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ABSTRACT 

In this work, three Engine Combustion Network (ECN) single-hole nozzles with the 

same nominal characteristics have been tested under a wide range of conditions 

measuring spray penetration and spreading angle. n-dodecane has been injected in non-

evaporative conditions at different injection pressures ranging from 50 to 150 MPa and 

several levels of ambient densities from 7.6 to 22.8 kg/m3. Nitrogen and Sulphur 

Hexafluoride (SF6) atmospheres have been explored and,in the first case, a temperature 

sweep from 300 to 550 K at constant gas density has been executed. Mie scattering has 

been used as the optical technique by employing a fast camera, whereas image 

processing has been performed through a home-built Matlab code. 
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Differences in spray penetration related to spray orifice diameter, spreading angle and 

start of injection transient have been found for the three injectors. Significant 

differenceshave been obtained when changing the ambient gas, whereas ambient 

temperature hardly affects the spray characteristics up to 400 K. However, a reduction 

in penetration has been observed beyond this point, mainly due to the sensitivity 

limitation of the technique as fuel evaporation becomes important. The different 

behavior observed when injecting in different gases could be explained due to the 

incomplete momentum transfer between spray droplets and entrained gas, together with 

the fact that there is an important change in speed of sound for the different gases, 

which affects the initial stage of the injection. 
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LIST OF NOTATION 

 
c: speed of sound 

Cd: orifice discharge coefficient  

Di: nozzle orifice inlet diameter 

D0: nozzle orifice outlet diameter 

k-factor: nozzle orifice conicity factor, defined as  0100 iD D
k factor

L


    

L: nozzle orifice length	

Pamb: ambient pressure 

Prail: rail pressure 

S: spray penetration 
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Tamb: ambient temperature 

t: time from the start of injection 

vi: instantaneous spray velocity 

 

GREEK SYMBOLS: 

ΔP: Prail - Pamb 

ρamb: Ambient density 

θ: spray spreading angle 

 

SUBSCRIPTS: 

av: average 

 

1. INTRODUCTION 

For several reasons, both experimental studies and Diesel spray modeling are 

extraordinarily defiant problems that require non-conventional approaches. The spray in 

the vicinity of the nozzle tip is highly dense. In addition, the ambient gas-fuel 

interaction occurs at microscopic scales and high velocities, with droplets of less than 

30 µm travelling faster than 100 m/s. Therefore, the application of conventional optical 

techniques is an arduous task, as it is the case of PIV or phase Doppler measurements. 

This makes the macroscopic characterization of the spray under cold conditions remain 

an extensively applied technique in order to comprehend the behavior of the spray, since 

a relatively basic setup leads to reliable results. 

Macroscopic characterization of Diesel isothermal sprays has proved itself to be a 

valuable tool for spray penetration measurements [1][2][3]. On the other hand, it is 

extremely challenging to obtain quantitative measurements of spreading angle since 
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different studies related the obtained results to the optical setup or the processing 

technique utilized [4][5][6]. Then, spreading angle measurements cannot be considered 

quantitative, although qualitative comparisons are enabled by avoiding changes in the 

optical setup from measurement to measurement, thus providing extremely useful 

information related to the spray-air mixing process. 

In order to promote international collaboration among experimental and computational 

researchers within the engine combustion field, the ECN (Engine Combustion Network 

[7]) was created, addressing the research to reference test conditions and identifying 

priorities for future research. To this end, Bosch donated five single orifice injectors to 

the ECN with identical nominal characteristics. Several measurements with these 

injectors have been carried out in order to compare the results obtained in different 

facilities [8][9] and to assess the techniques utilized [10][11][12]. The majority of these 

works consisted on allocating one of the injectors to each test facility and assuming an 

identical behavior due to the manufacturer specification. However, different 

measurements of the internal nozzle geometry such as X-ray tomography or 

microscopic orifice imaging [7] pointed out some differences among the a priori 

identical injectors. In addition, most tests based their efforts on studying only the ECN 

reference condition called “Spray A” (150 MPa injection pressure, 22.8 kg/m3 ambient 

density, 900K ambient temperature and 15% O2 concentration), which is the forum’s 

first priority. 

The present work focuses on the comprehension of the behavior of the different 

injectors beyond "spray A" conditions. Thus, several tests have been carried out in 

isothermal conditions with three ECN injectors by using Mie scattering technique in a 

large range of injection pressures and ambient densities. A high-density gas (SF6 – 

sulfur hexafluoride) was used to simulate relevant diesel in-cylinder density conditions 
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in order to compare the injectors. Additional tests have been performed using Nitrogen 

and executing a temperature sweep from 300 to 550K with the aim of checking the 

effect of spray composition and temperature on the measurements. 

The results obtained have been analyzed following two approaches: statistical, 

extracting an empirical correlation from the experimental results, and theoretical, 

comparing the experimental results to the prediction ofthe 1-D spray model presented 

by Pastor et al. [13]. 

 

2. EXPERIMENTAL TOOLS 

2.1. Injection system 
The injection system implemented for the study consists of commercially available 

components, namely a high pressure volumetric pump driven by an electric motor and a 

common-rail with pressure regulator controlled by a PID system. Three common-rail 

solenoid actuated Bosch injectors with the same nominal characteristics are used in this 

study. The injectors embody a single axial hole with a nominal outlet diameter of 90 

µm. Conicity (nominal k-factor = 1.5) and hydro-grinding were incorporated so that 

cavitation is avoided in the orifice and a discharge coefficient Cd = 0.86 is achieved. 

These injectors are three of the single-hole injectors employed by the ECN group during 

their research. Their actual internal geometry was previously characterized in depth. 

The results of this characterization are available on the ECN website [7] and 

summarized in Table 1. 

 

2.2. Test chambers and optical setup 
Two different test chambers with optical access have been used to perform the Mie 

scattering technique. The first one (hereinafter referred to as test rig 1 or TR1) was 



PUBLISHED AS: Experimental Thermal and Fluid Science 53 (2014) 236–243 
http://dx.doi.org/10.1016/j.expthermflusci.2013.12.014 

conceived for relatively low pressures (up to 0.8MPa) bearing in mind the high density 

of the SF6. On the other hand, the second test rig (test rig 2 or TR2 from now on) made 

it possible to analyze the effect of gas temperature on spray penetration. The spray was 

illuminated by two Xenon-arc light sources and a fast camera (Photron SA5) imaged the 

light that the fuel droplets scattered. The test rigs and the optical components employed 

in the experiments are described in detail below. 

- Test rig 1 (Fig. 1): designed to visualize the spray at ambient temperature in high 

density conditions. A typical issue for this kind of facilities is the high pressure 

required to achieve high density, thus leading to a reduced chamber size and 

limited optical accessibility. In this case, high density is obtained in the chamber 

by using SF6 gas since its molecular weight is six times higher than that of the 

N2, making it possible to reach high density while keeping the pressure to a 

limit. As a result, densities up to 50 kg/m3 can be achieved even though 

mechanical limitations set the maximum pressure allowed in the chamber to 0.8 

MPa. The gas is recirculated in a closed loop and fuel droplets are scavenged 

from the test chamber through the use of a root compressor. Spray penetration 

and spreading angle comparisons were also carried out in TR1 for SF6 and N2 at 

a relatively low ambient density (7.6 kg/m3), the maximum that can be achieved 

in the latter case. A thorough description of this facility is given in [5]. Fig. 1 

shows the test rig layout: each of the two light sources illuminates one side of 

the spray and the camera collects the scattered light in a perpendicular way. 

- Test rig 2 (Fig. 2): designed to visualize the spray in a vessel where real diesel 

engine high-temperature and high-pressure in-cylinder thermodynamic 

conditions are achieved. A heating system warms a continuous high pressure gas 

flow before it enters the test chamber. The power supplied by the heaters is 
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controlled by a PID system, thus creating steady thermodynamic conditions in 

the test chamber. In this case, the light sources are arranged in a different 

manner: one of them is pointing to the spray from the same side of the camera, 

whereas the second one is pointing the spray head. With this arrangement, the 

spray tip illumination is optimized, what reduces sensitivity problems at the 

spray leading edge, in spite of some evaporation taking place. Even though 

Pickett et al. [8] state that head on illumination may introduce uncertainties with 

regard to liquid length measurements, it must be noted that the scope of this 

study is the effect of gas temperature on spray penetration. Attending to the limit 

test conditions (ambient pressure up to 15 MPa and ambient temperature up to 

1000 K), the large test chamber (up to 110 mm of free field) and the wide optical 

access (three windows with a 128 mm diameter), this facility constitutes one of 

the most advanced tools to study the diesel spray. This facility was fully 

described in [14]. 

The imaging system used for each test rig is detailed in Table 2. 
 
 

2.3. Image Processing Method 
The first step for image processing is image segmentation. This matter has been 

approached in several ways in the literature [4][5][15]. In the present work, a simple 

fixed threshold method has been utilized due to the relatively flat background and the 

non-saturated images. Therefore, a threshold which corresponds to 3% of the maximum 

digital level obtained in the core of the spray is selected for image binarization after the 

background arithmetical subtraction. This method is extensively used in Mie scattering 

imaging since it scales the sensitivity to the illumination intensity [14][15]. 

Althoughcamera non linearity and light orientation at a low number of counts influence 

segmentation sensitivity, spray penetration in non-evaporative conditions remains a 
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valuable measurement due to the abrupt decrease in scattered intensity at the spray tip 

[4][16][17], allowing to compare results in different setups in an easy manner. On the 

other hand, the droplet number density decreases smoothly along the radial direction 

[18][19] and Mie signal is very weak at the spray boundaries. Therefore, the spreading 

angle measured is strictly related to the optical setup and the segmentation method used 

[18]. For this reason, the spreading angle results of this study will be presented, but only 

used for qualitative comparisons between tests carried out in the same test rig, where 

conditions of both illuminating light intensity and orientation remain unchanged. 

Once image binarization is completed, the contour of the spray is processed in order to 

derive the spray penetration and spreading angle as explained by Naber and Siebers 

[20]. In the method, as depicted in Fig. 3, the penetration is defined as the median of the 

distance from the injector tip, of the pixel boundaries contained within an arc of θ/2. 

The spray angle θ is defined by building the isosceles triangle of height S/2 and area A, 

using the following equation: 

 2tan
2 / 2

A

S

   
 

                                     (1)

Due to the fact that the definition of each parameter depends on the other, their 

calculation shapes an iterative procedure. 

In order to be able to qualitatively compare different test conditions, an average 

spreading angle θav was calculated. As it has been explained, the algorithm implemented 

to obtain the spreading angle computes the area A through the use of spray penetration. 

Thus, in order to take into account the spray shape for cases with different penetration 

rates and perform trustworthy comparisons, the data used for the average spreading 

angle θav calculation were chosen with a penetration based criterion, which consists of 

averaging only the angles obtained for penetrations between 35 and 75 mm. 
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2.4. Test Matrix 
A wide range of conditions have been explored in order to study the spray penetration 

of the three ECN injectors considering also the influence of the gas composition and 

temperature on the results. The different conditions tested together with the test rigs that 

have been used are summarized in Table 3. 

3. RESULTS AND DISCUSSION 

3.1. Comparison between injectors 
Fig. 4 shows the spray penetration results at different test conditions, corresponding to 

tests in TR1 with SF6 atmosphere (case 1). Consistent differences between the injectors 

can be observed,although they are always grouped closely for each test condition: 

nozzle 677 penetrates slower than the others, whereas 678 is the fastest one and 675 is 

usually in between. A shorter penetration of the nozzle 677 could be expected due to the 

fact that it has a considerably smaller outlet diameter (c.f. table 1). Anyway, these trends 

are not followed in every condition tested and must be carefully assumed. 

The spreading angle is another key parameter influencing the spray penetration. The 

average spreading angle θav enables a global comparison of the case 1 results. Again, as 

shown in Fig. 5, important differences are found between the three injectors: the largest 

spreading angles are obtained for nozzle 677 while the lowest ones are found for nozzle 

678. These results were expected considering the spray penetration trends commented 

above. An important result seen in Fig. 5 is that the injection pressure does not influence 

each injector in the same manner. For instance, for an ambient density of 22.8 kg/m3, an 

injection pressure increase leads to a decrease in the nozzle 678 spreading angle, 

whereas the opposite trend can be observed for nozzle 675. 
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The consistency of the data was assessed by checking the values of shot-to-shot 

standard deviation (obtained as the average of the shot-to-shot standard deviation at 

each instant), displayed in Table 4. In the case of the penetration results, the standard 

deviation is less than 2 mm for all cases, with an average among injectors of 1.49 mm. 

This fact suggests a fair accuracy from the tests. However, the order of magnitude of the 

standard deviation is the same as that of the differences in the penetration measurements 

for different injectors (Fig. 4), which implies that more analysis is needed. With regard 

to the spreading angle results, the average standard deviation for the different injectors 

is 0.39º, which is reasonably lower than the differences found between the injectors 

(Fig. 5). 

The spray velocity has also been studied by calculating the spray penetration time 

derivative, which is virtually the spray tip velocity at a given instant. The instantaneous 

spray velocity vi is then calculated as: 

     i

S
v

t





    (2) 

where ΔS and Δt are the spray penetration variation and time variation between two 

successive images, respectively. This instantaneous spray velocity is calculated before 

the repetition average, so as to reduce shot-to-shot repeatability problems. Fig. 6 shows 

a comparison of spray tip velocity results for the three nozzles under different test 

conditions. It can be observed that the differences in tip velocity calculated for the three 

nozzles (and thus in penetration) are only remarkable at the opening. After the first 

transient, where the velocity even increases for some conditions, the velocities get very 

close to each other. Therefore, part of the penetration and spreading angle differences 

reported in Fig. 4 and Fig. 5 can probably be attributed to the dynamic response of the 

injector rather than to the flow in steady conditions. 
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3.2. Ambient gas effect 
Further conditions were explored in TR1 to analyze the spray penetration and spreading 

angle in Nitrogen atmosphere at different injection pressures (case 2). The tests were 

carried out at an ambient density of 7.6 kg/m3 since it is the highest density achievable 

with N2 in this test rig due to mechanical resistance limitations. Results were compared 

to those in SF6 atmosphere previously analyzed. Fig. 7 shows this comparison for two 

different injection pressures. A considerable difference in spray penetration between the 

N2 and the SF6 atmospheres is seen in all cases, as it had already been observed by Payri 

et al. in [21]. However, variations between the illumination setups and the test rigs used 

in the tests carried out in [21] did not make it possible to be conclusive about the 

differences observed. In order to obtain a reliable comparison, in case 2 the illumination 

setup remained unchanged from SF6 to N2 tests. In additionto the slower penetration in 

the N2 case, Fig. 7 also shows a clear increase in spreading angle. These differences in 

both penetration and spreading angle are difficult to explain and are probably related to 

changes in the ambient gas and fuel droplets interaction at a microscopic scale, resulting 

in a lower effective momentum transfer between them. Moreover, effects of the 

compressibility of the ambient gas may become important, since there is a significant 

difference in the speed of sound of both gases: at 7.6 kg/m3 and 300 K, cSF6 takes a 

value of 135.05 m/s whereas cN2 is 354.08 m/s. Recalling Fig. 6, it can be observed that 

the spray tip velocity for SF6 is above the speed of sound of the gas at the beginning of 

the injection. Roisman et al. [22] demonstrate the importance of the interaction between 

the spray jet and the shock waves that develop in the ambient gas at the beginning of the 

injection for large enough injection velocities. According to [22], this interaction 

explains not only the transient behavior of the spray tip velocity, but also the spray tip 

velocity increase in some cases, as it was observed and pointed out in Fig. 6, since the 
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compressed ambient gas behind the shock wave will expand when the jet cross-section 

enlarges. 

In order to better understand the behavior of the spray, the 1-D spray model proposed 

by Pastor et al. [13]and completed by Desantes et al. [23] has been employed in the two 

cases. A comparison between the penetration predicted by the model and the one 

obtained experimentally has been performed. For both N2 and SF6 cases, the model has 

been tuned to the experimental data by adjusting the spreading angle value to obtain the 

best match between experimental data and model predictions. As mentioned before, the 

spreading angle measured in these experiments has to be considered only as a 

qualitative evaluation, and therefore it cannot be used as an input of the model. 

Moreover, the first part of the penetration appears to be roughly predicted by the model, 

and a time-shift has to be introduced in order to compare the data. The introduction of 

this time-shift is motivated by different reasons: on one hand, the atomization and 

mixing process is not clearly understood in the near-field and the complete momentum 

transfer assumption of the 1D model might not be appropriate; on the other hand, the 

mass flow rate measurements (used as an input for the 1-D model) are not reliable 

during the opening phase [24] and contribute to the discrepancies between the 

experiments and the model predictions; moreover, in the near field, the spray tip 

velocity is of the same order of magnitude of the atmosphere gas speed of sound and, 

therefore, spray jet - shock wave interactions are expected [25]. However, after this first 

transient phase, useful information can be extracted seeking the combination of 

spreading angle and time-shift that allows the model to give the best match to the 

experimental penetration. Observing the plots of Fig.8, the variation in penetration 

caused by an increase of the injection pressure is well predicted by the model without 

changing any other input parameter. On the other hand, when the ambient gas is 
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changed, both the spreading angle and the time shift need to be changed. In particular, 

for N2 cases, the spreading angle has to be increased and the time shift has to be 

reduced. This result is in agreement with what was previously discussed, and confirms 

the differences measured experimentally in spreading angle. Moreover, the different 

time shift obtained for the two cases indicates that in SF6, the interval in which the 

model does not fit the experimental data is longer, and this fact can be related to the 

higher difference that exists between spray tip velocity and sound speed in this case. 

Additional conditions were tested with N2 in TR2 (case 3) in order to study the effects 

of the ambient temperature on the injection. Fig. 9 displays the spray penetration results 

of the temperature swipe, together with a case 1 condition for comparative purposes. No 

significant differences can be observed for ambient temperatures lower than 400 K. At 

higher temperatures, the spray penetration slightly decreases, especially when the spray 

penetration is over 40 mm. The tip of the spray is missed at 550 K due to the important 

spray evaporation and the lack of sensitivity of the technique. Fig. 10 shows that the 

distribution of the light scattered by the spray changes as the temperature increases due 

to the incipient fuel evaporation and the consequent reduction in the droplet size. In the 

limit case of 550 K, the evaporation is too important and the algorithm is incapable of 

detecting the spray jet boundaries. Even when the frame rate is not high, the increase of 

ambient pressure leads to a shortening in the first period of the spray penetration, where 

it follows a linear dependence with time (see below). This effect agrees with the 

observations of Araneo [26] and it is probably related to an improvement in momentum 

transfer between fuel droplets and ambient gas due to the evaporation taking place even 

when the ambient temperature is lower than the fuel boiling temperature. 

In Fig. 9 (right) the spray penetration velocity is compared for a test in SF6 and three 

different temperatures (300, 400 and 500 K) in N2. Even if the differences in the 
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absolute velocities are not easy to see, this figure aims to point out the similarity of the 

fluctuations measured in spray velocity for the N2 cases, and the different characteristics 

of the curve obtained for SF6. This different oscillations obtained can be linked, once 

again, to a different acoustic interaction between the spray and the surrounding gas. 

 

 

3.3. Statistical analysis 
The data of the SF6 atmosphere tests were used for a statistical analysis to quantify the 

effect of each test condition on spray penetration. As it was described by Arrègle et al. 

in [27], the spray penetration behaves in two different manners during the injection: the 

first stage is characterized by a linear dependence with time, whereas in a second stage 

the spray is fully developed and the penetration is proportional to the square root of 

time. As it has been seen in the previous results, the penetration during the first part of 

the injection is difficult to predict through a conventional model since some features 

related to the dynamic behavior of the injector are important at this stage. Thus, all the 

penetration data lower than an arbitrarily chosen value for each ambient density (40 mm 

for 7.6 kg/m3, 35 mm for 15.2 kg/m3 and 30 mm for 22.8 kg/m3) were excluded from 

the analysis, in order to focus only on the fully developed spray. The equation used by 

Payri et al. in [21] is chosen for the regression: 

  0.5
0tan / 2

ca b d
amb rail avS k P t D     (3)

  

Where k, a, b, c and d are the parameters to be optimized in the regression. The orifice 

outlet diameter D0was obtained by microscopic orifice imaging (recall Table 1). 

The results of the regression are included in Table 5. The comparison among 

experimental and predicted data for the case 1 results is shown in Fig. 11 to ensure the 
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robustness of the regression. These results are compared to several correlations in the 

literature, as shown also in Table 5. On one hand, the results have been compared to the 

theoretical ones derived from the dimensional analysis and used by several authors such 

as Wakuri et al. [28], Dent [29], Hiroyasu and Arai [30], Naber and Siebers [20], Payri 

et al. [31] or Dernotte et al. [32]: all these correlations keep the same exponents for the 

studied variables. The most significant difference is obtained in the dependence on the 

spreading angle where the value of the related exponent c varied from 0.09 (from 

experimental results) to 0.5 (from literature). As stated before, this datum is not 

surprising, since the measurement of the spreading angle cannot be linked between 

different experimental setup. On the other hand, the correlation by Payri et al. [21] was 

used as a further term of comparison: this correlation was obtained through the same 

approach used in the present work, adjusting the exponents of the power law to obtain 

the best fit to the experimental data. The ambient density exponent a obtained in the 

present work differs more from the theoretical value than that obtained in [21]. 

However, the opposite happens for the rail pressure exponent b. These differences could 

be explained by the fact that, in [21], the exponent related to the spreading angle 

(depending on ambient density and, in a minor way, on the injection pressure) was 

forced to take the theoretical value of 0.5: this fact may affect the calculation of the 

other coefficients. 

4. CONCLUSIONS 

Spray penetration and spreading angle have been measured in a wide range ofDiesel-

like conditions for three ECN nozzles having the same nominal characteristics.  

From the comparison of the results obtained from the three injectors the following 

conclusions can be laid: 
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- Injector 677 shows the slowest penetration, in accordance with the outlet orifice 

measurement. However, injector 678 presents the fastest penetration even 

though its diameter is lower than the injector 675 one. 

- Injector 678 spreading angle is significantly lower than that of the other 

injectors. This fact partially justifies the higher penetration measured for this 

injector. In addition, spreading angle does not scale with the injection pressure 

in the same way for the three injectors, likely as a consequence of differences in 

the internal flow. 

- The comparison of the spray tip velocity (as a time derivative of the penetration) 

points out that the biggest differences between injectors take place at the very 

beginning of the injection, which is probably related to needle dynamics. 

Further experiments make it possible to assess the influence of gas properties on spray 

development: 

- The measurements performed in different gases (SF6 and N2) with the same 

optical setup, highlighted significant differences in spray development. Faster 

penetration and smaller spreading angle were measured in the SF6 atmosphere 

due to a different fuel droplet and ambient gas interaction, possibly related to the 

compressibility effects becoming more important in the SF6 atmosphere due to 

the dissimilarity in speed of sound for the two gases. 

- The comparison with the results obtained with a 1-dimensional model confirmed 

previous hypothesis remarking the different behavior of the fuel spray when 

injected into different gases. On the other hand, the model confirmed the effect 

of injection pressure. 

- When ambient temperature is modified (keeping constant ambient density), 

measured penetration remains the same up to 450 K, where only slight 
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differences become appreciable. The contour of the spray is missed by the 

processing algorithm at 550 K due to the incipient evaporation. However, the 

direct analysis of the images showed that ambient affects the distribution of the 

scattered intensity also at relatively low ambient temperature (400 K), when no 

effects on spray penetration are noticed as a consequence of the reduction of the 

droplets diameter. 

Finally, a statistical analysis was performed in order to generate a regression to the 

experimental data. Results show good agreement to the experimental data under all the 

tested conditions and the coefficients obtained are not far from what was expected 

theoretically through the dimensional analysis nor from what was experimentally 

obtained by the authors in previous works. 
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LIST OF TABLES 

 
Injector Di [µm] D0 [µm] L [µm] k-factor [-] 
Nominal 105 90 - 1.5 

Uncertainty 2 1 5 0.1 
210675 (*) 116 89.4 1030 2.7 
210677 (*) 116 83.7 1026 3.2 
210678 (*) 117 88.6 1044 2.8 

Table 1: ECN nozzle internal geometry characteristics, obtained via X-ray tomography 
by Caterpillar Inc. [3] (*) Hereinafter, the injectors will be referred to as 675, 677 and 
678, respectively. 
 
 
 
 
 
 Test rig 1 Test rig 2 
Light source Double Xe-arc source  Double Xe-arc source 
Camera Photron SA5 Photron SA5 
Lens Nikkor 50 mm f/1.8 Nikkor 50 mm f/1.8 
Pixel/mm 7.44 11.7 
Window size 20 x 95 mm 20 x 65 mm 
Frame rate 30 kfps 25 kfps 
Shutter time 15 µs 15 µs 
Table 2: Imaging system details for both test rigs. 
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 Case 1 Case 2 Case 3 

Test rig TR1 TR1 TR2 
Tamb [K] 300 300 From 300 to 550 

Injector # 675-677-678 677 677 
Gas SF6 N2 N2 

ρamb [kg/m3] 7.6-15.2-22.8 7.6 22.8 
Table 3: Test matrix. 
 
 
 
 
 
 

Injector 
Penetration standard 

deviation [mm] 
Spreading angle 

standard deviation [º] 
675 1.57 0.44 
677 1.52 0.35 
678 1.39 0.38 

Average 1.49 0.39 
Table 4: Standard deviation for the penetration and spreading angle results. The values 
have been obtained by averaging the shot-to-shot standard deviations obtained for each 
instant. 
 
 
 
 
 

 a b c d R2 
From SF6 tests -0.33 0.24 -0.09 0.51 98.8 
From N2 tests -0.33 0.24 -0.09 0.54 98.6 
From dimensional analysis 
- Several authors 
[20][28][29][30][31][32] 

-0.25 0.25 -0.5 0.5 - 

From Payri et al. [21] - SF6 -0.228 0.336 -0.5 0.549 94.79 
From Payri et al. [21] - N2 -0.268 0.254 -0.5 0.513 98.14 
Table 5: Results of the SF6 and N2 data correlation and comparison with other authors. 
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LIST OF FIGURE CAPTIONS 

Figure 1: Sketch of TR1 together with the optical arrangement. 

Figure 2: Sketch of TR2 together with the optical arrangement. 

Figure 3: Spray penetration (S) and spreading angle (θ) definition. 

Figure 4: Spray penetration results in TR1 with SF6 atmosphere (case 1) at different test 

conditions. Note that the axes have different time scale. 

Figure 5: Spreading angle results in TR1 with SF6 atmosphere (case 1) at different test 

conditions. 

Figure 6: Spray tip velocity evolution under different case 1 test conditions. 

Figure 7: Penetration and spreading angle comparison SF6 (case 1) and N2 (case 2) 

atmospheres at ρamb = 7.6 kg/m3 in TR1. 

Figure 8: Comparison between experimental data and model results. The 1-D model is 

adjusted for SF6 case (left) and N2 (right). 

Figure 9: Spray penetration results at different ambient temperatures and composition 

with ρamb = 22.8 kg/m3, Prail = 150 MPa and injector 677. TR1 for the SF6 condition 

(case 1) and TR2 for the N2 conditions (case 3). A zoom of the first instants is shown for 

comparative purposes. 

Figure 10: Raw images acquired at different ambient temperatures for N2 conditions at 

ρamb = 22.8 kg/m3, Prail = 150 MPa and injector 677 in TR2 (case 3). 

Figure 11: Spray penetration predicted values versus experimental data (case 1) 
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