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Abstract: Lot-streaming flow shops have important applicasi in different industries including textile,
plastic, chemical, semiconductor, and many othdisis paper considers an-job m-machine
lot-streaming flow shop scheduling problem withseoce-dependent setup times under both the idling
and no-idling production cases. The objective ismimimize the maximum completion time or
makespan. To solve this important practical problenrmovel estimation of distribution algorithm
(EDA) is proposed with a job permutation based esentation. In the proposed EDA, an efficient
initialization scheme based on the NEH heuristiprissented to construct an initial population véth
certain level of quality and diversity. An estinmatiof a probabilistic model is constructed to ditthe
algorithm search towards good solutions by takintp iaccount both job permutation and similar
blocks of jobs. A simple but effective local searstadded to enhance the intensification capabiity
diversity controlling mechanism is applied to maintthe diversity of the population. In addition, a
speed-up method is presented to reduce the corignatheffort needed for the local search technique
and the NEH-based heuristics. A comparative evianais carried out with the best performing
algorithms from the literature. The results shouat tihe proposed EDA is very effective in comparison
after comprehensive computational and statisticalyses.

Keywords: Flow shop scheduling; Lot-streaming; Estimatidrdistribution algorithm; Makespan;

Sequence-dependent setup times.

1. Introduction

The permutation flow shop scheduling problem is ohthe most extensively studied combinatorial

optimization problems. It has important applicaipramong others, in manufacturing systems,
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assembly lines and information service facilitiesise nowadays. In a traditional flow shop, theema
jobs that have to be processednmachines. All jobs visit the machines in the sa®guence. Each
job is assumed to be indivisible, and thus, it cadre transferred to the downstream machine Uil t
whole operation on the preceding machine is firdshidevertheless, this is not the case in many
practical environments where a job or lot consi$tsany identical items. For example, in the fasten
production process, jobs are batches of thousaiislts, dowels, or rivets. The whole batch does no
need to be finished in order to move on to the meachine. Another example comes from the
electronics and semiconductor production envirortrvgmere a job comprises thousands of identical
electronic components and again it is not necessamwyait for all items in the lot to be completed
before moving to the downstream machine. In ordeadcelerate production, a job is allowed to
overlap its operations between successive machineplitting it into a number of smaller sub-lotsda
moving the completed portion of the sub-lots to dstream machines (Yoon and Ventura (2002a)).
More examples arise in the ceramic tile sector whatches of ceramic tiles are composed of literall
thousands of ceramic tiles. When going from thedimgi and glaze decoration lines to the kiln firing
machines, the whole batch of tiles does not nedzbtlully completed and overlapping is desirable in
practice. The process of splitting jobs into suts-ls usually called lot-streaming, which was first
introduced by Reiter (1966) and has become ondefrost effective techniques used to implement
time-based strategies in today’s global competiti@hang and Chiu (2005), Sarin and Jaiprakash
(2007)). Generally, there are two different prodhretsituations when processing the sub-lots ofta jo
namely, the idling case and no-idling case. Inrthedling case, jobs must be continuously processed
without interruptions (i.e., idle time) between atwyo adjacent sub-lots of the same job. The idling
case allows idle time on machines. It is known thakespan based on the idling case is shorter than
that based on the no-idling case under the samdostype (Chang and Chiu (2005)). However, both
cases have their respective practical applicafiomsday’s competitive production environments. Wit
regards to the potential benefits of lot streamthgy are mentioned by Truscott (1986) as follo(a}:
reduction in production lead times (thus, leadingbetter due-date performance); (b) reduction in
work-in-process inventory and associated costs; r@uctions in interim storage and space
requirements, and (d) reduction in material hampéipstem capacity requirements. Therefore, in tecen
years, lot streaming has received extensive atterdand has been applied to flow shop scheduling
problems starting with the work of Tseng and Lia0Q8).

Setup times involve non-productive operations sagltleaning, obtaining or adjusting tools, fixing
or releasing parts to machines, and others. Sétugstare very important in practice as noted in
Allahverdi and Soroush (2008). Although they aré part of the job processing times, these operation
have to be done prior to the processing of the.j@®tup times can be broadly classified in two
categories (Allahverdi, Gupta and Aldowaisan (1999lahverdi et al. (2008)). The first category is
referred to as sequence-independent setup, whenessgepend only on the machine and on the next
job to be processed. The second one is sequeneadi=mt setup, in which setups depend not only on
the job to be processed next but also on its imatelyi preceding job on the same machine. An
example is given by Ruiz and Allahverdi (2007)the painting industry, after producing a black pain

substantial cleaning must be performed if one i¢eto produce a white paint, while less cleaning is



necessary if a batch of dark grey paint is to bedpced. On the other hand, almost no cleaning is
required when production is changed from a sulpddbe black paint to another one of a similar klac
paint.

This paper considers lot-streaming flow shop schiegproblems with sequence-dependent setup

times, with important applications, as commented textile, plastic, chemical and semiconductor
industries. Without loss of generality, this prahlées denoted ask,,, Ln|prmu SW;d|CmaX by using the

well known a/B/y notation with the extensions of Chang and ChilD80and Allahverdi, Gupta and
Aldowaisan (1999), whereST,, represents the sequence-dependent setup timeFgrahd L,

stand for then-job mrmachine lot-streaming flow shop configuration. Thermutation flow shop
scheduling problem under makespan criterion isadiyeNP-Hard as was shown by Garey, Johnson and
Sethi (1976) (for three or more machines, i.en>3). Since we consider lot-streaming and
sequence-dependent setup times, the studied prableiso NP-Hard.

Estimation of distribution algorithms (EDA) wereroduced by Mihlenbein and Paass (1996). EDA
are a class of novel population-based evolutionalgorithms. Unlike traditional evolutionary
algorithms, EDA samples new solutions from a prdistiz model which characterizes the distribution
of promising solutions in the search space at gaderation. Due to its effectiveness and seardhyabi
EDA has recently attracted much attention in tkdfiof evolutionary computation (Larrafiaga and
Lozano (2002)), and it has already been appliecsdlve combinatorial optimization problems,
including the flow shop scheduling problem in Jaibdeddaly and Siarry (2009) or more complex
hybrid flow shop settings in Salhi, Vazquez Rodeigand Zhang (2010). Therefore, EDA seems like a
promising venue of research for the studied sclwgluproblem. However, to the best of our
knowledge, there is no published work dealing wiit# lot-streaming version of flow shop scheduling

problem using EDA, let alone with sequence-dependetup times. In this paper we study this
important and practicaIFm,Ln|prmu SW;d|CmaXprobIem. Furthermore, both the no-idling and idling

cases are considered. The proposed EDA makes mdeamse of some effective techniques like an
NEH-based initialization, a sequence-representdigsed probabilistic model, diversity measures and
an insert-neighborhood-based local search. Compuo#dt experiments and statistical comparisons
show that the proposed EDA outperforms the bedbpaing algorithms that have recently appeared
for solving the lot-streaming flow shop schedulprgblem.

The rest of the paper is organized as follows:dctisn 2, the literature on the lot-streaming flow
shop scheduling problem is reviewed. In sectiotth8, lot-streaming flow shop scheduling problem
with sequence-dependent setup times is statedaantlfated. Section 4 gives a brief introduction to
the basic EDA methodology and presents our prop&il method in detail. Section 5 contains the
calibration of the proposed EDA. The computatiaeaults and comparisons are provided in section 6.

Finally, concluding remarks are presented in sactio

2. Literaturereview

Having so many practical applications, lot-streagrtias been extensively studied in the academic as
well as in the industrial fields since the late @9§Chang and Chiu (2005)). Some papers deal with



single-job lot-streaming problems, where the maial gs to determine the best allocation of sub-twts
the size of each sub-lot so as to minimize somergperformance measures.

There are some important theoretical or basic tegol highlight. First, Potts and Baker (1989)
indicated that it was sufficient to use the samb-lsti sizes for all machines as regards makespan
criterion. This is an important result for the flelop problem as different number of sub-lots fer t
machines would complicate the problems signifigartlowever, it remains to be seen if this result
holds when sequence-dependent setup times arenprésgthermore, Baker and Jia (1993) showed
that makespan improved with the number of sub-lg¢hile this is an expected result (the more
sub-lots the higher the machine utilization), tlaggr of Baker and Jia (1993) actually quantified an
deeply studies the effect. Lastly, Trietsch and é8a993) generalized some important structural
properties by reviewing the different forms of d&gpb lot-streaming in the literature.

Apart from these theoretical results, many papeax&tbeen published where different lot-streaming
flow shop settings and objectives are studied. Mafryrem are now discussed in chronological order.
Kropp and Smunt (1990) presented optimal sub-lae gpolicies and two heuristic methods for
flowtime minimization in a flow shop setting wittoradditional constraints. Vickson and Alfredsson
(1992) studied the effect of batch transfer in @-tmachine and special three-machine flow shop
problems with unit-size sub-lots. Cetinkaya (19p&)posed an optimal transfer batch and scheduling
algorithm for a two-stage problem with separatedseprocessing and removal times. Vickson (1995)
examined a two-machine problem involving setup aob-lot transfer times with respect to both
continuous and integer valued sub-lot sizes andesexact algorithms were presented. Sriskandarajah
and Wagneur (1999) presented an efficient heurifdic solving the problem of simultaneous
lot-streaming and scheduling of multiple produatsa two-machine no-wait flow shop. For the
m-machine lot-streaming flow shop problem, Kumarg&a and Sriskandarajah (2000) extended the
approach presented by Sriskandarajah and Wagn€@8)Xo them-machine case. Later, Kalir and
Sarin (2001) proposed a bottleneck minimal idlenessristic to sequence a set of batches to be
processed in equal sub-lots for minimizing makespéron and Ventura (2002b) developed sixteen
pairwise interchange methods to optimize the meaighted absolute deviation from due dates. To the
best of our knowledge, this is the first study abtmi-streaming flow shop involving due dates.
Bukchin, Tzur and Jaffe (2002) examined the optis@ltion properties and developed a solution
procedure for a two-machine flow shop schedulingbfam with sub-lot detached setups and batch
availability. Liu (2003) proposed a heuristic medtfor discrete lot streaming with variable sub-liwts
a flow shop. Kalir and Sarin (2003) developed a rgdimal solution procedure for the determination
of the number of sub-lots as well as the sequenca iflow shop lot streaming problem with
sub-lot-attached setups.

Zhang et al. (2005) developed two heuristic al@ponis for the multi-job lot-streaming problem in a
two-stage hybrid flow shop with the objective tonimiize the mean completion time of the jobs.
Marimuthu and Ponnambalam (2005) proposed a gealgarithm (GA) and a simulated annealing
(SA) for lot streaming in a two-machine flow shaprhinimize makespan. Liu, Chen and Liu (2006)
studied the multi-product variable lot streamingairflow shop. A hybrid heuristic was applied for

determining product sequences, lot streaming reatiion machines, and lot streaming ranges by



combining a tabu search (TS) with simulated annga(iSA). Additionally, a linear programming
model was used to find the minimal makespan andtteaming for each machine and each product.
Feldmann and Biskup (2008) provided a mixed intggegramming formulation for the multi-product
lot streaming problem in a permutation flow shopghwintermingling of sub-lots from different jobs.
While in this paper we do not consider interminglifiwhere not all sub-lots of the same job follow
one another in a sequence), it is a very promigérgie of research.

Recently, more complex single-job lot-streamingbpeas were addressed. Liu (2008) investigated
the continuous version of the problem and providptimal and heuristic solution methods for the
general problem. Edis and Ornek (2009) proposeguaistic by combining simulation and tabu search
to minimize the makespan for a single-product metdtje stochastic flow shop problem with consistent
sub-lot types and discrete sub-lot sizes. Kim aedng (2009) proposed a self-adaptive genetic
algorithm for scheduling a flow shop problem witb-wait flexible lot-streaming constraints, where
the splitting of order quantities of different prads into sub-lots and alternative machines with
different processing times was dealt with. MartirPO@9) presented a hybrid genetic
algorithm/mathematical programming approach forutirfiamily flow shop scheduling problem with
lot streaming.

Most of the literature studies the lot streamingMishop scheduling problem with fixed sizes of
sub-lots under the non-intermingled case. For ex@amfoon and Ventura (2002b) presented a hybrid
genetic algorithm (HGA) to minimize the mean wegghiabsolute deviation of job completion times
from their due dates. Tseng and Liao (2008) deelag discrete particle swarm optimization (DPSO)
algorithm. It was shown by the authors that theRSD algorithm performed much better than the
HGA proposed by Yoon and Ventura (2002b) for s@vB00 randomly generated instances. More
recently, Pan et al. (2010) presented a discretifica bee colony (DABC) algorithm which
outperformed both previous DPSO and HGA algorithidsrimuthu, Ponnambalam and Jawahar
(2007), (2008) and (2009) applied a tabu search),(EBnulated annealing (SA), hybrid genetic
algorithm (HGA), ant colony optimization (ACO) anthreshold accepting (TA) algorithms,
respectively, to deal with both makespan and fitdal time criteria for a flow shop problem invohgn
setup times. For multi-objective problems, Huand &ang (2009) presented a scheduling mechanism
and an ant colony optimization heuristic for an rteq@ manufacturing problem with various ready
times and sequence-dependent setup times.

As we can see from the previous review, and td#w of our knowledge, no metaheuristic has been
applied to minimize the makespan in thgob m-machine lot-streaming flow shop problem with
sequence-dependent setup times. A comprehensiviewewf scheduling problems involving
lot-streaming can be found in Chang and Chiu (2@0%)in Sarin and Jaiprakash (2007).

3. Lot-streaming flow shop scheduling problem

This paper considers an-job m-machine lot-streaming flow shop scheduling problehine

statement of the problem and an illustrative exanapé described in this section.

3.1. Statement of the problem



We assume that each jplean be split into a number(j) of smaller sub-lots with equal size such
that 1(j) is the same for all machines. This follows theeagsh work of Yoon and Ventura (2002a),
Yoon and Ventura (2002b), Tseng and Liao (2008)ritathu, Ponnambalam and Jawahar (2007),
(2008) and (2009). Once the processing of a sub#aits preceding machine is completed, it can be
transferred to the downstream machine immediatétyvever, all1(j) sub-lots of jobj should be
processed continuously as no intermingling is alldwA separable sequence-dependent setup time is
necessary for the first sub-lot of each jdiefore it can be processed on any mackirkeirthermore, at
any time, each machine can process at most onéosabd each sub-lot can be processed on at most
one machine. Let the processing time of each subflpb j on machiné be p(k, j), and the setup
time of jobj on machinek, after having processed jgbis sk,j',j). For simplicity, let sK,j, )
represent the setup time of jpH it is the first job to be proceeded in the machiThe objective is to

find a sequence with the optimal sub-lot startind aompletion times to minimize the makespan.

Let a job permutationn={n,n,,..7,} represent the sequence of jobs to be processetl, an
ST(k, j,e) and CT(k, j,e) denote the earliest start time and the earliestpbetion time of thee”
sub-lot of jobj on machinek, respectively.C,,(77) denotes the makespan of the schedule under

permutation 72. Then, for the idling caseC,,,(77) can be calculated as follows:

STQ m1)=s@ m,m)

CT@Lm1)=STALml)+plm) @
ST(k,m 1) =max{CT (k-1 m 1), s(k, , )}, k=23..,m

CT(k, 1) =ST(k, 7, 1)+ pk, 7)), k=23..,m

ST m,e)=CT@Lm,e-1), e=23..1(m)

CT(7,6) = STA7,e)+ p7m), e= 23..1(m) )
ST(k,m,e) = max{CT(k-17m,e),CT (k,7;,,e-1)}, e= 23..1(m),k=23...m

CT (k,m1,e) = ST(k,1,e) + pk, ), e= 23..,1(m),k=23...m

STLm)=CT Qw1 () +s@rm_,,m), i=23..,n

CTQm)=STA@r)+p@Qm), i=23.,n

ST(k, 71,1) = max{CT (k 1,77, 1), CT (k, 71_,,1(75..,)) + s(k, 7, 7))}, 3)
i=23.,nk=23...,m

CT(k, 7t 1) =ST(k, 1)+ p(k, 7)), i=23..,nk=23.,m

STALm,e)=CT@Lrm,e-1), i=23.,ne=23..1(7)

CT@Lrm,e)=STArmr,e)+plLmr), i=23..,ne=23..,1(0r1)

ST(k,7.,€) = max{CT (k-1 7,€),CT (k, 7 ,e-1)}, (4)
i=23...,ne=23..,l(z),k=23...m

CT(k,,e) =ST(k,7t,e)+ p(k,7), i=23...,ne=23...1(m)k=23...m

Crnax(7) = CT(m, 71,1 (71,)) (5)

Correspondingly, C,,,,(77) for the no-idling case is calculated as follows:



ST@A,m)=s@rm,m)
CT (4,7, 1(m) = ST (@, m 1) +1(m)x p(,m,)

(6)

ST(k, 77, 1) = max{s(k, 77, 75,), ST(k -1, 77, 1) + p(k -1 71,),
CT(k-17,1(m)) - () - D x p(k, )}, k= 23...m ™
CT(k,75,1(73)) = ST(k, 7. 1) +1(7) % p(k,75), k= 23..,m

CT @7, () =STAm Y +1(m)x plL ), i=23..n

ST(k, 7, 1) = max{ST(k -1 7 ) + p(k -1 75),
CT (k=17 1(m)) - (1(75) -1) x p(k, 77;),
CT(k, g 1(m) + sk, iy, )}, i=23...,nk=23...,m

CT(k,m I(m)) =ST(k,; ) +1(m)x pk, i), i=23.,nk=23...m

{smm 1) = CT (77,1 (7)) + SA 7T, /), 1= 230 -
{ (©)

Crnax(7) = CT(m, 72,,1(77,))) (10)

Then the objective of the lot streaming flow shopesluling problem with makespan criterion is to
find a permutation77” in the set of all permutation§l such that
Crnax (717) € Croay (1), O7z0T

(11)

In equation set (1), the first and third equatispscify the earliest start time for the first sobof
job 77, where both the completion time of the sub-lottlom previous machine and the setup time of
the job on the current machine are considered. 3émond and fourth equations calculate the
completion times, making sure that preemption tfsjés not allowed. Equation set (2) controls the
earliest start time and the earliest completioretior the successive sub-lots of jotg, which ensure
that sub-lots of the same job are processed canisly Equation sets (3) and (4) contain the
calculations for the sub-lots of the following joimsthe sequence. When calculating the start tione f
the first sub-lot of a job in set (3), we take iatocount the completion time of the previous joktton
current machine, the completion time of the sutelothe previous machine, and the setup time of the
job on the current machine. Finally, from equat{bjy we can see that the makespan is equivalent to
the completion time of the last sub-lot of the fast 7z, on the last machine.

Equation sets (6)-(10) consider the makespan ferrntbridling case. In sets (6) and (7), the top
equations give the earliest start time for thet fingb-lot of job 77. We can see that the earliest start
time is equal to the maximum value among the s¢itup of the job on the current machine, the
completion time of the first sub-lot on the prevdanachine, and the difference between the completio
time of the whole job on the previous machine araltbtal processing time of the whole job on the
preceding machine except the last sub-lot, whictuess that no idling interruption time exists betwe
any two adjacent sub-lots of the same job. Theobotquations calculate the earliest completion time
for the last sub-lot of jobrg. Sets (8) and (9) control the calculation of thesequent jobs in the
permutation. Different from sets (6) and (7), wedeonsider the completion time of the last sulnfot

the previous job on the preceding machine wherutatiag the earliest start time.



3.2 lllustrative example

The following example illustrates the calculatiam & four-job, three-machine instance with a given

permutation 77 = {1,234} . Let us give the necessary data for the example:

[I (j)]1x4 = [ 2,2,],2], i.e., jobs 1, 2 and 4 contain two sub-lots arm3pjust one sub-lot.

4325 R B i B
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For the idling case, the makespan is calculateaMbahd the Gantt chart is shown in Fig. 1.
STA) =s@1n=2. CT@AL)=STAL)+p@l)=2+4=6.
ST(211) =max{CT( 113 s(211)} =max{62} =6. CT (211) =ST(211) + p(21) =6+2=8.
ST(311) = max{CT( 213 s(311) =max82} =8. CT (311) = ST(311) + p(31) =8+2=10.
ST@12)=CT (1) =6. CT (112)=ST(@112)+p(@l) =6+4=10.
ST(21,2) = max{CT(11,2),CT(211)} = max{108} =10. CT (21,2) = ST(212) + p(21) =10+2=12.
ST(312) = maxCT(212),CT(311)} = max1210 =12. CT (312) =ST(312) + p(31) =12+ 2=14.
STL21) =CT (112) +s(112) =10+1=11. CT 1,21) =STL21) + p(L2) =11+3=14.
ST(221) = max{CT(121),CT (21.2) + s(21.2)} = max{1412+1} =14.
CT (221) =ST(221) + p(22) =14+2=16.
ST(321) = maCT(221),CT (312) + (31,2} = max{1614+1} = 16.
CT(32)=ST@B2)+ p@Bl =16+2=18and so on untilC,,, =CT (34,2) =40.

m
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Fig. 1. Gantt chart for the idling case example.

For the no-idling case, the makespan is calculbétolw and the Gantt chart is shown in Fig. 2.
STAL) =s@1D)=2. CT (112 =STL) +I@Q)x p(L) =2+2x4=10.
ST(211) = max{s( 211), ST(111) + p (11),CT 112) - (1 (1) -1) x p(21)} = max{2,2+ 410-1x 2} =8.
CT (212) =ST(21) +1 () x p(21) =8+2x2=12.
ST(311) = max{s(311), ST(211)+ p (21),CT (21.2)- (1) -1) x p(31)} = max{ 28+ 212-1x 2} =10.
CT (312) = ST(3LD) +I (1) x p(3]) =10+2x2=14.
ST(@21) =CT (112) +s(112) =10+1=11. CT (122)=ST@2D) +I(2)x p(L2) =11+2x3=17.
ST(221) = max{ST (1,21) + p (1,2),CT(122)- (1(2) -1) x p(22),CT (21.2) + 5(21,2)}
=max{11+ 317-1x 212+1} =15
CT (222)=ST(221) +1(2) x p(2,2) =15+ 2x2=19.
ST(321) = max{ST (221) + p(22),CT(222)- (12 -1 x p(32),CT (312) + s(31.2)}
=max{15+ 219-1x 214+1} =17
CTB22)=STER2)+1(2)x p(32) =17+2x2=21, and so on untilC,,, =CT (34,2) = 42.
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Fig. 2. Gantt chart for the no-idling case example.

4. Proposed EDA for the lot-streaming flow shop problem

EDA is a new metaheuristic methodology proposeififilenbein and Paass (1996), which is based
on populations that evolve within the search precasd has a theoretical foundation in probability
theory. Instead of using the conventional crossoaed mutation operations of regular genetic
algorithms, EDA adopts a probabilistic model learrfeom a population of selected individuals to
produce new solutions at each generation. Stafiogn a population ofPS randomly generated
individuals, EDA estimates a probabilistic modelnfr the information of the select&lindividuals in
the current generation, and represents it by ciomdit probability distributions for each decision
variable.M offspring are then sampled in the search spacerdiog to the estimated probabilistic
model. Finally, the next population is determined ieplacing some individuals in the current
generation with new generated offspring. The algigps are repeated until some stopping criterion is
reached. The pseudo code for the basic EDA is suipetbas follows (Larrafiaga and Lozano (2002)):

begin
Generate a population of PS individuals randamly
Calculate fitness for each individual,
while termination criterion not metjo
Select Q individuals and estimate a probabilisticdel;
Sample M offspring from the estimated probabdistiodel;
Evaluate the M generated offspring;
Generate new population;
end while
end

We now detail the proposed EDA for solving the dbkaming flow shop scheduling problem
involving sequence-dependent setup times to mimminakespan. We explain the solution
representation, population initialization, probalit model, generation of new individuals, popigat

update, local search procedure and a diversityraling mechanism in the next sections.
4.1. Solution representation and population initialization

One of the key issues when designing EDA lies ingblution representation where individuals bear
the necessary information related to the problemalo at hand. The permutation based representation
indicates the job processing order by machiness Tapresentation has been widely used in the

literature for a variety of permutation flow shagheduling problems (Ruiz, Maroto and Alcaraz (2006)



Vallada and Ruiz (2010), Jarboui, Eddaly and Sié2609)). Therefore, we also employ it in this stud

The EDA method is formed by a populatiorR8individuals om-job permutations. To guarantee an
initial population with a certain level of qualignd diversity, a common trend is to construct a few
good individuals by effective heuristics and to quoe others randomly. This initialization approach
ensures a faster convergence to good solutions,itaisd widely used in evolutionary algorithms
developed for traditional flow shop scheduling geshs (Vallada and Ruiz (2010)). It has been long
known that the NEH heuristic (Nawaz, Enscore anthH&983)) is a high performer for flow shop
scheduling problems under different scenarios (Hram Leisten and Rajendran (2003), Ruiz and
Maroto (2005), Rad, Ruiz and Boroojerdian (200B)}his research, we extend it to handle the studie
problem, and obtain two heuristics, referred toNdEsH1 and NEH2, respectively. The NEH1 is
obtained by modifying the objective evaluation he tbasic NEH heuristic with the calculations
described in section 3. NEH1 can be described s

Step 1: An initial permutationr={ 7z, 15,,...,71,} is generated by sorting jobs in decreasing sum of

m
their total processing times, |§ pk, )xI(j), j=212...,n.
k=1
Step 2: A job permutation is established by evatgathe partial sequences based on the obtained
initial order. Suppose a current sequerute;{ﬂi, IT'Z,...,IT;} is already determined for the first
i jobs of the initial permutationnz, theni+1 partial sequences are constructed by inserting
job 7., into thei+1 possible positions of the current sequence. Anitiegei+1 partial

sequences, the one with the minimum makespan isdephe current sequence for the next
iteration. This step is repeated by considering jgh, and so on until all the jobs have been

scheduled.
NEH2 has the same steps as NEH1 with the excepitairthe step 1 is modified as explained below:

Step 1: An initial permutationvr ={ 7z, 1,,...,75,} is generated by sorting jobs in decreasing sum of

m n
their total processing times and mean setup timesZ(p(k,j)x|(j)+zs(1<,j',j)/n),
k=L =

j=12...,n.
There are a total o{n—-1)(n+2)/2 partial sequences generated in step 2, so the wtatignal

complexity is O(mr13) in both no-idling and idling cases using the cltians presented in section 3.
For the basic NEH heuristic, a speed-up method praposed by Taillard (1990) resulting in an

improved complexity oO(mnz). Later, the method was extended to the permutaflimm shop

problem with setup times (Rios-Mercado and Bard98)p no-wait flow shop problem (Pan,

Tasgetiren and Liang (2008), Pan, Wang and Qia@9p0no-idle flow shop problem (Pan and Wang
(2008)), blocking flow shop problem (Wang et al01R)), and others. Accelerations are very effective
for flow shop problems. Rad, Ruiz and Boroojerdi@d09) stated that a very efficient NEH

implementation with accelerations results in CPdets of only 77 milliseconds for instances as large
as 500x20 on a PIV 3.2 GHz PC computer. Non acceleratediaesscan take up to 30 seconds for
the same problem size. Therefore, we propose makesgculation accelerations for the lot-streaming

flow shop problem with setup times, which resubsNEH1 and NEH2 to have a computational

complexity of just O(mnz). This acceleration is now explained below:
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Let STHK, j,e) be the latest start time of k8 sub-lot of jobj on machine in the backward pass

calculation, that is, we proceed from the end & sequence to the beginning. The procedure to

evaluate the+1 partial sequences when inserting jah, into thei+1 possible positions of the
partial permutationﬂ={ﬂi,rr'2,...,rri'} can be simplified in the following way:

Step 1: GetCT(k,lT'Z,I(IT'Z)) for z=12...,i and k=12....m.
Step 2: GetSTb{k,rr'Z,l) for z=i,i-2..1 and k=m-1m-2...,1
Step 3: Repeat the following steps until all possilpositions g, q= {12...j +1} , of the
permutation 7t ={7%,75,,...,77} are calculated:
Step 3.1: Insert jobrz,; into position q and generate a partial permutatiori .
Step 3.2: CalculateCT (k, 77,,1(77,)) by using the previously calculate@T (k, 7z,_y,1(77,,)) ,
where k= 12...m. Note that 7z, = 77, .

Step 3.3: The makespan of the permutatigh is given as follows (see in Figs 3 and 4):
Crax(71") = maxLy (CT (k, 71,1 (77,)) + s(k, 71, 71,) + STh(K, 71, 1)) -

STh(1,2,1)
STE2.2.1) |
m SThE21
3 | I7ZERIENZ 7 |
N7 N TR E7
07 4 | 4 N |
5 10 15 2 25 30 35 40
CT(1,42)——»
CT2.42)——»
CTGA4)——

- Cm ax >

Fig. 3 Insert job ‘4’ into the second position bétpermutationn ={1,23} .ldling case.

STh(1,2,1)
STHQ2.2.1)
m STB21)
3 % ZIEREAZ g |
2 7 a4 2270
177 o4 | 4 217 /|
5 10 15 20 25 3 35 4
CT1,42)——
CTR242)———»
CT3,42)y—————»
¢ Cmax |t

Fig. 4 Insert job ‘4’ into the second position bétpermutationn = {1,23} . No-idling case.

Clearly, both NEH1 and NEH2 heuristics result ibomputational complexity ofO(mrF) by using

the above procedure to evaluate the generateadpsetjuences. With the presented NEH1 and NEH2,

we propose a population initialization procedurghwiboth a high quality and a high diversity as
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follows:

Step 1: Generate an individual using NEH1.

Step 2: Generate an individual using NEH2. If idiferent from the individual generated by NEH1,
put it into population; otherwise discard it.

Step 3: Randomly produce an individual in the sofutspace. If it is different from all existing
individuals, put it into the population; otherwidiscard it. Repeat Step 3 until the population

hasPSindividuals.
ThePSindividuals of the population are always storedseending order of their makespan values.

4.2. Selection operator and probabilistic model

The probabilistic model construction represents thain part of the EDA method, which is
estimated from the genetic information of the imdidals chosen from the population by a selection
operator. In classic evolutionary algorithms, réigl@nd tournament selection operators are commonly
used. Such selection operators either requiresfiteend a mapping calculation or the individualbeo
continuously compared and sorted. In this papersetect theQ best individuals from the population
to estimate a probabilistic model. Since individuate stored in ascending order of their makespan
values, we can complete the operator by selectieditstQ individuals in the population. This results
in a very fast selection operator.

The performance of the EDA is closely related te pnobabilistic model, and obviously, a good
model can enhance the algorithm’s efficiency ariec#i’eness for optimizing the problem considered.
Thus, the best choice of the model is crucial fesigning an effective EDA. For solving the
permutation flow shop scheduling problem with tdtaelvtime criterion, Jarboui, Eddaly and Siarry
(2009) presented a probabilistic model based oh Hw order of the jobs in the sequence and on

similar blocks of jobs present in the selecteduiittlials, which is described as follows:

Let g,; be the number of times that jop appears before or in position in the selected
individuals, and ;. ; (i) the number of times that jofj appears immediately after joh' when job
j' is in positioni-1. Then, 73 ; =&, %/ ; andy;.;(i) =9, %7;.;(i) indicate the importance of
the order of jobs and of the similar blocks of jobghe selected sequences, respectively, whi&re
and J, are two parameters used for the diversificatiorthef solutions. Then, the probability for
positioning job j in thei™ position of the offspring is determined by:
i % i (0)
DM <Ky @)

where Q(i) is the set of jobs not scheduled until positionandj' is the job in the(i -1)" position

(12)

Qti,j =

of the offspring.

There are some shortcomings in the EDA model ptedeby Jarboui, Eddaly and Siarry (2009).
First, as shown in Ruiz, Maroto and Alcaraz (20@bgre are many similar blocks of jobs within the
individuals’ sequences in the latter stages of wimhary methods. If these blocks are disrupted, th

algorithm has a high probability to produce offggriwith worse makespan values. These similar
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blocks may occupy the same positions or differesgitppns. However, only the blocks in the same

positions are considered by Jarboui, Eddaly andh&{@009). Second, according to the definition of
7. (i), itis equal to zero when =1, since jolj is the first job in the sequence and nojjois located
before it. This results in the probability of selen of any jobj in the first position to be always equal

to zero. In other words, the first job of the ofisg is determined randomly and not according to

genetic information. Finally, if at an early stagkthe algorithm there are not enough blocks in the
same position, andj.; (i) is equal to zero for most of jobs, only a few jokigh 7;.;(i)) >0 are
selected for producing offspring. Thus, the popotateasily looses diversity. To address the above
shortcomings, we present a new probabilistic maakich is now detailed:

Let /1” represent the number of times that j@ppears immediately after jolp' in the selected
individuals, which indicates the importance of $émblocks of jobs not only in the same positions b
also in different positions as well. Then, the moitity of placing job j in thei™ position of the
offspring is given by:

P

i=1
ZIDQ(i)p‘v' (13)
§ = Pi A
Zmo(i)p'J ZIDO(i)/‘j'" =23..n
2 O R

An example with four jobs is used to illustrate theesented probabilistic model. Suppose the

selected individuals aren(1) = {1234}, n(2) ={2341} and n(3) = {1423} . Therefore, g ; and

Aj.j are given below:

2100 - 101
2211 0 -30
[’()"j]4x4_2322’[’1“"]4x4_oo—2
3333 110 -

Then, we calculate the probability of selectioneath job in Q1) = {1,234} for the first position
as follows: &, = 2/(2+1) = 067, ¢, =1/(2+1) =033, &,3=0/2+1) =0, ¢, =0/2+1)=0.
Suppose job 1 was selected for the first positiod & (2) ={234}, then we calculate the
probability of section of each job i2(2) = {234} as follows:
$20 = (2/2+1+1)+1/QA+0+1))/2=05, ¢,3=U/R2+1+1)+0/1+0+1)/2= 0125,
$r4 = @WQ2+1+1)+1/A+0+1))/2= 0375.

4.3. Generation of new individuals and population update

Inspired by the algorithm developed by Rajendrath diegler (2005) and the DPSO algorithm by
Tseng and Liao (2008),we present a procedure tergem a new sequencd ={7z,7L,,.../T}.
Starting from an empty sequence, the proceduretrtamts 7' by choosing a job for the first position,

followed by choice of the second job, and so ore Pseudo code of the constructing procedure is
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given as follows:
begin
for i=1 tondo

ifrand() <& then

Choose the first unscheduled job in the refereegeience.
else

Select jobj according to probability Ei’j .
endif
endfor

end
In the above procedures is a control parameterrand() is a function returning a random

number sampled from a uniform distribution betw&and 1. The reference sequence is randomly

chosen from the selected individuals for estimating probabilistic model. Whemand() = £, we
randomly selectd jobs from the unscheduled job set and the job vbimlargestfi’j is put into the

it position of the new sequence'. To generateM offspring, the above procedure is repeated

times so to samplél offspring from the probabilistic model.

Another aspect considered in the EDA is the pomratipdate for the next generation. To maintain
the diversity of the population and to avoid cyglithe search, the population is updated in the
following way (Ruiz, Maroto and Alcaraz (2006)):

Step 1: Seti =1.

Step 2: If offspringi is better than the worst individual of the popiglatand if there is no other

identical individual in the population, replace therst individual byi, otherwise, discard
Step 3: Seti =i +1,if i<M, go to step 2; otherwise stop the procedure.

4.4, Local search

It is natural to add a local search into the EDAaory out intensification. We employ a local séarc
based on the job insertion operator, which is \&iiyable for performing a fine local search and tha
commonly used to produce a neighboring solutiothenflow shop literature (Ruiz and Stutzle (2007),
Vallada and Ruiz (2010)). In this local search,0b js extracted from its original position in the
sequence and reinserted in all otherlpossible positions. If a better makespan valueoisd, the
solution is replaced. We repeat the procedure umttilimprovements are found. According to the
extraction order of jobs in the first step, thedbsearch can be classified as referenced locatlsea
(Pan, Tasgetiren and Liang (2008)) and local seanthout order (Ruiz and Stutzle (2007)). Let

m° ={7"1, m2,...,m°n} denote the best job sequence found so far,nanfn,, n,,...n,} be a
sequence that undergoes local search. Then themeés local search is described as follows:

Step 1: Seti =1 and a countercnt to O.
Step 2: Find job % in permutation 77 and record its position.

Step 3: Take out johbi from its original position in72. Then insert it in another different
position of 72, and adjust the permutation accordingly by notndirag the relative positions

of the other jobs. Consider all the possible insarpositions and denote the best obtained

sequence agr-.
Step 4: If 7° is better thann, then set77= 77" and Cnt=0; otherwise setCnt=Cnt+1.

14



i+1 i<n
Step 5: If Cnt<n,let i ={ 1 i=n’ and go to step 2, otherwise output the currenptation

71 and stop.
The local search without order is sensibly différen

Step 1: Set counteCnt=0.

Step 2: Remove a job at random from its originaifian in 77 without repetition. Then insert it
in another different position ofz, and adjust the permutation accordingly by notngfirag
the relative positions of the other jobs. Consalethe possible insertion positions and denote
the best obtained sequence &S.

Step 3: If i is better thann, then let 7= 71"

Step 4: LetCnt=Cnt+1. If Cnt<n, go to step 2.

Step 5: If the permutatiorz was improved in the above Steps 1 through 4, tieio Step 1;

otherwise output the current permutatignand stop.
We test both the referenced local search and e kearch without order in our study. The local

search is applied to each generated offspring aviphobability R, that is, local search is applied if a
random number uniformly generated in the rangeédf][is less thanR; . In addition, the local search

is also applied to the best individual after thidafization of the population. Obviously, the prewsly

proposed speed-up procedure is used in the prelsiectd search methods.
4.5. Diversity controlling mechanism

Invariably, as the population of the EDA evolveiogenerations, its diversity diminishes and the
individuals in the population become very simil@his results in search stagnation. To overcome this
problem, as did in the literature (Ruiz, Maroto aldaraz (2006), Vallada and Ruiz (2010)), a rdstar

mechanism is applied when the diversity value fa#fow a given threshold valug. In the restart

mechanism, the 20% best individuals are kept frioendurrent population and the remaining 80% are
generated randomly. At the same time, to reducedimeputation, the diversity value is calculated at
least 100 generations after the algorithm resténtsaddition, we present a very simple method to
evaluate the diversity of the population based ath the job order and on similar blocks of jobgshia

sequences of the current population as follows:

A1 B2 v Ba
Step 1. Calculate the matri*(q'jjnxn as [ij]nxn _ 4021 4022 (ﬂzn , Where ¢ ; is the
%,1 <0n,2 (on,n
number of times that jobj appears at position .
A, A,
: Ao : A - A A
Step 2: Calculate matriA;.; [~ as follows: [/] ] _| 2 2n |, recall that A;. ;
PVidnxn T ‘. .
/ln,l /]n,2 T

represents the number of times thatjj@ppears immediately after joly' .
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Step 3: Count the number of elements which arestaitan zero in[g‘j Jnxn, and denote it agr .

Step 4: Count the number of elements which arestaitan zero inl)lj,J'Jnxn , and denote it as5 .

Step5. The diversity value of the populatiativ is then computed as follows:

divz[ a-h p-(n-1) j/z
nxmin(nPS-1) (n-1)xmin(n-1,PS-1)

Hencediv gives a very simple diversity measure with a vdlaiveen zero and one. Obviously, the
higher the div value is, the more diverse the population is. A@eclose to one indicates a very
diverse population where each job occupies difftepositions and no similar blocks of jobs exist
among the individuals. On the other hand, a valosecto zero means that all individuals are very
similar or identical. A simple example is given bgnsidering a population of three individuals with

four jobs: n() = {1234}, n(2) ={2341} and n(3)={14,23}. Firstly, we calculatequy J']nxn and

2100 - 101
0111 0 - 30
lAjrj'Jnxn as follows: [wyj]M: 011 10" [/11',1]4x4= 00 - 2|
1011 110 -

Then we geta =11 and =6.
Finally, we obtain div = (L1~ 4)/(4xmin(43-1)) + (6—3)/((4-1) x min(4-13-1)))/2 = 069.

5. Calibration of the proposed EDA

Considering all previous sections, the proposed BEi2¢hod goes as follows:

Step 1: Set the algorithm parametes, Q, M, R, ,£,8, y.Let gen=1.
Step 2: Initialize the population and evaluate eadividual.

Step 3: Perform local search to the best individuahe initial population.
Step 4: SeledD best individuals and estimate the probabilistic edlod
Step 5: Sample and generMeffspring from the probabilistic model.
Step 6: Perform local search to each offsprinigliwith probability R .

Step 7: Evaluate the offspring and update the tioul.

Step 8: Check the diversity of the populationgen>100. If the diversity level is less thay,
perform restart procedure, and geh=0; otherwise setgen=gen+1.

Step 9: If the stopping criterion is reached, netiine best solution found so far and stop; othexwis
go to Step 4.

As we can see, the proposed EDA depends on 8 ptaendherefore, we need to carry out a
calibration in order to set them to appropriateseal We first carefully decide the ranges of patarse
according to the existing literature, like carrmat by Ruiz, Maroto and Alcaraz (2006) and by \@dla
and Ruiz (2010), among many others and also acupidi our past experience. Then, we conduct a
preliminary experiment to determine the levels dach parameter. In the experiment, we try several

typical values for each parameter by simply fixiothers, and select the best two or three for
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calibration in our calibration experiment to kebp forementioned calibrations at a manageablé leve
Next, we employ a Design of Experiments approaclkerateach parameter is a controlled factor as
follows: Population sizeRS tested at three levels, 10, 30 and 50. Seledipa Q) tested at two
levels, 5 and 10. Offspring number) tested at two levels, 5 and 10. Probability tplgpocal search

(P,) tested at two levels, 0.15 and 0.30. Local setyph with two variants, referenced local search

and local search without order. Paramete} (generation of new individuals from section 4t&3ted
at two values, 0.7 and 0.9. Parametj (also from section 4.3) tested at two valuesn@ % Finally,

we have the diversity thresholdy() tested at 0.3 and 0.5 values. This results inotal tof

3x2x2x2x2x2x2x2 =384 different combinations, i.e., 384 different coniigtions for the
proposed EDA. All the 384 configurations are tesied full factorial experimental design with a

termination criterion of maximum elapsed CPU timé ©=50xnx(m/2) milliseconds. This

termination allows for more time as the numberatifsj and machines increases, and has been used in
Ruiz, Maroto and Alcaraz (2006) and by Vallada &uiz (2010) and by many others. Each algorithm
is tested with a small set of 24 randomly gener#@tsthnces. The number of jobs and machines for

each instance are chosen randomly from the follgwisetsn {103050709011G and
mQO {5101520} . Following Yoon and Ventura (2002a) and Tseng laiad (2008), the related data for
the instances is given by discrete uniform distitns as follows:|1(j)OU[L6], p(k,j)OU [13]]
and sk,j', j)0U[13]] . For each instance, 5 difference replicates aneTherefore, the total number
of results is 384x24x5= 46080. Two sets of experiments are conducted: one feridfing and

another for the no-idling case.

The proposed EDA procedure is coded in Visual C:H+abid all the 384 configurations are run on a
cluster of 30 blade servers each one with two IKEEON E5420 processors running at 2.5 GHz and
with 16 GB of RAM memory. Each processor has fooires and the experiments are carried out in
virtualized Windows XP machines, each one with einialized processor and 2 GB of RAM memory.

As a response variable for the experiment, we nieabe relative percentage increase (RPI):
RPI(G) = (g —c")/c"x100 (14)
where ¢ is the makespan value generated in tfe replication by a given algorithm configuration,

and c” is the best objective value found by any of thgodthm configurations. Note that for this
problem there are no known effective exact techeggand comparing against an optimum solution is
not possible. Due to the sequence-dependent sietas,tlower bounds are extremely weak and the
results would be difficult to analyze. Instead afrging out a comparison against the best solution
given by an algorithm, we tried to obtain bettelusons by running the best tested method for an
extended period of time. This resulted in negligitifferences so we preferred to compare algorithms
against the best solution given by them.
All results are analyzed by means of the Analy§i¥asiance (ANOVA) technique, a very powerful

statistical approach that allows us to set theediffit parameters at statistically significant value
among the tested ones. This approach has beewéallm Ruiz, Maroto and Alcaraz (2006), Ruiz and

Stutzle (2007), Ribas, Companys, and Tort-Martq2911), among many others.
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The results of both calibration experiments (idlengd no-idling) are very similar. All 8 controlled
factors (parameters of the proposed DEA) are #taily significant at a 95% confidence level. The
ANOVA table with the full results is not shown hetee to reasons of space. However, all experimental
results are available upon request from the authioes us picture just one result for the most
significant factor in the idling experiment, whiéé factor €, whose means plot and 95% Tukey

Honest Significant Difference (HSD) confidence s are given in Fig 5.

1237 .

1131 1
2 1.03) ]
<

0.93 1

0.831 ~ ]

0.7 0.9
e

Fig. 5 Means plot and 95% Tukey HSD confidencerirtks for the calibration experiment in the idling
case, factore .
As we can see, a level of 0.9 for the factor is statistically better (and by a wide margin)rttihe

value 0.7. This means that in the generation o$pofiig, it is much better to use the proposed
probabilistic model than the reference solution.

After the calibration experiments, we set the patans as follows for both the idling and no-idling
cases: £=09, PS=10, =5, Q=10, y=03, B, =015, M =10, Local search is

referenced local search (factors in order of dtetisrelevance).

It might be argued that the presented EDA can biduimproved by trying consecutive rounds of
tuning a few significant parameters and fixing thst to the best combination found in the abovk ful
factorial experiment. We have tried consecutivendsuof tuning by settings from 0.85 to 1.0 with a
step equal to 0.01 and other parameters unchafdedexperimental results show that the EDA with
£ =0.95 produces better results than wigh=0.9. However, these differences are not largeya0®%)
and have little relevance in reality. Thereforeatmid the problem of over-calibration, we adop th

parameters calibrated by the previous ANOVA.

6. Computational results and comparisons

Several metaheuristics exist in the literature dolving n-job m-machine lot-streaming flow shop
scheduling problems. Although none of them considerquence-dependent setup times, we have
carried out a comprehensive re-implementation alagptation work of most published related material
for comparisons. Marimuthu, Ponnambalam and Jawg@07), (2008) and (2009) presented seven
methods including a tabu search (which we denoteTBY, simulated annealing with insertion

neighborhood (S#, simulated annealing with swap neighborhood JSAybrid genetic algorithm
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(HGA), ant colony optimization (ACO), threshold apting with insertion neighborhood (J)Aand
threshold accepting with swap neighborhood & minimize both makespan and total flow time for
an n-job mrmachine lot-streaming flow shop problem involviagached setup times. By numerical
comparison, the authors claimed that their algorihwere effective and efficient for the problem
considered. Tseng and Liao (2008) developed aatesgrarticle swarm optimization (DPSO) algorithm
for ann-job mmachine lot-streaming flow shop scheduling probieitin the objective to minimize the
mean weighted absolute deviation of job completiones from their due dates, and it was
demonstrated by the authors that their DPSO alguarjierformed much better than the HGA proposed
by Yoon and Ventura (2002b) for solving 900 randpgénerated instances. More recently, Pan et al.
(2010) presented a discrete artificial bee colobABC) algorithm for the problem considered by
Tseng and Liao (2008) and Yoon and Ventura (200&aich outperformed the previously commented
DPSO and HGA methods. We compare the proposed EilbAthe above 9 state-of-the-art algorithms,
i.e., TS, SA SA, HGA, ACO, TA, and TA by Marimuthu, Ponnambalam and Jawahar (2007),8200
and (2009), the DPSO algorithm by Tseng and Lig@)82, and the DABC algorithm by Pan et al.
(2010), for solving the problem considered in théper. We also compare with a recently presented
EDA (denoted as EDA by Jarboui, Eddaly and Siarry (2009), which waseav state-of-the-art
algorithm for minimizing the total flow time in thgermutation show shop scheduling problem and
provided new upper bounds for 49 out of 90 Taillaesthchmark instances. Since the above algorithms
are not designed for the problem considered heeeadapt them by using the makespan calculation
presented in section 3, including all acceleratiamsenever possible. For the proposed EDA in this
paper, we also test it without the speed up praeeddenoted as EDA and without local search
(denoted as EDA), to show the effect of the speed-up and locaickeprocedures.

To test all the methods (13 in total), we emplogoanpletely different benchmark as the one used
before for calibration. The reason is simple: Testwith the same benchmark used for calibration
would lead to biased results. We wuse 28 differentoblem sizes nxm , where
n=30,50,70,90,110,130,150, ama-5,10,15,20. For eacmxm combination, 10 different instances
are randomly generated. As a result, the benchrhask 280 instances. The related data for the

instances is given by the discrete uniform distidns as follows:I(j)0OU[L6], pk,j)0OU[13]
and sk,j', j)0OU[13] . All the algorithms were coded in Visual C++ amxeeuted on the same

cluster of machines employed for the calibratioor. fhe EDA, we adopt the parameters and operators
calibrated in section 5, whereas for the other rilgms, the parameters are fixed to those givetén
literature. Note that calibration is a fine-tunipgocess and algorithms are not expected to behave
entirely different after calibrations.

To make a fair comparison, all the compared algorit adopt the same maximum elapsed CPU time
limit of t=nx(m/2)x o milliseconds as a termination criterion, wheg@ has been tested at three
values: 100, 200, and 300. For each of the 28@ricsis, 5 independent replications are carriedrodit a
for each replication, the RPI is calculated. Iniadd, the average RPI (ARPI) over each problene siz
and the overall mean ARPI is also calculated agstts for the solution quality.

Note that there are 13 algorithms, 280 instancelsSareplications for a total of 18,200 results for
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each value of 0 (54,600 results in total). The comparisons areiediout both for the idling as well

as for the no-idling cases.
6.1. Comparison under the no-idling case

The computational results are reported in Tabl8s Nete that each cell contains the averages of the
5 replicates for each one of the 10 instances dfi @axm combination (50 values averaged at each
cell).

Table 1 Comparison of algorithms at no-idling cége=100).

nxm | EDA EDA, EDA, EDA, DABC ACO DPSO HGA SA SA. TA, TA. TS
30x5 | 0.11 0.79 2.32 434 140 182 165 3.01 329724 417 567 150
30x10| 0.27 085 273 4.06 133 2.05 144 352 377 510884 584 1.52
30x15| 0.16 060 2.71 3.81 117 217 1.33 3.32 3.97 4.84335 6.35 1.30
30x20| 0.16 057 2.63 344 101 2.00 112 314 343 481444 580 0.95
50x5| 021 1.81 3.62 699 211 283 4.16 3.85 3.61784 437 577 1.98
50x10| 0.32 191 3.65 6.61 213 275 411 429 407 515275 624 2.14
50x15| 0.33 1.76 3.54 6.62 2.18 259 426 478 450 570425 6.84 2.12
50x20| 0.34 1.81 3.86 6.19 191 226 3.66 421 434 542545 639 2.18
70x5| 029 223 420 832 245 324 630 3.35 3.22394 3.85 4.99 2.24
70x10| 0.31 251 4.48 7.80 246 312 6.15 431 4.00 4.92694 622 2.57
70x15| 0.33 235 424 752 232 315 579 453 413 492565 651 2.52
70x20| 0.34 244 424 746 238 313 6.02 452 430 536565 6.44 2.72
90x5 | 0.23 216 3.88 858 240 3.38 812 334 266983 3.65 450 2.61
90x10| 0.22 221 411 818 233 3.01 7.31 362 293 424793 511 2.43
90x15| 0.30 235 3.97 7.99 225 3.02 7.02 406 361 461654 547 2.73
90x20| 0.32 237 4.00 7.65 246 317 6.94 428 3.66 4.81834 570 3.06
110x5| 0.19 1.92 3.79 8.69 228 3.27 9.16 4.40 223 3.41972 4.05 3.02
110x10 0.28 2.36 3.79 823 237 341 849 3.78 299 3.98993 4.77 2.98
110x15 0.29 2.29 348 8.16 235 3.23 810 3.71 292 432284 525 3.33
110x2d 0.29 2.30 3.61 7.97 230 321 7.66 3.86 3.26 433354 545 3.21
130x5| 0.17 1.99 356 871 241 331 9.80 580 222 323982 3.96 4.34
130x10 0.24 2.19 344 893 232 340 896 445 260 3.87773 4.38 3.89
130x15 0.25 2.19 3.32 7.96 234 313 861 396 278 3.86034 4.75 3.64
130x20 0.26 2.19 2.97 807 213 293 828 364 275 3.67963 4.84 3.25
150x5| 0.15 1.82 3.22 891 218 3.10 1031 7.30 175 2.9859 3.49 6.38
150x1d 0.15 1.99 2.87 8.14 214 327 9.04 512 209 3.29233 3.94 4.30
150x15 0.24 2.07 2.83 821 221 332 907 479 260 350703 4.48 4.21
150x20 021 1.81 253 791 206 3.04 847 420 255 355853 4.45 3.61
Averagé 0.25 192 348 7.34 212 294 6.48 418 322 435274 527 2.88

It can be easily seen from Table 1 that, for thertelstelapsed CPU time ofp = 100, the proposed

EDA is the best performer with the lowest ARPI 0t 0.25%, which is significantly smaller than all
other results. More interestingly, the EDA achietles best ARPI values for all 28 problem sizes as
well. Compared with the EDA, the EQAyields much worse ARPI values for all the 28 peoblsizes
and a much larger overall ARPI value, which sugg#sat taking advantage of the speed-up method in
the proposed EDA is very beneficial. However, ED& still better than all other methods. On the
other hand, both EDA and ERAsignificantly improve each ARPI value generatedtihy EDA,,
which demonstrates the effectiveness of incorpogaéi local search into the EDA variant. In other
words, the superiority of the proposed EDA shoutdalttributed to the combination of global search
and local search with an appropriate balance betwgploration and exploitation.

The computational results witko =200 and o =300 are reported in Tables 2 and 3, respectively. |

is clear from these tables that the results arsmdgaorable.

The presented EDA makes extensive use of some eelatechniques such as an efficient
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population initialization, a newly designed probistic model, a diversity controlling mechanismgdan
hybridization with local search. These techniques ia favor of the EDA transferring the building
blocks of jobs in parents to offspring, maintainidiyersity of population, having higher local
exploitation ability. In addition, the presentedesd-up technology makes the EDA much more
effective. Thus the EDA can achieve better perforceathan the other algorithms at several different
levels. Note that in the comprehensive experimeBBA is compared against other EDA methods
(EDA; and other GAs. Basically, the differences in aiffincy and effectiveness cannot be solely
attributed to the fact that we are presenting a\Eilethod but more precisely to the efficient and
effective instantiation of the EDA method for thensidered problem.

Table 2 Comparison of algorithms, no-idling cage<200).

nxm | EDA EDA, EDA, EDA, DABC ACO DPSO HGA SA SA. 1A, TA. TS
30x5 | 0.12 0.62 2.30 3.71 1.20 179 137 292 335794 424 574 138
30x10| 0.20 061 256 340 106 2.07 1.18 3.34 3.79 512894 586 1.29
30x15| 0.11 043 252 343 098 215 0.92 3.14 397 484335 6.35 1.12
30x20| 0.17 044 253 3.16 088 2.03 0.84 298 348 4.86494 585 0.92
50x5| 0.18 155 350 6.16 1.87 243 328 3.84 3.71894 447 588 1.86
50x10| 0.31 1.67 3.65 6.02 186 257 3.34 432 420 528405 6.37 1.93
50x15| 0.33 1.43 353 596 189 253 356 4.67 461 582535 6.96 1.84
50x20| 0.39 155 3.98 574 181 238 320 433 457 565775 6.62 2.04
70x5 | 023 207 4.13 7.71 214 3.06 478 3.46 3.37544 400 514 1.95
70x10| 0.31 225 4.60 7.26 224 297 514 445 423 516934 6.46 2.50
70x15| 0.33 2.08 432 6.86 211 284 497 462 437 516805 6.75 2.30
70x20| 0.37 217 436 7.05 223 295 536 465 455 561815 6.69 2.56
90x5 | 0.22 2.03 399 814 211 336 6.23 327 286184 3.85 470 2.08
90x10| 0.26 211 4.32 7.67 207 2.89 594 386 322 454084 541 2.27
90x15| 0.34 228 426 7.71 209 294 599 438 396 4.96994 581 2.56
90x20| 0.31 226 418 7.1 228 296 588 450 3.90 5.05075 594 2.85
110x5| 0.19 1.93 4.04 839 203 3.34 7.29 313 248 367223 431 221
110x10 0.32 2.31 4.09 7.94 214 331 720 3.84 329 429304 509 2.61
110x1§ 0.27 2.19 373 7.76 213 311 7.06 3.92 3.18 458554 552 3.03
110x2d 0.30 2.22 3.89 7.60 2.08 3.01 6.70 409 355 463654 575 2.83
130x5| 0.16 1.88 3.77 8.36 2.08 3.34 823 3.84 242 344183 417 2.74
130x10 0.22 2.13 3.65 861 2.05 323 7.69 341 2.80 4.08983 459 2.75
130x15 0.26 2.13 3.58 7.64 212 294 723 371 3.04 412294 502 2.86
130x20 0.28 2.17 3.27 7.65 1.90 265 7.04 352 3.04 3.96254 514 2.88
150x5| 0.20 1.89 3.49 8.65 206 3.26 9.06 500 2.01 3.21862 3.76 3.76
150x10 0.21 2.02 3.16 7.91 2.02 320 7.93 3.60 238 358533 424 3.18
150x15 0.22 1.94 3.05 7.82 1.98 3.10 810 3.60 2.82 373923 470 3.17
150x20 0.21 1.90 281 755 191 293 7.48 347 2.84 383134 474 265
Averagé 0.25 1.80 3.62 6.89 190 2.83 546 3.85 343 456484 548 2.36

Table 3 Comparison of algorithms, no-idling cage<300).

nxm | EDA EDA, EDA, EDA, DABC ACO DPSO HGA SA SA. 1A, TA. TS
30x5 | 0.11 051 224 339 1.09 1.78 112 278 3.36804 425 575 1.34
30x10| 0.19 046 2.49 3.12 092 205 091 325 3.79 512904 586 1.22
30x15| 0.12 038 248 327 084 217 076 299 399 486365 6.37 1.09
30x20| 0.17 042 252 296 079 2.04 0.68 284 350 4.88514 587 0.93
50x5| 021 142 344 586 1.86 235 307 3.83 3.84025 460 6.01 1.90
50x10| 0.32 1.48 3.64 562 179 254 3.03 429 426 534475 6.44 1.86
50x15| 0.33 1.22 350 558 173 248 3.18 453 466 5.86585 7.00 1.75
50x20| 0.37 1.37 3.98 538 167 235 283 433 462 570825 6.67 2.03
70x5 | 021 1.94 4.08 7.27 201 297 428 3.48 347644 409 524 1.90
70x10| 0.26 2.07 459 691 212 284 475 447 430 523005 654 2.27
70x15| 0.33 191 432 6.39 197 265 470 465 446 525895 6.84 1.98
70x20| 0.36 2.00 4.41 6.62 213 284 502 471 464 571915 6.79 2.35
90x5 | 022 1.94 409 7.88 193 333 551 335 3.00324 399 484 2.03
90x10| 0.24 2.05 439 7.39 197 290 533 400 3.38 470244 558 1.96
90x15| 0.28 212 433 7.33 202 283 552 443 4.06 506105 592 2.37
90x20| 0.36 214 434 6.86 224 291 566 461 4.09 524275 6.14 2.73
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110x5( 0.19 192 416 8.16 187 334 642 308 261 380353 444 1.88
110x1Q0 0.28 2.17 421 757 202 317 6.39 395 341 441424 520 2.35
110x15 0.32 221 394 758 213 312 651 412 340 481774 575 283
110x20 0.27 214 401 736 198 289 6.11 420 3.68 476774 588 2.65
130x5| 0.21 2.02 396 823 195 338 739 323 261 3.63383 436 245
130x10 0.23 215 375 826 190 312 6.90 340 291 419084 470 2.23
130x15 0.23 213 367 739 195 282 6.66 378 314 421394 511 231
130x20 0.23 222 339 746 182 252 654 364 317 4.09384 526 2.56
150x5( 0.15 1.78 357 851 183 327 843 370 208 328942 384 287
150x10 0.16 193 326 7.69 178 3.13 7.13 325 247 3.68623 433 2.73
150x15 0.27 199 324 767 189 3.07 7.64 364 3.02 392124 490 272
150x20 0.21 190 291 732 176 287 6.98 356 295 394254 485 2.36
Average 0.24 171 368 661 178 278 498 379 353 466594 559 213

6.2. Comparison under theidling case

Results for the three different stopping timesgiven in Tables 4-6. It is clear from the thesaultss
that the proposed EDA outperforms the existing mas$hof the comparison by a considerable margin
for the lot-streaming flow shop scheduling problesith setup times to minimize makespan under the
idling case. Quite interestingly, the additionapded CPU time does not seem to affect the proposed
EDA method. The conclusion is that the presented\ EDcapable of reaching good solutions very

quickly and stagnates around very good solutioasahe probably close to optimal.

Table 4 Comparison of algorithms, idling cage=<100).

nxm | EDA EDA, EDA, EDA, DABC ACO DPSO HGA SA SA. 1A, TA. TS
30x5 | 0.14 1.37 260 542 207 207 261 363 322504 441 562 1.88
30x10| 0.24 132 264 495 183 226 235 369 3.80 4.86854 580 1.85
30x15| 0.24 1.19 3.04 466 167 214 210 371 394 479485 575 1.46
30x20| 0.25 1.03 2.99 4.15 140 225 196 340 3.60 451974 540 1.59
50x5| 021 2.60 372 798 296 357 6.96 368 351764 433 577 3.16
50x10| 0.32 2.66 3.90 7.40 289 3.44 585 440 426 521395 620 3.10
50x15| 0.33 257 3.94 6.90 281 313 567 449 425 503545 6.17 2.85
50x20| 0.34 263 426 6.71 267 264 524 467 423 501435 596 2.73
70x5| 019 2.63 4.13 827 3.00 342 896 452 285014 3.68 467 3.64
70x10| 0.37 3.14 475 835 328 3.69 864 464 3.80 4.84584 6.05 3.48
70x15| 0.32 3.04 460 7.80 301 348 814 421 361 478195 572 3.39
70x20| 0.36 292 439 743 293 341 7.23 418 3.84 448075 562 3.21
90x5 | 0.20 2.69 4.30 884 323 369 1171 652 28808 343 454 535
90x10| 0.20 295 3.99 862 3.15 355 9.94 493 294 3.99783 473 3.62
90x15| 0.23 2.70 419 7.93 3.18 3.46 9.28 439 350 4.23784 5.04 3.68
90x20| 0.36 3.01 4.34 758 3.17 350 847 422 3.44 428744 515 3.51
110x5| 0.16 2.73 4.07 9.01 3.03 3.48 13.13 858 231 3.4804 3.89 7.56
110x10 0.24 253 3.64 835 298 3.89 10.82 6.68 288 3.7404 476 564
110x15 024 2.65 3.79 8.18 294 370 10.05 555 296 3.9214 4.84 4.89
110x2d 0.27 2.73 3.63 7.86 2.89 3.61 922 492 299 392204 498 4.37
130x5| 0.22 2.32 3.81 926 3.09 347 1351 1020 242 34695 3.80 10.24
130x10 0.24 2.61 3.53 8.87 296 3.78 1142 7.96 254 33876 4.34 7.32
130x15 0.23 252 347 824 299 356 1039 7.56 259 3572 4.32 5097
130x20 0.21 2.48 3.30 8.12 290 355 995 6.79 250 3.49034 454 541
150x5| 0.22 2.06 3.25 9.12 2.90 3.42 13.46 11.72 221 3.2090 3.55 12.20
150x10 0.21 2.12 291 859 268 3.74 12,01 898 237 3.1B29 409 8.77
150x15 0.27 2.31 3.07 827 277 3.94 1098 811 252 33866 4.42 7.43
150x20 020 2.28 3.00 7.89 274 3.62 1021 7.07 236 3.2B57 410 6.52
Averagé 0.25 242 369 7.67 2.79 334 858 584 315 411254 499 482
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Table 5 Comparison of algorithms, idling cage% 200).

nxm | EDA EDA, EDA, EDA; DABC ACO DPSO HGA SA SA. TA, TA, TS
30x5| 0.15 099 248 474 167 190 2.03 348 3.28564 4.47 568 1.76
30x10| 0.19 095 256 427 149 214 190 358 3.83 489894 584 143
30x15| 0.24 093 294 398 137 215 162 362 399 484545 580 1.43
30x20| 0.23 0.82 290 359 119 228 149 327 364 456015 545 1.37
50x5 | 0.20 228 362 734 264 331 493 3.73 364904 447 590 2.64
50x10| 0.31 230 3.77 663 255 308 470 439 438 534515 6.33 242
50x15| 0.26 2.09 382 6.25 234 271 445 438 430 5.08595 6.23 2.09
50x20| 043 225 433 6.12 242 250 441 478 444 523655 6.19 2.33
70x5| 020 252 425 7.8 273 333 7.14 376 311274 394 494 272
70x10| 0.33 2.89 483 792 296 346 680 469 4.02 506794 6.27 3.15
70x15| 0.30 292 471 736 277 321 638 434 387 505465 599 290
70x20| 0.33 2.67 439 683 264 310 6.01 435 405 470295 584 281
90x5| 0.21 264 454 857 295 380 943 477 316364 3.70 481 354
90x10| 0.18 2.78 422 815 285 338 832 378 318 423024 498 2.65
90x15| 0.21 271 439 744 277 330 7.92 396 3.72 445015 526 2.66
90x20 0.35 292 460 721 280 331 728 411 373 457035 544 3.18
110x5| 0.18 253 431 865 286 358 10.17 6.15 249 3.6325 4.13 4.77
110x1Q 0.22 256 391 799 290 3.89 941 473 314 398314 503 3.9
110x15 0.24 262 4.04 783 274 348 856 407 321 417394 509 3.84
11020 0.24 268 393 754 275 338 817 400 329 4.22514 528 3.46
130x5( 0.19 246 399 892 290 361 1112 7.71 242 3.6308 398 6.90
13010 0.23 2.78 381 851 290 380 983 599 279 3.64024 462 5.04
130x1§ 0.30 2.75 379 790 283 344 955 488 291 383044 464 4.25
130x2Q0 0.24 264 355 7.71 276 3.30 888 434 275 3.74294 480 4.04
150x5| 0.17 2.16 340 880 272 343 1165 932 211 32388 3.67 9.01
150x1Q0 0.17 222 311 814 261 3.70 1020 6.60 248 3346 430 6.02
150x1§ 0.25 240 328 797 275 372 979 6.01 270 359873 463 5.10
15020 0.15 240 325 7.60 275 353 921 524 258 345833 436 4.61
Average 0.24 232 381 721 256 321 7.19 479 3.33 431444 520 357
Table 6 Comparison of algorithms, idling cage% 300).
nxm | EDA EDA, EDA, EDA; DABC ACO DPSO HGA SA SA. TA, TA, TS
30x5| 0.15 085 239 443 149 182 173 329 330594 450 571 161
30x10| 0.18 0.77 247 392 129 214 163 351 3.83 489894 584 1.33
30x15| 0.22 0.77 287 368 120 216 134 339 400 485555 581 1.36
30x20| 0.21 0.68 280 326 108 227 129 326 366 457035 546 1.27
50x5| 0.21 206 353 6.82 238 308 436 372 368944 451 595 249
5010 0.29 2.03 364 6.25 238 294 417 438 442 537555 6.36 2.20
50x15| 0.33 1883 3.8 6.04 227 264 402 446 445 523735 6.37 2.19
50x20| 0.41 192 420 582 216 238 392 471 447 526685 6.21 1.95
70x5 | 0.19 237 427 760 256 333 6.11 3.82 322384 405 505 2.36
70x10| 0.32 2.74 487 758 271 322 597 462 412 516904 6.38 290
70x15| 0.26 2.62 463 705 254 3.02 555 438 393 510515 6.04 2.66
70x20| 0.33 250 442 659 256 298 558 449 420 485435 599 262
90x5| 0.30 261 472 838 278 386 822 395 337574 391 503 3.04
90x10| 0.20 263 433 791 267 324 741 381 332 436154 511 253
90x15| 0.24 262 456 731 261 324 691 408 393 466215 547 258
90x20| 0.34 284 473 699 268 313 659 416 3.88 472185 559 3.08
110x5| 0.18 250 445 837 279 364 941 490 262 3.77.393 4.27 4.00
110x1Q 0.22 258 405 7.85 267 383 875 405 329 413464 518 3.34
110x15 0.26 2.67 423 766 265 340 7.74 391 339 436584 529 343
110x2Q 0.27 2.67 4.07 733 253 329 7.26 397 344 437664 543 3.13
130x5| 0.16 2.32 405 866 276 359 1005 6.29 246 36814 404 521
130x1Qq 0.22 258 395 822 275 377 9.06 487 293 3.78164 476 4.23
130x15 0.26 251 3883 7.70 266 3.25 848 406 299 392124 473 3.45
130x2Q0 0.25 254 371 759 260 312 815 384 291 390454 495 3.60
150x5| 0.15 2.18 349 865 258 352 1056 783 216 3.339% 3.77 7.14
150x1Q0 0.21 225 3.27 801 258 3.70 937 544 263 354623 446 4.57
150x1§ 0.19 241 337 7.72 260 353 9.09 490 278 3.68963 4.72 3.93
15020 0.18 245 342 740 261 347 845 443 276 3.63004 454 3.87
Average 0.24 220 387 6.96 240 313 6.47 438 343 441554 530 3.07
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6.3. Statistical assessment of results

While the results in all previous tables show gfrdlifferences between the proposed EDA and all
the considered methods, it is still necessary toyaaut a statistical experiment to attest if theserved
differences are indeed statistically significane Wave carried out a full factorial ANOVA whemnem,

instance number, replicate , the type of algorithm and idling/no-idling facsoare considered. There

are important statistically significant differenc&sg. 6 shows a three-way interaction betweertyhe

of algorithm, the maximum elapsed CPU time facjor and idling and no-idling cases. We are now

employing a 95% confidence level and we are usiogey HSD confidence intervals. Note that
overlapping intervals denote a statistically in#figant difference in the plotted means. From tigeife
it is clear that the proposed EDA produces regshiés are statistically better than all the consder
algorithms. It is also shown that the EDA showsdistiaally insignificant differences with more
allotted CPU time. i.e.,p =200 or p=300 result in no additional gains. Most other methods
improve results with additional elapsed CPU time.

As a result, we can safely conclude that the pregpdsSDA is a new effective algorithm for the
lot-streaming flow shop scheduling problem with wence-dependent setup times and makespan
criterion in both the idling and no-idling cases.

ARPI No-idling No-idling
10—

—— 100
—— 200
—— 300

(= L _
EDA DABC ACO EDA,. TA; TA, EDA; EDA DABC ACO EDA,. TA; TA, EDA,
EDAs TS SA; HGA SA DPSO EDA,s TS SA; HGA SA DPSO

Fig. 6 Means plot and 95% Tukey HSD confidencerimtks for the interaction between the algorithms,
the maximum elapsed CPU timp and the no-idling/idling cases.

7. Conclusions

This paper studies the flow shop scheduling prohledter the lot-streaming generalization and with
sequence-dependent setup times. The studied at@astimakespan minimization. This problem has
important applications in textile, plastic, chenhicgemiconductor, and many other industries where
jobs are actually batches of many identical progiict be manufactured. A novel estimation of
distribution algorithm (EDA) has been proposed tftg problem under both the idling and no-idling
cases. To the best of our knowledge, this is tts¢ dittempt at solving the problem considered, thied
is also the first reported application of EDA fal\8ng lot-streaming flow shop scheduling problems.
An extensive comparison has been carried out fer gloposed EDA against the best existing

metaheuristics developed for lot-streaming flowspooblems, as well as against a recently presented

24



EDA for the traditional flow shop problem with tbtdlow time criterion. According to the
computational results and statistical analyses, ptmposed EDA clearly outperforms all the other
considered algorithms by a considerable marginttierlot-streaming flow shop problem with setup
times to minimize makespan.

The superiority of the presented EDA is mainly doethe fact that it extensively uses some
advanced techniques such as an efficient populatitalization, a newly designed probabilistic nedd
a diversity controlling mechanism, hybridizationthvilocal search, and a speed-up procedure. The
population initialization mechanism provides artiabi population with a high level of quality and
diversity. The presented probabilistic model hetfpsansferring the building blocks of jobs in pat®
to offspring. The diversity controlling mechanisima at maintaining the diversity of the population
and without it the algorithm stalled after justeavfiterations. The hybridization with local searat
only enhances the algorithm’s local exploitatioriligh but also provides an appropriate balance
between exploration of the global search and etqilon of the local search. The presented speed-up
method improves the search efficiency by a sigaiftanargin.

The proposed EDA can be extended to take into axtamore realistic aspects of the lot-streaming
problem, such as the existence of due dates, maefigibility, parallel machines, multiple objeati,
and many others. Late work criteria are being atfigtudied nowadays, as the study of Sterna (2011)
attests. The proposed EDA can also be generalizedite other combinatorial optimization problems
including the hybrid flow shop, job shop, the triavg salesman or complex scheduling problems as
those studied in Manaa and Chu (2010), Ruiz-Toetesl. (2011) or Gribkovskaia et al. (2011).
Specific hybrid flowshops as the ones approach&himarghandi and EIMekkawy (2011) or in Besbes
et al. (2011) are equally interesting. Some othgle machine problems with many added constraints,
as the one studied in Valente and Schaller (208@msa promising venue of research for the
application of the techniques studied in this pajgfr course, each problem would need special

tailoring and experimentation and this is the b&siguture research.
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