
Technical Universisty of Valencia
Department of Systems Data Processing and Computers

Efficient Techniques to Provide

Scalability for Token-based Cache

Coherence Protocols

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

Author

Blas Antonio Cuesta Sáez

Advisors

Antonio Robles Mart́ınez

José Francisco Duato Maŕın

Valencia, 2009

ii

Acknowledgments

“Perfection (in design) is achieved not when there is nothing more

to add, but rather when there is nothing more to take away”

Eric S. Raymond, The Cathedral and the Bazaar

I have received a lot of support, encouragement, and help throughout all these

years in university. Many of the people I have met during these years have

greatly influenced my research and changed me as a person.

First and foremost I thank my parents and my brother for their support,

encouragement, constant interest in my life, and patience throughout all this

time; they have always been there for me.

My advisers, Antonio Robles and José Duato, have had a great influence on

me. The depth of knowledge that I have gained due to my numerous meetings

with them is incredible. I have learned a lot about computer architecture and

interconnection networks, but they have not been the only things, as they

taught me about many aspects of performing research, communicating with

others, delivering speeches, and many other related aspects. Most importantly,

I have learned a great deal by simply observing their excellent example and

behavior. I do not have any doubt that my research and non-research life has

forever been changed by their advice. I specially thank Antonio Robles for

his dedication and, above all, his patience, because like all true “manchegos”,

sometimes I may be too stubborn.

Many of the other faculty members in the Parallel Architecture Group have

helped me too. I have benefited from interacting with them. Julio Sahuquillo,

José Flich, Pedro López, and Federico Silla all provided useful insight into

my dissertation research and provided valuable feedback during the process.

iii

iv

Likewise, I would like to thank Maŕıa Engracia Gómez, Vicente Santonja, and

Elvira Baydal because they all contributed in making me feel comfortable and

integrated in the group.

I have met many interesting students while in university. Although I can

not possibly mention everyone who has enriched my experience or provided

moral support, I wish to specifically thank a few individuals. Gaspar Mora,

Crisṕın Gómez, Francisco Gilabert, Andres Mej́ıa, José Miguel Montañana,

Rafa Ubal, Carles Hernández, Héctor Montaner, and David Yuste have un-

selfishly helped me in different aspects of my research and I would like to

highlight their support. Furthermore, I would like to thank Ricardo Maŕın

for his constant availability to help me to resolve each one of the numerous

problems that I have faced

Gaspar and I created a fantastic hobby called “football Xtreme”. I want

to thank Gaspar for his help in creating and maintaining this hobby alive and

for introducing me to such a great group of people. “Football Xtreme” has

been very useful for me to relieve stress, keep fit, and have fun.

I could not finish without thanking all my English teachers at the Amer-

ican Institute, specially Meredith and Dana, who had to deal with strange

questions.

Finally, I thank Virtutech AB for their support of Simics and for providing

us with a license server. I also want to thank those individuals who paid taxes

and, therefore, helped me during my time in university. This work was sup-

ported by the Spanish program CONSOLIDER-INGENIO 2010 under Grant

CSD2006-00046, by the Spanish CICYT under Grant TIN2006-15516-C04-01,

the JCC de Castilla-La Mancha under Grant PBC-05-007-2, and by the Eu-

ropean Commission in the context of the SARC integrated project #27648

(FP6).

Contents

Acknowledgments iii

Abstract xvii

Resumen xix

Resum xxi

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Objectives . 5

1.3 Thesis Contributions . 6

1.3.1 Priority Requests . 6

1.3.2 Limiting the Storage Requirements 8

1.3.3 Switch-based Packing Technique 9

1.3.4 Multicast Data Responses 10

1.3.5 Summary . 11

1.4 Thesis Outline . 11

2 Concepts and Background 13

2.1 Basis of Cache Memories . 13

2.1.1 Block Placement Policy 14

2.1.2 Replacement Policy . 15

2.1.3 Write Policy . 16

2.1.4 Structure . 17

2.2 Cache Coherence . 18

v

vi Contents

2.3 Coherence Models . 22

2.3.1 MSI . 22

2.3.2 MOSI . 24

2.3.3 MESI . 25

2.3.4 MOESI . 26

2.3.5 Optimization for Migratory Sharing 27

2.4 Consistency Models . 29

2.5 Interconnection Networks . 30

2.5.1 Network Topology . 30

2.5.2 Switching Techniques 32

2.5.3 Routing Techniques . 33

3 Cache Coherence Mechanisms 35

3.1 Snooping-based Protocols . 35

3.2 Directory-based Protocols . 37

3.3 Non-traditional Protocols . 40

3.4 Token-based Protocols . 40

3.4.1 Token Counting . 41

3.4.2 Persistent Requests . 42

3.4.3 Performance Policy . 45

3.5 Summary . 47

4 Evaluation Methodology 49

4.1 Simulation Tools . 49

4.1.1 Simics Simulator . 50

4.1.2 Ruby Module . 51

4.1.3 Network Simulator . 51

4.1.4 Interconnection between Simulators 52

4.2 Simulated System . 53

4.3 Performance Metrics . 56

4.4 Workload Descriptions . 58

5 The Priority Request Mechanism 63

5.1 Introduction . 63

5.2 Ordered Paths . 66

Contents vii

5.3 Priority Request Table . 69

5.4 Priority Request Identifier . 71

5.5 Removing Completed Priority Requests 72

5.6 Avoiding Serving Completed Priority Requests 75

5.7 Coding Identifiers in Messages 79

5.8 The Performance Policy . 82

5.9 Guaranteeing Starvation-Freedom 83

5.9.1 Deadlock-Free Message Delivery 83

5.9.2 Ordering Delivery Guarantee 84

5.9.3 Priority Request Storage Guarantee 84

5.9.4 Requested Token Reception Guarantee 85

5.10 Using Several Ordered Paths 86

5.10.1 Selecting the Ordered Path 87

5.10.2 Priority Request Identifier 88

5.10.3 Storing Priority Requests 89

5.11 Discussion: Persistent Vs Priority 89

5.12 Priority Request Summary . 93

5.13 Evaluation . 94

5.13.1 Target System and Parameters 94

5.13.2 Starved Requests . 94

5.13.3 Starvation Control . 96

5.13.4 Network Traffic . 97

5.13.5 Starvation Latency . 98

5.13.6 Runtime . 100

5.13.7 Scalability . 101

5.13.8 Several Ordered Paths 103

5.14 Conclusions . 105

6 Bounding Storage Requirements 107

6.1 Introduction . 107

6.2 Data Structures . 109

6.3 General Working Scheme . 111

6.4 Ensuring the Priority Request Storage 112

6.5 Notifying the Priority Request Completion 113

viii Contents

6.6 Reducing the Control Traffic 116

6.6.1 Size of Rejected Priority Requests 117

6.6.2 Removing Acknowledgments 118

6.6.3 Handling Rejected Priority Requests as Transient Re-

quests . 119

6.7 Evaluation . 120

6.7.1 Target System and Parameters 120

6.7.2 Starved Requests . 121

6.7.3 Starvation Control . 122

6.7.4 Network Traffic . 122

6.7.5 Starvation Latency . 123

6.7.6 Runtime . 124

6.8 Conclusions . 125

7 Switch-based Packing Technique 127

7.1 Introduction . 127

7.2 Format of Priority Request Packs 130

7.3 General Packing Process . 132

7.4 Checking Message Matching . 133

7.5 Packing Priority Requests . 134

7.6 Increasing Packing Opportunities 136

7.6.1 Increasing the Number of Ordered Paths 136

7.6.2 Allowing Different Request Types 137

7.6.3 Allowing Different Memory Addresses 138

7.7 Adjusting the Starvation Detection Timeout 141

7.8 Packing Non-Silent Invalidations 142

7.9 Evaluation . 145

7.9.1 Target System and Parameters 145

7.9.2 Priority Request Endpoint Traffic 146

7.9.3 Overall Endpoint Traffic 147

7.9.4 Link Utilization . 148

7.9.5 Starvation Latency . 149

7.9.6 Runtime . 149

7.9.7 Packing Control Responses 151

Contents ix

7.10 Conclusions . 153

8 Multicast Responses 155

8.1 Introduction . 155

8.2 MDR Packet Format . 158

8.3 MDR Generation . 161

8.4 Searching for MDRs at NIC Output Buffers 163

8.5 Packing Process . 164

8.6 Adjusting the Starvation Detection Timeout 165

8.7 Evaluation . 165

8.7.1 Target System and Parameters 166

8.7.2 Generated vs Injected Data Responses 166

8.7.3 Latency of Data Responses 167

8.7.4 Starvation Latency . 168

8.7.5 Network Traffic . 168

8.7.6 Runtime . 169

8.8 Conclusions . 170

9 Conclusions 171

9.1 Contributions . 171

9.2 Conclusions . 173

9.3 Scientific Publications . 177

9.4 Future Work . 178

Bibliography 185

x Contents

List of Figures

1.1 Protocol races according to the system size 6

1.2 Properties of different types of requests 7

1.3 Differences between n-entry and single-entry tables 9

1.4 Bandwidth of networks and broadcast messages 10

2.1 Multicomputer and UMA architecture 19

2.2 CC-NUMA and COMA architectures 20

2.3 MSI model . 23

2.4 MOSI model . 25

2.5 MOESI model . 27

2.6 MOESI model with migratory sharing 28

2.7 MIN and point-to-point interconnects 31

4.1 Simulation tools . 50

5.1 Example of failed transient requests 64

5.2 Resolving starvation situations by priority requests 66

5.3 Ordered paths . 68

5.4 Algorithm to control the wrap-around 71

5.5 Format of priority requests . 73

5.6 Information in priority requests 74

5.7 Example of completed PR field in data responses 77

5.8 Wrap-around . 78

5.9 Example of unnecessary data-less responses 80

5.10 State transition diagram . 82

5.11 Two different ordered paths . 88

xi

xii List of Figures

5.12 Starved requests . 95

5.13 Starvation control messages . 96

5.14 Network traffic . 98

5.15 Starvation latency . 99

5.16 Runtime . 100

5.17 Network traffic vs system size 101

5.18 Starvation latency vs system size 102

5.19 Runtime vs system size . 102

5.20 Link utilization . 104

5.21 Runtime when using several ordered paths 105

6.1 Policy to ensure request storage 112

6.2 Example of starvation situation 115

6.3 Format of normal and size-reduced priority requests 117

6.4 Starved requests . 121

6.5 Starvation control messages . 122

6.6 Network traffic . 123

6.7 Starvation latency . 124

6.8 Runtime . 125

7.1 Priority request format . 130

7.2 Format of priority request packs 131

7.3 Example of message packing . 135

7.4 Pack for different memory operations 137

7.5 Pack for different memory blocks 138

7.6 Example of data-less responses 144

7.7 Endpoint traffic due to priority requests 146

7.8 Total endpoint traffic . 147

7.9 Link utilization . 148

7.10 Starvation latency . 150

7.11 Runtime . 151

7.12 Recevied/sent control response rate 152

7.13 Latency of control responses . 152

7.14 Normalized runtime . 153

List of Figures xiii

8.1 Format of unicast data responses and MDRs 158

8.2 Example of packing . 160

8.3 Node structure . 161

8.4 Number of generated data responses and MDRs 166

8.5 Latency of UDRs and MDRs 167

8.6 Latency of solving starvation 168

8.7 Normalized traffic . 169

8.8 Normalized runtime . 170

xiv List of Figures

List of Tables

2.1 Cache features in actual computers 17

4.1 Simulation parameters . 54

4.2 Application parameters . 61

5.1 Links used by priority requests 86

7.1 Possible packing situations . 139

xv

xvi List of Tables

Abstract

Token-based cache coherence protocols simultaneously capture the best at-

tributes of the two predominant approaches to coherence: low-latency cache

misses (like in snooping-based protocols) and no reliance on totally-ordered

interconnects (like in directory-based protocols). The key aspect to get those

features is the use of requests that do not need to be put in order. Un-

fortunately, unordered requests present a serious problem since, in case of

contention, they generate protocol races, which may prevent them from suc-

ceeding in solving cache misses. Therefore, to eliminate races, ensure the

completion of all requests, and eventually resolve all cache misses, protocols

based on tokens require the use of a starvation prevention mechanism.

The main drawbacks of token-based protocols are caused by the starva-

tion prevention mechanism. Thus, although several alternative mechanisms

have been proposed so far, all of them suffer from (1) being too inefficient,

(2) requiring storage resources at each node that grow proportionally to the

system size, and (3) requiring the use of broadcast messages. These problems

compromise the scalability of token-based protocols because, as the system

size increases, the protocol performs worse, the storage requirements at each

node grows significantly, and the interconnect is more and more flooded with

broadcast messages. However, these are not the only problems that compro-

mise the protocol scalability, since token-based protocols require the use of

non-silent invalidations, which threaten the scalability too.

As long as shared-memory multiprocessors include an increasingly num-

ber of nodes, the use of efficient and scalable cache coherence protocols is

required. Therefore, the contributions of this dissertation aim to improve the

performance and scalability of token-based protocols by tackling the weakest

xvii

xviii Abstract

aspects of the starvation prevention mechanisms and the non-silent invalida-

tions. The most important contribution is the observation that simple routing

algorithms can naturally avoid protocol races in cache coherence protocols

that do not rely on either totally-ordered interconnects or directories to put

requests in order. By using routing techniques based on ordered paths, we

can easily create an efficient and scalable starvation prevention mechanism for

token-based protocols. Additionally, those routing strategies can help us to

develop techniques that improve the mechanism scalability by (1) minimizing

its storage requirements and (2) considerably reducing the traffic overhead

caused by broadcast messages. Besides, one of these techniques can be readily

adapted to improve the problem of non-silent invalidations.

Resumen

Los protocolos de coherencia de caché basados en tokens son capaces de ofrecer

simultáneamente las principales ventajas de los dos esquemas que tradicional-

mente se han utilizado para implementar los protocolos de coherencia: baja

latencia en los fallos de caché (como en los protocolos basados en snooping) y

no dependencia de redes de interconexión totalmente ordenadas (como en los

protocolos basados en directorio). Los protocolos basados en tokens pueden

aunar esas caracteŕısticas gracias en gran parte a la utilización de peticiones no

ordenadas. Desafortunadamente, las peticiones no ordenadas introducen un

problema nuevo, ya que, en caso de competir por un mismo bloque de memo-

ria, pueden generar carreras de protocolo, lo que impide la resolución de los

fallos de caché. Para eliminar las carreras de protocolo y poder asegurar que

todas las peticiones son finalmente completadas (asegurando aśı la resolución

de todos los fallos de caché), los protocolos basados en tokens requieren la

utilización de un mecanismo de prevención de inanición.

Los problemas más significativos de los protocolos de coherencia basa-

dos en tokens son causados principalmente por el mecanismo de prevención

de inanición. Aunque hasta ahora se han propuesto varias alternativas para

implementar estos mecanismos, siguen presentando problemas importantes:

primero, son demasiado ineficientes; segundo, consumen unos recursos de al-

macenamiento en cada nodo que crecen proporcionalmente con el tamaño del

sistema; y tercero, requieren la utilización de mensajes broadcast. Todos estos

problemas comprometen la escalabilidad de los protocolos basados en tokens

porque, conforme crece el tamaño del sistema, el rendimiento del protocolo

empeora, la cantidad de recursos de almacenamiento requeridos en cada nodo

crece significativamente y el tráfico en la red de interconexión crece de forma

xix

xx Resumen

exponencial debido a los mensajes broadcast, lo que causa su congestión. Sin

embargo, éstos no son los únicos problemas serios que comprometen la escala-

bilidad del protocolo, ya que ésta también se ve afectada por la utilización de

invalidaciones no silenciosas (non-silent invalidations).

Mientras continue la tendencia a aumentar el número de nodos en los

sistemas multiprocesadores de memoria compartida, se seguirá requiriendo la

utilización de protocolos de coherencia de caché que sean eficientes y escalables.

Teniendo en cuenta ésto, las contribuciones aportadas por esta tesis van dirigi-

das a mejorar el rendimiento y la escalabilidad de los protocolos de coherencia

basados en tokens. Para conseguirlo, esta tesis aborda tanto los aspectos más

negativos de los mecanismos de prevención de inanición como los de las inva-

lidaciones no silenciosas. La contribución más destacada es la observación de

que ciertos algoritmos de encaminamiento pueden evitar de forma natural que

los protocolos que no están basados en redes totalmente ordenadas ni en direc-

torios generen carreras de protocolo. Aśı, mediante la utilización de técnicas

de encaminamiento basadas en caminos ordenados, podemos crear fácilmente

un mecanismo de prevención de inanición eficiente y flexible. Además, esos al-

goritmos de encaminamiento nos permiten desarrollar técnicas que mejoren la

escalabilidad del protocolo, reduciendo tanto los recursos de almacenamiento

requeridos por el mecanismo de prevención de inanición como el tráfico de red

generado por los mensajes broadcast. Adicionalmente, estas técnicas se pueden

utilizar también para mejorar la parte de las invalidaciones no silenciosas.

Resum

Els protocols de coherència de caché basats en tokens són capaços de capturar

simultàniament els principals avantatges dels dos esquemes que tradicional-

ment s’han utilitzat per a assegurar coherència: baixa latència en les fallades

de caché (com en els protocols basats en snooping) i no dependència de xarxes

d’interconnexió totalment ordenades (com en els protocols basats en directori).

Els protocols basats en tokens poden unir eixes caracteŕıstiques gràcies en gran

part a la utilització de peticions desordenades. Desafortunadament, les peti-

cions desordenades introdüıxen un problema nou ja que, en cas de competir

per un mateix bloc de memòria, poden generar carreres de protocol, la qual

cosa impedix la resolució de les fallades de caché. Per eliminar les carreres de

protocol i poder assegurar que totes les peticions són finalment completades

(assegurant aix́ı la resolució de totes les fallades de caché), els protocols basats

en tokens requerixen la utilització d’un mecanisme de prevenció d’inanició.

Els problemes més significatius dels protocols de coherència basats en to-

kens són causats principalment pel mecanisme de prevenció d’inanició. Encara

que fins ara s’han proposat diverses alternatives per a implementar aquests

mecanismes, continuen presentant problemes seriosos: primer, són massa in-

eficients; segon, consumixen uns recursos d’emmagatzemament a cada node

que creixen proporcionalment amb la grandària del sistema; i tercer, reque-

rixen la utilització de missatges broadcast. Tots aquests problemes compro-

meten l’escalabilitat dels protocols basats en tokens perquè, conforme creix

la grandària del sistema, el rendiment del protocol empitjora, la quantitat de

recursos d’emmagatzemament requerits a cada node creix significativament i

la xarxa d’interconnexió es congestiona cada vegada més a causa dels missat-

ges broadcast. Malgrat això, aquests no són els únics problemes seriosos que

xxi

xxii Resum

comprometen l’escalabilitat del protocol, ja que aquesta també es veu afectada

per la utilització d’invalidacions no silencioses (non-silent invalidations).

Mentres seguisca la tendència d’augmentar el nombre de nodes en els sis-

temes multiprocessadors de memòria compartida, es continuarà requerint la

utilització de protocols de coherència de caché que siguen eficients i escalables.

Tenint en compte això, les contribucions aportades per aquesta tesi tenen com

a objectiu la millora del rendiment i l’escalabilitat dels protocols de coherència

basats en tokens. Per a aconseguir-ho, aquesta tesi aborda tant els aspectes

més negatius dels mecanismes de prevenció d’inanició com els de les invali-

dacions no silencioses. La contribució més destacada és l’observació que certs

algoritmes d’acarrerament poden evitar de forma natural que els protocols que

no estan basats en xarxes totalment ordenades ni en directoris generen car-

reres de protocol. Aix́ı, mitjançant la utilització de tècniques d’acarrerament

basades en camins ordenats, podem crear fàcilment un mecanisme de pre-

venció d’inanició eficient i flexible. A més, aquests algoritmes d’acarrerament

ens permeten desenvolupar tècniques que milloren l’escalabilitat del protocol i

reduir tant els recursos d’emmagatzemament requerits pel mecanisme de pre-

venció d’inanició com el trànsit de xarxa generat pels missatges broadcast.

Addicionalment, aquestes tècniques es poden utilitzar també per a millorar

les invalidacions no silencioses.

Chapter 1

Introduction

This chapter briefly describes the context in which this dissertation is set

(Section 1.1) and mentions the reasons that motivate it. We then define the

objectives that this dissertation aims (Section 1.2) and we show the contri-

butions that such objectives have originated (Section 1.3). We conclude this

chapter by presenting the structure of this dissertation (Section 1.4).

1.1 Context and Motivation

Nowadays database and web servers are required for many different tasks, such

as sending/receiving electronic mails, business applications in departments

or companies (products of SAP or Oracle), workgroup environments (Lotus

Notes), databases, client-server applications, or scientific applications. Those

services are often provided by servers, being their performance a key matter

due to the fact that they are increasingly a part of our daily lives. To a large

extent, the performance of servers depends on the performance of micropro-

cessors. Historically microprocessors have been improved by both increasing

their frequency and increasing the work performed in each cycle. However, in-

creasing the frequency can not longer deliver performance improvements due

to energy, heat, and wire delay issues [11]. Consequently, mainstream mi-

croprocessor vendors are focused on improving the performance of servers by

increasing the work performed in each cycle. To this end, shared-memory mul-

tiprocessor systems such as SMPs, clusters of SMPs, or chip multiprocessors

1

2 Chapter 1. Introduction

(CMPs) [61, 108, 68, 71, 57] have been proposed. A shared-memory multipro-

cessor consists of a number of processors accessing one or more shared memory

modules. The processors can be physically connected to the memory modules

in a variety of ways, but logically every processor is connected to every mo-

dule. This kind of system requires a cache coherence protocol to coordinate the

different caches distributed through the system as part of providing a consis-

tent view of memory to processors. Cache coherence protocols determine how

the blocks of the shared memory are transferred between processors, caches,

and memory, which will directly influence the performance of shared-memory

multiprocessors.

The number of processors that integrate shared-memory multiprocessors

is rapidly increasing. For example, in 2005, Intel and AMD offered dual-

core products [101] and two years later they offered quad-core products [100].

Meanwhile, in 2005, Sun offered 8-core CMPs [61] and, in 2008, it offered

16-core versions [62]. Besides, Sun began to offer multiprocessor severs with

up to 4 processors and nowadays it offers 64-multiprocessor servers [105]. In

1996, SGI offered mid-range servers (SGI Origin 2000) where the number of

processors ranged from 2-8 processors in the SGI Origin 2100 up to 32-128

processors in the SGI Origin 2800. In 2000, it offered servers with up to 512

processors (SGI Origin 3800) and, in 2006, they made them expandable to

over 1000 processors (in a shared-memory environment). Therefore, all these

examples show that it is conceivable that the number of processors continue

increasing exponentially, at the rate of Moore’s Law [86] over the next decade.

In fact, Intel is trying to integrate 80 processors onto a single chip [55] and

Berkeley researches suggest that future multiprocessor systems could contain

thousands of processors [17]. Hence, while the number of processors continue

increasing, implementing low-latency and scalable cache coherence protocols

in shared-memory multiprocessors will be a key issue to scale performance.

Although a lot of different cache coherence protocols have been proposed,

most of them are based on two different approaches: snooping and directory.

On the one hand, snooping-based protocols [50] are those protocols that broad-

cast requests to all processors using a bus or bus-like interconnect that offers

global order to requests. By ordered broadcast requests, processors can di-

rectly communicate between themselves, thereby minimizing the latency of

1.1. Context and Motivation 3

cache-to-cache misses. In addition, the ordered requests unambiguously re-

solve the contention for the same memory block, preventing the occurrence of

protocol races. The main advantage of snooping-based protocols is that they

provide low-latency cache-to-cache misses. However, to get it, this class of

protocol requires the interconnect system to provide ordered broadcasts. The

interconnects that exhibit this behavior are known as totally-ordered inter-

connects. The main disadvantage of protocol based on snooping is that they

are restricted to systems with totally-ordered interconnects, which entails a

problem because their applicability is limited. Besides, totally-ordered inter-

connects do not scale well [40], making snooping-based protocols only suitable

for systems with a small number of processors.

On the other hand, directory-based protocols [9] send requests only to the

home memory where the directory is located. The directory then responds

with data or forwards the request to one or more processors. Like snooping-

based, directory-based protocols also put requests in order. However, in this

case, it is done by establishing an ordering point (the directory). Thus, the

occurrence of protocol races is prevented. Since the directory provides order

for requests, directory-based protocols do not require totally-ordered intercon-

nects. Rather, they can be implemented in systems with low-latency intercon-

nects, which widens their applicability. Besides, point-to-point interconnection

networks are more scalable than totally-ordered interconnects, which makes di-

rectory protocols suitable for medium/large-sized systems. The worst aspect

of directory-based protocols is that processors do not communicate directly

between themselves, since requests are first sent to the directory. This en-

tails a serious problem known as indirection because both a directory lookup

and a third interconnect transversal (the path from the directory to nodes)

are placed in the critical path of cache-to-cache misses, which considerably

increases their latency.

Since snooping-based and directory-based protocols present opposed fea-

tures (low-latency cache-to-cache misses against not reliance on totally-ordered

interconnects), to try to simultaneously capture their best attributes, a new

class of cache coherence protocol, token-based protocols, has been proposed

recently. Hence, token-based protocols aim to offer low-latency cache-to-cache

misses without relying on totally-ordered interconnects. To this end, in token-

4 Chapter 1. Introduction

based protocols requests are directly sent to all processors (or a subset) through

a point-to-point interconnect. Thanks to this direct communication between

processors, low latency cache-to-cache misses can be obtained. Nevertheless,

notice that requests in token-based protocols are not ordered messages because

neither totally-ordered interconnects (like in snooping protocols) nor ordering

points (like in directory protocols) are used. As a result, requests contending

for the same memory block may generate protocol races, which cause those

requests to fail at resolving cache misses. To solve races and guarantee the

completion of all cache misses, a starvation prevention mechanism must be

used.

In spite of having proposed several implementations, the starvation pre-

vention mechanism is the component which causes the major problems of

token-based protocols:

• The starvation prevention mechanism is inflexible because it does not

allow to simultaneously serve several requests while it is active.

• It overrides the component that provides low-latency cache-to-cache misses,

preventing the starvation by an inefficient method.

• The most efficient implementation requires non-scalable storage struc-

tures at each system node, while the other implementations require ad-

ditional components that introduce indirection.

• It is based on broadcast messages which are not suitable for medium/large-

sized systems.

• Explicit acknowledgments are used, which increases the network traffic

and delays the request service.

Besides those problems inherited from the starvation prevention mecha-

nism, token-based protocols also present another one: the non-silent invali-

dations. When a node invalidates a copy of a memory block in its cache, it

has to send an acknowledgment which contains the tokens and the memory

block. Invalidations can be caused because of two reasons: evictions and write

requests. In case of evictions, the non-silent invalidations do not entail a se-

rious problem. However, the invalidations caused by write requests will be a

1.2. Objectives 5

problem since the messages generated as a result of the invalidation are placed

in the critical path of writes.

In conclusion, although token-based protocols integrate the main advan-

tages of traditional protocols, they still present some problems that jeopardize

their performance and scalability. These problems are mainly caused by the

starvation prevention mechanism and by the non-silent invalidations. There-

fore, to improve the scalability of token-based protocols (and their perfor-

mance) those problems must be solved.

1.2 Objectives

Token-based protocols are the only cache coherence protocols that simultane-

ously can avoid both indirection and reliance on totally-ordered interconnects.

Therefore, they seem to be the best approach to implement cache coherence

in current systems. However, they still present some disadvantages which

make them inefficient in medium and large systems, being the main objective

of this dissertation to tackle all those problems by taking advantage of some

well-known routing strategies commonly used in interconnection networks.

The first objective is to develop a more flexible and efficient starvation

prevention mechanism which ensures cache miss resolution without having the

necessity of overriding the component that provides low-latency cache misses,

which in turn may contribute to improve the performance of the mechanism.

To avoid indirection, the starvation prevention mechanism requires the use

of non-scalable storage requirements at each node. Although in small systems

they may be acceptable, the tendency to increase the system size motivates our

second objective. Thus, the second goal is to develop a strategy that resolves

the lack of scalability of the storage structures required by the starvation

prevention mechanism.

The requests used by token-based protocols can be based on broadcast or

multicast messages. However, the starvation prevention mechanism always is

based on broadcast messages, which makes it non-scalable. Therefore, the

third objective of this dissertation is to design an alternative strategy which

provides the starvation prevention mechanism with certain scalability in terms

of traffic generation.

6 Chapter 1. Introduction

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 10 20 30 40 50 60 70

N
u
m

b
er

 o
f

ra
ce

s

System size

Figure 1.1: Protocol races according to the system size.

Finally, the last problem that we tackle is that caused by non-silent in-

validations. Thus, the fourth objective is the development of a strategy that

alleviates the problem of non-silent invalidations.

1.3 Thesis Contributions

The objectives pointed out in the previous section have originated several

contributions, which are briefly described in this section. All the contributions

but one target a different aspect of the starvation prevention mechanism given

that it is responsible for the most relevant and serious troubles of token-based

protocols. Besides, the other contribution targets the non-silent invalidation

problem, which does not depend on the starvation prevention mechanism.

Throughout this dissertation, we assume the use of Token Coherence [77] which

is a framework to develop token-based protocols, when applied to a CC-NUMA

environment. The starvation prevention mechanism used by Token Coherence

is referred as the persistent request mechanism.

1.3.1 Priority Requests

In small systems, the starvation prevention mechanism required by token-

based protocols will not be used frequently since the probability of contention

among processors is low, thereby being generated few protocol races. There-

fore, in small systems the performance of the whole protocol is hardly affected

by the starvation prevention mechanism. However, as the system is getting

1.3. Thesis Contributions 7

persistent request

successful

coherent

transient request

efficient

coherent

priority request

successful

efficient

coherent

policy

priority
persistent

performance

token counting

request

Figure 1.2: System components used by persistent requests, transient requests,

and priority requests and their main properties.

larger, the probability of contention among processors increases and, conse-

quently, the starvation prevention mechanism will be more and more used.

This is shown in Figure 1.1, where it can be observed how the number of

starvation situations varies exponentially regarding the system size. Thus, in

medium/large systems the starvation prevention mechanism will significantly

affect the overall performance.

Although several implementation options of persistent requests have been

proposed up to now, all of them are too inefficient, mainly because they

override the performance policy, which provides efficiency and low-latency,

as shown in Figure 1.2. Besides, persistent requests are so strict that they

do not allow the service of transient requests (requests commonly used in ab-

sence of starvation) while they are active, which is likely to cause unnecessary

additional races. This two facts make the persistent request mechanism inef-

ficient. Therefore, although persistent requests do not perform bad in small

systems, in medium/large-sized systems they will seriously penalize the overall

performance of Token Coherence.

The primary contribution of Chapter 5 develops an efficient starvation

prevention mechanism named priority requests. Like traditional protocols,

the priority request mechanism relies on a global order of requests to avoid

races. However, since we want to avoid both totally-ordered interconnects and

8 Chapter 1. Introduction

indirection overheads, priority requests use an alternative strategy to ensure

in order reception. To this end, priority requests rely on routing algorithms

to provide totally ordered requests. This is accomplished by sending requests

through ordered paths. All priority requests routed through the same ordered

path will be received in the same order by all processors. This is enough

to prevent priority requests from causing protocol races and, therefore, their

completion can be easily ensured. Nodes exploit the ordering properties of

priority requests by completing them in the natural arrival order. Due to

the fact that priority requests can not generate protocol races, there is no

reason to override the performance policy. Thus, as shown in Figure 1.2,

priority requests can use the performance policy, which allows to efficiently

move tokens at all times while ensuring completion.

1.3.2 Limiting the Storage Requirements

Both persistent and priority request mechanisms require the system to main-

tain a table at each node to remember all the unsuccessful (or starved) re-

quests. The size of those tables depends on the product of two factors: (1)

the number of maximum outstanding requests per processor and (2) the sys-

tem size (number of processors in the system). By limiting the number of

outstanding requests to one, the size of tables is not very large, but it still de-

pends on the system size, growing proportionally to the number of processors

(shown in Figure 1.3(a)). This is a serious problem since currently there is a

trend to increase the number of processors and that threatens the scalability of

the whole protocol. Besides, those tables require associative search, increasing

their access latency as the number of table entries increases.

The primary contribution of Chapter 6 develops a strategy to decouple

the size of the starved request tables from the system size. To this end, tables

only store information of a subset of all the starved requests. The information

of those requests is replicated in all the tables so that all processors know

the starved requests that need to be served as soon as possible. The other

starved requests will not be able to be stored in the tables until the stored

ones complete. The information about the not stored starved requests is not

replicated in all nodes, but distributed through them. This simple technique

allows to reduce (and limit) the size of tables, being able to reach single-entry

1.3. Thesis Contributions 9

mem block mem operationissuer

0x400 write

proc 3

proc 4

0x400

0x400

0x400

read

read

read

proc 0

proc 1

(a) size proportional to system size

mem block mem operationissuer

0x400 write

proc 3

proc 4

0x400

0x400

0x400

read

read

read

proc 1

proc 0

(b) single-entry table

Figure 1.3: Differences between a starved request table with as many entries

as number of processors and a starved request table with just one entry.

tables at the expense of a slight performance degradation. Figure 1.3(b) shows

a table with a single entry. The information in gray refers to the not stored

starved requests. That information is distributed and not replicated. When

the stored request completes, its issuer will inform to the issuer of the next

request in the sequence (indicated by the arrows). Thus, when a node is

informed about the completion of a stored request, it will be able to resend

its request with total guarantee of storage.

1.3.3 Switch-based Packing Technique

Broadcast messages are a good solution for small systems. However, their

bandwidth requirements increase quadratically to the system size. This entails

a serious problem as the bandwidth provided by most of the point-to-point net-

works only increases linearly to the system size. Therefore, although broadcast

messages may be a good solution in small systems, in medium/large systems

they will require much more bandwidth than that provided by the network.

This lack of scalability is clearly shown in Figure 1.4.

Token Coherence requires the use of broadcast messages (persistent/priority

requests) to prevent starvation. As they are not scalable, Token Coherence

only will be suitable for systems with a low number of processors. To improve

this aspect of the protocol, Chapter 7 proposes a network switch-based stra-

tegy which increases the scalability of broadcasts. When only a few broadcasts

are generated and the network has enough bandwidth to quickly process all

of them, broadcast messages will hardly coincide in the input buffers of the

traversed switches. However, when several broadcast messages are generated

10 Chapter 1. Introduction

Broadcast bandwidth requirements

Network bandwidth

System size

large systems

medium systems

small systems

B
a

n
d

w
id

th

Figure 1.4: Comparison between the bandwidth provided by the interconnec-

tion network and the bandwidth required by broadcast messages depending

on the system size.

and the network does not have enough bandwidth to quickly deliver all of

them, they will be accumulated in the buffers of the traversed switches. The

technique that we propose takes advantage of the fact that the broadcast mes-

sages accumulated at switches carry almost the same information. Therefore

they can be packed in just one message. This packing of broadcast messages

allows to drastically reduce the transmitted traffic. Besides, the more broad-

cast messages the nodes inject, the more packing the switches perform, which

provides certain scalability to the protocol.

A secondary contribution of Chapter 7 develops a similar strategy to re-

duce the number of messages generated as response to non-silent invalidations.

Given that, in case of an invalidation due to a write request, all the response

messages are directed to the same processor, the idea is to concentrate (when

possible) the tokens carried by several response messages in just one message.

Thus, instead of having to wait for a message from each sharer, only few

responses would be required.

1.3.4 Multicast Data Responses

Policies based on MOESI states select a processor which is the only one in

charge of providing, at that time, a memory block to the processors that

request it. Most systems assume the MOESI policy (or one based on a sub-

1.4. Thesis Outline 11

set/superset of its states) since it efficiently manages memory blocks. However,

when several processors contend for the same memory block, the processor de-

signated by the MOESI policy to provide such a block may become temporarily

a bottleneck. This situation often occurs when the use of the starvation pre-

vention mechanism is required, since starvation is usually caused by several

nodes contending for the same block. This situation worsens as the number

of processors involved in a starvation situation increases.

The primary contribution of Chapter 8 proposes a technique that resolves

the aforementioned situation. Like some protocols that use a single message

to invalidate several copies of a memory block, we introduce a new class of

response message based on multicast techniques that allows to validate several

copies of a memory block. In addition to considerably reducing the injected

traffic, it reduces the latency to resolve the contention situations.

1.3.5 Summary

The main problems of token-based protocols are those inherited from the star-

vation prevention mechanism (inefficiency, non-scalable storage requirements,

and need of broadcast messages) and the non-silent invalidations. The con-

tributions of this dissertation aim to solve all these problems. In this sense,

both the priority request mechanism (Chapter 5) and the multicast responses

(Chapter 8) address the problem of inefficiency. The technique presented in

Chapter 6 tackles the non-scalable storage requirements. Finally, Chapter 7

faces to the scalability problem of broadcast messages and non-silent invalida-

tions.

1.4 Thesis Outline

This dissertation begins with this introductory and motivational chapter (Chap-

ter 1), continues with a chapter that describes the fundamentals of cache coher-

ence protocols and interconnection networks (Chapter 2). Chapter 3 includes

the evolution and the main innovations on cache coherence protocols. Chap-

ter 4 discusses the tools, methodology, and workloads used for the evaluation

carried out in this thesis. Chapter 5 presents the priority request mechanism.

Chapter 6 develops the strategy for limiting the storage requirements. Chap-

12 Chapter 1. Introduction

ter 7 introduces the switch-based packing technique. Chapter 8 presents the

multicast responses. The dissertation ends with Chapter 9, which summarizes

the proposals and identifies other advantages that are not evaluated here.

Chapter 2

Concepts and Background

This chapter describes the basics and terminology for understanding caches

memories, interconnection networks, and the underlying problem of cache co-

herence in multiprocessor systems. Although this chapter reviews some con-

cepts of cache coherence and interconnection networks, it is not an introduc-

tion to them. Rather, it is intended to give insight on the different concepts

related to cache memories, which are assumed in this thesis. We refer the

reader to the established textbooks on this topic for further background and

introductory material (e.g., [96, 38, 53, 41]).

This chapter first discusses the need for caches (Section 2.1) and the prob-

lem of keeping the contents of caches coherent in shared-memory multiproces-

sor systems (Section 2.2). Next, we describe some strategies used by coherence

protocols to address the coherence problem (Section 2.3) and some of the most

widespread consistency models (Section 2.4). Finally, the chapter concludes

with a description of various alternatives for implementing multiprocessor in-

terconnection networks (Section 2.5).

2.1 Basis of Cache Memories

No one memory technology can supply all the memory needs of a computer

since fast memories are usually low capacity memories (low bit density). As

a consequence, they are expensive: cost per bit increases as access time de-

creases. Consequently, several memory types with very different physical pro-

13

14 Chapter 2. Concepts and Background

perties placed at different levels of the memory hierarchy have to be used

in typical computer systems. Main memory is a large (but slow) memory

implemented with DRAM technology. To reduce the speed disparity between

CPU and main memory, one or more intermediate small-sized memories called

caches are used. The term cache refers to a fast intermediate memory within

a larger memory system [109, 52]. Caches, which might be implemented with

SRAM technology, directly address the Von Neumann bottleneck by providing

the CPU with fast access to memory.

Caches store copies of items located in main memory. Memory words are

stored in a cache data memory and are grouped into small pages called cache

blocks or lines. The contents of the cache’s data memory are thus copies of a

set of main memory blocks. Each cache block is marked with its block address,

referred to as a tag, so the cache knows to what part of the memory space

the block belongs. The collection of tag addresses currently assigned to the

cache is stored in the cache tag memory. Note that, for a cache to improve

the performance of a computer, the time required to check tag addresses and

access the cache’s data memory must be much lower than the time required

to access main memory.

When the CPU issues a memory address, the cache compares it to the

contents of its tag memory. If a match (hit) occurs, the memory access is

completed by the cache; otherwise (miss), a block that includes the addressed

item is retrieved from main memory and placed into the cache. Temporal

locality tells us that we are likely to need this word again in the near future,

so it is useful to place it in the cache where it can be accessed quickly. Spatial

locality tells us that there is a high probability that the other data in the

block will be needed soon. Hence, because of locality principle and the higher

speed of smaller memories, a memory hierarchy can substantially improve

performance. A basic measure of this performance is the hit ratio, which is

the fraction of all memory references that are satisfied by cache.

2.1.1 Block Placement Policy

When a block is retrieved from main memory, a block placement policy is used

to know where the block can be placed into the cache. This policy influences

when a tag address is presented to the cache, since it must be quickly compared

2.1. Basis of Cache Memories 15

to the stored tags to determine whether a matching occurs. Depending on the

restrictions on where a block can be placed, there exist three categories of

cache organization:

• If each memory block has only one place where it can be allocated in

the cache, the cache is said to be direct mapped. In this case, the cache

is divided into sets, each of which stores a block. With direct mapping,

each block in main memory is mapped into one specific block of cache.

The main drawback of this organization is that the cache’s hit ratio

drops sharply if two or more frequently used blocks map onto the same

region in the cache (known as collision), whereas the main advantage is

its simplicity.

• If a block can be placed anywhere in the cache, the cache is said to

be fully associative. Associative memories are also commonly known as

content-addressable memories (CAMs). To implement fast tag compa-

rison, the input tag can be compared simultaneously to all tags in the

cache tag memory. The main disadvantage of this kind of memory is

that they are expensive and complex.

• If a block can be placed in a restricted set of places in the cache, the

cache is set associative. A set is a group of blocks in the cache. A block

in main memory is first mapped onto a set, and then the block can be

placed anywhere within that set. If there are n blocks in a set, the

cache placement is called n-way set associative. This approach reaches

a trade-off between the advantages and disadvantages of the two previ-

ous proposals. Thus, it is considered a reasonable compromise between

the complex hardware needed for fully associative caches (which requires

parallel searches of all tags), and the simple direct-mapped scheme. The

main disadvantage is similar to that in direct mapped caches, since col-

lisions may occur.

2.1.2 Replacement Policy

When a miss occurs, a cache block must be selected to be replaced with the

block retrieved from main memory. The main advantage of direct mapped

16 Chapter 2. Concepts and Background

policy is that hardware decisions are simplified since a replacement policy is

not required: each block has only one place to be placed and only that block

can be replaced. With fully associative or set-associative placement, there

are many blocks to choose from on a miss. The most employed strategies for

selecting the block to replace are:

• Random. The candidate block to replace is randomly selected.

• Least-recently used (LRU). Relying on the past to predict the future, the

block replaced is the one that has been unused for the longest time.

• First in, first out (FIFO). Because LRU can be complicated to calculate,

this approximates LRU by determining the oldest block rather than the

least-recently used one.

2.1.3 Write Policy

Another important aspect of caches is the write policy. There exist two dif-

ferent strategies when a write is carried out: write-through and write-back. In

write-through, the information is written to both the block in cache and to

the block in main memory. This policy is easy to implement, and it guaran-

tees that main memory never contains stale information. In write-back, the

information is written only to the block in cache. This modified cache block

is written to main memory only when it is replaced. This technique has the

disadvantage of temporal inconsistency, that is, cache and main memory can

have different data associated with the same physical address. In addition,

the write-back technique complicates recovery from system failures. On the

other hand, write-through results in more write cycles to main memory than

write-back does.

To reduce the frequency of writing-back blocks on replacements, a feature

called the dirty bit is commonly used. This status bit indicates whether the

block is dirty (modified while in cache) or clean (not modified). If it is clean,

the block is not written back on a miss, since identical information to the

cache is found in main memory.

2.1. Basis of Cache Memories 17

Table 2.1: Cache features in actual computers.

Model L1 cache L2 cache L3 cache

Intel 386 off-die 64 KB (none) (none)

Intel 486 on-die 8 KB (none) (none)

Pentium MMX split on-die 16 KB (none) (none)

Pentium Pro split on-die 8 KB cartridge 1 MB (none)

Itanium 2 split on-die 16 KB split on-die 1 MB on-die 12 MB

Xeon MP split on-die 8 KB on-die 2 MB on-die 16 MB

IBM Power 4 split on-die 96 KB on-die 1 MB off-die 256 MB

AMD Phenom split on-die 64 KB on-die 512 KB on-die 2 MB

2.1.4 Structure

Table 2.1 illustrates some of the diversity of commercial cache types. As clock

speeds separated from main memory speeds, fast and small cache memories

began to be included to boost performance. Thus, early computers employed

a single, multichip cache that occupied one level of the hierarchy between the

CPU and main memory. These caches were external to the processor and

located on the motherboard (some versions of the 386 processor could support

up to 64 KB of external cache). Later, due to the feasibility of including part of

the real memory space on a microprocessor chip and the growth in the size (but

not in the speed) of main memory, more cache levels were introduced, which

addressed the increase of the miss penalty. A Level 1 (L1) cache is an efficient

way to implement an on-die memory. It was named like that to differentiate

it from the Level 2 (L2) cache, which was still located on the motherboard

(off-die). The L2 cache is slower than L1 cache, but it is much larger. In

general, caches of levels close to the CPU are smaller, but faster than caches

of higher levels. Hence, with the appearance of the 486 processors (and later

in the Pentium MMX), an 8 KB cache began to be integrated directly into

the CPU die. Later, the introduction of SDRAM to implement main memory

18 Chapter 2. Concepts and Background

and the growing difference between the bus speed and the CPU clock speed

caused on-motherboard cache to be only slightly faster than main memory,

which forced a new evolution. Thus, some processors such as Pentium Pro,

Pentium II, and the first Pentiums III incorporated the secondary cache into

the same cartridge as the CPU, but out of the die.

The desirability of additional levels increases with the size of main memory.

As main memory size increases further, the latency difference between main

memory and the fastest cache becomes larger. This makes even more cache

levels to be desirable (for example, a third level of cache). This level can

be implemented on a separated chip from the CPU (the IBM Power 4 series

support up to 256 MB L3 cache off-chip) or incorporated in the same chip

(Itanium 2 incorporated a 12 MB L3 cache on-die, the AMD Phenom series

of chips carries a 2 MB on-die L3 cache, and the Intel Xeon MP features 16

MB on-die L3 cache).

Multi-level caches can be classified in different types. A cache is said to

be strictly inclusive when all data in L1 cache are also in L2 cache. Other

processors (like the AMD Athlon) have exclusive caches, that is, a datum is

either in L1 cache or in L2 cache, never in both.

Caches are also distinguished by the kind of information they store. An

instruction or I-cache stores instructions only, while a data or D-cache stores

data only. Separating the stored data in this way recognizes the different

access behavior patterns of instructions and data. A cache that stores both

instructions and data is referred to as unified (such as in the PA-7100 LC

processors [2]). On the other hand, a split cache consists of two associated

but largely independent units: an I-cache and a D-cache. While a unified

cache is simpler, a split cache makes it possible to access programs and data

concurrently.

2.2 Cache Coherence

Although the microprocessor performance has been improving at a rate of

about 50% per year, it may be increasingly difficult that a single processor

becomes fast enough to satisfy the applications demands for ever greater per-

formance. An attractive solution can be the parallel machines, since they

2.2. Cache Coherence 19

P1

cache

M1

. . .

Pn

cache

interconnection network

Mn

(a)

M1 Mk I/O devices

P1

interconnection network

. . .

Pn

cache cache

(b)

Figure 2.1: Examples of (a) multicomputer and (b) UMA architecture. Circles

marked Px are processors, boxes marked Mx represent memory modules, and

the little dark boxes are communication assists (CA) which are controllers

or auxiliary processing units that assist in generating outgoing messages or

handling incoming messages.

are built from multiple conventional, small, inexpensive, low-power, mass-

produced processors. Parallel machines are based on the MIMD architecture

(Multiple Instruction stream, Multiple Data stream) and are usually classified

in two different types: multicomputers and multiprocessors.

In multicomputer systems, each processor has its own local memory. There-

fore, the global memory of the system is physically distributed among all the

processors as shown in Figure 2.1(a). Each processor is tightly coupled to its

memory, which, besides being physically separate, is logically private from the

memories of other processors. A global memory address does not exist; rather,

each processor has its own private memory address space. This kind of system

is also known as message-passing multicomputer, as it is the only way several

processors can communicate among themselves.

A multiprocessor is a parallel system compound of several interconnected

processors which share a global physical address space that can be accessed

from any processor. This kind of system is also known as shared-memory

system. Depending on how the memory is shared, multiprocessors may be

classified in different types:

• In UMA (Uniform Memory Access) systems, the access to all shared

20 Chapter 2. Concepts and Background

M1

PnP1

. . .cache cache

interconnection network

Mn

(a)

P1

cache

dir

. . .

Pn

cache

dir

interconnection network

(b)

Figure 2.2: Examples of (a) CC-NUMA and (b) COMA architectures. Boxes

marked dir represent a directory.

data of main memory from any processor is uniform, that is, the access

latency does not depend on the location of the physical address. As

Figure 2.1(b) depicts, every processor has its own private cache and

all the processors and memory modules attach to the same interconnect.

These systems are also known as SMP (Symmetric Multiprocessing). The

UMA systems that incorporate cache coherence are usually named as

CC-UMA (Cache-Coherent Uniform Memory Access).

• In NUMA (Non-Uniform Memory Access) architectures, processors and

memory modules are closely integrated such that the access to the lo-

cal memory is faster than the access to the remote memories. Figure

2.2(a) illustrates the NUMA model, where the global memory is shared

but local to each processor. This model is also known as DSM (Dis-

tributed Shared Memory). The main advantage of the NUMA archi-

tecture is that the access to the local memory is faster than that in

the UMA model, although the access to a non-local memory is slower.

There exists a CC-NUMA (Cache-Coherent Non-Uniform Memory Ac-

cess) model with distributed shared memory and cache directories to

implement coherency. Besides, there exists another alternative, NCC-

NUMA (Non Cache-Coherent Non-Uniform Memory Access) where data

are storable in the processor’s cache only if those data belong to its local

memory, thereby not requiring to maintain coherence.

2.2. Cache Coherence 21

• In COMA (Cache Only Memory Access) architecture, the local main

memory is managed as a hardware cache, providing replication and co-

herence at cache block granularity. In COMA machines, every memory

block in the entire main memory has a hardware tag associated with

it. There is no fixed node where space is always guaranteed to be allo-

cated for a memory block. Rather, data dynamically move to and are

replicated in the main memories that access. These main memories are

organized as caches, shown in Figure 2.2(b). Some authors consider this

model as a special kind of NUMA machine where the distributed local

memories become caches memories. The main advantage of the COMA

model is that it frees parallel software from worrying about data dis-

tribution in main memory. However, COMA machines require a lot of

hardware support, they have extra memory overhead, and the required

coherence protocols are complex.

In uniprocessor systems, there exists a single processor that accesses the

cache. Therefore, whatever read of a location will return the latest value

written to that location. This is the fundamental property of the memory

abstraction which sequential programs rely on. This property should be ful-

filled even when a shared address space is used. A read should return the

latest value written to the location regardless of the processor that wrote it.

However, when two processors see the shared memory through different caches

(such as in the aforementioned multiprocessor systems), a danger exists since

one may see the new value in its cache while the other still sees an old value.

This is called the cache coherence problem. To address this problem while

sharing a global space, multiprocessors use cache coherence protocols to (1)

notify the changes over shared data, (2) to avoid the access to stale data, and

(3) to facilitate the access to the updated data.

There exist two different options to implement cache coherence protocols.

On the one hand, the protocols that invalidate cache copies (other than the

writer’s copy) on a write are called invalidation-based protocols. On the other

hand, the protocols that update cache copies are called update-based protocols.

In both cases, the next time the processor with the copy accesses the block,

it will see the most recent value, thereby ensuring a coherent view of the me-

mory system. Since invalidation-based coherence has been used in most recent

22 Chapter 2. Concepts and Background

systems (e.g., [123, 99, 93, 35, 113, 18, 26]), this dissertation only considers

this kind of implementation.

2.3 Coherence Models

Cache coherence protocols can use different policies for establishing the rights

(read or write) and duties (supply the data to other caches) that a specific node

has over each block. Following, some of the most used policies are described.

2.3.1 MSI

MSI is a simple invalidation-based protocol for write-back caches. It is very

similar to the protocol that was used in the Silicon Graphics 4D series multi-

processor machines [23]. The MSI protocol defines three states, modified (M),

shared (S), and invalid (I), to distinguish valid blocks that are unmodified

(clean) from those that are modified (dirty). Invalid means the block is not

present in cache. Shared means the block is present in cache in an unmodified

state, main memory is up-to-date, and zero or more other caches may also

have an up-to-date (shared) copy. Modified means that only this cache has

a valid copy of the block and the copy in main memory is stale. An invalid

block can not be neither read nor written, a shared block can be read, but not

written, and a block in the modified state can be read and written.

Before an invalid block can be read or before a shared/invalid block can be

written, the processor has to order such an operation (read or write) upon the

block. To this end, the MSI protocol defines two different classes of requests:

write requests and read requests.

On a write miss, a write request is used to tell other caches about the

impending write and to acquire an exclusive copy of the block. A cache is

said to have an exclusive copy of a block if it is the only cache with a valid

copy of it (main memory may or may not have a valid copy). Therefore, a

write request serves to both order the write and cause the invalidation of all

copies. The memory system (possibly another cache) supplies the data to the

requester. Once the requester acquires the exclusive copy, the write can be

performed in its cache.

2.3. Coherence Models 23

I

S
write request
CPU write

CPU eviction

CPU read

M

CPU read

CPU write

CPU writeCPU eviction
writeback write request

CPU eviction

CPU read
read request

(a) processor events

I

S

read request

read request

M
send data & writeback

read request

write request

write request
send data

write request

(b) incoming messages

Figure 2.3: State transition diagram for the MSI model. The arcs are transi-

tions due to either (a) processor events or (b) incoming messages. In italic, it

is shown the action performed depending on the state and the event.

On a read miss, that is, when there is not intention to modify the copy of a

block, a read request is issued. The memory system (possibly another cache)

supplies the data.

Figure 2.3 shows the state transition diagram that governs a block in each

cache for the MSI protocol. As shown, a processor read to a block that is

invalid causes the issue of a read request to service the miss. The newly loaded

block transitions from invalid to shared in the requesting cache, as shown in

2.3(a). Any other caches with the block in the shared state that observe the

read request take no special action, allowing main memory to respond with the

data. However, if a cache has the block in the modified state and it receives

a read request, then it must respond with the data, update the copy in main

memory, and its copy of the block transitions to the shared state, as shown

in Figure 2.3(b). It is also possible not to update the copy in main memory,

leaving memory still out-of-date, but this requires more states [115].

On a write miss (writing into an invalid or shared block), a write request

is issued. This request causes all other cached copies of the block to be invali-

dated, thereby granting the requesting cache exclusive ownership of the block.

24 Chapter 2. Concepts and Background

The block in the requesting cache transitions to the modified state, and the

desired bytes are then written into it. A common optimization to reduce data

traffic is to introduce a new request, called upgrade request. An upgrade re-

quest obtains exclusive ownership just like a write request, by causing other

copies to be invalidated, but it does not cause main memory or any other

device to respond with the data for the block. Upgrade requests are useful on

write misses for shared blocks.

A replacement of a block from a cache causes its eviction. This replace-

ment causes the state machine for two blocks to change states: the one being

replaced changes to invalid, and the one being brought in changes either to

shared or to modified. If the block being replaced was in modified state, the

block is written back to main memory. However, if the block being replaced

was in shared state, a silent eviction is performed (it is not necessary to inform

about the eviction).

2.3.2 MOSI

The main advantage of the MSI model is its simplicity, but it has numerous

drawbacks. For instance, when a cache block transitions from modified to

shared, the block has to be written back to main memory, which may generate

a lot of data traffic. Besides, the requests for blocks shared by two or more

processors are always served by main memory, which is slow (memory-to-cache

transfer). To improve these aspects, some models add a new owned state (O).

This state in a processor’s cache allows read only access to the block (much like

shared), but also signifies that the value in main memory is not up-to-date. In

addition, a cache is said to be the owner of a block if it must supply the data

upon a request for that block [115]. This permits that in some implementations

of the MOSI model (such as those based on IBM NorthStar/Pulsar processors

[27, 28, 63]) the latency of cache misses lowers since data are usually supplied

by caches (cache-to-cache transfer) instead of main memory (memory-to-cache

transfer).

Figure 2.4 shows the state transition diagram for the MOSI protocol. As

illustrated, if a cache holds a block in modified state and it receives a read

request for it, it must provide the data to the requester and its copy transitions

to owned. Note that, unlike the MSI model, the block is not written back to

2.3. Coherence Models 25

I

write request
CPU write

CPU eviction

CPU read

M

CPU read

CPU write

S

O

CPU read
read request

CPU write
write request

CPU write
write request

CPU eviction
writeback

CPU read

CPU eviction

CPU eviction
writeback

(a) processor events

I

read request

M

S

O

read request

read request
send data

write request

write request

send data
read request

write request
send data write request

send data

(b) incoming messages

Figure 2.4: State transition diagram for the MOSI model.

main memory, leaving memory still out-of-date, thereby lowering the data

traffic.

For a memory block, only one cache can have a copy of it in owned state,

while the other copies of the block can be in shared state. The cache holding

a block in owned state is in charge of supplying the data to all the caches that

request a copy. Note that, if a read request has been observed, the owned

cache remains in the same state, but if a write request has been observed, the

block transitions from owned state to invalid state.

Like in modified state, the replacement of a block in owned state causes

the block to be written back to main memory.

2.3.3 MESI

Another aspect of the MSI model susceptible to be improved is the following: a

cache with a block in modified state does not distinguish between an exclusive

copy that has been modified and an unmodified exclusive copy that is only

held by that cache (since any other cache does not currently have a valid

copy). This situation can lead to unnecessary data traffic, as the replacement

of unmodified exclusive blocks cause the blocks to be written back to main

memory. Besides this problem, another concern arises when the MSI model is

26 Chapter 2. Concepts and Background

used in a multiprocessor running a sequential application. In this case, when

a processor reads in and modifies a memory block, the MSI model generates

two consecutive cache misses (even though there are no sharers), since the first

cache miss retrieves the block in shared state and the second it is necessary

to convert S state to M state.

The two aforementioned situations are avoided by adding a state indicating

that the block is the only (exclusive) copy but it is not modified. This new

state, called exclusive (E), indicates an intermediate level of binding between

shared and modified. It is exclusive, so unlike the shared state, the cache

can perform a write (directly transitioning to the modified state). However,

the exclusive state does not imply ownership (memory has a valid copy), so

unlike the modified state, the cache does not need to reply when observing a

request upon the block. Variants of this MESI protocol [95] are used in may

microprocessors, including the Intel Pentium, PowerPC 601, and the MIPS

R4400 used in the Silicon Graphics Challenge multiprocessors.

2.3.4 MOESI

To join the major advantages of MOSI and MESI models, the MOESI protocol

was proposed. Figure 2.5 shows the state transition diagram for this model.

The final definition of the states is as follows. A cache has a block in modified

state when it is the only valid copy of the block in the system. This copy has

been modified and the copy in main memory is stale. A cache with the block

in modified state can read and write that block. On a replacement, the block

has to be written back to main memory. The modified state implies ownership.

Therefore the data must be supplied to both read requesters (transitioning to

owned) and write requesters (transitioning to invalid).

A cache has a block is in owned state when that cache and, at least, another

one have a valid copy of the block. The copy in main memory may be stale,

therefore, on a replacement, the block is written back to main memory. A cache

with the block in owned state can only read it. Like the modified state, this

state implies ownership. Therefore, it must supply the data when observing

a read request (remaining in owned state) or a write request (transitioning to

invalid state).

A cache has a block in exclusive state if it is the only cache with a valid

2.3. Coherence Models 27

M

I

write request
CPU write

CPU eviction

CPU read

CPU read

CPU write

S

O

CPU read
read request

CPU write
write request

CPU write
write request

CPU eviction
writeback

CPU read

CPU eviction

CPU eviction
writebackE

CPU read
CPU write

CPU eviction

(a) processor events

M
send data

read request

I

read request

S

O

E

send data
read request

write request
send data

write request

write request

read request

write request
send data

send data
read request

send data
write request

(b) incoming messages

Figure 2.5: State transition diagram for the MOESI protocol.

copy and its value matches with the value in main memory. On a replacement,

the block does not have to be written back to main memory. A cache with

a block in exclusive state can write it (making a silent transition to modified

state) and read it (remaining in the exclusive state). Unlike the exclusive state

defined in the MESI model, the exclusive state in the MOESI model implies

ownership. Therefore, a cache with a block in that state has to serve both

read requests (transitioning to owned state) and write requests (transitioning

to invalid state) upon the block.

A block is in shared state when there exist several valid copies of the block

throughout the system. A cache with a block in shared state can only read it.

This state does not imply ownership. Therefore, it is not in charge of serving

requests.

A block is in invalid state when the cache does not have a valid copy of it.

The issue of a request will be required to be able to access the block.

2.3.5 Optimization for Migratory Sharing

Although the MOESI model is, in general, efficient, some researchers pro-

posed a modification to optimize it for migratory sharing patterns [37, 110].

Migratory sharing patterns are common in many multiprocessor workloads

and they result from data blocks that are read and written by many proces-

sors over time, but by only one processor at a time [119]. This pattern in

28 Chapter 2. Concepts and Background

CPU read*
read request

S

OMM

E

M

I
CPU eviction

CPU write

CPU eviction
writeback

CPU write

CPU read

CPU eviction

CPU eviction CPU read

CPU readCPU read

CPU
write

CPU write
write request

CPU eviction
writeback

CPU write
write request

CPU read*
read request

CPU write
write request

CPU eviction
writeback

CPU read*
read request

CPU read

(a) processor events

read request

S

O

write request

write request

read request

MM

E

M

I

read request write request
send datawrite request

send data

send data
read request

write request
send data

send data
read request

write request
send data

send data
read request

(b) incoming messages

Figure 2.6: State transition diagram for the MOESI protocol with the migra-

tory sharing optimization.

systems implementing the MOESI model would result into read-then-write

sequences, generating a read miss followed by a write miss. Thus, to target

this read-then-write pattern, we use in this dissertation an additional modified

migratory (MM) state, similarly to that proposed in [76]. This state signifies

the block has been previously modified by another processor (not by this) and

that the copy in main memory is stale. A cache in modified migratory state

silently transitions to M when it writes the block. Hence, if a workload con-

tained only these read-then-write patterns, the policy of always responding

with migratory data would perform well; however, this policy substantially

penalizes other sharing patterns (e.g., widely shared data). To find a balance,

we employ the heuristic of only sending migratory data when the responding

processor is in the modified state. In contrast, a cache block in the modified

migratory state behaves as a standard MOESI protocol.

Figure 2.6 shows the state transition diagram for the MOESI model with

the migratory sharing optimization. As shown, if a processor modifies a copy

in modified migratory state, it will transition silently to modified state. The

main difference with the standard MOESI model is that the transition from the

modified state when a read request is received is to the invalid state. Due to

the majority of applications has a migratory sharing pattern, this optimization

has been assumed by many protocols, such as those in [76, 84, 65].

2.4. Consistency Models 29

While some old processors used a subset of the MOESI states (for example,

IBM’s PowerPC 755 supports the MEI (Modified, Exclusive, Invalid) protocol

and the Intel IA-32 processor family supports the MESI protocol [1]), modern

processors use several variants of MOESI (such as Sun Ultrasparc’s MOESI

protocol and the AMD 64’s MOESI protocol).

2.4 Consistency Models

To write correct shared-memory programs, programmers need a precise no-

tion of how memory behaves with respect to read and write operations from

multiple processors. This formal specification of how the memory system will

behave is provided by a memory consistency model [87]. Consistency models

place restrictions on the values that can be returned by a read or a write ope-

ration in a shared-memory program. According to these restrictions, the most

relevant models are briefly described following.

Atomic Consistency. This is the strictest of all consistency models since

any read to a memory location X must return the value stored by the most

recent write operation to X.

Sequential Consistency. Sequential consistency is the most commonly as-

sumed memory consistency model. It is slightly weaker than atomic consis-

tency. It was first formally defined by Lamport as follows [66]: “A multi-

processor system is sequentially consistent if the result of any execution is the

same as if the operations of all the processors were executed in some sequential

order, and the operations of each individual processor appear in this sequence

in the order specified by its program”. The implication of this definition is all

processors must agree on the order of the operations.

Processor Consistency. In this model writes done by a single processor are

received by all other processors in the order in which they were issued, but

writes from different processors may be seen in a different order as long as

those writes are to different locations.

Weak Consistency. This model classifies memory operations into two cate-

gories: data operations and synchronization operations. Accesses to synchro-

nization variables are sequentially consistent. Accesses to a synchronization

variable are not allowed to be performed until all the previous writes have com-

30 Chapter 2. Concepts and Background

pleted everywhere. Furthermore, data accesses are not allowed to be performed

until all previous accesses to synchronization variables have been performed.

Release Consistency. Instead synchronization operations, release consis-

tency models consider locks on areas of memory. Locks are managed by

two operations: acquire and release. Before an access to a shared variable

is performed, all previous acquires must have completed successfully. Before

a release is allowed to be performed, all previous reads and writes must have

completed. The acquire and release accesses must be sequentially consistent.

2.5 Interconnection Networks

The goal of a multiprocessor interconnect is to provide low-cost, low-latency,

high-bandwidth, and reliable message delivery between processors and me-

mory modules. Although many factors influence on the achievement of such

goals, they mainly depend on the network topology, the routing technique,

and the switching technique. This section briefly highlights the design consid-

erations that are relevant to our proposals and describes two concrete inter-

connects that we use in our later evaluations. A more complete and detailed

discussion of interconnects can be found in a book dedicated to this subject

by Duato et al. [41].

2.5.1 Network Topology

The topology defines how system components (processors and memory mod-

ules) are interconnected. Topologies can be classified in several types. In

this dissertation we consider just two different types: direct and indirect net-

works. Direct (also known as point-to-point) networks consist of a set of

system components, each one being directly connected to a (usually small)

subset of other components in the network. Each component usually has a

switch (or router), which handles message communication among components.

Each switch has direct connections to the switch of its neighbors. Usually, two

neighboring components are connected by a pair of unidirectional channels in

opposite directions. Although the function of a switch can be performed by

the local processor, dedicated switches have been used in high-performance

multicomputers, allowing overlapped computation and communication within

2.5. Interconnection Networks 31

P P P P

P

P

PP

P

PP

P

PP

P

P

(a) Mesh interconnect

P

P

S S S

P

P

S S S

P

P

S S S

P

P

S S S

(b) MIN interconnect

Figure 2.7: Interconnection network topologies. In (a) boxes marked as “P”

represent highly-integrated nodes that include a processor, caches, memory

controller, coherence controllers, and a switch. In (b) boxes marked as “P” are

similar to those in (a), but they do not include the switch, which is represented

by boxes marked as “S”.

each node. As the number of nodes in the system increases, the total com-

munication bandwidth, memory bandwidth, and processing capability of the

system also increase. Thus, direct networks have been a popular intercon-

nection architecture for building large-scale parallel computers. Figure 2.7(a)

illustrates a mesh interconnect which is an example of direct network. One

interesting property of this topology is the simplicity of its routing.

In indirect (or switch-based) networks, the communication among system

components has to be performed through some switches. Each component

has a network adapter that connects to a network switch, which provides a

set of ports. Each port consists of one input and one output link. A set of

ports in each switch may be connected to processors, whereas the remaining

ports are connected to ports of other switches to provide connectivity among

the components. The interconnection pattern of those switches (switch fabric)

defines the network topology. A wide range of topologies has been proposed,

ranging from regular topologies used in multicomputers and shared-memory

multiprocessors to irregular topologies, commonly used in NOWs and PC clus-

ters. Single-switch crossbars and some hierarchical indirect interconnects use a

centralized root switch. Such interconnects are desirable because they provide

32 Chapter 2. Concepts and Background

ordering properties required for snooping protocols (which are described in the

next chapter). Figure 2.7(b) illustrates an example of indirect interconnect.

This interconnect is a perfect shuffle bidirectional multistage interconnection

network (MIN). It uses discrete switches, which are located in multiple stages.

Components are only connected to the first stage of switches. One of the key

advantages of MINs is that they allow to easily implement collective commu-

nications such as broadcast or multicast messages [36, 97].

2.5.2 Switching Techniques

The switching techniques establish when network switches are set to connect

each pair of nodes and they also determine how the information between com-

ponents is transferred. Several techniques have been proposed until now, being

the most known ones: circuit switching, packet switching, virtual cut-through

(VCT), and wormhole.

In circuit switching, before a source can transmit information to a desti-

nation, a physical path must be reserved. Once the path is reserved, all the

information transmitted by the source is delivered to the destination by fol-

lowing the reserved path. Only the source node will be able to use the reserved

path until it releases it. This technique is advantageous when messages are

infrequent and long, since the time required to set the path is considerable.

In packet switching (also known as store-and-forward), messages are par-

titioned and transmitted as packets. Each packet has a header which contains

routing and control information. Each packet is individually routed from

source to destination and is completely buffered at each intermediate switch

before being forwarded to the next switch. This technique is advantageous

when messages are short and frequent since many packets belonging to a mes-

sage can be transmitted simultaneously.

In virtual cut-through switching messages can be routed as soon as their

header is received. Thus, unlike packet switching, it is not necessary to wait

for the complete message to route it. Hence, the message advance is pipelined

through the network. However, if the message header blocks at a switch, the

complete message will be stored at the switch buffers. The main advantage of

this technique is that, in the absence of blocking, the latency of each packet

reduces considerably.

2.5. Interconnection Networks 33

Wormhole switching is similar to virtual cut-through switching. However,

unlike virtual cut-through, in wormhole messages remain in the network, main-

taining the possession of the network resources used when the message header

blocks. In this case, messages are broken up into flits (the unit in flow con-

trol). Buffers at switches can typically store a few flits, thereby reducing the

buffer requirements at each switch. As messages usually are too large to be

completely buffered within a switch, they can occupy buffers along several

switches.

The cited switching techniques usually assume that switch buffers are im-

plemented as FIFO queues. Therefore, when the packet placed at the head

of the buffer is blocked, no other packets can access the physical channel.

However, several virtual channels multiplexed across the physical channel can

be used to decouple buffer allocation from physical channel bandwidth. Each

virtual channel is implemented with an independently managed buffer. This

decoupling prevents a blocked packet from holding channel bandwidth idle. A

virtual network is a subset of channels that are used to route packets toward

a particular set of destinations. The channel sets corresponding to different

virtual networks are disjoint. Depending on the destination, each packet is

injected into a particular virtual network, where it is routed until it arrives at

its destination.

2.5.3 Routing Techniques

In order to efficiently route packets through a network, a routing algorithm

must be used. Routing algorithms can be deterministic or adaptive. In deter-

ministic routing the path followed between a given source-destination pair is

always the same. This is achieved by the switches providing only one routing

option (output port) for a packet. With adaptive routing several routing op-

tions may be provided by a switch to forward a packet. The selection of the

routing option is usually made based on the current status of the links. Thus,

with adaptive routing, packets can avoid congested areas in the network.

According to the number of destinations, routing algorithms can be classi-

fied into unicast routing, multicast routing, and broadcast routing algorithms.

The implementation of multicast and broadcast algorithms can be done by

splitting the multicast/broadcast message into several unicast messages, as

34 Chapter 2. Concepts and Background

many as number of destinations. However, this may be too inefficient. Alter-

natively, the interconnect can initiate a single message that fans out across

the interconnect.

A key issue in the design of routing algorithms is how to prevent dead-

lock. Deadlock occurs when no packet can advance toward its destination

because the requested network resources (buffers/channels) are not released

by the packets possessing them. In a deadlock situation, waiting packets are

involved into a cycle of resource dependencies1. Deadlocks can be avoided by

eliminating the cycles in the resource dependency graph. This can be achieved

by imposing some restrictions on routing, for example, imposing an ordering

in the allocation of the resources as in Dimension-Ordered Routing (DOR)

and Up*/Down* routing. DOR has been proposed for meshes and tori net-

works. This routing algorithm forwards every packet through one dimension

at a time, following an established order of dimensions. So, for example, in

a 2D mesh the algorithm is also known as XY routing because packets must

traverse first all the required channels in X dimension before traversing, if re-

quired, the channels in Y dimension. On the other hand, Up*/Down* routing

is based on an assingment of direction labels (“up” or “down”) to the links in

the network graph. Cyclic channel dependencies are avoided because a packet

is not allowed to traverse a link in the “up” direction after having traversed

one in the “down” direction. Some routing schemes may require the use of vir-

tual channels to remove cycles in the resource dependence graph. This would

be the case of the DOR algorithm when applied to tori.

1There exists a dependence from i to j if a packet possessing the resource i requests the

resource j.

Chapter 3

Cache Coherence Mechanisms

This chapter intends to give insight on the evolution of the cache coherence

protocols through the last years. Traditionally two different approaches to co-

herence have been used: snooping-based protocols (Section 3.1) and directory-

based protocols (Section 3.2). These approaches have antithetical benefits.

Thus, while snooping-based protocols obtain low-latency cache-to-cache misses

thanks to a direct communication among processors, directory-based proto-

cols can use scalable interconnection networks. Alternatively to these tradi-

tional approaches, other approaches have been proposed and they are briefly

described in Section 3.3. Section 3.4 describes in more detail a recently ap-

proach to coherence which is based on tokens. We focus on this approach

because it integrates the main advantages of traditional protocols and it is the

approach on which this dissertation is based. We conclude this chapter with

a brief summary (Section 3.5).

3.1 Snooping-based Protocols

A simple and elegant solution to cache coherence arises from the very nature of

buses. A bus is a single set of wires connecting several devices, each of which

can observe every message on the bus. When a processor issues a block to its

cache, the cache controller examines the state of that block and takes suitable

action, which may include sending a request to access memory. Coherence

is maintained by allowing all cache controllers to “snoop” (hence the name

35

36 Chapter 3. Cache Coherence Mechanisms

snooping protocol) on the bus and to monitor the requests [50]. A snooping

cache controller may take action if a message on the bus involves a memory

block of which it has a copy in its cache.

Snooping protocols exploit the nature of buses by directly implementing

the MOESI model (or a derived one). In these systems, cache controllers

begin the coherence process by arbitrating for the interconnect. Once granted

access to the interconnect, the cache controller can send a request. Each of the

other cache controllers snoops the interconnect and, if it holds a valid copy of

the requested block, its state changes according to the transitions defined by

the coherence model, supplying the data when necessary. Simultaneously, the

memory can determine if it should respond by either storing the state for each

block in the memory [46, 16] or by observing the responses generated by the

other cache controllers. Only after the requesting cache completes its request

another cache is allowed to initiate a new one.

The main advantage of snooping protocols is the low average miss latency,

especially for cache-to-cache misses. Since requests are sent directly to all

processors and memory modules in the system, the responders quickly know

they should respond. However, the main disadvantage of snooping protocols

is that the cache coherence overhead and the speed of shared buses limit the

bandwidth needed to broadcast messages to all processors. To improve this

aspect, many solutions have been proposed. For example, for more efficient

interconnect usage, the requesting processor may be allowed to release the

bus while waiting for a response [47]. Systems can also use multiple address-

interleaved buses [32] and separate address and data subnetworks to multiply

available bandwidth [32]. Even more aggressive systems avoid the electrical

limitations of shared-wire buses entirely and implement a virtual bus using

point-to-point links, dedicated switch chips, and distributed arbitration [32]

or, even, use optical interconnection networks [72]. Asynchronous caches [98]

are implemented by using a deeply pipelined memory system with parallel-

link interconnection and queues through which the memory and the processors

communicate. Timestamps snooping protocols [79] reduce the execution time

by broadcasting requests over indirect interconnection networks. Although

each of these enhancements add significant complexity, many snooping systems

use them to create high-bandwidth systems with dozens of processors (e.g.,

3.2. Directory-based Protocols 37

Sun’s UltraEnterprise servers [31, 33, 107]).

Some works point out that rings may be an attractive interconnect for cur-

rent multiprocessors because they can provide faster links than buses. Thus,

in [111] a family of adaptive forwarding and filtering snooping algorithms for

rings are proposed. However, other works claim that the ordered interconnects

such as buses or rings are not suitable and implement snooping on intercon-

nects that do not provide any ordering capability. To alleviate the damage

caused by the broadcast of requests in those interconnects, in [10] it is pro-

posed that the network itself can order the requests in a distributed manner,

creating a global order among them. Alternatively, in [44] it is proposed a

coherence protocol that relies on a virtually ordered network and, instead of

using broadcast messages, the use of multicast messages is proposed. Assu-

ming this last approach, in [56] a multicast router design to improve network

performance while reducing network activity is proposed.

Another problem of snooping protocols is that they are inefficient from the

point of view of power dissipation, as caches need to monitor (“snoop”) the

bus, send different signals, and to enforce data consistencies. This mean that

caches must be in active (non-sleep) mode, so that the requests can be prop-

erly received and acted upon, which entails a significant power consumption.

Recently, several authors have addressed this problem by, for example, invali-

dating the copies of some caches when they are sleeping [12]. Other works try

to reduce the power consumption of broadcast messages by predictions [21].

3.2 Directory-based Protocols

Directory protocols address the scalability and interconnection constrains of

snooping protocols at the expense of increasing the latency of cache-to-cache

misses. There are many systems that use protocols based on directory such

as the Stanford’s DASH [69, 70] and FLASH [64], MIT’s Alewife [8], SGI’s

Origin [67], the AlphaServer GS320 [49] and GS1280 [39], Sequent’s NUMA-Q

[73], Cray’s X1 [4], and Piranha [22].

To avoid the broadcast of requests, when a cache miss occurs, the request

is only sent to the home memory module of the requested block. Each me-

mory module contains a directory which encodes the state of the block and

38 Chapter 3. Cache Coherence Mechanisms

a superset of the processors that have a copy of it. Thus, when the memory

module receives the request, it can use the information stored in its direc-

tory to respond with the requested block and/or forward the request to other

processors.

In addition to tracking sharers, the directory also provides a per-block

ordering point to handle conflicting requests or eliminate various protocol

races. A protocol race can occur when multiple requests contend for the

same block at the same time. Since the directory observes all requests for

a given block, the order in which requests are processed by the directory

unambiguously determines the order in which these requests will occur in

the system. Many directory protocols delay subsequent requests for the same

block by queuing or negatively acknowledging (nacking) them while a previous

request for the same block is still being served. Only when the first request

has completed subsequent requests are allowed to proceed past the directory.

The performance of a directory protocol will depend on how often the requests

are delayed.

One important advantage of directory protocols is that they scale much

better than snooping protocols. This is perhaps its most discussed and studied

advantage. By only contacting those processors that might have copies of

a cache block (or a small number of additional processors when using an

approximate directory implementation), the traffic in the system grows linearly

with the number of processors. In contrast, the traffic generated by broadcast

messages grows quadratically. Combined with a scalable interconnect (one

whose bandwidth grows linearly to the number of processors), a directory

protocol allows a system to reach to hundreds or thousands of processors.

However, at large system sizes, two scalability bottlenecks arise. First, the

amount of directory state required becomes a major consideration. Second, if

the interconnect is not well designed, it will not scale. Both of these problems

have been studied extensively, and actual systems that support hundreds of

processors exist (e.g., the SGI Origin 2000 [67]).

The second and perhaps more important advantage of directory proto-

cols is the ability to exploit arbitrary point-to-point interconnects. In con-

trast, snooping protocols are restricted to systems with virtual bus intercon-

nects. Arbitrary point-to-point interconnects exhibit often high-bandwidth,

3.2. Directory-based Protocols 39

low-latency, and are able to easily exploit the levels of integration by includ-

ing the switch logic on the main processor chip.

Directory protocols have two primary disadvantages. First, the extra inter-

connect traversal and directory access is on the critical path of cache-to-cache

misses. On the contrary, memory-to-cache misses do not incur a penalty be-

cause the memory lookup is normally performed in parallel with the directory

lookup. In many systems, the directory lookup latency is similar to that of

main memory DRAM, and placing this lookup on the critical path of cache-

to-cache misses significantly increases cache-to-cache miss latency. While the

directory latency can be reduced by using fast SRAM to cache directory in-

formation, the extra latency due to the additional interconnect traversal is

more difficult to mitigate. These two latencies often combine to dramatically

increase cache-to-cache miss latency. With the prevalence of cache-to-cache

misses in many important commercial workloads, its higher-latency can sig-

nificantly impact system performance. These problems have been studied by

many authors. Thus, for example, some works propose the use of predictors

to reduce the latency of cache-to-cache misses [5] or to accelerate the upgrade

misses [6].

The second disadvantage of directory protocols involves the storage and

manipulation of directory state. This disadvantage was more pronounced on

earlier systems that used dedicated directory storage (SRAM or DRAM) which

added to the overall system cost. However, several recent directory protocols

have used the main system DRAM and reinterpretation of bits used for error

correction codes (ECC) to store directory state without additional storage

capacity overhead (e.g., the S3mp [92], Alpha 21364 [89], UltraSparc III [54],

and Piranha [22, 48]). Storing these bits in main memory does, however,

increase the memory traffic by increasing the number of memory reads and

writes [48]. In [7] a scalable directory architecture is presented to reduce the

size of the directory in medium/large systems without degrading performance.

To reduce the average memory latency and improve the performance scal-

ability of directory protocols, an in-network cache coherence protocol [42] has

been proposed, which moves the directories into the network.

40 Chapter 3. Cache Coherence Mechanisms

3.3 Non-traditional Protocols

Recently several protocols have appeared, but they are not easily classified as

either snooping or directory protocols (e.g. IBM’s Power5 [108] and xSeries

Summit [29] systems, and AMD’s Hammer [58]). These systems have a small

or moderate number of processors, use a tightly-coupled point-to-point inter-

connect, and broadcast all requests. Unfortunately, these systems are cur-

rently not well described in the academic literature.

In the Sun Fire 3800-6800 systems [34], both snoopy broadcast coherency

and point-to-point directory coherency are built. The snoopy part of the

protocol provides low memory latency for small and medium-sized systems.

The point-to-point part of the protocol allows very-large systems to be imple-

mented.

In [80] a hybrid protocol is proposed. This protocols behaves like snoop-

ing protocols when there is enough bandwidth and it behaves like directory

protocols when there is a lack of it.

In the Intel E8870 and E9870 chipsets the Scalability Port (SP) protocol

[19] is used. The SP protocol is an invalidation based protocol that uses an

MESI policy. It supports either a convectional directory based design or a

snoop-filter based design. The snoop filter is a centralized component that

tracks valid blocks or lines in caches. To maintain the track, it sends snoop

probes to caching nodes and collects the snoop responses. Thus, it can keep

the information about the state and presence of memory blocks at the caching

nodes. On a cache miss, a read/write request is sent to the snoop filter. This

component filters the request to remote nodes that do not contain a copy of

the block, but the ones that hold a valid copy will receive the request. Hence,

when the processor holding the requested memory block receives the request,

it will provide a valid copy through a different virtual network.

3.4 Token-based Protocols

Token-based protocols are proposed to simultaneously capture the best as-

pects of snooping protocols and directory protocols: low-latency cache-to-

cache misses and not reliance on totally-ordered interconnects. Token Co-

3.4. Token-based Protocols 41

herence [77] is a framework proposed to easily develop token-based cache co-

herence protocols. Token Coherence is composed of three components. The

token counting mechanism ensures data are read and written in a coherent

fashion. The persistent request mechanism solves protocol races and prevents

starvation. These two mechanisms form the correctness substrate which pro-

vides correct operation in all cases. However, to make the protocol fast and

bandwidth-efficient, a third component is used: the performance policy.

3.4.1 Token Counting

The system associates a fixed number of tokens with each block of shared

memory. A processor is only allowed to read a cache block when it holds

at least one of its tokens or write a cache block when holding all the block’s

tokens. This token-counting approach directly enforces the single-writer or

many-reader coherence invariant, thereby ensuring correct operation in all

cases. Note that, one of the primary benefits of token counting is that it

allows to ensure safety without relying on request ordering.

During system initialization, the system assigns each block a fixed num-

ber of tokens, T. The number of tokens for each block (T) is generally at

least as large as the number of processors. Tokens are tracked per block and

can be held in processor caches, memory modules, coherence messages, and

input/output devices. A coherence message is any message sent as part of

the coherence protocol. Initially, the block’s home memory module holds all

the block’s tokens. Tokens (and data) are allowed to move between system

components as long as the substrate maintains these four rules:

• Rule 1 - Conservation of tokens: At all times, each block has T

tokens in the system, one of which is the owner token.

• Rule 2 - Write rule: A processor can write a block only if it holds all

T tokens for that block.

• Rule 3 - Read rule: A processor can read a block only if it holds at

least one token for that block and has valid data.

• Rule 4 - Data transfer rule: If a coherence message contains the

owner token, it must contain data.

42 Chapter 3. Cache Coherence Mechanisms

Rule 1 ensures that tokens are never created or destroyed. Rules 2 and 3

ensure that a processor will not write a block while another processor is reading

it. Rule 4 ensures that the processor holding the owner token always has a

valid copy of the memory block. Besides, this rule allows coherence messages

with non-owner tokens to omit data, but it still requires that messages with

the owner token contain data (to prevent all processors from simultaneously

discarding data). These rules provide the following guarantee: each memory

block can have either a single writer or multiple readers (but not both at

the same time). Although this guarantee concerns only a single block and

consistency involves the ordering of read and writes to many blocks, it is

sufficient to enforce sequential consistency or any weaker consistency model.

Token possession maps directly to MOSI states: holding all T tokens is

modified (M); at least the owner token, owner (O); at most T - 1 tokens (but

not the owner token), shared (S); and no tokens, invalid (I). Processors and

memory modules maintain a valid bit, to hold non-owner tokens without valid

data. The valid bit is set when a message with data and at least one token

arrives and the valid bit is cleared when tokens are not longer held.

Tokens are held in processor caches, memory (e.g., encoded in ECC bits

[48]), and coherence messages. Since the protocol does not track which pro-

cessors hold tokens but only count them, tokens can be stored in 2 + log2T

bits (valid bit, owner-token bit, and non-owner token count). For example,

encoding 64 tokens with 64-byte blocks adds one byte of storage (1.6% over-

head).

3.4.2 Persistent Requests

It must be ensured that all attempts to read or write a block will eventua-

lly succeed, thereby preventing starvation. The flexibility provided by Token

Coherence is one of its key advantages, but this same flexibility is directly

responsible for complicating starvation prevention. To prevent starvation, the

correctness substrate uses a starvation prevention mechanism called Persis-

tent Requests. This mechanism must guarantee completion in all cases not

explicitly disallowed by the token counting rules. For example, tokens can be

delayed arbitrarily in transit, tokens can ping-pong back and forth between

processors, or many processors may wish to access the same block at the same

3.4. Token-based Protocols 43

time.

According to the persistent request mechanism, a processor issues a per-

sistent request when it detects it may be starving. The substrate arbitrates

among the outstanding persistent requests to determine the current active re-

quest for each block. The substrate sends the active persistent requests to

all system components. These components must both remember all active

persistent requests and redirect their tokens (those tokens currently present

and those to be received in the future) to the requesting processor until the

requester explicitly deactivates its own persistent request. The initiator de-

activates its requests when it has received sufficient tokens to perform the

intended memory operation.

Several design options of the persistent request mechanism have been pro-

posed. The simplest implementation uses a single centralized arbiter. Ac-

cording to it, when a starvation situation is detected, a persistent request is

directed to the arbiter. The arbiter stores all the received persistent requests

and activates a single one by informing all processors and the block’s home me-

mory module. These components each remember the active persistent request

using a hardware persistent request table. In this approach, each persistent

request table has a single entry with four fields: a valid bit, a physical ad-

dress, a read/write bit (to distinguish between read and write requests), and a

processor number. While a persistent request is active for a block, each com-

ponent must forward all the block’s tokens to its requester. The components

will also forward tokens that arrive later, because the request persists until

the requester explicitly deactivates it. Once the requester has (1) received

enough tokens to perform the memory operation, (2) received valid data, and

(3) observed the activation of its own persistent request, it sends a message

to the arbiter. The arbiter deactivates the persistent request by informing all

components, which delete the entry from their tables.

Although the single centralized arbiter is a correct implementation, the

arbiter may become a bottleneck in medium/large systems. Therefore, to

address this problem, a banked-arbitration approach was also proposed. In

this case, there may be several arbiters. Each arbiter is responsible for a

fixed portion of the global address space. The components each must have a

persistent request table that contains one entry per arbiter, which limits the

44 Chapter 3. Cache Coherence Mechanisms

number of active persistent requests per arbiter. Each table entry encodes the

same information as the previous single centralized arbiter.

Both single centralized arbitration and banked-arbitration approaches re-

quire that processors first send persistent requests to an arbiter. Like in direc-

tory protocols, the arbiters introduce indirection and increase the latency of

persistent requests. To avoid indirection, the distributed-arbitration approach

was proposed. Unlike previous proposals which limit the number of active re-

quests per arbiter, this approach relies on limiting the number of outstanding

requests per processor. In this case, the table at each node has as many entries

as the maximum number of simultaneous outstanding requests in the system.

When a processor detects possible starvation, it sends a persistent request

directly to all processors and the home memory module. Each component

records the received requests in its local persistent request table. This table

needs as many entries as the maximum number of processors in the system

(assuming one outstanding persistent request per processor) and each entry

contains an address, a read/write request type bit, a valid bit, a marked bit,

and a processor number1. Since the table can have multiple entries that con-

tain the same address, the entry for the processor with the lowest number is

appointed the active persistent request. Similar to previous approaches, all

components send tokens (and data) to the initiator of the active persistent re-

quest. When a processor completes its request, it sends a deactivation message

directly to all processors, which clears the corresponding entry in the table.

This deactivation implicitly activates the next persistent request (the request

with the next lowest processor number).

To prevent higher-priority processors from starving out lower-priority pro-

cessors, this approach uses a simple mechanism (inspired by techniques used to

enhance multiprocessors bus arbitration [118]) that prevents a higher-priority

processor from issuing a new persistent request for the block until all the lower

priority processors have completed their persistent requests. When a proces-

sor completes a persistent request, it sets a marked bit. A processor is not

allowed to invoke a persistent request for any block with a marked entry in

its table. The processor will eventually receive the deactivation messages for

all the marked entries, allowing the processor to issue a persistent request for

1If the table is indexed by processor number, the processor number can be omitted.

3.4. Token-based Protocols 45

that block.

The main advantages of the distributed-arbitration scheme are (1) the

latency lowers with respect to the arbiters implementations and (2) arbiters

are not required. On the other hand, the banked-arbitration option increases

the complexity, size, and access latency of the table and the fixed-priority

scheme may create load imbalance.

Both the arbiter-based and the distributed-arbitration mechanisms assume

that activation and deactivation messages are never reordered (the activation

message always has to be received before its corresponding deactivation one).

To get it, several options can be implemented: point-to-point ordering (de-

terministic routing instead of adaptive), explicit acknowledgments, or large

sequence numbers.

3.4.3 Performance Policy

Both the token counting mechanism and the starvation prevention mechanism

ensure correct operation in all cases. In order to make Token Coherence fast

the performance policy component is defined. The performance policy is the

set of specific policies the system uses to instruct the correctness substrate

to move tokens and data throughout the system. When it is not overridden

by a persistent request, the performance policy decides when and to which

processors the system should send coherence messages. Since the correctness

substrate guarantees safety and prevents starvation, Token Coherence allows

for many possible performance policies.

Initially three performance policies with different attributes were proposed:

TokenB (Token-Broadcast), TokenD (Token-Directory), and TokenM (a hy-

brid that uses predictive multicasting to create a low-latency and bandwidth-

efficient protocol). TokenB uses three policies:

• On a cache miss, a transient request is broadcast (i.e., sent to all pro-

cessors and the block’s home memory module).

• Processors and the home memory module respond to transient requests

as they would do in most MOESI protocols. A component with no

tokens (I state) ignores all requests. A component holding only non-

owner tokens (S state) ignores transient read requests, but responds to

46 Chapter 3. Cache Coherence Mechanisms

transient write requests by sending all its tokens in a data-less message.

A component with the owner token but not all other tokens (O state)

sends the data with one token (usually not the owner token) on a read

request, and it sends the data and all its tokens on a write request. A

component with all the tokens (M or E state) responds in the same way

as a component in O state.

• If a transient request has not completed after a timeout interval, the pro-

cessor invokes the persistent request mechanism. To adjust to different

interconnect topologies and congestion, the transient request timeout in-

terval is set to twice the processor’s average miss latency. Using twice the

average miss latency prevents a slightly delayed response from causing a

persistent request, but it also invokes the persistent request mechanism

quickly enough to avoid to damage performance.

The main advantage of TokenB is the low-latency thanks to the direct com-

munication among processors. However, TokenB is only suitable for moderate-

sized systems where bandwidth is plentiful due to the bandwidth requirements

of broadcast messages. To improve this aspect, TokenD performance policy

was proposed, which is an efficient directory-like protocol. According to the

TokenD performance policy, processors send transient requests to a directory

at the home memory module. This directory forwards the transient requests

to one or more processors that are likely to hold the requested tokens. Proces-

sors respond to these forwarded transient requests by using the same policy as

that described for TokenB. Like in TokenB, transient requests may also fail to

complete (e.g., when forwarded transient requests are reordered or a request

is forwarded to an insufficient set of processors). To handle the occasional

failure of transient requests, if after twice the processor’s average miss latency

the transient request does not complete, the persistent request mechanism is

invoked.

Although TokenD is bandwidth-efficient, the average latency of request

completion increases dramatically due to the indirection. Thus, to obtain

a protocol that provides both low-latency and bandwidth-efficiency, TokenM

was proposed. TokenM is a hybrid protocol that uses predictive multicast

to capture most of the latency benefits of TokenB, while capturing some of

3.5. Summary 47

the bandwidth efficiency of TokenD. In TokenM, when a processor issues a

request, it sends the transient request to a predicted destination set. Compo-

nents react to incoming transient requests in the same manner as TokenB and

TokenD, and when the recipients respond with sufficient tokens, the requester

completes its request without indirection and without broadcast. When the

predicted destination set is insufficient, a soft-state directory forwards the re-

quest to all processors that it believes the requester left out of the destination

set. Token Coherence uses a destination-set predictor to improve the band-

width/latency characteristics of the system. In the limit of perfect prediction,

TokenM provides a near-ideal bandwidth/latency design point, capturing both

the low-latency of TokenB and the bandwidth efficiency of TokenD. However,

when the prediction is not accurate, the latency of requests may considerably

increase. Like in previous proposals, when transient requests fail to complete,

the use of the persistent request mechanism is required.

There exist another implementation of Token Coherence [83] that assumes

a ring interconnect to simplify the protocol. Although they are correct, we do

not consider it because its applicability is limited just to systems with that

kind of interconnect.

3.5 Summary

In this chapter we briefly discussed many aspects of the general approaches to

coherence, showing their main advantages and disadvantages. Next chapters

describe the evaluation methodology and the proposals we make to solve the

worst aspects of the token-based protocols by (1) improving the performance

(Chapter 5 and Chapter 8), (2) using scalable structures (Chapter 6), and

(3) providing scalability to broadcast and non-silent invalidation messages

(Chapter 7).

48 Chapter 3. Cache Coherence Mechanisms

Chapter 4

Evaluation Methodology

This chapter presents the simulation tools (Section 4.1) used for evaluating

the goodness and the relative behavior of our proposals. Since our goal is

not to evaluate our proposals on all possible system configurations, we have

performed a relative accurate comparison between the different approaches by

using a simulation model of a current multiprocessor system, which is described

in Section 4.2. Finally, a description of the performance metrics used can be

found in Section 4.3.

4.1 Simulation Tools

We use full-system simulation to evaluate our proposals. Full-system sim-

ulation lets us to evaluate the proposed systems running realistic scientific

applications on top of actual operating systems. It also captures the subtle

timing effects not possible with trace-based evaluation.

To perform the analysis, we use the Simics full-system multiprocessor si-

mulator [74] extended with the Wisconsin GEMS simulation environment [81],

which in turn is extended with a multiprocessor interconnection network si-

mulator developed by the Parallel Architecture Group (GAP) [51]. Simics is

a system-level architectural simulator developed by Virtutech AB [3] that can

run unmodified commercial applications and operating systems. Simics only

provides an interface to support the memory hierarchy model provided by

GEMS. GEMS is a set of modules that extends Simics with timing fidelity. It

49

50 Chapter 4. Evaluation Methodology

OS / Applications

Simics

Ruby

Ruby interface

memory

cache
data in

Network simulator

interconnection network

operation

Network simulator interface

send
message

message
received

coherence
controllers

caches memory

Figure 4.1: A view of the interconnection between the several simulation tools

used.

consists of two primary modules (Ruby and Opal), but here we only use Ruby.

Ruby models memory hierarchies. However, due to the fact that its intercon-

nection network model was very limited and non-realistic, we extended it with

our own simulator, which provides detailed simulation of the interconnection

network.

4.1.1 Simics Simulator

Figure 4.1 depicts the overview of the simulation tools used. On the top,

we can find Simics. Simics is a full-system functional simulator that allows

to boot an unmodified operating system and to execute actual applications.

Simics models a simple in-order processor. Simics passes all the load and store

instructions and the instruction fetch requests to Ruby, which performs the

cache access to determine if the operation hits or misses. On a hit, Simics

continues executing instructions. On a miss, Ruby stalls Simics’ request from

the issuing processor, and then simulates the cache miss. Contention, latency

of messages, and other factors will determine when the request completes. By

4.1. Simulation Tools 51

controlling the timing of when Simics advances, Ruby determines the timing-

dependent functional simulation in Simics. Note that Ruby only interacts with

Simics to determine when Simics should execute an instruction, whereas the

result of the execution of the instructions is determined by Simics.

4.1.2 Ruby Module

Under Simics, we can find Ruby. Ruby is a module for modeling both protocol-

independent components (cache arrays, memory arrays, message buffers, and

assorted glue logic) and protocol-dependent components (cache controllers and

memory controllers).

Ruby uses a queue-driven event model to simulate timing. Cache and me-

mory controllers communicate using message buffers. When the next message

is available to be read from the buffer, the recipient is scheduled to wake up.

On a cache miss, Ruby generates the events required by the implemented

protocol to solve the miss. When an event implies an exchange of messages

through the network, the messages are stalled in the message buffers and they

are delivered to the network simulator, which will detailedly simulate their

transmissions. Once a message reaches the recipient component, a wake up is

scheduled.

4.1.3 Network Simulator

The network simulator is a detailed event-driven interconnection network si-

mulator used as a substrate to communicate between cache and memory con-

trollers. A controller communicates by sending messages to other controllers.

The network simulator models the timing of the messages as they traverse

the interconnect. It simulates the movement of packets on a per-flit basis,

assuming virtual cut-through switching technique. Switches are IQ (Input

Queued). Each physical channel is split into several virtual channels. The

routing algorithm can use whatever of those virtual channels. The transfer-

ence of flits inside a switch is performed by means of a crossbar. The crossbar

has as many inputs and outputs as physical channels. The queues associated

to the same physical channel access to the crossbar by a multiplexer. An input

of a multiplexer assigned to a packet will not be able to be assigned to another

52 Chapter 4. Evaluation Methodology

packet until the transmission of the first packet completes.

Although the network simulator simulates the packets flit per flit, actually

it does not simulate the transference of each individual flit. Like Ruby, it

has been optimized considering that the transmission of a packet through a

physical channel is not multiplexed. Besides, a packet is only routed when its

storage in the next switch is guaranteed. As a result, after routing a packet,

the simulator only takes into account the arrival of the header to the next

switch, the release of the buffer, and the release of the physical channel. All

these events happen after a fixed time once the packet has been successfully

routed.

We are considering pipelined channels, since the transmission of flits through

the virtual channels is segmented, that is, a flit can be transmitted without

having to wait for the previous flit to arrive.

The network simulator holds three variables which will determine the speed

of the interconnect (switches and links). Network link latency is the fly time

of links. Switch cross latency is the latency through the crossbar. Network

routing latency is the time required for a switch arbiter to route a packet.

Arbiters use a rotative priority to select the next message to route.

4.1.4 Interconnection between Simulators

The interface provided by the network simulator to connect to Ruby is mainly

made up of two functions: TransmitMessage and ProcessMessages. The func-

tion TransmitMessage indicates that certain system component wants to send

a message. The parameters of this function are composed of the source compo-

nent, the destination (or destinations) component, the message type, and the

message size. On the other hand, the function ProcessMessages indicates that

all the pending events previous to a certain cycle can be processed. This func-

tion has one input parameter (the current cycle) and two output parameters

(the messages that have reached at least one destination and the destinations

reached).

Ruby and the network simulator are attached in two different points. First,

when a cache or a memory controller have to send a message (a request or

a token response), the TransmitMessage is called. Thus, at that point, Ruby

indicates to the network simulator all the details of the message that is going

4.2. Simulated System 53

to be transmitted. While the network simulator simulates the movement of

messages throughout the system, the message is stalled in a queue. Once

the network simulator determines that a message has completely arrived at

its destination, the message is inserted in the destination queue and a wake

up is scheduled. Second, after Ruby processes all the events scheduled for

certain cycle and before continuing with the events of the subsequent cycle,

the function ProcessMessages is called. Thus, the network simulator processes

all the pending events up to that moment and schedules the wake ups for the

next cycle in Ruby (if any).

4.2 Simulated System

To evaluate our proposals, we simulate a multiprocessor server running sci-

entific applications in systems with different interconnects. We simulate a

4-processor, 8-processor, 16-processor, 32-processor, and 64-processor SPARC

v9 systems with highly integrated nodes that include split first level instruction

and data caches, unified second level cache, coherence protocol controllers, and

a memory controller for part of the globally shared memory. Processors are in-

order, single-issue processors. The systems implement sequential consistency

using invalidation-based cache coherence.

Table 4.1 lists the system parameters for both the memory system and

the interconnection network. The parameters related to the memory system

are similar to those selected in other works [25, 103, 122] that also simulate

shared-memory systems. The only significant difference with respect to the

parameters assumed in those works is the main memory latency. We have

assumed a latency much lower (80-cycle) than them, which is quite optimistic.

The reason to use such a latency is just to speed up the simulations because,

as we comment later, running Simics with Ruby and the network simulator

will slow down the execution by about 300x. Thus, by using this value, the

simulations can run slightly faster.

The simulated systems use an MOESI coherence protocol with the migra-

tory sharing optimization (Section 2.3.5). Coherence is maintained on memory

blocks. Unless otherwise specified, all request, acknowledgment, invalidation,

and data-less token messages are 8 bytes in size (including the 40 bit phys-

54 Chapter 4. Evaluation Methodology

Table 4.1: Simulation parameters.

processors in-order, single-issue SPARC v9

cache block size 64 bytes

physical address 40 bits

L1 cache 32 KB 4-way set associative split, 3-cycle

access latency

L2 cache 8 MB 4-way set associative unified, 6-cycle

access latency

coherence protocol MOESI with the migratory sharing

optimization, TokenB

main memory 4 GB, 80-cycle latency

memory controllers 6 cycles

network link latency 6 cycles

switch cross latency 1 cycle

network routing latency 4 cycles

interconnect interface 2 cycles

data-less messages 8 bytes (10 bytes if completed PR field)

data messages 72 bytes (74 bytes if completed PR field)

ical address and token count if needed). Data messages include this 8-byte

header and 64 bytes of data1. Messages do not include any extra bits used

by the interconnect to detect and correct bit errors. The underlying coher-

ence protocol that we use is a token-based cache coherence protocol developed

with Token Coherence based on the TokenB policy. For comparison pur-

pose, we assume the distributed-arbitration implementation of the persistent

request mechanism with point-to-point ordering and a fixed-priority scheme.

1Some of our proposals need to code additional information in the messages (2 bytes),

thereby increasing the message size slightly. These increments in size have been modeled in

the simulator.

4.2. Simulated System 55

We chose this configuration because, as shown in [78, 82], it is the most ef-

ficient approximation regardless of the system size. Although the banked-

arbiter implementation may be interesting in terms of storage requirements

of the starvation prevention mechanism at nodes, in terms of performance it

is worse than distributed-arbiters since it simultaneously captures the worst

aspects of the traditional protocols: persistent requests are sent first to the

arbiter (indirection) and, then, they are broadcast. Notice that, the arbiter

can not be understood as a directory because only the persistent requests are

sent through the arbiters (but not the transient requests) and, therefore, the

arbiters can not track memory blocks with total guarantee.

We use the two interconnects described in Section 2.5.1: an MIN intercon-

nect with the perfect shuffle permutation based on 4 x 4 switches and a 2D

mesh interconnection network. We selected these two interconnects because

they offer the view of two different examples of high-speed point-to-point in-

terconnects, one direct and another indirect. Messages are multiplexed over a

single shared interconnect using 3 virtual channels, each of which is used by a

different type of message:

• Virtual channel #0 (VC0). This VC is used to transmit response mes-

sages (token messages) and resending notifications. They are point-to-

point messages2. In the MIN interconnect, an adaptive routing algorithm

is used to route the messages transmitted through this VC, whereas in

a mesh interconnect, the XY routing algorithm is assumed.

• Virtual channel #1 (VC1). Transient requests are assigned to the VC1.

On an MIN, a broadcast adaptive routing algorithm is assumed. Given

that the transient request messages that we assume are broadcast-based,

the messages in this VC always have to reach the last stage of switches.

Therefore, they can adaptively go up and then they go deterministically

down for all the possible downlinks. On a mesh, a tree-based broadcast

is made, being the root of the tree the node which sent the message.

• Virtual channel #2 (VC2). This VC is only used to route persistent/priority

requests. On the one hand, since persistent requests require point-to-

2In Chapter 8 response messages are multicast messages, therefore the VC0 is dedicated

to multicast.

56 Chapter 4. Evaluation Methodology

point ordering (according to the implementation we assume throughout

the dissertation), the messages in this VC use a deterministic routing

algorithm with disjoint paths in order to provide better traffic balance.

On the other hand, in case of priority requests, this VC is used to im-

plement an ordered routing algorithm as described in detail in Section

5.2.

When a switch has several messages in different (physical) links that can

be routed at a certain time, a switch arbiter decides the next message to

route according to a round robin basis. In addition, since each link has several

virtual channels, the switch arbiter must also decide the next message to route

between the various messages in the VCs of a link. In this case, the arbiter is

based on a priority scheme: VC1 doubles the priority of VC0 and, in turn, VC2

doubles the priority of VC1. Thus, for example, if all the VCs of a link contain

enough messages, the switch will route 4 messages from VC2, 2 messages from

VC1, and 1 message from VC0.

Both interconnects use bandwidth-efficient tree-based multicast routing

[41] when delivering messages to multiple destinations. Thus, messages sent

to multiple destinations (such as broadcasts and multicasts) use traffic-efficient

multicast-based routing to fan out the messages to the various destinations as

described in many works [75, 94, 112, 117, 36]. The provided virtual channels

avoid routing deadlock and provide several virtual networks. Like many re-

cent systems [32, 67, 89, 116, 77], we assume that these interconnects provide

reliable message delivery.

4.3 Performance Metrics

In this dissertation, we evaluate the overall performance of our proposals by

measuring the time necessary to complete certain amount of work (runtime).

Notice that other works have used instructions-per-cycle (IPC) as a metric

to judge performance improvements instead of runtime. Nevertheless, IPC is

not a good metric for evaluating the coherence protocols and systems because

system timing effects of multiprocessor workloads can change the number of

instructions executed and, therefore, running the simulator for a fixed number

of instructions and measuring IPC is not guaranteed to reflect the performance

4.3. Performance Metrics 57

of the system [15]. This happens because the instruction path of multithread-

ing workloads running on multiple processors can vary substantially due to

the synchronization mechanisms used by the operative system.

We use the runtime of applications to conclude that “protocol A is X %

faster than protocol B” using the formula X = (runtime(B)/runtime(A) −
1.0)100. To avoid measuring thread forking we begin the measurement at the

start of the parallel phase. To this end, we initialize the system state using a

full-system checkpoint (to provide a well-define starting point) and simulate

the execution until the parallel phase is done. We record the number of cycles

needed to complete the parallel phase and we refer to this number of cycles as

application runtime.

In addition to reporting runtime, we measure and report the traffic in

following terms:

• Interconnect traffic (in packets) indicates the amount of controller band-

width required to handle outgoing messages.

• Endpoint traffic (in packets) indicates the amount of controller band-

width required to handle incoming messages.

• Link utilization (in cycles) indicates the amount of link bandwidth con-

sumed by messages as they traverse the interconnect.

• Starved requests (in packets) refers to the amount of misses that require

the use of the starvation prevention mechanism.

• Starvation control messages (in packets) indicates the amount of con-

troller bandwidth required to handle the outgoing messages related to

starvation control.

Finally, we measure and report the starvation latency (in terms of cycles)

which indicates the time required to solve a starvation situation. It includes the

elapsed time from a starved request is detected up to its requester completely

receives the requested tokens and data.

To address the variability in scientific applications, we adopt the approach

of simulating each design point multiple times with small, pseudo-random per-

turbations of request latencies [13, 14]. These perturbations cause alternative

58 Chapter 4. Evaluation Methodology

operating system scheduling paths in our deterministic simulations. For each

data point in our results, we present the average of multiple simulations. The

number of the simulations will vary between 15 and 25 points depending on

the variability. Besides, figures show the 95% confidence intervals for each

data.

4.4 Workload Descriptions

Our benchmarks consist of several applications from the SPLASH 2 suite [45].

We have not been able to simulate all the applications from the suite due

to their time requirements. The group of selected applications is composed of

Barnes, Cholesky, FFT, LU, Ocean, Radix, and Volrend. Following, we briefly

describe these applications. More complete descriptions are available at [45].

Barnes [106]. It implements the Barnes-Hut method to simulate the inter-

action of a system of bodies (galaxies or particles, for example) under the

influence of gravitational forces. Each body is modeled as a point mass and

exerts forces on all other bodies in the system. The simulation proceeds over

time-steps using the Barnes-Hut hierarchical N-body method. Each step com-

putes the net force on every body, updating the body’s position and other

attributes. The Barnes-Hut algorithm is based on a hierarchical octree repre-

sentation of space. The root of this tree represents a space cell containing all

bodies in the system. Leaves contain information on each body and internal

nodes represent space cells. Most of the time is spent in partial traversals of

the octree to compute the forces on individual bodies. The communication

patterns are dependent on the particle distribution and are quite unstruc-

tured. No attempt is made at intelligent distribution of body data in main

memory, since this is difficult at page granularity and not very important to

performance.

The main data structure in the application is the Barnes-Hut tree. Since

the tree changes every time-step, it is implemented in the program with two

arrays. Data locality is provided by exploiting physical locality in the prob-

lem domain: a partition should be spatially contiguous and, ideally, equally

sized in all directions. Such partitions minimize interprocessor communica-

4.4. Workload Descriptions 59

tion and maximize data reuse. The program uses either Costzones or ORB to

provide both load balancing and data locality. Barriers are used to maintain

dependences across some phases. ORB partitioning also uses some barriers

internally. Another type of synchronization used is mutual exclusion through

locks, which are used to protect global variables. Arrays of locks are used to

protect cells. Finally, event synchronization using regular variables as flags is

used when a cell has to wait for its children.

Cholesky [102]. It performs blocked sparse Cholesky Factorization on a sparse

matrix. That is, given a positive definite matrix A, the program finds a lower

triangular matrix L such that A = LLT . Cholesky factorization proceeds

in three steps: ordering, symbolic factorization, and numerical factorization.

The numerical factorization is very efficient, due to the use of supernodal

elimination techniques. Supernodes are sets of columns with nearly identical

non-zero structures, and a factor matrix will typically contain a number of

often very large supernodes. The primary data structure in this program

is the representation of the sparse matrix itself. The data sharing patterns

for each supernode are as follows. A supernode may be modified by several

processors before it is placed on the task queue. Once this happens, it is

read by a single processor and used to modify other supernodes. After it has

completed all its modifications to other supernodes, it is no longer referenced

by any processor.

The only interactions between processors occur when they attempt to de-

queue tasks from the global task queue and when they attempt to perform

a number of simultaneous supernodal modifications to the same destination

column. Both of these cases are handled with locks.

FFT [20]. It is a complex, one-dimensional version of the radix-
√

n “six-step”

FFT optimized to minimize interprocessor communication. The data set con-

sists of the n complex data points to be transformed, and another n complex

points referred to as the roots of unity. Both sets of data are organized as
√

n x
√

n matrices partitioned so that every processor is assigned a contiguous

set of rows which are allocated in its local memory. Communication occurs in

three matrix transpose steps, which require all-to-all interprocessor communi-

60 Chapter 4. Evaluation Methodology

cation. Every processor transposes a contiguous submatrix of
√

n/p x
√

n/p

from every other processor, and transposes one submatrix locally. The trans-

poses are blocked to exploit cache line reuse. To avoid memory hotspotting,

submatrices are communicated in a staggered fashion, with processor i first

transposing a submatrix from processor i+1, then one from processor i+2, etc.

LU [121]. It factors a dense matrix into the product of a lower triangular and

an upper triangular matrix. The dense n x n matrix A is divided into an N x

N array of B x B blocks (n = NB) to exploit temporal locality on submatrix

elements. To reduce communication, block ownership is assigned using a 2-D

scatter decomposition, with block being updated by the processors that own

them. The block size B is large enough to keep the cache miss rate low, and

small enough to maintain good load balance. Two different implementations

of LU have been used. In the implementation referred as LU1 elements within

a block are allocated non-contiguously. In the implementation referred as LU2

elements within a block are allocated contiguously. In both cases, to improve

spatial locality benefits, blocks are allocated locally to processors that own

them.

Ocean [120]. This application simulates large-scale ocean movements based

on eddy and boundary currents. A cuboidal ocean basin is simulated, using

a discretized quasi-geostrophic circulation model. Wind stress from atmo-

spheric effects provides the forcing function, and the impact of friction with

the ocean walls and floor is included. The simulation is performed for many

time-steps until the eddies and mean ocean flow attain a mutual balance. The

work done every time-step essentially involves setting up and solving a set

of spatial partial differential equations. The equations are set up and solved

on grids representing horizontal cross-sections of the ocean basin. Grids are

conceptually represented as 4-D arrays, which are partitioned into square-like

subgrids allocated contiguously and locally in the nodes that own them. The

parallel program uses a red-black Gauss-Seidel multigrid equation solver. The

principal data structures are two 4-D double precision floating point arrays.

Mutual exclusion, enforced with locks, is required in: (1) obtaining a pro-

cess identifier, (2) when every process accumulates its private sum, and (3)

4.4. Workload Descriptions 61

Table 4.2: Application parameters.

Application Parameters

Barnes 16384 particles

Cholesky Input file tk29.O

FFT 65536 complex data points

LU 512x512 matrix, block size of 16

Ocean 258x258 ocean

Radix 256K keys, radix of 1024

Volrend Input file head scaledown2

when processors communicate though a shared flag. Synchronization is also

needed to preserve dependences across grid computations which is accom-

plished by inserting barriers. Barriers are also used when a globally deter-

mined value is subsequently to be used by all processors.

Radix [24]. It implements an integer radix sort based on the method de-

scribed in [24]. The algorithm is iterative, performing one iteration for each

radix r digit of the keys. In each iteration, a processor passes over its as-

signed keys and generates a local histogram. The local histograms are then

accumulated into a global histogram. Finally, each processor uses the global

histogram to permute its keys into a new array for the next iteration. This

permutation step requires all-to-all communication. The permutation is in-

herently a sender-determined one, so keys are communicated through writes

rather than reads.

Volrend [91]. It renders a three-dimensional volume onto a two-dimensional

image plane using a ray casting technique. The volume is represented as a cube

of volume elements and an octree data structure is used to traverse the volume

quickly. The program renders several frames from changing viewpoints, and

early ray termination and adaptive pixel sampling are implemented, although

62 Chapter 4. Evaluation Methodology

adaptive pixel sampling is not used in this study. A ray is shot through each

pixel in every frame, but rays do not reflect. Instead, rays are sampled along

their linear paths using interpolation to compute the color for the correspond-

ing pixel. The main data structures are the volxels, octrees, and pixels. Data

accesses are input-dependent and irregular, and no attempt is made at intel-

ligent data distribution.

The parameters used for each application are shown in Table 4.2. In 64-

processor systems, we only run the Barnes, Cholesky, FFT, LU1, LU2, and

Radix applications because the simulation time of Ocean and Volrend in such

systems is extremely large. Depending on the protocol choice and configura-

tion, running Simics with Ruby with the network simulator will slow down by

about 300x, which makes the simulation of Ocean and Volrend difficult.

Chapter 5

The Priority Request

Mechanism

Starvation prevention mechanisms proposed up to now are too strict and inef-

ficient mainly due to two facts: (1) they always override the coherence model

(MOESI states) that efficiently handles memory blocks and tokens and (2)

they use explicit acknowledgments which increase both network traffic and the

protocol latency. In this chapter we propose an alternative mechanism that

prevents starvation in such natural and elegant way that (1) the coherence

model is not overridden and (2) explicit acknowledgments are not required.

5.1 Introduction

In token-based protocols, two different causes can prevent (transient) requests

from succeeding in resolving cache misses:

• Protocol Races. A protocol race can occur anytime multiple tran-

sient requests contend simultaneously for the same memory block. Since

transient requests are unordered messages, the order in which they are

received may be different for each component. As a result, all processors

do not unambiguously serve transient requests, causing some of them

do not succeed in getting the memory block and enough tokens. Figure

5.1(a) shows an example of a protocol race occurrence. In this example,

P1 and P2 each broadcast a transient write request to collect all tokens,

63

64 Chapter 5. The Priority Request Mechanism

P1 P2 P3P0

O, t=3

I, t=0

O, t=3 S, t=1

I, t=0

S, t=1

Write Req Write Req

(a) Protocol Race

P1 P2 P3P0

I, t=0

S, t=1 O, t=2

I, t=0

S, t=1

O, t=3

Write Req

delayed in

interconnect

(b) Tokens Unavailability

Figure 5.1: Examples of transient requests failing to get the requested tokens.

which are shared by P0 (O state) and P3 (S state). As transient re-

quests are unordered, P0 receives the requests in {P1,P2} order whereas

P3 receives them in {P2,P1} order. Therefore, P0 forwards its tokens

to P1 and P3 forwards them to P2. As a result, neither P1 nor P2 are

able to collect all the block’s tokens and, therefore, they can not modify

the block. If this situation is not resolved, it will lead to a starvation

situation.

• Tokens Unavailability. Another situation that can prevent transient

requests from completing is when they request tokens that, at that mo-

ment, are in transit. Transient requests are served as soon as they arrive.

If at their arrival a processor can not serve them because at that mo-

ment it does not hold any requested token, then the node discards the

transient request. Consequently, transient requests for memory blocks

being transmitted through the interconnect will not be able to be served,

thereby failing at collecting the necessary tokens. Figure 5.1(b) illus-

trates an example of token unavailability. P1 requests all tokens by a

transient write request. When it arrives at nodes, they forward all the

tokens held at that moment to the requester. However, since there is

one token in transit traveling from P2 to P3 when the transient request

is received, that token is not forwarded to the requester. Therefore, as

transient requests are not remembered, when the token in transit finally

arrives at P3, it does not forward it. As a result, P1 can not collect all

the block’s tokens, leading to a starvation situation.

5.1. Introduction 65

Transient requests can not prevent those situations from happening. There-

fore, when they occur, the system has to use a mechanism that resolves those

situations, thereby ensuring the completion of all cache misses. That mecha-

nism is known as the starvation prevention mechanism. In this chapter, we

propose a starvation prevention mechanism called priority requests which en-

sures that all attempts to read or write a block will eventually succeed by

resolving the aforementioned situations. Thus, when a processor detects that

one of its transient requests is involved in a starvation situation, it sends a

priority request. Unlike transient requests, priority requests are sure to suc-

ceed in resolving cache misses since (1) they can not generate protocol races

because they are ordered messages and (2) they are remembered in tables un-

til being sure about their completion which resolves the tokens unavailability

problem. Hence, since the two possible situations that can cause starvation

are solved by priority requests, they can ensure completion to all cache misses.

The general working scheme followed by processors is as follows:

1. When a processor detects possible starvation, it broadcasts a priority

request to all system components.

2. Priority requests are transmitted through ordered paths. As a result, all

priority requests are received in the same order.

3. At their arrival, components assign a global identifier or priority level

(this is why we refer to them as priority requests) and store both the

request and its identifier in a priority request table.

4. Components (processors and memory modules) holding tokens requested

by any of the stored priority requests (determined by the performance

policy) forward just those tokens to the requester with the highest pri-

ority that needs them.

5. If a component supplies all the requested tokens, it marks the served

priority request as completed. Next, if (1) its table contains one or more

not-completed priority requests and (2) it still holds tokens requested by

them, it proceeds to serve them until completing all of them or running

out of requested tokens.

66 Chapter 5. The Priority Request Mechanism

P0 P1 P2 P3

O, t=3

I, t=0

S, t=1

I, t=0

P Write Req P Write Req

Write

Write

(a) Avoiding Protocol Races

P0 P1 P2 P3

S, t=1

I, t=0

O, t=2

I, t=0

P Write Req

delayed in
interconnect

P1 Req
pending

Write

(b) Solving Tokens Unavailability

Figure 5.2: Resolving starvation situations by priority requests.

6. When the starved processor receives all the requested tokens, it performs

the memory operation and marks its priority request as completed. Next,

if its table contains not-completed priority requests and it holds any of

the tokens that they request, it proceeds to serve them.

Figure 5.2 shows how priority requests solve the two starvation situations

depicted in Figure 5.1. Figure 5.2(a) illustrates how priority requests avoid

generating protocol races thanks to all nodes receive them in the same order.

Therefore, since all components receive the priority requests in {P1,P2} order,

all components serve first the P1’s request and then the P2’s request. Figure

5.2(b) shows that, as priority requests are remembered until being completed,

although tokens are delayed in the interconnect, when they finally arrive at

their destinations, they will be forwarded to the processors that request them.

Next, we give more insight in all the details related to the priority request

mechanism.

5.2 Ordered Paths

Traditionally two different methods have been used to put requests in order:

totally-ordered interconnects and a centralized component that decides the

order. However, those methods have serious disadvantages. While totally-

ordered interconnects are not scalable, centralized components cause indirec-

tion. To achieve order for priority requests without trusting on those methods,

5.2. Ordered Paths 67

in this section we propose to use the routing algorithm. When required, the

routing algorithm can be used to ensure that a set of requests, in this case the

priority requests, will be received in the same order by all system components.

This routing algorithm can be used over any interconnect. Therefore, we do

not limit their applicability to any kind of interconnect. Besides, indirection is

avoided since there is no any centralized component that establishes the order.

To this end, the routing algorithm of priority requests aims at routing them

through ordered paths. We define an ordered path as a sequence of switches

such that from each of them there is at least one link to the next switch in the

sequence. The sequence must include all switches where system components

are connected to, since priority requests are broadcast messages. The first

switch in an ordered path is called the root switch. All messages that follow

the same ordered path will be received in the same order.

Routing through ordered paths is divided in two stages. In the first stage,

priority requests go from their senders to the root switch. Along this path,

priority requests are not delivered to the system components connected to the

switches they cross. In the second stage, priority requests go from the root

switch to all the switches that form part of the path. In this stage, priority

requests are delivered to the system components connected to the switches they

cross. Note that, unlike directories, this strategy does not introduce indirection

because the root switch does not consume nor process the priority requests.

Rather, the root switch is only used to route priority requests through it.

Thus, the single difference between the routing algorithms of transient and

priority requests is the use of use minimal or non-minimal paths.

Depending on the network topology, there may be several ways to define

an ordered path (at least, there will be one). In this dissertation, we consider

two different types of interconnects: a direct interconnection network using

a mesh topology and a multistage interconnection network (MIN) with the

perfect shuffle permutation. On a mesh interconnect, several algorithms can

be used to establish ordered paths. One option is to use Hamiltonian paths.

A Hamiltonian path is a sequence of switches and links which, from the root

switch, establishes a route that visits just one time all the switches in the

system. All priority requests traveling along the same Hamiltonian path will be

received in the same order by each node. Figure 5.3(a) illustrates an example

68 Chapter 5. The Priority Request Mechanism

P0 P1 P2

P5P4P3

P8P7P6

(a) Hamiltonian Path

P0 P1

P5P4P3

P8P7P6

P2

(b) Tree in Mesh

P1

P2

P3

P4

P5

P6

P7

P0
S0 S4

S1 S5 S9

S2 S6 S10

S3 S7 S11

S8

(c) Tree in MIN

Figure 5.3: Example of ordered paths in interconnection networks with differ-

ent topologies. The nodes or switches in dark represent the root.

of a Hamiltonian path in a mesh. The switch in gray (P0) represents the root

switch and the arrows indicate the path to reach all the system nodes.

Although Hamiltonian paths successfully ensure a global order, they present

a clear disadvantage: nodes are visited one by one. Whereas in small systems

this will not be a serious problem, in medium/large systems it will be too

inefficient. Alternatively, there exist other more efficient algorithms to define

ordered paths in a mesh, such as spanning trees. A spanning tree is a graph

in which any two switches are connected by exactly one path. The spanning

tree includes all the switches in the network, but it can not contain any cy-

cle. Unlike Hamiltonian paths, spanning trees make an excellent use of the

network bandwidth and they are scalable. Figure 5.3(b) shows an example of

a spanning tree in a mesh. In this case, P4 is the root. Like in Hamiltonian

paths, priority requests go from their issuer to the root switch and, from there,

they are delivered to all nodes by following the spanning tree indicated by the

arrows. As you can observe, in this case, the ordered path is much shorter

than the Hamiltonian path. Whereas in the Hamiltonian path the average

number of hops to reach all the system nodes is 4 (the maximum is 8), in the

spanning tree the average number of hops is 1.33 (the maximum is 2).

The ordered paths in MINs do not require to include all the network

switches, since system components are only connected to the switches in the

first stage. Taking into account that from whatever switch of the last stage

all system components can be reached, the root switch of the ordered path

5.3. Priority Request Table 69

must be chosen among those belonging to the last stage. The ordered path

will consist of all the switches that can be reached using the downlinks (links

connected a switch of a lower stage). Note that this routing algorithm is an

extension of the up/down routing algorithm [104] commonly used in MINs.

Figure 5.3(c) shows an example of an ordered path in an MIN interconnect.

In this case, the root is the S8 switch. Following all the downlinks from the

root, all the system components can be reached.

Since the routing algorithm used by priority requests may differ from that

used by another kind of messages, they may require a dedicated virtual chan-

nel to ensure a deadlock-free routing scheme. Thus, for example, the routing

algorithm for Hamiltonian paths differs a lot from the XY routing [114] com-

monly used in mesh networks. Therefore, in that specific case, priority requests

would require a dedicated virtual channel. On the contrary, the routing algo-

rithms for spanning trees in meshes or in MINs do not differ from that used

for non-priority requests. Rather, the routing algorithm is the same, being the

only difference the use of minimal or non-minimal paths. Therefore, in those

cases, an additional virtual channel would not be required.

5.3 Priority Request Table

By putting priority requests in order, the problem of protocol races is resolved.

However, that does not resolve the token unavailability problem. To solve it,

priority requests are remembered in tables, at least, until being sure about

their completion. Thus, if a priority request can not be served at its arrival

because the tokens that it requests are in transit, the priority request will

be remembered. When the transmission of the tokens in transit finishes, the

recipient will realize that there is a pending priority request that needs those

tokens and it will forward them. To implement this strategy, like in the per-

sistent request mechanism, each system component has a priority request table

where priority requests are stored at their arrival. Once they complete, they

can be removed from the tables.

Each table entry stores the information about a certain priority request.

Specifically, each entry consists of the following fields:

• Valid. It is a bit that indicates whether the entry is valid or not.

70 Chapter 5. The Priority Request Mechanism

• Issuer. It is the issuer’s identifier (processor number).

• Address. It is the physical address of the requested memory block.

• Identifier. It is the priority level (arrival order) of the priority request.

The arrival order can be used to unequivocally identify it.

• Operation. It distinguishes between read or write requests.

• State. It indicates if the priority request is completed or pending.

When a component receives a priority request, it stores the required in-

formation in its table: the processor requester is inserted in the Issuer field,

the requested memory block address is inserted in Address, the arrival order

is stored in Identifier, the Operation bit is set according to the request type

(read or write), the State field is set to pending, and the Valid bit is set to 1.

In order to the mechanism works perfectly, all the received priority re-

quests must be able to be stored in the tables. Since a lot of priority requests

can be sent and tables of infinite size can not be used, we rely on limiting the

maximum number of simultaneous outstanding priority requests per processor

(like the distributed-arbitration implementation of persistent requests). By

limiting the number of outstanding priority requests per processor, for exam-

ple, to one, each table will have as many entries as the maximum number of

processors in the system. Assuming, for example, a system with 64 processors,

the size of each table entry would be approximately 10 bytes. Therefore, in

that case, each system component would require a 640 bytes table.

Assuming just one outstanding priority request per processor, each table

entry corresponds to exactly one processor and, therefore, the table entries

do not need to explicitly encode the number of the processor that issued the

request, as the processor number becomes the index for the table. Since this

table can have multiple entries that contain the same address, the entry for

the request with the lowest value in the Identifier field and marked as pending

corresponds to the request with the highest priority.

5.4. Priority Request Identifier 71

= oldest_priority

if diff >

return

MAX_COUNT/

diff <= MAX_COUNT

else if

return diff <= −MAX_COUNT

else

return diff <= 0

pause

diff <= −MAX_COUNT/

2

2

−new_priority

boolean (new_priority, oldest_priority)

diff

Figure 5.4: Algorithm for determining when a recipient should pause the gen-

eration of new priority requests. If the pause() function returns true, the

recipient postpones the sending of new priority requests until receiving an

acknowledgment indicating that it can continue. In the pseudo-code above,

new priority is the identifier assigned to the incoming priority request, old-

est priority is the identifier of the oldest priority request, and MAX COUNT

is the maximum identifier allowed.

5.4 Priority Request Identifier

System components assign each received priority request a priority level, which

will be used to (1) unequivocally identify it and (2) know the order in which

priority requests must be served. Since this identifier is related to the arrival

order, the lower the request identifier is, the higher priority the request has. To

determine the identifier, each system component uses a local counter. Initially,

the counter is set to 0. When a new priority request is received, the value of

the counter at that moment is assigned to it (by storing it in the Identifier

field of the table) and the counter is increased in 1. Since all priority requests

are received in the same order, all system components will assign the same

value to each request.

The sequence numbers provided by the counters are large enough, in prac-

tice, so that priority requests always have unambiguous identifiers. Thus, by

using a 2-byte counter, the identifier space would wrap around every 65536

priority requests. Therefore, once a priority request is received, it should be

72 Chapter 5. The Priority Request Mechanism

completed and removed from the tables before finalizing the completion of the

subsequent 65535 priority requests. Otherwise, two different priority requests

could be assigned the same identifier, leading to an error. Taking into account

that priority requests are completed in order, that situation is very unlikely

to happen. However, if a priority request took that long to complete and be

removed from the tables, the processors should temporarily pause the genera-

tion of new priority requests until the delayed one was completed and removed

from the tables. To determine when a processor must postpone the sending

of a new priority request and to correctly handle the identifier wrap-around,

system components use an algorithm based upon algorithms for handling fi-

nite sequence numbers in retransmission schemes. This algorithm is given in

Figure 5.4. When a processor receives a priority request and the pause() func-

tion returns true, it will postpone the sending of new priority requests (if any)

until receiving an explicit acknowledgment that informs about the completion

and removal of the delayed request. To this end, the processor that issued

the delayed priority request will broadcast an acknowledgment which will re-

move from the tables the delayed priority request. After that, the mechanism

continues working normally.

We want to point out that, although that situation could happen, it would

be very unlikely. In fact, we have never detected such a situation to happen in

any of the simulations performed in the dissertation or the published papers.

5.5 Removing Completed Priority Requests

According to the persistent request mechanism, when a persistent request is

completed, its issuer broadcasts an acknowledgment (or deactivation message)

to remove that request from all nodes’ tables. These acknowledgments are

broadcast messages. Therefore, their use significantly increases the network

traffic and slows down the starvation prevention process. To avoid such dis-

advantages, the priority request mechanism does not use explicit acknowledg-

ments to remove priority requests from tables1. However, if priority requests

are not removed, the storage of a new received request could cause tables to

1Only in the exceptional and unlikely case commented in the previous section an explicit

acknowledgment would be required.

5.5. Removing Completed Priority Requests 73

type

2 bits

size

1 byte

requester

1 byte

address

4 bytes

completed PR

2 bytes1 bit

operationdestination

1 byte

Figure 5.5: Format of priority request messages.

overflow. To avoid it, our mechanism implements a simple strategy that en-

sures that all priority requests will be able to be stored without overflowing

tables. This strategy takes advantage of the limitation in the maximum num-

ber of simultaneous outstanding priority requests per processor. According to

this limit, each processor has a fixed number of entries associated to it in each

table where its priority requests will be stored. When the limit is one priority

request per processor, each processor will have just one associated entry in

each table. Therefore, in that specific case, the strategy to store priority re-

quests is straightforward, since each priority request can only be placed in the

entry associated to its issuer. However, when the limit is two or more priority

requests per processor, each processor has more than one associated entry. As

a consequence, the issuer needs to decide in which of all its associated entries

its priority request will be stored, since a priority request only can be replaced

when it completes. To this end, the header of the priority request messages

themselves includes a field in which the sender indicates which of all its pri-

ority requests has already been completed and, therefore, can be replaced.

We will refer to this field as the completed PR field. The format of priority

requests is shown in Figure 5.5. The format is similar to that of persistent

requests assumed in other works [76]. The single difference is the presence of

the completed PR field. Destination stands for the home memory module of

the requested memory block. The type field is used to code the message type:

0 for responses, 1 for transient requests, and 2 for persistent/priority requests.

The other fields are defined as in [76].

To suitably set the completed PR field, before broadcasting a priority re-

quest, the sender looks in its table for a valid entry that contains a priority

request issued by itself and marked as completed. Notice that once a priority

request has been completed (the issuer always knows its completed requests),

it is not necessary to maintain such information in the table and, therefore, its

occupied table entry can be removed or replaced. Thus, the issuer includes the

74 Chapter 5. The Priority Request Mechanism

P0 P1

Valid Issuer Op StateAddress Id

Ok P0 0x600 7 Read Pend

Ok P1 0x400 6 Read Pend

Valid Issuer Op StateAddress Id

Ok P0 0x600 7 Read Pend

Ok P1 0x400 6 Read Pend

Valid Issuer Op StateAddress Id

Ok P0 0x400 5 Read Comp

Ok P1 0x400 6 Read Pend

Valid Issuer Op StateAddress Id

Ok P0 0x400 5 Read Pend

Ok P1 0x400 6 Read Pend

P0 0x600 Read completed PR 5

Priority Request

Figure 5.6: Example of attached information in priority request messages.

Identifier field of that entry in the completed PR field of the priority request

that is going to send and the table entry is marked as invalid. The issuer will

always find such information because of the imposed limit in the number of

outstanding request allowed. This limit ensures that, if a processor reaches

the limit, it will not be able to send a new priority request until one of the

previous ones has been completed.

When system components receive a priority request, they look in their

tables for an entry whose Identifier field matches the completed PR field of the

received request. Once it is found, they replace that entry with the information

about the received priority request.

Figure 5.6 shows an example of how this mechanism works. We assume

a system with 2 processors and only one outstanding priority request per

processor (which indicates that a processor is not able to broadcast a priority

request until completing its prior priority request). Each system component

(in the figure we only show the processors to simplify the example) holds a

priority request table with two entries (one entry per processor). Initially,

tables are full. Now, let us assume that P0 broadcasts a priority read request.

In its header, it indicates the priority request to replace in the tables. To

this end, before sending it, P0 looks in its table for a valid priority request

issued by itself that it is marked as completed. It finds that its priority request

with identifier 5 has already been completed, proceeding to include such an

5.6. Avoiding Serving Completed Priority Requests 75

identifier in the completed PR field. When system components receive the

P0’s priority request, they look in their tables for an entry holding a priority

request with the identifier indicated by the completed PR field and replace

that entry with the information about the new received priority request.

Note that when a processor is composing a priority request and it finds

the information required for the completed PR field, the table entry holding

such information must be marked as invalid. This is done to prevent such an

identifier from being included in another priority request issued by the local

processor, which would cause the mechanism to fail.

5.6 Avoiding Serving Completed Priority Requests

The acknowledgments (or deactivation messages) sent by the persistent request

mechanism not only are used to remove persistent requests from tables, but

they also inform about the completion of persistent requests, which avoids

serving again the completed persistent requests. Since the priority request

mechanism is not based on explicit acknowledgments, a strategy must be used

to avoid serving again the priority requests that have already been completed.

Let us analyze separately the situations for a priority read request and for

a priority write request. When a priority read request is broadcast, only the

owner processor2 will be in charge of serving it. Thus, when that processor

receives the request, it is stored in the table and served it by sending a data

response (a copy of the requested memory block and one token) to the re-

quester, next marking it as completed. The rest of processors (different from

the owner) will keep their tokens and will not need to serve it. Therefore, they

will not need to know about the completion of the priority read requests, as

they can keep their tokens. Nevertheless, if any of those processors becomes

in the future the owner, it will need to know at that moment about the

completed priority read request (to avoid serving it again). To this end, when

the owner processor forwards the owner token to another component, it will

indicate in such a message the priority requests that have already been com-

pletely served. In that way, when the recipient receives the owner token, it

will realize of the priority requests that do not need to be served.

2We refer to the owner processor as the processor holding the owner token.

76 Chapter 5. The Priority Request Mechanism

On the other hand, when a priority write request is broadcast, all the

processors holding tokens will be in charge of serving it. Therefore, all of

them send their tokens and, when the requester has received all of them, it

will mark its priority request as completed. Unlike in the previous case, only

the issuer of a priority write request will be sure about its completion. The rest

of processors may know it or may not. Note that, since the issuer of a write

request must receive all the block’s tokens, it will become the owner processor

and, therefore, it will be in charge of serving the requests that arrive later.

Since the rest of processors may not know anything about the completion of

the priority write request, the owner processor (that is, the issuer of the write

request) should inform about it each time it sends a token to another processor.

Otherwise, a processor receiving a token could serve again the priority write

request whose its completion has not been informed about.

From the analysis of those two situations, we conclude that, to avoid serv-

ing again the completed priority requests, all the responder processors should

indicate in the responses the priority requests that have already been com-

pletely served. To this end, the header of response messages includes a field

(completed PR) that indicate the completed priority requests. To appropri-

ately set the value of that field, before sending a response, the responder looks

in its table for the priority request (belonging to the same memory block as the

token/s included in the response) marked as completed and with the highest

identifier. That priority request will be the last stored request at being com-

pleted and its identifier will be included in the completed PR field of responses.

Taking into account that priority requests are completely served in order, it

is sure that all the priority requests previous to that indicated by completed

PR have already been completed too. Therefore, completed PR does not only

indicate one completed request, since it also indicates that all the previous

ones have already been completed too. Thus, when a component receives a

response message, it will know that all the priority requests with an identifier

lower or equal to that indicated by completed PR have already been completely

served. Hence, on a response reception, processors first update their tables by

marking as completed all the priority requests indicated by completed PR,

then consume the tokens, and finally forward them to the pending priority

requests (if any). This ensures that each priority request will be served just

5.6. Avoiding Serving Completed Priority Requests 77

P0 P1 Mem

I state, t=0

StateOpIdIssuer

P0

P1 1

0 Rd

Wr

Pend

Pend

S state, t=1

StateOpIdIssuer

P0

P1 1

0 Rd

Wr

Pend

Pend

StateOpIdIssuer

P0

P1 1

0 Rd

Wr

Comp

Pend

data + owner

Response to P1

comp PR 0 data + owner

O state, t=1

StateOpIdIssuer

P0

P1 1

0 Rd

Wr

Comp

Pend

Eviction

comp PR 1 data + owner

M state, t=2

StateOpIdIssuer

P0

P1 1

0 Rd

Wr

Comp

Comp

I state, t=0

StateOpIdIssuer

P0

P1 1

0 Rd

Wr

Comp

Comp

I state, t=0

StateOpIdIssuer

P0

P1 1

0 Rd

Wr

Comp

Pend

M state, t=2

StateOpIdIssuer

P0

P1 1

0 Rd

Wr

Comp

Comp

comp PR 0

0

1

2

3

Time

Figure 5.7: Example of completed PR field in data responses.

once in spite of not using explicit acknowledgments.

Figure 5.7 shows an example of how this mechanism works. In this ex-

ample, the system is made up of two processors (P0 and P1) and a memory

module (Mem). Initially, P0 is in O state, since it holds the Owner token;

P1 is in S state, as it holds one no Owner token. Finally, Mem is in I state,

since it does not hold any token. As shown in P0’s table, it issued a priority

read request that is already completed. However, P1’s priority write request

is still pending. Since P0 is in charge of serving it and its table does not hold

any pending request with a higher priority, it forwards all its tokens to P1. In

78 Chapter 5. The Priority Request Mechanism

0 6553520000 45535identifiers

LR_PRLC_PR

assigned

completed PR

(a)

0 65535

LC_PR

45535

completed PR
LR_PR

20000identifiers
assigned

(b)

Figure 5.8: Managing the wrap-around when the completed priority requests

are updated. LC PR stands for the identifier assigned to the Last Completed

Priority Request, whereas LR PR stands for the identifier assigned to the Last

Received Priority Request.

the completed PR field of the response message, P0 indicates that its priority

request with identifier 0 is already completed. When P1 receives the response

message, it uses the information in completed PR to update its table, thereby

marking as completed all the priority requests with an identifier equal to or

lower than that received in completed PR. Hence, P1 marks the P0’s request

as completed. Note that if P0 had not included such information, when P1

had received the response, it would have thought that the P0’s request was

pending and, since it has higher priority than its own request, it would have

unnecessarily served it again. Once P1 updates its table, it realizes that its

own priority request is the one with the highest priority. Since it has received

all the tokens that it requires, it performs the write and marks its request as

completed. Later, P1 sends its tokens and the data back to memory due to an

eviction. In that response message, P1 indicates that its priority request with

identifier 1 is completed. Therefore, when Mem receives the response mes-

sage, it realizes that the priority request with identifier 1 and all the previous

ones are completed, updating its table accordingly. After the updating, since

the Mem’s table does not contain any pending request, the memory keeps the

tokens and an updated copy of the data.

Figure 5.8 shows how the wrap-around is managed to correctly update the

state of priority requests by using the completed PR field of responses. Thus,

if LC PR < LR PR (Figure 5.8(a)), all the priority requests with an identi-

fier lower than completed PR will be marked as completed. When LC PR >

LR PR and completedPR > LC PR, all the priority requests with an identi-

fier higher than LC PR and lower (or equal) than completed PR are marked as

5.7. Coding Identifiers in Messages 79

completed. Finally, if LC PR > LR PR and completedPR < LR PR (Figure

5.8(b)), all the priority requests with an identifier lower than completed PR

and all the priority requests with an identifier higher than LC PR are marked

as completed.

5.7 Coding Identifiers in Messages

The completed PR field adds an overhead to response messages. On the one

hand, the overhead for data messages is low because the identifier coded in

completed PR is much smaller than data blocks. As a result, the size of data

messages increases in less than 3%. On the other hand, the data-less token

messages are significantly smaller than messages that carry data. Therefore,

the overhead of encoding the completed PR field is also larger. For our systems

assumptions, data-less token messages are eight bytes in size. By increasing

in two bytes the size results in 25% overhead. Fortunately, data-less token

messages are usually used together with a data message (probably sent by

another node). Therefore, when data-less token messages are paired with

data messages, the amortized overhead is approximately 6%.

To alleviate the overheads caused by the inclusion of the completed PR

field in response messages, following we propose several options.

The first alternative is that all the response messages contain the completed

PR field. This is the safest alternative since it is sure that the components

will always receive updated information together with the tokens. However, it

is the alternative that causes the largest overhead, since all responses include

the completed PR field.

Another alternative is that only the data messages contain the completed

PR field. Thus, the overhead caused by the inclusion of the completed PR

field in responses is smaller. Although this is a correct solution and the star-

vation prevention is not at risk, some scenarios may cause the generation of

unnecessary data-less responses, thereby increasing the network traffic. This

happens when a component receives a data-less response and its table contains

a priority request that has already been completed but whose completion it is

not aware of.

Figure 5.9 shows an example where such a situation happens. Initially,

80 Chapter 5. The Priority Request Mechanism

P0 P1 P2

I state, t=0I state, t=0M state, t=3

StateOpIdIssuer

P0

P1 1

0 Wr

Rd

Comp

Pend

P2 2 Wr Pend

StateOpIdIssuer

P0

P1 1

0 Wr

Rd

Pend

Pend

P2 2 Wr Pend

1

S state, t=1

2

Response to P1

comp PR 0 data + token

Response to P2

comp PR 1 data + tokens

Response to P2

token

I state, t=0 I state, t=0

StateOpIdIssuer

P0

P1 1

0 Wr

Rd

Pend

Pend

P2 2 Wr Pend

StateOpIdIssuer

P0

P1 1

0 Wr

Rd

Comp

Comp

P2 2 Wr Pend

M state, t=3

O state, t=2

StateOpIdIssuer

P0

P1 1

0 Wr

Rd

Comp

Comp

P2 2 Wr Pend

6

5

4

3

P2 2 Wr Comp

0

StateOpIdIssuer

P0

P1 1

0 Wr

Rd

Comp

Comp

P2 2 Wr Pend

O state, t=2

Time

Figure 5.9: Example of unnecessary data-less responses.

there are three processors and each one has sent a priority request. P0’s pri-

ority request has just been completed because it has received all the requested

tokens and, therefore, its priority request is marked as completed in its table.

Since its request is completed and the highest priority request that is pending

is the P1’s read request, at time 0 P0 serves the P1’s request by sending it a re-

sponse. The response includes the data, one token, and the completed PR field

set to 0. Since P0 completely serves the P1’s request, it marks that request

5.7. Coding Identifiers in Messages 81

as completed and proceeds to serve the next pending request, that is, P2’s

request. Therefore, P0 sends to P2 a response which includes all its tokens

(because it is a write request), the data block, and the completed PR field set

to 1. In this case, P0 does not marks the P2’s request as completed because

it has not been able to sent all the requested tokens. At time 1, P1 receives

the P0’s response. First, it updates its table by marking the P0’s request as

completed (thanks to the completed PR field) and then it processes the data

and tokens, marking its request as completed too. Now, the pending request

with the highest priority in the P1’s table is the P2’s request. Therefore, P1

sends all its tokens to P2. Since it sends a data-less response, it does not

include the completed PR field. Due to network congestion, we suppose that

P2 receives first the P1’s response and later the P0’s response. However, when

P2 receives the P1’s response at time 3, P2 is not aware of the P0’s request

completion. Besides, since the P1’s response does not indicate anything about

it, at time 3, when P2 receives the P1’s response, it bounces it to the issuer

of the pending request with the highest priority that, according to P2’s table,

is P0. At time 4, P2 receives the P1’s response. Thanks to the completed PR

fields it realizes that P0’s and P1’s requests have already been completed and

marks them in its table. When P0 receives the bounced P2’s response at time

5, it bounces it again to the processor with the highest priority (according to

its table), that it, to P2. At time 6, when P2 receives the response, it holds all

the block’s tokens and performs the memory operation, marking its request

as completed. As shown by this example, if the data-less responses do not

include the completed PR field, the starvation prevention still works correctly,

but some unnecessary data-less responses may be generated.

Finally, the third alternative is that all the response messages that carry at

least one token associated to any of the priority requests in the table (marked

as valid) contain the completed PR field. However, responses for transient

requests upon memory blocks not requested by (completed) stored priority

requests can omit the completed PR field. The main advantage of this option

is that only the responses that require to inform about the completion of

priority requests will do it. But the responses that do not require it will not

include such information. Therefore, the overhead due to the completed PR

field would decrease.

82 Chapter 5. The Priority Request Mechanism

O

I/Ip S/Sp

Write R
all tokens

all tokens
Write R

M/E

Read R
1 token

Write R
Read R

Read R
1 token

all tokens
Write R

Read R

(a)

OM/E

S/Sp

tokens

tokens
all

token

owner

owner

all

I/Ip

all tokens tokensno owner

all tokens

tokens

(b)

Figure 5.10: State transition diagram (a) due to request reception and (b) due

to response reception.

5.8 The Performance Policy

Although several performance policies have been defined for Token Coherence,

in this dissertation we use the TokenB policy adapted to priority requests. We

use this policy because it avoids indirection and the performance bottlenecks

of totally-ordered interconnects. The final version of TokenB is as follows:

• On a cache miss occurrence, the processor broadcasts a transient request

to all processors and the home memory module.

• If after twice the processor’s average miss latency the transient request

has not been completed, the processor will broadcast a priority request

to all processors and memory modules.

• Processors and memory modules respond to both transient and priority

requests as they would do in a traditional MOESI protocol.

Figure 5.10(a) shows the state transition diagram due to the reception

of transient/priority requests. Together with each transition, it is indicated

whether the processor has to serve the request by sending a response message

(in gray). Read R refers to read requests and Write R refers to write requests.

The dotted arrows indicate that from that state, the received request can not

be completely served. Figure 5.10(b) depicts the state transition diagram due

to the reception of response messages.

5.9. Guaranteeing Starvation-Freedom 83

The two additional states Sp and Ip are equivalent to S and I, respectively.

The single difference is that the states marked with the p subscript (priority

states) indicate that there is, at least, one pending priority request in the

table. In Figure 5.10(a), from non-priority states (M, O, S, and I), processors

transition to non-priority states in case of (1) receiving a transient request or

(2) receiving a priority request and being able to complete it (solid lines). From

non-priority states, processors transition to priority states (Sp or Ip) when

receiving a priority request and not being able to complete it (dashed lines). A

block transitions between priority states until (1) an implicit acknowledgment

(in a response or in a priority request) marks as completed all the pending

priority requests for that block or (2) the processor receives enough tokens to

completely serve all the pending priority requests for that block.

5.9 Guaranteeing Starvation-Freedom

To probe that this mechanism prevents starvation, we argue that (1) the sys-

tem will eventually deliver all messages, (2) priority requests are received in

order, which avoids the occurrence of protocol races, (3) priority requests are

remembered in tables at least until being completed, (4) the pending request

with the highest priority will always receive all the tokens that it requires, and

(5) all priority requests will eventually be marked as completed.

5.9.1 Deadlock-Free Message Delivery

We trust on reliable, deadlock-free, and livelock-free interconnects, which en-

sures that all the messages injected in the interconnect will eventually be

delivered. To provide such features, the interconnect may require some well-

understood techniques [41] such as virtual channels. Since several types of

messages are used and each type may require a different routing algorithm,

the transmission of all the messages through the same virtual channel may

cause deadlock. Thus, to avoid it, the implementation of the Token Coher-

ence protocol assumed in this thesis uses three different virtual channels: the

first one is used for response messages, the second one is for transient requests,

and the third one is for priority requests. Given that each type of message

may require a different routing algorithm, the use of three virtual channels

84 Chapter 5. The Priority Request Mechanism

will prevent deadlock. To ensure a fair policy, a round robin policy (explained

in Section 4.2) is applied between the different virtual channels.

5.9.2 Ordering Delivery Guarantee

Definition 1 An ordered path is defined as a sequence of switches and links,

where each pair of switches is connected through a single path that does not

contain any cycle.

Lemma 1 All the components in the system will receive priority requests in

the same order.

Proof 1 Given that an ordered path only provides a single path between each

pair of switches, a priority request being transmitted between two switches will

never be able to overtake another priority request that is being transmitted

through those switches, provided a FIFO policy is applied at switch buffers.

As a result, those pair of switches will receive all the priority requests in the

same order. As this is applicable to any pair of switches in the network, a

global order for the reception of priority requests is guaranteed.

5.9.3 Priority Request Storage Guarantee

Lemma 2 All the received priority requests will be able to be stored in the

tables.

Proof 2 The priority request mechanism limits the number of simultaneous

outstanding priority requests per processor. Each component holds a table

which has as many entries as total number of simultaneous outstanding priority

requests in the system. Therefore, if an outstanding priority request can not be

stored, it is because all the entries associated to that processor are occupied by

outstanding priority requests from it. However, that is not possible because

in such a situation, it would have broken the limitation in the maximum

number of outstanding priority requests per processor. Thus, if a processor

has occupied all its associated entries with outstanding priority requests, it

will not be able to send another one until completing one of them. When it

is completed, it will be able to send a new priority request, which will always

be able to replace the completed one.

5.9. Guaranteeing Starvation-Freedom 85

5.9.4 Requested Token Reception Guarantee

Lemma 1 Given any two consecutive priority requests, the proposed mecha-

nism ensures that both requests will always receive all the tokens they request

and it is also sure that they both will be marked as completed.

Proof 1 To demonstrate that whatever pair of priority requests will receive

all the requested tokens and will be marked as completed, we analyze the four

possible combinations for two consecutive priority requests:

• read - read. The owner component provides one token and the data to the

first read and marks it as completed. After that, the second read request

becomes the pending request with the highest priority. Therefore, the

owner serves it and marks it as completed. In the second response, the

owner component indicates that the first read request was completed. It

knows such information because it was the component which completed

it.

• read - write. The owner component provides one token and the data to

the first read request and marks it as completed. After that, the write

request becomes the highest priority request. Therefore, the owner serves

it by sending all its tokens. In this response, it is indicated that the read

request was completed. When the write requester receives the response

it realizes that the read request is completed and, therefore, it does not

serve it. Instead, it waits for the rest of tokens. When the read requester

receives the token, it performs the read, marks its request as completed,

and the write request becomes the highest priority request. Therefore,

it serves it by sending its token. Once the write requester receives all

the tokens, it will mark its request as completed.

• write - read. The owner and the shared components forward all their

tokens to the write requester. When the recipient receives all of them,

it performs the write and marks its request as completed. The read

request becomes the pending request with highest priority. Therefore,

the writer, which is the new owner, sends one token and the data to

the read requester indicating that the write is completed and marking

the read request as completed. When the response is received by the

86 Chapter 5. The Priority Request Mechanism

Table 5.1: Number of links used by priority requests in an 8-processor system

with an MIN interconnect.

Number of Ordered Paths Number of Used Links

1 6 (37,5%)

2 8 (50%)

3 14 (87,5%)

4 16 (100%)

read requester, the write request is marked as completed, the read is

performed and its request is marked as completed too.

• write - write. The owner and the shared components forward all their

tokens to the first write requester. When they are received, the write is

carried out and the first write request is marked as completed. The writer

becomes the new owner and it sends all the tokens to the requester of

the request with the highest priority (the second write). In the response

it indicates that the first write is completed. Thus, when the requester

of the second write receives all the tokens, it marks the first request as

completed, performs the write, and marks its write request as completed.

From the analysis of these four situations we deduce that every pair of

priority requests will be completely served and marked as completed. Thus,

we can extend this result to a set of priority requests, thereby demonstrating

that all priority requests will be completely served and marked as completed.

5.10 Using Several Ordered Paths

A single ordered path for all the priority requests may cause the root switch to

become a bottleneck in large systems. Fortunately, a system can use multiple

ordered paths to scale priority request throughput at the cost of increasing the

complexity of the routing algorithm. The proposed priority request mechanism

only requires the requests for the same memory block to be received in the

5.10. Using Several Ordered Paths 87

same order because those requests could generate protocol races when they are

received in a different order. However, priority requests for different memory

blocks can not generate protocol races and, therefore, they do not need to

be received in a global order. We can take advantage of this fact to establish

several ordered paths instead of just one. Thus, depending on, for instance, the

requested memory block, the priority requests can use different ordered paths.

This provides two main advantages. On the one hand, several root switches can

be used, which alleviates the bottleneck of a single root. On the other hand,

the traffic due to priority requests can be distributed through all the network

instead of traversing only a reduced part of the network. Table 5.1 shows

the number of links used by priority requests in an 8-node MIN interconnect.

When priority requests use only one ordered path, all priority requests are

transmitted through a single root switch and they only use 37,5% of the links.

If priority requests use two ordered paths, they would be transmitted through

two different root switches, which can alleviate the congestion of a single root.

In addition, priority requests would use 50% of the links. The best scenario in

that system corresponds to use four different ordered paths, since they would

use the four possible root switches and 100% of the links.

5.10.1 Selecting the Ordered Path

The issuer of a priority request decides the ordered path that its priority re-

quest will follow before sending it. All processors must use the same criteria

to ensure that all the priority requests for the same memory block use the

same ordered path. Otherwise, processors could receive the priority requests

for the same memory block in a different order. The decision of what ordered

path is used by each priority request can be based on several criteria. Thus,

for instance, the ordered path can be selected according to the home memory

module which the requested memory block belongs to. In this case, all the

priority requests for a memory block belonging to the same home memory

module would use the same ordered path. Another alternative is to select the

ordered path according to the memory address of the requested block. Pro-

cessors use the following formula to obtain the path:

(memory address/block size)%num paths

88 Chapter 5. The Priority Request Mechanism

P

P

S S S

P

P

S S S

P

P

S S S

P

P

S S S

Ordered

Path 0

Path 1

Ordered

Figure 5.11: Two different ordered paths. Striped boxes represent the root

switches of the ordered paths.

memory address stands for the address of the requested memory block, block size

is the size of each memory block, num paths is the number of different ordered

paths, and % refers to the module operation. This expression provides the

processors the identifier of the ordered path through which the processor must

send the priority request. Processors include such an identifier in a field of

the priority request header. Network switches will use it to route priority re-

quests through the specified path. Figure 5.11 shows an example of an MIN

interconnect where two different ordered paths are defined.

5.10.2 Priority Request Identifier

When using a single ordered path, all the priority requests arrive in a global

order. In that case, each component uses a counter to determine the arrival or-

der and to unequivocally identify each priority request. When several ordered

paths are used, components can not use a single counter for all the priority

requests as the reception order between priority requests following different

ordered paths may differ. Hence, in this case, components must use as many

counters as the number of different ordered paths. In this way, when a com-

ponent receives a priority request, it assigns to it an identifier determined by

the counter associated to the ordered path followed by the priority request.

5.11. Discussion: Persistent Vs Priority 89

5.10.3 Storing Priority Requests

Previously we commented that the completed PR field of priority requests is

used to select the completed priority request stored in tables that must be

replaced by the new one. However, two different priority requests can have

now the same identifier, since different counters have been used for generating

them. Therefore, this entails a problem because it is possible that at the arrival

of a priority request a component does not know which priority request must

be replaced. To solve it, we use a different approach from that proposed in the

previous section. As commented, each processor is assigned a fixed number of

entries where its priority requests can be stored. Therefore, instead of using

the completed PR field to include the identifier of a completed priority request,

that field indicates which of all the entries associated to the processor will be

where the priority request is inserted in. Thus, for example, assuming two

outstanding priority requests per processor, the completed PR field can be set

to 1 to indicate that the request must be stored in the first entry associated

to the issuer or it can be set to 2 to indicate that the request must be stored

in the second entry associated to it. This strategy solves the aforementioned

problem and, in addition, it reduces the overhead of the completed PR field,

since the number of maximum simultaneous outstanding priority requests per

processor is much lower than the maximum count.

Given that two different priority requests from the same issuer and for

different blocks may be received in different order (because they may follow

different ordered paths), a strategy must be used to avoid that a completed

priority request replaces a outstanding one. To this end, the header of the

priority request messages includes the SEQN field which is a sequence number

generated by the issuer. A priority request with a low SEQN can not replace

another priority request with a higher one.

5.11 Discussion: Persistent Vs Priority

In this section we provide deeper insight into the priority request mechanism

showing how it is able to overcome the drawbacks presented by the persis-

tent request mechanism and the main benefits that could be derived from its

application. This section is not strictly necessary for understanding the prior-

90 Chapter 5. The Priority Request Mechanism

ity request mechanism. Thus, the reader may go forward to the next section

without a conceptual disconnect.

The initial idea behind priority requests was to replace the persistent re-

quest mechanism by a more elegant and flexible mechanism able to prevent

starvation in a natural way. However, priority requests not only represent a

more elegant and flexible approach, but they are also able to reduce both the

runtime of the applications and the generated network traffic. A key factor for

its success is the fact that all nodes receive priority requests in the same order.

This simple but effective feature lets priority requests overcome all the short-

comings that prevent persistent requests from efficiently handling starvation

situations. In what follows, we analyze in detail how the different drawbacks

exhibited by persistent requests are overcome.

There exist two different approaches to implement persistent requests:

arbiter-based mechanisms and distributed arbitration mechanisms. The imple-

mentations based on arbiters present the serious disadvantage of indirection,

which significantly increases the latency of cache misses and the generated

network traffic. Due to the fact that one of the main goals of Token Coher-

ence is to avoid indirection, we rule out those approaches based on arbiters,

focusing exclusively on the persistent request mechanism based on distributed

arbitration, which besides is the most efficient implementation.

The first drawback exhibited by persistent requests is related to their lack

of order. Because of that, each component may receive persistent requests

in a different order. Thus, if they were served according to their arrival

order, protocol races would be generated and they would not prevent star-

vation. Therefore, the persistent requests have to be served according to a

fixed-priority scheme, such as the processor identifier. Although correct, this

solution creates load imbalance.

The second drawback of persistent requests is related to the need of de-

activation messages. When a persistent request completes, its issuer must

generate a message notifying the other components of it, which will proceed

to deactivate the completed persistent request. Given that persistent requests

are served according to a fixed-priority scheme, temporal race situations could

arise while they are being served. This is because a persistent request with a

higher priority could arrive just after serving one with lower priority, which

5.11. Discussion: Persistent Vs Priority 91

would immediately deactivate the served persistent request and may momen-

tarily prevent its completion. Although the starvation prevention is still en-

sured, it is clear the inefficiency of this strategy. In addition, in this situation,

it is not possible to know if a persistent request has been eventually completed,

unless an explicit deactivation message notifying this fact is broadcast to the

other nodes.

The third drawback is related to the fact that persistent requests can not be

efficiently served by the performance policy component. Specifically, the need

of sending deactivation messages every time a persistent request completes in-

fluences the way in which persistent requests are served. In particular, taking

into account that a starved processor will be the first one at being aware of the

completion of its own persistent request, it would be convenient that it was

in conditions to serve the next persistent request as soon as the deactivation

message is issued, which reduces the latency of the persistent request service.

To this end, the issuer of the active persistent request gathers as many tokens

as possible. To this end, all processors send as many tokens as they can to the

issuer of the active request, although that issuer only needs just one token,

increasing network traffic. Notice that this strategy differs a lot from the effi-

cient MOESI policy used by transient requests. Furthermore, this prevents the

service of other persistent or transient requests generated during the service

of a persistent request because the data and the tokens are traveling toward

the starved processor. Thus, the latency of completing persistent requests is

usually much higher than the latency of completing transient requests. Ad-

ditionally, the transient requests received while a persistent request is active

can not be served, causing new unnecessary starvation situations.

On the contrary, the priority request mechanism completely removes the

referred drawbacks. This is due to the fact that priority requests are delivered

in the same order at every component. This fact allows to naturally serve pri-

ority requests according to their arrival order without causing protocol races.

As protocol races can not occur, the completion of priority requests is en-

sured, not requiring the use of deactivation messages. Notice, though, that

some kind of completion notification may continue being necessary, especially

if we consider that priority requests are stored in a table at each component.

However, unlike the persistent request mechanism, the completion notification

92 Chapter 5. The Priority Request Mechanism

is not implemented by deactivation messages. Rather, taking advantage of the

in-order priority request service, the completion of a certain priority request

would implicate, in its turn, the completion of all the priority requests with

a higher priority. Therefore, specific completion notifications for each prior-

ity request would be no longer strictly necessary, relaxing the procedures by

which priority requests become aware of their completion.

Additionally, if deactivation messages are not used, it is no longer necessary

to use a performance policy different from that used by transient requests.

Therefore, priority requests will be able to be served like transient requests

but with a higher priority. This fact has important consequences. First, the

priority read requests can be marked as completed as soon as they are served

(in the responder node). In the case of a priority write request, marking it

as completed will be possible only if the responder is able to provide the data

and all the tokens (Modified state). Notice that marking a priority request as

completed after being served means that completion notifications will be no

longer necessary. Second, the service rate of priority requests will noticeably

increase because a new priority request can be served as soon as the previous

one is marked as completed. Furthermore, the transient request service can

be resumed as soon as all the priority requests upon the same memory block

are marked as completed. Indeed, priority requests are served like transient

requests, but with a higher priority. This fact, as we will observe, may have a

significant impact on performance.

Since deactivation messages are removed, an alternative mechanism will

be necessary to notify the priority request completion to the other nodes. In

particular, we have observed that it is possible to use the data responses them-

selves to this end. Given that the reception of a data response depends on

the previous existence of some request, it may be thought that this notifica-

tion mechanism could delay the service of the subsequent priority requests.

However, the priority request service can not be delayed for this reason at all.

Indeed, what really delays the request service is the absence of data/tokens.

Notice that this will occur only after serving a priority write request. Tak-

ing into account that when a priority write request is served all the tokens

available in the node are sent to the writer, then, the next priority request

will not be able to be served until the node gets again the data and at least

5.12. Priority Request Summary 93

one token. Notice that they will be obtained only on the arrival of the first

response message with data referred to that data block. However, it can be

guaranteed that the completion notification required to resume the priority

request service will arrive at the latest with the arrival of the first response

message containing the data and the tokens required to serve the next priority

request. Therefore, the applied mechanism for completion notification does

not delay the priority request service, that is, it is not placed on the critical

path.

Moreover, it is not possible that a node serves a priority request that was

completed by other nodes as a consequence of not having received yet the

corresponding completion notification. In particular, in the case of a priority

read request, the node holding the owner token is the first node that becomes

aware of its completion, whereas the rest of nodes are not in charge of serving

that request, according to the performance policy. Therefore, in a strict sense,

they would not require to be notified. In the case of a priority write request, its

completion requires the requester node collects all the tokens, thus preventing

the rest of nodes from serving any priority request corresponding to the same

data block. In both cases, the rest of the nodes will be informed of it by

completion notifications embedded into the response messages with data sent

by the owner node3. When a node receives a response message with data, it

will mark as completed the priority requests that were completed as indicated

by the response message. When the owner node varies, the new owner node

inherits from its predecessors by means of the coherence messages the updated

information about the priority request completion.

5.12 Priority Request Summary

This chapter has introduced priority requests as one approach for preventing

starvation in Token Coherence. Due to the large design space for implementing

priority requests, we selected a single proof-of-concept design point for use in

our quantitative evaluations, detailed following.

3Notice that after completing a priority write request the requester node becomes the

new owner.

94 Chapter 5. The Priority Request Mechanism

5.13 Evaluation

We evaluate the performance of the two presented approaches: priority re-

quests using a single ordered path and several ordered paths (Section 5.10).

5.13.1 Target System and Parameters

The target systems for evaluation consist of those systems previously described

in Section 4.2. As commented, the referred systems are evaluated using two

different interconnects: an MIN with a perfect-shuffle topology and a 2D mesh.

In the MIN interconnect, when using a single ordered path, priority requests

are always routed through the first switch of the last stage (root switch). To

perform a fair comparison, given that the implementation of persistent re-

quests that we assume requires point-to-point ordering, they are always trans-

mitted through the first switch of the last stage. When priority requests use

several ordered paths, to perform a fair comparison, the persistent requests

use disjoint paths. In the 2D mesh, the comparison is similar. When using a

single ordered path, the root switch is one of the switches not located in the

edge of the mesh (if possible).

To code the completed PR field in response messages, we assume the third

optimization explained in Section 5.7, according to which only the responses

upon memory blocks requested by a valid priority request will include the com-

pleted PR field. We select this optimization because it reduces the overhead

of completed PR field without generating unnecessary data-less responses.

All the data shown in the figures of this section are normalized to those

data obtained while using the priority request mechanism.

5.13.2 Starved Requests

Figure 5.12 shows the normalized number of requests that suffer from starva-

tion in a 32-processor system. As shown, when we use the priority request me-

chanism to solve starvation, the number of starved requests decreases in more

than 10% in average. This reduction is due to two main factors. First, while

a persistent request is active, transient requests can not be served. There-

fore, all the transient requests that are generated while there exists at least

one active persistent request will suffer from starvation and they will have to

5.13. Evaluation 95

Priority Requests Persistent Requests

Barnes Cholesky FFT LU1 LU2 Ocean Radix Volrend Average
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
o

rm
a

liz
e

d
 S

ta
rv

e
d

 R
e

q
u

e
s
ts

Applications

(a) MIN interconnect

Barnes Cholesky FFT LU1 LU2 Ocean Radix Volrend Average
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
o

rm
a

liz
e

d
 S

ta
rv

e
d

 R
e

q
u

e
s
ts

Applications

(b) Mesh interconnect

Figure 5.12: Normalized number of starved requests in a 32-processor system.

be served by the persistent request mechanism. However, when the priority

request mechanism is assumed, transient requests can be served regardless of

the existence of priority requests. That is, priority requests do not block the

service of transient requests. Thus, the transient requests generated during a

starvation situation may be served, thereby avoiding generating new starvation

situations.

The second reason of the reduction in the number of starved requests is

because, when the priority request mechanism is assumed, the performance

policy is used at all times. Therefore, tokens are handled in an efficient way

without taking into account the presence of priority requests. On the other

hand, persistent requests override the performance policy and they force the

nodes to send their tokens to the issuer of the active persistent request (al-

though it does not really need those tokens). Therefore, some nodes forward

96 Chapter 5. The Priority Request Mechanism

Priority Requests Persistent Requests

Barnes Cholesky FFT LU1 LU2 Ocean Radix Volrend Average
0

0.5

1

1.5

2

2.5

3

S
ta

rv
a

ti
o

n
 C

o
n

tr
o

l
M

e
s
s
a

g
e

s

Applications

(a) MIN interconnect

Barnes Cholesky FFT LU1 LU2 Ocean Radix Volrend Average
0

0.5

1

1.5

2

2.5

3

S
ta

rv
a

ti
o

n
 C

o
n

tr
o

l
M

e
s
s
a

g
e

s

Applications

(b) Mesh interconnect

Figure 5.13: Normalized number of starvation control messages in a 32-

processor system.

tokens they will need, which will cause new cache misses and the sending of

new transient requests, which are likely to fail due to the presence of persistent

requests.

5.13.3 Starvation Control

Figure 5.13 illustrates the normalized number of messages used to control the

starvation situations happened during the execution of the applications. We

use the term starvation control because this kind of message not contains data

nor tokens. Thus, when using the persistent request mechanism, the starva-

tion control messages are made up of activation messages and deactivation

messages. On the contrary, when the priority request mechanism is used, the

starvation control messages consist of only the priority requests. As shown in

5.13. Evaluation 97

the figures, the priority request mechanism considerably reduces the number

of control messages, using less than half the messages used by the persistent

request mechanism. This reduction is due to two reasons. First, the persis-

tent request mechanism requires two messages per each starved request (one

activation and one deactivation), while the priority request mechanism only

requires one message per starved request (one priority request). Besides, as

we showed in the previous figure, the priority request mechanism reduces the

number of generated starved requests, which in turn helps to reduce the num-

ber of generated starvation control traffic. This reduction is very important

since the starvation control messages used by both mechanisms are broadcast

messages and their use entails to flood the interconnect.

5.13.4 Network Traffic

Figure 5.14 depicts the normalized network traffic generated during the ex-

ecution of the applications. The traffic of the Token Coherence protocol is

made up of transient requests (which are sent when a cache miss occurs), data

responses (which are response messages that contain data), control responses

(which are data-less responses), and the previously described starvation con-

trol messages. While the transient requests and the starvation control mes-

sages are broadcast messages, the data responses and control responses are

point-to-point messages.

As shown in the figure, the total traffic generated by the system reduces

about 25% in average when we use the priority request mechanism. This is

because, unlike persistent requests, priority requests do not override the per-

formance policy. As a result, an efficient policy is being used at any time and,

therefore, tokens and memory block are efficiently handled. Consequently, the

number of cache misses decreases as it is reflected in the number of transient

requests, which slightly decreases. Previously we commented that the number

of starved requests decreases too. Therefore, the reduction in the transient

requests and the priority requests causes a reduction in the number of both

data responses and control responses (as the number of requests decreases,

less responses will have to be sent to serve them). Finally, the number of star-

vation control messages lowers because of the reasons previously cited. Hence,

the priority request mechanism gets a reduction of the total generated traffic.

98 Chapter 5. The Priority Request Mechanism

Transient Req Data Resp Control Resp Starvation Ctrl

P
ri
o

ri
ty

 R

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R

P
e

rs
is

te
n

t
R

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
ra

ff
ic

 i
n

 P
a

c
k
e

ts

Applications

Barnes Cholesky FFT LU1 LU2 Ocean Radix Volrend Average

(a) MIN interconnect

P
ri
o

ri
ty

 R

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R

P
e

rs
is

te
n

t
R

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
ra

ff
ic

 i
n

 P
a

c
k
e

ts

Applications

Barnes Cholesky FFT LU1 LU2 Ocean Radix Volrend Average

(b) Mesh interconnect

Figure 5.14: Normalized network traffic in packets in a 32-processor system.

5.13.5 Starvation Latency

Figure 5.15 shows the average latency of completing a starved request. It in-

cludes the elapsed time from a starved request is detected up to the starved

processor receives all the requested tokens. According to the figure, priority

requests reduce the starvation latency about 40% in average in the MIN and

about 20% in average in the mesh. This reduction is due to two factors. First,

since priority requests reduce network traffic, messages suffer less contention

and their latency reduces. As a result, both requests and responses arrive

5.13. Evaluation 99

Priority Requests Persistent Requests

Barnes Cholesky FFT LU1 LU2 Ocean Radix Volrend Average
0

0.2

0.4

0.6

0.8

1

1.2

1.4
S

ta
rv

a
ti
o

n
 L

a
te

n
c
y

Applications

(a) MIN interconnect

Barnes Cholesky FFT LU1 LU2 Ocean Radix Volrend Average
0

0.2

0.4

0.6

0.8

1

1.2

1.4

S
ta

rv
a

ti
o

n
 L

a
te

n
c
y

Applications

(b) Mesh interconnect

Figure 5.15: Normalized starvation latency in a 32-processor system.

sooner at their corresponding destinations, which reduces the latency of com-

pleting a request. In addition, priority requests do not need to use explicit

acknowledgments, which can accelerate the service of the starved requests.

While a persistent request can not be served until both the active persis-

tent request is completed and an acknowledgment (or deactivation message)

is received, priority requests can be served consecutively, without the need of

waiting for acknowledgments. If a component holds some tokens required by

a priority request, the tokens will be immediately sent to its issuer. The com-

ponent will never delay their sending waiting for an acknowledgment. Thus,

this lack of explicit acknowledgments accelerate the service and, therefore, the

completion of starved requests.

Note that priority requests get a higher reduction of the starvation latency

in MINs than in meshes. This is due to the fact that a mesh in a 32-processor

100 Chapter 5. The Priority Request Mechanism

Priority Requests Persistent Requests

Barnes Cholesky FFT LU1 LU2 Ocean Radix Volrend Average
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
N

o
rm

a
liz

e
d

 R
u

n
ti
m

e

Applications

(a) MIN interconnect

Barnes Cholesky FFT LU1 LU2 Ocean Radix Volrend Average
0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
a

liz
e

d
 R

u
n

ti
m

e

Applications

(b) Mesh interconnect

Figure 5.16: Normalized runtime in a 32-processor system.

system is not a square mesh. As a result, this implementation lacks some of the

properties provided by square meshes and the priority requests can not take

advantage of all their properties, which causes the reduction to be significantly

smaller.

5.13.6 Runtime

Figure 5.16 illustrates the normalized runtime of the applications. As shown,

the priority request mechanism contributes to reduce the runtime of the appli-

cations about 20% in an MIN and 15% in a mesh (in average). This reduction

is the result of combining all the previously commented advantages: efficient

policy every time, reduction of network traffic, and reduction of the latency

to complete requests. In this case, the reduction of the runtime in a mesh is

slightly lower because the reduction of the starvation latency is also lower.

5.13. Evaluation 101

Transient Req Data Resp Control Resp Starvation Ctrl

P
ri
o
ri
ty

 R

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R

P
e
rs

is
te

n
t
R

P
ri
o
ri
ty

 R

P
e
rs

is
te

n
t
R

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
ra

ff
ic

 i
n
 P

a
c
k
e
ts

System Size

4 processors 8 processors 16 processors 32 processors 64 processors

Figure 5.17: Normalized network traffic depending on the system size.

5.13.7 Scalability

Up to now, we have shown that the priority request mechanism performs better

than the persistent request mechanism in a 32-processor system. In this section

we want to show that priority requests scale better than persistent requests.

Thus, following we analyze the scalability by focusing on three parameters:

the total interconnect traffic, the starvation latency, and the runtime. In this

case, we have simulated 5 different systems using an MIN interconnect: a 4-

processor, 8-processor, 16-processor, 32-processor, and 64-processor systems.

The figures shown in this section only include the results in average for the

simulated applications instead of the results for each individual application to

reduce the number of figures and for the sake of clarity. Note that, unlike in

the previous results, we have only taken into account 4 applications to obtain

the average results: Barnes, Cholesky, FFT, and LU1. We have only selected

these four applications because the simulation of a 64-processor system is

extremely slow and it is not feasible the simulation of some of the most complex

applications due to their time requirements. Thus, although the data of the

following figures may not be as complete as those in previous figures, we think

they are enough to provide an idea of the scalability of the priority request

mechanism.

Figure 5.17 depicts the normalized total traffic in packets depending on

the system size. As shown, the reduction in the interconnect traffic grows

102 Chapter 5. The Priority Request Mechanism

Priority Requests Persistent Requests

4 processors 8 processors 16 processors 32 processors 64 processors
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
ta

rv
a
ti
o
n
 L

a
te

n
c
y

System Size

Figure 5.18: Normalized starvation latency depending on the system size.

Priority Requests Persistent Requests

4 processors 8 processors 16 processors 32 processors 64 processors
0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

System Size

Figure 5.19: Normalized runtime depending on the system size.

as the number of processors increases, reaching about 35% of reduction in a

64-processor system.

Figure 5.18 shows the normalized starvation latency depending on the

system size. The reduction in a 4-processor and in an 8-processor system is

approximately the same, reducing about a factor of 0,2. In a 16-processor

system, the reduction slightly increases (0,25). As the number of processors

increases, the reduction in the starvation latency becomes more significant,

reaching 0,37 in a 32-processor system and 0,56 in a 64-processor system.

Finally, Figure 5.19 illustrates how the runtime changes depending on the

system size. Thus, in a 4-processor and in an 8-processor systems, the runtime

of the applications is more or less the same independently of the used starva-

tion prevention mechanism. This is because in those systems the number of

5.13. Evaluation 103

protocol races is not significant and, therefore, the starvation prevention me-

chanism has little impact on the global performance. However, as the number

of processors increases, the contention between processors becomes more sig-

nificant and the use of the starvation prevention mechanism is more frequent.

Hence, in a 16-processor system we can observe as the use of the priority re-

quest mechanism slightly improves in a factor of 0,05 the performance of the

Token Coherence protocol. For medium systems, the performance of the star-

vation prevention mechanism is a substantial part of the overall performance.

Consequently, the priority request mechanism improves the performance of

Token Coherence in a factor of 0,15 in a 32-processor system and in a factor of

0,30 in a 64-processor system. Therefore, we can see that, besides performing

better, the performance is increased in a higher and higher factor, which gives

an idea of the scalability of the proposed mechanism.

5.13.8 Several Ordered Paths

Although a single ordered path is a good solution for small systems, in medium

and large systems the root switch may become a bottleneck. To solve this prob-

lem and improve the scalability of priority requests, several ordered paths can

be used as proposed in 5.10. In the results shown up to now, we have assumed

a single ordered path for all the priority requests. In this section we show how

the performance of priority requests scales better when several ordered paths

are used. To this end, we have implemented two different options. In the first

option labeled as Roots Address in the charts, a different root switch is selected

according to the address of the requested memory block. In the second option,

labeled as Roots Home the root switch is selected according to the home me-

mory module of the requested memory block. Note that, since we simulate a

system with a MIN interconnect, in an X-processor system there will be X/2

ordered paths, that is, as many ordered paths as number of switches in the

last stage.

Figure 5.20 illustrates the link utilization due to priority requests when

using a single ordered path (Single Root) or when using several ordered paths

(Roots Address and Roots Directory). The links are ordered according to their

use. As shown in the figure, when using a single ordered path, we can classify

the use of the links in three types. First, there are a lot of links that are not

104 Chapter 5. The Priority Request Mechanism

Single Root Roots Address Roots Directory

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 50 100 150 200 250 300 350

N
o
rm

al
iz

ed
 C

y
cl

es

Link Numbering

(a) 32-processor system

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 100 200 300 400 500 600 700 800

N
o
rm

al
iz

ed
 C

y
cl

es

Link Numbering

(b) 64-processor system

Figure 5.20: Link utilization due to priority requests.

used and, therefore, their utilization is 0. Second, there are a few links that

their use is not 0 but they are not very used. These links correspond to the

uplinks which make up the path from system components to the root switch.

Finally, the third set consists of the downlinks (links from the switch root

to the recipients) which have the maximum utilization. Thus, when using a

single ordered path, links are mainly either not used at all or continually used.

This situation changes when using several ordered paths. In this case, there

are few links which are almost not used and the use of the links increases

little by little. In the figure, we can observe some steps. These are due to

links belonging to switches from the same stage. Switches from lower stages

are more used than switches from upper stages. We can also see in the figure

that the use of links is more spread and that the number of switches with the

maximum utilization decreases. Beside, the maximum utilization decreases in

comparison to the approximation with a single ordered path.

Figure 5.21 shows the normalized runtime of the applications according

to the system size when using a single ordered path (Single Root) or when

using several of them. As you can observe, for small systems, the overall

performance of the protocol is not affected by the use of a single ordered

path or several ordered paths. Thus, in 4-processor, 8-processor, and 16-

processor systems, the runtime of the applications is more or less constant.

However, when the number of processors increases and, therefore, the number

5.14. Conclusions 105

Single Root Roots Address Roots Home

4 processors 8 processors 16 processors 32 processors 64 processors
0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

System Size

Figure 5.21: Normalized runtime depending on the system size when using

several ordered paths.

of processors involved in a starvation situation increases, a single ordered path

may become a bottleneck. This is solved by using several ordered paths.

Hence, in a 32-processor system we can see that the average runtime improves

about 7%. In a 64-processor system, the runtime reduction doubles.

5.14 Conclusions

In this chapter we have proposed an efficient starvation prevention mechanism.

Unlike previous proposals, priority requests rely on a total order provided by

the routing algorithm to solve protocol races. This simplifies the starvation

prevention process a lot and provides a major advantage: the efficient per-

formance policy can be applied every time, regardless of the appearance of

protocol races.

The results shown in this chapter show that priority requests substantially

reduce the interconnect traffic and the time required to resolve the generated

starvation situations, which in turn contributes to reduce the runtime of appli-

cations when it is threatened by the occurrence of protocol races. Besides, we

have also shown that the performance of priority requests scales much better

than that of persistent requests and this is a key factor in current and future

systems due to the trend to increase the number of processors and cores.

106 Chapter 5. The Priority Request Mechanism

Chapter 6

Bounding Storage

Requirements

Starvation prevention mechanisms require that nodes maintain a list of the

starved requests in tables. The size of these tables is proportional to both

the system size and the maximum number of simultaneous starved requests

allowed per processor. Therefore, the tables are not scalable, entailing a serious

problem in medium and large-sized systems. In this chapter we propose an

effective strategy to limit the table size at the expense of a slight performance

degradation.

6.1 Introduction

The starvation prevention mechanisms based on centralized/banked arbiters

are too inefficient since the communications between processors are performed

through the arbiters, which causes indirection and increases the latency of

cache misses. On the other hand, the mechanisms based on distributed ar-

biters or priority requests perform much better thanks to a direct communica-

tion between processors. According to those approximations, the outstanding

starved requests must be remembered in the system components themselves

(instead of in the arbiters). To this end, each component maintains a table

where the outstanding requests are stored at their arrival. In order to be able

to store all the outstanding starved requests, the size of the tables must be

107

108 Chapter 6. Bounding Storage Requirements

proportional to both the number of processors in the system and the number

of simultaneous outstanding requests allowed per processor. Although cor-

rect, this approach is not suitable for medium and large systems because, as

the system size increases, the space that the nodes must book to store all

the outstanding requests will be larger and larger. As result, those proposals

lack scalability and they are limited just to systems with a moderate number

of processors and only few simultaneous outstanding requests per processor.

Besides, since the tables require associative search, they become slower as the

system size grows, which in turn slows down the access to the tables and the

latency of cache misses.

In this chapter, we propose an effective strategy to limit the storage re-

quirements of the tables used by the starvation prevention mechanisms applied

by Token Coherence. The proposed strategy does not replace the applied

starvation prevention mechanisms. Rather it is designed as a complementary

element. In the description, we link the proposed strategy to the priority

request mechanism because, due to its characteristic features (flexibility, or-

dering, efficiency), it complements perfectly to the strategy. In fact, when

we use the priority request mechanism together with the proposed strategy,

in spite of being able to reduce the table size to a minimum of one entry,

the priority request mechanism only suffers a slight performance degradation,

continuing to perform significantly better than the persistent request mecha-

nism with non-scalable tables. However, the applicability of this strategy is

not restricted to priority requests, since it could readily adapted to persistent

requests. Nevertheless, we do not describe such an implementation option in

this work and its development is intended to be future work. Anyway, we

think that the application of the proposed strategy to the persistent request

mechanism would significantly increase the complexity of the protocol and it

would suffer a greater performance degradation due to the inflexibility and

inefficiency of persistent requests and the great amount of control traffic that

it requires.

By making the table size independent of the systems size, it may occur

that an outstanding priority request can not be stored at its arrival because

the tables are full of priority requests that have not been completed yet and,

therefore, none of them can be replaced. In such a situation, the received

6.2. Data Structures 109

priority request will be rejected (not stored) and its issuer will have to wait for

the completion of one of the stored priority requests. When such a completion

occurs, it will be informed and, in that moment, it will resend its priority

request. Unlike the first sending of a priority request, the proposed strategy

guarantees that the resent priority requests will always be accepted (stored).

Thus, although in the worst case a priority request may have to be sent twice,

its storage and, therefore, its completion is still guaranteed. Following, the

whole strategy is described in detail.

6.2 Data Structures

As commented, each system component holds a table where the outstanding

priority requests are stored. However, as the tables that we assume now may

not have enough entries to simultaneously store all the received priority re-

quests, some requests will not be rejected at their arrival. To ensure that all

priority requests will eventually be stored in the tables, we take advantage

of the fact that they are ordered messages. As the stored requests are com-

pleted, the rejected ones will be resent and stored according to their original

reception order. Thus, if several priority requests are rejected, when a stored

one completes, the first rejected request will be the next one at being stored.

Making so, all the priority requests are guaranteed to be stored.

To implement that strategy, processors must know the order in which

rejected priority requests were received. However, it is not necessary that all

processors know the global order of all the rejected priority requests. Rather,

the issuer of a priority request only needs to know the issuer of the rejected

priority request that will replace its own request when it completes. Therefore,

the global order of priority requests can be stored in a distributed way. To

determine and store the order, each processor will require two registers. In

short, each system component (processors and memories) has a priority request

table where the outstanding requests are stored and, besides, each processor

has two registers to determine and remember the order of requests. Following,

this structures are described in more detail.

• Priority Request Table. According to our strategy this table has

N entries where N can be lower than the maximum number of simul-

110 Chapter 6. Bounding Storage Requirements

taneous outstanding priority requests in the system. Each entry stores

the required information about certain priority request and consists of

the following fields: valid bit, issuer, address, identifier, operation, state,

and used bit. These fields are similar to those of the tables used by the

baseline priority request mechanism described in Section 5.3. The single

difference is the used bit. This bit only makes sense for priority requests

marked as completed. It indicates whether the identifier held by that

entry can be used (that is, included in the completed PR field of an issued

priority request) or, on the contrary, the identifier has already been used

(we will see it in more detail later). The entry size is 10 bytes. Thus, for

example, a system where 64 storable requests are allowed would require

only a 640-byte table at each component.

• Ack Register. Besides the table, each processor requires an Ack regis-

ter. This register holds the identifier of a processor which sent a priority

request that was rejected and which has not been able to be stored yet.

A processor can only hold a valid value in its Ack register if it has re-

cently issued a priority request. When its own request is stored and

completed, it will be the only processor responsible for informing the

[Ack] processor about the completion.

• Counter Register. Its value ranges between 0 and N - 1. This register

is used to estimate the corresponding value of the Ack register.

While the number of table entries does not depend on the maximum num-

ber of simultaneous outstanding priority requests per processor, the number

of required Ack registers and the number of required Counters will depend on

it, requiring as many Ack and Counter registers as the maximum number of

simultaneous outstanding priority requests allowed per processor. However,

note that, in case of reduced tables, increasing the number of outstanding

priority requests would not be as harmful as in case of using tables propor-

tional to the system size. For example, assuming a 64-processor system with

tables proportional to the system size, if the number of outstanding requests

increases from 1 to 8, the size of each priority request table will increase in a

factor of 8. However, assuming a 64-processor system with two-entry tables,

if the number of outstanding requests increases from 1 to 8, the size of the

6.3. General Working Scheme 111

required support structures will only increase in a factor of 1,6. This is be-

cause, when tables are proportional to the system size, the size of the required

structures will depend on the product of the system size and the number of

outstanding requests (num out PR):

structure size = num proc ∗ entry size ∗ num out PR

On the contrary, with reduced tables, the size of the required structures

will only depend on the addition of the table size and the number of simulta-

neous outstanding requests:

structure size ∼= num table entries ∗ entry size + num out PR

6.3 General Working Scheme

As commented previously, a processor only uses the starvation prevention me-

chanism when it detects it may be starving. In such a situation, the following

steps are carried out:

1. The starved processor composes and broadcasts a priority request mes-

sage. To set the completed PR field, the issuer searches in its table a

priority request which (1) was issued by itself, (2) is marked as com-

pleted, and (3) is not marked as used. If it finds such a request, its

identifier is included in the completed PR field and the table entry is

marked as used. If the table does not contain such a request (because

the entry holding the required information has already been removed),

the issuer will set the completed PR field to Nill.

2. When a processor receives a priority request message, it checks the com-

pleted PR field. If it is set to Nill and the table is full, the recipient

rejects the priority request and updates its Ack and Counter registers

accordingly (as we see later in more detail). If completed PR is differ-

ent from Nill, the received priority request replaces the stored request

appointed by the completed PR field.

112 Chapter 6. Bounding Storage Requirements

issuer address

A

5 A

4

3 B

0 B

2 A

identifier

0

1

2

3

4

Figure 6.1: Policy followed to ensure the storage of all priority requests. Two

table entries are assumed (N = 2).

3. If the storage of a priority request succeeds, the processor will serve it (if

required, according to the performance policy), marking it as completed

in case of supplying all the requested tokens.

4. Once the issuer of a stored priority request receives all the requested

tokens and performs the corresponding memory operation, it marks its

priority request as completed. Next, if there exists any priority request

that could not be stored (information obtained from its Ack register), it

will send to the issuer of such a request a resending notification indicating

in such a message the identifier of the stored priority request that has

just been completed. In this case, the sender marks the stored priority

request as used (to prevent the identifier from being included in another

request).

5. When a processor whose priority request was rejected receives a resend-

ing notification informing about the completion of a stored request, it

immediately resends its request, attaching in the completed PR field the

identifier received in the notification, which will ensure its acceptance.

6.4 Ensuring the Priority Request Storage

Consider an M-processor system and N-entry tables (where M > N). If

each processor in the system sends a priority request at the same time, only

N priority requests will be able to be stored, whereas the remaining M - N

requests will not find a free entry and, therefore, will be rejected. In order

6.5. Notifying the Priority Request Completion 113

to ensure that the rejected priority requests will eventually be stored, the

following strategy is carried out. The idea is to replace (when completed) the

priority request received in the Xth place by the priority request received and

rejected in the (X + N)th place (as shown in Figure 6.1). Therefore, when

the priority request received and stored in the Xth position is completed, its

issuer will report about its completion to the issuer of the priority request

received and rejected in the (X + N)th position. This report will include the

identifier of the completed priority request. Thus, when a processor receives

the report, it will resend its priority request, including in the completed PR

field the received identifier. Since each identifier can only be included once in

a completed PR field (thanks to the used bit), the storage of the resent priority

requests is always guaranteed.

6.5 Notifying the Priority Request Completion

The only way to remove a completed priority request from the tables is by

using the completed PR field of a received priority request. A processor that

issues a priority request can get the information required for that field by two

different means. The first way is by directly searching in its table. In this

case, the issuer searches for a valid priority request issued by itself which is

marked as completed, but not marked as used. If it finds such a request,

it includes its identifier in the completed PR field and marks the table entry

as used, thereby preventing that identifier from being included in other re-

quests. Alternatively, the information required by the completed PR field can

be obtained from a received resending notification too. These notifications

are point-to-point messages and they indicate to the receiver that its rejected

priority request can be resent with total acceptance guarantee. In addition,

these notifications include the identifier of the stored priority request that can

be replaced. Therefore, that identifier can be attached in the completed PR

field.

If the identifier required by the completed PR field of the request that is

going to be sent is not found in tables, the issuer sets that field to Nill. When

the field is set to Nill, the storage of the priority request is not guaranteed and,

therefore, neither its completion. Therefore, the priority request will have to

114 Chapter 6. Bounding Storage Requirements

be sent again, but only when its storage can be guaranteed. To this end, the

issuer waits for a resending notification, which will inform it about the stored

request that has been completed.

In order to generate the resending notifications, each processor which sent

a priority request (received in the Xth place) must remember (by its Ack

register) the processor which the notification must be sent to (once its own

priority request completes). That processor corresponds to the one whose

issued priority request was received in the (X + N)th place. The proper value

of the Ack register (according to the strategy defined in the previous section)

can be estimated easily by means of the Counter register. Initially, Counter

is disabled. While it remains disabled, the arrival of priority requests will

not change its state. However, when the a processor receive its own priority

request with the completed PR field set to Nill1, Counter will be initialized

to 0, indicating that the count has begun. From this moment, the value of

Counter is increased in 1 every time a new priority request with the completed

PR field set to Nill is received. When the arrival of a priority request causes

the value of Counter to overflow the maximum count (N - 1), the issuer of

such a request will be stored in the Ack register and Counter will be disabled,

indicating the count is over. Making so, Ack will point to the processor that

issued a priority request (which was rejected) N positions after the priority

request issued by the processor where Ack is placed.

As soon as a processor completes its priority request and its Ack register

holds a valid value, the processor sends a notification to the [Ack] processor.

When the notification is sent, the value of Ack is reset and the entry in the

table holding the information included in the notification message is marked

as used. Marking it as used will prevent such information from being included

in a priority request issued locally later. Notice that the first time a processor

sends a priority request, it looks in its table for the information required by

the completed PR field. If it finds such information, it will include it in its

priority request (marking it as used). However, if a processor marks one

of its priority requests as completed and that information could be included

either in a resending notification or in a local priority request, the processor

always prioritizes the notification. This prevents the local priority requests

1Such a priority request will be able to be stored only if the table is not full yet.

6.5. Notifying the Priority Request Completion 115

P0 P1 P2

S state, t=1O state, t=2I state, t=0

0

AckCount ## AckCount #0

Count #Count 0

1

Ack #Count #

Priority Request

broadcast comp PR 5

StateOpIdIssuer

P0 6 Rd Pend

StateOpIdIssuer

P0 6 Rd Pend

StateOpIdIssuer

P0 6 Rd Pend

Response to P0

data + token

5

4

3

2

Starvation − Priority Request

broadcast comp PR #

Resending Notification to P0

comp PR 5

StateOpIdIssuer

P2 5 Rd Pend

StateOpIdIssuer

P2 5 Rd Comp

StateOpIdIssuer

P2 5 Rd Comp

Count # Ack #

Count 1 Ack P0

Time

rejected rejected rejected

accepted accepted accepted

Figure 6.2: Example of a starvation situation. To simplify the example, the

table entries only consist of four fields. Id stands for the priority level or

identifier and Op indicates the requested memory operation (Rd is Read).

Comp refers to completed and Pend refers to pending. Besides the value #

stands for Nill.

from starving out the rejected requests.

Figure 6.2 walks through an example of how a starvation situation is solved.

In this example, there are three processors (P0, P1, and P2) with single-entry

tables. Initially, P0’s table is full and its Counter and Ack registers are set to

Nill (#). P1 is in Owner state (i.e., it is in charge of providing the requested

116 Chapter 6. Bounding Storage Requirements

memory block), its table is full, and its Counter and Ack registers are also

set to Nill. P2’s table is full too. However, as the stored priority request

belongs to it, its Counter register is initialized to 0. At time 0, P0 detects

it may be starving and broadcasts a priority request. The priority request

message does not hold any information about the completed priority request

to replace (completed PR field is set to Nill) because the P0’s table does not

contain any information about its own priority requests. Therefore, at time 1,

the P0’s priority request is rejected at its arrival as tables are full. Besides,

as P0 rejects its own message, it initializes its Counter to zero. P1 does not

modify its Counter because it is disabled. P2 increases the value of its Counter

(because it is already enabled) and, as it reaches the maximum count, it stores

in its Ack register the issuer of the rejected request. At time 2, P2’s priority

request is completed. Besides, since P2 holds a valid value in Ack, it sends

a resending notification message to P0 notifying it that the stored priority

request with id 5 was completed. At time 3, P0 receives the notification and it

immediately proceeds to resend its priority request, attaching in the completed

PR field the identifier received in the notification message. Thus, when the

priority request is received at time 4, all the processors accept it and store it

because it can replace a stored priority request (already completed). As P1 is

in Owner state, at time 5, it sends a response message to P0 and marks that

priority request as completed (not shown in the figure). When P0 receives

the response, it will perform the memory operation and will mark its priority

request as completed too.

6.6 Reducing the Control Traffic

According to the described strategy, each starved request will require, at worst,

three control messages: two priority requests, which are broadcast messages,

and one acknowledgment, which is a point-to-point message. Comparing all

this starvation control traffic against that generated by the baseline priority

request mechanism, we realize that the control traffic will increase significantly.

Although in small systems it will not entail a serious problem, in medium/large

systems it will. Besides, given that the aim of this strategy is to improve the

scalability of the starvation prevention mechanisms, it would be desirable a

6.6. Reducing the Control Traffic 117

type

2 bits

size

1 byte

requester

1 byte

address

4 bytes

completed PR

2 bytes1 bit

operationdestination

1 byte

(a) normal

type

2 bits

size

1 byte

requester

1 byte

destination

1 byte

(b) size-reduced

Figure 6.3: Format of normal and size-reduced priority request messages.

reduction of the control traffic. To this end, in this section, we propose sev-

eral implementation options. Each option addresses one particular problem.

Besides, they are exclusive, since the implementation of one of those options

automatically discards the application of other.

6.6.1 Size of Rejected Priority Requests

Before sending a priority request, the issuer knows whether the request will be

accepted or, on the contrary, it will be rejected, thanks to the completed PR

field. If the field is set to Nill, the request will likely be rejected2. Otherwise,

it will be accepted. In spite of the fact that processors know when the priority

request is going to be rejected, they broadcast a common priority request,

which includes certain information (such as the requested memory block) that

is not going to be used by any of the recipients. That information unnecessarily

increases the length of priority requests and, taking into account that they are

broadcast messages, that information is going to flood the interconnect.

In order to reduce the damage caused by the broadcast of such informa-

tion, in this section we propose an alternative implementation. Thus, when a

processor has to broadcast a priority request and it does not find the required

information for the completed PR field (which indicates that it will probably

be rejected), instead of broadcasting a common priority request, a shorter

kind of message is used. Given that the only information that the recipients

will need to know is the issuer, this new class of message will not need to

2A priority request whose completed PR field is set to Nill will only be accepted if the

table is not full. This only happens during the initialization phase.

118 Chapter 6. Bounding Storage Requirements

include the requested memory block or the request type. It will only consist

of a source field (processor which issues the request), a type field (message

type), and the destination field (broadcast). Figure 6.3 depicts the differences

between a common priority request message and the reduced version3. As

shown, the size-reduced priority request excludes the address, operation, and

completed PR fields. Thus, the size of those requests is 4 bytes in contrast to

the 10 bytes in the common case, which allows to save 60% of traffic. With

this simple solution, the overload that entails the priority requests could be

softened.

6.6.2 Removing Acknowledgments

When a processor A sends an acknowledgment to a processor B, A is certain

of the acceptance of the priority request that B will resend. Therefore, instead

of that the processor A sends an acknowledgment to the processor B and B

resends the priority request, the processor A could directly resend the priority

request in behalf of the processor B. To do this, the processor A will need

to know all the information concerning to the priority request to resend, that

is, the issuer processor, the requested memory block, and the priority request

type (read or write). To this end, when the rejection of a priority request

causes the Counter structure to overflow, in the same way the issuer processor

is stored in the Ack register, processors will also store the requested memory

block (in an Address register) and the request type (in an Operation register).

Thus, with only these two additional registers, processors will have all the

information that they need to resend a priority request in behalf of another

processor. In this way, when a processor completes its own priority request,

if Ack, Address, and Operation registers have a valid value, it will resend a

priority request in behalf of the [Ack] processor. This priority request will

include the information (identifier4) about the priority request that has just

been completed. The main advantage of this implementation option is the

elimination of the acknowledgments, which reduces the control traffic and

alleviates the interconnection network. Besides, as processors do not need to

3The size of priority requests, responses messages, or any other type of message is in

accordance to that assumed in [76].
4Note that this identifier was that included in the acknowledgment messages.

6.6. Reducing the Control Traffic 119

wait for acknowledgments, the waiting time for resending the priority requests

decreases, which will improve the average latency of serving starved requests.

6.6.3 Handling Rejected Priority Requests as Transient Re-

quests

Although the reduction in the size of some priority request messages and the

removal of acknowledgments tackle negatives aspects of the technique proposed

in this chapter, its worst aspect continues to be the large amount of broadcast

messages that have to use. As commented before, if the storage of a priority

request does not succeed, the priority request will not be served (although

the processor that rejects it holds sufficient tokens to do it). Therefore, the

majority of the starved requests will require two priority requests to solve the

starvation situation. Though this is correct, this strategy is quite inefficient

as priority requests are broadcast messages and its use entails to flood the

network.

To address this problem, in this section we propose a strategy that takes

advantage of the rejected priority requests. The priority requests that are

rejected could be considered as if they were transient requests (since they

are not stored in tables). Thus, if a processor rejects a priority request but

it holds all the requested tokens, then it will proceed to serve it. Hence, a

starved request may be completed by a single priority request without having

to resend it and wait for its storage. Note that, although only one priority

request is used, its issuer will continue to receive the corresponding resending

notification because the processor in charge of sending such a notification will

not be aware of the priority request completion. However, when the resending

notification is received and the starved request has already been completed,

the processor will not resend its priority request. It simply ignores it. Thus,

this simple strategy lets the interconnection network traffic be alleviated due to

the reduction of broadcast messages. Besides, the average latency of resolving

starved requests will decrease (as responses may be received sooner), which in

turn will contribute to improve the overall performance.

As commented, according to this implementation option, it may occur

that when a processor receives a resending notification it has already com-

pleted its priority request and, since it is completed, it will not need to resend

120 Chapter 6. Bounding Storage Requirements

it. Therefore, the identifier of the completed request received in the resending

notification will not be broadcast and, if it is not stored, it will be useless.

Notice that the processor that sent the resending notification marked such a

request as used and it will not be able to include that information in a priority

request. Therefore, if the receiver of a resending notification does not remem-

ber nor broadcast that information, the completed priority request will not be

able to be removed from the tables and a failure will be caused. To prevent

this situation from happing, the recipient of a resending notification will have

to keep the information received in the resending notification when that in-

formation is not immediately broadcast. To this end, a dedicated register can

be used. However, this would increase the storage requirements at each node.

Therefore, an alternative solution is to store the received information in the

own table. Thus, the processor that receives a resending notification and does

not immediately broadcast the received identifier searches in its table for the

entry holding the request with the received identifier and it marks that entry

as completed. Besides, the issuer field of that entry is set to the local proces-

sor. Making so, when the processor has to use that information (because of a

local priority request or a resending notification) and it searches in the table,

it will be able to find the required information.

6.7 Evaluation

In what follows, we compare Token Coherence using the persistent request

mechanism (Persistent) against Token Coherence using the priority request

mechanism with table size proportional to the system size, that is, with 32-

entry tables (Priority R), and using 16-entry tables (Priority-16), 8-entry ta-

bles (Priority-8), 4-entry tables (Priority-4), 2-entry tables (Priority-2), and

1-entry tables (Priority-1).

6.7.1 Target System and Parameters

We simulate a 32-processor Sparc v9 system with the parameters commented

in Chapter 4. We evaluate the referred processor system assuming that pro-

cessors are connected through an MIN network with the perfect-shuffle per-

mutation. The results for the 2D mesh are not shown because they are similar

6.7. Evaluation 121

Persistent R

Priority R

Priority-16

Priority-8

Priority-4

Priority-2

Priority-1

Barnes Cholesky FFT LU1 LU2 Ocean Radix Volrend Average
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
N

o
rm

a
liz

e
d

 S
ta

rv
e

d
 R

e
q

u
e

s
ts

Applications

Figure 6.4: Normalized starved requests.

to those obtained for the MIN.

The simulated starvation prevention mechanisms assume only one simul-

taneous outstanding persistent/priority request per processor. Given that we

aim to improve the scalability, the optimization described in 6.6.3 is assumed

since it reduces the number of broadcast messages, which are a threaten to

the protocol scalability. The assumption of this optimization automatically

discards the other ones.

All the data shown in the figures of this section are normalized to those

data obtained while using the priority request mechanism.

6.7.2 Starved Requests

Figure 6.4 illustrates the normalized number of requests suffering starvation.

As shown, when the size of the priority request tables lowers, the number

of starved requests diminishes, reaching 25% of reduction in average in case

of single-entry tables. This is due to two main reasons. First, as the tables

are reduced, the average latency of completing starved requests increases (as

we see next), which, in turn, automatically increases the timer used to detect

starvation, causing only the request that actually suffer starvation to be served

by the starvation prevention mechanism. Second, since the service of the

starved requests is slower, tokens remain longer in caches, avoiding forwarding

them too soon and, therefore, preventing new starvation situations from being

generated.

122 Chapter 6. Bounding Storage Requirements

Broadcast Messages Point-to-point Messages

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R
P

ri
o

ri
ty

-1
6

P
ri
o

ri
ty

-8
P

ri
o

ri
ty

-4
P

ri
o

ri
ty

-2
P

ri
o

ri
ty

-1

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R
P

ri
o

ri
ty

-1
6

P
ri
o

ri
ty

-8
P

ri
o

ri
ty

-4
P

ri
o

ri
ty

-2
P

ri
o

ri
ty

-1

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R
P

ri
o

ri
ty

-1
6

P
ri
o

ri
ty

-8
P

ri
o

ri
ty

-4
P

ri
o

ri
ty

-2
P

ri
o

ri
ty

-1

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R
P

ri
o

ri
ty

-1
6

P
ri
o

ri
ty

-8
P

ri
o

ri
ty

-4
P

ri
o

ri
ty

-2
P

ri
o

ri
ty

-1

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R
P

ri
o

ri
ty

-1
6

P
ri
o

ri
ty

-8
P

ri
o

ri
ty

-4
P

ri
o

ri
ty

-2
P

ri
o

ri
ty

-1

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R
P

ri
o

ri
ty

-1
6

P
ri
o

ri
ty

-8
P

ri
o

ri
ty

-4
P

ri
o

ri
ty

-2
P

ri
o

ri
ty

-1

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R
P

ri
o

ri
ty

-1
6

P
ri
o

ri
ty

-8
P

ri
o

ri
ty

-4
P

ri
o

ri
ty

-2
P

ri
o

ri
ty

-1

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R
P

ri
o

ri
ty

-1
6

P
ri
o

ri
ty

-8
P

ri
o

ri
ty

-4
P

ri
o

ri
ty

-2
P

ri
o

ri
ty

-1

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R
P

ri
o

ri
ty

-1
6

P
ri
o

ri
ty

-8
P

ri
o

ri
ty

-4
P

ri
o

ri
ty

-2
P

ri
o

ri
ty

-1

0

0.5

1

1.5

2

2.5

3

N
o

rm
a

liz
e

d
 C

o
n

tr
o

l
M

e
s
s
a

g
e

s
Barnes Cholesky FFT LU1 LU2 Ocean Radix Volrend Average

Figure 6.5: Normalized starvation control messages.

6.7.3 Starvation Control

Figure 6.5 shows the normalized number of control messages used to manage

the generated starvation situations. These messages include priority requests

in Priority R and priority requests and resending notifications when tables

with reduced size are used. As depicted, for Priority-16, Priority-8, Priority-4,

and Priority-2, despite the fact that the number of generated starved requests

is smaller than that generated by Priority R, the total number of control mes-

sages is higher. This happens because each starved request will require, at

worst, three control messages (two priority requests and one resending noti-

fication), which increases the total number of control messages between 10%

and 20% in average with respect to Priority R. In case of Priority-1, as the

number of starved requests is so low, the total number of control messages is

5% smaller than that generated by Priority R. Besides, in this last case, the

number of broadcast messages is 45% lower than that generated by Persistent

R.

6.7.4 Network Traffic

The normalized total traffic (in packets) generated by Token Coherence is de-

picted in Figure 6.6. Control Response stands for data-less response messages

and Starvation Control stands for persistent/priority requests. As shown, Pri-

ority R slightly reduces the number of Transient Request messages due to the

6.7. Evaluation 123

Transient Request

Data Response

Control Response

Starvation Control

Resending Notification

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R
P

ri
o

ri
ty

-1
6

P
ri
o

ri
ty

-8
P

ri
o

ri
ty

-4
P

ri
o

ri
ty

-2
P

ri
o

ri
ty

-1

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R
P

ri
o

ri
ty

-1
6

P
ri
o

ri
ty

-8
P

ri
o

ri
ty

-4
P

ri
o

ri
ty

-2
P

ri
o

ri
ty

-1

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R
P

ri
o

ri
ty

-1
6

P
ri
o

ri
ty

-8
P

ri
o

ri
ty

-4
P

ri
o

ri
ty

-2
P

ri
o

ri
ty

-1

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R
P

ri
o

ri
ty

-1
6

P
ri
o

ri
ty

-8
P

ri
o

ri
ty

-4
P

ri
o

ri
ty

-2
P

ri
o

ri
ty

-1

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R
P

ri
o

ri
ty

-1
6

P
ri
o

ri
ty

-8
P

ri
o

ri
ty

-4
P

ri
o

ri
ty

-2
P

ri
o

ri
ty

-1

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R
P

ri
o

ri
ty

-1
6

P
ri
o

ri
ty

-8
P

ri
o

ri
ty

-4
P

ri
o

ri
ty

-2
P

ri
o

ri
ty

-1

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R
P

ri
o

ri
ty

-1
6

P
ri
o

ri
ty

-8
P

ri
o

ri
ty

-4
P

ri
o

ri
ty

-2
P

ri
o

ri
ty

-1

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R
P

ri
o

ri
ty

-1
6

P
ri
o

ri
ty

-8
P

ri
o

ri
ty

-4
P

ri
o

ri
ty

-2
P

ri
o

ri
ty

-1

P
e

rs
is

te
n

t
R

P
ri
o

ri
ty

 R
P

ri
o

ri
ty

-1
6

P
ri
o

ri
ty

-8
P

ri
o

ri
ty

-4
P

ri
o

ri
ty

-2
P

ri
o

ri
ty

-1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
N

o
rm

a
liz

e
d

 T
ra

ff
ic

 (
in

 P
a

c
k
e

ts
)

Barnes Cholesky FFT LU1 LU2 Ocean Radix Volrend Average

Figure 6.6: Normalized network traffic.

fact that less cache misses are generated because of the use of an efficient

performance policy all the time. In turn, the reduction of cache misses causes

the number of Data Response and Control Response messages to lower. Be-

sides, as we commented previously, Priority R requires less Starvation Control

messages than Persistent R. Thus, Token Coherence using Priority R reduces

about 20% the total traffic generated with respect to Persistent R mainly be-

cause Priority R efficiently manages tokens and memory blocks (as efficiently

as in absence of races). For Priority-16, Priority-8, Priority-4, and Priority-

2, although the overall traffic is still smaller than that generated when using

Persistent R, it slightly increases with respect to that generated by Priority R

mainly because of the increase in the Starvation Control and Resending No-

tification messages. For Priority-1, thanks to the great reduction of starved

requests, the overall traffic is more or less similar to that generated by Priority

R.

6.7.5 Starvation Latency

Figure 6.7 shows the normalized average latency of completing starved re-

quests. It includes the elapsed time from a starved request is detected up to

the service of that request is completed. According to Figure 6.7, Priority R

reduces about 25 % the average latency of completing a starved request with

respect to Persistent R. This reduction is due to the fact that, unlike Per-

124 Chapter 6. Bounding Storage Requirements

Persistent R

Priority R

Priority-16

Priority-8

Priority-4

Priority-2

Priority-1

Barnes Cholesky FFT LU1 LU2 Ocean Radix Volrend Average
0

0.5

1

1.5

2

2.5

N
o

rm
a

liz
e

d
 S

ta
rv

a
ti
o

n
 L

a
te

n
c
y

Applications

Figure 6.7: Normalized starvation latency.

sistent R, Priority R serves the starved requests, without having to wait any

acknowledgment (or deactivation message). When using Priority-16, Priority-

8, Priority-4, or Priority-2 the average latency increases slightly, being more or

less similar to that of Persistent R, as the priority requests may require to be

sent twice, having to wait for a point-to-point acknowledgment (the resending

notification). Finally, when using single-entry tables (Priority-1), the average

latency increases by a factor of about 1.5. This increase is due to the fact that

some starved requests may be served one by one (only one priority request

can be stored in the tables). Despite that, the latency is not extremely large

because some priority requests can be served without being stored (according

to the optimization proposed in Section 6.6.3). This is possible thanks to the

fact that priority requests are ordered messages, which usually suffices to solve

most of the protocol races.

6.7.6 Runtime

Finally, Figure 6.8 illustrates the normalized runtime of the applications. As

shown, Priority R reduces the runtime between 8 % and 20 % (more than 10 %

in average). In spite of reducing the table size, the runtime of the applications

when using our approach is only slightly higher than that of Priority R as the

increase in both the overall traffic and the average latency of starvation is offset

by the reduction of the number of starved requests. Thus, despite reducing

the table to a single entry, the runtime is even lower than that of the most

6.8. Conclusions 125

Persistent R

Priority R

Priority-16

Priority-8

Priority-4

Priority-2

Priority-1

Barnes Cholesky FFT LU1 LU2 Ocean Radix Volrend Average
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
N

o
rm

a
liz

e
d

 R
u

n
ti
m

e

Applications

Figure 6.8: Normalized runtime.

efficient implementation of the persistent request mechanism (Persistent R).

This is possible thanks to the considerable decrease of the starvation situations

and the use of an efficient performance policy all the time, which affects all

the processors in the system (independently of whether they are involved in a

race or they are not).

6.8 Conclusions

In this chapter we address the scalability problem related to the storage re-

quirements in Token Coherence. In particular, we have proposed an effective

strategy that improves the scalability of Token Coherence by limiting the stor-

age requirements of the starvation prevention mechanisms proposed until now.

This is achieved at the expense of a slight degradation of the overall perfor-

mance as long as the required table size is reduced. However, despite the fact

that the table size can be reduced until a minimum of one entry, the execution

time of the analyzed applications is never higher than that of the most effi-

cient implementation of the persistent request mechanism. Thus, our proposal

improves the scalability of the Token Coherence protocol by decoupling the

storage requirements from the system size, while still maintaining the overall

system performance.

126 Chapter 6. Bounding Storage Requirements

Chapter 7

Switch-based Packing

Technique

Starvation prevention mechanisms are based on broadcast messages, which are

neither scalable nor suitable for medium and large systems. Besides, as we have

already commented, token-based protocols use non-silent invalidations, which

increases the protocol latency. To address both problems, in this chapter we

propose a switch-based technique which allows to pack several messages into

just one. By doing this, we can considerably reduce the traffic related to (1) the

broadcast messages used by the starvation prevention mechanism and (2) the

number of non-silent invalidations. Other packing techniques were previously

proposed [90], however they are implemented in the directory instead of in the

network switches and, besides, they aim to improve the cache latency rather

than generated traffic.

7.1 Introduction

The implementation of requests by means of broadcast messages in small sys-

tems is a good solution because they provide direct and fast communication

between processors. Thus, on a cache miss occurrence, processors can quickly

find where the memory block they require is by using broadcast messages.

However, this class of message has a serious disadvantage: the scalability.

While the bandwidth provided by the interconnection network usually only

127

128 Chapter 7. Switch-based Packing Technique

increases linearly to the system size, the bandwidth requirements of broadcast

messages increase quadratically to the system size. Therefore, although in

small systems the network can provide enough bandwidth for broadcast mes-

sages, in medium and large systems they will require much more bandwidth

than that provided by the interconnection network. Thus, due to their lack

of scalability, broadcast messages are not a good choice for systems with a

considerable number of processors.

The starvation prevention mechanisms proposed so far are based on broad-

cast messages. This makes the Token Coherence protocol only suitable for

small systems, but not for medium or large systems. To address this prob-

lem, in this chapter we propose a switch-based technique which allows to pack

several broadcast messages in just one message. By doing this, the network

traffic can be reduced drastically. Indeed, when the reduction is really high,

the bandwidth required by broadcast messages becomes similar to that re-

quired by several point-to-point messages, which are scalable. Furthermore,

the traffic reduction also affects other messages transmitted through the net-

work, which can help to reduce their latency since the network will be less

congested. Besides, as the packing rate increases proportionally to the system

size, this technique can provide broadcast messages with certain scalability.

Thus, the starvation prevention mechanisms can benefit from this technique,

making Token Coherence suitable even for medium/large-sized systems.

The packing technique that we describe next can be applied to whatever

of the starvation prevention mechanisms proposed for Token Coherence. How-

ever, in this chapter we focus its description on the priority request mechanism

because of several reasons, leaving as a future work its application to persistent

requests. The main reasons for applying this technique to priority requests

are (1) due to the routing algorithm used by priority requests, it is likely sev-

eral priority requests to coincide along the same path (visited switches), being

more feasible the packing of several messages; (2) unlike persistent requests,

several priority requests can be served at the same time (as they do not require

acknowledgments). Therefore, the priority request packing can accelerate the

priority request reception and, in turn, their completion; and (3) we aim at im-

proving the most efficient starvation prevention mechanism and, as we saw in

previous chapters, the priority request mechanism outperforms the persistent

7.1. Introduction 129

request one.

Notice that the starvation situations usually happen because several pro-

cessors wish to simultaneously access to the same memory block. When such

a situation occurs, the processors practically realize at the same time. There-

fore, the priority requests that they broadcast to solve it will be sent near

simultaneously. Besides, these priority requests for the same memory block

must be sent through the same ordered path to ensure they are received in

order. Thus, the priority request messages for the same memory block are

likely to coincide in the buffers of the network switches placed along the route

to their destinations. In addition, the priority requests for the same memory

block have in common the majority of their fields. Therefore, when several

of those messages are broadcast, a lot of redundant information will flood

the interconnect, which unnecessarily consumes a significant part of the whole

bandwidth.

To tackle this drawback, we take advantage of the fact that (1) the priority

requests for the same memory block usually coincide in the input buffers of

the network switches and (2) those requests practically contain the same infor-

mation to pack (and compress) several messages in a single message (priority

request pack). The components in charge of performing the packing are the

network switches, which will remove a lot of redundant information, thereby

saving a considerable quantity of endpoint traffic1. Let us show this by an

example. Imagine a 32-processor system where 10 processors each broadcast

a priority request. The endpoint traffic due to the generated priority requests

will be:

10 ∗ 8 ∗ 32 = 2560 bytes

10 messages, 8 bytes per message, and 32 destinations. However, if we are

able to pack the 10 priority requests in just one pack, the generated endpoint

traffic will be:

1 ∗ 18 ∗ 32 = 576 bytes

1We refer to endpoint traffic as the traffic received by components, as defined in [76].

130 Chapter 7. Switch-based Packing Technique

type

2 bits

size

1 byte

requester

1 byte

address

4 bytes

completed PR

2 bytes1 bit

operationdestination

1 byte

Figure 7.1: Priority request format. The fields common to all the priority

requests upon the same memory block are shown in shadow.

1 message, 18 bytes per message2, and 32 destinations. Therefore, in this

case, we could have saved up to 77,5% of the generated endpoint traffic. This

reduction increases as the number of priority requests packed in a single mes-

sage increases. Thus, this solution may provide scalability to broadcast mes-

sages, as the more priority requests the nodes inject, the more packing the

switches will be able to carry out, preventing the endpoint traffic from in-

creasing quadratically with the system size. Additionally, the performance

may be improved when it is jeopardized by the use of priority requests, which

is common is medium and large systems.

In what follows, this technique is explained in more detail.

7.2 Format of Priority Request Packs

Priority request messages are mainly composed of the fields shown in Figure

7.1, being their total size 10 bytes. The priority requests for the same memory

block hold almost the same information. In fact, they share most of their

fields which are marked in gray in Figure 7.1. The only fields that differ in

a set of priority requests for the same memory block are the requester field,

the operation field, and the completed PR field. Thus, only 3 out of 10 bytes

may differ in a set of priority requests for the same memory block. Therefore,

when a starvation situation happens, although several priority requests are

broadcast flooding the interconnection with a lot of information, only about

the 30% of that information will be useful, as the remaining 70% is replicated

and, consequently, could be saved. Taking into account this fact, the packing

of several priority requests into a single pack will let us remove the redundant

information.

2In this case, as will be shown the pack size is larger than the size of individual messages

because the pack has to code several issuers.

7.2. Format of Priority Request Packs 131

address

4 bytes

destination

1 byte

type

2 bits

size

1 byte 1 bit

operation requester set

n bytes

completed PR set

2n bytes

Figure 7.2: Format of priority request packs. The fields in shadow are those

that change with respect to the format of priority requests.

From here on, we will use the term priority request pack or just pack to

refer to several priority requests packed in a single message. In fact, we are

going to use the term pack in case of a single priority request, since it can

be considered as a pack with only one priority request. Figure 7.2 illustrates

the format of packs. As shown, the pack format is slightly different from

the priority request format. Although the number of fields does not change,

the requester field becomes the requester set field and the completed PR field

becomes the completed PR set field.

The requester set field is a list of the processors that request the memory

block identified by the address field. Requester set must be implemented as a

list and not a bit vector because, although several priority requests are packed

in the same message, it is still necessary to maintain their global order. Notice

that a list of processors can keep the order of the messages, meanwhile a bit

vector can not keep it. The size of the requester set field will depend on the

number of packed messages. Hence, if a pack contains n priority requests, its

size will be n bytes. Note that its size will be independent of the system size,

which does not compromise the scalability of the messages.

Like the requester set field, the completed PR set field is the list of the

identifiers held by the different priority requests included in the pack. The

identifiers must be placed in the same order as that occupied by its corre-

sponding requester in the requester set field. The size of this field will also

depend on the number of packed messages. Hence, if a pack contains n priority

requests, its size will be 2n bytes. Note that, if we assume one outstanding

priority request per processor, it is not necessary that the packs include the

completed PR set field, since a request from certain processor will always re-

place the stored request from the same processor.

As shown in Figure 7.2, the operation field is implemented as a single

bit, not as a list containing all the operations. We do this because we only

132 Chapter 7. Switch-based Packing Technique

pack priority requests for the same memory block and which have the same

operation type, that is, either read requests or write requests. This is because

we have observed that most of the requests are read requests.

Notice that, besides modifying these two fields of the priority request mes-

sages, we have also changed their position. As we will see in more detail later,

this is done to ease the packing process and avoid introducing an additional

delay in the critical path of priority requests.

7.3 General Packing Process

Switches carry out the following strategy to implement the packing of priority

requests:

1. When a switch receives a pack for a certain memory block, it checks

whether that memory block matches the memory block requested by

the pack stored in the last position of the buffer where the received

message should be stored.

2. If a match occurs, the requester/s of the received pack (requester set field)

and the information about the completed priority requests to replace

(completed PR set field) will be added to the corresponding fields of the

stored pack. After this, the remaining fields of the received pack can be

discarded.

3. If a match does not occur, the priority request pack is queued in the last

position of the corresponding buffer.

4. When a pack reaches the head of the buffer, it will be no longer possible

to add new requests to the pack, as its transmission could begin at any

time.

Note that, according to the described strategy, priority requests do not

have to wait for other messages to form a pack (which would delay their

transmission) since they are routed as soon as the requested output link be-

comes free. Indeed, what we propose is to take advantage of the elapsed time

that a certain priority request message has to be waiting for being routed to

7.4. Checking Message Matching 133

compound a single message (pack) by packing the priority request messages

received during that time. Thus, if the interconnection network is congested

due to the high quantity of injected broadcast messages, several priority re-

quests will coincide in the buffers. Therefore, the packing of those messages

into a single one will contribute to alleviate the network traffic. On the con-

trary, if priority requests do not coincide in the buffers, it will mean that the

interconnection network can support and efficiently handle that traffic and,

therefore, the broadcast messages do not entail a problem for the network at

that time. Thus, the packing technique would no be used because it would

not be necessary.

In the following two sections, we describe in detail how the matching and

packing of priority requests is carried out.

7.4 Checking Message Matching

When a switch receives a priority request pack, it has to check whether the

incoming pack and the last pack stored in the queue are similar enough (that is,

they correspond to the same memory block and request the same operation)

to compose a single message. This checking must be quite simple and it

should not require a significant hardware complexity. To this end, we make

the following assumptions:

• Priority requests use a dedicated virtual channel. This simplifies the

process as the checking is reduced just to the messages routed through

that virtual channel.

• A received message only can be packed into the last message stored in

the buffer. Besides, that message can not be placed at the head of the

buffer because it means that the sending of the message could begin at

any moment.

• Each queue has two reading ports: one port to read the head of the

queue (that is, the message that is being transmitted) and another port

to read the tail of the queue (for carrying out the checking between the

last stored pack and the incoming pack).

134 Chapter 7. Switch-based Packing Technique

7.5 Packing Priority Requests

When a switch receives a pack which requests a memory block that matches

the one requested by the last stored pack, a packing is performed. The final

pack is generated by doing three operations.

• First, the requester set field of the incoming pack is concatenated with

the requester set field of the stored pack. This concatenation lets packs

maintain the global order of priority requests.

• Second, the completed PR set field of the incoming pack is concatenated

with the completed PR set field of the stored pack. Like in the previous

case, the concatenation allows to maintain the global order.

• Third, the other fields of the incoming pack (address, destination, type,

...) are discarded, since they are already present in the stored pack.

To dynamically compose the packs (the requester set and completed PR

set fields) without affecting the latency of messages through the switches, the

organization of the fields that compose a pack has been slightly modified. As

shown in Figure 7.2, the first field of packs is the address field. Placing that

field in the first place allows to quickly perform the comparison between the

incoming and the stored pack because, as soon as the address field of the

incoming pack is received, the comparison can be performed (it would not be

necessary to wait for receiving the whole message). While the comparison is

being performed, the rest of fields of the incoming pack will complete their

reception.

To ease the packing, a decoupling buffer is placed together with each queue

dedicated to priority requests. This decoupling buffer holds the completed PR

set field of the last pack in the queue. On a match occurrence, the completed

PR set field of the incoming pack is copied to the end of the decoupling buffer,

thereby performing easily the concatenation. Note that, if an incoming pack

does not match the last stored pack, the current contents of the decoupling

buffer will have to be copied to the tail of the stored pack3 before queuing the

3This copy will hardly delay the queuing of the incoming message because as soon as the

comparison finishes, the copy could be performed.

7.5. Packing Priority Requests 135

Time 1 − Switch buffer

Time 2 − Priority request pack arrives at switch buffer

Time 3 − The packing is performed

···
completed PR set

2

requester set

P2

address

B

PR PACK 0

···
address

B···
requester set

P1

PR PACK X

···
completed PR set

0

requester set

P0

address

A

packing is possible

completed PR set

1

decoupling buffer

Time 4 − Priority request pack arrives at switch buffer

Time 5 − The priority request pack is queued

completed PR set

2 − 1

decoupling buffer
PR PACK 0

···
address

B···
requester set

P2 − P1

PR PACK X

packing is not possible

···
completed PR set

3

requester set

P3

address

C

···
completed PR set

0

requester set

P0

address

A

···completed PR set

3

decoupling buffer
PR PACK X+1

address

C···
requester set

P3 ···
completed PR set

2 − 1

requester set

P2 − P1

address

B

PR PACK X

Figure 7.3: Example of message packing.

incoming pack. In this way, the final pack is completed by adding to its end

the completed PR set field that has been composed in the decoupling buffer.

After this, the incoming pack can be queued in the buffer and the decoupling

buffer can be updated with the completed PR set field of the incoming pack.

On a match occurrence, besides the concatenation of the completed PR set

field, the requester set field of the incoming pack will be copied to the end of

the corresponding buffer. This is done to compose the requester set field of

the final pack. Note that it is possible to perform the concatenation of the

requester set fields in such an easy way because the last field of the last pack

in the queue is the requester set field, given that its completed PR set field is

in the decoupling buffer.

Figure 7.3 shows an example of how switches perform the packing. The

figure shows the state of a queue of packs. Initially, the queue contains several

packs. The last pack in the queue only contains a P1’s request for the memory

block B. Note that, the information of its completed PR set field is temporarily

136 Chapter 7. Switch-based Packing Technique

stored in a decoupling buffer. At time 2, the queue receives a new pack.

The incoming pack contains a priority request for the memory block B. As

this memory block matches the block requested by the last stored pack, a

packing can be performed. This consists in putting the requester set field

of the incoming pack (P2) at the end of the queue and the completed PR

set field at the end of the decoupling buffer. The rest of the fields of the

incoming pack are discarded. At time 4, the queue receives another pack. In

this case, the address field of the incoming pack does not match the address

field of the stored pack. Therefore, a packing is not possible and the incoming

pack must be queued. However, before queuing it, the information stored in

the decoupling buffer is reassociated to its pack by copying it at the end of

the queue. This operation will not entail an increase in the latency because

the address comparison is performed before having received the whole packet

completely. Once the pack is received completely, it is placed at the end of

the queue, storing the completed PR set field in the decoupling buffer.

7.6 Increasing Packing Opportunities

The main advantage of the proposed technique is its simplicity. However, there

are some situations that can prevent the technique from taking advantage of

its whole capabilities. In this section we analyze these situations and we

propose several alternative implementation options that increase the number

of opportunities to maximize the number of generated packs.

7.6.1 Increasing the Number of Ordered Paths

We assume that there is a single ordered path for the transmission of all the

priority requests. Therefore, the probability to form packs will be lower than

when several ordered paths are assumed. This is because priority requests for

different memory blocks follow the same path. As a result, most of the priority

requests for the same memory block do not arrive consecutively to switches,

preventing the formation of a single pack.

The impact of this situation can be alleviated by using different ordered

paths. As a result, the priority requests for the same memory block are likely

7.6. Increasing Packing Opportunities 137

address

4 bytes

destination

1 byte

type

2 bits

size

1 byte

operation set

n bits

requester set

n bytes

completed PR set

2n bytes

Figure 7.4: Pack with priority requests for different memory operations.

to be received consecutively by switches, making more probable the formation

of a single pack.

7.6.2 Allowing Different Request Types

Another factor that can affect to the packing is the request type (read or

write). If a starvation situation is caused because several processors contend

for the same memory block and some of them want to read it and others want

to write it, processors will broadcast both priority read and write requests.

However, as long as the priority read requests and the priority write requests

are received interleaved, the generation of a single pack will not be possible.

To address this problem, we could allow a single pack to include priority

requests for different memory operations. To this end, the pack format should

be slightly modified as shown in Figure 7.4. In this case, packs include a list

of the memory operations requested by each requester (operation set field).

Like the completed PR set field, the order in which the memory operations are

stored in the operation set field must be in accordance to the order in which

the requesters are stored in the requester set field. As shown in the figure,

the size of packs may increase because of the operation set field. However,

this increase will not be significant because only 1 bit is required to code each

memory operation. Thus, if we pack n priority requests into a single message,

the size of the operation set field will be n bits.

To be able to continue easily packing several priority requests, besides

using a decoupling buffer to concatenate the completed PR set fields, we will

also require a decoupling buffer to concatenate the operation set fields. The

use of this buffer would be similar to that for the completed PR set fields.

138 Chapter 7. Switch-based Packing Technique

destination

1 byte

type

2 bits

size

1 byte 1 bit

operation requester set

x bytes

completed PR set

2n bytes

address set

4n bytes

issuer address
1 byte 2 bits

. . . issuer address
1 byte 2 bits

Figure 7.5: Pack of priority requests upon different memory blocks. A maxi-

mum of 4 different addresses can be contained in a pack.

7.6.3 Allowing Different Memory Addresses

When several non-consecutive priority requests for the same memory block

coincide in the buffers, the proposed strategy (simplified to ease its imple-

mentation) will not detect the match between the packs, thereby preventing

the generation of a single pack. To solve this problem, in this section we

propose to allow to pack priority requests for different memory blocks. Note

that the reduction (in bytes) of packing several priority requests for different

memory blocks is very small. However, this solution is indeed intended to

pack the priority requests for the same memory block that are not received

consecutively.

To exploit the capabilities of this implementation option without loosing

efficiency, the format of packs, shown in Figure 7.5, is slightly different from

that of the previous proposals. As shown, the different memory blocks are

coded in the address set field as a list. However, in order to avoid that a

memory block address appears several times in the address set field (which

would unnecessarily increase the pack size), we limit to one the number of

times that a requested block can appear in the cited field. Therefore, to know

which memory block is requested by each processor, each processor in the

requester set field is coded together with an identifier indicating the position

that the memory block requested by it occupies in the address set list. For

this purpose, we trust on limiting the number of different memory blocks per

pack. In this sense, limiting it to, for example, 4 different memory blocks per

pack, each processor in the requester set field would require only 2 additional

bits for indicating its requested memory block (among all of those included in

7.6. Increasing Packing Opportunities 139

Table 7.1: Possible packing situations.

number of different

addresses in the

number of different addresses

in the stored pack

incoming pack 1 2 3 4

1 X X

2 X X

3 X

4 X

the address set field). Let us show the benefits of using this approximation by

an example. Imagine a 32-processor system where 5 processors each broadcast

a priority request for a memory block A and other 5 processors broadcast a

priority request for a memory block B. According to the technique proposed

in previous sections, if the intermediate switches receive the priority requests

interleaved (A, B, A, B ...), a pack will not be able to be generated, being

the total endpoint traffic 10 ∗ 8 ∗ 32 = 2560 bytes (10 messages, 8 bytes per

message, and 32 destinations). However, if we apply the changes proposed

in this section, the 10 priority requests could be packed into one pack. In

this case, the generated endpoint traffic would be 1 ∗ 25 ∗ 32 = 800 bytes (1

message, 25 bytes per message, and 32 destinations). Therefore, in this case,

we could save up to 70% of the generated endpoint traffic. Note that, in this

case, the size of the pack is bigger than that assumed in previous proposals

for the same number of included priority requests (25 bytes against 18 bytes).

However, the packing is now possible.

To implement this option without affecting the critical path of messages,

the number of different addresses that can be included in a pack is bounded to

four. Table 7.1 shows the situations where it is possible to perform a packing.

The row indicates the number of different addresses included in the stored

pack and the column indicates the number of different addresses included in

the incoming pack. Only in the cases marked as X it is possible to pack two

140 Chapter 7. Switch-based Packing Technique

messages (regardless of the address matching). Otherwise, the incoming pack

will be queued at the end of the buffer, since a new pack will not be able

to be generated. This approach does not affect the critical path of messages

because it allows the overlapping between the address comparison and the

message reception. On a pack reception, to easily know if we are in presence

of any of the situations shown in the table, each priority request pack has a

counter field (two bits) which indicates the number of different addresses that

it holds. At a pack arrival, the counter fields of both the incoming pack and

the stored pack are used to know if the packing can be performed or not.

The process of packing is similar to that described in previous sections.

When the first address of the incoming message is available, it is compared

with the addresses of the stored pack4. If a math occurs, it is not necessary

to add that address in the stored pack. Otherwise, the address is inserted in

the address set field of the stored pack. To easily concatenate the address set

fields, the switch allocates enough space in the buffer to insert, at most, four

different addresses. Any way, the address identifiers of the requester set field

of the incoming pack will have to be updated accordingly, since the order of

the addresses in the address set field of the new pack may change. To this

end, the position that each address will have in the new pack is stored in a

buffer (2 bits per address). Thus, when a requester set field is received, its

identifier is updated with the offset stored in the corresponding buffer before

being stored in the input queue. Like in the previous proposal, the completed

PR set field of the last message is stored in a decoupling buffer.

The technique described in this section has the aforementioned advantage

of packing non-consecutive priority requests for the same memory block. How-

ever, depending on the number of different addresses allowed per pack (limited

to four in this dissertation), its complexity might increase considerably.

4Note that, according to Table 7.1, at worse, an address of an incoming message will

have to be compared with 2 addresses. Therefore, we will assume that the time required to

perform 2 comparisons is shorter than the time required to finish the next address (or the

whole pack) reception.

7.7. Adjusting the Starvation Detection Timeout 141

7.7 Adjusting the Starvation Detection Timeout

As previously commented, processors use a timeout to estimate whether their

transient requests are suffering from starvation. According to the performance

policy defined in Section 5.8, the timeout is set to twice the processor’s average

miss latency. Setting the timeout to that value prevents a slightly delayed

response from causing starvation, but it also detects starvation quick enough

as to avoid a large performance penalty when a protocol race occurs. Besides,

this policy adapts to different interconnect topologies and traffic patterns.

Since the value of the timeout depends on the cache latency, several factors

will influence when calculating it. Thus, for example, one of the factors that

can cause a variation in the timeout is the size of messages. If we use two

different systems which are exactly the same, but we use messages of different

size, the timeout intervals estimated in each case will differ because the size

of messages affects the cache miss latency and, therefore, it also affects the

timeout. Consequently, if the value of the timeout is estimated under certain

circumstances, its value will only be suitable when the system moves under

those circumstances. Note that this can entail a problem when we use the

packing technique because the timeout intervals are mainly calculated in ab-

sence of priority request packs. However, when several priority requests are

packed into a single pack, we are using messages whose size can be considerably

different from that of, for example, transient requests. Therefore, the timeout

interval calculated using transient requests may not be suitable when we use

priority request packs. To improve this aspect, we propose several alterna-

tives that can address this problem and that can make the system perform

even better:

• Given that the size of packs is larger than the size of transient requests,

the messages coinciding with packs through the network may have a

higher latency, which may increase in some cases the average latency of

cache misses. Therefore, to avoid assuming starvation when the message

is simply delayed in the interconnect, the simplest solution is to use a

higher timeout interval. For instance, setting the timeout to three times

the processor’s average miss latency. Although correct, this solution has

the disadvantage of increasing the time required to detect starvation,

142 Chapter 7. Switch-based Packing Technique

which can cause a large performance penalty in some scenarios.

• Another choice would be to use different timeouts based on the elapsed

time from the reception of the last pack. Thus, for example, if a pack

has not been received lately, we will assume that the network will not

contain any pack and, therefore, we can use the typical timeout (twice the

processor’s average miss latency). However, if a pack has been received

lately, we assume that other packs may be in transit and, therefore, a

higher timeout can be required. In this case, we could set the timeout

to three times the processor’s average miss latency. Hence, we use two

different dynamics timeouts depending on the possible existence of packs

in transit.

• The last proposal we make is to adjust the timeout as long as new packs

are received. Thus, when a pack is received we slightly increment the

value of the timeout because it means that that pack may have delayed

the reception of a response. For example, if the timeout is set to 200

ms and a new pack is received, the timeout is increased in a certain

percentage, let us assume 5%, setting it to 210 ms. As consecutive

packs are received, the value of the timeout will increase. However,

when processors do not receive more packs (because there are not more

starved requests), the value of the timeout naturally will recover little

by little its original value (previous to the increase) since the following

transient requests will decrease it (if succeed).

7.8 Packing Non-Silent Invalidations

The technique proposed in this section has been associated to the packing of

broadcast messages, specifically to priority requests. However, this technique

can be applied in other situations. For example, it can be used to alleviate

the problems caused by the non-silent invalidations. Thus, in this section we

explain how the technique can be used in that case.

When a processor wants to write a memory block, it needs to get an

exclusive copy of the block. Therefore, before performing the write, it will

have to invalidate all the copies held by other components. The invalidation is

7.8. Packing Non-Silent Invalidations 143

performed by sending a write request. This invalidation is non-silent because

the issuer of a write request will have to wait for an acknowledgment from each

node that maintains a copy of the block. Those acknowledgments are data-

less token messages. When the issuer receives all those messages, it knows

that the copies of the memory block have been invalidated and, therefore,

it holds an exclusive copy. Only when it is sure that it holds an exclusive

copy, it will be able to write the block. This will entail a problem when a lot

of processors share the same memory block because, although the data-less

response messages are not very large, the writer will have to wait for receiving

a message from each sharer. Besides, the more processors the system has, the

more sharers there may be and, therefore, the worse the situation may become.

Consequently, as data-less responses are in the critical path of write requests,

it is desirable that they are received as soon as possible. Furthermore, the

writer processor may become temporarily a bottleneck since a write request

will result in a burst of packets directed to a single node (the writer).

To improve this aspect of token-based protocols in this section we suggest

to apply the proposed packing technique to data-less responses. Notice that

in this case the message packing could be carried out without increasing the

size of the resulting message and without modifying their format. By packing

several messages into just one, we can reduce the number of acknowledgments

that the writer has to receive. By reducing the number of acknowledgments,

the writer will be able to perform the operation sooner, which can contribute

to reduce the latency of write requests.

Taking into account that all the data-less responses are directed to the

writer, they are likely to coincide along their way to the destination. In fact,

they all will have to go through the switch which the writer is connected to.

This situation is shown in Figure 7.6.

The process to pack several data-less responses is similar to that described

in previous sections:

1. When a switch receives a response message (which uses a dedicated vir-

tual channel), it checks if both the incoming response and the last stored

response in the switch buffer are data-less responses for the same memory

block.

144 Chapter 7. Switch-based Packing Technique

writer

Figure 7.6: Example of data-less responses. The node marked in red wants to

write a memory block and it has to wait for receiving all the block’s tokens.

2. If the tokens belong to the same memory block and both messages go to

the same destination, a packing is performed. The packing only consists

in (1) adding the tokens held by the incoming message to the stored one

and (2) updating the completed PR field.

3. If the tokens does not belong to the same memory block or they go to

different destinations, the incoming response is queued at the end of the

buffer.

4. When a response message reaches the head of the queue, no more tokens

can be included in it.

Note that in this case the packing process is even simpler that in case of

priority requests. In fact, the format of the messages does not change. The

packing process consists in:

• The number of tokens held by the incoming response are added to the

number of tokens held by the stored response.

• If the value of the completed PR field of the incoming response is higher

than that of the stored response, then it replaces the completed PR field

of the stored message. Otherwise, it is discarded. By doing this, we

maintain the value of the last completed request.

7.9. Evaluation 145

7.9 Evaluation

In this section, we analyze the contribution of the proposed packing technique.

To this end, we first apply the packing technique to priority requests and, later,

we apply the packing technique just to data-less responses.

7.9.1 Target System and Parameters

We simulate three target systems: 16, 32, and 64-processor Sparc v9 systems

using the parameters described in Chapter 4. We assume that processors are

only connected through an MIN interconnect with the perfect shuffle permu-

tation because the results for a 2D mesh are similar.

First, we show the results of applying our proposal to the priority request

mechanism. The evaluated proposal allows the packing of requests upon differ-

ent memory blocks as explained in Section 7.6.3. However, note that we only

assume a single ordered path for all the priority requests and we only allow

to pack priority read requests, which simplifies the implementation. We also

show the comparison between the packing technique using the typical timeout

(twice the processor’s average miss latency) and the packing technique using

a more suitable timeout (three times the processor’s average miss latency) as

described in 7.7. The figures labeled as t2 will refer to the approximation with

the typical timeout, while the figures labeled as t3 will refer to the approxi-

mation with the more suitable timeout. In this case, the packing technique

is evaluated in terms of received priority requests, endpoint traffic, average

latency of completing starved requests, link utilization, and runtime of the

applications. 16p, 32p, and 64p refer to the results obtained in a 16-processor,

32-processor, and 64-processor system, respectively. All the results are nor-

malized with respect to the data obtained for the priority request mechanism

without using packing.

Second, we apply the packing technique to control responses and we an-

alyze the obtained results. In this case, we do not need to use a different

timeout because the packing technique does not generate messages with dif-

ferent sizes. In fact, the packed messages keep their original size. Like in the

previous case, all the results are normalized with respect to those obtained for

Token Coherence without using the packing technique.

146 Chapter 7. Switch-based Packing Technique

16 processors 32 processors 64 processors

Barnes Cholesky FFT LU1 LU2 Radix Average
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
c
e
iv

e
d
 P

ri
o
ri
ty

 R
e
q
u
e
s
ts

Applications

(a) typical timeout (t2)

Barnes Cholesky FFT LU1 LU2 Radix Average
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
c
e
iv

e
d
 P

ri
o
ri
ty

 R
e
q
u
e
s
ts

Applications

(b) suitable timeout (t3)

Figure 7.7: Normalized endpoint traffic due to priority requests when using

packing and different timeouts.

7.9.2 Priority Request Endpoint Traffic

Figure 7.7 shows the traffic due to the reception of priority requests when the

packing technique is applied. This results are normalized to the traffic re-

ceived when the packing technique is not applied. As shown in Figure 7.7(a),

the packing technique leads to a significant reduction in the number of re-

ceived priority requests. This is due to two main reasons: (1) several priority

requests are packed into a single message, which reduces the number of re-

ceived requests, and (2) the packing lowers the number of starved requests

(as we will see later). Besides, the reduction is higher as the system size in-

creases, reducing in about 30% (in average) the number of received priority

requests without using the packing in a 64-processor system. Figure 7.7(b)

7.9. Evaluation 147

Transient Requests Data Responses Control Responses Priority Requests

PR Pack PR Pack PR Pack
0

0.2

0.4

0.6

0.8

1

1.2

E
n

d
p

o
in

t
T

ra
ff

ic
 (

in
 P

a
c
k
e

ts
)

16 processors 32 processors 64 processors

(a) t2, traffic in packets

PR Pack PR Pack PR Pack
0

0.2

0.4

0.6

0.8

1

1.2

E
n

d
p

o
in

t
T

ra
ff

ic
 (

in
 P

a
c
k
e

ts
)

16 processors 32 processors 64 processors

(b) t3, traffic in packets

PR Pack PR Pack PR Pack
0

0.2

0.4

0.6

0.8

1

1.2

E
n

d
p

o
in

t
T

ra
ff

ic
 (

in
 B

y
te

s
)

16 processors 32 processors 64 processors

(c) t2, traffic in bytes

PR Pack PR Pack PR Pack
0

0.2

0.4

0.6

0.8

1

1.2

E
n

d
p

o
in

t
T

ra
ff

ic
 (

in
 B

y
te

s
)

16 processors 32 processors 64 processors

(d) t3, traffic in bytes

Figure 7.8: Normalized total endpoint traffic. PR stands for Token Coherence

using only normal priority requests and Pack stands for Token Coherence using

the packing technique.

shows that this reduction can be larger when, besides the packing technique,

a more suitable timeout is used, reaching a reduction of about 47% in average

in a 64-processor system.

7.9.3 Overall Endpoint Traffic

Figure 7.8 illustrates the normalized endpoint traffic generated during the

execution of the applications. PR refers to the protocol using only priority

requests and Pack refers to the same protocol using the packing technique.

We only show the average values in these figures to reduce the number of

figures. As shown Figure 7.8(a), the use of the packing technique lowers the

number of cache misses, which, in turn, reduces the number of Transient

Requests mainly because, since the broadcast messages cause less congestion in

the network, tokens and memory blocks are transmitted faster and, therefore,

148 Chapter 7. Switch-based Packing Technique

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 20 40 60 80 100 120 140 160 180

N
o
rm

al
iz

ed
 c

y
cl

es

Link numbering

16 processors
32 processors
64 processors

(a) typical timeout (t2)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 20 40 60 80 100 120 140 160 180

N
o
rm

al
iz

ed
 c

y
cl

es

Link numbering

16 processors
32 processors
64 processors

(b) suitable timeout (t3)

Figure 7.9: Link utilization normalized to the link utilization without using

the packing technique.

they stay longer in nodes and shorter time traveling through the network.

The reduction of Transient Requests causes, in turn, the number of responses

(Data Responses and Control Responses) to lower. Besides, the number of

requests suffering starvation decreases because the network is less congested

and it is used in a more efficient way. As a result, the total endpoint traffic

decreases, being this reduction more significant as the system size increases.

In particular, in a 64-processor system, the packing technique reduces about

20% the total endpoint traffic (in packets and in bytes) when it is used in

a 64-processor system. When the packing technique is used together with a

suitable timeout, the reduction of endpoint traffic grows even more, reaching a

reduction of about 35% in average, which is shown in Figure 7.8(b) and Figure

7.8(d).

7.9.4 Link Utilization

Figure 7.9 shows the number of cycles that the links are busy due to priority

request traffic when the packing technique is used. The data are normalized

to the number of cycles that links are busy due to priority requests when the

packing technique is not applied. These figures only show the utilization of

the links used for going from the root switch to the destinations, since the

utilization of the links used for going from the source node to the root switch

is much less significant. This is because while a priority request is going

7.9. Evaluation 149

to the root switch, it only uses one uplink (it behaves like a point-to-point

message). However, when the request is going from the root switch to the

destinations, it uses all the downlinks and it is at that time when the network

begins to be flooded. Like in the previous section, we only show the average

results to decrease the number of figures. As shown in Figure 7.9(a), the

packing technique reduces the overall traffic that goes through the network.

This reduction varies between about 20% in a 16-processor system and 30%

in a 64-processor system. Therefore, the reduction grows with the system

size, mainly because the more processors the system has, the more congested

the network is and, as a result, a greater number of packs will be able to be

generated. Figures 7.9(b) depicts that the packing technique together with a

suitable timeout can significantly increase the reduction, decreasing in about

45% the traffic crossing the network due to priority requests.

7.9.5 Starvation Latency

Figure 7.10 depicts the normalized average latency of completing a starved

request. It includes the elapsed time from a processor detects possible starva-

tion up to that processor receives all the requested tokens. As shown in Figure

7.10(a), the packing of priority requests decrements the latency of completing

starved requests. This decrement is higher as the system size grows. This

reduction happens because, when priority requests are packed, they do not

reach the destinations sequentially. Rather, several priority requests can ar-

rive simultaneously at several destinations allowing them to served them more

quickly. Besides, since the traffic in network lowers, the rest of messages

(responses) suffers shorter delays, which contributes to reduce the average la-

tency of completing starved requests too. This latency can be improved even

more by using a suitable timeout, such as Figure 7.10(b), where the latency is

reduced more than 40% in average in a 64-processor system.

7.9.6 Runtime

Figure 7.11 shows the normalized runtime of the applications. As shown, the

reduction in both traffic and latency hardly has effect in the runtime of the

applications in 16-processor and 32-processor systems. This is because, in

150 Chapter 7. Switch-based Packing Technique

16 processors 32 processors 64 processors

Barnes Cholesky FFT LU1 LU2 Radix Average
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e
ra

g
e
 S

ta
rv

a
ti
o
n
 L

a
te

n
c
y

Applications

(a) typical timeout (t2)

Barnes Cholesky FFT LU1 LU2 Radix Average
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e
ra

g
e
 S

ta
rv

a
ti
o
n
 L

a
te

n
c
y

Applications

(b) suitable timeout (t3)

Figure 7.10: Normalized latency of completing starved requests when using

packing.

those systems, the use of broadcast messages is not still a big problem for the

performance5. Therefore, in general terms, the packing of priority requests

in 16-processor and 32-processor systems does not contribute to reduce the

runtime of the applications. However, as the system size increases, the effect

of broadcast messages over the overall performance is more significant. Hence,

in 64-processor systems or larger systems, the use of packing techniques will

not only contribute to reduce the traffic, but to reduce the runtime of applica-

tions too. This will be more significant when, besides the packing technique,

a suitable timeout is used. Thus, according to Figure 7.11(b) the packing

5As commented in other works [76], the broadcast-based solutions are the most efficient

options for systems with a moderate number of nodes.

7.9. Evaluation 151

16 processors 32 processors 64 processors

Barnes Cholesky FFT LU1 LU2 Radix Average
0

0.2

0.4

0.6

0.8

1

1.2

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

Applications

(a) typical timeout (t2)

Barnes Cholesky FFT LU1 LU2 Radix Average
0

0.2

0.4

0.6

0.8

1

1.2

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

Applications

(b) suitable timeout (t3)

Figure 7.11: Normalized runtime when using packing.

technique could reduce in about 10% the runtime of applications (in average)

in a 64-processor system.

7.9.7 Packing Control Responses

Following we show the effects of applying the packing technique just to con-

trol response messages to alleviate the problem caused by the non-silent in-

validations, as explained in Section 7.8. Figure 7.12 illustrates the rate of

received/sent control response messages. Obviously, when the packing tech-

nique is not used, the rate is 1 since processors receive the same number of

control responses as they sent. However, when several control responses are

packed while in transit, processors receive less control responses than they

injected. As shown in Figure 7.12, the rate of received/sent control responses

152 Chapter 7. Switch-based Packing Technique

16 processors 32 processors 64 processors

Barnes Cholesky FFT LU1 LU2 Radix Average
0

0.2

0.4

0.6

0.8

1

1.2

R
a
te

 R
e
c
e
iv

e
d
/S

e
n
t

Applications

Figure 7.12: Received/Sent control response rate when using packing over

control response messages.

16 processors 32 processors 64 processors

Barnes Cholesky FFT LU1 LU2 Radix Average
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm

a
liz

e
d
 C

y
c
le

s

Applications

Figure 7.13: Reduction in the latency of control response messages when using

the packing technique.

decreases significantly according to the system size, reaching a reduction of

almost 60% in average in case of a 64-processor system. Note that this reduc-

tion will not lead to a significant reduction in the traffic transmitted through

the network because the packing is when messages are near the destination,

but the reduction can considerably alleviate the input buffers of the NIC or

the node.

Besides reducing the congestion in the input buffers of the NIC or the

node, applying the packing technique over the control responses can help us

to decrease their average latency, which is depicted by Figure 7.13. As shown,

the packing technique has a huge effect over the average latency of control

7.10. Conclusions 153

16 processors 32 processors 64 processors

Barnes Cholesky FFT LU1 LU2 Radix Average
0

0.2

0.4

0.6

0.8

1

1.2

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

Applications

Figure 7.14: Normalized runtime of applications when applying the packing

technique to control responses.

responses, reducing the their average latency in approximately 90% in average

in a 64-processor system. In fact, when the packing technique is applied, the

average latency of control responses decreases as the system size increases.

Figure 7.14 shows the runtime (when the packing technique is used) nor-

malized to the runtime without using the packing technique. As shown, in

16-processor and 32-processor systems, the packing technique does not have

a great influence on the runtime of applications because in those systems the

non-silent invalidations do not entail a serious problem. However, as the sys-

tem size increases, their effects will be more significant and, therefore, the use

of the packing technique can help to reduce the runtime of applications. Thus,

in a 64-processor system the runtime of applications can be reduced in about

10% in average. Note that, when we apply the packing technique, we are only

acting during a starvation situation. However, when the packing technique is

applied to data-less responses, it is being used all the time and not only during

starvation situations.

7.10 Conclusions

It is known that the main problem of broadcast messages is their lack of scal-

ability. In spite of that fact, Token Coherence must use them to ensure the

resolution of all the cache misses by the starvation prevention mechanism. In

this chapter we have addressed this problem. In particular, we have proposed

154 Chapter 7. Switch-based Packing Technique

an effective strategy to alleviate the damage caused by broadcast messages.

This technique is implemented in the network switches and it is only used

when the bandwidth required by broadcast messages exceeds the bandwidth

provided by the network. In that case, broadcast messages begin to be ac-

cumulated in the input buffers of the network switches. Hence, switches can

take advantage of the fact that those broadcast messages are similar enough to

compose a single message. In this way, the traffic due to broadcast messages

can be drastically reduced. This reduction increases as the number of broad-

cast messages increases, which can provide certain scalability to the starvation

prevention mechanism. As shown in the results, the reduction of the traffic

due to broadcast messages affects other class of messages since the overall traf-

fic network is significantly alleviated. As a result, the latency of cache misses

is reduced, which in turn can reduce the runtime of applications.

The switch-based packing technique can also be extended to the case of

non-silent invalidations. In making so, the number of received data-less re-

sponses and their latency reduce, which in turn contributes to improve the

latency of cache-to-cache misses.

Chapter 8

Multicast Responses

The owner processor is the one in charge of providing copies of a block to the

processors that request it. In case of highly-contended blocks, the owner pro-

cessor may become a bottleneck. This situation worsens in case of starvation

since requests are received near-simultaneously. To address this problem, in

this chapter we propose a mechanism that lets the owner processor simulta-

neously serve several requests by using a single multicast message, instead of

multiple individual messages.

8.1 Introduction

Cache coherence protocols are implemented on a specific coherence model

such as MOESI or a derived one. Coherence models establish an efficient way

to move memory blocks between system components. These models usually

designate at each time a single processor which is the only one in charge of

providing the value of certain memory block to the processors that request it.

This strategy is (1) efficient, because only one processor responds with data

to requests, and (2) fast, because the responses from processors are faster

than the responses from memory. From now on, we will use the term owner

processor (or just owner) to refer to the processor in charge of providing certain

memory block to requesters.

The strategy of using a single owner processor at each time to serve all the

requests is efficient and fast when the interval between the reception of the

155

156 Chapter 8. Multicast Responses

requests is enough to completely inject the responses in the network. However,

when the owner processor has to serve several near-simultaneous requests, it

may become a bottleneck. Since the response messages sent by the owner

processor include a copy of the requested memory block, they are the largest

messages in the system. Therefore, the time required to inject a data response

is much higher than the time required to receive a request. Thus, when the

owner processor receives several near-simultaneous requests, the data response

messages that it sends will accumulate in the output buffers. For example,

assuming that a processor can inject/receive 1 byte per cycle, the size of

requests are 10 bytes, and the size of data responses are 74 bytes, the owner

processor could receive 1 request every 10 cycles, while it could only send 1

data response every 74 cycles. Consequently, the owner processor can receive

about 7 requests while it is injecting a single response. This can also cause

additional congestion in the network interface controller since the competition

for the input buffers of switches can add significant delay to packets. In

addition to the performance inefficiencies, the multiple unicast data responses

consumes additional power due to redundant information in packets traversing

the network since the multiple data responses are likely to hold the same

memory block.

The situation described above frequently happens during protocol races.

A protocol race is caused when several requests contend for the same memory

block and at least one of them requires exclusive access to the memory block,

that is, it is a write request1. In that situation, several requests will not be

completely served:

• The write request fails at getting all the block’s tokens.

• Alternatively, some of the other requests that contend for the same block

may also fail. These requests are likely to be read requests as they are

much more common than write requests.

• The processors that have responded to the write request by sending all

the block’s tokens and by invalidating the copy of the memory block that

1Note that if all processors require shared access (read requests), a protocol race will not

occur. However, when one of them requires exclusive access, then a protocol race is likely to

happen.

8.1. Introduction 157

they held in their cache are likely to issue new (read) requests for that

block because, according to the temporal locality exploited by caches, it

is likely that in a short time those processors want to access to the block

and, since they do not have a valid copy in its cache, they will issue a

request. However, those requests will probably fail because the system

requires a time until detecting and solving the starvation situation.

From this analysis, we infer that a starvation situation will usually entail

one write request (which is the initiator of the situation) and several requests

(probably read requests). Thus, after completing the write request, the owner

processor will have to serve several read requests. Taking into account that

processors detect starvation near-simultaneously, the owner processor will re-

ceive a lot of consecutive read requests or, even, it can already have stored in

its table several read requests. As the owner is in charge of completing all of

them, their service will turn the owner processor into a bottleneck. Besides,

the data response messages will suffer a high delay, since they will have to

wait long until being injected into the network.

To lower the delay suffered by the injected data responses during a star-

vation situation and take full advantage of the facilities offered by the priority

request mechanism, in this chapter we propose the use of Multicast Data Re-

sponses (MDRs). An MDR is a single data response message which can be sent

to simultaneously serve several priority requests. However, note that MDRs

are not suitable to serve several persistent requests because at any time only

one persistent request can be active and, therefore, only that persistent request

can be served. On the contrary, several priority requests can be served because

they do not need to be activated and deactivated and, therefore, several pri-

ority requests can be served simultaneously. Note also that only the priority

read requests (which are much more common than priority write requests) can

be served by MDRs. Several priority write requests can not be served at the

same time because, after serving the highest priority write request, the node

will lack of tokens to continue to serve the next one. On the other hand, the

data messages in response to priority read requests are all sent by the owner

processor and, in addition, all of them include the same information (one token

and the memory block), which makes them suitable to form MDRs.

In order a node to generate an MDR, it is necessary that a certain number

158 Chapter 8. Multicast Responses

destination

1 byte

source

1 byte 2 bits

size

1 byte

type address

4 bytes

completed PR

2 bytes

tokens

10 bits

data

64 bytes

(a) unicast data response

completed PR

2 bytes

destination set

n bytes

source

1 byte 2 bits

type tokens

10 bits64 bytes

data

4 bytes

address

1 byte

size

(b) multicast data response

Figure 8.1: Differences between the formats of (a) unicast data responses

(UDRs) and (b) multicast data responses (MDRs).

of consecutive priority read requests are previously stored in the node’s table.

However, taking into account that nodes proceed to serve read requests as

soon as the requested tokens are available, priority read requests may hardly

coincide in tables, preventing MDRs from being formed. However, note that

the coherence messages serving several consecutive priority read requests will

coincide in the NIC output buffers of the owner processor. This is because

their transmission is serialized and they are much larger than priority requests.

Therefore, the node can take advantage to join all these unicast responses into

a single MDR. Mainly, two advantages are derived from the use of MDRs.

First, the average latency of responses decreases and, second, the network

traffic related to data responses is reduced, which in turn may contribute to

alleviate the network overhead.

8.2 MDR Packet Format

Since the responses to consecutive priority read requests are likely to coincide

in the NIC output buffers of the owner processors and, in addition, the in-

formation held by those messages is very similar, the generation of a single

multicast data response from several responses is feasible. To be able to pack

several responses into just a single MDR packet, the format of data responses

changes slightly. Figure 8.1 illustrates the differences between a unicast data

response and a multicast data response. As shown, the unique difference is

that MDRs include the destination set field instead of the destination field.

8.2. MDR Packet Format 159

However, the rest of fields are exactly the same.

In unicast messages, the destination field indicates the component that

must receive the message. In multicast messages, the destination set field

refers to the set of components that must receive the message. To implement

this field, several options can be chosen:

• The destination set field can be implemented as a bit vector with as

many bits as number of processors in the system. If so, the size of this

field will depend on the system size, but it will be independent of the

number of destinations that have to receive the message. Therefore, a bit

vector will be a good solution when MDRs include a lot of destinations.

• Alternatively, the destination set field can be implemented as a list of

processors. In this case, the size of this field will depend on the number

of destinations, but it will not depend on the system size. Besides, to

identify the number of destinations, the header of the message has to

include a field which indicates how many destinations there are in the

list. This is a good solution when the number of destinations per message

is usually small.

• A third option is to combine the two previous proposals. In particular,

if the next expression is true:

x ∗ log2M > M

(where x represents the number of destinations in the MDR message and

M represents the number of processors in the system), then a bit vector

should be used. Otherwise, the destination set field is implemented as

a list of processors. To implement this option, the message requires an

additional field (just one bit) to indicate the format that is being used

at each time.

In terms of efficiency and size of the messages, the best proposed option

is the last one, since it chooses the most suitable format for each situation.

However, this option is the most complex to implement. On the other hand,

the main advantage of implementing the destination set field as a bit vector

160 Chapter 8. Multicast Responses

destination source

P3 P0

address

0x400

destination source

P1 P0

address

0x400

destination set

P2, P1, P3

source

P0

address

0x400 1

tokens completed PR

9 · · · 81 bytes

74 bytes

74 bytes

74 bytes

destination source

P2 P0

address

0x400

· · ·

· · ·

· · ·
completed PR

7

completed PR

8

completed PR

9

tokens

1

tokens

1

tokens

1

Figure 8.2: Example where three different unicast messages compose a single

MDR.

is its simplicity and that is easy to implement. Besides, the size of MDRs is

independent of the number of destinations. Due to these reasons, in this work

we assume the vector bit implementation.

Besides composing the destination set field, when an MDR is generated,

the completed PR field also receives a special treatment. Note that the several

unicast messages included in an MDR will have different values in their com-

pleted PR field. Therefore, we have to choose which is the proper value for

the final MDR message. However, in this case, the value of this field can be

easily determined. The completed PR field of data responses indicates that all

the priority requests (for the held block) with an identifier equal to or smaller

than it were completely served. Since priority requests are completely served

in order, the value of the completed PR field of the last included data response

will be the highest value and it will implicitly include the other values. There-

fore, the value of the completed PR field of an MDR message is the value of

the completed PR field belonging to last data response included in it.

Figure 8.2 walks through an example where a single MDR is composed from

three consecutive data responses. As shown in the figure, P0 sends three data

responses to complete the P2’s priority request, the P1’s request, and the P3’s

request. These messages are similar and only the destination and completed PR

fields differ. To compose an MDR message from these three unicast messages,

the destination set field codes the values of the corresponding destination fields

and the completed PR field includes the value of that field belonging to the last

8.3. MDR Generation 161

node

input buffers

network

switch
buffers
input

cache

controller

cache

L2 CPU

output buffers

L1 cache

NIC

Figure 8.3: Node structure.

included message. By doing so, it is like if P0 only had sent a single message

whose total size is 81 bytes2 instead of sending three different messages with

222 bytes of total size.

8.3 MDR Generation

As commented before, to take full advantage of priority requests, the output

buffer of nodes can be instrumented to easily pack several data responses into

a single MDR. Unlike the proposal in Chapter 7, in this case the packing is

performed in the nodes themselves, instead of in the network switches. To

implement this technique, we assume an SMP environment where each node

is modeled as a CPU and input and output buffers are connected to a network

switch, such as that shown in Figure 8.3. When a processor sends a message,

the outgoing message is stored in the output buffer of the NIC. The messages

stored in the output buffers are sent one by one applying a FIFO scheme to the

input buffer of the switch which the node is connected to. Thus, if a processor

generates many data responses in a short time, they will accumulate in the

output buffers of the node. Therefore, those buffers are the natural place to

compose MDRs.

To be able to form MDRs, processors implement the following strategy:

2In this example, we assume that the destination set field is implemented as a bit vector.

162 Chapter 8. Multicast Responses

1. When a processor has to serve a priority read request, before generating

a new data response, it checks whether its output buffer contains a data

response where the new response could be included.

2. If there exists such a message, the new destination processor is added

to the destination set field of the stored message and the information

about the completed priority requests (completed PR field) is updated

accordingly.

3. If the processor does not find a suitable message to compose a single

MDR, a new MDR with only one destination is generated and inserted

into the output buffer.

4. When an MDR reaches the head of the output buffer and the input

buffer of the switch have enough room to store the message, the message

is injected into the network by copying it in the switch buffer.

Note that, according to the defined scheme, data responses do not have to

wait for forming an MDR (which would delay their transmissions) since they

are transmitted through the network as soon as possible. Indeed, what we

propose is to take advantage of the elapsed time that a certain data response

has to wait for being transmitted to compound a single data response by

adding to it the destinations of the data responses that would have been

generated during that time.

To extract the maximum benefit from this strategy, we need that the data

responses coincide in the output buffers of processors. In fact, the more data

responses coincide, the more advantage we will be able to take of it. As

shown in Figure 8.3, each processor is connected to a network switch. Thus,

when a message reaches the head of the output buffer and the input buffers

of the switch have enough room to store that message, it is transmitted from

the output buffers of the processor to the input buffer of the switch and its

transmission through the interconnect begins. Note that, if the input buffers

of the switches can hold a lot of messages, then the data responses are likely to

coincide in the switches, which may prevent the generation of certain MDRs.

We are not in favor of implementing this technique in the switches because it

would entail to make much more complex the logic of the network switches

8.4. Searching for MDRs at NIC Output Buffers 163

and switches do not have as much computational power as a processor or a

NIC [30, 85]. Therefore, the number of messages coinciding at the output

buffers should be maximized. To this end, we can reduce the storage space of

the input buffers of switches to just two MDRs. Making so, we force MDRs to

coincide in the output buffers of the switches, which increases the opportunities

to generate a single MDR. Besides, by limiting the space to just two MDRs,

we ensure that the injection of the MDR into the network will not be delayed

by the fact of reducing the size of the input buffers. Note that the assumption

of two MDRs is in accordance with parameters and the flow control assumed

in this work to prevent buffer inefficiency and bubbles.

8.4 Searching for MDRs at NIC Output Buffers

The search performed by processors to check if there exists an MDR where a

new response can be included must be simple. Otherwise, it could affect the

critical path of data responses, delaying their generation and slowing down

the system. To this end, we assume the following considerations:

• Responses use a dedicated virtual channel. Therefore, the search is only

performed in the output buffer associated to that virtual channel, instead

of through all the output buffers of the link.

• A present register (1 bit) can be used to indicate if the output buffer

contains an MDR where a new response could be added or not. This

register can be used to avoid the search when the output buffer does

not contain any MDR or it only contains an MDR placed at the head

of the buffer3. The bit will be set the first time an MDR is inserted in

the output buffers and it will be unset when the last inserted MDR is

removed.

When the owner processor has to send a data response, it checks if the

present register is set. If so, the processor begins the search by checking the

type of the message stored in second place in the output buffer. If the message

3Note that the message in the head of the buffer can not be used to compose an MDR

because its injection into the network could occur while the packing is carried out.

164 Chapter 8. Multicast Responses

type is a data response, then it checks if the memory address of the held data

matches the memory address of the data that it has to send. In such a case,

the new destination processor is added to the destination set field of the stored

message and the completed PR field is updated accordingly. If the data do not

match, then it continues the search with the third message. It continues until

finding a suitable MDR or checking all the messages in the buffer dedicated

to responses.

Note that, according to the defined strategy, we do not check if the first

message in the output buffers is suitable to compose an MDR. This is because

the first message can be injected in the network at any time and, if we are

packing the message, its injection could be delayed. Thus, if we avoid packing

the first message, the critical path of data responses is not affected.

8.5 Packing Process

When the owner processor has to send a new data response to a requester

and it finds a suitable MDR in its output buffer, it proceeds to pack the two

messages. The packing consists in adding the new destination to the desti-

nation set field and updating the completed PR with the latest value. The

process of adding a new element to the destination set field can be performed

in different ways which depend on how the destination set field is implemented

(see Section 8.2). Since we will assume in the evaluation that the destination

set field is implemented as a bit vector, we only describe the packing process

for this implementation option. One of the advantages of implementing the

destination set field like a bit vector is that it is easy to add a new element.

The vector will have as many bits as number of possible destinations. The bit

X within the bit vector is set to 0 if the processor X does not have to receive

the message. The bit X within the bit vector is set to 1 when the processor

X does have to receive the message. Therefore, to add a new element to the

vector simply an OR operation is performed:

destinationset = destinationset OR (1 << X)

where X is the destination processor, OR is the logical OR operation, and <<

is the displacement operation.

8.6. Adjusting the Starvation Detection Timeout 165

8.6 Adjusting the Starvation Detection Timeout

As we commented in Section 7.7, if the value of the timeout is estimated under

certain circumstances, its value will only be suitable when the system moves

under those circumstances. Therefore, a problem can occur when we use

MDRs because the timeout intervals are mainly calculated assuming unicast

data responses. Notice that, when a protocol race happens and we use MDRs,

we are using messages whose size can be considerably different from that of

unicast data responses. As a result, the timeout interval calculated using

unicast responses (or MDRs with a single destination) may not be suitable

when we use MDRs with several destinations. To improve this aspect, one of

the alternatives previously proposed in Section 7.7 should be used:

• The simplest solution is to use a higher timeout interval in all cases,

for example, three times the processor’s average miss latency. This is

the solution that we assume in the evaluation due to its simplicity and

efficiency.

• Another choice is to use different timeouts based on the elapsed time

from the reception of the last priority request.

• The last option is to adjust the timeout as long as new priority requests

are received.

8.7 Evaluation

In what follows, we analyze how the use of MDRs contributes to improve the

performance of priority requests and, in turn, the performance of the whole

protocol. UDRs stands for the protocol using only unicast data responses.

MDRs t2 stands for the protocol using both unicast and multicast data re-

sponses. Besides, like UDRs, MDRs t2 uses a timeout set to twice the average

miss latency. MDRs t3 stands for the protocol using both unicast and multi-

cast data responses and a timeout set to three times the average miss latency.

166 Chapter 8. Multicast Responses

Generated Responses Sent Responses

Barnes Cholesky FFT LU1 LU2 Radix Volrend Average
0

0.2

0.4

0.6

0.8

1

1.2

1.4
N

o
rm

a
liz

e
d
 R

e
s
p
o
n
s
e
s

Applications

Figure 8.4: Normalized number of data responses: generated responses against

injected responses (MDRs t2).

8.7.1 Target System and Parameters

We simulate a 32-processor Sparc v9 system with the parameters commented

in Chapter 4. We evaluate the referred processor system assuming that pro-

cessors are connected through an MIN network with the perfect-shuffle permu-

tation. The results for the 2D mesh are not shown because they are similar to

those obtained for the MIN. The simulated starvation prevention mechanism

assume only one simultaneous outstanding priority request per processor.

All the results shown in the following figures are normalized to the value

obtained for MDRs t3.

8.7.2 Generated vs Injected Data Responses

Figure 8.4 shows the comparison between the number of responses generated

by components and the number of responses transmitted through the network

(both in term of packets). Due to the fact that a single MDR can include sev-

eral responses to various components, the number of sent responses is lower

than the number of generated responses. In a 32-processor system and for the

applications used in this case, we observe that the use of MDRs can entail a

reduction of about 15% in average in the number of data responses. This result

is important because the data responses messages are the biggest messages in

the system, being their size noticeably larger than that of the other kind of

messages (74 bytes against 10 bytes). This reduction can contribute to allevi-

8.7. Evaluation 167

UDRs MDRs t2 MDRs t3

Barnes Cholesky FFT LU1 LU2 Radix Volrend Average
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
o
rm

a
liz

e
d
 C

y
c
le

s

Applications

Figure 8.5: Normalized average latency (in cycles) of UDRs and MDRs.

ate both the input buffer of the system components and also the interconnect

traffic.

8.7.3 Latency of Data Responses

Figure 8.5 illustrates the latency of data responses. This latency includes

the elapsed time from a response is enqueued in the output buffers until that

response reaches its destination (or the last destination in case of an MDR).

As shown, the latency of data responses decreases about 20% in average when

using MDRs together with a bad timeout. However, this reduction can become

more significant when using MDRs with a suitable timeout in which case a

reduction of 40% can be reached. This reduction is obtained thanks to two

main reasons. First, when MDRs are used, the number of messages stored in

the output buffers reduces, making them less collapsed. This contributes to

reduce the time required to inject a message in the interconnection network.

Second, as the traffic going throughout the interconnect decreases (which will

be shown later), messages suffer less contention and their latency reduces.

As shown in the figure, the fact of using an appropriate timeout also affects

the latency of data responses. This is because a suitable timeout reduces the

generated traffic. This reduction of network traffic alleviates the congestion

in the network, which in turn contributes to reduce the latency of all kind of

messages.

168 Chapter 8. Multicast Responses

UDRs MDRs t2 MDRs t3

Barnes Cholesky FFT LU1 LU2 Radix Volrend Average
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
N

o
rm

a
liz

e
d
 C

y
c
le

s

Applications

Figure 8.6: Normalized latency (in cycles) of solving starvation when using

UDRs and MDRs.

8.7.4 Starvation Latency

Figure 8.6 depicts the average time of solving starvation situations. Due to the

fact that MDRs cause the latency of data responses to reduce and, additionally,

the network traffic due to data responses reduces, the average latency required

to solve the starvation situations lowers. This is shown in the figure, where

MDRs t2 gets a significant reduction of the starvation latency. In case of MDRs

t3, the latency reduces even more, reaching more than 50% of reduction with

respect to UDRs.

8.7.5 Network Traffic

Figure 8.7 shows the generated network traffic. As we can see, when using

MDRs with a timeout which is not totally suitable, the total network traf-

fic generated does not differ a lot from that generated when using UDRs.

This happens because, although the number of data responses decreases, the

number of Transient Req, Control Resp, and Starvation Ctrl messages rises

slightly. This increase is caused by the influence of a bad timeout. A non-

suitable timeout entails that some nodes detect false starvation. For example,

a message may be delayed in the network due to congestion or other reasons.

This false starvation causes the generation of Starvation Ctrl messages, which

in turn will require the generation of Data Resp and Control Resp. Therefore,

the memory blocks stay longer in the interconnect (since components forward

them in response to priority requests to solve false starvation). As a result,

8.7. Evaluation 169

Transient Requests Data Responses Control Responses Priority Requests

U
D

R
s

M
D

R
s
 t
2

M
D

R
s
 t
3

U
D

R
s

M
D

R
s
 t
2

M
D

R
s
 t
3

U
D

R
s

M
D

R
s
 t
2

M
D

R
s
 t
3

U
D

R
s

M
D

R
s
 t
2

M
D

R
s
 t
3

U
D

R
s

M
D

R
s
 t
2

M
D

R
s
 t
3

U
D

R
s

M
D

R
s
 t
2

M
D

R
s
 t
3

U
D

R
s

M
D

R
s
 t
2

M
D

R
s
 t
3

U
D

R
s

M
D

R
s
t2

M
D

R
s
 t
3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
ra

ff
ic

 i
n
 P

a
c
k
e
ts

Barnes Cholesky FFT LU1 LU2 Radix Volrend Average

(a) Traffic in Packets

U
D

R
s

M
D

R
s
 t
2

M
D

R
s
 t
3

U
D

R
s

M
D

R
s
 t
2

M
D

R
s
 t
3

U
D

R
s

M
D

R
s
 t
2

M
D

R
s
 t
3

U
D

R
s

M
D

R
s
 t
2

M
D

R
s
 t
3

U
D

R
s

M
D

R
s
 t
2

M
D

R
s
 t
3

U
D

R
s

M
D

R
s
 t
2

M
D

R
s
 t
3

U
D

R
s

M
D

R
s
 t
2

M
D

R
s
 t
3

U
D

R
s

M
D

R
s
t2

M
D

R
s
 t
3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
ra

ff
ic

 i
n
 B

y
te

s

Barnes Cholesky FFT LU1 LU2 Radix Volrend Average

(b) Traffic in Bytes

Figure 8.7: Normalized traffic (a) in packets and (b) in bytes when using UDRs

and MDRs.

the number of cache misses increases, thereby rising the number of Transient

Req. All these problems can be solved by using MDRs together with a suitable

timeout. Thus, you can observe in the figure that MDRs t3 noticeably reduces

the generated network traffic, decreasing it in more than 30%.

8.7.6 Runtime

Finally, Figure 8.8 shows the runtime of different applications when using

UDRs and MDRs. As shown, when using MDRs t2 the runtime of the ap-

plications is reduced about 6% in average, mainly because of the reduction

in the latency of data responses. Besides, when using a suitable timeout, the

170 Chapter 8. Multicast Responses

UDRs MDRs t2 MDRs t3

Barnes Cholesky FFT LU1 LU2 Radix Volrend Average
0

0.2

0.4

0.6

0.8

1

1.2
N

o
rm

a
liz

e
d
 C

y
c
le

s

Applications

Figure 8.8: Normalized runtime when using UDRs and MDRs.

runtime of applications diminishes even more, reaching 10% of reduction in

average. This is because not only the latency of data responses decreases, but

the generated traffic also reduces considerably. As a result, applications can

be executed more quickly.

8.8 Conclusions

In this chapter we have proposed the use of multicast routing techniques to

enhance token-based protocols, focusing on the starvation prevention mecha-

nism. In this case, multicast routing techniques can be applied thanks to the

flexibility provided by an efficient starvation prevention mechanism such as

priority requests. Since this mechanism lets the processors serve simultane-

ously several priority requests, during a starvation situation the NIC output

buffers of the owner processor can suffer congestion. By using multicast data

responses, the number of messages (and also the number of bytes) queued in

the output buffers can be drastically reduced. Additionally, the overall net-

work traffic and the average latency of data responses reduces considerably,

yielding to a reduction in the runtime of applications.

Chapter 9

Conclusions

Cache coherence protocols are a key component to achieve the goal of provid-

ing a performance growth proportional to the system size to current shared-

memory multiprocessor systems, which incorporate more and more processors

and cores (CMPs). This dissertation makes several contributions in the space

of token-based cache coherence protocols applied to a CC-NUMA environment.

In this chapter (Section 9.1), we first summarize the contributions. Then in

Section 9.2, we offer some conclusions and reflections based on this research.

In Section 9.3 we show the publications derived from the works carried out in

the dissertation. Finally, in Section 9.4 we discuss about the future work.

9.1 Contributions

This dissertation addresses five different problem areas related to token-based

cache coherence protocols with the goal of providing greater scalability. In

particular, we have focused on the Token Coherence protocol.

First, we recognized that order can be provided to requests without the

need of using totally-ordered interconnects nor directories. To this end, we

rely on the routing algorithm, providing a total order when required. In this

sense, we contributed a new starvation prevention mechanism named priority

requests that exploits the order provided by the routing algorithm. In doing

so, we have shown how the new starvation prevention mechanism performs

much better and provides higher scalability.

171

172 Chapter 9. Conclusions

Second, to avoid the utilization of arbiters (which would generate indirec-

tion), the starvation prevention mechanism requires a table at each system

component which grows proportionally to two factors: the number of proces-

sors in the system and the number of simultaneous outstanding requests per

processor. Although the number of outstanding requests per processor can be

limited at the expense of a performance degradation, those tables were still

proportional to the number of processors, which jeopardizes the scalability of

Token Coherence in terms of storage requirements. We contributed a simple

and effective strategy that decouples both the number of processors and the

number of simultaneous outstanding requests per processor from the table size

at the expense of a slight performance degradation. This is possible thanks to

the required information is appropriately distributed through all nodes instead

of replicated. Besides, the table size is totally independent of the number of

processors in the system.

Third, although token-based protocols can use different types of requests

(broadcast, multicast1, point-to-point2) to quickly resolve cache misses, the

starvation prevention mechanisms require to use requests based on broadcast

messages. It is known that broadcast messages entail a serious problem in

medium and large systems, due to their lack of scalability. We contributed a

switch-based technique to pack several broadcast messages into just a single

message. Making so, broadcast messages are endowed with certain scalability,

easing their use in medium and large systems. The effectiveness of this tech-

nique is much higher when it is applied to priority requests because, thanks

to the utilization of ordered paths, priority requests are likely to coincide in

the buffer of the traversed switches, increasing packing opportunities.

Forth, we contributed the concept of multicast data responses. After writ-

ing a memory block, the writer will have to provide a copy to all the processors

that want to read it. If it is a highly-contended block, after the write, a lot of

processors will want to read it. Providing a copy one by one is too slow and,

due to the size of data responses, the writer will easily become a bottleneck.

Thus, by using a multicast data response, several copies of a memory block

1This type of message requires a prediction which may fail.
2The point-to-point messages are used in a directory-like approximation which presents

the problem of indirection.

9.2. Conclusions 173

can be simultaneously validated in different processors. This contributes to

reduce the cache miss latency of highly-contended memory blocks. This kind

of message is only applicable when using priority requests, since persistent re-

quests must be solved one by one, not allowing to simultaneously serve several

persistent requests.

Fifth, we detected another serious problem of token-based protocols: the

non-silent invalidations. When a memory block is invalidated because of the

reception of a write request, the recipient sends all the tokens it holds to

the writer. The writer can not perform the memory operation until having

received all the tokens, that is, the confirmation from all the sharers indicating

they have invalidated their copy. Although these data-less token messages are

not very large, in medium and large systems they may flood the network. We

contribute a switch-based technique that reduces the problem of non-silent

invalidations. By packing several invalidations into just one, the latency of the

write cache misses can be reduced. Unlike previous proposals, this technique

can be applied independently of the starvation prevention mechanism.

9.2 Conclusions

In this section, we draw some conclusions and also reflect on the dissertation

research with the benefit of hindsight and the freedom to make statements of

opinion.

Thanks to the global order provided by ordered paths, priority requests

can easily resolve starvation without the need of overriding the performance

policy and without using explicit acknowledgments. As a result, an efficient

performance policy is applied all the time, which causes the total network

traffic to lower considerably. This reduction in traffic is more significant as

the system size increases, being able to save up to 40% of the total traffic

generated when persistent requests are used. Although the traffic reduction

does not entail a strong decrease in the applications runtime (30% in aver-

age in a 64-processor system), it alleviates the congestion in the interconnect.

This fact may be really important because, thanks to it, a greater number of

applications could be running simultaneously in the system before reaching

the saturation point of the network. The benefits obtained by the applica-

174 Chapter 9. Conclusions

tion of priority requests grow proportionally to the system size, which shows

their scalability. These results have been observed regardless of the network

topology and the executed applications. Besides, thanks to the flexibility pro-

vided by the priority requests, we can apply multicast routing techniques to

data responses, which increase the benefits of priority requests. The use of

multicast data responses alleviates the congestion at the NIC buffers, which

in turn contributes to reduce their latency in about 40%. In addition, the use

of multicast data responses causes the priority request mechanism to increase

the network traffic reduction, which improves the runtime of application in

about 10%. Therefore, thanks to the flexibility of priority requests, multicast

data responses can be used, which multiply the benefits provided by priority

requests, reaching about 30% of reduction in the runtime of application with

respect to persistent requests.

It is important to highlight that all the advantages provided by priority

requests are achieved without increasing the hardware requirements of the

most efficient implementation of persistent requests. Furthermore, the use of

ordered requests can additionally help us to decrease these hardware require-

ments without losing effectiveness. In particular, the technique proposed to

limit the storage requirements of the starvation prevention mechanisms dras-

tically minimizes them while still performing well. Thus, although the priority

request tables at nodes can be reduced to the minimum of one entry, the total

network traffic generated remains more or less constant. Hence, in spite of

using tables 32 times smaller (assuming a 32-processor system), the priority

request mechanism still reduces about 25% the total traffic generated when

persistent requests are used. On the other hand, the reduction of the table size

causes the runtime to slightly increase. However, the runtime continue being

significantly smaller (up to 18%) than that obtained when using persistent

requests.

Unlike the priority request proposal, the proposed switch-based packing

technique does increase the hardware requirements of the system, in particular

the hardware requirements of network switches. Since we have not evaluated

this rise at VLSI level, the packing technique has been limited just to certain

cases to simplify the technique and to avoid a huge increase in complexity.

According to the obtained results, it seems that the advantages provided by

9.2. Conclusions 175

the packing technique could offset the additional hardware complexity. We

have only applied the packing technique to priority requests because, unlike

persistent requests, they offer clear opportunities for the request packing. The

packing of priority requests into a single message is an important contribution

because it solves the congestion caused by broadcast messages in medium and

large system. Thus, the packing technique reduces above 40% the endpoint

traffic generated by priority requests. This reduction not only contributes to

improve the latency of priority requests, but it also contributes to improve

the average latency of all kind of traffic. This may result into a decrement

in the runtime of applications, reaching a reduction above 10% in average (in

a 64-processor system). Moreover, the packing technique can be also applied

to control responses, obtaining similar results. This allows us to address the

problem of the non-silent invalidations. Thus, the packing technique can help

us to reduce the latency of write misses, which also affects the runtime of ap-

plications, reducing it about 10% in average. Note that the packing technique

over control responses can be applied independently of the use of persistent or

priority requests.

From this analysis, we can see the benefits of using ordered requests. Nev-

ertheless, some works such as [76] argue that the protocols that rely on total

order of requests are undesirable due to the higher latency and cost. We think

that this is true only if the order is provided by totally-ordered interconnects

because, as shown throughout this dissertation, a global order can be alter-

natively provided without using high-latency or high-cost interconnects. The

routing algorithm is enough to provide such a global order. Although both

approximations may seem similar, they are not. In fact, we are going to ana-

lyze the main arguments against totally-ordered interconnects and we will be

able to see how our proposal avoids them:

• “In systems that rely on a total order of requests, requests (and some-

times responses) for different addresses must be kept in order with respect

to each other throughout the system”. One major advantage of ordering

requests by the routing algorithm instead of by the interconnect is that

we can decide when we want to use the algorithm to put requests in

order and when we do not want. Thus, the system can use only ordered

paths when required, thereby avoiding the cited problem. Besides, we

176 Chapter 9. Conclusions

have shown different methods to provide a total order only to requests

for the same memory address, not having to put in order requests upon

different memory addresses. In addition, responses can use a different

routing algorithm and, therefore, they do not need to be ordered.

• “On a total order of requests, the internal pathways and coherence con-

trollers are perhaps more difficult to bank (in the same manner in which

memory and caches are banked for increased bandwidth)”. Since the or-

der is provided by the routing algorithm and not by the interconnect, the

physical location of memory banks and caches is not restricted by the

interconnect. Therefore, the use of ordered paths does not complicate

the system design.

• “Cost and latency of the interconnect”. Since the interconnect is not

limited to any particular type, point-to-point interconnects can be used.

With regard to the latency, only the requests that require to be ordered

will slightly have a higher latency. However, in spite of this higher la-

tency, the average latency of cache misses decreases because the benefits

that the ordered requests provide offset the small increase in their la-

tency.

As shown, the approximations to provide global order to requests by totally-

ordered interconnects or by ordered paths are completely different. Besides,

this approach is also different from those approaches that put requests in order

by using directories. On the one hand, on directory-based protocols, requests

are sent to the directory. The directory receives them, processes them, and

then it decides if they must be forwarded. This is slow because the directory

is usually located at the main memory, which makes it slow. On the other

hand, priority requests are sent through an ordered path. To this end, they

are sent through certain switch selected as a root. This is very different since

the root switch does not process or consume the requests. In fact, the single

difference of sending a request through an ordered path is that the request

does not follow a minimal path, which slightly increases the average latency in

some cases. Therefore, unlike directory-based protocols, we can not consider

that the ordered paths generate indirection.

9.3. Scientific Publications 177

We conclude that the routing algorithms based on ordered paths can be

applied to obtain a global order being able to avoid the problems caused by

totally-ordered interconnects or directories. Thus, the application of such algo-

rithms can help to simplify token-based protocols, provide greater scalability,

reduce the overall network traffic, and reduce the runtime of applications.

9.3 Scientific Publications

The work presented in this dissertation has been published in the conferences

and papers listed below, having received useful feedback from the reviewers.

• B. Cuesta, A. Robles, and J. Duato. “Enhancing the Starvation Preven-

tion Mechanism of Token Coherence”. Submitted to IEEE Transactions

on Computers.

• B. Cuesta, A. Robles, and J. Duato. “Switch-Based Packing Technique

for Improving Token Coherence Scalability”. 2008 Ninth International

Conference on Parallel and Distributed Computing, Applications and

Technologies. Dunedin (New Zealand). December 2008. ISBN 978-0-

7695-3443-5.

• B. Cuesta, A. Robles, and J. Duato. “Switch-Based Packing Technique

for Improving Token Coherence Scalability”. XIX Jornadas de Par-

alelismo. Castellon (Spain). September 2008. ISBN 978-84-8021-676-0.

• B. Cuesta, A. Robles, and J. Duato. “Improving Token Coherence by

Multicast Coherence Messages”. 14th Euromicro International Confer-

ence on Parallel, Distributed and Network-Based Processing. Toulouse

(France). February 2008. ISBN 978-0-7695-3089-5.

• B. Cuesta, A. Robles, and J. Duato. “Enhancing starvation preven-

tion mechanism for Token Coherence”. XVIII Jornadas de Paralelismo.

Zaragoza (Spain). September 2007. ISBN 978-84-9732-593-6.

• B. Cuesta, A. Robles, and J. Duato. “An effective starvation avoidance

mechanism to enhance the Token Coherence protocol”. 15th Euromicro

178 Chapter 9. Conclusions

International Conference on Parallel, Distributed and Network-Based

Processing. Naples (Italy). February 2007. ISBN 978-0-7695-2784-0.

• B. Cuesta, A. Robles, and J. Duato. “Enhancing Token Coherence by

Using a New Starvation Avoidance Mechanism”. XVII Jornadas de Par-

alelismo. Albacete (Spain). September 2006. ISBN 84-690-0551-0.

• B. Cuesta, A. Robles, and J. Duato. “Enhancing Token Coherence by

Using a New Starvation Avoidance Mechanism”. 2006 Advanced Com-

puter Architectures and Compilation for Embedded Systems. L’Aquila

(Italy). June 2006. ISBN 90-382-0981-9.

9.4 Future Work

Although this dissertation has mostly focused on scalability and performance

characteristics, we believe that the aforementioned contributions may have

other desirable attributes that were not fully explored in this dissertation.

Thus, in this section we comment some of the future work lines.

A key aspect of current systems is the power consumption [88, 60, 59].

It is known that systems incorporate more and more processors (or cores in

case of CMPs) and, therefore, their power consumption and dissipation should

be as small as possible. Although we have not explored these aspects in the

dissertation, it would be interesting to do it as a future work. As we have seen

throughout the dissertation, the use of the priority requests and the rest of

proposals substantially reduces the generated network traffic. This reduction

can also entail a reduction of power consumption in the network. However,

the reduction of the traffic may not only affect the power consumption of

the interconnect, but it may also affect to other aspects. Thus, for example,

when a message is sent or received, the components have to access to different

structures (tables, caches, tags, ..). By reducing the number of messages, we

are also reducing the number of accesses to those structures, which in turn

may contribute to reduce the consumption at nodes and memories. Besides,

we have proposed a technique to reduce the size of the tables that store the

starved requests. Reducing their size also implies a power reduction and,

additionally, a reduction in the access latency. Hence, the contributions of this

9.4. Future Work 179

dissertation may have another desirable attribute that has not been explored

here and which should be done in the future.

Apart from power consumption matters, there are other aspects of the

different proposals that could make them more attractive and which have not

been fully explored in the dissertation. Following we shortly describe some of

them:

• Table reduction. Throughout the dissertation we have assumed 3 vir-

tual channels for performing a fair comparison with previous proposals.

The traffic is assigned to a specific virtual channel depending on its

type. Thus, for example, point-to-point messages (which are usually re-

sponses) use the virtual channel 0, adaptive broadcast messages (which

are transient requests) use the virtual channel 1, and ordered broadcast

messages (which are priority requests) use the virtual channel 2. Each

virtual channel has certain priority, for example, the virtual channel 2

has higher priority than virtual channel 1, and virtual channel 1 has

higher priority than virtual channel 0. This priority scheme and the

way of distributing the traffic can affect the latency of messages and,

therefore, it can also affect the cache miss latency. In particular, chang-

ing the priority scheme or adding new virtual channels (for instance, a

dedicated virtual channel for resending notifications) may influence the

protocol performance. Thus, it would be interesting to perform a study

of how the traffic should be distributed among virtual channels and the

most suitable priority schemes to apply. This has special interest in the

proposal of the table reduction because this proposal introduces of a new

class of message: the resending notifications. Since this kind of message

is a point-to-point message, they use the same virtual channel as the

responses. However, that virtual channel is the one with the lowest pri-

ority and transmitting resending notifications through it may generate

inefficiency. Besides, some alternatives have been proposed, such as the

removing of the resending notifications, which have not been fully ex-

plored and, although they do not perform as well as the studied one,

some scenarios could favor them.

• Switch-based Packing Technique. The effectiveness of this technique in-

180 Chapter 9. Conclusions

creases when the number of the priority requests that coincide in the

network switches increases. Therefore, several alternatives could be im-

plemented to increase the number of priority requests that coincide in

switches. For example, for obtaining the results shown in this disser-

tation we have assumed 2x2 network switches in the MIN interconnect.

Thus, each switch has 4 links or ports and each of them supports 3 vir-

tual channels. The arbiters of the switches decide which the message of

all the virtual channels is routed at any time. By using different arbitra-

tion policies, we can favor the accumulation of certain class of messages.

Hence, a thorough study should be done to see how affect the election

of a specific policy in the effectiveness of the packing technique.

• Multicast Data Responses. According to this proposal a single message

can be used to serve several priority requests. Since priority requests

are completely served in order, a multicast data response can complete

several consecutive priority read requests. If a table contains a lot of

priority read requests but they are not consecutive (that is, there are

some priority write requests between all the priority read requests), all

the priority read requests will not be able to be served by a single mes-

sage. Thus, to increase the packing opportunities, the policy could be

slightly modified, serving first, the priority write requests and, then, all

the priority read requests by a single message. To do this, the informa-

tion attached in responses will have to be modified and the new policy

should ensure that the priority write requests will not starve out the

priority read requests.

Given that priority requests handle tokens and memory blocks as efficiently

as transient requests and they let Token Coherence preserve its flexibility and

main characteristics, we think that priority requests could successfully replace

transient requests. In making so, the necessity of a starvation prevention

mechanism is removed since the completion of priority requests is guaranteed.

Besides, in systems where the number of protocol races is considerable, the

performance of the protocol could improve considerably. For example, when

a transient request fails the penalization in runtime is high, since nodes need

to wait for a time (twice the processor’s average miss latency) until realizing

9.4. Future Work 181

of such a situation and then the request is resent (as a priority request).

However, if we use a priority request instead of a transient request, the cache

miss latency in that case would be much lower. Thus, the timeout used to

assume starvation could be eliminated and the resending of requests could be

also removed.

Although replacing transient requests by priority requests may have some

advantages, it has one minor disadvantage and one major disadvantage. The

minor one is that the average latency of requests raises. This is a minor disad-

vantage because the increase of the latency may be offset by the impossibility

of generating protocol races. The major disadvantage is that, whereas the im-

plementations of transient requests can be based on different types of messages

(broadcast, multicast, or even point-to-point messages), priority requests must

be implemented like broadcast messages. This can entail a serious problem

in large and medium systems. Although in Chapter 7 we contributed a me-

chanism to improve this aspect of broadcast messages, it could be said that

this technique is only effective when processors contend for the same memory

block, but, in the absence of contention, the effectiveness falls. To address

this problem, we have a new solution in mind. The general idea is the fol-

lowing. If we could store some information about the priority requests, due

to the fact that their completion is ensured, we could predict with certainty

the processors that share certain block. Therefore, instead of broadcasting

priority requests, they would only need to be sent to the set of components

that share that block. In making so, priority requests could be implemented

as multicast messages instead of broadcast messages, which solves the prob-

lem of their scalability. To implement this solution without introducing any

disadvantages, several aspects should be studied:

• The first question is where to locate the information about the priority

requests. The first option would be to put the information in main me-

mory (like a directory), but we would inherit the typical problems from

directory-based protocols, such as indirection. Therefore, we discard this

possibility. The second option is to place the information in the proces-

sor caches. However, in this case, only the local processor could have

direct access to that information, whereas the rest of processors would

have to access to it through another request, which has the same problem

182 Chapter 9. Conclusions

as directory protocols. Therefore, we discard this possibility too. The

third option is to place the information in the network switches. Due

to the fact that all the priority requests for the same block are routed

through the same root switch, if the information about the sharers is

stored in the root switch, it is sure that all the priority requests will be

able to use that information to decide which of all the destinations really

need to receive the requests and which does not need to. In this way,

processors would broadcast priority requests, but when they go through

the root switch they could become multicast priority requests.

• The second decision to implement this proposal is to decide what infor-

mation about priority requests is kept. Since switches are simple com-

ponents, we can not store the information about all the memory blocks

in the network switches because (1) the storage requirements would be

too high and (2) the access latency to that table would significantly de-

lay the transmission of each priority request. Therefore, an alternative

decision would be to store only the information about some memory

blocks, for example, about the most recently accessed ones. In this way,

root switches could have like a cache to store the list of processors that

share a block. The information in this cache can be used to discard the

unnecessary destinations of certain broadcast messages.

• Another important aspect of this proposal is the following. Each priority

request is assigned a priority at its arrival at nodes. As all nodes receive

all the priority requests and they are received in the same order, each

priority request is assigned the same priority. However, according to the

new proposal, not all the nodes would receive all the priority requests.

Therefore, to continue assigning the same priority to each request, the

priority would have to be generated in the root switch. Since this switch

knows the order in which they are going to be served, they can assign

the priority.

This proposal would be feasible because there are other works, such as [43],

which have already proposed to put some information in networks switches.

This dissertation has been developed assuming a traditional shared-memory

multiprocessor system. Over the last years, a new class of system has come

9.4. Future Work 183

out: the CMPs. The special features of CMPs cause the traditional cache

coherence protocols to suffer some changes. Thus, due to the increasingly use

of CMPs, it would be interesting to adapt the contributions detailed through

the dissertation to the CMPs environments. Although the general idea and

the motivation of each contribution would basically be the same, they may

require certain modifications to fulfill the more challenge requirements regard-

ing power consumption and silicon area existing in CMP environments. In

this sense, the proposal made in this dissertation can be useful in CMPs due

to its capability for reducing significantly storage requirements and the overall

network traffic.

184 Chapter 9. Conclusions

Bibliography

[1] http://download.intel.com/design/processor/manuals/253668.

pdf.

[2] Technical documentation of pa-7100lc processor. Hewlett-Packard,

http://ftp.parisc-linux.org/docs/chips/PCXL_ers.pdf.

[3] Virtutech AB. http://www.virtutech.com/.

[4] D. Abts, D. J. Lilja, and S. Scott. So many states, so little time: Veri-

fying memory coherence in the cray x1. IPDPS 03: 17th International

Parallel and Distributed Processing Symposium, April 2003.

[5] Manuel E. Acacio, José González, José M. Garćıa, and José Duato.

Owner prediction for accelerating cache-to-cache transfer misses in a

cc-numa architecture. Supercomputing ’02: ACM/IEEE conference on

Supercomputing, pages 1–12, 2002.

[6] Manuel E. Acacio, José González, José M. Garćıa, and José Duato. The

use of prediction for accelerating upgrade misses in cc-numa multipro-

cessors. PACT ’02: International Conference on Parallel Architectures

and Compilation Techniques, pages 155–164, 2002.

[7] Manuel E. Acacio, Jose Gonzalez, Jose M. Garcia, and Jose Duato. A

two-level directory architecture for highly scalable cc-numa multiproces-

sors. IEEE Transactions on Parallel and Distributed Systems, 16(1):67–

79, 2005.

[8] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz, J. Ku-

biatowicz, B.-H. Lim, K. Mackenzie, and D. Yeung. The mit alewife

185

186 Bibliography

machine: Architecture and performance. 22nd Annual International

Symposium on Computer Architecture, pages 2–13, June 1995.

[9] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. An evaluation of

directory schemes for cache coherence. SIGARCH Computer Architec-

ture News, 16(2):280–298, 1988.

[10] Niket Agarwal, Li-Shiuan Peh, and Niraj K. Jha. In-network snoop

ordering (inso): Snoopy coherence on unordered interconnects. HPCA

’09: IEEE 15th International Symposium on High Performance Com-

puter Architecture, pages 67–78, February 2009.

[11] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, and Doug Burger.

Clock rate versus ipc: the end of the road for conventional microarchi-

tectures. ISCA ’00: 27th Annual International Symposium on Computer

Architecture, pages 248–259, 2000.

[12] R. Ejaz Ahmed. Energy-aware cache coherence protocol for chip-

multiprocessors. Electrical and Computer Engineering, pages 82–85,

May 2006.

[13] Alaa R. Alameldeen, Milo M. K. Martin, Carl J. Mauer, Kevin E. Moore,

Min Xu, Mark D. Hill, David A. Wood, and Daniel J. Sorin. Simulating

a 2mcommercialserverona2k pc. Computer, 36(2):50–57, 2003.

[14] Alaa R. Alameldeen and David A. Wood. Variability in architectural

simulations of multi-threaded workloads. HPCA ’03: nineth Interna-

tional Symposium on High-Performance Computer Architecture, page 7,

2003.

[15] Alaa R. Alameldeen and David A. Wood. Ipc considered harmful for

multiprocessor workloads. IEEE Micro, 26(4):8–17, 2006.

[16] J. Archibald and J.L. Baer. Cache coherence protocols: Evaluation using

a multiprocessor simulation model. ACM Transactions on Computer

Systems, 4(4):273–298, November 1986.

[17] Krste Asanovic, Ras Bodik, Bryan C. Catanzaro, Joseph J. Gebis, Parry

Husbands, Kurt Keutzer, David A. Patterson, William L. Plishker, John

Bibliography 187

Shalf, Samuel W. Williams, and Katherine A. Yelick. The landscape

of parallel computing research: a view from berkeley. Electrical Engi-

neering and Computer Sciences, University of California at Berkeley,

(UCB/EECS-2006-183), December 2006.

[18] E. Atoofian and A. Baniasadi. A power-aware prediction-based cache

coherence protocol for chip multiprocessors. IPDPS ’07: IEEE Interna-

tional Parallel and Distributed Processing Symposium, pages 1–8, March

2007.

[19] M. Azimi, F. Briggs, M. Cekleov, M. Khare, A. Kumar, and L. P. Looi.

Scalability port: A coherent interface for shared memory multiproces-

sors. 10th Hot Interconnects Symposium, August 2002.

[20] David H. Bailey. Ffts in external or hierarchical memory. Fourth SIAM

Conference on Parallel Processing for Scientific Computing, pages 211–

224, 1990.

[21] A. Baniasadi and A. Moshovos. A power-aware branch predictor for

high-performance processors. ICCD, 00:458–465, 2002.

[22] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer,

B. Sano, S. Smith, R. Stets, and B. Verghese. Piranha: A scalable archi-

tecture based on single-chip multiprocessing. 27th Annual International

Symposium on Computer Architecture, pages 282–293, June 2000.

[23] F. Baskett, T. Jermoluk, and D. Solomon. The 4d-mp graphics super-

workstation: Computing + graphics = 40 mips + 40 mflops and 100,000

lighted polygons per second. COMPCON ’88: 33rd IEEE Computer

Society International Conference, pages 468–471, February 1988.

[24] Guy E. Blelloch, Charles E. Leiserson, Bruce M. Maggs, C. Greg Plax-

ton, Stephen J. Smith, and Marco Zagha. A comparison of sorting

algorithms for the connection machine cm-2. SPAA ’91: third Annual

ACM Symposium on Parallel Algorithms and Architectures, pages 3–16,

1991.

188 Bibliography

[25] Jayaram Bobba, Kevin E. Moore, Haris Volos, Luke Yen, Mark D. Hill,

Michael M. Swift, and David A. Wood. Performance pathologies in

hardware transactional memory. ISCA ’07: 34th Annual International

Symposium on Computer Architecture, pages 81–91, 2007.

[26] E. Bolotin, Z. Guz, I. Cidon, R. Ginosar, and A. Kolodny. The power of

priority: Noc based distributed cache coherency. NOCS ’07: First In-

ternational Symposium on Networks-on-Chip, pages 117–126, May 2007.

[27] J. Borkenhagen and S. Storino. 4th generation 64-bit powepc-compatible

commenrical processor design. Processor Design. IBM Server Group

Whitepaper, January 1999.

[28] J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla, and S. R. Kunkel. A

multithreaded powerpc processor for commercial servers. IBM Journal

of Research and Development, 44(6):885–898, November 2000.

[29] J. M. Borkenhagen, R. D. Hoover, and K. M. Valk. Exa cache/scalability

controllers. In IBM Enterprise X-Architecture Technology: Reaching the

Summit, pages 37–50, 2002.

[30] Jijun Cao, Jinshu Su, and Chunqing Wu. Using nic-based multicast

scheme to improve forwarding rate for application layer multicast. AP-

SCC ’07: second IEEE Asia-Pacific Service Computing Conference,

pages 179–186, 2007.

[31] A. Charlesworth. The sun fireplane interconnect. SC ’01, November.

[32] A. Charlesworth. Starfire: Extending the smp envelope. IEEE Micro,

18(1):39–49, January/February 1998.

[33] A. Charlesworth. The sun fireplane smp interconnect in the sun 6800.

Nineth Hot Interconnects Symposium, August 2001.

[34] A. Charlesworth. The sun fireplane smp interconnect in the sun fire 3800-

6800. HOTI ’01: Ninth Symposium on High Performance Interconnects,

page 37, 2001.

Bibliography 189

[35] G. Chinya, J. Collins, M. Girkar, H. Jiang, G. Lueh, L. Pearce, X. Tian,

H. Wang, P. Wang, and S Yakoushkin. Accelerator exoskeleton. Intel

Technology Journal, August 2007.

[36] S. Coll, J. Duato, F. Petrini, and F.J. Mora. Scalable hardware-based

multicast trees. ACM/IEEE Conference Supercomputing, pages 54–54,

November 2003.

[37] A. L. Cox and R. J. Fowler. Adaptive cache coherency for detecting

migratory shared data. 20th Annual International Symposium on Com-

puter Architecture, pages 98–108, May 1993.

[38] David E. Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel com-

puter architecture: a hardware-software approach. Morgan Kaufmann,

San Francisco, 1999.

[39] Z. Cvetanovic. Performance analysis of the alpha 21364-based hp gs1280

multiprocessor. 30th Annual International Symposium on Computer Ar-

chitecture, pages 218–229, June 2003.

[40] William J. Dally and John W. Poulton. Digital systems engineering.

Cambridge University Press, New York, NY, USA, 1998.

[41] J. Duato, S. Yalamachili, and L. Ni. Interconnection networks: An

engineering approach. Morgan Kaufmann, 2003.

[42] N. Eisley, L. Peh, and L. Shang. In-network cache coherence. IEEE

Computer Architecture Letters, 5(1), 2006.

[43] Noel Eisley, Li-Shiuan Peh, and Li Shang. In-network cache coherence.

MICRO 39: 39th Annual IEEE/ACM International Symposium on Mi-

croarchitecture, pages 321–332, 2006.

[44] N.D. Enright Jerger, Li-Shiuan Peh, and M.H. Lipasti. Virtual tree co-

herence: Leveraging regions and in-network multicast trees for scalable

cache coherence. MICRO ’08: 41st IEEE/ACM International Sympo-

sium on Microarchitecture, pages 35–46, November 2008.

190 Bibliography

[45] Stanford Parallel Applications for Shared Memory. http://www-flash.

stanford.edu/apps/SPLASH/.

[46] S. J. Frank. Tightly coupled multiprocessor system speeds memory-

access times. Electronics, 57(1):164–169, January 1984.

[47] M. Galles and E. Williams. Performance optimizations, implementation

and verification of the sgi challenge multiprocessor. 27th Annual Hawaii

International Conference Systems Sciences, pages 134–143, 1996.

[48] K. Gharachorloo, L. A. Barroso, and A. Nowatzyk. Efficient ecc-based

directory implementations for scalable multiprocessors. SBAC-PAD ’00:

12th Symposium on Computer Architecture and High-Performance Com-

puting, October 2000.

[49] K. Gharachorloo, M. Sharma, S. Steely, and S. V. Doren. Architecture

and design of alphaserver gs320. Ninth International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems,

pages 13–24, November 2000.

[50] James R. Goodman. Using cache memory to reduce processor-memory

traffic. ISCA ’83: 10th Annual International Symposium on Computer

Architecture, pages 124–131, 1983.

[51] Parallel Architecture Group. http://www.gap.upv.es/.

[52] Jim Handy. The cache memory book. Academic Press Professional, San

Diego, CA, USA, 1993.

[53] J. P. Hayes. Computer Architecture and Organization. McGraw-Hill

International Editions, San Diego, CA, USA, 1998.

[54] T. Horel and G. Lauterbach. Ultrasparc-iii: Designing third generation

64-bit performance. IEEE Micro, 19(3):73–85, May/June 1999.

[55] Intel. From a few cores to many: A tera-scale computing re-

search overview. ftp: // download. intel. com/ research/ platform/

terascale/ terascale_ overview_ paper. pdf , 2006.

Bibliography 191

[56] N.E. Jerger, Li-Shiuan Peh, and M. Lipasti. Virtual circuit tree mul-

ticasting: A case for on-chip hardware multicast support. ISCA ’08:

35th International Symposium on Computer Architecture, pages 229–

240, June 2008.

[57] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer,

and D. Shippy. Introduction to the cell multiprocessor. IBM Journal of

Research and Development, 49(4/5):589–604, 2005.

[58] Chetana N. Keltcher, Kevin J. McGrath, Ardsher Ahmed, and Pat Con-

way. The amd opteron processor for multiprocessor servers. IEEE Micro,

23(2):66–76, 2003.

[59] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, M. J.

Irwin, M. Kandemir, and V.Narayanan. Leakage current: Moore’s law

meets static power. Computer, 36(12):68–75, 2003.

[60] Nam Sung Kim, Krisztian Flautner, David Blaauw, and Trevor Mudge.

Circuit and microarchitectural techniques for reducing cache leakage

power. IEEE Trans. Very Large Scale Integr. Syst., 12(2):167–184, 2004.

[61] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Ni-

agara: A 32-way multithreaded sparc processor. IEEE Micro, 25(2):21–

29, 2005.

[62] G. Konstadinidis, M. Rashid, P.F. Lai, Y. Otaguro, Y. Orginos,

S. Parampalli, M. Steigerwald, S. Gundala, R. Pyapali, L. Rar-

ick, I. Elkin, Ge Yuefei, and I. I. Parulkar. Implementation of a

third-generation 16-core 32-thread chip-multithreading sparcs processor.

ISSCC ’08: IEEE International Solid-State Circuits Conference, pages

84–597, February 2008.

[63] S. R. Kunkel. Personal communication. April 2000.

[64] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Ghara-

chorloo, J. C. apin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta,

M. Rosenblum, and J. Hennessy. The stanford flash multiprocessor.

192 Bibliography

21st Annual International Symposium on Computer Architecture, pages

302–313, April 1994.

[65] An-Chow Lai and Babak Falsafi. Memory sharing predictor: the key to

a speculative coherent dsm. 26th Annual International Symposium on

Computer Architecture, pages 172–183, May.

[66] L. Lamport. How to make a multiprocessor computer that correctly

executes multiprocess progranm. IEEE Trans. Comput., 28(9):690–691,

1979.

[67] J. Laudon and D. Lenosk. The sgi origin: A ccnuma highly scalable

server. 24th Annual International Symposium on Computer Architecture,

pages 241–251, June 1997.

[68] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen,

B. J. Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden. Ibm

power6 microarchitecture. IBM Journal of Research and Development,

51(6):639–662, 2007.

[69] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy.

The directory-based cache coherence protocol for the dash multiproces-

sor. 17th Annual International Symposium on Computer Architecture,

pages 148–159, May 1990.

[70] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D.Weber, A. Gupta,

J. Hennessy, M. Horowitz, and M. Lam. The stanford dash multiproces-

sor. IEEE Computer, 25(3):63–79, March 1992.

[71] Owen Liu. Amd technology: power, performance and the future. HPC

’07: ATIP’s 3rd Workshop on High Performance Computing, pages 89–

94, 2007.

[72] A. Louri and K. Kodi. An optical interconnection network and a modi-

fied snooping protocol for the design of large-scale symmetric multipro-

cessors (smps). IEEE Transactions on Parallel and Distributed Systems,

15(12), December 2004.

Bibliography 193

[73] T. D. Lovett and R. M. Clapp. Sting: A cc-numa computer system for

the commercial marketplace. 23th Annual International Symposium on

Computer Architecture, May 1996.

[74] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Fors-

gren, Gustav H̊allberg, Johan Högberg, Fredrik Larsson, Andreas Moest-

edt, and Bengt Werner. Simics: A full system simulation platform. IEEE

Computer, 36(2):50–57, February 2003.

[75] M. P. Malumbres, Jose Duato, and Joseph Torrellas. An efficient imple-

mentation of tree-based multicast routing for distributed shared-memory

multiprocessors. SPDP ’96: eighth IEEE Symposium on Parallel and

Distributed Processing, page 186, 1996.

[76] Milo M. K. Martin. Token coherence. Doctoral dissertation, Computer

Sciences Deptartment, University of Wisconsin, 2003.

[77] Milo M. K. Martin, Mark D. Hill, and David A. Wood. Token coherence:

Decoupling performance and correctness. ISCA 2003, pages 182–193.

[78] Milo M. K. Martin, Mark D. Hill, and David A. Wood. Token co-

herence: A new framework for shared-memory multiprocessors. IEEE

Micro, 23(6):108–116, 2003.

[79] Milo M. K. Martin, D. J. Sorin, A. Ailamaki, A. R. Alameldeen, R. M.

Dickson, C. J. Maurer, M. Plakal, M. D. Hill, and D. A. Wood. Times-

tamp snooping: An approach for extending smps. Ninth International

Conference Architectural Support for Programming Languages and Op-

erating Systems, pages 25–36, November 2000.

[80] Milo M. K. Martin, D. J. Sorin, M. D. Hill, and D. A. Wood. Band-

width adaptive snooping. Eighth International Symposium on High-

Performance Computer Architecture, pages 251–262, February 2002.

[81] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R.

Marty, Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill,

and David A. Wood. Multifacet’s general execution-driven multiproces-

sor simulator (gems) toolset. SIGARCH Computer Architecture News,

33(4):92–99, 2005.

194 Bibliography

[82] M. R. Marty, J. D. Bingham, M. D. Hill, A. J. Hu, M. M. K. Martin,

and D. A. Wood. Improving multiple-cmp systems using token coher-

ence. 11th International Symposium on High-Performance Computer

Architecture (HPCA’05), pages 328–339, 2005.

[83] M.R. Marty and M.D. Hill. Coherence ordering for ring-based chip mul-

tiprocessors. MICRO ’06: 39th Annual IEEE/ACM International Sym-

posium on Microarchitecture, pages 309–320, December 2006.

[84] Aleksandar Milenkovic. Achieving high performance in bus-based

shared-memory multiprocessors. IEEE Concurrency, 8(3):36–44, July-

September 2000.

[85] Adam Moody, Juan Fernandez, Fabrizio Petrini, and Dhabaleswar K.

Panda. Scalable nic-based reduction on large-scale clusters. SC ’03:

2003 ACM/IEEE Conference on Supercomputing, page 59, 2003.

[86] Gordon E. Moore. Cramming more components onto integrated circuits.

Readings in computer architecture, pages 56–59, 2000.

[87] David Mosberger. Memory consistency models. SIGOPS Operative Sys-

tems Review, 27(1):18–26, 1993.

[88] Trevor Mudge. Power: A first-class architectural design constraint. Com-

puter, 34(4):52–58, 2001.

[89] S. S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb. The

alpha 21364 network architecture. Nineth Hot Interconnects Symposium,

August 2001.

[90] Henk L. Muller, Paul W. A. Stallard, and David H. D. Warren. The data

diffusion machine with a scalable point-to-point network. Department

of Computer Science, University of Bristol, page 16, October 1993.

[91] Jason Nieh and Marc Levoy. Volume rendering on scalable shared-

memory mimd architectures. VVS ’92: 1992 Workshop on Volume Vi-

sualization, pages 17–24, 1992.

Bibliography 195

[92] A. Nowatzyk, G. Aybay, M. Browne, E. Kelly, and M. Parkin. The

s3.mp scalable shared memory multiprocessor. International Conference

on Parallel Processing, volume I:1–10, August 1995.

[93] Soo-Cheol Oh, Sang-Hwa Chung, and Hankook Jang. Design and im-

plementation of cc-numa card ii for sci-based pc clustering. IEEE Inter-

national Conference on Cluster Computing, pages 145–151, 2002.

[94] Dhabaleswar K. Panda, Craig, B. Stunkel, Rajeev Sivaram, Rajeev

Sivaram, Dhabaleswar K. P, and A Craig B. Stunkel. Efficient broad-

cast and multicast on multistage interconnection networks using mul-

tiport encoding. Eighth IEEE Symposium on Parallel and Distributed

Processing, pages 36–45, 1996.

[95] M Papamarcos and J. Patel. A low overhead coherence solution for

multiprocessors with private cache memories. 11th Annual International

Symposium on Computer Architecture, pages 384–354, June.

[96] David A. Patterson and John L. Hennessy. Computer architecture: a

quantitative approach. Morgan Kaufmann, San Francisco, 2007.

[97] Fabrizio Petrini, Juan Fernandez, Eitan Frachtenberg, and Salvador

Coll. Scalable collective communication on the asci q machine. 11th

Symposium on High Performance Interconnects, pages 54–59, August

2003.

[98] F. Pong, M. Dubois, and K. Lee. Design and performance of smps with

asynchronous caches. Technical Report HPL-1999-149, Hewlett Packard,

HP Laboratories Palo Alto, November 1999.

[99] X. Qiu and M. Dubois. Moving address translation closer to memory

in distributed shared-memory multiprocessors. IEEE Transactions on

Parallel and Distributed Systems, 16(7):612–623, 2005.

[100] AMD Press Release. Amd introduces the world’s most ad-

vanced x86 processor, designed for the demanding datacenters.

http: // www. amd. com/ us-en/ Corporate/ VirtualPressRoom/ 0,

,51_ 104_ 543 ~ 119768,00. html , September 2007.

196 Bibliography

[101] Intel Press Release. Dual core era begins, pc makers start selling intel-

based pcs. http: // www. intel. com/ pressroom/ archive/ releases/

20050418comp. htm , April 2005.

[102] Edward Eric Rothberg. Exploiting the memory hierarchy in sequential

and parallel sparse Cholesky factorization. PhD thesis, Stanford, CA,

USA, 1993.

[103] Daniel Sanchez, Luke Yen, Mark D. Hill, and Karthikeyan Sankar-

alingam. Implementing signatures for transactional memory. MICRO

’07: 40th Annual IEEE/ACM International Symposium on Microarchi-

tecture, pages 123–133, 2007.

[104] M.D. Schroeder, A.D. Birrell, M. Burrows, H. Murray, R.M. Needham,

T.L. Rodeheffer, E.H. Satterthwaite, and C.P. Thacker. Autonet: a

high-speed, self-configuring local area network using point-to-point links.

IEEE Journal on Selected Areas in Communications, 9(8):1318–1335,

October 1991.

[105] Sun SPARC Enterprise M9000 Server. http://www.sun.com/servers/

highend/m9000/specs.xml.

[106] Jaswinder Pal Singh. Parallel hierarchical N-body methods and their

implications for multiprocessors. PhD thesis, Stanford, CA, USA, 1993.

[107] A. Singhal, D. Broniarczyk, F. Cerauskis, J. Price, L. Yaun, C. Cheng,

D. Doblar, S. Fosth, N. Agarwal, K. Harvery, E. Hagersten, and B. Lien-

cres. Gigaplane: A high performance bus for large smps. Forth Hot

Interconnects Symposium, pages 41–52, August 1996.

[108] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B.

Joyner. Power5 system microarchitecture. IBM Journal of Research

and Development, 49(4/5):505–521, 2005.

[109] A. J. Smith. Cache memories. Computing Surveys, 14(3):473–530, 1982.

[110] P. Stenstrom, M. Brorsson, and L. Sandberg. Adaptive cache coherence

protocol optimized for migratory sharing. 20th Annual International

Symposium on Computer Architecture, pages 109–118, May 1993.

Bibliography 197

[111] Karin Strauss, Xiaowei Shen, and Josep Torrellas. Flexible snooping:

Adaptive forwarding and filtering of snoops in embedded-ring multipro-

cessors. ISCA ’06: 33rd Annual International Symposium on Computer

Architecture, pages 327–338, 2006.

[112] Craig B. Stunkel, Jay Herring, Bulent Abali, and Rajeev Sivaram. A

new switch chip for ibm rs/6000 sp systems. Supercomputing ’99: 1999

ACM/IEEE Conference on Supercomputing, page 16, 1999.

[113] Taeweon Suh, Douglas M. Blough, and Hsien-Hsin S. Lee. Supporting

cache coherence in heterogeneous multiprocessor systems. Design, Au-

tomation and Test in Europe Conference and Exhibition Volume II, page

21150, 2004.

[114] Herbert Sullivan and T R Bashkow. A large scale, homogeneous, fully

distributed parallel machine, i. SIGARCH Computer Architecture News,

5(7):105–117, 1977.

[115] P. Sweazey and A. J. Smith. A class of compatible cache consistency

protocols and their support by the ieee futurebus. 13th Annual Interna-

tional Symposium on Computer Architecture, pages 414–423, June 1986.

[116] J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy. Power4

system microarchitecture. IBM Server Group Whitepaper, October 2001.

[117] Jonathan S. Turner and Jonathan S. Turner. An optimal nonblocking

multicast virtual circuit switch. Proceedings of Infocom, pages 298–305,

1994.

[118] M. K. Vernon and U. Manber. Distributed round-robin and rst-come rst-

serve protocols and their applications to multiprocessor bus arbitration.

15th Annual International Symposium on Computer Architecture, pages

279–289, May 1988.

[119] W.D. Weber and A. Gupta. Analysis of cache invalidation patterns in

multiprocessors. Third International Conference on Architectural Sup-

port for Programing Languages and Operating Systems, pages 243–256,

April 1989.

198 Bibliography

[120] Steven C Woo, Jaswinder P Singh, and John L. Hennessy. The per-

formance advantages of integrating message passing in cache-coherent

multiprocessors. Technical report, Stanford, CA, USA, 1993.

[121] Steven Cameron Woo and John Hennessy. The performance advantages

of integrating block data transfer in cache-coherent multiprocessors. PhD

thesis, Stanford, CA, USA, 1996.

[122] Luke Yen, Jayaram Bobba, Michael R. Marty, Kevin E. Moore, Haris

Volos, Mark D. Hill, Michael M. Swift, and David A. Wood. Logtm-se:

Decoupling hardware transactional memory from caches. HPCA ’07:

13th International Symposium on High Performance Computer Archi-

tecture, pages 261–272, 2007.

[123] Youtao Zhang, Lan Gao, Jun Yang, Xiangyu Zhang, and Rajiv Gupta.

Senss: security enhancement to symmetric shared memory multipro-

cessors. HPCA: 11th International Symposium on High-Performance

Computer Architecture, pages 352–362, 2005.

