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Abstract
This paper deals with a realistic cyclic scheduling problem in the food
industry environment in which parallel machines are considered to pro-
cess perishable jobs with given release dates, due dates and deadlines.
Jobs are subject to post-production shelf life limitation and must be de-
livered to retailers during the corresponding time window bounded by due
dates and deadlines. Both early and tardy jobs are penalized by partial
weighted earliness/tardiness functions and the overall problem is to pro-
vide a cyclic schedule of minimum cost. A mixed integer programming
model is proposed and a heuristic solution beside an iterated greedy algo-
rithm is developed to generate good and feasible solutions for the problem.
The proposed MIP, heuristic and iterated greedy produce a series of solu-
tions covering a wide range of cases from slow optimal solutions to quick
and approximated schedules.

Keywords: Parallel machine scheduling, Perishable products, Partial
weighted earliness/tardiness, Due date, Deadline, Release date, Iterated
greedy algorithm

1 Introduction1

The studied problem in this research is motivated by a real scheduling prob-2

lem in the food industries. In food process control, safety of products has been3

one of the main objectives beside temporal and financial issues (Linko, 1998)4

and in the case of fresh products or highly perishable foods, final products are5

subject to deterioration through time. Hence, in most real cases, a limited6

post-production shelf life is considered, such that final products can be placed7

on supermarket shelves with a reasonable remaining shelf life. Moreover, some8

food products such as fresh foods or dairy products as subgroups of Fast Moving9

Consumer Goods (FMCG), have a quick turnover and need to be produced and10

distributed over a short period of hours, days or weeks. Therefore, the whole11

operations, due to limited post-production shelf life, should be carried out as12
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fast as possible, and due to FMCG’s properties, the operations can be scheduled13

in a repetitive manner of a particular cycles in a relatively long horizon time.14

The production setting we consider is an identical parallel machines shop which15

is capable of producing different perishable goods. Manufacturer deals with16

fixed retailers’ orders in each cycle. Orders (jobs) need to be processed on one17

of the machines for a known processing time. Related to each order there is18

a release date, a due date and a deadline. Early and tardy jobs are penalized19

and in order to achieve customer’s satisfaction and a productive operation, the20

manufacturer has to schedule jobs as close as possible to their due dates.21

Production scheduling in food industries has received significant research atten-22

tion and there are plenty of case studies investigating particular subjects in this23

area. We refer the readers to Claassen and Van Beek (1993), Randhawa et al.24

(1994) and Tadei et al. (1995) in which aggregation of planning and scheduling25

of food industries is investigated. Moreover, Van Donk (2001), Soman et al.26

(2004) and Soman et al. (2007) have discussed about a combined production27

planning and inventory control framework in the food industry.28

There is also an abundance of published researches considering machine schedul-29

ing subject to due dates or deadline constrains. Cheng and Gupta (1989) and30

Baker and Scudder (1990) provide a review on scheduling problems involving31

due dates and earliness/tardiness. A more recent survey has been also provided32

by Lauff and Werner (2004) considering multi machine problems with a common33

due date. Some papers deal with an interval called “due window” rather than34

due date. Anger et al. (1986) carried out the first due window study and Wan35

and Yen (2002), Arroyo et al. (2011) and Chen and Lee (2002) are instances36

of recent studies on this area. “Assignable due window” is another extension in37

the classic form in which the early and late due dates are treated as decision38

variables. We refer readers to Mosheiov and Sarig (2010) and Mor and Mosheiov39

(2012) as examples of this subject.40

Release date of jobs has been widely taken into consideration, for example Bank41

and Werner (2001) discussed on parallel unrelated machines with a common due42

date and release dates. They presented various constructive and iterative heuris-43

tic algorithms for solving the problem. A single machine scheduling problem44

with release dates and due dates is also considered by Sourd (2006) in pres-45

ence of sequence dependent setup times and costs. A large-scale neighborhood46

search is designed for solving the problem. Baptiste and Le Pape (2005) and47

Tercinet et al. (2004) also investigated a release date with deadline, respectively,48

in a single machine and multiprocessor scheduling. Huo et al. (2010) have also49

investigated a factory that manufactures perishable goods while considering a50

time window for a safe finish time of products. They suppose time windows51

to be disjoint and of the same size and the goal is to select a subset of jobs to52

produce such that maximize the total profit.53

A parallel machine scheduling problem with due date to deadline window are54

studied by Kaplan and Rabadi (2012) while start times of the jobs are subject55

to ready times. Jobs are supposed to be completed before the due dates. Miss-56

ing due dates is not preferred but allowed and a weighted tardiness cost will be57

incurred for the jobs. Our research can be considered as an extension of this58

paper.59

In the current research we focus on the scheduling of perishable products on60

parallel machines. Each job has a due date, which is the preferred delivery61

date of the retailers and might be violated subject to a penalization as lateness62
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penalty, and similar to Kaplan and Rabadi (2012) there is an strict deadline im-63

posed by the retailer that should not be exceeded. Moreover, since the products64

are perishable, and producing them far in advance of the delivery time is not65

preferred, there are release dates as the earliest possible start times of the jobs.66

Unlike in Kaplan and Rabadi (2012), storing early products in the manufacturer67

sites also incurs in a job dependent holding cost.68

As the main extension in our research we take into account the case of FMCG,69

and consider the cooperation of the manufacturer and the retailers for an ex-70

tended period of time. In order to decrease changeover costs and increase relia-71

bility of the operations, different parties prefer to adopt a routine and repetitive72

working plan during short cycles like days, weeks or months. This type of prob-73

lem, known as cyclic (periodic) scheduling, is an effective approach to deal with74

a set of jobs that should be iterated during a long horizon (Hanen and Mu-75

nier, 1995). An abundance of researches have discussed the advantages of cyclic76

scheduling over static (non-cyclic) scheduling, we refer the readers to Levner77

et al. (2010) as a review on complexity of fundamental cyclic scheduling prob-78

lems including the cyclic job shop, cyclic flowshop, and cyclic project scheduling79

problems. Šcha and Hanzálek (2008) and Trautmann and Schwindt (2009) are80

also samples of practical research in this subject.81

We will consider the interaction of adjacent cycles into account and take the82

advantage of this extension to increase the ability and the manufacturer’s flex-83

ibility to satisfy customers’ orders. Compared to existing models, the studied84

problem in this paper, is more practical and to the best of our knowledge, a85

cyclic parallel machine scheduling with release dates, due dates and deadlines86

has not been investigated in the literature.87

Since Kaplan and Rabadi (2012) demonstrated their studied problem to be NP-88

hard, this extension is also NP-hard. Therefore, apart from a mixed integer89

model we present heuristic and iterated greedy algorithms. The rest of this90

paper is organized as follows. In Section 2 we precisely describe the problem,91

the notation and the mathematical model. Section 3 is dedicated to the de-92

velopment of a heuristic algorithm. In Section 4 an iterated greedy method93

is presented. Section 5 is to illustrate the numerical experiments and the last94

section concludes the paper and suggests topics for future research.95

2 Problem description and mathematical model96

We consider a production scheduling problem with identical parallel machines97

capable of producing different perishable jobs over a cycle of length T . Manufac-98

turer receives a set J = {1, 2, . . . , n} of n different orders (jobs) from retailers99

that need to be processed on a set M = {1, 2, . . . , m} of m identical machines100

without preemption. Each job j ∈ J has a due date dj , which is the preferred101

delivery date of the retailers, a release date rj as an earliest start time of the job,102

and a deadline d̄j which is the latest possible completion time of the job. The103

jobs are delivered to retailers during the corresponding time window bounded104

by the due date and the deadline. The retailers do not accept jobs after the105

deadline, while early jobs can be held on the production site. Jobs that are106

completed before their due dates are subject to a holding cost and are penalized107

by rate hj . Jobs that are completed after their due dates are also subject to a108
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penalization by a rate of wj as a lateness cost.109

Machines are always available and at most one product can be processed on110

each machine at any moment. The goal of this research is to schedule jobs on111

machines, in order to minimize the total earliness and lateness costs while ad-112

hering to the release date and the deadline constraints.113

Since in this case we consider a company that produces products with a quick114

turnover and establishes a long term relationship with retailers, it is supposed115

that the production orders come up iteratively through determined cycles such116

as weeks, 10 days periods or months. These manufacturers are usually inter-117

ested in designing a routine production plan for consecutive cycles, while the118

interaction between adjacent cycles is taken into account.119

A mixed integer programming (MIP) model is designed and provides a cyclic120

schedule for the problem. The parameters and the decision variables are now121

defined.122

123

Parameters:124

T : Cycle length125

pj : Processing time of job j126

dj : Due date of job j127

d̄j : Deadline of job j128

rj : Release date of job j129

hj : Earliness penalty of job j130

wj : Tardiness penalty of job j131

M : A large positive integer132

F : A large positive integer as compensation for rejecting a job133

134

Variables:135

Cj : Completion time of job j136

Ej : Earliness of job j137

Tj : Tardiness of job j138

Cdi : Completion time of a dummy job on machine i139

140

Binary variables:141

xijk : 1 if job j precedes job k on machine i;142

αj : 1 if job j is considered as a tardy job;143

βj : 1 if Cj − dj ≥ 0;144

minZ =

n∑
j=1

(hjEj + wjTj) (1)

s.t.
m∑
i=1

n∑
k=0, k 6=j

xijk ≤ 1 j = 1, . . . , n (2)

n∑
k=0, k 6=j

xijk =

n∑
k=0, k 6=j

xikj j = 1, . . . , n i = 1, . . . ,m (3)
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n∑
j=1

xij0 ≤ 1 i = 1, . . . ,m (4)

n∑
k=1

xi0k ≤ 1 i = 1, . . . ,m (5)

xijk + xikj ≤ 1 i = 1, . . . ,m j, k = 1, . . . , n (6)
Ck ≥ Cj + pk −M (1− xijk) i = 1, . . . ,m j, k = 1, . . . , n (7)
Cdi ≥ Cj −M (1− xij0) i = 1, . . . ,m j = 1, . . . , n (8)
Cj ≥ Cdi + pj − T −M (1− xi0j) i = 1, . . . ,m j = 1, . . . , n (9)
Ej ≥ dj − Cj + T (1− βj)−Mαj j = 1, . . . , n (10)
Tj ≥ Cj − dj + Tβj −M (1− αj) j = 1, . . . , n (11)
Mβj ≥ dj − Cj j = 1, . . . , n (12)
M(1− βj) ≥ Cj − dj j = 1, . . . , n (13)

Ej ≤ dj − rj − pj +M

1−
m∑
i=1

n∑
k=0, k 6=j

xijk

+Mαj j = 1, . . . , n (14)

Tj ≤ d̄j − dj +M

1−
m∑
i=1

n∑
k=0, k 6=j

xijk

+M (1− αj) j = 1, . . . , n (15)

Ej ≥
F

hj + wj

1−
m∑
i=1

n∑
k=0, k 6=j

xijk

 j = 1, . . . , n (16)

Tj ≥
F

hj + wj

1−
m∑
i=1

n∑
k=0, k 6=j

xijk

 j = 1, . . . , n (17)

Ej , Tj C
d
i ≥ 0, 0 ≤ Cj < T j = 1, . . . , n

xijk, αj , βj ∈ {0, 1} i = 1, . . . ,m j, k = 0, . . . , n

The objective function (1) minimizes the total earliness and tardiness costs.145

In the original problem, rejecting orders is not allowed and therefore in some146

cases, limited machine capacity and strict deadlines might result in an infeasible147

problem. Here, similar to Kaplan and Rabadi (2012), a large integer number148

F determines the cost of rejecting a job and it must be considered big enough149

in order not to affect the optimal solution. In the model, the binary variable150

xijk determines sequence of the jobs on the machines. Eq. (2) insures that151

each job is assigned at most to one machine and precedes at most one job. A152

dummy job j = 0 with zero processing time is supposed to be processed first153

on all machines and in order to keep the cyclic property, the dummy job is also154

considered to succeed the last job on the machines. By considering the dummy155

job, if a job is assigned to a machine it must precede and succeed exactly one156

job, this constraint is supported by Eq. (3) to (5). It is possible a job not to be157

assigned to the machines and a machine does not work at all during the cycles.158

Constraints (6) guarantees that job j cannot precede and succeed the same job159

k. Constraints (7) ensures that there is a gap, at least, of length pj between160

start time of job j and its successor and Eq. (8) and (9) are added to the model161

in order to adjust the completion time of the dummy jobs on each machine.162
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Cycle 1 Cycle 1 Cycle 2

Early job

(a) (b)

Cj

Tardy  job

dj Cjdj Cjdj

Figure 1: Early or tardy job by considering due dates in consequent cycles.

Due to the cyclic property of scheduling, a job at the same time can be early and163

tardy by considering the corresponding orders in consequent cycles. In other164

words, if a job is tardy (early) by considering due date of current cycle it can165

be early (tardy) for the same due date placed in the next (previous) cycle. This166

concept is depicted on Figure 1, where part (a) shows job j as tardy, due to the167

corresponding due date inside cycle 1. However, by considering due date of cycle168

2, it can be an early job. Therefore, we first need to determine whether the job169

is early or tardy. Moreover, as it is shown in the following, for a tardy (early)170

job j in case due date and completion time belong to the same cycle, tardiness171

(earliness) is calculated as Cj−dj (dj−Cj); while, in case job j satisfies an order172

of the previous (next) cycle the tardiness (earliness) is calculated by (T+Cj)−dj173

((T + dj)− Cj). Constraints (10) to (13) evaluate these requirements by using174

two binary variables αj and βj .175

Ej=
{
dj − Cj if Cj ≤ dj ;
T + dj − Cj if Cj > dj .

176

Tj=
{
Cj − dj if Cj ≥ dj ;
T + Cj − dj if Cj < dj .

177

Due to release date and deadline limitations, constraints (14) and (15) ensure178

that earliness or tardiness of a processed job does not violate the maximum179

allowed earliness and tardiness. The two last inequalities adjust earliness and180

tardiness of a rejected job such that large compensation F inures in the objective181

function.182

Each feasible solution of the problem includes a set R of the rejected jobs and183

a list C of the completion times in which completion times of the rejected jobs184

are set to the large number M . Then corresponding to each machine i ∈ M185

there is a sequences Si, of the jobs in increasing order of the completion times.186

Therefore a complete solution S, consists of m+ 2 elements that can be shown187

by S = {C,R, S1, S2, . . . , Sm}. Regarding to well known WSPT rule it can be188

easily verified that the properties below are satisfied in the optimal solution.189

Consider S as an optimal solution:190

• For two consecutive early jobs j and k in Si, if dj ≥ Ck and hj/pj > hk/pk,191

j precedes k if and only if the release date of k (rk) is greater than the192

start time of k.193

• For two consecutive tardy jobs j and k in Si, if dk ≤ Cj − pj and wj/pj <194

wk/pk, j precedes k if and only if the deadline of i (d̄j) is smaller than the195

completion time of k.196
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• For two consecutive jobs j and k in Si, which start after dj and finish197

before dk, job j precedes job k.198

3 The heuristic algorithm199

In this section, a constructive heuristic algorithm is presented in which jobs are200

selected based on different priority rules and in a greedy way are scheduled at201

the best available position among all machines. The general framework of the202

algorithm is to select a due date as a central point and schedule the feasible203

jobs around it in a greedy manner such that no idle time occurs among the204

jobs scheduled in each machine. Then, if any job remains unscheduled, the next205

center point is chosen, and this procedure is iterated until no job remains to be206

scheduled.207

As the first center point, our intention is to select the most occupied part of208

the cycle, where a relatively large number of jobs are available to be scheduled.209

Index ρt called “density factor” is proposed corresponding to time t based on210

Eq. 18, which evaluates how occupied is the area around the selected time.211

Where ∆djt is calculated by Eq. 19 as the minimum cyclic distance between dj212

and time t.213

ρt =
∑
j∈J

pj

(
1

T
+ ∆djt

)−1
0 ≤ t < T (18)

214

∆ t t′ = min{|t− t′|, T − |t− t′|} (19)

By using Eq. 18, the due date with the largest density factor is selected as the215

central point of scheduling. The unscheduled jobs can then be processed to the216

left or to the right of this center point. Therefore, corresponding to each center217

point, there are two time frames on each machine, which determine the available218

times for scheduling.219

Suppose at the first step, d∗ is selected as the central due date. Since machines220

are available the whole cycle, the processing of the selected job might be started221

inside processing frames of length T to the right or to the left of d∗. So, as it222

is shown in Figure 2 (a) for each machine i ∈M the first selected job might be223

scheduled inside the interval bounded by the lower bound of the left processing224

frame LLi and the upper bound of the right processing frame RUi . Once a job is225

scheduled inside the left (right) processing frame, an scheduled frame is created226

at the middle of the scheduling zone and the upper bound (lower bound) of227

the left (right) processing frame LUi (RLi ) must be updated. Moreover, due to228

the cyclic property, scheduling a job in the left (right) processing frame affects229

the maximum (minimum) available time of the right (left) processing frame and230

decreases the length of the frame as it is illustrated in Figure 2 part (b).231

Once all the frames on different machines are updated, candidate jobs to be232

scheduled next must be determined. To do this, we determine ω :
[
ωL, ωU

]
as233

a common period to all scheduled frames on the machines and select candidate234

jobs j among the unscheduled jobs such that ωL − pj ≤ dj ≤ ωU + pj . Then, a235

criterion is needed to rank the candidate jobs and to select one to be scheduled.236

Various criteria have been proposed in the literature of the job scheduling with237

earliness/tardiness penalties, in order to determine scheduling priority of the238
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T - (d*-Li
U)T - (Ri

L- d*)

Ri
LLi

U

RPFLPF

Scheduled 
Frame

0 T Ri
Ud*Li

L

0 T Ri
Ud*Li

L

TT
Left Processing Frame

(LPF)
Right Processing Frame

(RPF)

a)

b)

c)

Li
L

RPFLPF

0 T Ri
Ud* d�

new

Figure 2: Processing and scheduling frames around the central due dates for
machine i.
a) The initial central due date and the corresponding processing frames. b) Scheduling of feasible
jobs around the central due date and updating the processing frames. c) Next selected central due
date and new processing frames.

jobs. Bank and Werner (2001) have proposed and compared different criteria,239

in an unrelated parallel machine scheduling problem with common due dates,240

and concluded the superiority of the ranking based on the job’s slack. Here, we241

consider total slack which is calculated as stj = d̄j − rj − pj , beside some other242

factors which are listed below. These ranking criteria will be all evaluated, and243

the best one will be embedded in the heuristic algorithm.244

• Nonincreasing/Nondecreasing total slack (TSDEC/TSINC)245

• Nonincreasing/Nondecreasing due date (DDDEC/DDINC)246

• Nonincreasing/Nondecreasing ratio (wjhj)/pj (WHDEC/WHINC)247

The selected job is scheduled as close as possible to the central due date. There-248

fore, at each machine i there are two possibilities for each selected job j: placing249

in the left processing frame and Cj = LUi or scheduling in the right processing250

frame and Cj = RLi +pj . These alternatives must be checked to see if they meet251

the release date an deadline constraints. Furthermore, jobs are not allowed to252

exceed the processing frames’ bounds of the machines. When all feasible al-253

ternatives are tested the one with minimum earliness/tardiness cost is selected254

to schedule job j, and in case there is no feasible alternative, the job will be255

rejected.256

The whole procedure is iterated until no available job is left and when we en-257

counter with an empty list, the next central due date must be selected among258

the remaining due dates by the selection criteria of minimum distance to the259

common schedule frame’s bounds. As the next step, the processing frame, con-260

taining new central due date d∗new, is considered as the scheduling zone and261

frames’ bounds need to be updated. Part (c) of Figure 2 shows the new schedul-262

ing zone and the frames. The algorithm stops when no unscheduled job remains.263
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The pseudo code for the whole procedure is given in Algorithm 1, computational264

complexity of this algorithm is O(n2m).265

Algorithm 1 Heuristic Algorithm
d∗ : Central due date
F ∗j : Ratio related to job j based on the selected ranking criterion
U : Set of unscheduled jobs
R : Set of rejected jobs
A : Set of available jobs
M : Set of machines
k : Number of distinct due dates
Dr: rth distinct due date
D : Set of distinct due dates
DR: Set of remaining due dates
LL
i (LU

i ): Lower (Upper) bound of the left processing frame at machine i
RL

i (RU
i ): Lower (Upper) bound of the right processing frame at machine i

ωL (ωU ): Lower (Upper) bound of the common scheduled frame

Set U = {1, 2, . . . , n}, M = {1, 2, . . . ,m}, D = {1, 2, . . . , k}.
Select d∗ such that ρd∗ = max

r∈D
{ρDr} and ∀i ∈ M set LL

i = d∗ − T , LU
i = d∗, RL

i = d∗

and RU
i = d∗ + T

while U not empty do
Set ωL = max

i∈M

{
LU
i

}
and ωU = min

i∈M

{
RL

i

}
, ∀j ∈ U if ωL − pj ≤ dj ≤ ωU + pj then add

j to A
while A not empty do

Find j ∈ A such that F ∗j = max
k∈A

{
F ∗k
}

for i = 1 to m do
Schedule j on machine i in two positions such that Cj = LU

i or Cj = RL
i + pj .

Check the feasibility criteria for both cases (Cj − pj ≥ max
{
rj , L

U
i

}
, Cj ≤

min
{
d̄j , R

U
i

}
)

Consider new feasible position as the best alternative in case provides a better
solution than the best known alternative.

end for
If there is no feasible alternative for the selected job, consider j as a removed job and
add it to R; Otherwise schedule j in the best known position.
Remove j from U and update all frames’ bounds
Update A

end while
if U not empty then

Set DR : {Dr : r ∈ D,∃ j ∈ U : dj = Dr}
Update d∗ among Di ∈ DR such that Di has the minimum distance to the common
scheduled frame’s bounds.
update all frames’ bounds and update A

end if
end while

3.1 Local Improvement266

Once a feasible solution S = {C,R, S1, S2, . . . , Sm} is obtained, two simple local267

searches are conducted to improve the quality of the solution. The first pro-268

posed improvement deals with idle time of each machine and a shifting of jobs269

which are processed just before or after the idle time in such a way that no other270

jobs are displaced. It is also straightforward to adopt a greedy style and in each271

machine choosing the shift of the job which provides maximum improvement.272

This procedure is repeated until no further improvement is possible. If in so-273

lution S no job is rejected, all n jobs are processed on machines and therefore274
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at most n separated idle time might occur. Consequently a single step of this275

improvement has computational complexity of O(n).276

We also take advantage of the previous mentioned properties of optimum so-277

lution by performing an adjacent pairwise interchange. This improvement can278

be done by considering all feasible interchange of adjacent jobs on each Si ∈ S.279

This procedure starts from the last job j in sequence Si and compares it with280

the previous job, or if job j is placed at the first position it continues by the281

last job in Si. In case the pairwise interchange improves the solution, the inter-282

change is performed and job j then is compared to the previous job in improved283

Si for further improvement. In worst case at each stage, the selected job must284

be compared with n − 1 different jobs. Thus the complexity of a single stage285

of this improvement is O(n). This procedure also is repeated until no further286

improvement is possible.287

In order to perform a complete local search phase, a solution is first improved288

by applying the first proposed local search and once no improvement is possible289

the second local search is applied on the new improved solution.290

4 Iterated greedy algorithm291

Iterated greedy (IG) which was first introduced by Ruiz and Stützle (2007)292

for scheduling problems, is well known for its very simple principles and has293

exhibited far better performance than other more complex approaches in the294

literature. The IG is a constructive two-phase heuristic which starts from an295

initial solution and iteratively applies a greedy heuristic to improve it. The first296

phase, called destruction, randomly removes some solution components and then297

the second phase, called construction, reinserts the removed components into298

the solution in such a way that minimum possible cost is obtained at each stage.299

An acceptance criterion determines whether the current solution is replaced by300

the solution generated in the construction phase.301

Ruiz and Stützle (2008) has reported the superiority of the IG for solving the302

sequence dependent setup times flowshop problem in comparison to many other303

solutions. Ying and Cheng (2010), Minella et al. (2011), and Kang et al. (2011)304

are also samples of recent extensions and applications of the IG heuristic. In-305

spired by these results, in this research an IG algorithm is designed for the306

problem under consideration. The following subsection describes the proposed307

IG algorithm in detail.308

4.1 Destruction phase309

In the first step, we start from a feasible solution S = {C,R, S1, S2, . . . , Sm},310

generated by the proposed heuristic algorithms. The destruction procedure311

choses r random different jobs in such a way that rejected jobs j ∈ R have312

twice the chance of being selected. Selected jobs are removed from the initial313

solution S. The result is a partial solution SP =
{
CP , RP , SP1 , S

P
2 , . . . , S

P
m

}
314

and a sequence of removed jobs π in the order of selection.315
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4.2 Construction phase316

The construction phase considers the partial schedule SP , and in r stages rein-317

serts removed jobs in order of π to obtain a complete solution S′. At each stage318

the selected job j must be scheduled on each machine i at a feasible completion319

time t which is randomly selected in interval
[
rj + pj , d̄j

]
. Completion time320

of the other jobs in SPi are then updated. We start from the first job k in321

sequence SPi such that Ck ≥ t. Due to the cyclic property if there is no job322

that satisfies the condition, the first job of sequence SPi is selected. This job is323

rescheduled on machine i as early as possible. In the same way, the remaining324

jobs are rescheduled in order of sequence SPi . In case for a selected job there is325

no feasible alternative it is considered as a rejected job.326

Selecting a random completion time and rescheduling the jobs is repeated λ327

times on each machine. Hence, for each member of π, we generate m × λ al-328

ternatives that need to be evaluated. In each complete solution, jobs can be329

classified in three groups: early jobs E, tardy jobs T and rejected jobs R. In an330

evaluation step each removed job is penalized by large number F . Therefore,331

the evaluation function for solution S is:332

f(S) =
∑
j∈E

hjEj +
∑
j∈T

wjTj +
∑
j∈R

F (20)

Once a removed job is inserted in SP , it will be removed from π and then, the333

whole procedure is iterated until π is empty. At the end of construction phase,334

the local improvements explained in Subsection 3.1 are carried out to improve335

the candidate solution S′.336

4.3 Acceptance criterion337

After a complete iteration of a greedy algorithm it should be decided whether the338

new solution S′ is accepted as an initial solution for the next iteration. Instead339

of considering a better objective value, similar to Ruiz and Stützle (2007) we340

consider a simple simulated annealing-like acceptance criterion with a constant341

temperature which is computed as follows, where TIG is a parameter that needs342

to be adjusted and the quotient calculates the average of maximum possible343

earliness/tardiness of a job.344

Temperature = 0.1× TIG ×
∑

j∈J
[
hj(dj − rj − pj) + wj(d̄j − dj)

]
2× n

(21)

5 Experimental results and computational anal-345

ysis346

Comprehensive numerical experiments are conducted for testing and compar-347

ing the efficiency of algorithms and quality of solutions. Various instances are348

generated randomly in which cycle length (T ), job number (n) and machine349

number (m) are considered as the main parameters that determine size of the350
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Table 1: Main parameters of the random instances.

Parameter Description Number of levels Values
Small instances

T Cycle time 3 5, 7, 10
n Number of jobs 3 6, 8, 10
µ Ratio of n to m 2 5, 10

Large instances
T Cycle time 3 7, 10, 30
n Number of jobs 4 10, 30, 60, 100
µ Ratio of n to m 4 5, 10, 20, 30

instances. Three levels {7, 10, 30} for T and four levels {10, 30, 60, 100} for n are351

considered here. Since we are discussing a case of perishable products with a352

quick turnover, like fresh foods and dairy products, a maximum cycle of 10 days353

is realistic. In the other hand, the maximum number of 60 jobs, as different354

retailers orders during a short cycle, is large enough. However, larger T and n355

equal to 30 and 100, respectively, are considered to evaluate the efficiency of the356

solutions in larger instances. similar to Kaplan and Rabadi (2012), the number357

of machines is considered as fraction of n and is calculated by m =
⌈
n
µ

⌉
. µ is358

considered to vary from low value 5 to high value 30. Beside the above men-359

tioned instances, small size instances are designed for evaluating the proposed360

methods in comparison with the optimum solution provided by solving MIP361

model. Different levels of the main parameters are demonstrated in Table 1. In362

order to generate a random instance, after selecting levels of all main param-363

eters, µ determines the number of the machines. Job related parameters (pj ,364

hj , wj , dj , rj , d̄j) are generated then as follows: processing time of each job pj365

is determined from a uniform distribution U [0.1, 1.5]. Earliness costs hj and366

tardiness costs wj are also independently generated based on a uniform distri-367

bution U [1, 5]. Due dates are also uniformly selected between 1 to T . Release368

dates and deadlines are generated such that for each job j, dj − rj ∈ U [1, T ]369

and d̄j − dj ∈ U [1, T ].370

All the combinations of the main parameters are considered for generating ran-371

dom instances and 10 instances are generated in each group, resulting in 180372

small instances and 480 large instances in total. All instances with the best solu-373

tions known are available at http://soa.iti.es. The MIP model is solved via374

ILOG-IBM CPLEX 12.4 and all heuristic methods are implemented in C# 4.0.375

All methods are run on a cluster of 30 blade severs each one with two Intel376

XEON 5254 processors running at 2.5 GHz with 16 GB of RAM memory. Each377

processor has four cores and the experiments are carried out in virtualized Win-378

dows XP machines, each one with two virtualized processors and 2 GB of RAM379

memory.380

5.1 Calibration of the heuristic algorithm381

The first comparative analysis is dedicated to calibrate the proposed heuristic382

algorithm and the ranking criteria discussed in Section 3. For the calibration383

12



Table 2: Comparative analysis of the ranking criteria in the heuristic algorithm
including density factor (ρHA).

T n TSDEC TSINC DDDEC DDINC WHDEC WHINC
BR% 60 100 67 87 87 80

10 BS% 40 40 33 20 53 27
AD% 22 8 25 22 10 20
BR% 40 100 60 60 60 80

7 30 BS% 0 47 7 0 27 27
AD% 68 5 48 46 26 32
BR% 47 93 53 67 47 73

60 BS% 13 33 20 7 20 7
AD% 40 4 23 21 28 21
BR% 87 100 100 100 100 100

10 BS% 40 53 67 33 53 47
AD% 155 3 2 14 10 49
BR% 87 100 93 87 87 100

10 30 BS% 33 7 20 0 33 20
AD% 18 16 15 38 18 17
BR% 93 100 93 93 93 93

60 BS% 13 7 47 0 20 13
AD% 15 15 7 30 6 15
BR% 69 99 78 82 79 88

Total BS% 23 31 32 10 34 23
AD% 30 9 20 28 16 18

we employ a different random benchmark to avoid overfilling and biased results.384

The instances are generated according to Table 1, by considering 10, 30 and 20385

as high level of T , n and µ, respectively. All the combinations are considered386

and in each group 5 instances are generated randomly. We perform the heuris-387

tic algorithm by applying the proposed criteria to solve the random instances.388

Furthermore, in order to evaluate the effect of density factor ρ, we consider389

two different version of the heuristic algorithm: The first, as it is explained in390

section 3 includes density factor and is called ρHA and the second selects the391

central point randomly and is called RHA. The local search is also performed392

in all cases. Therefore, in total twelve candidate algorithms must be evaluated.393

A summarized results of the first six alternatives related to ρHA are presented394

in Table 2. Similar results are obtained while we conduct the same experiments395

via RHA.396

This table shows percentage of times that each criterion generates the best397

known solution (BS) for each instance, percentage of times that each criterion398

provides a solution with minimum job rejection number (BR) and average de-399

viation of results, in comparison with the best known solution (AD). As it is400

shown, in all the rows TSINC generates the highest number of solutions with401

the minimum rejected jobs and in most of the groups this criterion provides402

relatively better solutions.403

In order to evaluate the outputs, Eq. 20 is used to calculate the objective val-404

ues, and the large number F is independently set for each instance, such that405

each rejected job be penalized by the largest cost, obtained in any solution406

for the same instance. The obtained objective values are transfered to relative407
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Figure 3: Means and Tukey’s Honest Significant Differences (HSD) intervals
(95% confidence level) of relative percentage deviation from the best known
solutions for the heuristic algorithm.

percentage deviation (RPD) applying:408

RPD =
Somesol −BestSol

BestSol
× 100 (22)

where Somesol is the objective function of a solution on an instance and Bestsol409

is the lowest objective value obtained in all solutions under experiment. We ana-410

lyze the results by using a multi-factor analysis of variance (ANOVA) technique411

in which T , n and µ are considered as independent factors. As a preliminary412

investigation, we need to check the three main hypothesis of ANOVA that are413

normality, homogeneity of variance and independence of residuals. Graphical414

and numerical methods are known as two main groups of tools for assessing415

normality. Here we use a typical graphical test called Quantile–Quantile plot416

which checks how the residuals fit a theoretical normal distribution. The resid-417

uals are clearly homogeneous and independent while the plot depicts a strong418

tailed normal distribution, which is not a major problem based on the results419

of Rasch and Guiard (2004) and Basso et al. (2007).420

The results of ANOVA indicate that all independent factors that determine in-421

stance size, are very significant. These results also demonstrate that using den-422

sity factor can make a statistically significant difference, while different criteria423

do not provide significant differences in the response variable. For determining424

the best algorithm among twelve available alternatives we refer to the means plot425

shown in Figure 3. This plot illustrates the average of the relative percentage426

deviation and corresponding means and Tukey’s Honest Significant Differences427

(HSD) intervals at the 95% confidence level. According to the plot, different428

criteria show the same behavior in both heuristic algorithms, while in total the429

ρHA reveals better performance. This plot also shows that TSINC provides430

better solution, however there is no statistically significant different among all431

the criteria at a 95% confidence level. Therefore without any significant priority432

between criteria, ρHA-TSINC is the selected heuristic algorithm in the rest of433

the experiments.434
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5.2 Adjusting parameters of IG algorithm435

An experiment is carried out to tune the parameters of the iterated greedy al-436

gorithm which starts from an initial solution generated by the selected heuristic437

algorithm. IG includes 3 parameters: number of destructed jobs (r), number of438

iteration for reinserting each destructed job (λ) and the parameter using in cal-439

culating the temperature (TIG). We consider three levels {1/10n, 1/8n, 1/5n}440

for r, three levels {3, 5, 7} for λ and five levels {0, 0.1, 0.3, 0.6, 1} for TIG.441

The calibration is carried out based on the Design of Experiments (DOE) ap-442

proach and a full factorial design is employed. By considering all the combina-443

tions of above mentioned parameters, 45 different treatments must be analyzed.444

For the experiment, the random calibration instances are used as in Section 5.1.445

For each instance, a time limitation of T × n×m milliseconds is considered as446

the stopping criterion. The experiment was analyzed by the ANOVA technique,447

where beside non-controllable factors related to the instance size, r, λ and TIG448

are considered as the controllable factors and the RPD is the response variable.449

The results indicate that all factors related to instance size result in statisti-450

cally significant differences. Also, the different levels of r, λ and TIG provide451

significant differences in the response variable. Means plots are used again, to452

determine the best level of each parameter. Figure 4 illustrates different RPD453

levels of r, where we can see that increasing r results in statistically worse algo-454

rithms, therefore level r = 1/10×n is selected for the number of destructed jobs.455

Based on Figure 5 it seems that levels 0, 0.1 or 0.3, for TIG, statistically provide456

the same RPD, therefore without any priority we select TIG = 0.3. Figure 6457

depicts the means plot for λ in which decreasing λ results in statistically better458

algorithms. Hence, level λ = 3 is selected as the best level of λ.459

5.3 Experimental evaluation460

In this section, a comparative computational experiment is conducted to evalu-461

ate the selected heuristic method and the calibrated iterated greedy algorithm.462

We consider the proposed heuristic algorithm in two different versions, where463

the former version does not include a local search, referred to as SHA, while464

the latter one uses local search and is denoted as HALS. The iterated greedy465

algorithm is also considered in different forms. In the first one a simple IG,466

denoted as SIG, is considered such that starts from a naive solution of rejecting467

all jobs and does not include a local search phase. In the second IG algorithm,468

referred to as HAIG, a solution generated by the selected heuristic algorithm is469

considered as an initial solution while no local search is used. The last variant,470

denoted by HAIGLS starts from a solution generated by the selected heuristic471

algorithm and includes the local search phase.472

In the first experiment, the set of 180 small test instances are tested to evaluate473

the deviation of the proposed algorithms in comparison with the optimum solu-474

tions. ILOG-IBM CPLEX 12.4 is used to solve the MIP model of each instance475

such that the best current solution is considered as the final solution, in case476

the optimal solution is not obtained after the maximum CPU time which is set477

to three hours. In the experiment a few number of instances reached the time478

limit of three hours and there is also an instance in which an out of memory479

error was found. Similar to the other tests, a cluster of 30 blade severs each one480
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with two Intel XEON 5254 processors running at 2.5 GHz with 16 GB of RAM481

memory is used in the current experiment.482

Table 3 summarizes the results for all proposed methods in which the RPD483

measure is calculated over the optimal value in case CPLEX provides the opti-484

mal solution. The heuristic algorithms do not depend on the CPU time while485

for iterated greedy-based algorithms a maximum elapsed CPU time, considering486

problem size, is set as stopping criteria. Here (T×n×m)×τ milliseconds is con-487

sidered as the stopping criterion where τ is tested at three values of {30, 60, 90}.488

In table 3 the results for different values of τ are separated by dashes. Based489

on the results, all the IG-based algorithms dominate the heuristic methods, in490

instances with the cycle length of 5; while for larger cycle lengths, heuristic491

methods outperform the simple form of IG algorithm (SIG). Generally the best492

solutions are provided by the IGLS and HAIGLS, where the local search phase493

is applied besides the iterated greedy algorithm.494

Similar to the previous experiments, an analysis of variance (ANOVA) is used in495

order to verify if the observed differences in the performance of the tested meth-496

ods are statistically significant. Figure 7 depicts the corresponding means plot497

with Tukey’s HSD intervals at the 95% confidence level. In the plot SIG shows498

the worst performance however at a 95% confidence level it is not significantly499

different from SHA. HAIG in average provides better solution in comparison500

with simplest IG and it confirms that starting from a better solution might501

improve the results; while there is no statistically significant difference between502

HAIG and the two heuristic methods. In general all three algorithms inclduing503

the local search phase perform better than others. From the plot we can see504

that combination of IG and local search provides the same outputs and initial505

solution of the algorithm does not statistically affect the results.506

The next experiments are carried out over the 480 large instances. Here also a507

maximum CPU time limitation of (T × n ×m) × τ milliseconds is considered508

and τ is set to {30, 60, 90}. The results, for different combinations of T and n,509

are summarized in Table 4 in which in most of the rows all IG-based algorithms510
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except SIG outperform the heuristic methods and similar to the previous ex-511

periment IGLS and HAIGLS result in better performance and increasing the512

instance size raises the gap between the performance levels. Here in most of the513

rows HAIGLS outperform IGLS. Moreover, in these algorithms, local search514

affects the quality of solutions and in average decreases the percentage devia-515

tion. In IG-based algorithms, better performance of HAIG compared to SIG516

confirms that starting from a better solution improves the quality of solutions517

significantly. However, making a comparison between IGLS and HAIGLS, re-518

veals that in presence of local search phase, the initial solution is not so much519

important. The table also shows that both heuristic algorithms are time effi-520

cient.521

A means plot illustrated in Figure 8 also confirms the significant difference be-522

tween SIG and the other methods. The rest of the algorithms, after removing523

SIG, can be compared better in Figure 9. From the plot it can be seen that a524

local search phase is likely to decrease the average percentage deviation of so-525

lutions in heuristic methods, however there is not significant difference between526

SHA and HALS. Due to the same mean and Tukey’s HSD intervals for HALS527

and HAIG it can be concluded that at the 95% confidence level combination528

of heuristic method with local search and IG algorithm results in statistically529

same outputs. This plot also confirms that combination of iterated greedy and530

local search provides the best solutions and IGLS and HAIGLS are statistically531

different from the rest of the methods. In this case different initial solutions do532

not provide statistically significant differences in RPD and IGLS and HAIGLS533

generate the same solutions at the 95% confidence level.534

The last analysis is dedicated to parameter τ which adjusts the stopping crite-535

rion in the IG-based algorithms. Here also an analysis of variance (ANOVA)536

is applied by focusing on the interaction between τ and the algorithms. The537

results can be seen in Figure 10. For SIG we can observe that increasing the538

parameter τ improves the value of RPD while it is not able to make a signifi-539

cant difference in any case. For the rest of the algorithms the three intervals are540

totally equivalent. Therefore, it can be concluded that all the algorithms have541

converged applying the proposed stopping criteria.542

6 Conclusions543

This paper studies a cyclic parallel machines scheduling problem in the food544

industry environment in which the manufacturer deals with the fixed retailers’545

orders with given due dates in each cycle. Products have to be delivered to the546

retailers during a time window bounded by due dates and deadlines with a time547

dependent cost as a lateness penalty. Retailers do not accept products after the548

deadline. However, early products can be stored at the production site with a549

product dependent holding cost, as a weighted earliness penalty. Since products550

are highly perishable, storage in the production site has a job dependent time551

limitation and therefore a release date depicts the earliest possible start time of552

the jobs by considering the due date and post-production shelf life limitation.553

The problem is to provide a cyclic schedule of all the jobs on the parallel ma-554

chines such that the orders are delivered to customers in due date to deadline555
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Figure 8: Means and Tukey’s Honest Significant Differences (HSD) intervals
(95% confidence level) of relative percentage deviation from the best known
solutions for the algorithms over set of the large instances.
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windows at the minimum possible earliness and tardiness costs.556

A mixed integer programming model has been designed for the problem and557

since the problem is NP-Hard, a heuristic algorithm (HA) is developed to gen-558

erate feasible solutions for the problem. Moreover, an Iterated greedy (IG)559

algorithm has been proposed to improve the quality of the solutions.560

We have conducted the experimental design analysis to adjust the best heuristic561

solution and also to tune the parameters of the IG algorithm. The selected HA562

has been tested in comparison with IG algorithm and the results demonstrate563

that IG is more likely to outperform the heuristic approach. Different versions564

of IG and HA are tested in order to evaluate the effect of local search and ex-565

periments verify that carrying out the local search provides better solutions. IG566

algorithm also was tested in different variants which start from different quality567

solutions. The results showed that the simple IG which starts from a good ini-568

tial solution, performs very well and generates solutions with less earliness and569

tardiness costs; while in the IG algorithm with local search phase the effect of570

initial solution is insignificant. According to the experiments the combination571

of IG and local search shows the best performance and greatly outperforms the572

other methods.573

Extending the problem by adding setup times and setup costs, can be con-574

sidered in future research. In addition, we can consider distribution planning575

beside production scheduling to coordinate a two stage supply chain of perish-576

able products.577

578
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