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Abstract

This paper deals with a realistic cyclic scheduling problem in the food
industry environment in which parallel machines are considered to pro-
cess perishable jobs with given release dates, due dates and deadlines.
Jobs are subject to post-production shelf life limitation and must be de-
livered to retailers during the corresponding time window bounded by due
dates and deadlines. Both early and tardy jobs are penalized by partial
weighted earliness/tardiness functions and the overall problem is to pro-
vide a cyclic schedule of minimum cost. A mixed integer programming
model is proposed and a heuristic solution beside an iterated greedy algo-
rithm is developed to generate good and feasible solutions for the problem.
The proposed MIP, heuristic and iterated greedy produce a series of solu-
tions covering a wide range of cases from slow optimal solutions to quick
and approximated schedules.

Keywords: Parallel machine scheduling, Perishable products, Partial
weighted earliness/tardiness, Due date, Deadline, Release date, Iterated
greedy algorithm

1 Introduction

The studied problem in this research is motivated by a real scheduling prob-
lem in the food industries. In food process control, safety of products has been
one of the main objectives beside temporal and financial issues (Linko, 1998)
and in the case of fresh products or highly perishable foods, final products are
subject to deterioration through time. Hence, in most real cases, a limited
post-production shelf life is considered, such that final products can be placed
on supermarket shelves with a reasonable remaining shelf life. Moreover, some
food products such as fresh foods or dairy products as subgroups of Fast Moving
Consumer Goods (FMCGQG), have a quick turnover and need to be produced and
distributed over a short period of hours, days or weeks. Therefore, the whole
operations, due to limited post-production shelf life, should be carried out as
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fast as possible, and due to FMCG’s properties, the operations can be scheduled
in a repetitive manner of a particular cycles in a relatively long horizon time.
The production setting we consider is an identical parallel machines shop which
is capable of producing different perishable goods. Manufacturer deals with
fixed retailers’ orders in each cycle. Orders (jobs) need to be processed on one
of the machines for a known processing time. Related to each order there is
a release date, a due date and a deadline. Early and tardy jobs are penalized
and in order to achieve customer’s satisfaction and a productive operation, the
manufacturer has to schedule jobs as close as possible to their due dates.
Production scheduling in food industries has received significant research atten-
tion and there are plenty of case studies investigating particular subjects in this
area. We refer the readers to Claassen and Van Beek (1993), Randhawa et al.
(1994) and Tadei et al. (1995) in which aggregation of planning and scheduling
of food industries is investigated. Moreover, Van Donk (2001), Soman et al.
(2004) and Soman et al. (2007) have discussed about a combined production
planning and inventory control framework in the food industry.

There is also an abundance of published researches considering machine schedul-
ing subject to due dates or deadline constrains. Cheng and Gupta (1989) and
Baker and Scudder (1990) provide a review on scheduling problems involving
due dates and earliness/tardiness. A more recent survey has been also provided
by Lauff and Werner (2004) considering multi machine problems with a common
due date. Some papers deal with an interval called “due window” rather than
due date. Anger et al. (1986) carried out the first due window study and Wan
and Yen (2002), Arroyo et al. (2011) and Chen and Lee (2002) are instances
of recent studies on this area. “Assignable due window” is another extension in
the classic form in which the early and late due dates are treated as decision
variables. We refer readers to Mosheiov and Sarig (2010) and Mor and Mosheiov
(2012) as examples of this subject.

Release date of jobs has been widely taken into consideration, for example Bank
and Werner (2001) discussed on parallel unrelated machines with a common due
date and release dates. They presented various constructive and iterative heuris-
tic algorithms for solving the problem. A single machine scheduling problem
with release dates and due dates is also considered by Sourd (2006) in pres-
ence of sequence dependent setup times and costs. A large-scale neighborhood
search is designed for solving the problem. Baptiste and Le Pape (2005) and
Tercinet et al. (2004) also investigated a release date with deadline, respectively,
in a single machine and multiprocessor scheduling. Huo et al. (2010) have also
investigated a factory that manufactures perishable goods while considering a
time window for a safe finish time of products. They suppose time windows
to be disjoint and of the same size and the goal is to select a subset of jobs to
produce such that maximize the total profit.

A parallel machine scheduling problem with due date to deadline window are
studied by Kaplan and Rabadi (2012) while start times of the jobs are subject
to ready times. Jobs are supposed to be completed before the due dates. Miss-
ing due dates is not preferred but allowed and a weighted tardiness cost will be
incurred for the jobs. Our research can be considered as an extension of this
paper.

In the current research we focus on the scheduling of perishable products on
parallel machines. Each job has a due date, which is the preferred delivery
date of the retailers and might be violated subject to a penalization as lateness
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penalty, and similar to Kaplan and Rabadi (2012) there is an strict deadline im-
posed by the retailer that should not be exceeded. Moreover, since the products
are perishable, and producing them far in advance of the delivery time is not
preferred, there are release dates as the earliest possible start times of the jobs.
Unlike in Kaplan and Rabadi (2012), storing early products in the manufacturer
sites also incurs in a job dependent holding cost.

As the main extension in our research we take into account the case of FMCG,
and consider the cooperation of the manufacturer and the retailers for an ex-
tended period of time. In order to decrease changeover costs and increase relia-
bility of the operations, different parties prefer to adopt a routine and repetitive
working plan during short cycles like days, weeks or months. This type of prob-
lem, known as cyclic (periodic) scheduling, is an effective approach to deal with
a set of jobs that should be iterated during a long horizon (Hanen and Mu-
nier, 1995). An abundance of researches have discussed the advantages of cyclic
scheduling over static (non-cyclic) scheduling, we refer the readers to Levner
et al. (2010) as a review on complexity of fundamental cyclic scheduling prob-
lems including the cyclic job shop, cyclic flowshop, and cyclic project scheduling
problems. Scha and Hanzalek (2008) and Trautmann and Schwindt (2009) are
also samples of practical research in this subject.

We will consider the interaction of adjacent cycles into account and take the
advantage of this extension to increase the ability and the manufacturer’s flex-
ibility to satisfy customers’ orders. Compared to existing models, the studied
problem in this paper, is more practical and to the best of our knowledge, a
cyclic parallel machine scheduling with release dates, due dates and deadlines
has not been investigated in the literature.

Since Kaplan and Rabadi (2012) demonstrated their studied problem to be NP-
hard, this extension is also NP-hard. Therefore, apart from a mixed integer
model we present heuristic and iterated greedy algorithms. The rest of this
paper is organized as follows. In Section 2 we precisely describe the problem,
the notation and the mathematical model. Section 3 is dedicated to the de-
velopment of a heuristic algorithm. In Section 4 an iterated greedy method
is presented. Section 5 is to illustrate the numerical experiments and the last
section concludes the paper and suggests topics for future research.

2 Problem description and mathematical model

We consider a production scheduling problem with identical parallel machines
capable of producing different perishable jobs over a cycle of length T'. Manufac-
turer receives a set J = {1, 2,..., n} of n different orders (jobs) from retailers
that need to be processed on a set M = {1, 2,..., m} of m identical machines
without preemption. Each job j € J has a due date d;, which is the preferred
delivery date of the retailers, a release date r; as an earliest start time of the job,
and a deadline d_j which is the latest possible completion time of the job. The
jobs are delivered to retailers during the corresponding time window bounded
by the due date and the deadline. The retailers do not accept jobs after the
deadline, while early jobs can be held on the production site. Jobs that are
completed before their due dates are subject to a holding cost and are penalized
by rate h;. Jobs that are completed after their due dates are also subject to a



penalization by a rate of w; as a lateness cost.

Machines are always available and at most one product can be processed on
each machine at any moment. The goal of this research is to schedule jobs on
machines, in order to minimize the total earliness and lateness costs while ad-
hering to the release date and the deadline constraints.

Since in this case we consider a company that produces products with a quick
turnover and establishes a long term relationship with retailers, it is supposed
that the production orders come up iteratively through determined cycles such
as weeks, 10 days periods or months. These manufacturers are usually inter-
ested in designing a routine production plan for consecutive cycles, while the
interaction between adjacent cycles is taken into account.

A mixed integer programming (MIP) model is designed and provides a cyclic

schedule for the problem. The parameters and the decision variables are now
defined.

Parameters:
T  : Cycle length
pj : Processing time of job j

d; : Due date of job j

d; : Deadline of job j

r;  : Release date of job j

hj  : Earliness penalty of job j

w; @ Tardiness penalty of job j

M : A large positive integer

F : A large positive integer as compensation for rejecting a job

Variables:

C; : Completion time of job j

E; : Earliness of job j

T; : Tardiness of job j

C¢ : Completion time of a dummy job on machine i

Binary variables:

Zi5 : 11if job j precedes job k on machine i;
aj @ 1if job j is considered as a tardy job;
ﬂj 11ijfdj20,

Il’liIl Z = Z (hjEj =+ ijj)
=1
s.t.
m n
53 s
i=1 k=0, k#j
n n
Z Tijk = Z Tikj J= ]-a yn 1= 17
k=0, k#j k=0, k#j
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The objective function (1) minimizes the total earliness and tardiness costs.
In the original problem, rejecting orders is not allowed and therefore in some
cases, limited machine capacity and strict deadlines might result in an infeasible
problem. Here, similar to Kaplan and Rabadi (2012), a large integer number
F determines the cost of rejecting a job and it must be considered big enough
in order not to affect the optimal solution. In the model, the binary variable
x;jr determines sequence of the jobs on the machines. Eq. (2) insures that
each job is assigned at most to one machine and precedes at most one job. A
dummy job j = 0 with zero processing time is supposed to be processed first
on all machines and in order to keep the cyclic property, the dummy job is also
considered to succeed the last job on the machines. By considering the dummy
job, if a job is assigned to a machine it must precede and succeed exactly one
job, this constraint is supported by Eq. (3) to (5). It is possible a job not to be
assigned to the machines and a machine does not work at all during the cycles.
Constraints (6) guarantees that job j cannot precede and succeed the same job
k. Constraints (7) ensures that there is a gap, at least, of length p; between
start time of job j and its successor and Eq. (8) and (9) are added to the model
in order to adjust the completion time of the dummy jobs on each machine.
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Figure 1: Early or tardy job by considering due dates in consequent cycles.

Due to the cyclic property of scheduling, a job at the same time can be early and
tardy by considering the corresponding orders in consequent cycles. In other
words, if a job is tardy (early) by considering due date of current cycle it can
be early (tardy) for the same due date placed in the next (previous) cycle. This
concept is depicted on Figure 1, where part (a) shows job j as tardy, due to the
corresponding due date inside cycle 1. However, by considering due date of cycle
2, it can be an early job. Therefore, we first need to determine whether the job
is early or tardy. Moreover, as it is shown in the following, for a tardy (early)
job j in case due date and completion time belong to the same cycle, tardiness
(earliness) is calculated as C; —d; (d; —C}); while, in case job j satisfies an order
of the previous (next) cycle the tardiness (earliness) is calculated by (T'+C;)—d;
((T'+d;) — C;). Constraints (10) to (13) evaluate these requirements by using
two binary variables «; and f;.

E.— dj —Cj if Cj < dj;
J T—i—dj—Cj if0j>dj.

T+Cj —dj lfC] < dj.
Due to release date and deadline limitations, constraints (14) and (15) ensure
that earliness or tardiness of a processed job does not violate the maximum
allowed earliness and tardiness. The two last inequalities adjust earliness and
tardiness of a rejected job such that large compensation F' inures in the objective
function.

Each feasible solution of the problem includes a set R of the rejected jobs and
a list C' of the completion times in which completion times of the rejected jobs
are set to the large number M. Then corresponding to each machine i € M
there is a sequences S;, of the jobs in increasing order of the completion times.
Therefore a complete solution S, consists of m + 2 elements that can be shown
by S = {C,R,S51,52,...,5,}. Regarding to well known WSPT rule it can be
easily verified that the properties below are satisfied in the optimal solution.
Consider S as an optimal solution:

Tj{ Cj - dj if Cj Z dj;

e For two consecutive early jobs j and k in S;, if d; > Cy and h;/p; > hi/pr,
j precedes k if and only if the release date of k (ry) is greater than the
start time of k.

e For two consecutive tardy jobs j and k in S;, if d, < C; —p; and w;/p; <

wg/Pr, j precedes k if and only if the deadline of ¢ (d;) is smaller than the
completion time of k.
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e For two consecutive jobs j and k in S;, which start after d; and finish
before dj, job j precedes job k.

3 The heuristic algorithm

In this section, a constructive heuristic algorithm is presented in which jobs are
selected based on different priority rules and in a greedy way are scheduled at
the best available position among all machines. The general framework of the
algorithm is to select a due date as a central point and schedule the feasible
jobs around it in a greedy manner such that no idle time occurs among the
jobs scheduled in each machine. Then, if any job remains unscheduled, the next
center point is chosen, and this procedure is iterated until no job remains to be
scheduled.

As the first center point, our intention is to select the most occupied part of
the cycle, where a relatively large number of jobs are available to be scheduled.
Index p; called “density factor” is proposed corresponding to time t based on
Eq. 18, which evaluates how occupied is the area around the selected time.
Where Ay is calculated by Eq. 19 as the minimum cyclic distance between d;
and time t.

—1
1
pt = ij <T + Adjt) 0<t<T (18)
JjeJ
Ay =min{lt —t'|, T — |t —t'|} (19)

By using Eq. 18, the due date with the largest density factor is selected as the
central point of scheduling. The unscheduled jobs can then be processed to the
left or to the right of this center point. Therefore, corresponding to each center
point, there are two time frames on each machine, which determine the available
times for scheduling.

Suppose at the first step, d* is selected as the central due date. Since machines
are available the whole cycle, the processing of the selected job might be started
inside processing frames of length 7" to the right or to the left of d*. So, as it
is shown in Figure 2 (a) for each machine ¢ € M the first selected job might be
scheduled inside the interval bounded by the lower bound of the left processing
frame L and the upper bound of the right processing frame RY. Once a job is
scheduled inside the left (right) processing frame, an scheduled frame is created
at the middle of the scheduling zone and the upper bound (lower bound) of
the left (right) processing frame LY (RE) must be updated. Moreover, due to
the cyclic property, scheduling a job in the left (right) processing frame affects
the maximum (minimum) available time of the right (left) processing frame and
decreases the length of the frame as it is illustrated in Figure 2 part (b).

Once all the frames on different machines are updated, candidate jobs to be
scheduled next must be determined. To do this, we determine w : [wL, wU] as
a common period to all scheduled frames on the machines and select candidate
jobs j among the unscheduled jobs such that w’ — p; <d;j < wY +p;. Then, a
criterion is needed to rank the candidate jobs and to select one to be scheduled.
Various criteria have been proposed in the literature of the job scheduling with

earliness/tardiness penalties, in order to determine scheduling priority of the
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Figure 2: Processing and scheduling frames around the central due dates for

machine 3.

a) The initial central due date and the corresponding processing frames. b) Scheduling of feasible
jobs around the central due date and updating the processing frames. ¢) Next selected central due
date and new processing frames.

jobs. Bank and Werner (2001) have proposed and compared different criteria,
in an unrelated parallel machine scheduling problem with common due dates,
and concluded the superiority of the ranking based on the job’s slack. Here, we
consider total slack which is calculated as sE = d_j —1j — pj, beside some other
factors which are listed below. These ranking criteria will be all evaluated, and
the best one will be embedded in the heuristic algorithm.

e Nonincreasing/Nondecreasing total slack (TSDEC/TSINC)
e Nonincreasing/Nondecreasing due date (DDDEC/DDINC)
e Nonincreasing/Nondecreasing ratio (w;h;)/p; (WHDEC/WHINC)

The selected job is scheduled as close as possible to the central due date. There-
fore, at each machine ¢ there are two possibilities for each selected job j: placing
in the left processing frame and C; = LY or scheduling in the right processing
frame and C; = RE+ pj. These alternatives must be checked to see if they meet
the release date an deadline constraints. Furthermore, jobs are not allowed to
exceed the processing frames’ bounds of the machines. When all feasible al-
ternatives are tested the one with minimum earliness/tardiness cost is selected
to schedule job j, and in case there is no feasible alternative, the job will be
rejected.

The whole procedure is iterated until no available job is left and when we en-
counter with an empty list, the next central due date must be selected among
the remaining due dates by the selection criteria of minimum distance to the
common schedule frame’s bounds. As the next step, the processing frame, con-
taining new central due date d},.,,, is considered as the scheduling zone and
frames’ bounds need to be updated. Part (c) of Figure 2 shows the new schedul-
ing zone and the frames. The algorithm stops when no unscheduled job remains.
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The pseudo code for the whole procedure is given in Algorithm 1, computational
complexity of this algorithm is O(n?m).

Algorithm 1 Heuristic Algorithm

d* : Central due date

F*: Ratio related to job j based on the selected ranking criterion

U : Set of unscheduled jobs

R : Set of rejected jobs

A : Set of available jobs

M : Set of machines

k : Number of distinct due dates

D,: rth distinct due date

D : Set of distinct due dates

DE: Set of remaining due dates

LL (LY): Lower (Upper) bound of the left processing frame at machine
RiL (RZU) Lower (Upper) bound of the right processing frame at machine %
wl (wY): Lower (Upper) bound of the common scheduled frame

Set U={1,2,...,n}, M ={1,2,...,m}, D={1,2,...,k}.
Select d* such that pg« = Igleal))( {pp,} and Vi € M set LiL =d*-T, LZU = d*, RiL = d*
and R? =d*+T
while U not empty do
Set wl = max {Ly} and wY = min {RiL}, Vi € U if wl —p; <d; < wY + p; then add
jto A €M i€EM
while A not empty do
flf‘ind ]_6 A such that F]’-" = gleaic {FI;"}
or i =1tom do
Schedule j on machine i in two positions such that C; = LV or C; = RF + p;.
Check the feasibility criteria for both cases (Cj; — p; > max {rj,LZU}, C; <
wmin {4, RV} )
Consider new feasible position as the best alternative in case provides a better
solution than the best known alternative.
end for
If there is no feasible alternative for the selected job, consider j as a removed job and
add it to R; Otherwise schedule j in the best known position.
Remove j from U and update all frames’ bounds
Update A
end while
if U not empty then
Set D® . {D,:r € D,3j €U :d; = D:}
Update d* among D; € D such that D; has the minimum distance to the common
scheduled frame’s bounds.
update all frames’ bounds and update A
end if
end while

3.1 Local Improvement

Once a feasible solution S = {C, R, S1, S, ..., Sn} is obtained, two simple local
searches are conducted to improve the quality of the solution. The first pro-
posed improvement deals with idle time of each machine and a shifting of jobs
which are processed just before or after the idle time in such a way that no other
jobs are displaced. It is also straightforward to adopt a greedy style and in each
machine choosing the shift of the job which provides maximum improvement.
This procedure is repeated until no further improvement is possible. If in so-
lution S no job is rejected, all n jobs are processed on machines and therefore



at most n separated idle time might occur. Consequently a single step of this
improvement has computational complexity of O(n).

We also take advantage of the previous mentioned properties of optimum so-
lution by performing an adjacent pairwise interchange. This improvement can
be done by considering all feasible interchange of adjacent jobs on each S; € S.
This procedure starts from the last job j in sequence S; and compares it with
the previous job, or if job j is placed at the first position it continues by the
last job in S;. In case the pairwise interchange improves the solution, the inter-
change is performed and job j then is compared to the previous job in improved
S; for further improvement. In worst case at each stage, the selected job must
be compared with n — 1 different jobs. Thus the complexity of a single stage
of this improvement is O(n). This procedure also is repeated until no further
improvement is possible.

In order to perform a complete local search phase, a solution is first improved
by applying the first proposed local search and once no improvement is possible
the second local search is applied on the new improved solution.

4 Iterated greedy algorithm

Iterated greedy (IG) which was first introduced by Ruiz and Stiitzle (2007)
for scheduling problems, is well known for its very simple principles and has
exhibited far better performance than other more complex approaches in the
literature. The IG is a constructive two-phase heuristic which starts from an
initial solution and iteratively applies a greedy heuristic to improve it. The first
phase, called destruction, randomly removes some solution components and then
the second phase, called construction, reinserts the removed components into
the solution in such a way that minimum possible cost is obtained at each stage.
An acceptance criterion determines whether the current solution is replaced by
the solution generated in the construction phase.

Ruiz and Stiitzle (2008) has reported the superiority of the IG for solving the
sequence dependent setup times flowshop problem in comparison to many other
solutions. Ying and Cheng (2010), Minella et al. (2011), and Kang et al. (2011)
are also samples of recent extensions and applications of the IG heuristic. In-
spired by these results, in this research an IG algorithm is designed for the
problem under consideration. The following subsection describes the proposed
IG algorithm in detail.

4.1 Destruction phase

In the first step, we start from a feasible solution S = {C, R, S1,S2,...,Sn},
generated by the proposed heuristic algorithms. The destruction procedure
choses r random different jobs in such a way that rejected jobs j € R have
twice the chance of being selected. Selected jobs are removed from the initial
solution S. The result is a partial solution S¥ = {CP,RP,S{D,S;, .. .,S’ﬁ}
and a sequence of removed jobs 7 in the order of selection.

10



4.2 Construction phase

The construction phase considers the partial schedule S, and in r stages rein-
serts removed jobs in order of 7 to obtain a complete solution S’. At each stage
the selected job j must be scheduled on each machine i at a feasible completion
time ¢ which is randomly selected in interval [rj + pj,dfj]. Completion time
of the other jobs in SF are then updated. We start from the first job k in
sequence S such that Cy > t. Due to the cyclic property if there is no job
that satisfies the condition, the first job of sequence S7 is selected. This job is
rescheduled on machine ¢ as early as possible. In the same way, the remaining
jobs are rescheduled in order of sequence SY. In case for a selected job there is
no feasible alternative it is considered as a rejected job.

Selecting a random completion time and rescheduling the jobs is repeated A
times on each machine. Hence, for each member of w, we generate m x A al-
ternatives that need to be evaluated. In each complete solution, jobs can be
classified in three groups: early jobs F, tardy jobs T and rejected jobs R. In an
evaluation step each removed job is penalized by large number F. Therefore,
the evaluation function for solution S is:

f(S) = Z hjEj + ijTj + Z F (20)

JEE JET JER

Once a removed job is inserted in S¥, it will be removed from 7 and then, the
whole procedure is iterated until 7 is empty. At the end of construction phase,
the local improvements explained in Subsection 3.1 are carried out to improve
the candidate solution S”.

4.3 Acceptance criterion

After a complete iteration of a greedy algorithm it should be decided whether the
new solution S’ is accepted as an initial solution for the next iteration. Instead
of considering a better objective value, similar to Ruiz and Stiitzle (2007) we
consider a simple simulated annealing-like acceptance criterion with a constant
temperature which is computed as follows, where T is a parameter that needs
to be adjusted and the quotient calculates the average of maximum possible
earliness/tardiness of a job.

Yie [hilds —rj —pj) +w;i(d; — dj)]
2Xn

Temperature = 0.1 X Trg X (21)

5 Experimental results and computational anal-
ysis

Comprehensive numerical experiments are conducted for testing and compar-

ing the efliciency of algorithms and quality of solutions. Various instances are

generated randomly in which cycle length (T), job number (n) and machine
number (m) are considered as the main parameters that determine size of the

11



Table 1: Main parameters of the random instances.

Parameter Description Number of levels  Values
Small instances
T Cycle time 3 5,7, 10
n Number of jobs 3 6, 8, 10
n Ratio of n to m 2 5, 10

Large instances

T Cycle time 3 7, 10, 30
n Number of jobs 4 10, 30, 60, 100
I Ratio of n to m 4 5, 10, 20, 30

instances. Three levels {7,10, 30} for T and four levels {10, 30,60, 100} for n are
considered here. Since we are discussing a case of perishable products with a
quick turnover, like fresh foods and dairy products, a maximum cycle of 10 days
is realistic. In the other hand, the maximum number of 60 jobs, as different
retailers orders during a short cycle, is large enough. However, larger T' and n
equal to 30 and 100, respectively, are considered to evaluate the efficiency of the
solutions in larger instances. similar to Kaplan and Rabadi (2012), the number

of machines is considered as fraction of n and is calculated by m = H} W is

considered to vary from low value 5 to high value 30. Beside the above men-
tioned instances, small size instances are designed for evaluating the proposed
methods in comparison with the optimum solution provided by solving MIP
model. Different levels of the main parameters are demonstrated in Table 1. In
order to generate a random instance, after selecting levels of all main param-
eters, /1 determines the number of the machines. Job related parameters (p;,
hj, wj, dj, rj, aZ) are generated then as follows: processing time of each job p;
is determined from a uniform distribution U [0.1, 1.5]. Earliness costs h; and
tardiness costs w; are also independently generated based on a uniform distri-
bution U [1, 5]. Due dates are also uniformly selected between 1 to T'. Release
dates and deadlines are generated such that for each job j, d; —r; € U[1, T]
and dj —d; € U[1,T).

All the combinations of the main parameters are considered for generating ran-
dom instances and 10 instances are generated in each group, resulting in 180
small instances and 480 large instances in total. All instances with the best solu-
tions known are available at http://soa.iti.es. The MIP model is solved via
ILOG-IBM CPLEX 12.4 and all heuristic methods are implemented in C'# 4.0.
All methods are run on a cluster of 30 blade severs each one with two Intel
XEON 5254 processors running at 2.5 GHz with 16 GB of RAM memory. Each
processor has four cores and the experiments are carried out in virtualized Win-
dows XP machines, each one with two virtualized processors and 2 GB of RAM
memory.

5.1 Calibration of the heuristic algorithm

The first comparative analysis is dedicated to calibrate the proposed heuristic
algorithm and the ranking criteria discussed in Section 3. For the calibration

12



Table 2: Comparative analysis of the ranking criteria in the heuristic algorithm
including density factor (pHA).

T n TSDEC TSINC DDDEC DDINC WHDEC WHINC
BR% 60 100 67 87 87 80

10 BS% 40 40 33 20 53 27

AD% 22 8 25 22 10 20

BR% 40 100 60 60 60 80

7 30 BS% 0 47 7 0 27 27
AD% 68 5 48 46 26 32

BR% 47 93 53 67 47 73

60 BS% 13 33 20 7 20 7
AD% 40 4 23 21 28 21

BR% 87 100 100 100 100 100

10 BS% 40 53 67 33 53 47

AD% 155 3 2 14 10 49

BR% 87 100 93 87 87 100

10 30 BS% 33 7 20 0 33 20
AD% 18 16 15 38 18 17

BR% 93 100 93 93 93 93

60 BS% 13 7 47 0 20 13
AD% 15 15 7 30 6 15

BR% 69 99 78 82 79 88

Total BS% 23 31 32 10 34 23
AD% 30 9 20 28 16 18

we employ a different random benchmark to avoid overfilling and biased results.
The instances are generated according to Table 1, by considering 10, 30 and 20
as high level of T', n and u, respectively. All the combinations are considered
and in each group 5 instances are generated randomly. We perform the heuris-
tic algorithm by applying the proposed criteria to solve the random instances.
Furthermore, in order to evaluate the effect of density factor p, we consider
two different version of the heuristic algorithm: The first, as it is explained in
section 3 includes density factor and is called pHA and the second selects the
central point randomly and is called RHA. The local search is also performed
in all cases. Therefore, in total twelve candidate algorithms must be evaluated.
A summarized results of the first six alternatives related to pHA are presented
in Table 2. Similar results are obtained while we conduct the same experiments
via RHA.

This table shows percentage of times that each criterion generates the best
known solution (BS) for each instance, percentage of times that each criterion
provides a solution with minimum job rejection number (BR) and average de-
viation of results, in comparison with the best known solution (AD). As it is
shown, in all the rows TSINC generates the highest number of solutions with
the minimum rejected jobs and in most of the groups this criterion provides
relatively better solutions.

In order to evaluate the outputs, Eq. 20 is used to calculate the objective val-
ues, and the large number F' is independently set for each instance, such that
each rejected job be penalized by the largest cost, obtained in any solution
for the same instance. The obtained objective values are transfered to relative

13
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Figure 3: Means and Tukey’s Honest Significant Differences (HSD) intervals
(95% confidence level) of relative percentage deviation from the best known
solutions for the heuristic algorithm.

percentage deviation (RPD) applying:

s — Best
RPD = 29MCsol = PESTSol ¢ (22)
Bestgop

where Somes,; is the objective function of a solution on an instance and Best .
is the lowest objective value obtained in all solutions under experiment. We ana-
lyze the results by using a multi-factor analysis of variance (ANOVA) technique
in which T, n and p are considered as independent factors. As a preliminary
investigation, we need to check the three main hypothesis of ANOVA that are
normality, homogeneity of variance and independence of residuals. Graphical
and numerical methods are known as two main groups of tools for assessing
normality. Here we use a typical graphical test called Quantile-Quantile plot
which checks how the residuals fit a theoretical normal distribution. The resid-
uals are clearly homogeneous and independent while the plot depicts a strong
tailed normal distribution, which is not a major problem based on the results
of Rasch and Guiard (2004) and Basso et al. (2007).

The results of ANOVA indicate that all independent factors that determine in-
stance size, are very significant. These results also demonstrate that using den-
sity factor can make a statistically significant difference, while different criteria
do not provide significant differences in the response variable. For determining
the best algorithm among twelve available alternatives we refer to the means plot
shown in Figure 3. This plot illustrates the average of the relative percentage
deviation and corresponding means and Tukey’s Honest Significant Differences
(HSD) intervals at the 95% confidence level. According to the plot, different
criteria show the same behavior in both heuristic algorithms, while in total the
pHA reveals better performance. This plot also shows that TSINC provides
better solution, however there is no statistically significant different among all
the criteria at a 95% confidence level. Therefore without any significant priority
between criteria, pHA-TSINC is the selected heuristic algorithm in the rest of
the experiments.

14



5.2 Adjusting parameters of IG algorithm

An experiment is carried out to tune the parameters of the iterated greedy al-
gorithm which starts from an initial solution generated by the selected heuristic
algorithm. IG includes 3 parameters: number of destructed jobs (r), number of
iteration for reinserting each destructed job (\) and the parameter using in cal-
culating the temperature (T7g). We consider three levels {1/10n,1/8n,1/5n}
for r, three levels {3,5,7} for A and five levels {0,0.1,0.3,0.6,1} for Ti¢.

The calibration is carried out based on the Design of Experiments (DOE) ap-
proach and a full factorial design is employed. By considering all the combina-
tions of above mentioned parameters, 45 different treatments must be analyzed.
For the experiment, the random calibration instances are used as in Section 5.1.
For each instance, a time limitation of T' x n x m milliseconds is considered as
the stopping criterion. The experiment was analyzed by the ANOVA technique,
where beside non-controllable factors related to the instance size, r, A and T
are considered as the controllable factors and the RPD is the response variable.
The results indicate that all factors related to instance size result in statisti-
cally significant differences. Also, the different levels of r, A and Tj¢ provide
significant differences in the response variable. Means plots are used again, to
determine the best level of each parameter. Figure 4 illustrates different RPD
levels of r, where we can see that increasing r results in statistically worse algo-
rithms, therefore level r = 1/10 xn is selected for the number of destructed jobs.
Based on Figure 5 it seems that levels 0, 0.1 or 0.3, for T;¢, statistically provide
the same RPD, therefore without any priority we select T;¢ = 0.3. Figure 6
depicts the means plot for A in which decreasing X results in statistically better
algorithms. Hence, level A = 3 is selected as the best level of A.

5.3 Experimental evaluation

In this section, a comparative computational experiment is conducted to evalu-
ate the selected heuristic method and the calibrated iterated greedy algorithm.
We consider the proposed heuristic algorithm in two different versions, where
the former version does not include a local search, referred to as SHA, while
the latter one uses local search and is denoted as HALS. The iterated greedy
algorithm is also considered in different forms. In the first one a simple IG,
denoted as SIG, is considered such that starts from a naive solution of rejecting
all jobs and does not include a local search phase. In the second IG algorithm,
referred to as HAIG, a solution generated by the selected heuristic algorithm is
considered as an initial solution while no local search is used. The last variant,
denoted by HAIGLS starts from a solution generated by the selected heuristic
algorithm and includes the local search phase.

In the first experiment, the set of 180 small test instances are tested to evaluate
the deviation of the proposed algorithms in comparison with the optimum solu-
tions. ILOG-IBM CPLEX 12.4 is used to solve the MIP model of each instance
such that the best current solution is considered as the final solution, in case
the optimal solution is not obtained after the maximum CPU time which is set
to three hours. In the experiment a few number of instances reached the time
limit of three hours and there is also an instance in which an out of memory
error was found. Similar to the other tests, a cluster of 30 blade severs each one
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(95% confidence level) of relative percentage deviation from the best known
solutions for the algorithms over set of the small instances.

with two Intel XEON 5254 processors running at 2.5 GHz with 16 GB of RAM
memory is used in the current experiment.

Table 3 summarizes the results for all proposed methods in which the RPD
measure is calculated over the optimal value in case CPLEX provides the opti-
mal solution. The heuristic algorithms do not depend on the CPU time while
for iterated greedy-based algorithms a maximum elapsed CPU time, considering
problem size, is set as stopping criteria. Here (7' X n x m) x 7 milliseconds is con-
sidered as the stopping criterion where 7 is tested at three values of {30, 60, 90}.
In table 3 the results for different values of 7 are separated by dashes. Based
on the results, all the IG-based algorithms dominate the heuristic methods, in
instances with the cycle length of 5; while for larger cycle lengths, heuristic
methods outperform the simple form of IG algorithm (SIG). Generally the best
solutions are provided by the IGLS and HAIGLS, where the local search phase
is applied besides the iterated greedy algorithm.

Similar to the previous experiments, an analysis of variance (ANOVA) is used in
order to verify if the observed differences in the performance of the tested meth-
ods are statistically significant. Figure 7 depicts the corresponding means plot
with Tukey’s HSD intervals at the 95% confidence level. In the plot SIG shows
the worst performance however at a 95% confidence level it is not significantly
different from SHA. HAIG in average provides better solution in comparison
with simplest IG and it confirms that starting from a better solution might
improve the results; while there is no statistically significant difference between
HAIG and the two heuristic methods. In general all three algorithms inclduing
the local search phase perform better than others. From the plot we can see
that combination of IG and local search provides the same outputs and initial
solution of the algorithm does not statistically affect the results.

The next experiments are carried out over the 480 large instances. Here also a
maximum CPU time limitation of (T' X n X m) x 7 milliseconds is considered
and 7 is set to {30,60,90}. The results, for different combinations of T and n,
are summarized in Table 4 in which in most of the rows all IG-based algorithms
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except SIG outperform the heuristic methods and similar to the previous ex-
periment IGLS and HAIGLS result in better performance and increasing the
instance size raises the gap between the performance levels. Here in most of the
rows HAIGLS outperform IGLS. Moreover, in these algorithms, local search
affects the quality of solutions and in average decreases the percentage devia-
tion. In IG-based algorithms, better performance of HAIG compared to SIG
confirms that starting from a better solution improves the quality of solutions
significantly. However, making a comparison between IGLS and HAIGLS, re-
veals that in presence of local search phase, the initial solution is not so much
important. The table also shows that both heuristic algorithms are time effi-
cient.

A means plot illustrated in Figure 8 also confirms the significant difference be-
tween SIG and the other methods. The rest of the algorithms, after removing
SIG, can be compared better in Figure 9. From the plot it can be seen that a
local search phase is likely to decrease the average percentage deviation of so-
lutions in heuristic methods, however there is not significant difference between
SHA and HALS. Due to the same mean and Tukey’s HSD intervals for HALS
and HAIG it can be concluded that at the 95% confidence level combination
of heuristic method with local search and IG algorithm results in statistically
same outputs. This plot also confirms that combination of iterated greedy and
local search provides the best solutions and IGLS and HAIGLS are statistically
different from the rest of the methods. In this case different initial solutions do
not provide statistically significant differences in RPD and IGLS and HAIGLS
generate the same solutions at the 95% confidence level.

The last analysis is dedicated to parameter 7 which adjusts the stopping crite-
rion in the IG-based algorithms. Here also an analysis of variance (ANOVA)
is applied by focusing on the interaction between 7 and the algorithms. The
results can be seen in Figure 10. For SIG we can observe that increasing the
parameter 7 improves the value of RPD while it is not able to make a signifi-
cant difference in any case. For the rest of the algorithms the three intervals are
totally equivalent. Therefore, it can be concluded that all the algorithms have
converged applying the proposed stopping criteria.

6 Conclusions

This paper studies a cyclic parallel machines scheduling problem in the food
industry environment in which the manufacturer deals with the fixed retailers’
orders with given due dates in each cycle. Products have to be delivered to the
retailers during a time window bounded by due dates and deadlines with a time
dependent cost as a lateness penalty. Retailers do not accept products after the
deadline. However, early products can be stored at the production site with a
product dependent holding cost, as a weighted earliness penalty. Since products
are highly perishable, storage in the production site has a job dependent time
limitation and therefore a release date depicts the earliest possible start time of
the jobs by considering the due date and post-production shelf life limitation.
The problem is to provide a cyclic schedule of all the jobs on the parallel ma-
chines such that the orders are delivered to customers in due date to deadline
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Figure 8: Means and Tukey’s Honest Significant Differences (HSD) intervals
(95% confidence level) of relative percentage deviation from the best known
solutions for the algorithms over set of the large instances.
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Figure 9: Means and Tukey’s Honest Significant Differences (HSD) intervals
(95% confidence level) of relative percentage deviation from the best known
solutions for the algorithms over set of the large instances, after removing SIG.
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windows at the minimum possible earliness and tardiness costs.

A mixed integer programming model has been designed for the problem and
since the problem is NP-Hard, a heuristic algorithm (HA) is developed to gen-
erate feasible solutions for the problem. Moreover, an Iterated greedy (IG)
algorithm has been proposed to improve the quality of the solutions.

We have conducted the experimental design analysis to adjust the best heuristic
solution and also to tune the parameters of the IG algorithm. The selected HA
has been tested in comparison with IG algorithm and the results demonstrate
that IG is more likely to outperform the heuristic approach. Different versions
of IG and HA are tested in order to evaluate the effect of local search and ex-
periments verify that carrying out the local search provides better solutions. IG
algorithm also was tested in different variants which start from different quality
solutions. The results showed that the simple IG which starts from a good ini-
tial solution, performs very well and generates solutions with less earliness and
tardiness costs; while in the IG algorithm with local search phase the effect of
initial solution is insignificant. According to the experiments the combination
of IG and local search shows the best performance and greatly outperforms the
other methods.

Extending the problem by adding setup times and setup costs, can be con-
sidered in future research. In addition, we can consider distribution planning
beside production scheduling to coordinate a two stage supply chain of perish-
able products.

Acknowledgments

Rubén Ruiz is partially supported by the Spanish Ministry of Science and Inno-
vation, under the projects “SMPA - Advanced Parallel Multiobjective Sequenc-
ing: Practical and Theoretical Advances” with reference DP12008-03511/DPI
and “RESULT - Realistic Extended Scheduling Using Light Techniques” with
reference DP12012-36243-C02-01 and by the Small and Medium Industry of the
Generalitat Valenciana (IMPIVA) and by the European Union through the Eu-
ropean Regional Development Fund (FEDER) inside the R+D program “Ayu-
das dirigidas a Institutos Tecnologicos de la Red IMPIVA” during the year 2012,
with project number IMDEEA /2012/143.

References

F.D. Anger, C.Y. Lee, and L.A. Martin-Vega. Single machine scheduling with
tight windows. Research Report 86-16, Department of Industrial and Systems
Engineering, University of Florida, 1986.

J.E.C Arroyo, R.S. Ottoni, and A. Oliveira Paiva. Multi-objective variable
neighborhood search algorithms for a single machine scheduling problem with
distinct due windows. FElectronic Notes in Theoretical Computer Science, 281:
5-19, 2011.

K.R. Baker and G.D. Scudder. Sequencing with earliness and tardiness penal-
ties: a review. Operations Research, 38(1):22-36, 1990.

21



599

600

601

602

603

614

615

616

617

619

620

621

6.

N
N

623

6

N

4

625

626

627

628

629

630

631

632

633

634

635

636

637

638

J. Bank and F. Werner. Heuristic algorithms for unrelated parallel machine
scheduling with a common due date, release dates, and linear earliness and
tardiness penalties. Mathematical and Computer Modelling, 33(4):363-383,
2001.

P. Baptiste and C. Le Pape. Scheduling a single machine to minimize a regular
objective function under setup constraints. Discrete Optimization, 2(1):83-99,
2005.

D. Basso, M. Chiarandini, and L. Salmaso. Synchronized permutation tests in
replicated ix j designs. Journal of Statistical Planning and Inference, 137(8):
2564-2578, 2007.

Z.L. Chen and C.Y. Lee. Parallel machine scheduling with a common due
window. European Journal of Operational Research, 136(3):512-527, 2002.

T.C.E. Cheng and M.C. Gupta. Survey of scheduling research involving due
date determination decisions. Furopean Journal of Operational Research, 38
(2):156-166, 1989.

G.D.H. Claassen and P. Van Beek. Planning and scheduling packaging lines
in food industry. Furopean Journal of Operational Research, 70(2):150-158,
1993.

C. Hanen and A. Munier. A study of the cyclic scheduling problem on parallel
processors. Discrete Applied Mathematics, 57(2):167-192, 1995.

Y. Huo, J.Y.T. Leung, and X. Wang. Integrated production and delivery
scheduling with disjoint windows. Discrete Applied Mathematics, 158(8):921—
931, 2010.

Q. Kang, H. He, and H. Song. Task assignment in heterogeneous computing
systems using an effective iterated greedy algorithm. Journal of Systems and
Software, 84(6):985-992, 2011.

S. Kaplan and G. Rabadi. Exact and heuristic algorithms for the aerial refueling
parallel machine scheduling problem with due date-to-deadline window and
ready times. Computers €& Industrial Engineering, 62(1):276-285, 2012.

V. Lauff and F. Werner. Scheduling with common due date, earliness and
tardiness penalties for multimachine problems: A survey. Mathematical and
Computer Modelling, 40(5-6):637-655, 2004.

E. Levner, V. Kats, D. Alcaide Lopez de Pablo, and T.C.E. Cheng. Complex-
ity of cyclic scheduling problems: A state-of-the-art survey. Computers &
Industrial Engineering, 59(2):352-361, 2010.

S. Linko. Expert systems—what can they do for the food industry? Trends in
Food Science € Technology, 9(1):3-12, 1998.

G. Minella, R. Ruiz, and M. Ciavotta. Restarted iterated pareto greedy algo-
rithm for multi-objective flowshop scheduling problems. Computers & Oper-
ations Research, 38(11):1521-1533, 2011.

22



639

640

641

642

643

B. Mor and G. Mosheiov. Scheduling a maintenance activity and due-window
assignment based on common flow allowance. International Journal of Pro-
duction Economics, 135(1):222-230, 2012.

G. Mosheiov and A. Sarig. Scheduling identical jobs and due-window on uniform
machines. FEuropean Journal of Operational Research, 201(3):712-719, 2010.

S.U. Randhawa, C. Juwono, and S. Burhanuddin. Scheduling in multistage
flowshop systems: An application in the food processing industry. Industrial
Management € Data Systems, 94(5):16-24, 1994.

D. Rasch and V. Guiard. The robustness of parametric statistical methods.
Psychology Science, 46(2):175-208, 2004.

R. Ruiz and T. Stiitzle. A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. Furopean Journal of Operational
Research, 177(3):2033-2049, 2007.

R. Ruiz and T. Stiitzle. An iterated greedy heuristic for the sequence dependent
setup times flowshop problem with makespan and weighted tardiness objec-
tives. European Journal of Operational Research, 187(3):1143-1159, 2008.

P. Scha and Z. Hanzalek. Deadline constrained cyclic scheduling on pipelined
dedicated processors considering multiprocessor tasks and changeover times.
Mathematical and Computer Modelling, 47(9):925-942, 2008.

C.A. Soman, D.P. Van Donk, and G.J.C. Gaalman. Combined make-to-order
and make-to-stock in a food production system. International Journal of
Production Economics, 90(2):223-235, 2004.

C.A. Soman, D.P. Van Donk, and G.J.C. Gaalman. Capacitated planning and
scheduling for combined make-to-order and make-to-stock production in the
food industry: An illustrative case study. International Journal of Production
Economics, 108(1-2):191-199, 2007.

F. Sourd. Dynasearch for the earliness—tardiness scheduling problem with re-
lease dates and setup constraints. Operations Research Letters, 34(5):591-598,
2006.

R. Tadei, M. Trubian, J.L.. Avendano, F. Della Croce, and G. Menga. Aggregate
planning and scheduling in the food industry: A case study. Furopean Journal
of Operational Research, 87(3):564-573, 1995.

F. Tercinet, C. Lente, and E. Néron. Mixed satisfiability tests for multiprocessor
scheduling with release dates and deadlines. Operations Research Letters, 32
(4):326-330, 2004.

N. Trautmann and C. Schwindt. A cyclic approach to large-scale short-term
planning in chemical batch production. Journal of Scheduling, 12(6):595-606,
2009.

D.P. Van Donk. Make to stock or make to order: The decoupling point in the
food processing industries. International Journal of Production FEconomics,
69(3):297-306, 2001.

23



681

682

683

684

685

G. Wan and B.P.C. Yen. Tabu search for single machine scheduling with distinct
due windows and weighted earliness/tardiness penalties. Furopean Journal of
Operational Research, 142(2):271-281, 2002.

K.C. Ying and H.M. Cheng. Dynamic parallel machine scheduling with
sequence-dependent setup times using an iterated greedy heuristic. Fxpert
Systems with Applications, 37(4):2848-2852, 2010.

24



