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a I.U. Matemática Pura y Aplicada, Universitat Politècnica de València7
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Abstract18

Atrial fibrillation patients can be classified into paroxysmal, persistent and19

permanent attending to the temporal pattern of this arrhythmia. The surface20

electrocardiogram hides this differentiation. A classification method to dis-21

criminate between the different subtypes of atrial fibrillation by using short22

segments of electrocardiograms recordings is presented. We will process the23

electrocardiograms (ECGs) using time-frequency techniques with a global24

accuracy of 80%. Real cases are evaluated showing promising results for an25

implementation in a semiautomated diagnostic system.26
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1. Introduction29

Atrial fibrillation (AF) is the most common sustained arrhythmia in clini-30

cal practice with a global prevalence of 1-2%. This prevalence of AF increases31

with age up to 5-15% for people of 80 years old1.32

Atrial fibrillation is characterized by a very rapid, chaotic rhythm in which33

atria and ventricles are unsynchronized. This arrhythmia is produced by a34

continuous reentry of an electrical impulse in the atria2. This is reflected on35

the electrocardiogram (ECG) by absence of the P waves and the presence of36

an undulating baseline. Based on the temporal pattern of this arrhythmia,37

patients are usually classified as paroxysmal, persistent and permanent3. AF38

episodes may be paroxysmal if they terminate spontaneously, usually within39

seven days, or persistent if the patient requires pharmacological or electrical40

cardioversion to restore sinus rhythm4. Permanent atrial fibrillation is de-41

fined when rhythm control interventions are not pursued and the presence of42

the arrhythmia is accepted by the patient and the physician.43

Research on atrial fibrillation detection and analysis using the surface44

electrocardiogram signal has been specially extensive during last decade5.45

References which analyse AF in ECGs usually make use of temporal or46

Fourier-based spectral techniques in order to characterize the fibrillation pro-47

cess6. For example, Mart́ınez et al. (2012)7 assessed the risk of suffering from48

an atrial fibrillation episode by studying the P-wave features and their evo-49

lution, whereas Kotska et al. (2011)8 and Bukkapatnam et al. (2008)9 use50

wavelets and non-linear time analysis series to extract features to detect and51
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classify AF episodes, respectively.52

In this manner, the Physionet/Computers in Cardiology Challenge of53

2004 proposed to predict the spontaneous termination of atrial fibrillation,54

and provided three different groups of one-minute ECG records10: non-55

terminating, soon-terminating, or terminating AF, depending on whether56

AF terminates at least for one hour, one minute or one second after the end57

of the record, respectively. Hence, many classification methods have been58

presented using the above public database.59

For instance, Nilsson et al. (2006)11 analysed fibrillatory frequency and60

the exponential decay of the harmonics depending on the terminating or61

non-terminating AF, whereas Sandberg et al. (2008)12 tracked the dominant62

frequency in atrial fibrillation episodes to improve accuracy in the arrhythmia63

analysis. In addition, Alcaraz et al. (2009,2010)13,14 predicted the sponta-64

neous termination of AF by studying the use of sample entropy of atrial65

activity organization prior to paroxysmal atrial fibrillation in contrast to the66

quantification of the recurrence plot combined with a multilayer perceptron67

neural network that Sun et al. (2008) presented15. Moreover, Valenzuela et68

al. (2009)16 proposed to use as most features as possible with satisfactory69

results for other references to classify AF using genetic programming.70

Thus, the majority of the works that address the challenge proposed by71

Physionet in 2004 are mainly focused in the analysis of frequency changes to72

predict termination of AF episodes (generally frequency changes abruptly for73

spontaneous termination in contrast to gradually decaying of drug-induced74
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termination17). Nevertheless, recent references point out that although good75

classification results can be obtained by classifying the records of the database76

provided by Physionet, it is still necessary to propose a method that consis-77

tently performs well across various and different scenarios18.78

So, in this paper we propose a method to classify subtypes of atrial fibril-79

lation (paroxysmal and persistent) by means of the feature extraction from80

the General Fourier-family time-frequency transform and a Support Vector81

Machine classification. One value-add of this work is the population sample:82

Subjects in our study belong to a heterogeneous group, since there are first83

episode and recurrent paroxysmal segments, different antiarrhythmic drugs84

and recurrent AF episodes after catheter ablation.85

2. Materials86

Consecutive unselected patients with paroxysmal or persistent atrial fib-87

rillation who were treated in a specific arrhythmia clinic of a tertiary center88

conformed the study population. Subtypes of AF were defined according to89

current guidelines3,1. Thus, a patient was considered to have paroxysmal AF90

if the episode was self-terminated usually within 7 days. Persistent AF was91

considered if the episode lasted longer than 7 days or required termination92

either with drugs or with electrical cardioversion. Clinical management of93

the patients was left at the discretion of the attending cardiologist. Non-94

pharmacological treatments included electrical cardioversion and pulmonary95

vein isolation (either transvenous or surgically guided).96
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A total of 71 atrial fibrillation signals were included in the study, 5697

signals corresponded to patients with persistent atrial fibrillation and 1598

signals were obtained from patients with paroxysmal atrial fibrillation. ECG99

signals in lead II were acquired at sampling rate of 500Hz and an amplitude100

resolution of 5µV over an amplitude range of ± 5mV. Duration of analyzed101

signals was 5 seconds. Baseline characteristics of the population sample102

are described in Table 1. Patients with persistent atrial fibrillation were103

older, had larger left atrium diameters and were treated more frequently with104

electric cardioversion and ACE inhibitors when compared with paroxysmal105

atrial fibrillation patients.106

3. Methods107

3.1. Time-frequency transforms108

The Fourier Transform is probably the most important signal analysis109

tool, since it provides the frequency spectrum with globally referenced phase110

measurements. Nevertheless, it is not able to provide information about111

how the signal frequency content varies along time. This is a drawback in112

the study of biomedical signals, as frequency content variations are often of113

paramount importance in order to perform a thorough analysis.114

The Short-Time Fourier Transform (STFT) introduces information about115

frequency changes in spectral response with respect to time. This information116

is obtained by means of dividing the signal into fragments and multiplying117

each one by a window (often a Gaussian). Then, the Fourier Transform is118

6



Table 1: Statistical summaries of our database. Hypertension was defined as a systolic
blood pressure ≥ 140mmHg, a diastolic blood pressure ≥ 90mmHg, or if the patient was
prescribed antihypertensive medication(s). Diabetes mellitus was defined as serum fasting
glucose ≥ 7.0mmol/L or on medications. Hypercolesterolemia was defined as cholesterol
≥ 6.4mmol/L or treatment with lipid-lowering drugs. Structural heart disease is defined
as LV hypertrophy > 15mm, LV EF < 50%, moderate or greater degrees of valvulopathy,
prior myocardial infarction, significant coronary artery disease or the presence of primary
myocardial diseases. AF: Atrial fibrillation. ACE: angiotensin converter enzyme. ARBs:
angiotensin receptor blockers. LV: left ventricle.

Paroxysmal Persistent Overall P value
AF (n=15) AF (n=56) (n=71)

Age (mean, range) 52 (28-83) 63 (39-86) 61 (28-86) 0.017

Male (n, %) 10 (67%) 37 (66%) 47 (66%) 1

Hypertension (n, %) 7 (47%) 32 (57%) 39 (55%) 0.665

Diabetes (n, %) 0 (0%) 11 (20%) 11 (15%) 0.143

Hypercholesterolemia (n, %) 4 (27%) 24 (43%) 28 (39%) 0.400

Any structural heart disease (n, %) 4 (27%) 21 (38%) 25 (35%) 0.634

Valvular heart disease (n, %) 2 (13%) 16 (29%) 18 (25%) 0.384

Hypertrophic LV (n, %) 5 (33%) 14 (25%) 19 (27%) 0.750

Impaired LV function (n, %) 1 (7%) 13 (23%) 14 (20%) 0.287

Previous electric cardioversion (n, %) 3 (20%) 29 (54%) 32 (46%) 0.057

Previous AF ablation (n, %) 0 (0%) 4 (7%) 4 (6%) 0.663

Left Atrium dilatation (n, %) 5 (33%) 45 (80%) 50 (70%) 0.001

ACE inhibitors /ARBs (n, %) 1 (7%) 22 (39%) 23 (32%) 0.037

Lipid lowering agents (n, %) 5 (33%) 18 (32%) 23 (32%) 1

Betablockers (n, %) 6 (40%) 37 (66%) 43 (61%) 0.124

Amiodarone (n, %) 1 (7%) 19 (34%) 20 (28%) 0.078

Flecainide/Propapenone (n, %) 8 (53%) 11 (20%) 19 (27%) 0.022

Calcium channel antagonists (n, %) 1 (7%) 5 (9%) 6 (8%) 1

applied. Thus, we obtain a spectrum with both frequency and time informa-119

tion. From the different versions of the uncertainty principle it is known that120
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one cannot expect to find a time-frequency representation with perfect accu-121

racy both in time and frequency. Hence, regarding windows width, we should122

take into account that choosing too narrow windows will result on poor low123

frequencies resolution, whereas using a too much wide window produces poor124

time resolution at high frequencies.125

In order to address this problem, the Wavelet Transform introduces the126

feature known as progressive resolution, using scaled replications of a chosen127

mother wavelet. However, the Wavelet Transform does not use complex128

sinusoidal basis functions, so it measures a kind of scale information, but not129

frequency information directly.130

The Stockwell Transform (ST) is able to provide frequency-dependent

resolution by moving a scalable Gaussian window19,20. The ST of a signal f

is defined by

(Sf)(τ, ν) = |ν|

∫ ∞

−∞

g0(ν(t− τ))e−2πiνtf(t) dt,

where g0 denotes the Gaussian window. This is not a wavelet transform due131

to the exponential term in the integral nor it is a Gabor transform due to132

the dilation term appearing in the window g0.133

As the size of the essential support of the window g0(ν(·−τ)) increases as

the frequency ν becomes small, the ST provides a very good frequency reso-

lution at low frequencies and a good temporal resolution at high frequencies.

The group structure behind the ST allows the discretization21,22, meaning
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that all the information about the signal can be extracted from a convenient

sample of its ST. The ST can be written in terms of the spectrum of the

signal as

(Sf)(τ, ν) = e−2πiντ

∫ ∞

−∞

e2πiτωe−2π2(ω−ν)2/ν2 f̂(ω) dω.

Combination of progressive resolution and globally referenced frequency134

and phase measurements with the use of sinusoidal basis functions point to135

the ST as a very useful tool for biomedical signal analysis. Since the ST uses a136

redundant sampling scheme, the Discrete Orthonormal Stockwell Transform137

(DOST)23 proposes to reduce this redundant information by using a dyadic138

sampling scheme of the time-frequency domain and applying an orthonormal139

transform, maximizing efficiency by obtaining a representation with N points140

from a N points signal, as shown in Figure 1. It presents a computational141

cost of O(N2).142

The General Fourier-family Transform (GFT) introduced by Brown et al.143

(2010)24 is a general time-frequency transform that allows the use of arbi-144

trary frequency adaptive windows combined with an efficient implementation145

using FFTs, which leads to a computational cost of O(NlogN). So, GFT146

is able to produce a complex spectrum with both frequency with progres-147

sive resolution and globally referenced phase information. It also presents a148

dyadic sampling scheme, obtaining a vector of length N from a signal with149

N samples (Figure 1). We have also chosen a Gaussian window (as in the150
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Figure 1: Example of time-frequency spectrum with a dyadic sampling scheme (with
N=16 samples) for signal length N=16 samples. Horizontal axis represent time, whereas
vertical axis represent positive (ν > 0) and negative (ν < 0) frequencies. Each rectangle
corresponds to one GFT coefficient.

ST) for several reasons25: the Fourier Transform of a Gaussian is a Gaussian,151

there are no sidelobes in a Gaussian function (so associated artifacts masking152

local maxima are avoided), and Gaussian window minimizes the quadratic153

time-frequency moment about a time-frequency sample26. Therefore, in our154

application we use Algorithm 1 in24 with a Gaussian window to perform155

signal analysis and extract features from ECGs.156

3.2. Features157

We will analyse the GFT time-frequency transform of the bipolar lead II.158

Raw data is obtained from surface electrocardiograms stored with PDF for-159

mat27. Figure 2 displays the temporal patterns (after baseline and powerline160
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noise removing) and their corresponding GFT transforms for two paroxysmal161

cases. Figure 3 displays the analogous information by using two persistent162

cases. It can be observed that temporal patterns are different in amplitude,163

morphology and non-regular cardiac rhythm. There exist differences between164

paroxysmal and persistent episodes by looking at their GFTs. The relevant165

frequency bands in our case, i.e. frequency bands where the power spec-166

trum of the ECG is concentrated, are less than 60Hz2. In our case, 60Hz167

corresponds to 0.12 in figures 2 and 3, because frequency axis is scaled to168

the normalized frequency (obtained by dividing them by the sampling fre-169

quency). In these figures we can note that paroxysmal segments present170

significant components along all the temporal axis for some of the relevant171

frequency bands, whereas for persistent segments significant frequency values172

are concentrated around QRS complexes.173

So, we propose to consider the total variation of the GFT along temporal174

axis, for each relevant frequency band. More precisely, if {z1, . . . , zN} de-175

notes the values along the temporal axis on a given frequency band we put176

zj+1 − zj = rj exp(iϕj), rj ≥ 0 and −π ≤ ϕj ≤ π, and consider the feature177

∑N−1
j=1 rj. In order to obtain more information,

∑N−1
j=1 |ϕj| is also considered.178

Since each temporal segment presents intra-patient arrhythmias and differ-179

ences in amplitude, we normalize each segment to the same range. Thus,180

we first normalize each patient to range [0,1], where 0 represents the min-181

imum amplitude and 1 represents the maximum voltage amplitude. Then,182

we also normalize to the number of QRS complexes present in each segment.183
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To increment the information to discriminate between both subtypes of AF,184

we also include information about energy of the GFT transform for each185

frequency band along temporal axis. Figure 4 displays the observed means186

of the proposed features for all frequency bands of the GFT. It shows that187

paroxysmal subjects present smaller values of sum of differences (of modu-188

lus and phase) and smaller energy than persistent subjects for normalized189

frequencies from 0.003421 to 0.06207 (which correspond to frequencies from190

1.71Hz to 31.04Hz, respectively). Thus, we propose to consider the reported191

features as input to the classification that will be detailed in Section 3.3.192
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Figure 2: Examples of paroxysmal AF segments (first row) and the corresponding modulus
of the associated GFT time-frequency transforms (second row). GFTs are represented
using a colourmap where warm colours represent higher values than cold colours.
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Figure 3: Examples of persistent AF segments (first row) and the corresponding modulus
of the associated GFT time-frequency transforms (second row). GFTs are represented
using a colourmap where warm colours represent higher values than cold colours.

3.3. Classification193

We will consider different features extracted from the relevant frequency194

bands of the GFT time-frequency transform and the Support Vector Ma-195

chines (SVM)28 will be used to classify.196

SVM classifies by finding the hyperplane that best separates all data of197

the training set i.e. the one that presents the largest margin between classes198

29. The SVM requires to solve the following minimization problem199

min
w,b,ξ

1

2
wTw + C

l∑

i=1

ξi (1)
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subject to yi(w
Tφ(xi) + b) ≥ 1− ξi, ξi ≥ 0 (2)

where xi ∈ R
n and yi ∈ {1,−1} are the feature vector and the classification200

of the i-th training observation. Here C > 0 is the penalty parameter of the201

error term, whereas202

K(xi, xj) = e−γ‖xi−xj‖
2

, γ > 0 (3)

is the kernel function used. Cross-validation has been used in order to prevent203

overfitting. The LIBSVM library for support vector classification30 has been204

used.205

Algorithm 1 details the proposed ECG processing sequence to extract206

features and classify AF patients.207

Algorithm 1: Feature extraction and classification method

foreach segment of AF do1

Remove powerline and baseline noise;2

Compute GFT time-frequency transform;3

Normalize GFT modulus;4

foreach normalized GFT, to extract features for each relevant5

frequency band along temporal axis do

Total variation of GFT;6

Sum of the magnitudes of the phase differences;7

Sum of energy of GFT;8

Normalize all features to the number of QRS complexes of the9

analysed segment;
end10

Classify using SVM;11

end12
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Figure 4: Features for a training set of paroxysmal and persistent subjects along each
frequency band. (a) Mean of the sum of the modulus differences. (b) Mean of the sum of
the phase differences. (c) Mean energy of GFT modulus.

15



4. Experimental results208

4.1. Performance measures209

The training process of the SVM classifier has been performed in order210

to optimize the global accuracy (or proportion of correctly classified obser-211

vations) given by212

ACC =
TP

TP + FP
(4)

where TP (true positive) is the number of the paroxysmal and persistent seg-213

ments correctly classified while FP (false positive) is the sum of the number214

of paroxysmal segments classified as persistent and the persistent segments215

classified as paroxysmal. It will be used the sensitivity (or recall) defined216

as the proportion of paroxysmal episodes correctly classified from the to-217

tal number of paroxysmal AF episodes. The specificity is the ratio of the218

correctly classified persistent AF’s.219

Bootstrap estimators for the standard errors of the just defined measures220

will be proposed using 1000 resamples31. Results are detailed in the following221

section.222

4.2. Results223

We have 56 persistent versus 15 paroxysmal cases, i.e. a non-balanced224

study. So, it will be used the bootstrap to estimate the variance of the sample225

means of performance measures and to calculate the most suitable number226

of signals for training.227
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Firstly, we will give the bootstrap estimators for the mean of the perfor-228

mance measures. We have decided, due to the different sample sizes of signal229

types, to use a similar number of training samples of each subtype in order230

to avoid biases. It can be observed in Table 2 the influence of the number of231

training signals, varying from 24-18-12 (12-9-6 signals for each AF subtype,232

respectively) to 15 training signals (6 paroxysmal and 9 persistent). The233

global accuracy has its maximum with 15 training signals. The 95% boot-234

strap confidence intervals are shown in Table 3, showing a global accuracy of235

around a 75% by training with 15 randomly chosen signals.236

Our dataset corresponds to an heterogeneous group suffering from other237

cardiac illnesses as ischemia, left bundle branch block or a heart pacemaker.238

Thus, for the training process, we have chosen segments of those patients239

that can be clinically considered as “models” for each subtype of AF without240

other relevant cardiac abnormalities. Results depicted in Table 4 have been241

obtained by using 15 training signals (6 paroxysmal and 9 persistent).242

Table 2: Bootstrap estimators of sensitivity, specificity and global accuracy using 1000
simulations and different numbers of training samples.

Number of training signals Sensitivity Specificity Accuracy

24 0.7607 0.7486 0.751

18 0.7497 0.7192 0.7253

12 0.7487 0.6779 0.6919

15 0.5856 0.8123 0.7676

Table 4 distinguishes if the subset used for training the SVM classifier is243
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Table 3: 95% bootstrap confidence intervals for mean sensitivity, specificity and global
accuracy using 1000 simulations. Results are depicted for different number of training
signals.

Number of training signals Sensitivity Specificity Accuracy

24 [0.724,0.797] [0.717,0.781] [0.731,0.771]

18 [0.709,0.791] [0.684,0.754] [0.703,0.748]

12 [0.703,0.794] [0.636,0.720] [0.665,0.719]

15 [0.535,0.634] [0.783,0.841] [0.751,0.784]

included or not when computing the performances. These results show that244

around an 80% of the AF segments were correctly classified, with similar245

sensitivity and specificity.246

Table 4: Classification results: means of sensitivity, specificity and global accuracy. Clas-
sification done with SVM trained with 15 relevant signals (6 paroxysmal and 9 persistent).
The whole data set (training+testing) is composed by 71 signals (15 paroxysmal and 56
persistent), whereas the test set is composed by 56 signals (9 paroxysmal and 47 persis-
tent).

Sensitivity Specificity Accuracy

Whole data set 0.801 0.867 0.786

Test set 0.772 0.778 0.771

5. Discussion247

In this paper, differences between paroxysmal and persistent AF elec-248

trocardiograms have been analyzed by means of time-frequency transforms.249

Promising results have been obtained, specially when taking into account250

the population sample: a heterogeneous group (regarding AF evolution and251

medication).252
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It is important to remark that it is more usual in the literature to con-253

sider homogenous groups of patients with similar age, under the same an-254

tiarrhythmic therapy, or in an AF episode close to end. For example, the255

method proposed by Alcaraz et al. (2011)32 is able to classify paroxysmal256

and persistent AF episodes with an accuracy higher than 95%, but at the257

expense of using an homogeneous group of patients who all were under the258

same anticoagulant and antiarrhythmic drug therapy.259

It is also important to note that, from a clinical point of view, the con-260

sequences (or costs) of the two possible misclassifications are very different261

and this should be taken into account. An early paroxysmal AF detection262

will allow an early treatment (for instance, using an ablation) and, possibly,263

to stop the progression to persistent AF.264

In spite of our unbalanced dataset (15 paroxysmal AF patients towards 56265

persistent), we obtain similar sensitivity and specificity performances. Thus,266

although the number of persistent segments is very much larger than the267

paroxysmal, classification results are not biased to persistent subtype.268

Hence, paroxysmal or persistent episodes are accurately classified in a269

78% and 77% of the cases, respectively. This will help electrophysiologists270

and clinical staff to choose the most suitable therapy in each case, revealing271

potential patients where an electrical cardioversion could be appropriate to272

prevent from the natural progression of atrial fibrillation towards a persistent273

or permanent state.274

Finally, although no significant variations can be observed by looking at275
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the surface ECG, physiological changes associated with persistent AF (such276

as atrial fibrosis and remodeling) compared with much healthier atrias which277

correspond to patients with paroxysmal AF (which are smaller, without fi-278

brosis or remodeling) are revealed when applying time-frequency analysis.279

Thus, with a simple, cheap and widely available test as the ECG, we are able280

to differentiate clinical subtypes of AF, which could save costs, increase the281

effectiveness of treatments and reduce possible risks or side effects.282

6. Conclusions283

A new classification method of atrial fibrillation subtypes has been pro-284

posed based on the analysis of short electrocardiogram segments. The method285

uses the efficient General-Fourier family time-frequency transform to distin-286

guish between paroxysmal and persistent episodes and analyses the spectral287

content of the relevant frequency bands along temporal axis for feature ex-288

traction. Then, segments are classified using a SVM trained to maximize289

global accuracy. Good experimental results on real ECG records of atrial290

fibrillation episodes have been achieved specially when taking into account291

the heterogeneous dataset used (regarding recurrence of episodes, and phar-292

macological or surgical antiarrhythmic treatment). Future developments will293

focus on improving performance in a more heterogeneous enlarged data set,294

in addition to studying the possible recurrence and the progressive evolution295

of the arrhythmia.296
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