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Abstract 11 

In this paper a methodology for the stochastic management of groundwater quality 12 

problems is presented, which can be used to provide agricultural advisory services. A 13 

stochastic algorithm to solve the coupled flow and mass transport inverse problem is 14 

combined with a stochastic management approach to develop methods for integrating 15 

uncertainty; thus obtaining more reliable policies on groundwater nitrate pollution 16 

control from agriculture. The stochastic inverse model allows identifying non-Gaussian 17 

parameters and reducing uncertainty in heterogeneous aquifers by constraining 18 

stochastic simulations to data. The management model determines the spatial and 19 

temporal distribution of fertilizer application rates that maximizes net benefits in 20 

agriculture constrained by quality requirements in groundwater at various control sites. 21 

The quality constraints can be taken, for instance, by those given by water laws such as 22 

the EU Water Framework Directive (WFD). Furthermore, the methodology allows 23 

providing the trade-off between higher economic returns and reliability in meeting the 24 
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environmental standards. Therefore, this new technology can help stakeholders in the 25 

decision-making process under an uncertainty environment. The methodology has been 26 

successfully applied to a 2D synthetic aquifer, where an uncertainty assessment has 27 

been carried out by means of Monte Carlo simulation techniques. 28 

 29 
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 32 

1. Introduction 33 

Groundwater is the ultimate source of freshwater to sustain many important agricultural 34 

production areas when surface water sources have been depleted. Furthermore, 35 

irrigation is the most important water use accounting for about 70% of the global 36 

freshwater withdrawals and 90% of consumptive water uses. Although the development 37 

of an intensive agriculture represents one of the main factors in the current economic 38 

development of many regions, it has also become an important environmental issue in 39 

recent years. This is because it poses many impacts and threats to groundwater bodies, 40 

such as overdrafting, aquifer pollution, impacts on downstream demands or impacts on 41 

Groundwater Dependent Ecosystems (GDEs). Water laws and polices around the world 42 

try to deal with such problems. For instance, the EU Water Framework Directive (EC, 43 

2000) stipulates that groundwater bodies must achieve a good chemical and quantitative 44 

status by a set deadline. 45 

However, the decision-making process in groundwater management protection is 46 

complex because of heterogeneous stakeholder interests, multiple objectives, key 47 

drivers influencing the agricultural market and farmer’s decisions, land-use/crop pattern 48 

evolution and uncertain outcomes. A wide range of stakeholders play an active role in 49 



water resources management. They range from irrigation communities, government, 50 

river basin authority, Non Governmental Organisations (NGO’s), agri-business 51 

industries, farmers to electric power industries (because of groundwater abstraction 52 

costs). Moreover, integrated water resources management incorporates technical, 53 

scientific, political, legislative and organizational aspects of a water system. Because of 54 

that, stakeholders need new technologies and tools to help them in the decision-making 55 

process. This links with the main goal of this paper, which is to present a hydro-56 

economic modeling framework for agricultural advisory services. Specifically, this 57 

work is intended to analyze the influence of uncertainty in the physical parameters of a 58 

heterogeneous groundwater diffuse pollution problem on the results of management 59 

strategies, and to introduce methods that integrate uncertainty and reliability in order to 60 

obtain strategies of spatial allocation of fertilizer use in agriculture.  61 

The methodology is based on the coupling of a stochastic inverse model to identify non-62 

Gaussian parameters and to reduce uncertainty in heterogeneous aquifers with a 63 

groundwater quality management model for dealing with non-point agriculture 64 

pollution. It should be mentioned that a small number of papers in the literature have 65 

developed a similar approach as that here presented (e.g., Bark el al., 2003). 66 

The stochastic inverse model allows identifying non-Gaussian parameters and reducing 67 

uncertainty in flow and mass transport predictions by constraining stochastic 68 

simulations to data, while the optimization management model determines the spatial 69 

and temporal distribution of fertilizer application rates that maximizes net benefits in 70 

agriculture constrained by quality requirements in groundwater at various control sites. 71 

Inverse modelling has become an important and necessary step in hydrogeological 72 

studies (e.g., Poeter and Hill, 1997). This is because the inability to characterize aquifer 73 

heterogeneity properly, which makes predictions of contaminant concentration highly 74 



uncertain. Consequently, the predictions of management models based on groundwater 75 

quality standards are also uncertain. The literature on groundwater inverse modelling 76 

mostly focuses on the estimation of parameters and its underlying uncertainty. This is 77 

because they are the most relevant factors affecting mass transport predictions (Smith 78 

and Schwartz, 1981) and because conceptual uncertainties are difficult to be formalized 79 

in a rigorous mathematical framework (Renard, 2007). Regarding the different 80 

groundwater parameters we have focused on the hydraulic conductivity, owing to the 81 

fact that it is the paramount parameter controlling the flow and solute transport in 82 

groundwater. In fact, it can vary spatially by several orders of magnitude. For instance, 83 

the aquifer at the Columbus Air Force Base in Mississippi, commonly known as the 84 

Macrodispersion Experiment (MADE) site, is a strongly heterogeneous system with a 85 

variance of the natural logarithm of K of nearly 4.5 (e.g., Rehfeldt et al., 1992).  86 

Eventually, once the groundwater parameter uncertainty has been strongly reduced by 87 

the inverse model, more reliable policies can be defined using the hydro-economic 88 

model. It explicitly integrates nitrate leaching and fate and transport in groundwater 89 

with the economic impacts of nitrogen fertilizer restrictions in agriculture. 90 

The remaining of the paper is organized as follows: firstly, a background of the 91 

stochastic inverse model and the management model is presented; secondly, the 92 

methodology has been verified on a 2D synthetic case. Finally, we have highlighted the 93 

advantages of using the methodology for providing agricultural advisory services to 94 

policy-makers. 95 

 96 

2. Modeling framework 97 

The methodology is based on the coupling of a stochastic inverse model to identify non-98 

Gaussian parameters and to reduce uncertainty in heterogeneous aquifers with a 99 



groundwater quality management model for dealing with non-point agriculture 100 

pollution. An explanation of both models is provided below: 101 

 102 

2.1. Stochastic inverse model (the GC method) 103 

The GC method is a stochastic inverse modeling technique for the simulation of 104 

conductivity (K) fields in aquifers which has been developed to overcome several of the 105 

limitations found in the already existing techniques (Llopis-Albert, 2008; Capilla and 106 

Llopis-Albert, 2009). The method was exhaustively verified on a 2D synthetic aquifer 107 

(Llopis-Albert and Capilla, 2009). In addition, a 3D application to the Macrodispersion 108 

Experiment (MADE-2) site, on a highly heterogeneous aquifer at Columbus Air Force 109 

Base in Mississippi (USA) was presented by Llopis-Albert and Capilla (2009a); and 110 

also on a complex real-world case study in a fractured rock site (Llopis-Albert and 111 

Capilla, 2010).  Furthermore, it was extended to deal with independent stochastic 112 

structures belonging to independent K statistical populations (SP) of fracture families 113 

and the rock matrix, each one with its own statistical properties (Llopis-Albert and 114 

Capilla, 2010a). 115 

The method uses an iterative optimization procedure to simulate K fields honoring K 116 

measurements, secondary information obtained from expert judgment or geophysical 117 

surveys, transient piezometric head (h) data and concentration (c) measurements. Travel 118 

time data can also be considered by means of a backward-in-time probabilistic model 119 

(Neupauer and Wilson, 1999), which extends the applications of the method to the 120 

characterization of sources of groundwater contamination. The formulation of the  121 

method does not require assuming the classical multi-Gaussian hypothesis allowing the 122 

reproduction of strings of extreme values of K that often take place in nature, being 123 

these formation features crucial in order to obtain realistic and safe estimations of mass 124 



transport predictions. The method has been developed using a modified version of the 125 

gradual deformation technique (Hu, 2000), and applying a Lagrangian approach to solve 126 

the mass transport equation. This allows avoiding numerical dispersion usually found in 127 

Eulerian approaches. The algorithm has been implemented for 3D transient flow 128 

problems under variable density flow conditions, considering the dispersion as a 129 

tensorial magnitude, and a first-order mass transfer approach. Performing a Bernoulli 130 

trial on the appropriate phase transition probabilities, the particle distribution between 131 

the mobile domain and the immobile domain can be determined (Salamon et al., 2006). 132 

The iterative optimization process for constraining stochastic simulations to data is 133 

carried out by doing non-linear combinations of seed conditional realizations. These 134 

seed conductivity (K) fields are already conditional to K and secondary data, and are 135 

generated by sequential indicator simulation. The a priori stochastic structure of these K 136 

seed fields is defined by means of the local conditional cumulative density functions 137 

(ccdf’s) and the indicator variograms, thus allowing the GC method to adopt any 138 

Random Function (RF) model. As a first step, the GC method builds linear sequential 139 

combinations of non multiGaussian K fields that honour K data:  140 
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where subscripts stand for seed fields and superscripts for conditional fields resulting 142 

from a previous linear combination That is, at m iteration, the field Km-1, from the 143 

previous iteration, is combined with two new independent realizations K2m and K2m+1. 144 

The procedure requires combining at least three conditional realizations at a time to 145 

ensure the preservation of mean, variance, variogram and K data in the linearly 146 

combined field. The coefficients have also to fulfill the constraints in Eq. (2): 147 
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being the parameterization of 𝛼𝑖 given by Eq. (3): 149 
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 151 

The 𝛼𝑖 coefficients are different in every iteration m, and correspond to a unique 152 

parameter ; note the one to one correspondence between the parameter and the 153 

combined realization Km. 154 

Because the linear combination of independent non-Gaussian random functions does 155 

not preserve the non-Gaussian distribution, although the variogram is preserved, a 156 

transformation between Gaussian to the non-Gaussian fields (and vice versa) is 157 

required. This transformation is performed through the probability fields (see Capilla 158 

and Llopis-Albert 2009 for more details). Finally, at each iteration m of the method the 159 

parameter  is determined by minimizing an objective function that penalizes deviations 160 

among computed and measured data. As aforementioned this way of operating has been 161 

successfully applied in both synthetic and real cases. 162 

The penalty function to be minimized is made up by the weighted sum of three terms: 163 

𝑝𝑘(𝜃) = 𝑝ℎ
𝑘(𝜃) + 𝑘𝑝𝑐

𝑘(𝜃) + 𝑘𝑝𝜏
𝑘(𝜃)             (4) 164 

 165 

where 𝑝ℎ
𝑘(𝜃) is the weighted sum of square differences between observed and 166 

calculated values for piezometric heads, concentrations and travel times, respectively. 167 

These terms are function of the parameter 𝜃, for every time step t and measurement 168 

location i. The terms 𝑘 and 𝑘are trade-offs coefficients between the different 169 

conditioning data (see Capilla and Llopis-Albert, 2009). 170 

 171 



2.2. Hydro-economic model 172 

The method is based on previous developments of the hydro-economic modeling 173 

framework presented by Peña-Haro et al. (2009; 2011). The model was also applied to a 174 

real-complex case study (Peña-Haro et al., 2010) and further extended to assess 175 

different sources of uncertainty on the suggested control policies and the resulting 176 

economic and environmental impacts (Llopis-Albert el al., 2014).  177 

The stochastic optimization approach determines the spatial and temporal fertilizer 178 

application rate that maximizes the net benefits in agriculture constrained by the quality 179 

requirements in groundwater at various control sites. It quantifies the relationship 180 

between emissions (fertilizer applied) and groundwater quality impacts or nitrate 181 

concentration measured at regulatory control sites. The regulation of nitrate pollution is 182 

examined within a cost-effectiveness way, in which the objective is to maximize the 183 

sum of the net benefits from agricultural production while meeting the environmental 184 

standards. The management model for groundwater pollution control is formulated as 185 

follows, where the benefits in agriculture are determined by means of crop prices and 186 

crop production functions: 187 
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subject to: 189 
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where  is the objective function to be maximized and represents the present value of 191 

the net benefit from agricultural production (€) defined as crop revenues minus fertilizer 192 

and water variable costs; As is the area cultivated for crop located at source s; ps is the 193 

crop price (€/kg); Ys,y is the production yield of crop located at source s at planning year 194 



y (kg/ha), that depends on the nitrogen fertilizer and irrigation water applied; pn is the 195 

nitrogen price (€/kg); Ns,y is the fertilizer applied to crop located at source s at year y 196 

(kg/ha), pw is the price of water (€/m3), and Ws,y is the water applied to crop located at 197 

source s at each planning year y (m3); Cs is the aggregation of the remaining per hectare 198 

cost for crop located at source s (€/ha);  Ss are the subsidies for the crop located at 199 

source s (€/ha);  r is the annual discount rate, RM is the unitary pollutant concentration 200 

response matrix where each column is the nitrate concentration for each crop area (s) 201 

times de number of years within the planning horizon (y), the number of rows equals the 202 

number of control sites (c) times the number of simulated time steps (t) in the frame of 203 

the problem; q is a vector of water quality standard imposed at the control sites over the 204 

simulation time (kg/m3); cr is a vector representing the nitrate concentration recharge 205 

(kg/m3) reaching groundwater from a crop located at source s, which is obtained 206 

dividing the nitrate leached over the water that recharges the aquifer. Cs is the 207 

aggregation of the remaining per hectare costs for crop located at sources (€/ha); Ss are 208 

the subsidies for the crop located at source s (€/ha). 209 

The response matrix (RM) describes the influence of pollutant sources upon 210 

concentrations at the control sites over time. This is carried out by means of numerical 211 

simulation models based on the flow and solute transport governing equations. 212 

Specifically, in order to ensemble the pollutant response matrix we have used 213 

MODFLOW (McDonald and Harbough, 1988), a 3D finite difference groundwater flow 214 

model, and MT3DMS (Zheng and Wang, 1999), a 3D solute transport model. The 215 

hydro-economic framework takes into account different processes governing nitrate in 216 

groundwater in both the saturated and unsaturated zone of the aquifer. Then the 217 

agronomic, and the flow and solute transport model consider processes ranging from 218 

mineralization, nitrification, denitrification, volatization, immobilization, and plant 219 



uptake in the unsaturated zone to advection, dispersion, diffusion and biodegradation in 220 

the saturated zone. 221 

The simulated time horizon corresponds to the time for the solute to pass all the control 222 

sites, and it is independent of the length of the planning period. Once the field of 223 

groundwater velocities is computed using the calibrated groundwater flow model, it is 224 

used by the calibrated mass transport model to compute the nitrate concentrations over 225 

time each control site (breakthrough curves) at resulting from unit nitrate concentration 226 

recharges at each pollution source. These concentration values are assembled as 227 

columns to conform the pollutant concentration RM, which is a rectangular (m x n) 228 

matrix. The number of columns, n, equals the number of crop areas (pollution sources) 229 

times the number of years within the planning horizon. The number of rows, m, equals 230 

the number of control sites times the number of simulated time steps in the frame of the 231 

problem. The integration of the response matrix in the constraints of the management 232 

model allows simulating by superposition the evolution of groundwater nitrate 233 

concentration over time at different points of interest throughout the aquifer resulting 234 

from multiple pollutant sources distributed over time and space. The assumption of 235 

linearity of the system is required in order to apply superposition. The advective and 236 

dispersive transport depends on concentration and groundwater flow velocity. Because 237 

concentration is unknown, the use of both velocity and concentration as decision 238 

variables would create a non-linearity. As a result the underlying assumption is that the 239 

irrigation rate at each source is not a decision variable and has a known influence upon 240 

the velocity field. 241 

Both nitrate leached and crop production are represented by polynomial regression 242 

equations depending on the water and fertilizer use (Peña-Haro et al., 2009). These 243 

equations are derived from the results of the agronomic simulation model GEPIC (Liu 244 



et al., 2007), a GIS-based crop growth model integrating a bio-physical EPIC model 245 

(Environmental Policy Integrated Climate) (Williams, 1995) with a GIS to simulate the 246 

spatial and temporal dynamics of the major processes of the soil-crop-atmosphere-247 

management systems. The GEPIC package simulates crop growth using local conditions 248 

on climate, soil, irrigation water, tillage and other operations. The crop production 249 

function was introduced into the management model as follows:  250 

 251 

                                         (7) 252 

 253 

where Ys,y is the crop yield located at source s for a year y (kg/ha), Ws,y is the water 254 

applied to the crop located at source s (m3/ha) and Ns,y is the fertilizer applied to the 255 

crop located at source s (kg/ha) within the year y. The nitrogen leached is defined as 256 

follows: 257 

 258 

                                        (8) 259 

 260 

where Ls,y is the nitrogen leached (kg/ha), Ws,y is the water applied to the crop located at 261 

source s (m3/ha) with in the year y, and Ns,y is the fertilizer applied to the crop located at 262 

source s (kg/ha).  263 

The non-linear optimization problem was coded in GAMS, a high-level modeling 264 

system for mathematical programming problems (GAMS, 2012), while the solver used 265 

was CONOPT (Drud, 1985). It is based on the Generalized Reduced Gradient algorithm 266 

designed for large programming problems. 267 

 268 

3. Application to a 2D synthetic case 269 
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A two-dimensional synthetic aquifer was selected to verify the methodology. It is based 270 

on the configuration presented by Peña-Haro et al. (2009), which apply a deterministic 271 

formulation to a 2D homogeneous synthetic aquifer. In this case, however, we consider 272 

heterogeneous hydraulic conductivity. The aquifer has impermeable boundaries and 273 

steady-state flow from top to bottom of the domain (Fig. 1). The aquifer domain was 274 

divided in square cells of 500 x 500 m, with a grid made up of 58 rows and 40 columns. 275 

A confined aquifer has been modeled with a saturated thickness of 10 m, effective 276 

porosity of 0.2, and longitudinal dispersivity of 10 m. The natural annual recharge is 277 

500 m3/ha. A temporal discretization of 70 stress periods was used, each of one-year 278 

duration. In addition, seven different crop areas (which are the pollution sources in our 279 

model formulation) with five different crops are considered. For each crop a quadratic 280 

production function and a leaching function have been defined using Eq. (7) and (8). 281 

The calibrated coefficients of those quadratic functions can be found in Peña-Haro et al. 282 

(2009). The relationship between each source and the crop sown is depicted in Table 1, 283 

which also shows the irrigation rates needed by each crop. A recovery time horizon of 284 

the aquifer by the year 2015 is defined, which entails nitrate concentration lower than 285 

50 mg/l for all control sites (three control wells are defined), as established by the EU 286 

water legislation.  287 

Two scenarios have been simulated in order to compare the groundwater nitrate 288 

concentrations and net profits. In scenario 1 (S1) the fertilizer use is not constrained by 289 

groundwater nitrate concentration standards at the control wells. It represents the 290 

fertilizer application rates that return the maximum net benefits at each crop. 291 

In scenario 2 (S2) the fertilizer used is constrained by the groundwater nitrate 292 

concentration standards (50 mg/l) at the control wells. Finally, a planning horizon of 293 



forty years was considered for each scenario with a constant annual fertilizer application 294 

for the whole time period.  295 

An ensemble of a hundred conditional seed K fields is generated by means of sequential 296 

indicator simulation (SIS) by means of the code ISIM3D (Gómez-Hernández and 297 

Srivastava, 1990). The conditional fields represent the Case 1 (C1). In addition, an 298 

ensemble of unconditional K fields has also been generated in order to compare results 299 

(Case 2, C2). This geostatistical tool allows controlling the bivariate (2-point) statistics 300 

imposed on the simulated field instead of controlling a mere covariance model. As 301 

aforementioned, these seed K fields are subsequently used by the inverse model to 302 

constraint stochastic simulations to the available data. It should be mentioned that all 303 

seed K fields honour the K data, while during the stochastic optimization procedure 304 

carried out by the inverse model, the K fields are gradually modified to honour the flow 305 

and mass transport data. Eighty-four K data were defined as conditioning data. They 306 

have been selected to be homogeneously and spatially distributed over the whole aquifer 307 

domain. Moreover, they differ in several orders of magnitude to obtain highly 308 

heterogeneous aquifers. With the information provided by the K data we have defined 309 

nine deciles of the cumulative distribution to give a reasonable discretization of the 310 

local distribution and transformed to the corresponding indicator categories. The SIS 311 

uses an indicator kriging (Deutsch and Journal, 1997) to build up a discrete conditional 312 

cumulative density function (ccdf) for the individual categories at each case and the 313 

node is assigned a category selected at random from this discrete ccdf. For a continuous 314 

variable such as conductivity, indicator variables are built by comparing data values to a 315 

set of thresholds, zk: 316 

𝑖(𝐮𝛂; 𝑘) = {
1 𝑖𝑓 𝑧(𝐮𝛂) ≤ 𝑧𝑘

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}                                                                                        (9) 317 



Spatial continuity for the different thresholds was then evaluated using the standardized 318 

indicator semivariogram (e.g., Goovaerts, 1997): 319 

𝛾𝐼(𝒉; 𝑧𝑘)

𝜎𝑖
2 

≈
1

2𝑁(𝒉)
𝒖1−𝒖2=𝒉±∆𝒉

∑[𝑖(𝒖1; 𝑧𝑘) − 𝑖(𝒖2; 𝑧𝑘)]2         (10) 320 

 321 

where zk are the thresholds values; 𝜎𝑖
2 is the indicator variance given as 𝜎𝑖

2 =322 

𝐹(𝑧𝑘)[1 − 𝐹(𝑧𝑘)], and 𝐹(𝑧𝑘) is the marginal cumulative distribution function; N(h) is 323 

the number of data pairs within the class of distance and direction; h is the separation 324 

vector; z(u1,2) denotes a measurement with u1,2 being the vector of spatial coordinates of 325 

the individual 1 or 2; and Δh is a tolerance vector. Finally, a mosaic variography was 326 

chosen for the generation of the seed K fields with the defined spatial continuity. It is 327 

spherical, with equal ranges in all directions of 40 m, 0.04 of nugget effect, and sill of 328 

0.22. The generated seed fields are equally likely realizations, thus being plausible 329 

representations of reality since they display the same degree of spatial variability. 330 

Note that we have focused in order to generate the heterogeneous fields on the hydraulic 331 

conductivity (K), since it is usually the parameter with the most significant spatial 332 

variation. One of these seed K fields has been chosen to be the true K field (i.e., it 333 

represents the actual heterogeneity in the aquifer). For the true field the hydraulic heads 334 

(h) are obtained and used as conditioning data for the inverse model. The spatial 335 

location of the 84 piezometric head data is the same than those defined for the K data. 336 

The a priori conditional cumulative density function (ccdf) have been defined 337 

displaying a highly asymmetrical distribution with a long lower tail; thus assigning 338 

higher probabilities of occurrence to high K values (i.e., it could represent fracture 339 

structures). This is how the GC method allows integrating the available hard data and 340 

also the geological information. Note that GC method honors the a priori ccdf’s during 341 

the whole conditioning process, while other inverse modeling techniques deal with 342 



secondary information incorporating it in initially generated fields to be perturbed, not 343 

having any implemented constraint to keep honoring these data. Furthermore, GC 344 

method tends to preserve the local ccdf’s during the whole perturbation process of seed 345 

K fields to obtain conditional simulations see Llopis-Albert and Capilla (2009). This 346 

means that if there are zones with ccdf’s belonging to independent stochastic processes 347 

they are still preserved. In addition, conductivities can vary, due to the deformation 348 

process, several orders of magnitude, and because of how the non-Gaussian feature is 349 

introduced in the inverse model by means of the probability fields allows the 350 

reproduction of strings of extreme values of K or preferential flow paths (Llopis-Albert 351 

and Capilla, 2009). Moreover, as many authors have pointed out (e.g., Gómez-352 

Hernández and Wen, 1998), preferential flow pathways may play a crucial role for 353 

tracer transport and may reflect some geological settings, e.g., channelling. 354 

Eventually, for each one of the calibrated K fields obtained with the inverse model the 355 

pollutant concentration response matrix is calculated, and the hydro-economic model 356 

run. 357 

 358 

4. Results and discussion  359 

Fig. 3 shows the Cumulative Density Functions (CFD’s) of the maximum benefits 360 

obtained in the aquifer for both groundwater quality scenarios (S1 and S2) and both 361 

conditional (to K and h data) and unconditional conductivity realizations (i.e., cases C1 362 

and C2). Note that a forty year planning period is considered and a recovery time 363 

horizon for the aquifer by the year 2015 has been defined, as established by the WFD. 364 

As logical, this figure shows that when no groundwater quality restrictions are applied 365 

in the optimization management model (i.e., for scenario S1) the same benefit is 366 

obtained for all realizations and both cases, i.e., conditional and unconditional K fields. 367 



Moreover, it represents the maximum benefit that can be achieved in the aquifer with 368 

the defined set of parameters and variables. This is because farmers can applied as much 369 

as fertilizer as required by each crop to maximize their yields as defined in Eq. (7). 370 

Then, for scenario S1, the maximum benefit takes the value of 21.06 M€/year for all 371 

realizations and both cases, so that the standard deviations of such CDF’s are zero. 372 

Contrary, for scenario S2, when groundwater quality constraints are applied (i.e., 373 

maximum nitrate concentrations of 50 mg/l are allowed at control wells) the benefits are 374 

reduced for all realizations and both cases. As expected, for conditional K fields (C1) 375 

and scenario S2, the uncertainty in the maximum benefits achieved in the aquifer is 376 

strongly reduced if compared with the unconditional realizations (C2). In fact, the CDF 377 

of the maximum benefits has a mean of 20.91 M€/year and a standard deviation of 378 

0.074 M€/year for case C1, while it has a mean of 20.79 M€/year and a standard 379 

deviation of 0.22 M€/year for case C2. This proves the worth of the methodology to 380 

provide more reliable policies since it reduces the hydrogeological parameter 381 

uncertainty, and therefore, the uncertainty in the decision variables of the management 382 

model. 383 

Similar results are obtained for the fertilizer applied to the aquifer as shown in Fig. 3. It 384 

depicts the Cumulative Density Functions (CFD’s) of the total fertilizer applied to the 385 

aquifer for both groundwater quality scenarios and both conditional and unconditional 386 

conductivity fields. Then, the maximum fertilizer applied to the aquifer is obtained for 387 

S1. It has for both cases a mean of 3741.3 (ton/year) and a standard deviation of zero 388 

For S2, case C1 has a mean of 3502.03 (ton/year) and a standard deviation of 129.51 389 

(ton/year), while C2 takes the values of 3546.34 and 57.01, respectively.  Again, there is 390 

an important reduction in the uncertainty of the fertilizer applied to the aquifer. 391 



Furthermore, the reduction of uncertainty is also depicted in Fig. 4, which shows the 392 

breakthrough curves for control well #1 and scenario S2 (with groundwater quality 393 

constraints of 50 mg/l) of all conditional conductivity realizations (C1). This figure 394 

shows how close are the time series of nitrate concentrations of all conditional 395 

realizations to the true K field. Note that these concentrations are restricted by the 396 

management model to be lower, during the whole planning period, than the standard 397 

enacted by the WFD. 398 

The trade-offs between the economic returns and the reliability in meeting the 399 

environmental standards can be compared for both scenarios. Fig. 2 and 3 show how the 400 

scenario S1 leads to higher benefits that the scenario S2. Then higher nitrate 401 

concentrations in the aquifer lead to lower benefits and vice versa. Therefore, these 402 

trade-offs have been quantified under the WFD standards. Furthermore, they have been 403 

quantified under an uncertain environment by means of the CDF of the agricultural 404 

benefits and their respective nitrate concentrations. 405 

 406 

5. Conclusions 407 

In recent years, the concern about nitrate concentrations in groundwater has increased 408 

on account of the intensive use of fertilizers in agriculture. Water legislations have dealt 409 

with such issue by establishing limits of nitrate concentrations in groundwater bodies. In 410 

Europe, the EU WFD establishes limits of 50 mg/l, and requires that groundwater 411 

bodies reach a good quantitative and chemical status by 2015. Then to control 412 

groundwater diffuse pollution is necessary to analyze and implement complex 413 

management decisions. However, the decision-making process is even more complex 414 

under uncertain environments and heterogeneous stakeholder’s interests. This 415 

uncertainty leads to different management policies with clear implications in reliability 416 



levels, costs and benefits. Therefore policy-makers need agricultural advice services to 417 

help them to come up with the best management practices. Such advices can be derived 418 

from the results provided by the tool here presented, which entails the coupling of a 419 

stochastic inverse model with a hydro-economic model. This allows reducing 420 

uncertainty by constraining stochastic simulations to data. The stochastic hydro-421 

economic modeling framework has been verified in a 2D synthetic aquifer and its worth 422 

for agricultural advice services demonstrated. It has been proved to be a valuable tool in 423 

estimating non-Gaussian hydrogeological parameters such as the hydraulic conductivity 424 

in highly heterogeneous aquifers. This leads to reducing uncertainty in concentration 425 

distributions of contaminant plumes at control wells when reasonable amount of data is 426 

available. Finally, this is translated into a reduction of the uncertainty on the results of 427 

the hydro-economic model: maximum benefits, optimal strategies of spatial and 428 

temporal allocation of fertilizer use in agriculture and concentrations in the aquifer that 429 

meet certain groundwater quality standards. This has been carried out by means of a 430 

sensitivity analyses for conditional and unconditional K fields. Furthermore, the trade-431 

offs between higher economic returns and reliability in meeting the environmental 432 

standards have been analyzed for different groundwater quality scenarios. The study of 433 

the least-cost alternative for meeting the environmental objectives is also important in 434 

order to justify potential time and objective derogation when disproportionate costs are 435 

identified (WFD, art. 4). 436 

As a further research we could have considered different groundwater quality standards, 437 

recovery time horizons, different spatial structure of the conductivity fields, or different 438 

sets of flow and mass transport conditioning data (for instance, regarding the spatial 439 

location and/or temporal). 440 

 441 
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Table 1. Sources, crops and irrigation. 526 

 527 

Source Crop Area (ha) Water applied (m3/ha) Crop price (€/kg) 

S1 Alfalfa 3600 950 0.09 

S2 Barley 3600 300 0.12 

S3 Sunflower 3600 400 0.30 

S4 Wheat 3600 250 0.13 

S5 Corn 3600 700 0.12 

 528 

 529 
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Figure Captions 

 

Figure 1. Problem domain, boundary conditions, control areas (si) and crops and spatial 

location of the observation sites. 

 

Figure 2. Cumulative Density Functions (CFD’s) of the maximum benefits (M€/year) 

for both groundwater quality scenarios and both conditional and unconditional 

conductivity fields. 

 

Figure 3. Cumulative Density Functions (CFD’s) of the total fertilizer applied to the 

aquifer (Ton/year) for both groundwater quality scenarios and both conditional and 

unconditional conductivity fields. 

 

Figure 4. Breakthrough curves for control well #1 and scenario S2 (groundwater quality 

constraints of 50 mg/l) of the conditional conductivity fields. The figure also shows the 

true field. A planning period of forty years is considered. 
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