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ON THE BANACH LATTICE STRUCTURE OF L1
w OF A

VECTOR MEASURE ON A δ-RING

J. M. CALABUIG, O. DELGADO, M. A. JUAN AND E. A. SÁNCHEZ PÉREZ

Abstract. We study some Banach lattice properties of the space L1
w(ν) of

weakly integrable functions with respect to a vector measure ν defined on a

δ-ring. Namely, we analyze order continuity, order density and Fatou type

properties. We will see that the behavior of L1
w(ν) differs from the case in

which ν is defined on a σ-algebra whenever ν does not satisfy certain local

σ-finiteness property.

1. Introduction

The space of integrable functions with respect to a vector measure finds applica-

tions in important problems as, for instance, the representation of abstract Banach

lattices as spaces of functions and the study of the optimal domain of linear op-

erators. Classical vector measures ν : Σ → X are considered to be defined on a

σ-algebra and with values in a Banach space. The spaces L1(ν) and L1
w(ν) of inte-

grable and weakly integrable functions respectively have been studied in depth by

many authors and their behavior is well understood, see [7], [25, Chapter 3] and

the references therein. However, this framework is not enough, for instance, for

applications to operators on spaces which do not contain the characteristic func-

tions of sets (see [2], [10] and [11]) or Banach lattices without weak unit (see [12]).

These cases require ν to be defined on a weaker structure than σ-algebra, namely,

a δ-ring. Bear in mind the spaces `p(Γ), 1 ≤ p ≤ ∞, for an uncountable set Γ.

So, vector measures defined on a δ-ring also play an important role and deserve

to be studied together with their spaces of integrable functions. The integration

theory with respect to these vector measures ν goes back to the late sixties (see

[14, 18, 21, 22, 23, 24]). In [9], there is an analysis of the space L1(ν) which gives

evidence of how large the difference can be between the δ-ring and σ-algebra cases.
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Indeed, for the general case, bounded functions may be not integrable and this fact

is crucial.

The aim of this paper is the study of the Banach lattice properties of the space

L1
w(ν). The case when these spaces contain c0 becomes specially relevant. This

research is a part of a general project of analysis of these abstract integration

structures that has already shown to be useful in applications. For instance, a

general version of Komlós Theorem on the pointwise convergence of the Cesàro sums

of functions have been recently obtained using spaces of vector measure integrable

functions on a δ-ring as main tool (see [17]). More applications in the setting of the

theory of operators on Banach function spaces can be found in [2, 3]. The relevant

case of the Hardy operator has been studied in [11].

More precisely, we study some properties related to order continuity (Section 3)

and order density (Section 4), and some Fatou type properties (Section 5). We will

see that many properties satisfied for this space when ν is defined on a σ-algebra

remain true in general only in the case when ν satisfies certain local σ-finiteness

property, which guarantees that every function in L1
w(ν) is the ν-a.e. pointwise limit

of a sequence of functions in L1(ν). Also we revisit the representation theorems

for abstract Banach lattices (Section 6), and we finish with an illustrative example

(Section 7).

2. Preliminaries

2.1. Banach lattices. Let E be a Banach lattice with norm ‖ · ‖ and order ≤. A

closed subspace F of E is an ideal of E if y ∈ E with |y| ≤ |x| for some x ∈ F
implies y ∈ F . We say that E is order continuous if for every (xτ ) ⊂ E downwards

directed system xτ ↓ 0 it follows that ‖xτ‖ ↓ 0 and E is σ-order continuous if for

every (xn) ⊂ E decreasing sequence xn ↓ 0 it follows that ‖xn‖ ↓ 0. We denote by

Ean the order continuous part of E, that is, the largest order continuous ideal in

E. It can be described as

Ean = {x ∈ E : |x| ≥ xτ ↓ 0 implies ‖xτ‖ ↓ 0}.

Similarly, Ea will denote the σ-order continuous part of E, that is, the largest

σ-order continuous ideal in E, which can be described as

Ea = {x ∈ E : |x| ≥ xn ↓ 0 implies ‖xn‖ ↓ 0}.

The Banach lattice E is Dedekind complete if every non empty subset which is

bounded from above has a supremum and is Dedekind σ-complete if every non

empty countable subset which is bounded from above has a supremum. We say

that E has the Fatou property if for every (xτ ) ⊂ E upwards directed system

0 ≤ xτ ↑ such that sup ‖xτ‖ < ∞ it follows that there exists x = supxτ in E and

‖x‖ = sup ‖xτ‖, and E has the σ-Fatou property if for every (xn) ⊂ E increasing

sequence 0 ≤ xn ↑ such that sup ‖xn‖ < ∞ it follows that there exists x = supxn
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in E and ‖x‖ = sup ‖xn‖. An ideal F in E is said to be order dense if for every

0 ≤ x ∈ E there exists an upwards directed system 0 ≤ xτ ↑ x such that (xτ ) ⊂ F

and is said to be super order dense if for every 0 ≤ x ∈ E there exists an increasing

sequence 0 ≤ xn ↑ x such that (xn) ⊂ F . A weak unit of E is an element 0 ≤ e ∈ E
such that x∧e = 0 implies x = 0. Every positive linear operator T : E → F between

Banach lattices (i.e. Tx ≥ 0 whenever 0 ≤ x ∈ E) is continuous, see [19, p. 2]. An

operator T : E → F between Banach lattices is said to be an order isometry if it

is a linear isometry which is also an order isomorphism, that is, T is linear, one to

one, onto, ‖Tx‖F = ‖x‖E for all x ∈ E and T (x ∧ y) = Tx ∧ Ty for all x, y ∈ E.

Let (Ω,Σ, µ) be a measure space (without assumptions of finiteness on µ) and

L0(µ) be the space of all measurable real functions on Ω, where functions which

are equal µ-a.e. are identified. Considering the µ-a.e. pointwise order, we have that

L0(µ) is an Archimedean vector lattice. Note that for f, fn ∈ L0(µ), it follows

that 0 ≤ fn ↑ f µ-a.e. if and only if 0 ≤ fn ↑ f in L0(µ), that is, the µ-a.e.

pointwise supremum coincides with the lattice supremum. We will simple write

f ≤ g for f ≤ g µ-a.e. By Banach function space (briefly, B.f.s.) related to µ we

mean a Banach space X ⊂ L0(µ) satisfying that if |f | ≤ |g| µ-a.e. with f ∈ L0(µ)

and g ∈ X then f ∈ X and ‖f‖X ≤ ‖g‖X . Every B.f.s. is a Banach lattice with

the µ-a.e. pointwise order, in which convergence in norm of a sequence implies µ-

a.e. convergence for some subsequence. Note that for f, fn ∈ X, it follows that

0 ≤ fn ↑ f µ-a.e. if and only if 0 ≤ fn ↑ f in X.

These and other issues related to Banach lattices can be found in [20] and [26].

2.2. Integration with respect to vector measures on δ-rings. Let R be a

δ-ring of subsets of an abstract set Ω, that is, a ring closed under countable inter-

sections. We write Rloc for the σ-algebra of all subsets A of Ω such that A∩B ∈ R
for all B ∈ R. Note that if R is a σ-algebra then Rloc = R. Denote by M(Rloc)
the space of all measurable real functions on (Ω,Rloc), by S(Rloc) the space of

all simple functions and by S(R) the space of all R-simple functions (i.e. simple

functions supported in R).

Let λ : R → R be a countably additive measure, that is,
∑
λ(An) converges to

λ(∪An) whenever (An) is a sequence of pairwise disjoint sets in R with ∪An ∈ R.

The variation of λ is the countably additive measure |λ| : Rloc → [0,∞] given by

|λ|(A) = sup
{∑

|λ(Ai)| : (Ai) finite disjoint sequence in R∩ 2A
}
.

For every A ∈ R we have that |λ|(A) <∞. The space L1(λ) of integrable functions

with respect to λ is defined as the space L1(|λ|) with the usual norm. Every R-

simple function ϕ =
∑n
i=1 αiχAi is in L1(λ) and the integral of ϕ with respect to λ

is defined as usual by
∫
ϕdλ =

∑n
i=1 αiλ(Ai). Moreover, the space S(R) is dense

in L1(λ). For every f ∈ L1(λ), the integral of f with respect to λ is defined as∫
f dλ = lim

∫
ϕn dλ for any sequence (ϕn) ⊂ S(R) converging to f in L1(λ).
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Let ν : R → X be a vector measure with values in a real Banach space X, that

is,
∑
ν(An) converges to ν(∪An) in X whenever (An) is a sequence of pairwise

disjoint sets in R with ∪An ∈ R. Denoting by X∗ the topological dual of X and

by BX∗ the unit ball of X∗, the semivariation of ν is the map ‖ν‖ : Rloc → [0,∞]

given by ‖ν‖(A) = sup{|x∗ν|(A) : x∗ ∈ BX∗} for all A ∈ Rloc, where |x∗ν| is the

variation of the measure x∗ν : R → R. A set A ∈ Rloc is ν-null if ‖ν‖(A) = 0, or

equivalently, ν(B) = 0 for all B ∈ R ∩ 2A. A property holds ν-almost everywhere

(briefly, ν-a.e.) if it holds except on a ν-null set. For everyRloc-measurable function

f : Ω→ R ∪ {±∞} we can define

‖f‖ν = sup
x∗∈BX∗

∫
|f | d|x∗ν| ≤ ∞.

Note that if ‖f‖ν <∞ then |f | <∞ ν-a.e. Let L1
w(ν) denote the space of functions

in M(Rloc) which are integrable with respect to |x∗ν| for all x∗ ∈ X∗, where

functions which are equal ν-a.e. are identified. The space L1
w(ν) is a Banach space

with the norm ‖ · ‖ν . A function f ∈ L1
w(ν) is integrable with respect to ν if for each

A ∈ Rloc there exists a vector denoted by
∫
A
fdν ∈ X, such that

x∗
(∫

A

f dν
)

=

∫
A

f dx∗ν for all x∗ ∈ X∗.

Let L1(ν) denote the space of all integrable functions with respect to ν. Then,

L1(ν) is a closed subspace of L1
w(ν) and so it is a Banach space with the norm

‖ · ‖ν . Moreover, S(R) is dense in L1(ν). Note that for every R-simple function

ϕ =
∑n
i=1 αiχAi , we have that

∫
ϕdν =

∑n
i=1 αiν(Ai). From [1, Theorem 3.2],

there always exists a measure λ : R → [0,∞] with the same null sets as ν. Then,

L1(ν) and L1
w(ν) are B.f.s. related to |λ|. Moreover, L1(ν) is order continuous and

L1
w(ν) has the σ-Fatou property.

For any measure µ : Rloc → [0,∞] with the same null sets as ν, since the µ-a.e.

pointwise order coincides with the ν-a.e. one, we will denote L0(ν) = L0(µ) and

say B.f.s. related to ν for B.f.s. related to µ.

For these and other issues related to integration with respect to vector measures

defined on a δ-ring, see [18], [21], [22] and [9].

3. Order continuous part of L1
w(ν)

All along in this paper ν : R → X will be a vector measure defined on a δ-ring

R of subsets of an abstract set Ω, with values in a real Banach space X. Recall

that measurable functions are referred to the σ-algebra Rloc.
Let us begin by noting that the σ-order continuous and the order continuous

parts of L1
w(ν) coincide. Indeed, L1

w(ν) is Dedekind σ-complete as it has the σ-

Fatou property (see [26, Theorem 113.1]), and so, since
(
L1
w(ν)

)
a

is an ideal in

L1
w(ν), it is also Dedekind σ-complete. Then, from [26, Theorem 103.6],

(
L1
w(ν)

)
a

is order continuous and thus
(
L1
w(ν)

)
a

=
(
L1
w(ν)

)
an

.
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It was noted in [6, p. 192], that in the case when R is a σ-algebra, the order

continuous part of L1
w(ν) is just L1(ν). This follows from the facts that L1(ν) is

order continuous and S(Rloc) = S(R) ⊂ L1(ν). In the general case, S(Rloc) may

not be in L1(ν), even so, we will see that
(
L1
w(ν)

)
a

= L1(ν) remains true. First,

let us characterize when a characteristic function of a measurable set is in L1(ν).

Lemma 3.1. The following statements are equivalent for any A ∈ Rloc.

(a) χA ∈ L1(ν).

(b) ‖ν‖(An)→ 0 for all decreasing sequences (An) ⊂ Rloc ∩ 2A with ∩An ν-null.

(c) ν(An)→ 0 for all disjoint sequences (An) ⊂ R ∩ 2A.

Proof. Suppose that χA ∈ L1(ν) and let (An) ⊂ Rloc ∩ 2A be a decreasing se-

quence with ∩An ν-null. Since L1(ν) is order continuous and χA ≥ χAn ↓ 0, then

‖ν‖(An) = ‖χAn‖ν → 0. So, (a) implies (b).

Let (An) ⊂ R ∩ 2A be a disjoint sequence. Taking Bn = ∪j≥nAj we have a

decreasing sequence (Bn) ⊂ Rloc ∩ 2A with ∩Bn = ∅ and ‖ν(An)‖ ≤ ‖ν‖(Bn). So,

(b) implies (c).

Suppose that (c) holds and consider the vector measure νA : R → X defined

by νA(B) = ν(A ∩ B) for all B ∈ R. Noting that |x∗νA|(B) = |x∗ν|(A ∩ B) for

every B ∈ Rloc and x∗ ∈ X∗, it can be checked that
∫
|f | d|x∗νA| =

∫
|f |χA d|x∗ν|.

Indeed, this is trivial for simple functions, and for all measurable functions it is

consequence of the monotone convergence theorem. Thus, ‖f‖νA = ‖fχA‖ν for

every f ∈ M(Rloc). Then, f ∈ L1
w(νA) if and only if fχA ∈ L1

w(ν). Since S(R) is

dense in both L1(ν) and L1(νA), it follows that f ∈ L1(νA) if and only if fχA ∈
L1(ν). By hypothesis νA is strongly additive, so, from [9, Corollary 3.2.b)], we have

that χΩ ∈ L1(νA) and thus χA ∈ L1(ν). �

Let us prove now the announced result.

Theorem 3.2. The equality
(
L1
w(ν)

)
a

= L1(ν) holds.

Proof. Obviously L1(ν) ⊂
(
L1
w(ν)

)
a

as L1(ν) is order continuous. For the converse

inclusion, consider first a set A ∈ Rloc such that χA ∈
(
L1
w(ν)

)
a
. For every de-

creasing sequence (An) ⊂ Rloc ∩ 2A with ∩An ν-null it follows that χA ≥ χAn ↓ 0

and so ‖ν‖(An) = ‖χAn‖ν → 0. Then we get χA ∈ L1(ν), from Lemma 3.1.

Consider now ϕ ∈ S(Rloc) such that ϕ ∈
(
L1
w(ν)

)
a
. Write ϕ =

∑n
j=1 αjχAj with

(Aj) ⊂ Rloc being a disjoint sequence and αj 6= 0. Since χAj ≤ |
ϕ
αj
| and

(
L1
w(ν)

)
a

is an ideal, χAj ∈
(
L1
w(ν)

)
a
. Then, χAj ∈ L1(ν) and so ϕ ∈ L1(ν).

Finally, let f ∈
(
L1
w(ν)

)
a

and take a sequence (ϕn) ⊂ S(Rloc) satisfying that

0 ≤ ϕn ↑ |f | ν-a.e. Note that ϕn ∈
(
L1
w(ν)

)
a

as ϕn ≤ |f |, and so ϕn ∈ L1(ν).

Since |f | ≥ |f | − ϕn ↓ 0, we have that ‖ |f | − ϕn‖ν → 0. Then, as L1(ν) is closed

in L1
w(ν), we have that |f |, and so also f , is in L1(ν). �
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4. Order density of L1(ν) in L1
w(ν)

The topic of this section is trivial for the case when R is a σ-algebra. Indeed,

for each 0 ≤ f ∈ L0(ν) there exists (ϕn) ⊂ S(Rloc) such that 0 ≤ ϕn ↑ f ν-a.e.

Since, in this case Rloc = R and S(R) ⊂ L1(ν), obviously we have that L1(ν) is

super order dense (and so order dense) in L0(ν) (and so in L1
w(ν)). However, this

argument fails for the general case as S(Rloc) may not be contained in L1(ν).

Example 4.1. Let Γ be an uncountable abstract set, R the δ-ring of finite subsets

of Γ and ν : R → c0(Γ) the vector measure defined by ν(A) = χA (see [9, Example

2.2]). Then, χΓ ∈ L1
w(ν) = `∞(Γ), but there is no sequence (fn) ⊂ L1(ν) = c0(Γ)

such that 0 ≤ fn ↑ χΓ. Indeed, in this case, since the only ν-null set is the empty

set, Γ = ∪nsupp(fn) is countable.

Therefore, in general L1(ν) is not super order dense in L1
w(ν), but order dense.

Theorem 4.2. The space L1(ν) is order dense in L1
w(ν).

Proof. Since every Banach lattice is Archimedean, by [20, Ch. 3, Theorem 22.3] it

is enough to prove that L1(ν) is quasi order dense in L1
w(ν), i.e. for every 0 6= f ∈

L1
w(ν) there exists 0 6= g ∈ L1(ν) such that |g| ≤ |f |.
Let f ∈ L1

w(ν) with ‖ν‖(supp(f)) > 0. For An = {ω ∈ Ω : |f(ω)| > 1
n}, we have

that An ↑ supp(f) and so ‖ν‖(supp(f)) = limn ‖ν‖(An) (see [22, Corollary 3.5.(e)]).

Take n large enough such that ‖ν‖(An) > 0. Since ‖ν‖(An) = supB∈R∩2An ‖ν‖(B)

(see [22, Lemma 3.4.(g)]), there exists Bn ∈ R ∩ 2An such that ‖ν‖(Bn) > 0.

On the other hand, take a sequence (ψj)j ⊂ S(Rloc) such that 0 ≤ ψj ↑ |f | ν-a.e.

Then, there exists a ν-null set Z ∈ Rloc such that 0 ≤ ψj(ω) ↑ f(ω) for all ω ∈ Ω\Z.

Let us consider Bn = (∪jBn ∩ supp(ψj)\Z) ∪ (Bn ∩ Z). Since Bn ∩ supp(ψj)\Z ↑,
it follows that ‖ν‖(Bn) = ‖ν‖(∪jBn ∩ supp(ψj)\Z) = limj ‖ν‖(Bn ∩ supp(ψj)\Z).

Take jn large enough such that ‖ν‖(Bn ∩ supp(ψjn)\Z) > 0 and consider the

function g = ψjnχBn ∈ S(R) ⊂ L1(ν). Then, g 6= 0 and 0 ≤ g ≤ |f |. �

Remark 4.3. Since L0(ν) with the ν-a.e. pointwise order is an Archimedean vector

lattice, actually in Theorem 4.2 we have proved that L1(ν) is order dense in L0(ν).

Now, the natural question is when L1(ν) is super order dense in L1
w(ν). It is easy

to see that this happens if ν is σ-finite, that is, Ω = (∪An)∪N with N ∈ Rloc ν-null

and (An) a sequence in R. In this case, if 0 ≤ f ∈ L0(ν) and (ψn) ⊂ S(Rloc) is such

that 0 ≤ ψn ↑ f ν-a.e., taking ϕn = ψnχ∪nj=1Aj
∈ S(R) we have that 0 ≤ ϕn ↑ f

ν-a.e. Then, L1(ν) is super order dense in L0(ν) and so in L1
w(ν). However, L1(ν)

being super order dense in L1
w(ν) does not imply that ν is σ-finite.

Example 4.4. The vector measure ν in Example 4.1 considered with values in `1(Γ)

instead of c0(Γ), satisfies that L1(ν) = L1
w(ν) = `1(Γ). Then, obviously L1(ν) is

super order dense in L1
w(ν) but ν is not σ-finite.
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We will characterize the super order density of L1(ν) in L1
w(ν) by a weaker

condition on ν than σ-finiteness. Namely, ν will be said to be locally σ-finite if

every set A ∈ Rloc with ‖ν‖(A) < ∞, can be written as A = (∪An) ∪ N , with

N ∈ Rloc ν-null and (An) a sequence in R.

Remark 4.5. If ν is such that L1(ν) = L1
w(ν) (e.g. if X does not contain any copy

of c0, see [18, Theorem 5.1]), then for every A ∈ Rloc with ‖ν‖(A) < ∞, we have

that χA ∈ L1
w(ν) = L1(ν) and so, from [22, Theorem 4.9.(a)], ν is locally σ-finite.

Let us see that there are plenty of locally σ-finite vector measures which are not

σ-finite.

Lemma 4.6. Suppose that ν is discrete, that is, for every ω ∈ Ω it follows that

{ω} ∈ R and ν({ω}) 6= 0. Then,

(a) N ∈ Rloc is ν-null if and only if N = ∅.
(b) {A ⊂ Ω : A is finite} ⊂ R ⊂ {A ⊂ Ω : A is countable}.
(c) Rloc = 2Ω.

(d) ν is σ-finite if and only if Ω is countable.

Proof. (a) Suppose N ∈ Rloc is ν-null. If γ ∈ N , then {γ} ∈ R ∩ 2N and so

‖ν({γ})‖ ≤ ‖ν‖(N) = 0 which contradicts ν({γ}) 6= 0. Hence, N = ∅. The

converse is obvious.

(b) If A ⊂ Ω is finite then A = ∪γ∈A{γ} is a finite union of sets in R, so the first

containment holds. For the second one, consider A ∈ R and the vector measure

νA : Rloc → X defined by νA(B) = ν(A ∩B) for all B ∈ Rloc. Note that B ∈ Rloc

is νA-null if and only if A ∩B is ν-null, that is, A ∩B = ∅. Since νA is defined on

a σ-algebra we can take x∗A ∈ BX∗ such that |x∗AνA| has the same null sets as νA

(see [13, Theorem IX.2.2]). For every finite set J ⊂ Ω it follows that∑
γ∈J
|x∗AνA|({γ}) = |x∗AνA|(J) ≤ ‖νA‖(J) ≤ ‖νA‖(Ω) <∞.

Then, there exists a countable set I ⊂ Ω such that |x∗AνA|({γ}) = 0 for all γ ∈ Ω\I,

that is, A ∩ {γ} = ∅ for all γ ∈ Ω\I. So, A ⊂ I is countable.

(c) Note that {A ⊂ Ω : A is countable} ⊂ Rloc, since if A ⊂ Ω is countable

then A = ∪γ∈A{γ} is a countable union of sets in R. Given A ∈ 2Ω, from (b)

we have that A ∩ B is countable, and so it is in Rloc for every B ∈ R. Hence,

A ∩B = B ∩ (A ∩B) ∈ R for every B ∈ R, that is, A ∈ Rloc.
(d) It follows from (a) and (b).

�

From Remark 4.5 and Lemma 4.6, every discrete vector measure on a δ-ring of

subsets of an uncountable set with values in a Banach space without any copy of c0

is locally σ-finite, but not σ-finite. Also, there are locally σ-finite vector measures

which are not σ-finite with values in a Banach space containing a copy of c0.
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Example 4.7. Consider the δ-ring R = {A ⊂ [0,∞) : A is finite} of subsets of

[0,∞) and the vector measure ν : R → c0 defined by ν(A) =
∑
n
](A∩[n−1,n))

2n en,

where (en)n is the canonical basis of c0 and ] denotes the cardinal of a set. Note

that ν is discrete, so ν is not σ-finite. It can be proved that L1
w(ν) is the space of

functions f : [0,∞)→ R such that

fχ[n−1,n) ∈ `1
(
[0,∞)

)
for all n and sup

n

1

2n
∥∥|f |χ[n−1,n)

∥∥
`1([0,∞))

<∞,

and ‖f‖ν = supn
1

2n

∥∥|f |χ[n−1,n)

∥∥
`1([0,∞))

for all f ∈ L1
w(ν). Moreover, L1(ν) is the

space of functions f : [0,∞)→ R such that

fχ[n−1,n) ∈ `1
(
[0,∞)

)
for all n and lim

n

1

2n
∥∥|f |χ[n−1,n)

∥∥
`1([0,∞))

= 0.

Note that every f ∈ L1
w(ν) has countable support as supp(f)∩[n−1, n) is countable

for all n. If B ∈ Rloc is such that ‖ν‖(B) < ∞, that is χB ∈ L1
w(ν), then B is

countable. Hence, ν is locally σ-finite.

Let us prove now that the super order density of L1(ν) in L1
w(ν) is characterized

by the local σ-finiteness of ν.

Theorem 4.8. The space L1(ν) is super order dense in L1
w(ν) if and only if ν is

locally σ-finite.

Proof. Suppose that L1(ν) is super order dense in L1
w(ν). Take A ∈ Rloc with

‖ν‖(A) <∞. Since 0 ≤ χA ∈ L1
w(ν), there exists a sequence (fn) ⊂ L1(ν) such that

0 ≤ fn ↑ χA ν-a.e. Then, there exists Z ∈ Rloc ν-null such that 0 ≤ fn(ω) ↑ χA(ω)

for all ω ∈ Ω\Z. Thus, A\Z = ∪nsupp(fn)\Z.

On the other hand, since each fn ∈ L1(ν), from [22, Theorem 4.9.(a)] , there

exist (Anj )j ⊂ R and a ν-null set Nn ∈ Rloc such that supp(fn) = (∪jAnj ) ∪ Nn.

Then,

A = (∪n ∪j Anj \Z) ∪ (∪nNn\Z) ∪ (A ∩ Z)

where Anj \Z ∈ R and (∪nNn\Z) ∪ (A ∩ Z) is ν-null.

Conversely, suppose that ν is locally σ-finite and let 0 ≤ f ∈ L1
w(ν). There

exists a sequence (ψn) ⊂ S(Rloc) such that 0 ≤ ψn ↑ f ν-a.e. For each n, we can

write ψn =
∑kn
j=1 α

n
j χBnj with (Bnj )j pairwise disjoint and αnj > 0. Then, taking

βn = min{αn1 , ..., αnkn}, it follows

‖ν‖(supp(ψn)) = ‖χsupp(ψn)‖ν ≤
1

βn
‖ψn‖ν ≤

1

βn
‖f‖ν <∞.

So, there exist (Anj )j ⊂ R and Zn ν-null such that supp(ψn) = (∪jAnj )∪Zn. Denote

ϕn = ψnχ∪ni=1∪nj=1A
i
j
∈ S(R). For ω 6∈ ∪nZn we have that ω ∈ Ω\(∪nsupp(ψn)) or

ω ∈ ∪n ∪j Anj . In any case, ϕn(ω) = ψn(ω) for all n large enough. Then, ϕn ↑ f
ν-a.e. �
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We have seen just before Example 4.4 that if ν is σ-finite then L1(ν) is super

order dense in L0(ν). The converse also holds, indeed taking Ω instead of A in the

proof of the local σ-finiteness of ν in Theorem 4.8, the same argument works to

show Ω = (∪An) ∪N , with N ∈ Rloc ν-null and (An) ⊂ R.

We know from [22, Theorem 4.9.(a)] that for each f ∈ L1(ν) there are (An) ⊂ R
and a ν-null set N ∈ Rloc such that supp(f) = (∪An)∪N . Does the same hold for

functions in L1
w(ν)?

Proposition 4.9. For each f ∈ L1
w(ν) there exist N ∈ Rloc ν-null and (An) ⊂ R

such that supp(f) = (∪An) ∪N if and only if ν is locally σ-finite.

Proof. Suppose that ν is locally σ-finite and take f ∈ L1
w(ν). From the proof of

Theorem 4.8, there exists a sequence (ϕn) ⊂ S(R) such that 0 ≤ ϕn ↑ |f | ν-a.e.

Let Z ∈ Rloc be a ν-null set such that 0 ≤ ϕn(ω) ↑ |f(ω)| for all ω ∈ Ω\Z. Then,

supp(f) = (∪ supp(ϕn)\Z) ∪ (supp(f) ∩ Z)

where supp(ϕn)\Z ∈ R and supp(f)∩Z is ν-null. For the converse only note that

if B ∈ Rloc is such that ‖ν‖(B) <∞, then χB ∈ L1
w(ν). �

Let {Ωα : α ∈ ∆} be a maximal family of non ν-null sets in R with Ωα ∩ Ωβ

ν-null for α 6= β (see the proof of [1, Theorem 3.1] for the existence of such a

family). Then, L1(ν) is the unconditional direct sum of the spaces L1(να) where

να : Σα → X is the restriction of ν to the σ-algebra Σα = {A ∈ R : A ⊂ Ωα}.
More precisely, for each f ∈ L1(ν) there exists a countable set I ⊂ ∆ such that

f =
∑
α∈I fχΩα ν-a.e. and the sum converges unconditionally in L1(ν), see [9,

Theorem 3.6]. Does a similar result hold for the space L1
w(ν)? The ν-a.e. pointwise

convergence of the sum for functions in L1
w(ν) is again characterized by the local

σ-finiteness of ν.

Proposition 4.10. For each f ∈ L1
w(ν) there exists a countable I ⊂ ∆ such that

f =
∑
α∈I fχΩα ν-a.e. pointwise if and only if ν is locally σ-finite.

Proof. Suppose that for every f ∈ L1
w(ν) there exists a countable I ⊂ ∆ such that

f =
∑
α∈I fχΩα ν-a.e. pointwise. Then, given B ∈ Rloc with ‖ν‖(B) < ∞, since

χB ∈ L1
w(ν), we can write χB =

∑
α∈I χB∩Ωα pointwise except on a ν-null set Z,

for some countable I ⊂ ∆. So, B = (∪α∈IB ∩ Ωα) ∪ (B ∩ Z), where B ∩ Ωα ∈ R
and B ∩ Z is ν-null.

Conversely, suppose that ν is locally σ-finite and take f ∈ L1
w(ν). From Propo-

sition 4.9, there exist (An) ⊂ R and a ν-null set N ∈ Rloc such that supp(f) =

(∪An) ∪ N . Since each An ∈ R, there exists a countable set In ⊂ ∆ such that

An ∩ Ωβ is ν-null for all β ∈ ∆\In (see the proof of [1, Theorem 3.1]). Take

I = ∪In and Z = supp(f)\ ∪α∈I Ωα. Let us see that Z is a ν-null set. Given

B ∈ R ∩ 2Z , if β ∈ I we have that B ∩ Ωβ = ∅. On the other hand, if β /∈ I,

since B ∩ Ωβ ⊂ supp(f) ∩ Ωβ = (∪An ∩ Ωβ) ∪ (N ∩ Ωβ) where each An ∩ Ωβ
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is ν-null, we have that B ∩ Ωβ is ν-null. From the maximality of the family

{Ωα : α ∈ ∆} it follows that B is ν-null. Then, f =
∑
α∈I fχΩα pointwise except

on Z ∪ (∪β∈I ∪α∈I\{β} Ωα ∩ Ωβ) which is a ν-null set. �

Since fχΩα ∈ L1
w(να) for all α ∈ ∆ whenever f ∈ L1

w(ν), in the case of ν being

locally σ-finite, we can say that the space L1
w(ν) is the ν-a.e. pointwise direct sum of

the spaces L1
w(να). We cannot expect that

∑
α∈I fχΩα converges unconditionally

to f in L1
w(ν) for a countable set I ⊂ ∆. Indeed, unconditional convergence of the

sum in L1(ν) is due to the order continuity of L1(ν). For instance, assume that ν

is a discrete vector measure. Note that the maximal family
{
{γ} : γ ∈ Γ

}
of non

ν-null sets in R satisfies that {α}∩{β} ν-null for α 6= β. We have that if f ∈ L1
w(ν)

is such that
∑
n fχ{γn} converges to f in norm ‖ · ‖ν , then f ∈ L1(ν). This is due

to the fact that
∑n
k=1 fχ{γk} =

∑n
k=1 f(γk)χ{γk} ∈ S(R) ⊂ L1(ν) and L1(ν) is

closed in L1
w(ν).

5. Fatou property for L1
w(ν)

The space L1
w(ν) always has the σ-Fatou property. Indeed, take (fn) ⊂ L1

w(ν)

such that 0 ≤ fn ↑ and sup ‖fn‖ν <∞. Then there exists a ν-null set Z ∈ Rloc such

that 0 ≤ fn(ω) ↑ for all ω ∈ Ω\Z. Taking the measurable function g : Ω → [0,∞]

defined by g(ω) = sup fn(ω) if ω ∈ Ω\Z and g(ω) = 0 if ω ∈ Z, we have that

0 ≤ fnχΩ\Z ↑ g pointwise. Hence, the monotone convergence theorem, gives∫
g d|x∗ν| = lim

n

∫
fnχΩ\Z d|x∗ν| ≤ ‖x∗‖ sup ‖fn‖ν ,

for every x∗ ∈ X∗. So, ‖g‖ν ≤ sup ‖fn‖ν < ∞, and then g < ∞ ν-a.e. (except

on a ν-null set N). Taking f = gχΩ\N we have that f : Ω → [0,∞) and ‖f‖ν =

‖g‖ν < ∞, so f ∈ L1
w(ν). Moreover, 0 ≤ fn ↑ f ν-a.e. with ‖f‖ν = sup ‖fn‖ν ,

as ‖fn‖ν ≤ ‖f‖ν ≤ sup ‖fn‖ν for all n. Therefore L1
w(ν) always has the σ-Fatou

property.

In the case when ν is defined on a σ-algebra, it was noted in [6, p. 191] that

L1
w(ν) is the σ-Fatou completion of L1(ν), that is, the minimal B.f.s. related to ν

with the σ-Fatou property and containing L1(ν). This fact does not hold for the

general case. For instance, if ν is the vector measure defined in Example 4.1 and

`∞0 (Γ) denotes the Banach lattice of all real bounded functions on Γ with countable

support, then L1(ν)  `∞0 (Γ)  L1
w(ν) where `∞0 (Γ) has the σ-Fatou property. Note

that in this case ν is not locally σ-finite, as χΓ ∈ L1
w(ν). This is the reason for which

L1
w(ν) fails to be the σ-Fatou completion of L1(ν). Let us denote by [L1(ν)]σ-F the

σ-Fatou completion of L1(ν). In general we have that [L1(ν)]
σ-F
⊂ L1

w(ν).

Theorem 5.1. The σ-Fatou completion of L1(ν) can be described as

[L1(ν)]σ-F =
{
f ∈ L1

w(ν) : supp(f) = (∪An) ∪N with (An) ⊂ R and N ν-null
}
.

Consequently, the space L1
w(ν) = [L1(ν)]σ-F if and only if ν is locally σ-finite.
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Proof. Denote by F the space of functions f ∈ L1
w(ν) for which there exist (An) ⊂ R

and a ν-null set N ∈ Rloc such that supp(f) = (∪An) ∪N . Let us see that F is a

closed subspace of L1
w(ν). Given f ∈ L1

w(ν) and (fn) ⊂ F such that ‖f−fn‖ν → 0,

we can take a subsequence such that fnk → f ν-a.e. That is, there exists a ν-null

set Z ∈ Rloc such that fnk(ω) → f(ω) for all ω ∈ Ω\Z. Then, supp(f)\Z ⊂
∪ksupp(fnk). On the other hand, each fnk satisfies that supp(fnk) = (∪jAkj ) ∪Nk
for some (Akj )j ⊂ R and Nk ∈ Rloc ν-null. So, supp(f) = ∪k ∪j Bkj ∪ N where

Bkj = Akj ∩ supp(f)\Z ∈ R and N = (∪kNk ∩ supp(f)\Z)∪ (supp(f)∩Z) is ν-null,

that is, f ∈ F . Note that if |f | ≤ |g| ν-a.e. with f ∈ L0(ν) and g ∈ F , then

f ∈ F since supp(f)\Z = (supp(f)\Z) ∩ supp(g) for some ν-null set Z. Therefore,

F endowed with the norm ‖ · ‖ν , is a B.f.s. related to ν, which, by [22, Theorem

4.9.(a)], contains L1(ν). Let us see now that F has the σ-Fatou property. Given

(fn) ⊂ F such that 0 ≤ fn ↑ and sup ‖fn‖ν < ∞, since L1
w(ν) has the σ-Fatou

property, there exists f = sup fn ∈ L1
w(ν) with ‖f‖ν = sup ‖fn‖ν . Moreover, since

0 ≤ fn ↑ f ν-a.e., supp(f) = (∪ supp(fn)\Z) ∪ (supp(f) ∩ Z) for some ν-null set

Z ∈ Rloc. Then, it follows that f ∈ F , as each fn ∈ F .

Suppose that E is a B.f.s. related to ν, with the σ-Fatou property and containing

L1(ν). Let f ∈ F and take a sequence (An) ⊂ R and a ν-null set N ∈ Rloc such that

supp(f) = (∪An) ∪ N . On the other hand, take a sequence (ψn) ⊂ S(Rloc) such

that 0 ≤ ψn ↑ |f | ν-a.e. Denoting ϕn = ψnχ∪nj=1Aj
∈ S(R) ⊂ L1(ν) we have that

0 ≤ ϕn ↑ |f | ν-a.e. Since L1(ν) ⊂ E continuously (bear in mind that the inclusion

is a positive operator) we have that sup ‖ϕn‖E ≤ C sup ‖ϕn‖ν ≤ C‖f‖ν < ∞ for

some positive constant C. It follows that there exists g = supϕn ∈ E. Then, since

0 ≤ ϕn ↑ g ν-a.e., we have that |f | = g ∈ E and so f ∈ E.

The consequence follows from Proposition 4.9. �

Consider now the Fatou completion [L1(ν)]
F

of L1(ν), namely, the minimal B.f.s.

related to ν with the Fatou property and containing L1(ν). The σ-Fatou completion

[L1(ν)]
σ-F

always exists since L1
w(ν) has always the σ-Fatou property. However, we

do not know if in general L1
w(ν) has the Fatou property, so [L1(ν)]F could not exist.

Remark 5.2. In the case when [L1(ν)]
F

exists, we have that

L1(ν) ⊂ [L1(ν)]σ-F ⊂ L1
w(ν) ⊂ [L1(ν)]F .

Indeed, given f ∈ L1
w(ν), from Remark 4.3, there exists (fτ ) ⊂ L1(ν) such that

0 ≤ fτ ↑ |f | in L0(ν). Since L1(ν) ⊂ [L1(ν)]
F

continuously, it follows that

sup ‖fτ‖[L1(ν)]
F
≤ C sup ‖fτ‖ν ≤ C‖f‖ν < ∞ for some constant C > 0. Then,

there exists g = sup fτ in [L1(ν)]
F
. Noting that fτ ≤ g ∈ L0(ν) for all τ , we have

that |f | ≤ g and so |f | ∈ [L1(ν)]F . Hence, f ∈ [L1(ν)]F . Note that actually |f | = g,

since fτ ≤ |f | ∈ [L1(ν)]F for all τ and so g ≤ |f |.

Remark 5.3. If L1
w(ν) has the Fatou property, then [L1(ν)]F exists and, from Re-

mark 5.2, we have that L1
w(ν) = [L1(ν)]F .
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In the following result we give conditions under which L1
w(ν) has the Fatou

property. These conditions are satisfied for instance if ν takes values in a Banach

space without any copy of c0.

Proposition 5.4. The following statements are equivalent:

(a) L1(ν) = L1
w(ν).

(b) L1
w(ν) is order continuous.

(c) L1(ν) has the σ-Fatou property.

If (a)-(c) hold, then L1
w(ν) has the Fatou property and

L1(ν) = [L1(ν)]σ-F = L1
w(ν) = [L1(ν)]F .

Proof. The equivalence between (a) and (b) follows from Theorem 3.2. Condition

(a) implies (c) as L1
w(ν) always has the σ-Fatou property. Conversely, if L1(ν)

has the σ-Fatou property, from [26, Theorem 113.4], it follows that it actually has

the Fatou property. Then, [L1(ν)]F = L1(ν) and, from Remark 5.2, we have that

L1(ν) = L1
w(ν). So, (c) implies (a) and the last part of the theorem holds. �

It is an open question if in general L1
w(ν) has the Fatou property. The problem

is that for an upwards directed system 0 ≤ fτ ↑ such that (fτ ) ⊂ L1
w(ν) with

sup ‖fτ‖ν <∞ the pointwise supremum f = sup fτ may not be measurable. More-

over, even if f ∈ L1
w(ν) it can happen that fτ ↑ f does not hold, that is, f may be

not the lattice supremum of (fτ ).

Remark 5.5. If ν is σ-finite, we can take a measure of the type |x∗0ν| (with x∗0 ∈ BX∗)
having the same null sets as ν, see [9, Remark 3.4]. Then, since L1

w(ν) ⊂ L1(|x∗0ν|)
and L1(|x∗0ν|) has the Fatou property, there exists f = sup fτ in L1(|x∗0ν|). By

using the fact that L1(|x∗0ν|) is order separable (see [26, Theorem 113.4]), we can

take a sequence fτn ↑ f in L1(|x∗0ν|) and prove that f ∈ L1
w(ν). Then, L1

w(ν) has

the Fatou property, see [12, Proposition 1]. Moreover, it follows that [L1(ν)]
σ-F

=

L1
w(ν) = [L1(ν)]

F
from Theorem 5.1 and Remark 5.3.

We will give a more general condition than the σ-finiteness of ν under which

L1
w(ν) has the Fatou property. This new condition is inspired by the particular

vector measure ν constructed in [12, Theorem 9] to prove that a Banach lattice E

with the Fatou property and such that Ea is order dense in E, is order isometric to

a L1
w(ν). In this case, L1

w(ν) has the Fatou property due to a good decomposition

property satisfied by ν.

Definition 5.6. A vector measure ν will be said to be R-decomposable if we can

write Ω = (∪α∈∆Ωα) ∪ N where N ∈ Rloc is a ν-null set and {Ωα : α ∈ ∆} is a

family of pairwise disjoint sets in R satisfying that

(i) if Aα ∈ R ∩ 2Ωα for all α ∈ ∆, then ∪α∈∆Aα ∈ Rloc, and
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(ii) for each x∗ ∈ X∗, if Zα ∈ R∩ 2Ωα is |x∗ν|-null for all α ∈ ∆, then ∪α∈∆Zα is

|x∗ν|-null.

Note that condition (ii) implies that if Zα ∈ R ∩ 2Ωα is ν-null for all α ∈ ∆, then

∪α∈∆Zα is ν-null. Also note that N can be taken to be disjoint with ∪α∈∆Ωα.

Remark 5.7. There always exists a maximal family {Ω̃α : α ∈ ∆} of non ν-null

sets in R with Ω̃α ∩ Ω̃β ν-null for α 6= β (see the proof of [1, Theorem 3.1]). If this

family satisfies (i) and (ii) of Definition 5.6, then by taking Ωα = Ω̃α\(∪β∈∆\{α}Ω̃β)

we obtain a disjoint decomposition of Ω as in Definition 5.6.

There are plenty of R-decomposable vector measures, for instance σ-finite vector

measures and discrete vector measures are so.

Theorem 5.8. If ν is R-decomposable, then L1
w(ν) has the Fatou property.

Proof. Suppose that ν is R-decomposable and take a ν-null set N ∈ Rloc and

a family {Ωα : α ∈ ∆} of pairwise disjoint sets in R satisfying conditions (i)

and (ii) in Definition 5.6. So we have Ω = (∪α∈∆Ωα) ∪ N with disjoint union.

For every finite set I ⊂ ∆, consider ΩI = ∪α∈IΩα ∈ R and the vector measure

νI : Rloc → X defined by ν(A∩ΩI) for all A ∈ Rloc. Given f ∈M(Rloc), by using

a similar argument as in the proof of (c) implies (a) in Lemma 3.1, it follows that

f ∈ L1
w(νI) if and only if fχΩI ∈ L1

w(ν), and in this case ‖f‖νI = ‖fχΩI‖ν . Note

that, if f ∈ L1
w(ν) then fχΩI ∈ L1

w(ν) and so f ∈ L1
w(νI). Also note that L1

w(νI)

has the Fatou property as νI is defined on a σ-algebra, see Remark 5.5.

Let (fτ ) ⊂ L1
w(ν) be such that 0 ≤ fτ ↑ and sup ‖fτ‖ν < ∞. Since L1

w(ν) ⊂
L1
w(νI) and every Z ∈ Rloc ν-null is νI -null (as ‖νI‖(Z) = ‖ν‖(Z ∩ ΩI)), then

0 ≤ fτ ↑ in L1
w(νI). Moreover, sup ‖fτ‖νI = sup ‖fτχΩI‖ν ≤ sup ‖fτ‖ν < ∞. By

the Fatou property of L1
w(νI), there exists f I = sup fτ in L1

w(νI) and ‖f I‖νI =

sup ‖fτ‖νI .
Now we consider I = {α} for each α ∈ ∆ and construct the function f : Ω→ R

as f(ω) = f{α}(ω) when ω ∈ Ωα and f(ω) = 0 when ω ∈ N , which is well defined

since Ω is a disjoint union of (Ωα)α∈∆ and N . By (i), we have that f−1(B) =

∪α∈∆(f{α})−1(B) ∩ Ωα ∈ Rloc for every Borel subset B of R such that 0 /∈ B. If

0 ∈ B, we put also in the union the set N to get f−1(B). So, f ∈M(Rloc).
Let us see that f ∈ L1

w(ν). First note that for each finite set I ⊂ ∆ and α ∈ I,

it follows that f{α}χΩα ≤ f IχΩα ν-a.e. Indeed, fτχΩα ↑ f{α}χΩα in L1
w(ν{α}) as

fτ ↑ f{α} in L1
w(ν{α}). Since fτχΩα ≤ f IχΩα νI -a.e. (and so also ν{α}-a.e. and

f IχΩα ∈ L1
w(ν{α}) as f IχΩα ≤ f IχΩI ∈ L1

w(ν)) we have that f{α}χΩα ≤ f IχΩα

ν{α}-a.e. (except on a ν{α}-null set Z) and so ν-a.e. (except on the ν-null set Z∩Ωα).

Then, fχΩI =
∑
α∈I f

{α}χΩα ≤ f IχΩI ν-a.e.
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Fix x∗ ∈ X∗. For every finite set I ⊂ ∆, it follows∑
α∈I

∫
|f |χΩα d|x∗ν| =

∫
|f |χΩI d|x∗ν| ≤

∫
|f I |χΩI d|x∗ν|

≤ ‖x∗‖ · ‖f IχΩI‖ν = ‖x∗‖ · ‖f I‖νI
= ‖x∗‖ · sup ‖fτ‖νI ≤ ‖x∗‖ · sup ‖fτ‖ν <∞.

Then, there exists a countable set J ⊂ ∆ such that
∫
|f |χΩα d|x∗ν| = 0 for all

α ∈ ∆\J and so fχΩα = 0 |x∗ν|-a.e. (except on a |x∗ν|-null set Zα ∈ Rloc which

can be taken such that Z ⊂ Ωα) for all α ∈ ∆\J . Hence, f =
∑
α∈J fχΩα |x∗ν|-a.e.

(except on the |x∗ν|-null set ∪α∈∆\JZα∪N ∈ Rloc). By the monotone convergence

theorem we have that∫
|f | d|x∗ν| =

∑
α∈J

∫
|f |χΩα d|x∗ν| ≤ ‖x∗‖ · sup ‖fτ‖ν <∞.

So f ∈ L1
w(ν) and ‖f‖ν ≤ sup ‖fτ‖ν .

Let us see now that fτ ↑ f in L1
w(ν). Fixing τ , for each α ∈ ∆, there exists

a ν{α}-null set Zα ∈ Rloc such that fτ (ω) ≤ f{α}(ω) for all ω ∈ Ωα\Zα. Then,

Z = ∪α∈∆Zα∩Ωα is ν-null and fτ (ω) ≤ f(ω) for all ω ∈ Ω\(Z∪N), that is, fτ ≤ f
ν-a.e. Suppose that h ∈ L1

w(ν) is such that fτ ≤ h ν-a.e. (except on a ν-null set

Z ∈ Rloc) and so ν{α}-a.e. (except Z which also is ν{α}-null) for each τ . Since h ∈
L1
w(ν{α}), we have that f{α} ≤ h ν{α}-a.e. (except on a ν{α}-null set Zα ∈ Rloc).

Therefore, f ≤ h ν-a.e. (except on the ν-null set (∪α∈∆Zα ∩ Ωα) ∪N ∈ Rloc). So,

fτ ↑ f and ‖f‖ν = sup ‖fτ‖ν . �

The converse of Theorem 5.8 does not hold as the next example shows.

Example 5.9. Following [16, p. 12, Definition 211E], a measure space (X,Σ, µ) is

decomposable (or strictly localizable) if there exists a disjoint family {Xα : α ∈ ∆}
of measurable sets of finite measure such that X = ∪α∈∆Xα and

Σ = {E ⊂ X : E ∩Xα ∈ Σ for all α ∈ ∆}

with µ(E) =
∑
α∈∆ µ(E ∩ Xα) for every E ∈ Σ. In [16, p. 50, 216E], Fremlin

constructs a measure space which is not decomposable as follows.

Let C be an abstract set of cardinal greater than the cardinal of the continuum,

K = {K ⊂ 2C : K is countable} and X the set of all functions f : 2C → {0, 1}.
For each γ ∈ C, write fγ for the function in X defined by fγ(A) = χA(γ) for

all A ∈ 2C and Fγ,K = {f ∈ X : f|K = fγ|K} for every K ∈ K. Consider the

σ-algebra Σ = ∩γ∈CΣγ , where

Σγ = {E ⊂ X : ∃ K ∈ K with Fγ,K ⊂ E or ∃ K ∈ K with Fγ,K ⊂ X\E},

and the measure µ : Σ → [0,∞] defined by µ(E) = ]({γ ∈ C : fγ ∈ E}) for all

E ∈ Σ, where ] denotes the cardinal of a set. Then, (X,Σ, µ) is not decomposable.
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Taking the δ-ring R = {E ∈ Σ : µ(E) < ∞}, we will show that the measure

µ̃ : R → [0,∞) given by the restriction of µ to R is not R-decomposable. Let us

see first that

(1) Rloc = Σ.

If A ∈ Σ, then obviously A∩E ∈ R for every E ∈ R, that is A ∈ Rloc. Conversely,

suppose that A ∈ Rloc. For a fixed γ ∈ C, the set G{γ} = {f ∈ X : f({γ}) = 1}
is in Σ and µ(G{γ}) = ]({γ}) = 1 (see [16, 216E.(c)]). So, G{γ} ∈ R and thus

A ∩ G{γ} ∈ R ⊂ Σ ⊂ Σγ . If there exists K ∈ K such that Fγ,K ⊂ A ∩ G{γ} ⊂ A,

then A ∈ Σγ . If there exists K ∈ K such that Fγ,K ⊂ X\(A ∩ G{γ}), then, since

Fγ,K∪{γ} ⊂ Fγ,K and Fγ,K∪{γ} ⊂ G{γ}, it follows that Fγ,K∪{γ} ⊂ X\A and so

A ∈ Σγ . Therefore, A ∈ Σ and (1) holds. Moreover, for N ∈ Rloc we have that

(2) N is µ̃-null if and only if N is µ-null.

Indeed, if N is µ-null, for every E ∈ R∩2N we have that µ̃(E) = µ(E) ≤ µ(N) = 0

and so N is µ̃-null. Conversely, suppose that N is µ̃-null. If µ(N) > 0, then there

exists γ ∈ C such that µ(N ∩G{γ}) = 1 (see [16, 216E.(h)]), this is a contradiction

as N ∩G{γ} ∈ R ∩ 2N and so µ(N ∩G{γ}) = µ̃(N ∩G{γ}) = 0.

Suppose that µ̃ is R-decomposable, that is, we can write X =
(
∪α∈∆ Xα

)
∪N

where {Xα : α ∈ ∆} is a family of pairwise disjoint sets in R satisfying that

(i) if Aα ∈ R ∩ 2Xα for all α ∈ ∆, then ∪α∈∆Aα ∈ Rloc,
(ii) if Zα ∈ R ∩ 2Xα is µ̃-null for all α ∈ ∆, then ∪α∈∆Zα is µ̃-null,

and N ∈ Rloc is a µ̃-null set disjoint with each Xα. Then, {Xα : α ∈ ∆} ∪ {N} is

a disjoint family of sets in Σ with µ(N), µ(Xα) <∞. Let us see that

Σ = {E ⊂ X : E ∩N ∈ Σ and E ∩Xα ∈ Σ for all α ∈ ∆}.

If E ∈ Σ, then obviously E ∩ Xα ∈ Σ for all α ∈ ∆ and, by (1), E ∩ N ∈ Σ.

Conversely, if E ⊂ X is such that E ∩ N ∈ Σ and E ∩ Xα ∈ Σ for all α ∈ ∆,

since E ∩ Xα ∈ R ∩ 2Xα , by (i) and (1), we have that ∪α∈∆E ∩ Xα ∈ Σ. So,

E = E ∩X = (∪α∈∆E ∩Xα) ∪ (E ∩N) ∈ Σ. Moreover, µ(E) =
∑
α∈∆ µ(E ∩Xα)

for every E ∈ Σ. Indeed, if
∑
α∈∆ µ(E ∩ Xα) < ∞, then µ(E ∩ Xα) = 0 for all

α ∈ ∆\Γ for some countable Γ ⊂ ∆. Since, by (ii) and (2), ∪α∈∆\ΓE∩Xα is µ-null,

µ(E) = µ(∪α∈ΓE ∩Xα) =
∑
α∈Γ

µ(E ∩Xα) =
∑
α∈∆

µ(E ∩Xα).

If
∑
α∈∆ µ(E ∩ Xα) = ∞ then µ(E) = ∞, as sup J⊂∆

finite

∑
α∈J µ(E ∩ Xα) ≤ µ(E).

Therefore (X,Σ, µ) is decomposable which is a contradiction.

So, µ̃ is not R-decomposable. However, since L1(µ̃) = L1
w(µ̃) as µ̃ takes values

in R, we have that L1
w(µ̃) has the Fatou property (see Proposition 5.4).

Now we can say that there is no relation between the main properties used in this

paper, R-decomposability and local σ-finiteness. Indeed, the vector measure given
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in the example above is locally σ-finite (see Remark 4.5) but not R-decomposable.

However, the vector measure given in Example 4.1 is R-decomposable, since it is

discrete but not locally σ-finite.

6. Representation theorems for Banach lattices

It is always interesting to know when a Banach lattice is order isometric to some

Banach function space. This problem has been studied using vector measures by

several authors. It was proved in [5, Theorem 8] that every order continuous Banach

lattice with a weak unit is order isometric to an space L1(ν) for a vector measure ν

defined on a σ-algebra. This result allows to represent any Banach lattice E with

the σ-Fatou property with a weak unit belonging to Ea as an space L1
w(ν) with ν

defined on a σ-algebra, since in this case the order isometry between Ea and L1(ν)

can be extended to E and turns out to be an order isometry between E and L1
w(ν),

see [6, Theorem 2.5]. So, we have the following equivalences between classes of

spaces: {
E order continuous Banach

lattice with a weak unit

}
≡
{
L1(ν) with ν on a σ-algebra

}
and

(3)


E Banach lattice with the

σ-Fatou property such that

Ea has a weak unit

 ≡
{
L1
w(ν) with ν on a σ-algebra

}
.

For versions with E being p-convex see [15, Proposition 2.4] and [8, Theorem 4]. If

we forget about the weak unit, it was stated in [4, pp. 22-23] and proved in detail

in [12, Theorem 5] that{
E order continuous Banach lattice

}
≡
{
L1(ν) with ν on a δ-ring

}
.

Moreover, from [12, Theorem 9] and Theorems 3.2, 4.2, 5.8, we have that{
E Banach lattice with the Fatou property

such that Ea is order dense in E

}
≡

{
L1
w(ν) with ν on a δ-ring

being R-decomposable

}
.

Note that although the converse of Theorem 5.8 does not hold, if L1
w(ν) has the

Fatou property, by Theorems 3.2 and 4.2, there exists an R-decomposable vector

measure ν̃ such that L1
w(ν) is order isometric to L1

w(ν̃).

Now, we add another equivalence:

(4)


E Banach lattice with the

σ-Fatou property such that

Ea is super order dense in E

 ≡
{

[L1(ν)]
σ-F

with ν on a δ-ring
}
.

Indeed, since L1(ν) ⊂ [L1(ν)]σ-F ⊂ L1
w(ν), then

(
[L1(ν)]σ-F

)
a
⊂
(
L1
w(ν)

)
a

and so,

from Theorem 3.2, we have that
(
[L1(ν)]

σ-F

)
a

= L1(ν) which is super order dense in
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[L1(ν)]
σ-F

, see the last part of the proof of Theorem 5.1. Let us prove the converse

containment.

Proposition 6.1. Every Banach lattice E with the σ-Fatou property such that Ea

is super order dense in E is order isometric to [L1(ν)]
σ-F

for some vector measure

ν defined on a δ-ring.

Proof. Let E be a Banach lattice with the σ-Fatou property such that Ea is super

order dense in E and consider the vector measure ν defined on a δ-ring such that

the integration operator Iν : L1(ν)→ Ea given by Iν(f) =
∫
f dν for all f ∈ L1(ν),

is an order isometry, see [12, Theorem 5]. Let us extend Iν to [L1(ν)]
σ-F

. First,

consider 0 ≤ f ∈ [L1(ν)]
σ-F

and take (fn) ⊂ L1(ν) such that 0 ≤ fn ↑ f . This

is always possible since L1(ν) is super order dense in [L1(ν)]
σ-F

as we have noted

above. Since Iν is an order isometry, the sequence
(
Iν(fn)

)
⊂ Ea ⊂ E satisfies that

0 ≤ Iν(fn) ↑ and sup ‖Iν(fn)‖E = sup ‖fn‖ν ≤ ‖f‖ν < ∞. Then, as E has the

σ-Fatou property, there exists e = sup Iν(fn) in E and ‖e‖E = sup ‖Iν(fn)‖E . We

define T (f) = e.

A similar argument to the one in [6, Theorem 2.5], shows that T is well defined.

To be precise, take another sequence (gn) ⊂ L1(ν) such that 0 ≤ gn ↑ f and denote

z = sup Iν(gn). Let 0 ≤ x∗ ∈ E∗ be fixed. Then, x∗(e) ≥ x∗
(
Iν(fn)

)
=
∫
fn dx

∗ν

for all n. Since 0 ≤ fn ↑ f ν-a.e. and so x∗ν-a.e., by using the monotone convergence

theorem, we have that x∗(e) ≥
∫
f dx∗ν ≥ x∗

(
Iν(fn)

)
for all n. In a similar way,

x∗(z) ≥
∫
f dx∗ν ≥ x∗

(
Iν(gn)

)
for all n. Thus, it follows that x∗(e) ≥ x∗

(
Iν(gn)

)
and x∗(z) ≥ x∗

(
Iν(fn)

)
for all n. Since this holds for all 0 ≤ x∗ ∈ E∗, we have that

e ≥ Iν(gn) and z ≥ Iν(fn) for all n. Then, e ≥ z and z ≥ e, and so e = z. So, T is

well defined. Moreover,

‖T (f)‖E = ‖e‖E = sup ‖Iν(fn)‖E = sup ‖fn‖ν = ‖f‖ν ,

where in the last equality we have used that [L1(ν)]
σ-F

has the σ-Fatou property.

Let us see now that T preserves the lattice structure, that is T (f ∧ g) = Tf ∧ Tg
for every 0 ≤ f, g ∈ [L1(ν)]σ-F . Consider sequences (fn), (gn) ⊂ L1(ν) satisfying

that 0 ≤ fn ↑ f and 0 ≤ gn ↑ g. Then, Tf = sup Iν(fn) and Tg = sup Iν(gn). Note

that if xn ↑ x and yn ↑ y in a Banach lattice then xn ∧ yn ↑ x ∧ y, see for instance

[20, Theorem 15.3]. Then, since 0 ≤ fn ∧ gn ↑ f ∧ g with (fn ∧ gn) ⊂ L1(ν) and Iν

is an order isometry, we have that

T (f ∧ g) = sup Iν(fn ∧ gn) = sup Iν(fn) ∧ Iν(gn) = Tf ∧ Tg.

For a general f ∈ [L1(ν)]
σ-F

, we define Tf = Tf+− Tf− where f+ and f− are the

positive and negative parts of f respectively. So, T : [L1(ν)]
σ-F
→ E is a positive

linear operator extending Iν . For the linearity, see for instance [20, Theorem 15.2].

Moreover T is an isometry. Indeed, Tf+ ∧Tf− = T (f+ ∧ f−) = 0 as f+ ∧ f− = 0,
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and so |Tf | = |Tf+ − Tf−| = Tf+ + Tf− = T |f |, see [20, Theorem 14.4]. Then,

‖T (f)‖E = ‖T (|f |)‖E = ‖f‖ν for all f ∈ [L1(ν)]σ-F .

Let us prove that T is onto. Let 0 ≤ e ∈ E. Since Ea is super order dense in

E, there exists (en) ⊂ Ea such that 0 ≤ en ↑ e. Let (fn) ⊂ L1(ν) ⊂ [L1(ν)]
σ-F

be such that en = Iν(fn). Since I−1
ν is an order isometry, we have that 0 ≤ fn ↑

and sup ‖fn‖ν = sup ‖en‖E ≤ ‖e‖E < ∞. Then, by the σ-Fatou property of

[L1(ν)]
σ-F

, there exists f = sup fn in [L1(ν)]
σ-F

. From the definition of T , we have

that Tf = sup Iν(fn) = sup en = e. For a general e ∈ E, consider e+ and e− the

positive and negative parts of e. Let g, h ∈ [L1(ν)]σ-F be such that Tg = e+ and

Th = e−. Then, taking f = g − h ∈ [L1(ν)]
σ-F

we have that Tf = e. Note that

T−1 is positive. So, T is positive, linear, one to one and onto with inverse being

positive, then T is an order isomorphism (see [19, p. 2]). �

Note that the class of spaces in (3) is contained in the one in (4). Indeed, take a

weak unit 0 ≤ u ∈ Ea. Then 0 ≤ e∧nu ↑ e for each 0 ≤ e ∈ E where e∧nu ∈ Ea,

and so Ea is super order dense in E. In this case we obtain that [L1(ν)]
σ-F

= L1
w(ν),

since ν is defined on a σ-algebra.

7. Example

We end by showing that there exist R-decomposable vector measures ν which

are not σ-finite nor discrete.

Let Γ be an abstract set. For each γ ∈ Γ, consider a non null vector measure

νγ : Σγ → Xγ defined on a σ-algebra Σγ of subsets of a set Ωγ and with values in

a Banach space Xγ . Take the set Ω = ∪γ∈Γ{γ} × Ωγ and the δ-ring R of subsets

of Ω given by the sets ∪γ∈Γ{γ} × Aγ with Aγ ∈ Σγ for all γ ∈ Γ, for which there

exists a finite set J ⊂ Γ such that Aγ is νγ-null for all γ ∈ Γ\J , see [12, p. 5]. Then,

Rloc =
{
∪γ∈Γ {γ} ×Aγ : Aγ ∈ Σγ for all γ ∈ Γ

}
.

Note that a function f : Ω → R is Rloc-measurable if and only if f(γ, ·) : Ωγ → R
is Σγ-measurable for all γ ∈ Γ.

Denote by c0
(
Γ, (Xγ)γ∈Γ

)
the Banach space of all families (xγ)γ∈Γ such that

xγ ∈ Xγ for every γ ∈ Γ and
(
‖xγ‖Xγ

)
γ∈Γ

∈ c0(Γ), endowed with the norm

‖(xγ)γ∈Γ‖ = supγ∈Γ ‖xγ‖Xγ . Note that the topological dual c0
(
Γ, (Xγ)γ∈Γ

)∗
can

be identified with the Banach space `1
(
Γ, (X∗γ )γ∈Γ

)
of families (x∗γ)γ∈Γ such that

x∗γ ∈ X∗γ for every γ ∈ Γ and
(
‖x∗γ‖X∗γ

)
γ∈Γ

∈ `1(Γ), endowed with the norm

‖(x∗γ)γ∈Γ‖ =
∑
γ∈Γ ‖x∗γ‖Xγ . The action of any x∗ = (x∗γ)γ∈Γ ∈ `1

(
Γ, (X∗γ )γ∈Γ

)
on

x = (xγ)γ∈Γ ∈ c0
(
Γ, (Xγ)γ∈Γ

)
is given by x∗(x) =

∑
γ∈Γ x

∗
γ(xγ).

Consider the vector measure ν : R → c0
(
Γ, (Xγ)γ∈Γ

)
given by

ν
(
∪γ∈Γ {γ} ×Aγ

)
=
(
νγ(Aγ)

)
γ∈Γ

.



ON THE BANACH LATTICE STRUCTURE OF L1
w(ν) 19

Note that a set A = ∪γ∈Γ{γ} × Aγ ∈ Rloc is ν-null if and only if Aγ is νγ-null for

all γ ∈ Γ. Then, it is direct to check that:

(a) ν is R-decomposable.

(b) ν is σ-finite if and only if Γ is countable.

(c) ν is discrete if and only if νγ is discrete for all γ ∈ Γ.

Let us prove that L1
w(ν) can be described as the space of functions f ∈M(Rloc)

such that f(γ, ·) ∈ L1
w(νγ) for all γ ∈ Γ with (‖f(γ, ·)‖νγ )γ∈Γ ∈ `∞(Γ), and more-

over, ‖f‖ν = supγ∈Γ ‖f(γ, ·)‖νγ for all f ∈ L1
w(ν), that is,

L1
w(ν) = `∞

(
Γ, (L1

w(νγ))γ∈Γ

)
.

Given x∗ = (x∗γ)γ∈Γ ∈ `1
(
Γ, (X∗γ )γ∈Γ

)
, since |x∗ν|(A) =

∑
γ∈Γ |x∗γνγ |(Aγ) ≤ ∞ for

every A = ∪γ∈Γ{γ} ×Aγ ∈ Rloc, we have that

(5)

∫
|f | d|x∗ν| =

∑
γ∈Γ

∫
|f(γ, ·)| d|x∗γνγ | ≤ ∞, for all f ∈M(Rloc).

Indeed, (5) holds for Rloc-simple functions, and so for a general f by using the

monotone convergence theorem. Let us see that if f ∈ L1(x∗ν), then

(6)

∫
A

f dx∗ν =
∑
γ∈Γ

∫
Aγ

f(γ, ·) dx∗γνγ .

In this case, by (5), f(γ, ·) ∈ L1(x∗γνγ) for every γ ∈ Γ and
∫
|f(γ, ·)| d|x∗γνγ | = 0

(and so f(γ, ·) = 0 except on a x∗γνγ-null set Zγ) for all γ ∈ Γ\J with J being some

countable subset of Γ. Then, fχA = fχ∪γ∈J{γ}×Aγ ν-a.e. (except on the ν-null set

∪γ∈Γ\J{γ}×Aγ ∩Zγ). By using the dominated convergence theorem, we have that∫
A

f dx∗ν =
∑
γ∈J

∫
{γ}×Aγ

f dx∗ν.

Noting that
∫
{γ}×Aγ f dx

∗ν =
∫
Aγ
f(γ, ·) dx∗γνγ holds for Rloc-simple functions and

so for any f ∈ L1(x∗ν) by density of the Rloc-simple functions in L1(x∗ν), we

conclude that (6) holds.

Let f ∈ L1
w(ν) and fix β ∈ Γ. Given x∗β ∈ X∗β , define the element x∗ = (x∗γ)γ∈Γ

in `1
(
Γ, (X∗γ )γ∈Γ

)
by x∗γ = x∗β if γ = β and x∗γ = 0 in other case. Then, from (5),

we have that
∫
|f(β, ·)| d|x∗βνβ | =

∫
|f | d|x∗ν| < ∞ and so f(β, ·) ∈ L1

w(νβ) with

‖f(β, ·)‖νβ ≤ ‖f‖ν . Thus, (‖f(γ, ·)‖νγ )γ∈Γ ∈ `∞(Γ) and supγ∈Γ ‖f(γ, ·)‖νγ ≤ ‖f‖ν .

Let now f ∈ M(Rloc) satisfying that f(γ, ·) ∈ L1
w(νγ) for every γ ∈ Γ and

(‖f(γ, ·)‖νγ )γ∈Γ ∈ `∞(Γ). Given x∗ = (x∗γ)γ∈Γ ∈ `1
(
Γ, (X∗γ )γ∈Γ

)
, from (5), we have

that ∫
|f | d|x∗ν| =

∑
γ∈Γ

∫
|f(γ, ·)| d|x∗γνγ | ≤

∑
γ∈Γ

‖x∗γ‖X∗γ ‖f(γ, ·)‖νγ

≤ sup
γ∈Γ
‖f(γ, ·)‖νγ

∑
γ∈Γ

‖x∗γ‖X∗γ <∞.
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Then, f ∈ L1
w(ν) and ‖f‖ν ≤ supγ∈Γ ‖f(γ, ·)‖νγ .

Moreover, L1(ν) can be described as the space of functions f ∈ M(Rloc) such

that f(γ, ·) ∈ L1(νγ) for every γ ∈ Γ with (‖f(γ, ·)‖νγ )γ∈Γ ∈ c0(Γ), that is,

L1(ν) = c0
(
Γ, (L1

w(νγ))γ∈Γ

)
.

Indeed, if f ∈ L1(ν) we can take (ϕn) ⊂ S(R) such that ϕn → f in L1(ν). For

each γ ∈ Γ, we have that f(γ, ·) ∈ L1
w(νγ) (as f ∈ L1

w(ν)) and (ϕn(γ, ·)) ⊂ S(Σγ) ⊂
L1(νγ). Then, since ‖f(γ, ·) − ϕn(γ, ·)‖νγ ≤ ‖f − ϕn‖ν and L1(νγ) is closed in

L1
w(νγ), it follows that f(γ, ·) ∈ L1(νγ). On the other hand, for each n we can

write ϕn =
∑m
j=1 αjχAj where αj ∈ R and Aj = ∪γ∈Γ{γ}×Ajγ . Here, Ajγ ∈ Σγ for

all γ ∈ Γ and satisfies that Ajγ is νγ-null for all γ ∈ Γ\Jj for some finite set Jj ⊂ Γ.

Then, ϕn(γ, ·) =
∑m
j=1 αjχAjγ = 0 νγ-a.e. for all γ ∈ Γ\ ∪mj=1 Jj where ∪mj=1Jj is a

finite set, and so (‖ϕn(γ, ·)‖νγ )γ∈Γ ∈ c0(Γ). Since (‖f(γ, ·)‖νγ )γ∈Γ ∈ `∞(Γ) and

sup
γ∈Γ

∣∣ ‖f(γ, ·)‖νγ − ‖ϕn(γ, ·)‖νγ
∣∣ ≤ sup

γ∈Γ
‖f(γ, ·)− ϕn(γ, ·)‖νγ = ‖f − ϕn‖ν ,

it follows that (‖f(γ, ·)‖νγ )γ∈Γ ∈ c0(Γ).

Conversely, suppose that f ∈ M(Rloc) is such that f(γ, ·) ∈ L1(νγ) for all

γ ∈ Γ and (‖f(γ, ·)‖νγ )γ∈Γ ∈ c0(Γ). In particular, f ∈ L1
w(ν). Given an element

x∗ = (x∗γ)γ∈Γ ∈ `1
(
Γ, (X∗γ )γ∈Γ

)
and A = ∪γ∈Γ{γ} × Aγ ∈ Rloc, we note that( ∫

Aγ
f(γ, ·) dνγ

)
γ∈Γ
∈ c0

(
Γ, (Xγ)γ∈Γ

)
as ‖

∫
Aγ
f(γ, ·) dνγ‖Xγ ≤ ‖f(γ, ·)‖νγ for each

γ ∈ Γ. Moreover, by (6),

x∗

((∫
Aγ

f(γ, ·) dνγ
)
γ∈Γ

)
=

∑
γ∈Γ

x∗γ

(∫
Aγ

f(γ, ·) dνγ
)

=
∑
γ∈Γ

∫
Aγ

f(γ, ·) dx∗γνγ =

∫
A

f dx∗ν.

So, f ∈ L1(ν) and
∫
A
f dν =

( ∫
Aγ
f(γ, ·) dνγ

)
γ∈Γ

.

Note that if ν is locally σ-finite, since h =
∑
γ∈Γ

1
‖νγ‖(Ωγ)χ{γ}×Ωγ ∈ L1

w(ν) and

supp(h) = Ω, from Proposition 4.9, it follows that ν is σ-finite. So, in this case ν

is locally σ-finite if and only if ν is σ-finite if and only if Γ is countable.

In particular, consider a non atomic measure space (Θ,Σ, µ) and an order con-

tinuous B.f.s. X related to µ which does not contain any copy of c0 and such that

χΘ ∈ X, for instance X = Lp[0, 1] related to the Lebesgue measure for p ≥ 1. Then,

η : Σ→ X given by η(A) = χA for all A ∈ Σ, is a non discrete vector measure such

that L1
w(ν) = L1(ν) = X. Taking Γ uncountable and νγ = η for all γ ∈ Γ, we

obtain an R-decomposable vector measure ν which is not σ-finite nor discrete. In

this case, L1
w(ν) = `∞(Γ, X) and L1(ν) = c0(Γ, X).
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Operators Acting in Function Spaces, Oper. Theory Adv. Appl., vol. 180, Birkhäuser, Basel,
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