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Abstract

This paper deals with the computation of the first probability density function of the solution of ran-
dom homogeneous linear second-order difference equations by the Random Variable Transformation method.
This approach allows us to generalize the classical solution obtained in the deterministic scenario. Several
illustrative examples are provided.
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1 Motivation

Due not only to the measurements errors often required to deal with problems in many areas like Physics,
Chemistry, Engineering, etc., but also the inherent complexity of the phenomena under study, randomness is
a key part in modelling. These facts motivate the extension of powerful deterministic tools such as differential
and difference equations to the random context. Most of the contributions in this sense focus on continuous
models based on both Itô-type stochastic differential equations [11, 1] or random differential equations [13, 7].
Itô-type stochastic differential equations consider uncertainty through the white noise, which is a Gaussian and
stationary stochastic process. Whereas, the consideration of randomness in dealing with random differential
equations is introduced by assuming that the inputs parameters (coefficients, source term and initial/boundary
conditions) can have specific probability distributions including the standard distributions such as exponential,
beta and Gaussian. As it also happens in the deterministic scenario, the study of discrete models containing
uncertainty in their formulation has been less prolific than continuous models. The contributions have mainly
focused on the discretization of Itô-type stochastic differential equations. This approach leads to Autoregressive
models (usually referred to as AR-models) [6]. Some interesting contributions in this sense are [12, 14]. Random
difference equations constitute the discrete counterpart of random differential equations. Their study is motivated
from the natural introduction of uncertainty in models that appear in applied areas [2] and after the discretization
of random differential equations [4]. We point out that recently, in [3], authors have obtained the first probability
density function to the solution of random linear first-order difference equations taking advantage of the approach
to be considered in this paper.

The solution of a random difference equation is a discrete stochastic process (s.p.), say {Zn : n ≥ 0}. Notice
that a remarkable difference with respect to the deterministic scenario is that now the primary goal is not only
to compute the solution, but also its main statistical characteristics such as the mean function, E[Zn], and
the variance function, V[Zn] = E[(Zn)2] − (E[Zn])2. Though more complicate, the computation of the first
probability density function (1-p.d.f.), f1(z, n), associated to the discrete solution s.p. is more desirable since
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from it one can determine not only the two previous statistical moments but also any other moment

E[(Zn)k] =

∫ ∞
−∞

zkf1(z, n) dz, n, k = 0, 1, 2, . . . ,

of Zn, as well as, the probability of specific intervals where the solution s.p. lies. In dealing with the computation
of the 1-p.d.f., the Random Variable Transformation (R.V.T.) method is a powerful technique. This method
has been used to study relevant continuous models [9, 8, 5, 10, 4]. In this paper we will determine the 1-p.d.f.
f1(z, n) of the solution of the random homogeneous linear second-order difference equation

Zn+2 +A1Zn+1 +A2Zn = 0, n = 0, 1, 2, . . . , Z0 = Γ0, Z1 = Γ1, (1)

by the R.V.T. technique. To provide more generality to our study, we will consider that both initial conditions,
Γ0 = Γ0(ω), Γ1 = Γ1(ω) and, coefficients, A1 = A1(ω), A2 = A2(ω) are dependent continuous random variables
(r.v.’s) defined on a common probability space (Ω,F,P) and whose joint p.d.f. fΓ0,Γ1,A1,A2(γ0, γ1, a1, a2) is
known. Without loss of generality, in the following we will denote by

DΓ0 = { γ0 = Γ0(ω), ω ∈ Ω : γ0,1 ≤ γ0 ≤ γ0,2} , DA1 = { a1 = A1(ω), ω ∈ Ω : a1,1 ≤ a1 ≤ a1,2} ,
DΓ1

= { γ1 = Γ1(ω), ω ∈ Ω : γ1,1 ≤ γ1 ≤ γ1,2} , DA2
= { a2 = A2(ω), ω ∈ Ω : a2,1 ≤ a2 ≤ a2,2} ,

the domains of the input parameters Γ0, Γ1, A1 and A2, respectively. We permit that the left (right) endpoint
of each interval of the above domains takes the value −∞ (+∞), hence unbounded r.v.’s are allowed. In the
sequel, for the sake of clarity sample dependence for r.v.’s denoted by the above ω-notation will be omitted.

This paper is organized as follows. In Section 2 we will determine the 1-p.d.f. f1(z, n) of the solution s.p.
of the initial value problem (i.v.p.) (1) in two pieces distinguishing the real or complex nature of the roots of
the associated characteristic equation. In Section, 3 we will give some examples where the theoretical results
developed in Section 2 are illustrated. Conclusions are drawn in the closing section.

2 Computing the 1-p.d.f.

This section is devoted to compute the 1-p.d.f. of the solution of the i.v.p. (1) using the R.V.T. technique. There
are several versions of this technique, below we state the version that will be applied throughout this paper [13,
p.25]:

Theorem 1 (R.V.T. technique: multi-dimensional version). Let V = (V1, . . . , Vm) be a random vector of
dimension m with joint p.d.f. fV(v). Let r : Rm −→ Rm be a one-to-one deterministic map which is assumed
to be continuous with respect to each one of its arguments, and with continuous partial derivatives. Then, the
joint p.d.f. fW(w) of the random vector W = r(V) is given by

fW(w) = fV (s(w)) |Jm|, (2)

where s(w) is the inverse transformation of r(v): v = r−1(w) = s(w) and Jm is the Jacobian of the transfor-
mation, i.e.,

Jm = det

(
∂v

∂w

)
= det


∂v1
∂w1

· · · ∂vm
∂w1

...
. . .

...
∂v1
∂wm

· · · ∂vm
∂wm

 ,

which is assumed to be different from zero.

As in the deterministic scenario, the general solution Zn of i.v.p. (1) depends on the real or complex character
of the roots, α1 = α1(ω) and α2 = α2(ω), ω ∈ Ω, of the random characteristic equation: α2 +A1α+A2 = 0:

α1 =
−A1 +

√
(A1)2 − 4A2

2
, α2 =

−A1 −
√

(A1)2 − 4A2

2
. (3)
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Let us introduce the following events Ei involving the r.v.’s A1 = A1(ω) and A2 = A2(ω) and their associated
probabilities pi, i = 1, 2, 3:

p1 = P
[
E1 =

{
ω ∈ Ω : (A1)2 − 4A2 > 0

}]
,

p2 = P
[
E2 =

{
ω ∈ Ω : (A1)2 − 4A2 < 0

}]
,

p3 = P
[
E3 =

{
ω ∈ Ω : (A1)2 − 4A2 = 0

}]
.

(4)

The pairs (Ei, pi), i = 1, 2, 3 indicate the events and probabilities that the random roots of the associated
characteristic equation are real and distinct, complex or real and equals, respectively. Note that p3 = 0 since
we are assuming that A1 and A2 are continuous r.v.’s. Unlike what happens in the deterministic scenario, once
r.v.’s A1 and A2 have been chosen, the roots α1 and α2 can be both real (and distinct) and complex whenever
0 < p1 < 1 and 0 < p2 < 1. Note that p1 + p2 = 1. In this case, the 1-p.d.f. f1(z, n) of the solution of i.v.p. (1)
will be defined in two pieces, f1R(z, n) and f1I(z, n). Each one of these functions is the contribution inferred by
the event Ei, i = 1, 2, which happens with probability pi ∈]0, 1[, i = 1, 2. Both pieces f1R(z, n) and f1I(z, n) will
be determined below taking advantage of R.V.T. method. If p1 = 1 and P [{ω ∈ Ω : A1(ω) = â1}] = 1 or, p2 = 1
and P [{ω ∈ Ω : A2(ω) = â2}] = 1, i.e., when the p.d.f.’s of A1 and A2 are given by the Dirac delta functions
δ(A1 − â1) and δ(A2 − â2), respectively, our random approach becomes the classical results.

2.1 Real and distinct random roots

Let us assume that p1 > 0. Then, the solution of the i.v.p. (1) is

Zn =
α1(α2)n − α2(α1)n

α1 − α2
Γ0 +

(α1)n − (α2)n

α1 − α2
Γ1,

where α1 and α2 are given by (3). Now, in order to determine the 1-p.d.f. f1(z, n) of the i.v.p. (1), we set
n and compute the p.d.f. of the r.v. Z = Zn by applying Theorem 1 with the following identification: V =
(X0, X1, A1, A2), fV(v) = fΓ0,Γ1,A1,A2(x0, x1, a1, a2), m = 4 and, W = (W1,W2,W3,W4) = r(Γ0,Γ1, A1, A2)
and its inverse mapping s(W1,W2,W3,W4) are given by:

W1 = r1(Γ0,Γ1, A1, A2) =
α1(α2)n − α2(α1)n

α1 − α2
Γ0 +

(α1)n − (α2)n

α1 − α2
Γ1

⇒ Γ0 = s1(W1,W2,W3,W4) =

(
W1 −

(α̃1)n − (α̃2)n

α̃1 − α̃2
W2

)
α̃1 − α̃2

α̃1(α̃2)n − α̃2(α̃1)n
,

W2 = r2(Γ0,Γ1, A1, A2) = Γ1 ⇒ Γ1 = s2(W1,W2,W3,W4) = W2,
W3 = r3(Γ0,Γ1, A1, A2) = A1 ⇒ A1 = s3(W1,W2,W3,W4) = W3,
W4 = r4(Γ0,Γ1, A1, A2) = A2 ⇒ A2 = s4(W1,W2,W3,W4) = W4,

(5)

where

α̃1 =
−W3 +

√
(W3)2 − 4W4

2
, α̃2 =

−W3 −
√

(W3)2 − 4W4

2
.

Note that the Jacobian is given by

J4 = det

(
∂v

∂w

)
=

α̃1 − α̃2

α̃1(α̃2)n − α̃2(α̃1)n
6= 0, w.p. 1,

where we have used that α̃1 6= α̃2 with probability 1 (w.p. 1), i.e., for each ω ∈ Ω, α̃1(ω) 6= α̃2(ω). Then,
according to (2), the joint p.d.f. of the random vector W = (W1,W2,W3,W4) is given by

fW(w) = fΓ0,Γ1,A1,A2

((
w1 −

(α̃1)n − (α̃2)n

α̃1 − α̃2
w2

)
α̃1 − α̃2

α̃1(α̃2)n − α̃2(α̃1)n
, w2, w3, w4

) ∣∣∣∣ α̃1 − α̃2

α̃1(α̃2)n − α̃2(α̃1)n

∣∣∣∣ ,
w1,i ≤ wi ≤ w2,i, 1 ≤ i ≤ 4.
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Therefore, taking into account that Z = W1, from the event E1 defined in (4) one obtains:

f1R(z, n) =

∫ w2,2

w2,1

∫ w3,2

w3,1

∫ min

[
w4,2;

(w3)2

4

]
min

[
w4,1;

(w3)2

4

] fW1,W2,W3,W4(w1, w2, w3, w4) dw4dw3dw2

=

∫ γ1,2

γ1,1

∫ a1,2

a1,1

∫ min

[
a2,2;

(a1)2

4

]
min

[
a2,1;

(a1)2

4

] fΓ0,Γ1,A1,A2

((
z − (α1)n − (α2)n

α1 − α2
γ1

)
α1 − α2

α1(α2)n − α2(α1)n
, γ1, a1, a2

)
×
∣∣∣∣ α1 − α2

α1(α2)n − α2(α1)n

∣∣∣∣ da2da1dγ1, (6)

where α1 and α2 are defined by (3). f1R(z, t) is a piece of the total 1-p.d.f. f1(z, n). For the sake of clarity, we
will specify the domain of z in the examples provided later, avoiding the cumbersome expressions for the general
context.

2.2 Complex random roots

Let us assume that p2 > 0 and let us denote by Re(α1) and Im(α1) the real and imaginary parts of the random
root α1 = α1(ω):

Re(α1) = −A1

2
, Im(α1) =

√
4A2 − (A1)2

2
,

respectively. Then, the solution of the i.v.p. (1) is given by

Zn =
−rn+1 sin((n− 1)θ)

Im(α1)
Γ0 +

rn sin(nθ)

Im(α1)
Γ1, where


r =

√
(Re(α1))2 + (Im(α1))2,

θ = arctan
(

Im(α1)
Re(α1)

)
.

(7)

From this representation, we are ready to determine the piece f1I(z, n) associated to the event E2 defined in (4)
that contributes to determine the 1-p.d.f. f1(z, n). This will be done by applying again Theorem 1 with the
same identification for the maps r2, r3, r4, s2, s3 and s4 as we did in the previous case (see (5)) but now taking

W1 = r1(Γ0,Γ1, A1, A2) = −rn−1 sin((n−1)θ)
Im(α1) Γ0 + rn sin(nθ)

Im(α1) Γ1,

Γ0 = s1(W1,W2,W3,W4) =
(
rn sin(nθ)

Im(α1) W2 −W1

)
Im(α1)

rn+1 sin((n−1)θ) ,

where r and θ are defined in (7). In this case the Jacobian is given by

J4 = − Im(α1)

rn+1 sin((n− 1)θ)
6= 0, w.p. 1.

Then, according to (2), the joint p.d.f. of the random vector W = (W1,W2,W3,W4) is computed as follows:

fW(w) = fΓ0,Γ1,A1,A2

((
rn sin(nθ)

Im(α1)
w2 − w1

)
Im(α1)

rn+1 sin((n− 1)θ)
, w2, w3, w4

)
· |Im(α1)|
rn+1 |sin((n− 1)θ)|

,

where w1,i ≤ wi ≤ w2,i, 1 ≤ i ≤ 4. Therefore, taking into account that Z = W2 one gets

f1I(z, n) =

∫ γ1,2

γ1,1

∫ a1,2

a1,1

∫ max

[
a2,2;

(a1)2

4

]
max

[
a2,1;

(a1)2

4

] |Im(α1)|
rn+1 |sin((n− 1)θ)|

· fΓ0,Γ1,A1,A2

((
rn sin(nθ)

Im(α1)
γ1 − z

)
Im(α1)

rn+1 sin((n− 1)θ)
, γ1, a1, a2

)
da2da1dγ1,

(8)

where r, θ and α1 can be expressed in terms of A1 and A2 taking into account (3) and (7). For the sake of
clarity in the presentation, the domain of z will be determined later in the examples.
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2.3 1-p.d.f.

Finally, in accordance with the results and comments made in Subsections 2.1 and 2.2, the 1-p.d.f. of the solution
to i.v.p. (1) is given by

f1(z, n) = f1R(z, n) + f1I(z, n), (9)

where f1R(z, t) and f1I(z, t) are computed according to (6) and (8), respectively.

3 Examples

In order to illustrate better the theoretical results obtained in the previous section, next we will compute the
1-p.d.f. f1(z, n) of the solution Zn to i.v.p. (1) at some values of n in the three following situations:

• Case I (p1 � p2): The event E1 is more probable than E2 (see (4)). Roughly speaking, this can be
interpreted as the probabilistic contribution of f1R(z, n) to f1(z, n) is greater than f1I(z, n) in the sense
that real and distinct roots of the associated characteristic equation are more probable than imaginary
roots.

• Case II (p1 ≈ p2 ≈ 1
2 ): The events E1 and E2 have the same probability to occur. This can be interpreted

as the probabilistic contribution of f1R(z, n) and f1I(z, n) to f1(z, n) are similar, in the sense that real
and distinct roots and imaginary roots of the associated characteristic equation are approximately equally
probable.

• Case III (p1 � p2): The event E1 is less probable than E2. This can be interpreted as the probabilistic
contribution of f1R(z, n) to f1(z, n) is smaller than f1I(z, n) in the sense that real and distinct roots of the
associated characteristic equation are less probable than imaginary roots.

To illustrate these three cases, we will consider that the four random inputs Γ0, Γ1, A1 and A2 follow a joint
Gaussian distribution: ηi = (Γ0,Γ1, A1, A2)T ∼ N(µηi ,Σηi), with different mean vectors µηi , i = 1, 2, 3, and a
common covariance matrix Σ = Σηi given, respectively, by

µηi =

 (1, 1,−1/10,−18/25)T if i = 1 (Case I),
(1, 1,−1, 1/4)T if i = 2 (Case II),

(1, 1,−1/10, 18/25)T if i = 3 (Case III),
Σ =


5/100 −1/100 0 −2/100
−1/100 15/100 7/100 5/100

0 7/100 2/10 −1/100
−2/100 5/100 −1/100 1/10

 .

(10)
Note that in the three cases, the z-domain of the 1-p.d.f. f1(z, n) is −∞ < z < ∞. Table 1 collects the
probabilities p1 and p2 = 1−p1 defined by (4) that determine Cases I–III. The probability p1 has been computed
as follows:

p1 =

∫ ∞
−∞

∫ (a1)2

4

−∞
fA1,A2(a1, a2)da2 da1 where fA1,A2(a1, a2) =

∫ ∞
−∞

∫ ∞
−∞

fΓ0,Γ1,A1,A2(γ0, γ1a1, a2)dγ0 dγ1,

and

fΓ0,Γ1,A1,A2(γ0, γ1a1, a2) = fηi(ηi) =
1

4π2
√

det(Σ)
e−

1
2 (ηi−µηi )

TΣ−1(ηi−µηi ), i = 1, 2, 3,

corresponding to the joint p.d.f. of the Gaussian vector ηi = (Γ0,Γ1, A1, A2)T to each one of the Cases I–III.
In Figure 1 we have plotted the 1-p.d.f. f1(z, n) at n = 0, 1, 2, 3, 4, in each one of the Cases I–III according

to the expressions (6), (8) and (9). In each one of these plots we observe that the 1-p.d.f. f1(z, n) seems to

converge to a Dirac delta function centred at Z = 0: limn→∞ f1(z, n) = δ(z) since Zn
n→∞−−−−→ 0. This behaviour

can be roughly expected by using the averaged deterministic difference equation associated to random difference
equation (1) consisting of taking the expectation operator E[·] of every random input, i.e.,

zn+2 + E[A1]zn+1 + E[A2]zn = 0, n = 0, 1, 2, . . . , z0 = E[Γ0], z1 = E[Γ1],

and checking that in each one of the Cases I–III the roots of the corresponding characteristic equations have
modulus less than one.
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Case p1 p2

I 0.991959 0.00804064
II 0.538897 0.461103
III 0.0202495 0.979751

Table 1: Probabilities p1 and p2 that determine Cases I-III when the inputs Γ0, Γ1, A1 and A2 have a joint
Gaussian distribution: ηi = (Γ0,Γ1, A1, A2)T ∼ N(µηi ,Σ) with µηi , i = 1, 2, 3 and Σ given by (10).
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Figure 1: Plots of the 1-p.d.f. f1(z, n) of the solution Zn to i.v.p. (1) in Case I (top left), Case II (top right)
and Case III (bottom) at different values of n = 0, 1, 2, 3, 4.
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4 Conclusions

In this paper we have provided general explicit formulae to the 1-p.d.f. of the solution stochastic process to
a random homogeneous linear second-order difference equation in the general case where the involved random
inputs are statistically dependent. The study has been based on the Random Variable Transformation technique.
In this way, we can compute not only the mean and variance of the solution stochastic process but also provide
a full probabilistic description of the solution in every discrete time instant. In addition, we have shown through
the theoretical development that the study here presented generalizes its deterministic counterpart which is
illustrated by examples. Finally, note that our analysis can be extended readily to the non-homogeneous case.
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