x 3 matrix:

) —
C . C i
( A— n—eﬁz f in eiz f n——75f +Fe2'9\
1_Ceff 1_Ceff 1_Ceff
— ) —
C C C
A—BD!C= S L S L N P
=2 =2 =2
1_Ceﬁ: 1_Ceff 1_Ceff
1 s . C c
\n — f + g2 —In—ei2 f  A*—np eiz f )
1- eff 1_Ceff 1_Ceff

(31)

The secular equation associated with this matrix can be analytically solvéﬂffor

@ _ IAI2—|T)?— f2n? —2fn|"'| cos®r cos D + 2f »|"| sindr sin

of A+fo)[(Aa+ fp(ar+ fny) -T2

(32)

It is important to remember that andI" contains lattice sums on the reciprocal space.
These quantities as well as the rest of the variables in the expressions above are fully described

in appendixB.

Note that the expression fof, takes the form of an angle-dependent speed of sound in an

anisotropic medium,
T%(0) =T2, +T2_ cOSP +Ta: SINDY,
where the components of the velocity tensor are

2 _ AP — |0 — 29

To@+fy A+ fp(ar+ g —TP]
2 __ 2fn|I’'| cosdr

> A+fo) [(a+ fp(as+fng)—TP2]
5 2fn|T| sin®r

C + = .
Too@+foa+fpa+ fy) — I
An alternative expression is
C2(0) =T, cOS 0 + T Sint 0 + (T, + T, ) SinG coso,

where

2 _
XX

2

_ 2 _
Coyx = Ca, +CC_,
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¢ (degrees)

Figure 3. Anisotropy factor,Ar, which is defined in37), for several values of

the ratio,ay/a;, as a function of the angle, between lattice vectors. Anisotropy
disappears for the 2D isotropic lattices (square and hexagonal) corresponding to
the parameters described in talile

Table 1. Effective properties of several 2D topologies studied heerenotes the
length of the smaller primitive translation vectors of the corresponding lattice

(see figure2).

Primitive basis Topology  Symmetric

p=a=a2a¢=60 Hexagonal Yes

ap=a=a; ¢ =90 Square Yes

a,=+/2a1 =+/2a; p =45  Square Yes

a, = +/3a1 = v/3a; » =30° Hexagonal Yes

=2 _ =2 =2

o, =7c2 -, (36b)
=2 =2 =2

o, =Co =Ca,. (36c)

We see that anisotropy irB2) and @3) comes from factod. In factor I', which is given
in (B.39), the main contribution to the anisotropy comes froffi (see B.20)). The value of"©

given in B.20) allows to introduce the so called parameter of anisotropic stresgtiwhich is
defined as:

2|5 G Ra) aa| -
h=£0 Gh Rmin

Figure3 plots Ar for several values of the ratep/a; as a function of the angle between lattice
vectors. The calculations d& predicts that large anisotropy in sound speed and mass density
should be expected for the lattices where this factor takes large values. The predictions are
corroborated by the results obtained g and pest s is shown below.
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Figure 4. Diagonal components of the speed of sound tengac;; /c,)? as a
function of the cylinder radiusk, for the three anisotropic lattices: (&) = a;,

¢ =45; (b)a, = a;, ¢ = 75° and (c)a, = 2a;, ¢ = 75°. Results for the isotropic
lattices (hexagonal and square) are also depicted in (a) for comparison. The
filling fraction f for the square (sq) and hexagonal (hex) lattices are also shown
to emphasize that is determined byR, and the symmetry of the lattice.

The strength of anisotropic effects predicted Ay is analyzed in figured, where the

diagonal elements of the sound speed ter\#(% and, /Ef,y, are plotted for the case of rigid

cylinders in three different anisotropic lattices and compared with the corresponding results
for the hexagonal lattice, which is isotropic. Note that the maximum possible valu,for
which is determined by the touching condition between neighboring cylinders, depends on the
lattice geometry. It is seen in figudethat the more anisotropic behavior corresponds to the case
a, = 2a; and¢ = 75°, which has the larger value @ (see figures).

4.1.1. Isotropic lattices.The case of isotropic lattices deserves special attention because
results has been published by two different research tedmi<)]. The solution for this case

is easily obtained from matrix3(Q) by introducing the isotropy condition, thatis= 0. After
straightforward manipulations, the secular equation can be cast as:

2 —
C ) C 1
A—n%f in eiz f n — f
1_Ceﬁ 1_Ceff 1_Ceff
— 2 —
. C C . C
det| —ic—=" § 1-¢—=f § =" ¢ |=0 (38)
2 2 2
1_Ceff - Ceff 1- Ceﬁ
1 . T c?
N f i f A f
2 2 2
1_Ceff 1_Ceﬁ Ceff
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90 —0.004
----0.325

270

Figure 5. Index ellipsoidngg(0) for the anisotropic lattice defined p = a;
and¢ = 45° (see figure2) for several values of cylinder radius in reduced units,
R./a. Note that the ellipsoid longer axis follows the direction that bisects the
anglegp = 22.5°.

The analytical solution of this equation is:
2 A—fnp ‘ 1
M A+fnp 1+fC

This solution contains relevant terms of multiple scattering interaction that has been forgotten
in the solution given by Meet al [10], who were also working in the framework of MST.
Particularly, our results reduced to those 18][when we impose in39) the conditionA = 1.
In other words, when it is assumed that multiple scattering interactions are neglected. In fact,
it has been shown by ud], 12] that this condition is only valid at low filling fractions. The
parameterA is responsible for the abrupt decrease of speed of sound when the filling fraction
approaches the condition of close-packing as shown in figufdis behavior is not shown in
figure 1 of [LO]. Our results fully agree with those found in Krokhet al, which used a PWE
(see figure 1inJ)).

(39)

4.1.2. Wave propagationThe sound propagation through anisotropic lattices has its own
interest and will be discussed in a separate paper, which will be published elsewhere. However,
itis possible to advance the behavior expected by simply looking at the so called refractive index
ellipsoid, which we have introduced here in acoustics in a manner similar to that in optics:

1

Je©)

Two index ellipsoids have been plotted in polar coordinates in fighraad 6 for two
different anisotropic lattices and for several values of cylinder raBjusn figure5 it should be
noted that the principal axes are rotateds22vith respect to the-axis of the lattice. However,
it is remarkable how the principal axes are slightly rotated with respect t&yexis for the

Nef(0) = (40)
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Figure 6. Index ellipsoidng(0) for the anisotropic lattice defined k&g = 2a;
and ¢ =30° and for several cylinder radiuR,. Note how the rotation of the
principal axis depends OR, (i.e. it is a function of the lattice filling fraction).

lattice studied in figuré®, and more important is the tilted angle which depends on the filling
fraction of the lattice. The wave propagation will respond to the index ellipsoid, in such a way
that slow propagation is expected along the direction defined by the longer side of the ellipsoid
and faster propagation will take place along the direction defined by the smaller side of the
ellipsoid.

4.2. Effective bulk modulus

The effective parameters of a cluster of cylinders in which the underlying lattice is isotropic
(hexagonal or square) were obtained 12][from the scattered field by the given cluster. In
brief, the method associates to the cluster an effective T maigxand assumes that (in the
long wavelength limit) this matrix must be equal to that of a homogeneous isotropic cylinder.
So, it was demonstrated that for a clusteNbtylinders the coefficient of the lower order term

in the series expansion of eleméfits)qo IS

) (. ,
(Tef)oo = |im ( kﬁz)oo = (To)oo. (41)

where(T,)qo is the corresponding coefficient of thecylinder in the cluster. For the case of
equal cylinders, the matrix elemen{is, )oo are all identical and

A . 7TR§ Bb

T =iN—"2|—-1]1, 42

(Tef)oo 7 [Ba ] (42)
whereR, and B, are the radius and bulk modulus of cylinders, respectively.

Here, we are dealing with a cluster based on anisotropic lattices and, therefore, it is

expected that such cluster behaves (in the regime of large wavelengths) as an effective
anisotropic fluid-like cylinder with some effective radi& that also has to be determined.
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Figure 7. Reciprocal of the effective density tensor as a function of the radius
of cylinders in reduced unitsR;/a) for three different anisotropic lattices:
(@) a=a;, ¢ =45; (b) ay =a;, ¢ =75; and (c)a, = 2a;, ¢ = 75°. Results

for the 2D isotropic lattices (hexagonal and square) are also shown in (a)
comparison.

AppendixA shows that the coefficierito, of an anisotropic fluid-like cylinder is equal to that
of an isotropic fluid-like cylinder. Therefore, following the method developed @ |

ST L L @

where the left side in this expression is the coefﬁc'(e'lcrgﬁ)oo of the homogenized cluster with
effective bulk moduluB.¢ and Res being its effective radiusRes can be obtained by a simple
approach: it is assumed that the fraction of volume occupied by the cylinders is equal to the
filling fraction of the underlying latticef, that is

N 2
R _ (44)
7 Rt
Now, with the value oRg it is possible to obtaimBes from (43):
1 f o1-f
— =+ . (45)
Beff Ba Bb

This is the standard averaging of bulk moduli that has been previously shown to be valid for
isotropic 2D lattices of composites made of elastic cylind&ds 15].

With Bey and the velocity tensor, we are ready to determine the reciprocal density tensor
and, then, to fully characterize the anisotropic medium.
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4.3. Effective mass density

With the expressions derived above, the reciprocal density tensor are derivegJfof =
Cgff(e)/Beff:
|AP—|T|? = f2?

-1_ ’ 46a
Por = A+ T A+ fy) — T2 (40a)
_ 2fn|I"| cosdr

1 460
N N T R (460)
1 2fn|C|sindr (460)

Par = A+t (A + Ty — T2

It is important to note that the reciprocal density tensor (and the effective density) does not
depend on the bulk modulus of background and cylinder. In other words, the effective density
only depends on the lattice structure, its filling fraction and the density of cylinders relative to
the background. The elastic nature of cylinders will be only present in the effective density for
high filling fractions, where the higher orders of thanatrix will be present in both tha and
I" factors.

Figure 7 plots the behavior of the reciprocal density tensor as a function of the cylinder
radius (in units ofa) for three different anisotropic lattices. For the sake of comparison, the
results for the isotropic lattices, hexagonal and square, are depicted in TiggréNote that
the stronger anisotropy is achieved for the case (c), which corresponds to the lattice having the
larger value of anisotropy strengty (see figures).

4.3.1. Isotropic lattices. For the case of isotropic latticé§' = 0) the effective velocity 39)
can be also cast as:
i 1 Ba

=—" 47
el pei fBp+(1— f)Bs’ (47)

in which:

_ pa(A+ F)+pp(A— 1)

T - Dtppa+ H™
The second factor in the right hand side 47)is the effective bulk moduluBgs given in @5).
It can be demonstrated that for low enoudh(i.e. A =1) the expression4@) reduces to

that obtained by Berrymari}] for the dimensionality parameter= 2 (see also equation (2)
in [10)).

Peft (48)

5. Effective parameters for lattices of elastic cylinders

When the ratio between acoustic impedances of cylinders and backgfQu#g is not large
enough the condition of rigid cylinders (i.e.= o0) is not valid and the sound propagation
inside the cylinders has to be taken into account. This is the usual case when working with
solid cylinders embedded in water. Therefore, the full elastic properties of cylinders must
be considered in the correspondifigmatrix. As a consequence, the effective parameters
of metamaterials based on solid cylinders embedded in a fluid, like water, present a rich
variety of behavior depending of the ratit,/Z, the lattice topology and the fraction of
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Figure 8. Effective parameters for 2D arrays of lead (Pb) cylinders embedded
in water for the two isotropic lattices (hexagonal and square) and two different
anisotropic lattices.
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Figure 9. Effective parameters for 2D arrays of iron (Fe) cylinders embedded
in water for the two isotropic lattices (hexagonal and square) and two different
anisotropic lattices.

volume (f) occupied by the cylinders in the corresponding lattice. As an example of typical
behaviors encountered, figur8sl10 represent the cases of cylinders made of lead (Pb), iron
(Fe) and aluminium (Al), respectively, embedded in water. The data parameters employed in
the numerical simulations are reported in tabldResults are shown for the two 2D isotropic
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Figure 10. Effective parameters for 2D arrays of aluminium (Al) cylinders
embedded in water for the two isotropic lattices (hexagonal and square) and two
different anisotropic lattices.

Table 2. Elastic parameters of materials studied in this work. The density,

and the fluidlike velocityc, = ,/c? — ¢ (wherec, andc; are the longitudinal
and transversal velocities, respectively) are normalized to those of wagter (
1 gcnt3 andc, = 1.45cm sech).

Pa T T T Za
Pb 11.40 137 047 128 13.44

Fe 7.86 395 215 331 26.5
Al 270 424 209 3.69 1391

lattices (square and hexagonal) and two anisotropic lattices. As anisotropic lattice we have
studied oned; = a, and¢ = 75°) characterized by a very small anisotropic strength parameter
(Ar =0.001) and anotherag = 3a, and ¢ = 75°) in which this parameter is more than one
order of magnitude larged- = 0.042).

Results for the slightly anisotropic latticd{ = 0.001) in the left panels of figure&-10
show that the values of their effective parameters are in between of those calculated for
the hexagonalg = 60°) and squared = 90°) lattices and the difference between diagonal
elements is very small. Results for the stronger anisotropic lattice are depicted in the right
panels of the same figures. They show that diagonal elements show appreciable differences
that increase with cylinder radius and should be observable in acoustic experiments. Also note
that the difference between diagonal elements decreases with decreasing density. Therefore,
we can conclude that in order to observe strong anisotropic effects in lattices of solid cylinders
embedded in a fluid, we have to select a lattice with a large valdg ohade of cylinders with
a density as large as possible in comparison with that of the fluid background.
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6. Summary

To summarize, this work has introduced a method to create acoustic metamaterials having
anisotropic dynamical mass density and sound speed. The method is based on the properties
of SC in the homogenization limit. It was shown that 2D arrays of cylinders ordered in lattices
with symmetries other than the square and hexagonal symmetry behave in the range of large
wavelengths as effective acoustic metamaterials having acoustic parameters (mass density and
velocity) that are anisotropic. Analytical results for both parameters have been rigorously
derived and numerical calculations have been presented for relevant examples like the case
of rigid cylinders in air and some elastic cylinders embedded in water. This work should be
considered as a demonstration that anisotropic fluidlike acoustic materials can be physically
realizable. The possible applications of these structures strongly depend on the properties of
wave propagation through them and will be the topic of our next work. However, we can foresee
that these structures could be the basis of designing the class of anisotropic materials needed to
demonstrate the acoustic cloaking recently predicted by Cummer and Scifirig [
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Appendix A. f’oo for a homogeneous anisotropic cylinder

The starting point to obtaifh oo, Which represents the coefficient of the lower order term in the
series expansion of elemeny, of an anisotropic cylinder, is thE matrix of the given cylinder.
We have obtained the analytical expression for Thenatrix of a homogeneous anisotropic
cylinder that, here, will be introduced without details. The derivation offthatrix is out of
the scope of the present work and will be reported in a more specialized journal. However, the
readers are directed to the article by Monzon and Damagéps§here a procedure analogous
to that employed by us is applied to the case of a homogeneous anisotropic dielectric rod.

Let us consider an anisotropic cylinder of radiggembedded in a nonviscous liquid or
gas. The speed of sound inside the cylinder is given by the t@jysand its bulk modulus
By (a scalar) related with the anisotropic density by the Wood's l8\aé T :§0(ﬁij)‘1.
All the magnitudes associated to the cylinder are normalized to the corresponding ones of the
embedding medium. Th& matrix for this cylinder,7, can be easily obtained by studying the
scattering of a plane wave of wavenumli@mpinging the cylinder. After applying boundary
conditions on the cylinder’s surface, it is found that

TH=-TJ (A.1)
or equivalently
T=-JH" (A-2)
whereJ and# are matrices whose matrix elements are:
iRy , . _
Jsq=—— (k& (KR EL — Jq(kR)ES ], (A.3)
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. RO H 7-1
Hsq= —— [kHy (kR Bgq — Ha(kRo) g (A.4)
whereJ;(-) andH,(-) are the derivatives of Bessel and Hankel function of orpieith respect
to its argument and

2

r—wé]d) 47[2 c(c()cos(oz 0)e|5a —igo do d6, (A_S)
2
_ j KO a—0) Aso oI

The expressiop~! : V defines the foIIowing operator (in polar coordinates):

190 P 8
-1. v_ — + r@ _ A.7
The first diagonal elementy, can be obtained fromA(1), which in terms of matrix

elements is

Z Tsr Hrq = _qu- (A.8)
r
When bothg ands are equal to zero, this expression reduces to

TooHoo = —Joo — Z Tor Hro. (A.9)
r#0
It can be demonstrated that the second term in the right-hand side is of higher otder in
than Joo-
Now, in the limit ofk — 0, thek’s dependent exponential B andZ{ can be expanded
in powers ofk as follows:

I’c(#R(J (a—0) ~ 1 kR) ZRS
gl 8@ ~ 1 + |@ cos(a —6) — 22@) cos (o — ). (A.10)
By including this expansion i&y andE% and after integrating if it is found that
g8 ~1+0(K), (A.11)
52 ~ — 424 o). A.12
00 ZEO ( ) ( )
Therefore
2r1
Joo & im [: — 1} k?+O(KkY, (A.13)
Hoo~ —1+0O(kInk), (A.14)

which can be used to obtaiiyg asTog = — Joo/ Hoo-
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Finally, the coefficient of lower order ikis easily determined
Too i Rg
Too=lim = -1]. A.15
o= lim -2 == BO (A.15)

Note that this expression is the same as that obtained for the case of a homogeneous isotropic
cylinder [12].

Appendix B. Asymptotic expression of the M matrix in the low frequency limit

This appendix is devoted to obtain the asymptotic form of the secular equation associated to the
M matrix whose elements are given 23]. The determinant of th€Qmax+ 1) X (2Qmaxt+ 1)

final matrix will be reduced computed from the determinant of>a3matrix. Let’s do it by
computing first the diagonal elements.

B.1. Diagonal terms: G= s

To determine the asymptotic form of terms
Maq=1—iTqlim gk (B.1)

the asymptotic form o& must be computed. We know that

S;(kzlq|+25qo _ _i k Jl(K Rmin) + k Z Jl(Gh Rmin) k2|q|+25q0’ (BZ)
Va | J1(KRmin) K(KZ—=k?)  J1(KRyin) s G}
whereK is a Bloch wavenumbeK( = K cosfx + K singy).
In this expression only the first term will contribute to the matrix, so that
4 k2lal+25q0
Y |20+ — _ 7 B.3
a Vg K2 — K2’ (83)

Since the speed of sound is defineddyy lim_,o(k/K) (to simplify the notation in this
appendix) only the) = 0, £1 terms will contribute to the matrix, then

. (1 c?
L a
n [5,—17 ©° n
Mu=1-1 p1+1] e M (85
Mgg=1 Viql >2, (B.6)

whereB, = B,/ By, 0, = pa/pb @NAT = C/C.
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B.2. Matrix elements with s q

To calculate these nondiagonal elements we split the lattice sum into two separate terms:

q Klaseoto — ¢+ (B.7)
where
4 is—q k \]s q+1(K len)
- g S=Dojlal+Is|+Sqo+ds0. B.8
0= L KR K(KP—1) B8
4 s—q k Js q+1(Gh len)
—_ el(S Q)thIQ|+\SI+5q0+5s0 B.9
ST kR & G ®9

Fork — O we use the asymptotic expressions of Bessel functions to get

4 Klatis+sorso

— __ s j(s—Q)fo
0=y s Ke—ke (810
4 klal+Isl+3qo+ds0 J G
S AR R R s e D e hRm'")é(s . (B.11)
in h#0

Only those terms independent loill survive to the limit. So, the condition to have the
factor%ﬁq # f(k)is

|q| + |S| +8q0+350 =2— (CI» S) = (07 1)7 (_1’ 0)’ (_1’ 1) (812)
In the same manner, the factﬁ?_q #+ f(k)if
1] +[S| +8q0+ds0—S+g=0—-5s>0, <0 (B.13)
Therefore, the contributions to the matrix are

A sist1al ¢ 1 siane
g_q = Vd R 1—Cze' , for |gs|<1, s>aq, (B.14)
4 L iialnlsitlaleL Jisi+ia1+1(Gh Rmin) j(sj+(q16
giq — _V IS[+|q|+1I|S| allsi+all(|g| + g + 1)! Z & glsi+lanén
d min h=£0
s>0, <0 (B.15)
and
Mgs=8qs —iTq S 4. (B.16)
B.3. Matrix elements with ¢ s
In this case, we know tha®f , =S'_, = S}_s and, by remembering thal j is a real
number, we have
qu == 8qs - I-fq %Yiq = 5qs - ITAq(aTis)* - aqs - (I-rq ST*S)*' (B.l?)
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B.4. Final expression dfl

By definingQ = 2(Qmax— 1), we can reorder th® matrix as

~ Az.z  Bsxo
M = , B.18
(Cst Doxq (B.18)
being
1-n ¢ f in c fe' p—_fe2?+10
1—c2 1-¢ , 1-¢?
C C :

A= 1-¢ S f ic S fe . (B.19)

1 ¢ . c?

—fe2'9+I‘(°)* .
T T

wheren = (pa — pp)/(pa + pp) and¢ = By/Ba — 1, B, (pa) and By, (0p) being the elastic moduli
(densities) of cylinders and background, respectively. Finailythe angle of Bloch wavevector
with x-axis andl"© is the anisotropy factor defined as

J(G
ro —ag; fZ 3(GnRuin) 210, (B.20)
h=£0 Rmm
The matrixD has the form
| D
D— a>s) B.21
(Dm | ) (8.21)
_ . (s+q+1)! RE@-D Jsq+1(Gn Rmin) _j(svq)0
Dg<slgs = D_qs = —8i™92579 @ —0) s+q+lf °> G (st ath, (B.22)
h=£0
Dq>s|qs = Dq—s = (D—qs)*, (B.23)

wheren® = (pa — pv)/(pa + pp) for fluid like cylinders andy® = 1 for full elastic cylinders.
For theB andC matrices we have

O Bis

B=| O O |, (B.24)
B.is O

B_1s = 4iS"125(s+ z)l R Z JS+2(G“Rm'”)é<S+1)9h (B.25)

Rein h£0
Bis = (B_15)", (B.26)
_( O O G
C—<C_ql o O ) (B.27)
+1y— (q+2)| REZ‘(q b Jq+2(C5hRm|n) 1+al)é
C_q1 = —16i*1271 5 ) et (B.2g)
I(q 1)I qln h=£0 G
Cq1=(C_q0*. (B.29)
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B.5. The3 x 3 secular equation

The secular equatior29) is impossible to solve analytically since it depends on the number of
angular momenta employed to ensure convergence. Instead, we should look for a more suitable
secular equation so that its analytical solution will not depend on such convergence condition.
To achieve this goal let us define the matkix

I3><3 03><Q
X = 2 . B.30
<—D_1C|Qx3 DQ1XQ> (8:30)

Note that deX = detD~1. Now, by means of the produs X,

Mx — (A—BD 'Claxs BD Yaxq , (B.31)
OQX3 IQXQ

we arrive at the following relationships:

detM X) = detM detX = detM detD %,
detM X) = det A— BD~1C).

Let us assume that dBt# 0, the condition over th& matrix of dimension 2Qmax+1) X
2(Qmax+1), becomes a condition over the matix— BD~1C of dimension 3x 3. In other
words, the secular equation dét= 0 is reduced to de&tA — B D~!C) = 0, which can be solved
analytically.

The matrix elements dB D1C are

BD™'C|,,=> Y BisDgyC (B.32)
s q

By using the definitions of matricé® andC it is straightforward to verify that
BD'C|,=BD'C|,=0, VK¢ (B.33)
The expression for the diagonal terms are:

BDClj, =) ) BiDgCu=) > BisDl . Coq.

S q s>1 g>1

307C| L, =Y 3 B uDiC 1= Y 3B uDLiCy
S q s>1 g>1
=YY By DJC .

s>1 g>1

From the definition of matridD —! we have that

Y DisDyi =) D_isDyf =41
S

s>0

Y DDt =) Dy DIl =8_q=) DDl =06_q=0q
S

s>0 s>0
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So thatD; = DI, and we conclude that

BD'C|_, ,=BD'C|}. (B.34)
Following the same procedure we obtain:

D ) BLELELNES 3 S Bt

S q s>1 g>1
BD'C|, , =) > BiDCq1=)> > B D Cq
S q s>1 g>1
= Z Z Bl D:sququ
s>1 g>1

and

Z D—(Zs Ds__lq = Z D—ES Ds__lq = 3—1&—q = (Séqa
s

s>0
Z Dls D:g'q = Z DI—sD:slq = 8|q = Z Di|s D:;Lq = 8—£—q = 8£q~
S s>0 s>0

In a similar manneD—{, = D.; and

BD'C| ,,=BD'C|,,. (B.35)
In conclusion, the matri8 D~'C takes the form
A0 I
BDC=|0 0 O (B.36)
F/* 0 A/*
and therefore
2 —
C i [ - 1 .
/ 1—A/—f7']1_62 |771_C2fe_|0 7’]1_—sze_2|0+l—‘(o)—r/\
— 2 —
C , C ,
—i fef 1-— f ir——fe
A—-BD'C= ‘1@ ‘1@ ‘1@
1 26 O e ;. C 0 N (%
ane ! +T —-T —H’]l__zfel 1—A —n _—Zf

\ /

(B.37)

In function of the new variables defined as:
A=1-A, (B.38)
r=r@_r' =|rd (B.39)
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3x 3 secular equation takes the following final expression after straightforward

manipulations:

(1—-TA —ne?f incf nf +(1—c?)re¥
. 1 —iccf (1—¢?) —¢c?f iccf
det| A—BD C|:mdetm‘ +(1—CcHIHe —infc (1-T)A* — 2 f
(B.40)
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