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Abstract

A new method for the automatic and simultaneous measurement of phase velocity and thick-

ness for thin composite plates was developed based on Ping He’s method, without any need

of a priori knowledge of the material parameters. Two composites were analyzed: a block of

clean epoxy and a thin specimen of glass-fiber reinforced plastic produced by Resin Transfer

Molding. The proposed method combines cross-correlation functions and iterative deconvo-

lution for accurate measurement of times of flight and gating. The new method has demon-

strated to be more accurate than conventional Ping He’s method, and can be implemented

automatically thus saving processing time and increasing accuracy.

Keywords: Composite characterization, phase velocity, time of flight estimation, iterative

deconvolution, thickness estimation

1. Introduction

The number of new composite materials has greatly increased in recent years, given to its

low cost, ease of manufacture and the large number of applications they have. As these are

experimental materials, it is essential to have the tools to control and evaluate the manufac-

turing process and the behavior of their characteristics with time and use. Ultrasound atten-
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uation and dispersion (changes in phase velocity with frequency) are two material properties

directly related to the characteristics of the material and are widely used in non-destructive

evaluation and material characterization.

Although it can be found a lot of techniques in literature for frequency dependent pa-

rameters measurement [1–9], Ping He’s method [10–13] is one of the most used due to its

ease and because it does not need any a priori knowledge of the material characteristics. Us-

ing simultaneous pulse-echo and through-transmission immersion measurements, it is able to

provide the frequency dependent thickness and phase velocity. It is not an exact method and

has several limitations [10, 13], but in spite of them, it still provides very useful results when

the parameters of the material are unknown, which is especially interesting when analyzing

fiber reinforced composites manufactured using RTM or sputtering technology, whose final

inner composition is difficult to control due to its fabrication process [9, 14–16].

Unfortunately, Ping He’s method has some drawbacks, especially those related to the

procedure followed to avoid phase uncertainty, that affect accuracy and axial resolution, in

addition that it needs manual fitting of some parameters, therefore it cannot be applied

automatically. In this work we propose a modification of Ping He’s method. New method

is based on the cross-correlation processing and the iterative deconvolution. Thanks to such

approach manual selection of the time shift can be avoided. Additionally, accuracy and axial

resolution of the measurements are increased.

The proposed method is very accurate in the measurements if the media can be considered

as low or moderate dispersive. Otherwise, cross-correlation is severely affected by dispersion

of the pulses, thus accuracy in the gating procedure and thickness measurements will be

compromised, and other solutions for high dispersive media should be considered, as proposed

in [17].

Section II briefly reviews Ping He’s method and related problems. Section III is devoted

to explain the proposed procedure, and section IV shows the experiment setup and the results

of the analysis. Finally, section V summarizes the most relevant conclusions of this work.
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2. A Review of Ping He’s Method

2.1. Measurements of thickness and sound velocity

The proper characterization of the dispersion and attenuation of the ultrasound in the

frequency domain requires accurate measurements of the thickness of the specimen to be

analyzed, which also implies a precise knowledge of the propagation speed in the material.

Since our hypothesis is precisely the lack of any of these parameters, the first task is to

obtain a simultaneous measurement of the speed of sound and thickness, for which we use

the scheme of immersion measurements such as the one shown in Fig. 1 according to the

procedure described in [13].

Figure 1: Experiment set-up of through-transmission and pulse-echo measurements.

The advantage of this method is that it only requires three measurements while keeping

the layout of the transducers. First, the specimen (thickness L and sound velocity cs) is

inserted between transducers at appropriate distances (d1 and d2). Then, transducer T1 sends

a pulse and simultaneous reflected and passed through signals are recorded in transducer T1

and T2 respectively as sT (t) and sR(t). Note that sR(t) contains reflections from front and

back surfaces from the specimen, which will be later gated and separated as sR1(t) and sR2(t)

respectively. Finally, the specimen is removed and transducer T1 sends a pulse through the

water-path, which is received in transducer T2 and recorded as sW (t). Although not strictly

necessary, additional water-path measurement can be done changing the distance between

transducers for an accurate measurement of the velocity in water.

Now, velocity and thickness can be measured [1, 4] using:

cs = cW ·
(
2 · (tW − tT )

(tR2 − tR1)
+ 1

)
(1)

and

L =
cW
2

·
(
2 · (tW − tT ) + (tR2 − tR1)

)
, (2)

where L and cs are the specimen thickness and speed of sound, cW is the speed of sound

in water, and tW , tT , tR1 and tR2 are the times of flight of sW (t), sT (t), sR1(t) and sR2(t)

respectively.
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2.2. Measurements of frequency dependent parameters

Let’s call AW (f)e−θW (f), AT (f)e
−θT (f), AR1(f)e

−θR1(f) and AR2(f)e
−θR2(f) the Fourier

Transform of sW (t), sT (t), sR1(t) and sR2(t) respectively. Then, using [10, 11, 13] and as-

suming negligible the dispersion in water [18], the phase velocity in the specimen VP (f) can

be calculated as:

VP (f) = cw ·
[
1 + 2 · θW (f)− θT (f)

θ′R2(f)− θR1(f)

]
, (3)

where θW (f),θT (f),θR1(f) and θ′R2(f) are the absolute phase spectra in the frequency domain

of sW (t), sT (t), sR1(t) and −sR2(t) respectively (the negative sign of sR2(t) is necessary to

take into account the inherent 180◦ inversion of the second echo due to reflection in back

surface), f is the frequency and cW is the speed of sound in water. Note that (3) does not

depend on the speed of sound neither on the thickness of the specimen, so its calculation is

not required.

Although not strictly necessary, we can calculate an estimate of the frequency dependent

thickness using the phase velocity [11] as:

L(f) =
cW
4πf

·

[
2 ·
(
θW (f)− θT (f)

)
+
(
θ′R2(f)− θR1(f)

)]
. (4)

As stated in [11], the frequency dependence of the components of the right side in (4)

should be canceled out resulting in the same constant thickness L formulated in (2), but in

practice it will change with frequency as it is calculated from experimental data. The mean

of the calculated L(f) within the frequency range of the measurement can be used as an

estimate of the thickness L, and its standard deviation can be used to judge the reliability

of the different methods [11].

It should be noted that absolute phases in (3) and (4) are affected by the 2mπ ambiguity

due to the rapid phase change produced by the time delay [18]. Fig. 2 shows an example of

the phase spectra of a signal having large offset from the origin (gray solid line).

Figure 2: Example of Ping He’s unwrapping method.

Ping He developed a simple procedure in order to avoid the phase uncertainty due to

phase unwrapping [10, 11, 19]. First, each pulse si(t) is windowed and circularly shifted to

the left until its centroid coincides with the origin of the window. Then, phase spectra of the
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shifted pulses are calculated using their respective Fourier Transforms, so that the relation

between the phases of the original and shifted pulses are as follows:

θi(f) = ϕi(f) + 2πft′i, (5)

where θi(f) is the absolute phase spectrum of si(t), ϕi(f) is the phase spectrum of the shifted

version of si(t), and t′i is the time shift applied, which should include the difference between

windows origin (trigger delay) if any. Additional time shifting can be applied to reduce any

possible discontinuity in the selected frequency range, and should also be included in t′i.

Solid black line in Fig. 2 show the phase spectrum the same signal shifted left to its

centroid position. It can be seen that shifting the signal to zero position reduces only the

phase ramp, but variation in phase due to transducer and transmission function remains

(note the dashed line for unwrapped case).

Figure 3: Example of Ping He’s method operation. (a) Water-path A-scan in time

domain and (b) its phase spectrum. (c) Passed-Through A-scan in time domain and (d)

its phase spectrum. (e) Pulse-echo A-scan in time domain and (f) phase spectrum of first

reflection (solid line) and second reflection (striped line) after shifting.

The procedure becomes more complicated when signal sR(t) is analyzed. First reflection

(sR1(t)) and second reflection (sR2(t)) have to be gated and shifted to their corresponding

origins. Gate position has to be selected manually, using a priori velocity and thickness data.

Even after such operation problem indicated in Fig. 2 remains.

Figure 3 is used to demonstrate the method operation with signals obtained from a test

specimen (glass fiber reinforced plastic). Solid lines in figures 3a, 3c and 3e show examples

of water-path, passed-through and pulse-echo pulses respectively. Stripped lines in figures 3a

and 3c show the shifted versions of the respective pulses using their corresponding centroids

(named in the figure as TCW and TCT respectively), while stripped lines in Fig. 3e show

the gating windows with the corresponding centroids (named in the figure as TR1 and TR2

respectively). Figures 3b and 3d show the phase spectra before (solid line) and after (striped

line) shifting, where uncertainty has been removed. For the pulse-echo experiment, Fig. 3f

shows the corresponding phase spectra of first (solid line) and second (striped line) reflections

after shifting gated pulses to their centroid.
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Finally, once phase spectra are calculated, using (5) in (3) and (4), phase velocity VP (f)

and thickness L(f) can be calculated as:

VP (f) = cW ·

1 + 2 ·
ϕW (f)− ϕT (f) + 2πf

(
t′W − t′T

)
ϕ′
R2(f)− ϕR1(f) + 2πf

(
t′R1 − t′R2

)
 (6)

and

L(f) =
cW
4πf

·

[
2 ·
(
ϕW (f)− ϕT (f)

)
+
(
ϕ′
R2(f)− ϕR1(f)

)
+ 2πf

(
t′R1 − t′R2 + t′W − t′T

)]
, (7)

where cW is the sound velocity in water, ϕW (f), ϕT (f), ϕR1(f) and ϕR2(f) are the phase

spectra of the respective shifted versions of sW (t), sT (t), sR1(t) and −sR2(t) (note again the

extra 180◦ phase shift applied to sR2(t)), and t′W , t′T , t
′
R1 and t′R2 are their respective time

shift.

2.3. Resume of Ping He’s Method

Concerning the methodology, Ping He’s method has some problems related to the proce-

dure followed to calculate the phases and the times of flight:

(i) transducers introduce the nonlinear phase response over frequency therefore simple

phase shifting is ineffective;

(ii) selecting the centroid of the signal as reference point for time shifting does not lead to

correct alignment of the phases, as the centroid provides a measure of the mean (it is

calculated by integration of the energy) of the dispersion;

(iii) according to the original method time shift has to be applied in samples since time axis

is discrete, though the actual shift could be a fraction of the samples;

(iv) even if subsample time shift is applied, additional manually selectable time shift have

to be added to all signals to avoid the phase wrapping, which is especially complicated

taking into account that such procedure has to be followed for four signals;

(v) as first and second reflections in reflected signal have to be gated, there is a compromise

between the thickness and the axial resolution, which limits the minimum measurable
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thickness and/or the length of the excitation pulse used [10, 12]; furthermore, pulses

are gated using rectangular windows manually for each measurement point, thus results

will be compromised by the gating process (size and shape of the window directly affect

the centroid position).

Of course, there are other sensitive points that affect the accuracy and precision of this

method and that are common to this sort of techniques, as the phase cancellation at the re-

ceiving aperture [13], deviation from perfectly-normal incidence at both surfaces, the flatness

of the gain spectrum [13], phase response of the receiving amplifier [10], diffraction loss [13],

etc. We will only focus on the problems related to the methodology required to derive the

measurements.

3. New Procedure

To overcome the aforementioned problems, we suggest using a combination of cross cor-

relation and iterative deconvolution, as introduced in [20]. Correlation in frequency domain

implies multiplication by the conjugate version of one of the spectra, thus the contribution

in the phase due to all the sources of dispersion (transducers, water-path and transmission

and/or reflection coefficients) are negated and only information of the specimen remains in

the resulting phase difference. Cross-correlation acts also as a pulse compressor while retain-

ing frequency information which will improve the gating process, besides it can be used for

accurately estimate time of flight of the signals. Iterative deconvolution is used to disassem-

ble the signal into separate reflections, thus providing the tool for automated time of flight

values extraction which can be used for pulse gating.

We will start discussing the procedure designed for time of flight estimation, as it is crucial

for the accuracy of the whole system.

3.1. Time of flight estimation

In the general time of flight estimation problem, and assuming the material as low or

moderate dispersive, the received signal sR(t) can be considered as a delayed and attenuated

version of the transmitted signal sT (t) embedded in noise:

sR(t) = a(t) · sT (t− TOF ) + n(t), (8)

7



where a(t) is the attenuation function and n(t) is an uncorrelated additive white Gaussian

noise. The goal of the time of flight (TOF) measurement is to estimate the true delay of

signal arrival once it has propagated through the material. In simple applications, TOF is

computed using the thresholding technique [21, 22]. This technique offers a low cost and

a simple solution, but has a poor accuracy even if high sample rate [23] is used since it

does not explore all energy of the signal. Using several zero crossings or application of some

integral estimate like center of area (centroid) [24] allow for results improvement, yet lacks

the matched filter property to align the frequency components phases.

The direct correlation technique uses the peak position of the cross-correlation function

(or matched filter output) [25] between the received and the transmitted signals. As the

signal and the noise are orthogonal, cross-correlation xRT (t) between transmitted and received

signals will lead to:

xRT (τ) = E
{
sR(t)sT (t− τ)

}
= E

{(
a(t) · sT (t− TOF ) + n(t)

)
· sT (t− τ)

}
= a(t) · E

{
sT (t− TOF )sT (t− τ)

}
· E
{
n(t) · sT (t− τ)

}
= a(t) · xTT (τ − TOF ), (9)

where xTT (τ) is the auto-correlation function of the transmitted signal. Thus, in this context,

the peak position of the cross-correlation function will provide the best estimate of the TOF

[26].

In discrete time domain, the peak of the correlation function is found by interpolating

the discrete version of the cross-correlation function xRT [m] (Fig. 4 insert):

xRT [m] =
K∑
k=1

sR[k]sT [m− k], (10)

where sR[k] and sT [m − k] are the discrete versions of transmitted and received signals at

discrete time instants k.

Figure 4: Example of time of flight estimation in discrete time domain. Insert: Detail

around the peak of the cross-correlation.

In ideal case sinc function should be used for the TOF estimation between samples, but it

is not possible in real time application. Although several truncated interpolation techniques
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exist [25, 27], cosine fitting techniques have recently demonstrated to produce the smallest

bias error [26]. According to [26, 27], the estimated subsample shift that should be added is

given by the following expression:

∆TOF = − θ

FSω0

, (11)

with

ω0 = arccos

(
xRT [M − 1] + xRT [M + 1]

xRT [M ]

)
,

θ = arctan

(
xRT [M − 1]− xRT [M + 1]

2xRT [M ] sinω0

)
(12)

where FS is the sampling frequency and M the discrete peak position of xRT [m] (Fig. 4

insert), thus the final subsample TOF estimate will be:

TOF =
M

FS

+∆TOF, (13)

This procedure can achieve a resolution in the order of picoseconds [26], while maximum

resolution achieved using centroid is in the order of nanoseconds [27], thus an improvement

in the thickness and phase velocity measurements is expected. Furthermore, due to matched

filter properties to align the frequency components of the phases, cross-correlation method is

less sensitive to dispersion than centroid based methods [24, 26].

As we will see in next sections, applying the previous formulation to our experiment and

considering the through-transmitted signal as the received signal and the water-path signal

as the transmitted signal, TOF between them is obtained. Calculations can be repeated

using first and second echo in pulse-echo experiment as transmitted and received signals

respectively, thus obtaining the TOF between them.

3.2. Through-Transmission parameters

For the through-transmission experiment, cross-correlation xTW (t) between the passed-

through signal and the water-path signal can be calculated in frequency domain using their

respective Fourier Transform (FT) as:

xTW (t) = sT (t) ◦ sW (t)
FT−−→ XTW (f) =

(
ST (f)

)∗
· SW (f)

XTW (f) = AT (f) · AW (f) · e−j(θW (f)−θT (f)) = ATW (f) · e−jθTW (f), (14)
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where ATW (f) is the amplitude spectrum ofXTW (f) and θTW (f) is its phase spectrum, which

is actually the desired difference between the absolute phases of the signals in (3), where only

information of the specimen remains as the rest of the phase components cancel each other.

This gives an additional advantage: different transducers can be used for transmission and

reception.

Now xTW (t) is calculated as the inverse FT of XTW (f). As mentioned in the previous

section, the delay of the peak of the resulting cross-correlation is actually the time of flight

between pulses (TOFTW ). Note also that it can be used in (1) and (2) to obtain the speed

of sound and thickness.

Now, the cross-correlation result is shifted using the TOFTW calculated previously in

order to avoid the 2mπ ambiguity in the phase. To take advantage of the accuracy achieved

in TOFTW calculation, time shift is performed in a subsample basis using the frequency

domain [26, 28, 29], so that the shifted version of xTW (t) is calculated as:

xTW (t− TOFTW ) = IFT

(
FT
(
xTW (t)

)
· e−jωTOFTW

)
. (15)

Then, phase difference ϕTW (f) can be calculated as the phase of the Fourier transform of

xTW (t− TOFTW ):

ϕTW (f) = arctan

{
FT
(
(t− TOFTW )

)}
. (16)

Finally, the desired absolute phase difference θTW (f) is obtained using (5) as:

θTW (f) = θW (f)− θT (f) = ϕTW (f) + 2πf · TOFTW . (17)

Figure 5 is used to demonstrate the method operation. Solid line in Fig. 5a shows the result

in time domain of the cross correlation between passed-through and water-path pulses in

figures 3a and 3b respectively, while stripped line shows its shifted version using the peak,

i.e. TOFTW . Fig. 5b shows the phase of this shifted version (stripped line) that can be

compared with the phase difference obtained with Ping He’s method (solid line), where it

can be seen the improvement in the phase alignment achieved with the new method, which

produces almost straight line of phase response.

Figure 5: Example for through-transmission parameters calculation using cross-correlation.

(a) Cross-correlation between water-path and through-transmission signals in time domain.
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(b) Comparison of resulting phase differences using Ping He’s method (solid line) and new

method (gray stripped line).

3.3. Pulse-echo parameters

A similar procedure can be followed to obtain the phase difference between the reflected

signals. If the system is considered as linear the received signal in pulse-echo experiment can

be written as the contribution of the successive echoes:

sR(t) = sR1(t) + sR2(t) +
∑
j>2

sRj(t), (18)

where sR1(t) and sR2(t) are the first and second reflection respectively, and sRj(t) the succes-

sive reflections which are not needed and thus gated. Then, cross-correlation between sR(t)

and water-path signal sW (t) is calculated as:

xRW (t) = sR(t) ◦ sW (t) = sR1(t) ◦ sW (t) + sR2(t) ◦ sW (t)

= xR1W (t) + xR2W (t), (19)

where xR1W (t) and xR2W (t) are the respective cross-correlations between the echoes and the

water-path signal, whose Fourier Transform can be written respectively as:

XR1W (f) = AR1(f) · AW (f) · e−j(θW (f)−θR1(f)) (20)

and

XR2W (f) = AR2(f) · AW (f) · e−j(θW (f)−θR2(f)). (21)

Note that due to cross-correlation properties [30–34], xR1W (t) and xR2W (t) are compressed

versions of the original echoes sR1(t) and sR2(t) that retain the original frequency information

thus its separation will be easier. Once these are properly gated, cross-correlation xR12W (t)

between them can be calculated in frequency domain as:

XR12W (f) = (XR1W (f))∗ ·XR2W (f)

= AR1(f) · AR2(f) · A2
W (f) · e−j(θR2(f)−θR1(f)), (22)

whose phase is precisely the difference between the absolute phases of the first and second

reflection θR(f) = θR2(f) − θR1(f) in (4), where only information of the specimen remains.
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As we made with through-transmission signal, if xR12W (t) is calculated as the inverse FT

of XR12W (f), the delay of the peak of the resulting signal is actually the time of flight

between reflections (TOFR), that can be used for the time shift needed to remove the phase

uncertainty of θR(f) and to solve (1) and (2) to obtain the speed of sound and thickness.

Challenge now is how to perform the gating of xR1W (t) and xR2W (t) automatically, for

which we will use the iterative deconvolution.

3.4. Iterative deconvolution

Iterative deconvolution [28, 35–40] assumes that if received signal is the sum of the step

responses at each reflector, reflections can be separated subtracting a reference signal properly

placed and weighted. In our case, iterative deconvolution is performed as follows:

(i) Calculate cross-correlation (Fig. 6a) between the input signal sR(t) and the water-path

signal sW (t) used as reference. The maximum will be the first peak and will coincide

with the time of flight, TOFR1, between first echo sR1(t) and reference sW (t).

xRW (t) = sR(t) ◦ sW (t)
peak−−−→ TOF1 (23)

(ii) Shift the reference by TOF1 in a subsample basis in frequency domain, weight it and

subtract it to the input to obtain the remainder r(t) (Fig. 6b).

s′W (t) = sW (t− TOF1) (24)

A =
1
N

∑N
k=1 s

′
W [n] · sRn

1
N

∑N
k=1 (s

′
W [n])2

(25)

r(t) = sR(t)− A · s′W (t) (26)

(iii) Repeat step 1 with the remainder of the previous subtraction (Fig. 6c) to obtain the

time of flight TOF2 between reference sW (t) and second echo sR2(t). Remainder is

negated before correlation to take into account the inversion caused by reflection in

back surface.

xrW (t) = −r(t) ◦ sW (t)
peak−−−→ TOF2 (27)

Figure 6: Example iterative deconvolution operation. (a) Cross-Correlation between

water-path (Fig. 3a) and pulse-echo (Fig. 3c) signals. (b) Remainder after first iteration. (c)
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Cross-correlation between remainder and water-path. (d) Cross-correlation and gating win-

dows. (e) Cross-correlation between gated cross-correlations. (f) Resulting phase spectrum

using Ping He’s (solid line) and the new method (stripped line).

There are several choices for the reference signal [28, 36, 40–42]: the mean of all the

first reflections after aligning them to a reference point, a reflection from a polished and flat

reflecting surface of the same material, a reflection from an ideal reflector (usually aluminum)

and finally just the water-path signal from the through-transmission experiment. We have

chosen this latter because it does not need any additional calculation neither new signal

acquisition. According to our test, although not totally removed, reduction of first echo

achieved with (26) using water-path signal as reference is enough to make prevailing the

peak of second cross-correlation.

Note that in this example first echo is ahead in time than water-path signal (TOF1 is

positive), while second echo is delayed respect to water-path (TOF2 is negative). Note also

that difference between them, TOFR = TOF2 − TOF1, is the time of flight between cross-

correlations, and as they have been calculated with the same reference, it is actually the time

of flight between echoes sR2(t) and sR1(t)and can be used directly in (1) and (2).

Cross-correlations are now gated in time domain using an optimized Tukey window g(t)

[43]. If we assume that xRW (t) in (22) is calculated in frequency domain, then sR1W (t) and

sR2W (t) can be gated as:

xR1W (t) = xRW (t− TOF1) · g(t)

xR2W (t) = xRW (t− TOF2) · g(t). (28)

Figure 6d shows the gating process and Fig. 6e shows the cross-correlation between

gated signals, whose phase is precisely the desired absolute phase difference between echoes

(21).Now, xR12W (t) is circularly shifted (striped line in Fig. 6e) in a subsample basis until

its peak (which is actually the time of flight TOFR) coincides with the origin (shift to the

right, as second echo will always be delayed respect to first echo, just the opposite that

between passed-through and water-path). Striped line in Fig. 6f shows the phase difference

ϕ(f) = ϕ2W (f) − ϕ1W (f) calculated as the phase of the Fourier transform of the delayed

version of xR12W (t),where the desired phase alignment without ambiguity can be easily seen,
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specially if compared with results obtained using Ping He’s method (solid line).

Now, if we calculate the phase difference as:

ϕR(f) = arctan
{
FT
(
(t− TOFR)

)}
, (29)

the desired absolute phase difference θR(f) is obtained using (5) as:

θR(f) = θR2W (f)− θR1W (f) = ϕR(f) + 2πf · TOFR. (30)

Finally, using the notation followed so far, equations (1), (2), (6) and (7) can now be

written respectively as:

cs = cW ·
(
2 · (TOFTW )

(TOFR)
+ 1

)
, (31)

L =
cW
2

·
(
2 · (TOFTW ) + (TOFR)

)
, (32)

VP (f) = cw ·

1 + 2 · ϕTW (f) + 2πf · TOFTW

ϕR(f) + 2πf · TOFR

, (33)

and

L(f) =
cW
4πf

·

[
2 · ϕTW (f) + ϕR(f) + 2πf

(
2 · TOFTW + TOFR

)]
. (34)

4. Experiments and results

4.1. Experiment setup

A typical setup for immersion experiment was used to develop the measurements according

to Fig. 1. Transmitter T1 was a 5 MHz wideband focused transducer IRY405 from NDT

Transducers LLC and receiver T2 was a composite 5 MHz transducer TF5C6 from Doppler

Electronic Technologies. Such pair of transducers gives a frequency range of 0.5-7 MHz at

-20 dB. The distance between transducer T1 and the specimen was set to the focal distance

(36 mm in this case), and T2 was placed at 10 mm from back surface. The pulser-receiver

used was SE-TX06-00, with sampling frequency of the acquisition system set to 100 MHz

and sampling windows length adjusted in order to have all measurements of each experiment

in the same time basis. A 100 ns 5 MHz pulse has been used as excitation.

Two specimens where analyzed (Fig. 7): A test piece of clear clean epoxy (CCE) of

constant thickness (6.9 ± 0.05 mm, caliper measurement) and a piece of fiber glass reinforced

14



plastic (FGRP) produced by resin transfer molding with uneven faces and variable thickness

(1.8-2.1 ± 0.05 mm, caliper measurement). Epoxy specimen is used as control experiment,

since it is assumed to be homogeneous and therefore much less dispersive than the composite.

For both samples, 30 A-scans were acquired at different locations in steps of 0.5 mm moving

the specimens along X axis with an automated XY scanner. At each particular position 25

A-scans were acquired and averaged to improve the signal-to-noise ratio (SNR). Examples of

the resulting A-scans acquired at a single location for the FGRP and CCE specimens can be

seen in Fig. 8.

Figure 7: Analyzed specimens: CCE front and section views (left). FGRP front and

section views.

For each experiment, sound velocity in water was calculated using two measurements

with different distances between T1 and T2. Measurements were repeated systematic and

automatically at different stages of the process, and obtained values were averaged providing

an accurate measurement for each experiment independent of temperature.

4.2. Results

Figure 8 show examples of A-scans acquired at a particular position for the CCE (left)

and FGRP (right) specimens respectively. From up to down, it shows the passed-through

and pulse-echo signals respectively. Second echo in CCE specimen has been magnified (x15)

in Fig. 8c only for visualization purposes, as it was severely attenuated.

Figure 8: Example of A-scans. (a) CCE passed-through. (b) FGRP passed-through. (c)

CCE pulse-echo. (c) FGRP pulse-echo.

For the CCE specimen (control specimen), it can be clearly seen (Fig. 8c) that axial

resolution is not compromised. Concerning the FGRP specimen, resonances due to the

thickness of the specimen can be appreciated in passed-through signal (Fig. 8b around 2.2

µs) and in the pulse-echo signal (Fig. 8d around 4 µs).

Results obtained using (1) and (2) for the thickness and speed of sound at each location are

shown in Fig. 9 for both specimens and will be used as reference for further comparisons. Ve-

locity measurements are consistent with nominal values: velocity in CCE is constant around

nominal value (Fig. 9a) and it changes with position for FGRP (Fig. 9c) as it depends on the

number, size and orientation of the fibers. In the other hand, calculated thickness agrees with
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caliper measurements, following the flatness of the CCE specimen (Fig. 9b) and the uneven-

ness of the FGRP specimen (Fig. 9d). Note that caliper tolerance (red arrows) around caliper

measure (red points) is 50 microns while precision in thickness using cosine interpolation and

cross-correlation for times of flight estimation is in the order of nanometers.

Figure 9: Speed of sound and thickness.(a) Speed of sound for CCE (b) Thickness for

CCE (c) Speed of sound for FGRP (d) Thickness for FGRP.

Next figures show a comparison of the results obtained using Ping He’s method (red) and

the proposed procedure (black) for the frequency dependent parameters. In all cases, first

figure will depict the evolution of the variable (phase velocity or thickness) with frequency for

all the scanning locations, resulting in a cloud of points at each frequency. Second figure will

depict the difference between the frequency dependent variable and the absolute variable at

each location and for each frequency. Finally, third figure will show the standard deviation

of the previous error as a function of the frequency.

Figure 10 shows velocity results for the CCE specimen in all the scanning points. For

both procedures results are very similar: velocity decays slowly with frequency as expected

(Fig. 10a), and error is more or less the same (Fig. 10c). This is because the specimen

thickness (6.9 mm) is much higher than the axial resolution (≈0.52 mm considering pulse-

echo experiment for a 5 MHz 100 ns pulse at ≈2600 m/s), so both procedures are able to

separate the echoes properly. Standard deviation is slightly lower for the new procedure

(Fig. 10e), due to the higher accuracy in the time of flight estimation, although in both cases

it is very low due to the homogeneous nature of the specimen.

Figure 10: Comparison of phase velocity and thickness for the CCE specimen obtained

using Ping He’s method (red) and the new procedure (black). (a) Phase velocity in m/s (c)

Bias in m/s (e) Standard deviation in m/s. (b) Thickness in mm (d) Bias in µm (f) Standard

deviation in µm.

Difference in accuracy is more evident if we analyze the thickness. Although behaving

as expected (thickness constant with frequency) for both methods (Fig. 10b), error is clearly

lower for the new procedure (Fig. 10c). Note that Ping He’s shows a persistent off-set of

around 100 microns. Accuracy in the time of flight calculation is the great advantage of

the new procedure for low dispersive materials or where axial resolution is not compromised.
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Finally, although very low in both cases, standard deviation is also lower for the new method

(Fig. 10f).

Concerning the FGRE specimen, Fig. 11 clearly reveal the effects of the loss of axial

resolution and the presence of the fibers. Oscillations in lower frequencies show resonances

due to specimen thickness (around 1.3 MHz the wavelength is comparable to the specimen

thickness), while medium and high frequencies are affected (dispersed) by the size, number

and orientation of the fibers. This is especially true for Ping He’s method, for which the

usable highest frequency has decreased to 5 MHz, while the new procedure still extends up

to 6.5 MHz, as can be seen especially in the standard deviation (Fig. 11e and Fig. 11f).

Accuracy is also affected in Ping He’s method, as can be clearly appreciated in Fig. 11c and

specially Fig. 11d where the off-set is about 400 microns.

It can also be seen that the standard deviation values (Fig. 11e and Fig. 11f) are much

higher compared to those obtained for the CCE specimen (Fig. 10e and Fig. 10f). This is

because the mentioned dispersion due to the heterogeneous distribution of the glass fibers at

each scanning location.

Figure 11: Comparison of phase velocity and thickness for the FGRP specimen obtained

using Ping He’s method (red) and the new procedure (black). (a) Phase velocity in m/s (c)

Bias in m/s (e) Standard deviation in m/s. (b) Thickness in mm (d) Bias in µm (f) Standard

deviation in µm.

This example clearly show the enhancement in the axial resolution and usable bandwidth

achieved with the new procedure. Due to dispersion and loss of axial resolution pulses are

overlapped, thus, after gating, resulting centroids used in Ping He’s method are misadjusted,

in addition that calculation of the correct time of flight is compromised.

On the other hand, compression achieved with cross-correlation makes that less frequen-

cies are affected by overlap/gating, thus increasing the frequency range compared to Ping

He’s method. Properties of cross-correlation are not affected by dispersion, thus the peak of

cross-correlation is still the best choice for phase flattening. Furthermore, it can be used for

iterative deconvolution, thus if pulses are not severely overlapped, accuracy in the time of

flight calculation is not compromised.
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5. Conclusion

In this work we have presented a new method for automatic and simultaneous measure-

ment of the phase velocity and thickness for low or moderate composite materials based

on Ping He’s method and using cross-correlations and iterative deconvolution. Using cross

correlations only two phase difference have to be calculated, instead of the four phases that

needs the original method, thus reducing the sources of error.

Cross-correlation has demonstrated to be a powerful tool that improves the alignment of

the frequency content of the phases thus improving the phase ambiguity removal procedure.

It also provides an accurate measure of the time of flight, in addition that pulse compression

achieved with correlation ease the gating of the reflected pulses, thus increasing the axial

resolution and/or allowing the use of longer pulses.

On the other hand, all the process can be developed automatically combining cross-

correlation and iterative deconvolution, which has demonstrated to be very efficient in the

measurement of the times of flight. Accuracy increases considerably if cosine interpolation

and subsample shifting in frequency domain are used.
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[27] Céspedes I.and Huang Y, Ophir J, Spratt S. Methods for estimation of subsample time

delays of digitized echo signals. Ultrasonic Imaging 1995;17:142–71.

[28] Svilainis L, Dumbrava V, Aleksandrovas A, Chaziachmetovas A, Kitov S, Pagodinas

D. Signal stripping technique for ultrasonic imaging. Proc 5th Int Conf on NDT of

HSNT-IC MINDT 2013 2013;:1–8.

[29] Svilainis L, Aleksandrovas A, Lukoseviciute K, Eidukynas V. Investigation of the time

of flight estimation errors induced by neighboring signals. Proc IEEE 7th IDAACS

Conference 2013;:413–8.

[30] El Guerjouma R, Mouchtachi A, Jayet Y, Baboux JC. Non destructive evaluation of

graphite by ultrasonic velocity measurement using cross-correlation and hilbert trans-

form methods. Proc IEEE Ultrason Symp 1992 1992;:829–32.

[31] Gan TH, Hutchins DA, Billson DR, Schindel DW. The use of broadband acoustic trans-

ducers and pulse-compression techniques for air-coupled ultrasonic imaging. Ultrasonics

2001;39:181–94.

[32] Pallav P, Hutchins DA, Yin X. Air-coupled ultrasonic spectroscopy of highly damp-

ing materials using pulse compression. IEEE Trans Ultrason Ferroelectr Freq Control

2009;56(6):1207–17.

[33] Svilainis L, Motiejunas G. Spread spectrum signal performance investigation in a ban-

dlimited channel. Ultragarsas 2008;63(4):30–4.

[34] Svilainis L, Aleksandrovas A. Application of arbitrary pulse width and position

trains for the correlation sidelobes reduction for narrowband transducers. Ultrasonics

2013;53:1344–8.

21



[35] Barrodale I, Zala CA, Chapman NR. Comparison of the l1, and l2 norms applied to

one-at-a-time spike extraction from seismic traces. Geophysics 1984;49:2048–52.

[36] Crilly PB. A quantitative evaluation of various iterative deconvolution algorithms. IEEE

Trans Instrumentation and Measurement 1991;40(3):558–62.

[37] Anaya JJ, Ullate LG, Fritsch C. A method for real-time deconvolution. IEEE Trans

Instrumentation and Measurement 1992;41(3):413–9.

[38] Xin J, Bilgutay NM. Ultrasonic range resolution enhancement using l1 norm deconvo-

lution. Proc IEEE Ultrason Symp 1993 1993;:711–4.

[39] Kazys R, Svilainis L. Ultrasonic detection and characterization of delaminations in thin

composite plates using signal processing techniques. Ultrasonics 1997;35:367–83.

[40] Li X, Li X, Liang W, Chen L. l0-norm regularized minimum entropy deconvolution for

ultrasonic ndt & e. NDT&E Int 2012;47:80–7.

[41] Tanaka S, Jiang J, Takesue T. A model-based adaptive algorithm for determination of

time-of-flight in ultrasonic measurement. Proc IEEE 36th SICE Conference 1997;:965–

70.

[42] Demirli R, Saniie J. Model-based estimation of ultrasonic echoes part ii: nondestructive

evaluation applications. IEEE Trans Ultrason Ferroelectr Freq Control 2001;48(3):803–

11.

[43] Okarma K. Constructed polynomial windows with high attenuation of sidelobes. Elec-

tronics and Electrical Eng 2013;19(5):57–60.

22



{ sR

s
R1

s
R2

c
S

c
W

T
1

s
W

s
T

T
2

L

d
2

d
1

Figure 1: Experiment set-up of through-transmission and pulse-echo measurements.
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Figure 3: Example of Ping He’s method operation. (a) Water-path A-scan in time domain and (b) its phase

spectrum. (c) Passed-Through A-scan in time domain and (d) its phase spectrum. (e) Pulse-echo A-scan in

time domain and (f) phase spectrum of first reflection (solid line) and second reflection (striped line) after

shifting.
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(f) Resulting phase spectrum using Ping He’s (solid line) and the new method (stripped line).
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(c) FGRP pulse-echo.
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Figure 9: Speed of sound and thickness.(a) Speed of sound for CCE (b) Thickness for CCE (c) Speed of

sound for FGRP (d) Thickness for FGRP.
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Figure 10: Comparison of phase velocity and thickness for the CCE specimen obtained using Ping He’s

method (red) and the new procedure (black). (a) Phase velocity in m/s (c) Bias in m/s (e) Standard

deviation in m/s. (b) Thickness in mm (d) Bias in µm (f) Standard deviation in µm.
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Figure 11: Comparison of phase velocity and thickness for the FGRP specimen obtained using Ping He’s

method (red) and the new procedure (black). (a) Phase velocity in m/s (c) Bias in m/s (e) Standard deviation

in m/s. (b) Thickness in mm (d) Bias in µm (f) Standard deviation in µm.
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