

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://dx.doi.org/10.1016/j.omega.2013.10.002

http://hdl.handle.net/10251/60278

Elsevier

Pan, Q.; Ruiz García, R. (2014). An effective iterated greedy algorithm for the mixed no-idle
flowshop scheduling problem. Omega. 44:41-50. doi:10.1016/j.omega.2013.10.002.

An effective iterated greedy algorithm for the mixed
no-idle permutation flowshop scheduling problem

Quan-Ke Pana, Rubén Ruizb,∗

aState Key Laboratory of Synthetical Automation for Process Industries (Northeastern
University), Shenyang, 110819, PR China. College of Computer Science, Liaocheng

University, Liaocheng, 252059, PR China.
bGrupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática,
Ciudad Politécnica de la Innovación, Edifico 8G, Acc. B. Universitat Politècnica de

València, Camino de Vera s/n, 46021, València, Spain.

Abstract
In the no-idle flowshop, machines cannot be idle after finishing one job and
before starting the next one. Therefore, start times of jobs must be delayed to
guarantee this constraint. In practice machines show this behavior as it might
be technically unfeasible or uneconomical to stop a machine in between jobs.
This has important ramifications in the modern industry including fiber glass
processing, foundries, production of integrated circuits and the steel making
industry, among others. However, to assume that all machines in the shop have
this no-idle constraint is not realistic. To the best of our knowledge, this is the
first paper to study the mixed no-idle extension where only some machines
have the no-idle constraint. We present a mixed integer programming model
for this new problem and the equations to calculate the makespan. We also
propose a set of formulas to accelerate the calculation of insertions that is
used both in heuristics as well as in the local search procedures. An effective
iterated greedy (IG) algorithm is proposed. We use an NEH-based heuristic
to construct a high quality initial solution. A local search using the proposed
accelerations is employed to emphasize intensification and exploration in the
IG. A new destruction and construction procedure is also shown. To evaluate
the proposed algorithm, we present several adaptations of other well-known
and recent metaheuristics for the problem and conduct a comprehensive set of

∗Corresponding author. Tel: +34 96 387 70 07. Fax: +37 96 387 74 99
Email addresses: 2281393146@qq.com (Quan-Ke Pan), rruiz@eio.upv.es (Rubén

Ruiz)

Preprint submitted to OMEGA October 2, 2013

computational and statistical experiments with a total of 1,750 instances. The
results show that the proposed IG algorithm outperforms existing methods
in the no-idle and in the mixed no-idle scenarios by a significant margin.
Keywords: flowshop, no-idle, heuristics, iterated greedy, local search

1. Introduction1

It has been almost 60 years since the seminal work about the two machine2

flowshop problem with makespan minimization criterion by Johnson (1954).3

Actually, in the scheduling literature this paper has been regarded as the first4

in the field (with the possible exception of the paper by Salveson, 1952). In a5

flowshop problem we deal with a set N of n jobs, modeling client orders of6

different products to be manufactured, that have to be produced on a setM of7

m machines. The layout of the machines in the production shop is in series, i.e.,8

we have first machine 1, then machine 2 and so on until machine m. All jobs9

must visit the machines in the same processing sequence. This sequence can be,10

without loss of generality, {1, . . . ,m}. Therefore, a job is composed of m tasks11

or operations. Each task j, j = {1, . . . , n} requires a known, deterministic and12

non-negative amount of time at each machine i, i = {1, . . . ,m}. This amount13

is referred to as processing time and denoted by pij. The objective is to find14

a processing sequence of all jobs at each machine so that a given criterion15

is optimized. There are as many possible sequences of jobs as permutations16

and this permutation can change from machine to machine which results17

in a search space of (n!)m non-delay schedules for the Flowshop Scheduling18

Problem (FSP). Given this huge search space, most of the time, the problem19

simplified by forbidding job passing, i.e., once a permutation of jobs is obtained20

for the first machine, it is maintained for all other machines, reducing the21

search space to n! solutions. This somewhat simpler problem is referred to as22

the Permutation Flowshop Scheduling Problem or PFSP. Following the work23

of Johnson (1954), the most studied optimization criterion is the minimization24

of the maximal job completion time or makespan (Cmax) which corresponds to25

the time at which the last job in the sequence is finished at the last machine26

in the shop. The PFSP with makespan criterion is denoted as F/prmu/Cmax,27

following the accepted three field notation of Graham et al. (1979). Reviews28

about flowshop scheduling with this criterion are given by Framinan et al.29

(2004), Ruiz and Maroto (2005), Hejazi and Saghafian (2005) and Gupta30

and Stafford (2006). The literature about flowshop scheduling is huge. Not31

2

only does each studied objective span a relatively large sub-field in itself32

with hundreds of references, like total tardiness minimization (see Vallada33

et al., 2008), flowtime optimization (Pan and Ruiz, 2013) or multiobjective34

(Minella et al., 2008), but also problem extensions and variations abound. It35

is safe to say that the literature of flowshop scheduling and variants comprises36

thousands of papers.37

One of the seldom studied extensions of the flowshop is the no-idle version.38

In the no-idle permutation flowshop (NPFSP), machines are not allowed to39

sit idle after they have started processing the first job in the sequence. The40

no-idle condition appears in production environments where setup times or41

operating costs of machines are so high that shutting down machines after42

the initial setup is not cost-effective. Idle times might also not be allowed on43

machines due to technological constraints. More specifically, in the no-idle44

scenario, a machine must process all jobs in the sequence without interruptions.45

Therefore, if needed, the start of some jobs is delayed so as to ensure the no-46

idle constraint. Examples of no-idle situations appear in the steppers used in47

the production of integrated circuits through photolithography. These fixtures48

are so expensive that idling is avoided at all costs. The production of ceramic49

frits is an example where idling is technologically impossible due to the usage50

of special fusing ovens (called kilns) that burn at extreme temperatures. These51

ovens need a continuous thermal mass and therefore, idling is not allowed.52

Some other examples are found in fiber glass processing (Kalczynski and53

Kamburowski, 2005), and foundries (Saadani et al., 2003) amongst others.54

Ruiz et al. (2009) and Goncharov and Sevastyanov (2009) published recent55

reviews about the NPFSP or F/prmu, no− idle/Cmax.56

The current situation is that the no-idle constraint has been so far considered57

all or nothing in the flowshop literature, i.e., either we have a regular idle58

flowshop where idle times are allowed on all machines or all machines have59

the no-idle constraint in the NPFSP. Real life production shops are mixed60

and most machines permit idle times whereas some do not accept idle times.61

Surprisingly, this realistic mixed no-idle flowshop problem or MNPFSP has not62

been studied in the literature before to the best of our knowledge. We denote63

this problem by F/prmu,mixed no− idle/Cmax. In the previous examples of64

integrated circuits and ceramic frit production, not all machines in the shop65

are no-idle. In the case of ceramic frits, only the central fusing kiln has the66

no-idle constraint. Other examples arise in the steelmaking industry. When67

producing steel, the charges of molten iron enter converter stages to reduce68

impurities (carbon, sulfur, silicon) through oxygen burning. These charges69

3

undergo several other refining stages where impurities are further reduced,70

alloys are added and other operations are carried out. Only after this phase, is71

the molten steel is poured into a tundish for casting. The flow of molten steel72

goes to the crystallizer where it solidifies into slabs. Technological constraints73

force the continuous flow of charges with the same crystallizer and caster.74

This is where the no-idle constraint appears. All other stages do not have this75

no-idle constraint. There are many other examples in real-life factories. As a76

matter of fact, the authors are not aware of any real example in which all the77

machines in a flowshop have the no-idle constraint. Therefore, the MNPFSP78

is a more realistic problem which has not been studied before and is thus the79

motivation for this research. The PFSP is known to be NP-Complete in the80

strong sense for more than two machines and makespan criterion (Garey et al.,81

1976). Similarly, the NPFSP was shown to belong to the same complexity82

class for three or more machines by Baptiste and Hguny (1997). As a result83

the new MNPFSP studied in this paper is also NP-Hard in the strong sense.84

The rest of the paper is divided into five more sections. In the next section we85

review the literature mainly in the no-idle flowshop. Section 3 introduces the86

MNPFSP in more detail. We present a mixed integer programming model,87

the formulae to calculate the makespan and a speed-up method for the88

efficient calculation of the insertion neighborhood. Section 4 deals with the89

proposed Iterated Greedy method. In section 5 we present a comprehensive90

computational and statistical campaign to test the proposed methodology.91

Finally, section 6 concludes the paper and provides some avenues for further92

research.93

2. Literature review94

As stated, the MNPFSP has not been studied before. As a result, we95

focus our summarized review in the no-idle flowshop where all machines have96

the no-idle constraint. The NPFSP was first studied by Adiri and Pohoryles97

(1982) where polynomial time algorithms were proposed for special cases of98

the NPFSP mainly with two machines and total completion time criterion.99

Some amendments to this paper were carried out by Čepek et al. (2000). The100

Cmax objective in the NPFSP was studied for the first time by Vachajitpan101

(1982). The author presented mathematical models and branch and bound102

methods for small instances. Baptiste and Hguny (1997) also presented a103

branch and bound method for the m-machine NPFSP and makespan criterion104

whereas the three machine problem was studied by Narain and Bagga (2003)105

4

also with mathematical models and exact approaches. To date, no effective106

exact approach has been proposed for the NPFSP and rarely do any published107

results solve problems with more than a handful of jobs. As a result of this,108

the focus has been on heuristics for the problem. Some of the early heuristic109

methods were presented by Woollam (1986) that took some existing heuristics110

and recalcuated their produced solutions eliminating idle times and doing111

some simple adjacent pairwise exchange moves on the results. The adaptation112

of the NEH heuristic of Nawaz et al. (1983) produced the best results. Saadani113

et al. (2001) presented a method based on heuristics for the traveling salesman114

problem denoted as SGM. This research was later published in paper form in115

Saadani et al. (2005). The three machine case was studied by Saadani et al.116

(2003) to be improved on later by Kamburowski (2004). Heuristics for special117

cases with dominating machines are studied by Narain and Bagga (2005a,b).118

The general m-machine NPFSP with makespan criterion has been approached119

with successful heuristics by several authors. For example, Kalczynski and120

Kamburowski (2005) presented a method based on Johnson’s heuristic, de-121

noted as KK that was shown to outperform an adaptation of the NEH heuristic122

to the no-idle setting and the method of Saadani et al. (2005). A local search123

insertion method proposed by Baraz and Mosheiov (2008) is also shown to124

outperform that of Saadani et al. (2005) and is denoted by GH_BM.125

Ruiz et al. (2009) presented a comprehensive comparison of heuristic methods,126

along with adaptations of the NEH method and the best heuristics proposed127

for the PFSP by Rad et al. (2009). The authors also presented an improved128

GH_BM method. All methods were tested with and without the accelerations129

of the insertion neighborhood presented by Pan and Wang (2008a,b). The130

results of the comprehensive computational and statistical campaign with131

a set of 250 instances were clear: the adapted method FRB3 of Rad et al.132

(2009) and the improved GH_BM2 version, both with accelerations produced133

the best results.134

As regards metaheuristics, the first papers are by Pan and Wang (2008a,b). In135

the first, the authors present a discrete particle swarm optimization method,136

referred to as HDPSO. In the second a discrete differential evolution method137

is presented (DDE). Both papers are heavily based on insertion local search138

and an important result is given: an acceleration of the calculation of the139

exploration of this neighborhood. Similar to what Taillard (1990) did, the140

authors explain a set of calculations to reduce the complexity of the calcu-141

lation of a pass in the insertion neighborhood from O(n3m) to O(n2m) in142

the NPFSP. The authors hybridized their methods with the Iterated Greedy143

5

algorithm of Ruiz and Stützle (2007) and demonstrated in computational144

tests, using the instances of Taillard (1990), a clear superiority over the algo-145

rithms presented in Saadani et al. (2005) and in Kalczynski and Kamburowski146

(2005). However, Ruiz et al. (2009) also tested HDPSO and DDE, along with a147

simple adaptation of the IG of Ruiz and Stützle (2007) and showed, in a more148

comprehensive benchmark of 250 instances and through detailed statistical149

tests, that the simple IG produces better results than the HDPSO and DDE150

hybrids.151

More recently, Deng and Gu (2012) published a hybrid discrete differential152

evolution method (HDDE). This method has many similarities to those of153

Pan and Wang (2008b) and Ruiz and Stützle (2007). Basically, a different154

initialization based on an improvement of the NEH and a modified insertion155

local search is used. The 250 instances of Ruiz et al. (2009) are used. According156

to their reimplementations, the results show that the new presented HDDE157

is better than the IG adaptation of Ruiz et al. (2009) and also the HDPSO158

and DDE of Pan and Wang (2008a,b). Also recently, Fatih Tasgetiren et al.159

(2013a) have presented a variable iterated greedy and differential evolution160

hybrid. The algorithm presented is shown to outperform that of Deng and Gu161

(2012). A side paper is that of Fatih Tasgetiren et al. (2013b) where methods162

are presented but for the minimization of the total tardiness criterion.163

As we can see, the mixed no-idle flowshop has not been studied yet, despite164

being a more realistic problem. Furthermore, most modern high-performing165

methods for the pure no-idle version are based on the accelerated insertion166

neighborhood and on variants of the Iterated Greedy of Ruiz and Stützle167

(2007). As a matter of fact, IG is being applied to many flowshop variants168

like setup times (Ruiz and Stützle, 2008), blocking (Ribas et al., 2011), no-169

wait (Pan et al., 2008b), non-permutation (Ying, 2008), tardiness criterion170

(Framinan and Leisten, 2008) and multiobjective (Minella et al., 2011) as well171

as in many other scheduling problems. Therefore, pursuing the IG avenue for172

the research of the new mixed no-idle flowshop, along with the accelerations173

of the insertion neighborhood is the most logical step.174

3. The mixed no-idle permutation flowshop problem175

The no-idle flowshop differs from the regular PFSP in that no idle time176

exists in between any two consecutive tasks at machines. Extending the177

previous notation of the PFSP we denote as oij the operation of the task178

i of job j, i.e., the processing of job j by machine i. Similarly, Cij is the179

6

completion time of this task j at machine i. In general, we have a permutation180

π of the n jobs and π(j) denotes the job that occupies the j−th position in181

the permutation. In the regular PFSP the following condition holds for jobs182

occupying consecutive positions in the permutation: Ci,π(j) ≥ Ci,π(j−1) + pi,π(j) .183

In the no-idle flowshop, this inequality is transformed into an equality: Ci,π(j) =184

Ci,π(j−1) + pi,π(j) . By joining these two properties we have the mixed no-idle185

flowshop or MNPFSP. We define the subset of no-idle machines as M ′ ⊆M186

with m′ no-idle machines. All other machines not in M ′ are regular idle187

machines. Note that all other common flowshop assumptions apply (Baker,188

1974): (1) All jobs are independent and available for processing at time 0.189

(2) Machines are continuously available and never break down. (3) Machines190

can only process one task at a time. (4) A job can only be processed by one191

machine at a time. (5) Tasks are processed without interruptions. (6) Setup192

times are either independent from the sequence and included in the processing193

times or simply ignored. (7) There is an infinite in-process storage capacity194

between machines.195

With the previous definitions we propose the following mixed integer linear196

programming model.197

3.1. A mixed linear integer program198

The decision variables are the typical ones in a permutation problem199

(Naderi and Ruiz, 2010):200

Xj,k =
{

1, if job j occupies position k of the sequence
0, otherwise

Ci,k = Completion time of job in position k on machine i
Cmax = Maximum completion time or makespan

The objective function is the minimization of the makespan, which is201

equivalent to the time at which the job occupying the last position of the202

permutation finishes at the last machine:203

minCmax = Cm,n
Subject to the following constraints:204

n∑
k=1

Xj,k = 1, j = 1, . . . , n (1)

7

n∑
j=1

Xj,k = 1, k = 1, . . . , n (2)

C1,k ≥
n∑
j=1

Xj,1 · p1,j k = 1, . . . , n (3)

Ci,k ≥ Ci−1,k +
n∑
j=1

Xj,k · pi,j k = 1, . . . , n, i = 2, . . . ,m (4)


Ci,k = Ci,k−1 +

n∑
j=1

Xj,k · pi,j, if i ∈M ′

Ci,k ≥ Ci,k−1 +
n∑
j=1

Xj,k · pi,j, otherwise
k = 2, . . . , n, i = 1, . . . ,m (5)

Ci,k ≥ 0 k = 1, . . . , n, i = 1, . . . ,m (6)

Xi,k ∈ {0, 1} k = 1, . . . , n, i = 1, . . . ,m (7)
Constraints (1) and (2) ensure that each job occupies exactly one position205

in the permutation and that each position in the permutation is occupied206

by exactly one job. Constraint set (3) controls the completion time of the207

job placed in the first position of the sequence. Constraints (4) force the208

completion times of tasks on the second and subsequent machines to be larger209

than the completion times of the previous tasks on previous machines plus210

the processing time. The core of the MNPFSP is given in constraint set (5).211

Here we control the completion time of a job at an idle machine so that it is212

exactly equal to its processing time plus the completion time of the job in the213

preceding position in the permutation, i.e., no idle time is allowed. However,214

for regular machines, it suffices to ensure that the completion time of a job is215

just greater to or equal than that of the preceding job plus the processing216

time. Finally, constraints (6) and (7) define the domains and nature of the217

decision variables.218

3.2. Makespan calculation219

As shown in Ruiz et al. (2009) and in Pan and Wang (2008a,b), calculating220

the makespan for the NPFSP is far from straightforward. Here we extend such221

calculations for the mixed no-idle version. Obviously, being a generalization,222

the proposed formulas reduce to those of the regular flowshop if M ′ = ∅ and223

8

to the no-idle flowshop if M ′ = M .224

Let us suppose a permutation π = {π1, π2, . . . , πn} where πl ∈ N for l =225

1, . . . , n represents the jobs in the permutation. Let Si,[l] and Ci,[l] denote the226

earliest starting time and completion time of task oi,[l] or the task at machine227

i of the job occupying position l of the permutation, respectively. We use the228

simplified notation [l] to represent the job in position l of the permutation,229

i.e., πl or π(l).230

We also denote by ai the right shift or delay in the start time of the operation231

l′ preceding l in the permutation, i.e, the delay in oi,[l′] where l′ = 1, 2, . . . , l−1232

in order to meet the no-idle constraint. The makespan calculation procedure233

consists of calculating the start and completion times of the job in the first234

position π1, then π2 and so on until job is tested in position n or πn. The235

maximum completion time of the permutation, Cmax(π) is obtained with the236

following expressions:237 {
S1,[1] = 0
C1,[1] = S1,[1] + p1,[1]

(8)
{
Si,[1] = Ci−1,[1]
Ci,[1] = Si,[1] + pi,[1]

i = 2, . . . ,m (9)
{
S1,[l] = C1,[l−1]
C1,[l] = S1,[l] + p1,[l]

l = 2, . . . , n (10)


S2,[l] = max

{
C2,[l−1], C1,[l]

}
C2,[l] = S2,[l] + p2,[l]

a2 =
{

max
{
C1,[l] − C2,[l−1], 0

}
if machine 2 ∈M ′

0 otherwise

l = 2, . . . , n

(11)

Si,[l] = max
{
Ci,[l−1] + ai−1, Ci−1,[l]

}
Ci,[l] = Si,[l] + pi,[l]

ai = ai−1 +
{

max
{
Ci−1,[l] − (Ci,[l−1] + ai−1), 0

}
i ∈M ′

0 otherwise
i = 3, . . . ,m, l = 2, . . . , n

(12)

Cmax(π) = Cm,[n] (13)
From the previous formulas, (8) computes the start and completion time238

for operation o1,[1] whereas set (9) calculates the same for operations oi,[1],239

9

i = 2, . . . ,m. Set (10) computes the start and completion times for operations240

o1,[l], l = 2, . . . , n. In set (11) we calculate the start times for operations241

o2,[l] and a2 = max
{
C1,[l] − C2,[l−1], 0

}
is the right shift or delay in the start242

time of operation o2,[l′], l′ = 1, . . . , l − 1 to ensure that there is no idle time243

between the operations on machine 2 if it is a no-idle machine. On the244

contrary, a2 = 0 if machine 2 is a regular idle machine. In set (12) a similar245

calculation is carried out for operations oi,[l], i = 3, . . . ,m, l = 2, . . . , n. Note246

that max
{
Ci−1,[l] − (Ci,[l−1] + ai−1), 0

}
is the right shift or delay generated247

by machine i (if it is a no-idle machine) and ai−1 is the right shift or delay248

generated by all upstream no-idle machines. Therefore, ai is the total delay.249

Finally, equation (13) gives us the makespan value of permutation π.250

Let us consider an example with four jobs and five machines, i.e., N =251

{1, 2, 3, 4} and M = {1, 2, 3, 4, 5}. Machines two and four are idle machines,252

i.e., M ′ = {2, 4}. The processing times of the four jobs in the five machines253

are the following:254

[pij]5×4 =


3 6 6 5
4 5 6 5
4 5 4 6
3 4 5 4
5 5 4 5


Let us suppose that we have a FIFO schedule, i.e., π = {1, 2, 3, 4}. Using255

the previous formulas (8) and (9) we calculate the start and completion256

times for all operations of job π1 = {1} as follows: S1,[1] = 0, C1,[1] = 3,257

S2,[1] = 3, C2,[1] = 7, S3,[1] = 7, C3,[1] = 11, S4,[1] = 11, C4,[1] = 14, S5,[1] = 14,258

C5,[1] = 19. The next job in the sequence is π2 = {2} and the calculations259

of the start and completion times, using expressions (10), (11) and (12) are260

the following: S1,[2] = 3, C1,[2] = 9, S2,[2] = max{C1,[2], C2,[1]} = 9, C2,[2] =261

14, a2 = max{C1,[2] − C2,[1], 0} = 2, S3,[2] = max{C3,[1] + a2, C2,[2]} = 14,262

C3,[2] = 19, a3 = a2 = 2, S4,[2] = max{C4,[1] + a3, C3,[2]} = 19, C4,[2] = 23,263

a4 = a3 +max{C3,[2]−(C4,[1]−a3), 0} = 5, S5,[2] = max{C5,[1] +a4, C4,[2]} = 24,264

C5,[2] = 29. We can see these calculations in Figure 1.265

Similarly, the start and completion times for jobs π3 = {3} and π4 = {4}266

are summarized as follows: S1,[3] = 9, C1,[3] = 15, S2,[3] = 15, C2,[3] = 21,267

a2 = 1, S3,[3] = 21, C3,[3] = 25, a3 = a2 = 1, S4,[3] = 25, C4,[3] = 30, a4 = 2,268

S5,[3] = 31, C5,[3] = 35. S1,[4] = 15, C1,[4] = 20, S2,[4] = 21, C2,[4] = 25, a2 = 0,269

S3,[4] = 26, C3,[4] = 32, a3 = 0, S4,[4] = 32, C4,[4] = 36, a4 = 2, S5,[4] = 37,270

10

C5,[4] = 42. Finally, the makespan for the permutation π = {1, 2, 3, 4} is271

Cmax(π) = C5,[4] = 42.272

1 2

2

C1,[2]

C2,[1] a2

5

4

3

2

1

m

2

1

1

1

1

2

a4

2

S2,[1]

Right shift due to no-idle machine 2

Right shift due to no-idle machine 4

C4,[1]

C3,[2]

0 5 10 15 20 25 30 35 40

Figure 1: Makespan calculation for the first two jobs in the example.

3.3. A speed-up method for the insertion neighborhood273

The insertion neighborhood is, by far, the most widely used neighborhood274

in the flowshop scheduling literature. Inspired by the early work of Nawaz et al.275

(1983), many authors have used this neighborhood with very good results. The276

papers of Osman and Potts (1989), Taillard (1990) or Nowicki and Smutnicki277

(1996) are some examples. Some of the state-of-the-art methods for the PFSP278

and variants employ this neighborhood (Vallada et al., 2008; Pan and Ruiz,279

2013; Ruiz et al., 2009; Pan and Wang, 2008a,b; Ruiz and Stützle, 2007; Deng280

and Gu, 2012; Ruiz and Stützle, 2008; Ribas et al., 2011; Pan et al., 2008b;281

Minella et al., 2011 and many others).282

The insertion neighborhood of a given permutation π of n jobs is the result283

of the consideration of all pairs of positions j, k ∈ {1, . . . , n} of π, j 6= k284

where the job in position j is removed from π and inserted in position k. The285

resulting sequence after such a movement is286

π′ = {π(1), . . . , π(j−1), π(j+1), . . . , π(k), π(j), π(k+1), . . . , π(n)}
if j < k, or287

π′ = {π(1), . . . , π(k−1), π(j), π(k), . . . , π(j−1), π(j+1), . . . , π(n)}
if j > k. The set of insertion moves I is defined as288

I = {(j, k) : j 6= k, 1 ≤ j, k ≤ n ∧ j 6= k − 1, 1 ≤ j ≤ n, 2 ≤ k ≤ n}
and the insertion neighborhood of π is defined as V (I, π) = {πv : v ∈ I}. The289

cardinality of the insertion neighborhood is (n− 1)2.290

11

Since calculating the makespan for PFSP problems usually involves O(nm)291

operations, the complexity of examining the insertion neighborhood (a single292

pass) is O(n3m). This can be computationally costly for moderate to large293

values of n. However, Taillard (1990) proposed the famous so called “acceler-294

ations” to reduce the complexity of the insertion neighborhood to O(n2m).295

As a matter of fact, the accelerations were proposed for the NEH heuristic296

and as explained in Rad et al. (2009), the largest instances of Taillard (1993)297

with 500 jobs and 20 machines (500× 20) require up to 30 seconds of CPU298

time without accelerations and as little as 77 milliseconds with accelerations299

on a Pentium IV computer running at 3.2 GHz. As we can see, the impact of300

the accelerations is huge, as the accelerated NEH requires almost 400 times301

less CPU time. From the results of Taillard (1990), accelerations for the302

calculation of the insertion neighborhood with makespan criterion have been303

profusely proposed for many flowshop variants. As commented, the closest304

references are the accelerations proposed by Pan and Wang (2008a,b) for the305

NPFSP.306

Given the calculation of the makespan in the mixed no-idle PFSP with O(nm)307

steps of section 3.2, we now propose accelerations for the insertion neighbor-308

hood so as to reduce its complexity to O(n2m).309

It is well known that flowshop problems have a reversibility property (Ribas310

et al., 2010, among others). Under this property, the makespan of a per-311

mutation π can be calculated traversing the permutation from the first to312

the last job or in reverse order, i.e., from the last job in the sequence to313

the first. Therefore, we can divide permutation π into two partial sequences,314

π1 = {π(1), π(2), . . . , π(k)} and π2 = {π(k+1), π(k+2), . . . , π(n)}. The forward cal-315

culation pass involves π1 and the backward pass π2. We denote by S ′i,[l](C ′i,[l])316

the starting (completion) time of operation oi,[l], l = k + 1, k + 2, . . . , n in317

the reverse sequence. With this, the makespan Cmax(π) can be calculated as318

follows:319

L1 = C1,[k] + C ′1,[k+1] (14)

L2 = C2,[k] + C ′2,[k+1]
L = max {L1, L2}

a2 =
{

max {L− L2, 0} if machine 2 ∈M ′

0 otherwise

(15)

12


Li = Ci,[k] + ai−1 + C ′i,[k+1]
L = max {L,Li}

ai = ai−1 +
{

max {L− Li, 0} if machine i ∈M ′

0 otherwise

i = 3, . . . ,m

(16)

Cmax(π) = L (17)
Let us apply the acceleration formulas to the previous example with320

π1 = {1, 2} and π2 = {3, 4}. After calculating job 1, we calculate job 2 with321

the forward pass and job 3 with the reverse (also after having calculated job322

4): C1,[2] = 9, C2,[2] = 14, C3,[2] = 19, C4,[2] = 23, C5,[2] = 29 and C ′1,[3] = 32,323

C ′2,[3] = 26, C ′3,[3] = 19, C ′4,[3] = 14, C ′5,[3] = 9. Then the makespan is as follows:324

L1 = C1,[2] + C ′1,[3] = 41;
L2 = C2,[2] + C ′2,[3] = 40, L = max{L1, L2} = 41, a2 = max{L− L2, 0} = 1;
L3 = C3,[2] + a2 + C ′3,[3] = 39, L = max{L,L3} = 41, a3 = a2 = 1;
L4 = C4,[2] + a3 + C ′4,[3] = 38, L = max{L,L4} = 41, a4 = a3 + max{L− L4} = 4;
L5 = C5,[2] + a4 + C ′5,[3] = 42, L = max{L,L5} = 42, a5 = a4 = 4;
Cmax(π) = L = 42.

A graphical depiction of the process is given in Figure 2.325

1 2

2

5

4

3

2

1

m

2

1

1

1

1

2

2

0 5 10 15 20 25 30 35 40

3

3

3

3

3

4

4

4

4

C1,[2] C'1,[3]

C2,[2] C'2,[3]
a2

C3,[2] C'3,[3]

a4

C'5,[3]

4

C5,[2]

Figure 2: Calculations of sequences π1 = {1, 2} and π2 = {3, 4} for the example.

The speed-up method then consists of evaluating all permutations gener-326

13

ated by the insertion of a single job in all possible positions of a sequence.327

Let π = {π(1), π(2), . . . , π(n−1)} be a partial sequence of n− 1 jobs. We want328

to insert job jk into all possible n positions of π, generating n complete329

permutations. Using the formulas of Section 3.2 this would require O(n2m)330

steps for one job or O(n3m) for all jobs. With the previous formulas and the331

following procedure, this complexity is reduced to O(nm) for a single job:332

Step 1. Compute Si,[l] and Ci,[l] for i = 1, 2, . . . ,m and l = 1, 2, . . . , n − 1333

with the forward pass and S ′i,[l] and C ′i,[l] for i = m,m − 1, . . . , 1 and334

l = n− 1, n, . . . , 1 with the backward pass.335

Step 2 For l = 1, . . . , n do the following steps:336

Step 2.1 Insert job jk into the lth position of the partial sequence π and337

generate a full permutation ω = {π(1), π(2), . . . , π(l−1), jk, π(l), . . . , π(n−1)}.338

Step 2.2 Divide ω into two partial sequences: ω1 = {π(1), π(2), . . . , π(l−1), jk}339

and ω2 = {π(l), π(l+1), . . . , π(n−1)}. Note that ω1 = ∅ if l = 1 and ω2 = ∅ if340

l = n.341

Step 2.3 Calculate the starting and completion time for the last job jk of ω1
342

after obtaining Si,[l−1] and Ci,[l−1] in Step 1 with formulas (8) to (13).343

Step 2.4 Calculate the makespan of ω using equations (14) to (17).344

345

Step 1 has a computational complexity of O(nm). Step 2 contains a loop346

of n steps where each step has a complexity of O(m). Therefore, Step 2 has a347

O(nm) complexity as a whole. This means that testing a job in all possible348

n positions of a sequence has a computational complexity of O(nm). Since349

there are n jobs to test, the full examination of the insertion neighborhood350

needs O(n2m) steps.351

4. Iterated Greedy approach352

The first application of the Iterated Greedy for flowshop problems was353

given by Ruiz and Stützle (2007) and as commented in Section 2, IG methods354

have been applied to all sorts of scheduling problems since then. The main355

feature of the IG is its simplicity which is contrary to sophisticated algorithms356

that embed problem specific knowledge and that usually have many control357

parameters. In contrast, IG has very few parameters. Despite its simplicity,358

IG has shown state-of-the-art results under different flowshop variants and359

objectives.360

An IG algorithm consists basically of a few steps. First, a starting solution is361

built, usually by means of a high performing constructive heuristic. Then the362

14

main loop is run until a termination criterion is reached. Inside this loop, two363

operators are iteratively applied. The first operator is a random destruction,364

where some elements of the solution are removed. The second operator is a365

greedy reconstruction method which reinserts the removed elements in order to366

form a new complete solution. The reconstruction also uses a high performing367

heuristic. After a new complete solution is obtained, an acceptance criterion368

is applied in order to decide if the new solution substitutes the incumbent.369

Optionally, a local search procedure can be applied, typically after the initial370

solution construction and before the acceptance criterion at each pass of the371

main loop. All these steps are explained in the following sections.372

4.1. Initialization373

By far, the NEH algorithm of Nawaz et al. (1983) is the heuristic of choice374

for the initialization of metaheuristics in the flowshop literature. The NEH is375

a greedy constructive heuristic. Jobs are initially sorted according to total376

processing times and then the two possible permutations containing the first377

two sorted jobs are calculated. The best among the two is kept for the third378

step. In the third step, the third sorted job is inserted in the first, second379

and third possible positions of the partial sequence. The job is finally placed380

in the position resulting in the best makespan value. The process continues381

with the fourth job and completes when all jobs have been inserted. Most382

state-of-the-art methods for the PFSP and many variants employ the NEH.383

Ruiz and Maroto (2005) demonstrated the NEH to be the best heuristic,384

better even than more modern heuristics. Some authors, like Dong et al.385

(2008) or Kalczynski and Kamburowski (2007) have shown some methods that386

improve on the NEH performance. However, the outperformance is relatively387

small as these methods focus on the ties that occur in the insertion steps388

of the NEH. Clearly better heuristics are presented in Rad et al. (2009)389

where the authors proposed five methods, referred to as FRB1-FRB5 and390

demonstrated a significant advantage over the NEH. This outperformance391

comes at an additional computational cost as the methods are based on392

reinsertions of already inserted jobs. The authors also demonstrated that393

initializing competitive metaheuristics with some of their proposed methods394

instead of with the NEH produced better end results. Following these results,395

we also employ an improved heuristic instead of NEH. More precisely, we396

present an improvement of the FRB4k method of Rad et al. (2009). FRB4k397

produces good results while at the same time the additional CPU time needed398

is small. The idea behind the FRB4k is simple: after a job has been inserted in399

15

position p of the sequence in a given step of the NEH, k jobs around position400

p are reinserted in all positions looking for a better fit. The higher the k, the401

more jobs are reinserted and therefore the better results but also at a cost of402

more CPU time as the computational complexity is O(kn2m). Our proposed403

improvement over the FRB4k is based on the recent work of Pan and Wang404

(2012). In this paper, it was observed that the initial LPT ordering of the NEH405

is being broken during the insertions. The authors proposed a modification406

in which a partial LPT sequence of jobs is kept and the NEH process starts407

after a number of jobs λ have been assigned in the initial sequence. The side408

benefit of this modification is that less steps are needed in the main loop and409

the FRB4k gains speed. Furthermore, to speed up the process, we fix k at the410

lowest possible value of one. A pseudo-algorithm for this improved method,411

referred to as FRB4∗1, is given in Figure 3.412

procedure FRB4∗1(λ)
Calculate Pj =

∑m
i=1 pij ,∀j ∈ N % (LPT order)

Sort jobs according to decreasing order of Pj obtaining β = {β(1), . . . , β(n)}
π := {β(1), β(2), . . . , β(λ−1)} % Initial partial LPT sequence
for l := λ to n do
Take job β(l) and test it in all positions of π
Insert job β(l) in position p of π resulting in the best Cmax
for m := max(1, p− 1) to min(l, p+ 1) do
Extract job π(m) from position m of π and test it in all positions of π
Insert job π(m) at the position resulting in the best Cmax

endfor
endfor

end
Figure 3: Improved constructive heuristic FRB4∗

1.

Note that the initial solution obtained after applying the FRB4∗1 method413

is further improved with the local search algorithm detailed in Section 4.2.414

The proposed FRB4∗1 method has a working parameter λ indicating when the415

NEH insertions start. This parameter will be calibrated in Section 4.4.416

4.2. Local search417

Similar to the NEH, which is an insertion constructive heuristic, most418

competitive local search methods for the PFSP and variants are based on the419

insertion neighborhood. Good results with the insertion neighborhood are420

obtained in many papers, most notably Ruiz and Stützle (2007), Framinan421

16

and Leisten (2008) and Vallada and Ruiz (2009), to cite just a few. In the422

insertion neighborhood, a job is extracted from its position and inserted in423

all other n− 1 possible positions of the sequence (excluding the original one).424

If a better Cmax value is found in a different position, the job is relocated425

and the process is repeated for another job. The process terminates when426

all jobs have been placed in all possible positions without improvements.427

Note that the accelerations given in Section 3.3 fit perfectly into this scheme,428

allowing us to reap the speed benefits. This local search was used for the IG429

by Ruiz and Stützle (2007), Ruiz and Stützle (2008) and Vallada and Ruiz430

(2009) for problems other than the no-idle flowshop and by Ruiz et al. (2009)431

for the no-idle version. In this local search, jobs to be inserted are selected432

randomly, without repetition, until local optimality is reached. However, quite433

recently, Pan et al. (2008a) and Pan and Ruiz (2012) have used a similar but434

better performing version, referred to as referenced local search (RLS). In this435

version, jobs are not extracted randomly but in the order given by a referenced436

permutation. Recently, Deng and Gu (2012) also applied RLS to the no-idle437

flowshop. Let πref = {πref
(1), π

ref
(2), . . . , π

ref
(n)} be the referenced sequence, which, in438

this paper, is the best found solution so far. The RLS is detailed in Figure 4.439

Both the regular local search of Ruiz and Stützle (2007) and the presented440

RLS will be tested in the proposed IG.441

procedure RLS(π,πref)
i := 1; counter := 0
repeat
Locate and extract job πref

(i) from π

Take job πref
(i) and test it in all positions of π

π∗ := Insert job πref
(i) at the position resulting in the best Cmax

if Cmax(π∗) < Cmax(π) then
π := π∗; counter := 1

elseif
counter := counter + 1

endif
i := mod(i+ 1, n)

until counter = n
return π

end
Figure 4: Referenced Local Search (RLS) in the insertion neighborhood.

17

4.3. Destruction, reconstruction and acceptance criterion442

In the destruction phase of the Iterated Greedy, and according to Ruiz and443

Stützle (2007), d jobs are randomly extracted from the incumbent permuta-444

tion π and inserted into a list of removed jobs πR. Then, in the reconstruction445

phase, all jobs in πR are reinserted, one by one, back into π using the NEH446

insertion procedure. This is referred to as the DC operator (Destruction-447

reConstruction). We propose a minor but, as we will see, important mod-448

ification as regards the final performance of the proposed method. After449

reinserting one job, the jobs occupying the previous and posterior positions450

are also reinserted in all positions of π. This is, in essence, the application of451

the FRB4∗1 ideas presented previously. This improved DC operator is referred452

to as eDC. The local search operator is applied after the solution has been453

fully reconstructed.454

Note that the choice of d in the destruction procedure is key. A small d value455

will result in difficulties for IG in escaping strong local optima whereas a456

large d value is no different from a randomized NEH procedure. Similar to457

what Ruiz and Stützle (2007) did, we will calibrate the d value using strong458

statistical techniques.459

At each iteration, after the destruction, reconstruction and local search steps460

we have a new solution. It has to be decided if this solution replaces the current461

incumbent one. We adopt the same acceptance criterion as Ruiz and Stützle462

(2007) and Ruiz and Stützle (2008) which in turn is based on the constant463

temperature Simulated Annealing-like criterion of Osman and Potts (1989).464

Basically, a constant temperature is calculated as Temp = T ·
∑m

i=1

∑n

j=1 pij

n·m·10 ,465

where T is another value to calibrate. Ruiz and Stützle (2007) demonstrated466

this value to be very robust and basically any other value except 0 is accept-467

able. The final proposed IG method, including some alternative operators, is468

given in Figure 5.469

4.4. Calibration of the FRB4∗1 heuristic and proposed IG470

In this section we calibrate the λ parameter of the FRB4∗1 heuristic and471

also test the two local search schemes, construction and reconstruction opera-472

tors of the IG method, along with the temperature T and number of jobs to473

destruct in the destruction phase (d). In order to calibrate these methods we474

need some test instances.475

In this paper we propose a comprehensive benchmark. Since there is no476

known benchmark for the MNPFSP, we base our instances on those for477

18

procedure IG(d, T)
π :=FRB4∗1
π :=LS(π) or RLS(π) % Choice of local search
πb := π
while (termination criterion not satisfied) do
π′ := π
for i := 1 to d do % Destruction phase
π′ := remove one job at random from π′ and insert it in π′R

endfor
for i := 1 to d do % Reconstruction phase
π′ := Insert job π′R(i) in position p resulting in the best Cmax
% Improved eDC operator
π′ := Reinsert jobs π′(p±1) in positions resulting in the best Cmax

endfor
π′′ :=LS(π′) or RLS(π′) % Choice of local search
if Cmax(π′′) < Cmax(π) then % Acceptance Criterion
π := π′′

if Cmax(π) < Cmax(πb) then % New best solution
πb := π

endif
elseif

(
random ≤ e−(Cmax(π′′)−Cmax(π))/Temp

)
then

π := π′′

endif
endwhile

end
Figure 5: Proposed Iterated Greedy (IG) method.

the no-idle PFSP of Ruiz et al. (2009). The basic benchmark contains 250478

instances. All combinations of the following n and m values are used: n =479

{50, 100, 150, 200, 250, 300, 350, 400, 450, 500} andm = {10, 20, 30, 40, 50}. For480

each one of the 10× 5 = 50 combinations, five replicates are obtained which481

results in 250 instances. Furthermore, in order to test different mixed no-idle482

scenarios, we generate seven different groups as follows: Group 1: The first483

50% of the machines have the no-idle constraint. The remaining 50% are484

regular idle machines. Group 2: The second 50% of the machines have the485

no-idle constraint. Group 3: The machines alternate, in order, between regular486

and no-idle constraints. Group 4: A random 25% of the machines are no-idle.487

Group 5: 50% random no-idle machines. Group 6: 75% random no-idle ma-488

chines. Group 7: This group contains the 250 original no-idle instances of489

Ruiz et al. (2009), i.e., in this group all machines have the no-idle constraint.490

Since there are 250 instances in each group, the grand total of instances in491

the benchmark is 1,750. The processing times for all instances are generated492

19

following a uniform distribution in the range U [1, 99] as it is common in the493

scheduling literature. Note that this is a comprehensive benchmark that will494

allow us to use detailed results in the computational comparison.495

Calibrating algorithms with the same instances that will later be used for496

computational results and comparisons constitutes poor practice. If an algo-497

rithm is calibrated on the same instances that will be later tested we risk498

having biased or over fitted results. In order to remedy this problem we also499

generate a calibration benchmark of 100 random instances. To generate each500

instance, a random n, m and group are selected and the instance is generated.501

All instances, both the test and the calibration benchmarks are available for502

download at http://soa.iti.es.503

504

A first quick experiment was carried out to calibrate the λ parameter of505

the FRB4∗1. We use the 100 calibration instances and test λ from 0 to 100%.506

This percentage relates to the number of jobs n so a λ = 50% means that 50%507

of the initial sequence is maintained as LPT before starting the NEH insertion508

procedure. We use a step equal to 5% which means that we test 21 different509

values for λ. We solve the 100 calibration instances with these 21 versions510

of the FRB4∗1. The response variable to measure is the Relative Percentage511

Deviation from the best known solution denoted as RPD = Somesol−Bestsol

Bestsol
·100.512

Somesol is the solution obtained by one of the versions on a given instance513

and Bestsol is the lowest makespan known for that instance. All best known514

solutions for the test instances are also available at http://soa.iti.es.515

All tests are carried out in a cluster with 30 blades, each one containing two516

Intel XEON E5420 processors with a core clock of 2.5 GHz. and 4 cores each517

(8 in total per blade) and 16 GBytes of RAM memory (480 GBytes in total).518

To analyze the results we carry out a full factorial design of experiments with519

one factor (λ) at 21 levels on 100 instances which gives 2,100 treatments.520

The results of the experiment are analyzed by means of the Analysis of521

Variance (ANOVA) technique. ANOVA is a parametric statistical technique522

and three main hypotheses must be met. In order of importance these are523

the independence of the residuals, homoscesdasticity of the different levels524

and variants of the factors studied (homogeneity of variance) and normality525

of the residuals. No significant deviations were found in the fulfillment of the526

hypotheses. The detailed results of this short initial experiment are omitted527

due to space constraints but suffice to say that the statistically best result is528

obtained when λ = 50%n.529

530

20

http://soa.iti.es
http://soa.iti.es

A much larger Design of Experiments (see Montgomery (2012), among531

many others) is carried out to calibrate the proposed IG. We test the following532

factors: 1) type of destruction-reconstruction operator, tested at two variants:533

regular DC and improved eDC. 2) type of local search, tested at two variants:534

regular LS and referenced local search RLS. 3) Destruction size d tested at535

six levels: 8-13. 4) T tested at five levels: 0.4-0.8. Apart from these controlled536

factors, each IG configuration is run five different times on each instance537

(we call this the replicate witness factor which should not be statistically538

significant). Note that the IG needs a termination criterion, which we set at a539

given elapsed CPU time equal to t = 5nm milliseconds. Setting the CPU time540

depending on the instance size (number of jobs n and number of machines m)541

is good practice in order to better observe the effect of the factors. With a542

fixed CPU time, smaller instances end up with large CPU times and become543

“easy” whereas large instances might not have enough CPU time and might be544

wrongly portrayed as “hard”. To sum up, we have a multi-factor full factorial545

experimental design with 100 · 5 · 2 · 2 · 6 · 5 = 60, 000 treatments. With546

such a large and powerful experiment, we will be able to fully calibrate the547

proposed IG with a high degree of accuracy. The same computer is used for548

the experiments and the RPD response variable is analyzed in a multi-factor549

ANOVA. We do not show here the ANOVA table with interactions of second550

order due to space limitations. Instead, we reproduce the means plots with551

confidence intervals of the most important and statistically significant factors.552

The most significant factors are the type of local search and d, followed by the553

type of destruction-reconstruction factors. The means plots of these factors,554

together with 95% Tukey’s Honest Significant Difference (HSD) confidence555

intervals are given in Figure 6. Recall that overlapping confidence intervals556

means that the observed difference in the response variable (RPD) of the two557

overlapped means is statistically insignificant.558

As can be seen, the improved eDC destruction-reconstruction operator is559

statistically better than the Ruiz and Stützle (2007) regular operator. The560

same can be said about the referenced local search RLS. While in Figure 6561

it might seem that the differences are small, combined, the usage of eDC in562

conjunction with RLS results in significant improvements over the regular563

LS and DC operators. As regards d, the differences are small for central564

values and we settle for d = 10. Finally, the factor T is not statistically565

significant, which coincides with the results of Ruiz and Stützle (2007). We566

select the central value of T = 0.6. Detailed ANOVA tables and all results of567

the experiments are available upon request from the authors.568

21

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

R
el

at
iv

e
Pe

rc
en

ta
ge

 D
ev

ia
ti

on
 (

R
P

D
)

Destruction-Rec
DC eDC

Local Search
LS RLS 8 9 10 11 12 13

d

Figure 6: Means plot for the type of destruction-reconstruction operator, type of local
search and d factors for the IG ANOVA calibration experiment. All means have Tukey’s
Honest Significant Difference (HSD) 95% confidence intervals.

5. Computational comparisons and statistical analysis569

After calibrating the proposed IG method we compare it with the state-of-570

the-art algorithms from the literature. Since there are no MNPFSP methods571

proposed so far, we take the best competing algorithms from the no-idle PFSP572

literature. We will use the 1,750 test instances detailed in Section 4.4 for573

the computational comparisons. Note that the 7th group in those instances574

are no-idle problems so the proposed IG will be tested against existing575

methods on no-idle instances as well. The following methods have been fully576

reimplemented: 1) The hybrid Genetic Algorithm of Ruiz et al. (2006) (hGA).577

2) The hybrid discrete PSO of Pan and Wang (2008a) (hDPSO). 3) The hybrid578

discrete differential evolution algorithm of Pan and Wang (2008b) (hDDEP).579

4,5) The IG method of Ruiz et al. (2009) tested with d = 4 and d = 8 (IGR4580

and IGR8 , respectively). 6) The hybrid discrete differential evolution algorithm581

of Deng and Gu (2012) (hDDED). 7) The recent variable IG hybridized with582

differential evolution of Fatih Tasgetiren et al. (2013a) (IGT) and finally the583

eighth method is the IG algorithm proposed in this paper (IG). Note that all584

methods have been reimplemented and use the proposed accelerations of the585

insertion neighborhood. Makespan calculation functions are also shared. All586

methods have been coded in Visual C++ 6.0 and have been run on the same587

computers. Therefore, the results are fully and completely comparable.588

All algorithms have a natural stopping criterion which we set at a predefined589

22

elapsed CPU time following the expression t = n× (m/2)× ρ milliseconds590

where ρ has been tested at values 10, 20, 30, 60, 90. Our objective is to analyze591

the performance of all the methods from short to very long CPU times. Note592

that for ρ = 90 the largest instances of 500 jobs and 50 machines are run for593

almost 19 minutes. Given the 8 algorithms tested, 1,750 instances, 5 different594

stopping times and 5 replicates we have a total of 1, 750× 5× 5× 8 = 350, 000595

results. This is an extremely rich dataset which will allow us to draw strong596

conclusions. Note that the total CPU time needed for all experiments was597

1.92 years (the real time was much shorter as all tests were divided among598

the 30 blade clusters). The average relative percentage deviation, grouped599

only by instance group (250 instances × 5 replicates × 5 different stopping600

times = 6, 250 values averaged at each cell) are given in Table 1.601

Instance
group

hDDED hDDEP hDPSO hGA IG IGR4 IGR8 IGT

1 0.42 0.41 0.42 0.65 0.33 0.61 0.42 0.95
2 0.42 0.41 0.44 0.66 0.35 0.63 0.42 0.96
3 0.42 0.42 0.43 0.66 0.31 0.65 0.43 0.95
4 0.47 0.45 0.47 0.74 0.37 0.64 0.46 1.14
5 0.44 0.42 0.45 0.68 0.31 0.66 0.44 0.98
6 0.42 0.40 0.41 0.62 0.26 0.62 0.40 0.81
7 0.39 0.37 0.40 0.56 0.23 0.61 0.37 0.71

Average 0.42 0.41 0.43 0.65 0.31 0.63 0.42 0.93

Table 1: Average Relative Percentage Deviation for all the 8 tested algorithms and the
1,750 test instances. Results grouped by type of instance.

As can be seen, the proposed IG produces the best results in all instance602

groups. While for groups 1-6 this is somewhat expected, as these are the603

mixed no-idle groups and the other methods were not designed for this setting,604

the differences are also large for group 7, which is the full no-idle case. For605

group 7, the Average RPD of the proposed IG is 0.23 whereas the second best606

method is hDDEP (tied with IGR8), which have an Average RPD of 0.37%.607

This means that the IG produces solutions that are, on average, almost 61%608

better for the no-idle flowshop. Clearly, IG presents itself as the new state-609

of-the-art for the no-idle flowshop problem. On average, the best algorithm610

is the IG with an overall RPD for the 1,750 instances of 0.31%. The second611

best overall method is hDDEP with an Average RPD of 0.41%, again, with612

a large outperformance of more than 33%. It is also of interest to examine613

23

the results of Table 1 but broken down according to the allowed CPU time ρ.614

This is given in Table 2.615

ρ hDDED hDDEP hDPSO hGA IG IGR4 IGR8 IGT

10 0.47 0.49 0.49 0.72 0.36 0.73 0.48 1.06
20 0.44 0.44 0.45 0.67 0.32 0.67 0.44 1.01
30 0.42 0.41 0.43 0.64 0.31 0.63 0.42 0.97
60 0.40 0.37 0.40 0.62 0.28 0.58 0.39 0.85
90 0.39 0.35 0.39 0.61 0.27 0.55 0.37 0.76

Average 0.42 0.41 0.43 0.65 0.31 0.63 0.42 0.93

Table 2: Average Relative Percentage Deviation for all the 8 tested algorithms and the
1,750 test instances. Results grouped by allowed CPU time ρ.

Once again, the superiority of the proposed IG method is clear. While we616

were expecting that for larger values of ρ the differences between methods617

would diminish, we have found this not to be the case. The IG method has a618

lead of more than 30% in Average RPD regardless of ρ value.619

While the differences between IG and competing methods depicted in Tables 1620

and 2 are quite large, it is still mandatory to run some statistical tests on621

the results in order to ascertain if the observed differences in the Average622

RPD values are indeed statistically significant. We have conducted a multi-623

factor ANOVA where n, m, instance group, ρ, replica (witness factor) and624

algorithm are all controlled factors. Single factor effects as well as two way625

interactions are studied. As expected with such a large dataset, most factors626

are statistically significant (after all, with an infinite sample size, all differences627

in the means, even if they tend to zero, are statistically significant). We are628

most interested in the interaction between the algorithm and ρ, shown in629

Figure 7.630

As can be seen, there are four groups of algorithms with no statistically631

significant differences in the Average RPD within each group. The first group632

is composed of algorithm IGT , which, despite being a very recent proposal for633

the no-idle flowshop, it no better than the rest. However, and as we can see,634

it is the algorithm that benefits most from the added CPU time. The second635

group is made up of hGA and IGR4 . These results are expected since, and636

according to the results of Ruiz and Stützle (2007), the basic IG performs637

very similar to that of the GA of Ruiz et al. (2006). A tight third group is638

formed by IGR8 , hDDED, hDDEP and hDPSO. With the exception of IGR8 ,639

which was not tested with d = 8 by the original authors (Ruiz et al., 2009),640

24

ρ

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

R
el

at
iv

e
P

er
ce

nt
ag

e
D

ev
ia

ti
on

 (
R

P
D

)

10 20 30 60 90

Algorithm

IG
IGR4

IGR8

IGT

hDDED

hDDEP

hDPSO
hGA

Figure 7: Means plot for the interaction between the algorithm and elapsed CPU time
stopping criterion (ρ). All means have Tukey’s Honest Significant Difference (HSD) 95%
confidence intervals.

the other three algorithms are very similar and therefore it is expected that641

their performance is comparable with one another. The last group is formed642

of the proposed method IG. We can see that for all CPU times (values of ρ)643

its Tukey’s Honest Significant Difference (HSD) 95% confidence intervals do644

not overlap with the intervals of any of the other methods. This means that645

for all tested values of ρ, the proposed IG is statistically better than all other646

methods and by a significant margin. A full table with the breakdown of n647

and m, as well as all results, best detailed solutions, excel files and statistical648

tests are available upon request from the authors.649

6. Conclusions and future research650

This paper proposes for the first time a generalization of both the regular651

permutation flowshop and no-idle permutation flowshop scheduling problem652

resulting from the consideration of both regular as well as no-idle machines in653

the shop. The result is referred to as the mixed no-idle problem or MNPFSP.654

It has many practical applications in the ceramic tile industry, the production655

of ceramic frits, the steelmaking industry and the manufacturing of integrated656

circuits among many others.657

We have reviewed the existing literature and have proved the novelty of658

the MNPFSP setting, for which we have presented a mixed linear integer659

25

programming model. We have shown how to calculate the makespan value and660

have demonstrated that it is far from trivial. The insertion neighborhood is661

frequently employed by heuristics and metaheuristics in the flowshop literature662

and we have also presented in this paper a method for calculating all insertions663

of a job in a sequence in O(nm) steps, reducing the computational complexity664

and allowing for fast methods. We have presented an improved Iterated665

Greedy (IG) method that builds on the successful algorithms of Ruiz and666

Stützle (2007). We have extended the method with a more comprehensive667

initialization, an improved destruction-reconstruction operator and referenced668

local search. After careful calibration, we have tested our proposed IG against669

7 other state-of-the-art methods mainly proposed for the no-idle flowshop. In670

a comprehensive benchmark of 1,750 instances and after an accumulated CPU671

time of almost two years we have demonstrated that the proposed IG is not672

only statistically better than all other methods in the mixed no-idle settings673

but also in the full no-idle environment and by a wide and significant margin.674

The outcome of the experimentation is also interesting since the proposed675

IG is much simpler than the competing hybrid discrete differential evolution676

and hybrid discrete particle swarm optimization methods. Our experiments677

include 350,000 different results which, along with the powerful statistical678

analyses allow us to conclude that the proposed IG is the new state-of-the-art679

both for the no-idle flowshop as well as for the new mixed no-idle flowshop.680

Future research will include the consideration of other optimization objectives681

and sequence dependent setup times, possibly for the regular idling machines682

as these configurations are common within industry. Hybrid no-idle or hybrid683

mixed no-idle flowshops pose another interesting avenue for future research.684

Acknowledgements685

Quan-Ke Pan is partially supported by the National Science Foundation686

of China (No. 61174187), Basic Scientific Research Foundation of Northeast687

University (No. N110208001), and by the Starting Foundation of Northeast688

University (No. 29321006). Rubén Ruiz is partially supported by the Spanish689

Ministry of Economy and Competitiveness, under the project “RESULT690

- Realistic Extended Scheduling Using Light Techniques” with reference691

DPI2012-36243-C02-01 co-financed by the European Union and FEDER692

funds and by the Universitat Politècnica de València, for the project MRPIV693

with reference PAID/2012/202.694

26

References695

Adiri, I. and Pohoryles, D. (1982). Flowshop no-idle or no-wait scheduling to696

minimize the sum of completion times. Naval Research Logistics, 29(3):495–697

504.698

Baker, K. R. (1974). Introduction to Sequencing and Scheduling. John Wiley &699

Sons, New York.700

Baptiste, P. and Hguny, L. K. (1997). A branch and bound algorithm for the701

F/no− idle/Cmax. In Proceedings of the International Conference on Indus-702

trial Engineering and Production Management, IEPM’97, volume 1, pages703

429–438, Lyon, France.704

Baraz, D. and Mosheiov, G. (2008). A note on a greedy heuristic for flow-705

shop makespan minimization with no machine idle-time. European Journal of706

Operational Research, 184(2):810–813.707

Deng, G. and Gu, X. (2012). A hybrid discrete differential evolution algorithm for708

the no-idle permutation flow shop scheduling problem with makespan criterion.709

Computers & Operations Research, 39(9):2152–2160.710

Dong, X., Huang, H., and Chen, P. (2008). An improved NEH-based heuristic711

for the permutation flowshop problem. Computers & Operations Research,712

35(12):3962–3968.713

Fatih Tasgetiren, M., Pan, Q.-K., Suganthan, P. N., and Buyukdagli, O. (2013a).714

A variable iterated greedy algorithm with differential evolution for the no-idle715

permutation flowshop scheduling problem. Computers & Operations Research,716

40(7):1729–1743.717

Fatih Tasgetiren, M., Pan, Q.-K., Suganthan, P. N., and Oner, A. (2013b). A718

discrete artificial bee colony algorithm for the no-idle permutation flowshop719

scheduling problem with the total tardiness criterion. Applied Mathematical720

Modelling, 37(10-11):6758–6779.721

Framinan, J. M., Gupta, J. N. D., and Leisten, R. (2004). A review and clas-722

sification of heuristics for permutation flow-shop scheduling with makespan723

objective. Journal of the Operational Research Society, 55(1):1243–1255.724

Framinan, J. M. and Leisten, R. (2008). Total tardiness minimization in per-725

mutation flow shops: a simple approach based on a variable greedy algorithm.726

International Journal of Production Research, 46(22):6479–6498.727

Garey, M. R., Johnson, D. S., and Sethi, R. (1976). The complexity of flowshop728

and jobshop scheduling. Mathematics of Operations Research, 1(2):117–129.729

Goncharov, Y. and Sevastyanov, S. (2009). The flow shop problem with no-idle730

constraints: A review and approximation. European Journal of Operational731

Research, 196(2):450–456.732

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G. (1979).733

Optimization and approximation in deterministic sequencing and scheduling:734

A survey. Annals of Discrete Mathematics, 5:287–326.735

Gupta, J. N. D. and Stafford, Jr, E. F. (2006). Flowshop scheduling research736

after five decades. European Journal of Operational Research, 169(3):699–711.737

Hejazi, S. R. and Saghafian, S. (2005). Flowshop-scheduling problems with738

27

makespan criterion: A review. International Journal of Production Research,739

43(14):2895–2929.740

Johnson, S. M. (1954). Optimal two- and three-stage production schedules with741

setup times included. Naval Research Logistics Quarterly, 1(1):61–68.742

Kalczynski, P. and Kamburowski, J. (2007). On the neh heuristic for minimizing743

the makespan in permutation flow shops. OMEGA, the International Journal744

of Management Science, 35(1):53–60.745

Kalczynski, P. J. and Kamburowski, J. (2005). A heuristic for minimizing the746

makespan in no-idle permutation flow shops. Computers & Industrial Engi-747

neering, 49(1):146–154.748

Kamburowski, J. (2004). More on three-machine no-idle flow shops. Computers749

& Industrial Engineering, 46(3):461–466.750

Minella, G., Ruiz, R., and Ciavotta, M. (2008). A review and evaluation of751

multi-objective algorithms for the flowshop scheduling problem. INFORMS752

Journal on Computing, 20(3):451–471.753

Minella, G., Ruiz, R., and Ciavotta, M. (2011). Restarted iterated pareto greedy754

algorithm for multi-objective flowshop scheduling problems. Computers &755

Operations Research, 38(11):1521–1533.756

Montgomery, D. C. (2012). Design and Analysis of Experiments. Wiley, eight757

edition.758

Naderi, B. and Ruiz, R. (2010). The distributed permutation flowshop scheduling759

problem. Computers & Operations Research, 37(4):754–768.760

Narain, L. and Bagga, P. C. (2003). Minimizing total elapsed time subject to761

zero total idle time of machines in n× 3 flowshop problem. Indian Journal of762

Pure & Applied Mathematics, 34(2):219–228.763

Narain, L. and Bagga, P. C. (2005a). Flowshop/no-idle scheduling to minimise764

the mean flowtime. Anziam Journal, 47:265–275.765

Narain, L. and Bagga, P. C. (2005b). Flowshop/no-idle scheduling to minimize766

total elapsed time. Journal of Global Optimization, 33(3):349–367.767

Nawaz, M., Enscore, Jr, E. E., and Ham, I. (1983). A Heuristic Algorithm768

for the m-Machine, n-Job Flow-shop Sequencing Problem. OMEGA, The769

International Journal of Management Science, 11(1):91–95.770

Nowicki, E. and Smutnicki, C. (1996). A fast tabu search algorithm for the771

permutation flow-shop problem. European Journal of Operational Research,772

91(1):160–175.773

Osman, I. and Potts, C. (1989). Simulated annealing for permutation flow-774

shop scheduling. OMEGA, The International Journal of Management Science,775

17(6):551–557.776

Pan, Q.-K., Fatih Tasgetiren, M., and Liang, Y.-C. (2008a). A discrete differ-777

ential evolution algorithm for the permutation flowshop scheduling problem.778

Computers & Industrial Engineering, 55(4):795–816.779

Pan, Q.-K. and Ruiz, R. (2012). An estimation of distribution algorithm for lot-780

streaming flow shop problems with setup times. OMEGA, the International781

Journal of Management Science, 40(2):166–180.782

Pan, Q.-K. and Ruiz, R. (2013). A comprehensive review and evaluation of per-783

28

mutation flowshop heuristics to minimize flowtime. Computers & Operations784

Research, 40(1):117–128.785

Pan, Q.-K. and Wang, L. (2008a). No-idle permutation flow shop scheduling786

based on a hybrid discrete particle swarm optimization algorithm. Interna-787

tional Journal of Advanced Manufacturing Technology, 39(7-8):796–807.788

Pan, Q.-K. and Wang, L. (2008b). A novel differential evolution algorithm789

for no-idle permutation flow-shop scheduling problems. European Journal of790

Industrial Engineering, 2(3):279–297.791

Pan, Q.-K. and Wang, L. (2012). Effective heuristics for the blocking flowshop792

scheduling problem with makespan minimization. OMEGA, the International793

Journal of Management Science, 40(2):218–229.794

Pan, Q.-K., Wang, L., and Zhao, B. H. (2008b). An improved iterated greedy795

algorithm for the no-wait flow shop scheduling problem with makespan cri-796

terion. International Journal of Advanced Manufacturing Technology, 38(7-797

8):778–786.798

Rad, S. F., Ruiz, R., and Boroojerdian, N. (2009). New high performing heuris-799

tics for minimizing makespan in permutation flowshops. OMEGA, the Inter-800

national Journal of Management Science, 37(2):331–345.801

Ribas, I., Companys, R., and Tort-Martorell, X. (2010). Comparing three-step802

heuristics for the permutation flow shop problem. Computers & Operations803

Research, 37(12):2062–2070.804

Ribas, I., Companys, R., and Tort-Martorell, X. (2011). An iterated greedy805

algorithm for the flowshop scheduling problem with blocking. OMEGA, The806

International Journal of Management Science, 39(3):293–301.807

Ruiz, R. and Maroto, C. (2005). A comprehensive review and evaluation of808

permutation flowshop heuristics. European Journal of Operational Research,809

165(2):479–494.810

Ruiz, R., Maroto, C., and Alcaraz, J. (2006). Two new robust genetic algorithms811

for the flowshop scheduling problem. OMEGA, the International Journal of812

Management Science, 34:461–476.813

Ruiz, R. and Stützle, T. (2007). A simple and effective iterated greedy algo-814

rithm for the permutation flowshop scheduling problem. European Journal of815

Operational Research, 177(3):2033–2049.816

Ruiz, R. and Stützle, T. (2008). An iterated greedy heuristic for the sequence de-817

pendent setup times flowshop problem with makespan and weighted tardiness818

objectives. European Journal of Operational Research, 187(3):1143–1159.819

Ruiz, R., Vallada, E., and Fernández-Martínez, C. (2009). Scheduling in flow-820

shops with no-idle machines. In Chakraborty, U., editor, Computational In-821

telligence in Flow Shop and Job Shop Scheduling, chapter 2, pages 21–51.822

Springer, New York.823

Saadani, N. E. H., Guinet, A., and Moalla, M. (2001). A travelling salesman824

approach to solve the F/no− idle/Cmax problem. In Proceedings of the Inter-825

national Conference on Industrial Engineering and Production Management,826

IEPM’01, volume 2, pages 880–888, Quebec, Canada.827

Saadani, N. E. H., Guinet, A., and Moalla, M. (2003). Three stage no-idle828

29

flow-shops. Computers & Industrial Engineering, 44(3):425–434.829

Saadani, N. E. H., Guinet, A., and Moalla, M. (2005). A travelling salesman830

approach to solve the F/no− idle/Cmax problem. European Journal of Oper-831

ational Research, 161(1):11–20.832

Salveson, M. E. (1952). On a quantitative method in production planning and833

scheduling. Econometrica, 20(4):554–590.834

Taillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing835

problem. European Journal of Operational Research, 47(1):67–74.836

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal837

of Operational Research, 64(2):278–285.838

Vachajitpan, P. (1982). Job sequencing with continuous machine operation.839

Computers & Industrial Engineering, 6(3):255–259.840

Vallada, E. and Ruiz, R. (2009). Cooperative metaheuristics for the permuta-841

tion flowshop scheduling problem. European Journal of Operational Research,842

193(2):365–376.843

Vallada, E., Ruiz, R., and Minella, G. (2008). Minimising total tardiness in844

the m-machine flowshop problem: A review and evaluation of heuristics and845

metaheuristics. Computers & Operations Research, 35(4):1350–1373.846

Čepek, O., Okada, M., and Vlach, M. (2000). Note: On the two-machine no-idle847

flowshop problem. Naval Research Logistics, 47(4):353–358.848

Woollam, C. R. (1986). Flowshop with no idle machine time allowed. Computers849

& Industrial Engineering, 10(1):69–76.850

Ying, K. C. (2008). Solving non-permutation flowshop scheduling problems851

by an effective iterated greedy heuristic. International Journal of Advanced852

Manufacturing Technology, 38(3-4):348–354.853

30

