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Abstract. - Acoustic Band Gap materials are suitable materials to construct devices for controlling
the propagation of sonic waves by means of the multiple scattering phenomenon. One of their
applications is the control of outdoor noise, acting as acoustic filters. Thus, a great effort to
increase the non-transmission properties has been done. To do that, a design of acoustic scatterers
with added acoustic properties, as absorption or resonance behaviour, has been developed. But to
obtain a high acoustical performance in the control of noise, it seems necessary to improve to the
maximum level the different involved mechanisms. In this work we present a new arrangement of
scatterers based on fractal geometries to increase the multiple scattering phenomenon.

Research into properties of heterogeneous artificial materials, consisting of arrangements
of rigid scatterers embedded in a medium with different elastic properties, has been in-
tense throughout last two decades. The capability to prevent the transmission of waves in
predetermined bands of frequencies -called bandgaps- becomes one of the most interesting
properties of these systems, and leads to the possibility of designing devices to control wave
propagation. The underlying physical mechanism is destructive Bragg interference. Here we
show a technique that enables the creation of a wide bandgap in these materials, based on
fractal geometries. We have focused our work in the acoustic case where these materials are
called Phononic/Sonic Crystals [1,2] (SC) but, the technique could be applied any types of
crystals and wave types in ranges of frequencies where the physics of the process is linear.

If we consider acoustically-hard cylinders (scatterers) periodically embedded in air (host),
then the difference between velocities and densities in the scatterers and embedding medium
are very large. So the physical problem is reduced to that of array scattering based on
Bragg’s law. With these conditions, the position and the size of the bandgaps in the range
of frequencies depend on: a) the arrangement of the scatterers, according to the Bragg law
and b) the amount of matter formed by the scatterers, quantified by the filling fraction (ff).
For a given SC, an increase in the bandgaps can be obtained only by an increasing the ff.
There are two main ways for varying the characteristics of full SC bandgaps [3, 4]. First,
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by varying the acoustical properties of the scatterers [5–7] or, secondly, by developing new
arrangements of scatterers with further crystalline symmetries. Quasi crystals [8] and Quasi
Ordered Structures [9] are examples of this second strategy. Also, other authors [10] have
developed an optimized design technique that could be applied to the case of elastic/acoustic
waves, based on the concept of hyperuniformity, to obtain large and complete bandgaps with
amorphous photonic materials. Here, we propose a new way to obtain large bandgaps based
on the redistribution of the elements of the SC based on fractal geometries [11]. We have
chosen these geometries because they can be modelled mathematically and they can be
used as design tools. Recently fractals have been under study for a wide range of practical
applications, from biological or medical [12] to economics [13]. In fact, fractals have been
used for SCs [14–17] but only to design of the shapes of the scatterers [18].

Fig. 1: Quasi fractal arrangement of scatterers: Five stages of cylinder arrays based on the Sierpin-
ski’s triangle geometry and the resulting complete structure.

As the first step we have designed an arrangement of scatterers inside an equilateral
triangle of side L, based on a 2D fractal called Sierpinsky triangle (see fig. ). We have chosen
a 2D symmetry triangular pattern that presents the highest bandgap as a consequence
of its degree of hyperuniformity [10]. In this fig., we represent a transversal section (in
the XY plane) of our arrangement assuming infinitely long cylinders with radius r parallel
to the z axis. We have called it Quasi Fractal Structure (QFS) because, although the
fractal construction follows an infinite iterative process [11], we only show here the first five
iterations to take account of the space restrictions given by both L and r. Figure shows also
that a cylinder is located at every vertex of the empty triangles in each stage, except stage
zero where we have located the scatterers at the vertex of the existing triangle. Also, fig.
shows the sum of the different stages of our fractal arrangement (complete fig.). At first

glance one might think that it is a classical triangular crystalline array with some vacancies
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in its structure. However, the underlying symmetry follows a fractal pattern. Thus, we can
consider the complete fig. as a sum of independent triangular arrays with different lattice
constants (L, L/2, L/4, L/8 and L/16), with every stage located iteratively within the
previous one. This provides a compact small device and the obtained resultant full bandgap
results from the sum of the Bragg peak corresponding to every array. This idea is consistent
with the nature of fractal geometries based as they are on the repetition of identical motifs
at differing size scales [11].

Another argument to explain the existence of a large full bandgaps is related to the
relationship among the different lattice constants. Here they are proportional to 1/2M ,
being M the order number of the stage. This produces a repetition of many Bragg peaks
at different stages and a reinforcement of the bandgap. It is possible to find an expression
to obtain the number of repeated Bragg peaks at different stages. The following functions
Sα(n,M), α = 0◦, 30◦ give the value of the frequency for which the n-th Bragg peak
appears at the different stages M (M = 0, 1, 2, 3, 4), as a function of L and along the two
high-symmetry directions of the triangular array (0◦, 30◦)

S0◦(n,M) = C0◦(n+ 1)2M ;

S30◦(n,M) = C30◦(n+ 2)2M−1, (1)

where C0◦ =
√

(3)/3 and C30◦ = 2/3 due to the Bragg law. Based on eqs. (1), it is
straightforward to find the relationship of appearance of a predetermined Bragg peak for
any two different stages

(0◦) n = (n′ + 1)2V − 1;

(30◦) n = (n′ + 2)2V − 2, (2)

where V is the difference between the couple of stages we want to compare (V = 1, 2, 3, 4).
Equations (2) show the relationship between the n-position of appearance of a Bragg peak
in the stage M as a function of the n′ position of appearance of the same peak in another
stage M ′, such that V = M ′ −M . Note the large number of times certain Bragg peaks are
repeated on different stages according with eq. (2), producing an reinforcement and, as a
consequence, an enhancement of the full bandgap.

The second, and much more important, step of our design technique consists in varying
the diameter of each set of cylinders for each stage independently. Thus, the scatterers are
distributed in a more efficient way, increasing the sizes in the large stages and reducing them
in the others, thereby providing each stage with the adequate value of ff for the appearance
of their Bragg’s peaks. As a consequence, a further increase of the full bandgap occurs. In
fig. we show a proposed QFS built with an optimized relationship between the radii of
the cylinders belonging to the different stages M (M = 0, 1, 2, 3, 4). For the optimization
process we have used genetic algorithm already adapted to the acoustic case [9] (QFSOpt)
(r0/L ≈ 0.14; r1/L ≈ 0.09; r2/L ≈ 0.03; r3/L ≈ 0.032; r4/L ≈ 0.02). Note that it has been
necessary to remove some cylinders of the starting complete array shown in fig. in order to
place the biggest cylinders (large radii) of first stages. Of course, other relationships among
the radii of the cylinders could be appropriate other applications.

To quantify the size of the bandgap of this device we have used the Attenuation Area
parameter [9] (AA) in the analyzed range of frequencies and, at the moment, only along
the ΓX direction (0◦ of incidence on the sample). Comparing the AA value for the QFSOpt
designed with the corresponding to a classical SC with triangular array constructing with
the same external size and shape and with cylinder radius r/L ≈ 0.02, we obtain interesting
results: AA parameter grows, in QFSOpt case (AAOpt=179.88 normalized units) more than
400% compared with the classical triangular lattice (AASC=43.94n.u.). But keep in mind
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Fig. 2: (Left) Optimized arrangement of scatterers based on Sierpinski triangle with different re-
lationships among the radii of the cylinders (QFSOpt); (Right) Photograph taken from beneath
the commercial arrangement (QFSExp) used to validate theoretical results. Part of the supporting
frame can be seen also.

that QFSOpt has been designed under the premise of maintaining the same ff as SC by
means of genetic algorithms (ffOpt=ffSC=36%). With these data, we can break the rule
about the relationship between ff and the size of the bandgaps: we have obtained a high
increase in the size of the bandgap without increasing the ff of the device in respect of the
original triangular array device. These results have been calculated in the normalized range
of frequencies 0-15 shown in fig. . Moreover, due to the nature of our technique, the crystal
wave properties of our device remain intact for each stage as it is a sum of triangular arrays.
This means that both the bandgap obtained along the other high-symmetry direction ΓJ
(30◦) and the full bandgap also grow (200% in the case of the full bandgap).

To illustrate the above statement experimentally we have constructed a new device sim-
ilar to QFSOpt but with commercially available hollow cylinders, QFSExp (fig. a). In figs.
b-c one can compare the theoretical normalized insertion loss spectra (IL), along the two
high-symmetry directions ΓX and ΓJ (0◦-30◦), for both QFSExp and the SC defined above.
We have used Multiple Scattering Theory [19, 20] to obtain these spectra, which have been
calculated at a distance d = 1/L from the edge of the samples. Also, in fig. d we show the
good agreement between the theoretical and experimental results for 0◦ incidence.

In summary, in this work we have shown that an optimised fractal-based design technique
enables a large increase of the scattering bandgaps for sonic crystal arrays if rigid scatterers.
There are two steps. The first consists of the use of fractal patterns to arrange the scatterers.
The resulting device is the sum of several independent crystalline arrays. The second step
consists of optimising the nested arrays by varying the ff of each fractal stage independently.
As a result, we have obtained efficient and compact devices. The sum of the Bragg peaks
belonging to the different scale arrays (stages), the reinforcement process due to the existence
of different lattice constants and the redistribution of cylinders among the different stages
are behind this enhancement.
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Fig. 3: Non-transmission properties of the designed devices: (a) Experimental Quasi Fractal Struc-
ture (QFSExp) and the triangular SC used. The relationship among the radii of the cylinders for
the first case is (r0/L ≈ 0.094; r1/L ≈ 0.078; r2/L ≈ 0.054; r3/L ≈ 0.029; r4/L ≈ 0.017), be-
ing (ffExp=33%); (b) Theoretical normalized IL spectra along the two high-symmetry directions for
QFSExp. (c) The same for the triangular array (ffSC=36%); (d) Both Theoretical and Experimental
QFSExp attenuation spectra for ΓX direction.
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