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Abstract

Abstract

The present thesis addresses the statistical analysis of single and multiple
series Time Course Microarray (TCM) data. This type of data comes from studies in
which gene expression evolution is analysed throughout time for one or several
experimental conditions of interest. The work describes the development,
application and evaluation of novel specific methodologies which take into
consideration particular aspects and problematic that this type of data causes, both
from a gene selection and from a functional point of views. The developed
algorithms are compared to other state-of-the-art methodologies, evaluating the

different approaches in terms of performance and biological meaning of the results.

The thesis has been structured in two main blocks. First, the relevant
literature is revised and summarized in an introductory part. A general overview of
microarray technology and a discussed review of statistical methods applied to
microarray data are presented in Chapters 1 and 2. By using data from a
multifactor microarray experiment we show how the application of general methods
to time series microarray data suffers from a number of limitations. This indicates
the need for the development of specific methods for the analysis of TCM. Chapter
3 ends this first block with a dedicated review on the up-to-date statistical methods
for the analysis of time series data. Most of the methodologies presented in this
chapter have been published during the time span of this thesis.

In the second block, the novel methodologies for TCM developed within the
present research are introduced and discussed. Chapter 4 introduces the first novel
approach to TCM analysis: maSigPro (microarray Significant Profile) methodology.
The maSigPro strategy uses linear regression analysis to model gene expression
and follows a two-step strategy for the selection of differentially expressed genes
(d.e.g): a first step identifies responsive genes while the second discloses the
patterns of significant differential time evolution, in a gene-by-gene fashion. In
Chapter 5 a multivariate technique ASCA (ANOVA Simultaneous Component
Analysis) is adapted to TCM, resulting in the ASCA-genes method. This new
methodology combines multivariate exploration of time course data with a selection
procedure for the identification of relevant changing genes. In Chapter 6 the ability
of ASCA to dissect expression signals and exploit the coordinative behaviour of
gene expression is combined with the strong ability of maSigPro to model time

series data and identify significant d.e.g. Our results show that, especially when



Abstract

high structural noise is present in the data, the use of ASCA as pre-processing
strategy greatly improves maSigPro results. We also demonstrated that this data
filtering strategy can be applied as well to other methods of TCM analysis improving
false and negative discovery rates. These approaches, as others in microarray time
series data analysis, provide results as lists of differentially expressed genes.
However, in the study of gene expression, a much more interpretable and useful
result appears when gene regulation is indicated as cellular functions or processes.
In most cases, this translation is done subsequent to the generation of a list of
differentially expressed genes. This implies in many cases limitations in discovery
power for the need of an arbitrary calling of d.e.g. and the ignorance of the
coordination between biological functions. The last methodological chapter of this
thesis (Chapter 7) deals with the development of statistical approaches for an
integrated or direct assessment of the alterations in gene functions embedded in
time series expression data. To this end, maSigPro, ASCA and PCA have been
adapted to incorporate functional data resulting in the novel methodologies

maSigFun, PCA-maSigFun and ASCA-functional.

This dissertation is ended with Chapter 8 which includes conclusions and

some proposals deserving future research.



Resumen

Resumen

La presente tesis doctoral aborda el analisis estadistico de series simples y
multiples de experimentos de “Time Course Microarray” (TCM). El trabajo se centra
en el desarrollo, aplicaciéon y evaluacidon de métodos estadisticos especificos que
consideran la problematica de este tipo de datos, tanto desde el punto de vista de
seleccion de genes como del analisis funcional. Las técnicas desarrolladas se
comparan con otros métodos del estado del arte actual evaluando las diferentes

metodologias en términos de eficiencia y significado bioldgico de los resultados.

La tesis esta estructurada en dos bloques principales. En el primero, se
revisa la literatura relevante y se resume en una parte introductoria. Los Capitulos
1 y 2 incluyen la descripcion del funcionamiento de la tecnologia de “microarrays”
asi como una revision critica de los métodos estadisticos aplicados a este tipo de
datos. En esta parte se muestran los inconvenientes que surgen al aplicar métodos
generales a series temporales de “microarrays” y se justifica la necesidad de
desarrollar nuevas técnicas para el analisis de TCM. El Capitulo 3 finaliza este
primer bloque con una revisién de los métodos estadisticos especificos para TCM.
Muchas de las técnicas que se presentan en este capitulo han sido publicadas en el

mismo periodo de elaboracion de esta tesis.

En el Segundo bloque, se presentan las técnicas estadisticas para TCM
desarrolladas en el proceso de investigacion llevado a cabo en esta tesis. El
Capitulo 4 describe la primera técnica de analisis de TCM propuesta: la metodologia
masSigPro (“microarray Significant Profile”). La técnica maSigPro usa andlisis de
regresion lineal para modelar la expresidon génica y lleva a cabo una estrategia en
dos pasos para seleccionar los genes diferencialmente expresados (d.e.g.): en el
primer paso se identifican los genes de interés y en el segundo paso se detectan,
gen a gen, los perfiles con evolucion diferencialmente significativa en el tiempo. En
el Capitulo 5 se adapta la técnica multivariante ASCA (ANOVA Simultaneous
Component Analysis) a datos de TCM, obteniendo como resultado el método ASCA-
genes que combina la exploracién multivariante de datos de series temporales con
un procedimiento de seleccion para la identificacidn de genes con cambios
relevantes. El capitulo 6 incluye un tercer estudio en el que se combina la habilidad
de ASCA para detectar las sefales de expresion génica, teniendo en cuenta el
comportamiento coordinado de los genes, con la habilidad de maSigPro para

modelar los datos de series temporales e identificar los d.e.g. Los resultados
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muestran que, especialmente cuando hay alto nivel de ruido estructural en los
datos, el uso de ASCA como una estrategia de preprocesamiento de datos
mejora los resultados de maSigPro. También se muestra que la estrategia de
filtrado de datos desarrollada puede ser usada con otros métodos para analisis de
TCM mejorando las tasas de falsos negativos y positivos. Estas técnicas, al igual
que muchas otras de analisis de datos de TCM, ofrecen como resultados listas de
genes diferencialmente expresados. Sin embargo, en el estudio de la expresion
génica, se considera un resultado mucho mas Util e interpretable el indicar la
regulacion génica como funcion celular o de procesos bioldgicos. Normalmente, esta
traduccion se lleva a cabo a partir de la lista de genes diferencialmente expresados
(d.e.g.). Esto implica en muchos casos limitaciones en el poder de deteccién debido
a la necesidad de un nivel arbitrario de d.e.g. sin tener en cuenta la coordinacion
entre funciones bioldgicas. El Ultimo capitulo aborda el desarrollo de métodos
estadisticos para una evaluacién directa e integrada de las alteraciones que pueden
sufrir las funciones génicas en TCM. Para este propdsito, se han adaptado las
técnicas maSigPro, ASCA y PCA incorporandoles informacion funcional obteniendo

las metodologias maSigFun, PCA-maSigFun y ASCA-functional.

El documento acaba con el Capitulo 8 donde se incluyen las conclusiones y

algunas propuestas de investigacion futura.



Resum

Resum

La present tesi doctoral aborda I'analisi estadistica de seéries simples i
multiples d'experiments de “ Time Course Microarray ” (TCM). El treball es centra
en el desenvolupament, aplicacié i avaluaci6 de métodes estadistics especifics que
consideren la problematica d'aquest tipus de dades, tant des del punt de vista de
selecci6 de gens com de l'analisi funcional. Les tecniques desenvolupades es
comparen amb altres métodes de l'estat de l'art actual avaluant les diferents

metodologies en termes d'eficieéncia i significat biologic dels resultats.

La tesi esta estructurada en dos blocs principals. En el primer, es revisa la
literatura rellevant i es resumeix en una part introductoria. Els Capitols 1 i 2
inclouen la descripcid del funcionament de la tecnologia de “microarrays” aixi com
una revisid critica dels metodes estadistics aplicats a aquest tipus de dades. En
aquesta part es mostren els inconvenients que sorgeixen a l'aplicar meétodes
generals a series temporals de “microarrays” i es justifica la necessitat de
desenvolupar noves técniques per a l'analisi de TCM. El Capitol 3 finalitza aquest
primer bloc amb una revisié dels méetodes estadistics especifics per a TCM. Moltes
de les técniques que es presenten en aquest capitol han estat publicades en el

mateix periode d'elaboraci6 d'aquesta tesi.

En el Segon bloc, es presenten les técniques estadistiques per a TCM
desenvolupades en el procés d'investigacié portat a terme en aquesta tesi. El
Capitol 4 descriu la primera técnica d'analisi de TCM proposta: la metodologia
masSigPro (“microarray Significant Profile”). La tecnica maSigPro usa analisi de
regressio lineal per a modelar I'expressié génica i porta a terme una estratégia en
dos passos per a seleccionar els gens diferencialment expressats (d.e.g.): en el
primer pas s'identifiquen els gens d'interés i en el segon pas es detecten, gen a
gen, els perfils amb evolucié diferencialment significativa en el temps. En el Capitol
5 s'adapta la técnica multivariante ASCA (ANOVA Simultaneous Component
Analysis) a dades de TCM, obtenint com resultat el métode ASCA-genes que
combina I'exploracié multivariante de dades de séries temporals amb un
procediment de seleccié per a la identificaci6 de gens amb canvis rellevants. El
capitol 6 inclou un tercer estudi en el qual es combina I'habilitat de ASCA per a
detectar els senyals d'expressié génica, tenint en compte el comportament
coordinat dels gens, amb I'habilitat de maSigPro per a modelar les dades de seéries

temporals i identificar els d.e.g. Els resultats mostren que, especialment quan hi ha
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alt nivell de soroll estructural en les dades, I'is de ASCA com una estratégia de
preprocesamiento de dades millora els resultats de maSigPro. També es mostra
que l'estrategia de filtrat de dades desenvolupada pot ser usada amb altres
meétodes per a analisis de TCM millorant les taxes de falsos negatius i positius.
Aquestes técniques, igual que moltes altres d'analisis de dades de TCM, ofereixen
com resultats llestes de gens diferencialment expressats. No obstant aixd, en
I'estudi de I'expressio génica, es considera un resultat molt més Gtil i interpretable
I'indicar la regulacié génica com funcid cel-lular o de processos biologics.
Normalment, aquesta traduccié es porta a terme a partir de la llista de gens
diferencialment expressats (d.e.g.). Ago implica en molts casos limitacions en el
poder de deteccié a causa de la necessitat d'un nivell arbitrari de d.e.g. sense tenir
en compte la coordinacié entre funcions biologiques. L'Ultim capitol aborda el
desenvolupament de métodes estadistics per a una avaluacio directa i integrada de
les alteracions que poden patir les funcions génicas en TCM. Per a aquest proposit,
s'han adaptat les técniques maSigPro, ASCA i PCA incorporant-los informacid
funcional obtenint les metodologies maSigFun, PCA-maSigFun i ASCA-

functional.

El document acaba amb el Capitol 8 on s'inclouen les conclusions i algunes

propostes d'investigacio futura.

Vi
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Justification, Objectives and Contributions

DNA Microarrays or DNA chips have imposed in the last two decades as
technology of choice for the high-throughput analysis of gene expression.
Microarray technology involves multiple design and data mining issues that need to
be addressed throughout the overall process of data analysis. Most of the questions
that arise during this process have been solved with classical mathematical,
statistical and visualization tools such as linear regression, analysis of variance,
multivariate projection techniques, clustering methods, etc. However, specific
adaptations were frequently required to particularly respond to the characteristics
of this type of data, such as the high levels of noise, the large number of variables,

the limited possibilities of replication, etc.

Gene expression studies involve infinity of applications of biological interest:
differentially expressed gene selection between several conditions, the study of
gene trends through time, gene regulatory networks, biological classification,
survival analysis, etc. In this work we focus on “Time Course Microarray” (TCM)
experiments which are the studies in which gene expression evolution is analysed
through time for one or several experimental conditions of interest. At the time of
start of this thesis very few specific methodologies were available for the analysis of
this particular type of experiments and there was a strong need of dedicated

methods.

00000000
The main objectives pursued in this work are the following:

a) To study the state-of-the-art transcriptomic analysis methodologies
applied to TCM.

As the focus of this thesis is time course microarray data analysis, we
started our study by providing an overview on the generation process of this
type of data. Moreover, as generic tools for microarray data were being applied
to TCM, we reviewed some of these in detail and showed their performance on

TCM using a public dataset. In particular, we focused on the following issues:

« Overview of microarray technology and bioinformatics field.

XV
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« State-of-the-art of general tools for microarray data throughout the overall
process of data analysis: experimental design, normalization, visualization

and inferential analysis.

« State-of-the-art of specific tools for time course microarray data.

b) To develop new statistical methods to deal with TCM focusing on
short, independent and multiple series time course (MSTC)

After identifying the main limitations of the application of general tools
available for microarray data to time series we have set out to develop

techniques that could properly address the specific needs of this type of data.

We have taken into consideration the following aspects:

e Modelling gene expression evolution through time for different

experimental conditions.

e Taking into account the correlation structure of the data.

e Removing systematic noise inherent to microarray technology.

e Considering functional annotation in order to obtain biological knowledge.

e The use of combinations of multivariate techniques as PCA, linear

regression and ANOVA models.

e The implementation of the developed methodologies in the statistical
language and free software R to make it easily accessible to the scientific

community.

c) To study the effectiveness of the developed methods by comparing
their performance with other available techniques.

The developed methods have been applied to real and simulated datasets to
study their performance. Furthermore our results have been compared with the

results that other microarray tools offer.
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The main contributions of this thesis are outlined in the following.

This work began in July 2004 when very few specific methodologies for time
course microarrays were available. Therefore, we first reviewed the existing tools
for microarray data in the process of design, normalization, visualization and
statistical analysis to get a general overview of the problematic. This review is
summarized in Chapter 2 where classical statistical methods and some popular
methodologies have been applied to a real time course dataset. The results show

the limitations of such methods in MSTC.

Our efforts in providing the scientific community with new specific tools for
TCM analysis resulted in the development of the maSigPro (microarray Significant
Profile) methodology and package. This method was published in 2006 in
Bioinformatics journal and it is explained in Chapter 4. The maSigPro methodology
was implemented in the statistical language R and it is freely available from the

Bioconductor contributed packages repository http://www.bioconductor.org/. It can

also be run at the GEPAS (http://www.gepas.org) suite for microarray data

analysis. The maSigPro method applies a linear regression model per gene to
address the problem of evaluating statistically significant profile differences and
selects genes for which the model is statistically significant. The analysis of the
regression coefficients of the fitted models permits the identification of the
conditions for which the gene shows significant profile changes. Although maSigPro
has proven to be a very useful approach to TCM analysis, the methodology does not
take into account the correlation structure of the data. However, biological
processes do operate in a coordinated fashion and thereby gene expression obeys
to mechanisms of co-regulation and co-expression. This translates in
transcriptomics data matrices into the existence of correlation structures, and this
property can be used to get better estimates of the parameters of the models

computed by maSigPro.

Following this consideration we explored the application of multivariate
techniques to the analysis of MSTC. Chapter 5 describes an adaptation of ASCA
(ANOVA-SCA) to MSTC. ASCA is a versatile approach that can deal with a temporal
and/or design structure of complex multivariate datasets which are increasingly
abundant in genomic technologies. Based on the ASCA model we developed a new
strategy for gene selection called ASCA-genes. This resulted in a powerful tool to
understand the shared behaviours of gene expression studied under different

conditions, to identify genes that follow the discovered patterns and to avoid noisy

XVii
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components that pollute the data. This work was published in 2007 in

Bioinformatics journal.

Next, we considered the integration of maSigPro and ASCA, using ASCA as a
filter (Chapter 6) to benefit from the best of both technologies. The exploitation of
the correlation structure of the data provided by ASCA helps to identify most
significant trends by filtering out the noise in the signal and the signal in the noise,
while the regression model fit present in maSigPro allows for the identification of
genes with statistically significant different behaviours. In practise, we use first
ASCA as a data pre-processing technique and then apply maSigPro to the filtered
data matrix. We have applied this new approach in several simulation studies with
different levels of random and structural noise. The results show that, especially
when high structural noise is present in the data, the strategy greatly improves
masSigPro results. We have also checked that this data filtering method can also be

applied to other recent methods developed for the analysis of TCM.

All these techniques, as other microarray data analysis methods, generate
lists of differentially expressed genes. In all cases, statistical analysis has focussed
in the modelling of gene expression patterns and in the identification of
differentially expressed genes. This orientation, though valid and useful, solves only
one (frequently the first) requirement in the interpretation of gene expression
changes. In most cases, the analysis proceeds with the identification of cellular
process and functions which are represented by the gene selection, i.e. genes are
identified for their functional role (functional annotation) and the question is then
which functional alterations can be derived from the gene changes. In Chapter 7 we
have set out to develop data analysis methods that consider biological knowledge
when analysing TCM data. For this we have adapted maSigPro, ASCA and PCA to
integrate functional annotation data resulting in the novel methodologies

maSigFun, PCA-maSigFun and ASCA-functional.
Finally, a general conclusion of the thesis has been included in Chapter 8

where a summary of the most noticeable results obtained throughout this work are

shown.
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Introduction

1.1 The Omics Era and Bioinformatics

In the last two decades life sciences research has undergone a revolution
due to the development of the omics technologies. These new technologies allow
the study of all biomolecules of one organism simultaneously. The term omics
refers to the comprehensive analysis of biological systems. A variety of omics
disciplines have begun to emerge (Figure 1.1). Genomics deals with the
systematic use of genome information and it includes investigations about the
structure and function of the genes. Transcriptomics examines the expression
level of mMRNAs of the genes in a given cell population. Proteomics addresses the
large-scale study of proteins, particularly their structures and functions. Similarly,
Metabolomics studies the metabolites, which are chemical substances that cellular
processes produce or synthesize. The integration of different information from
these fields of study to understand and model biological processes is named

Systems Biology.

All these technologies have generated large quantity of information and
required the development of a new discipline to store and analyse the data in a way
different to that employed in traditional genetic studies where only some
biomolecules are analysed. As a response Bioinformatics and Computational
Biology emerge as the use of techniques including applied mathematics, statistics,
computer science, chemistry and biochemistry to address biological questions,
usually at the molecular level. The terms bioinformatics and computational biology
are often used interchangeably. However bioinformatics more properly refers to the
creation and advancement of algorithms, computational and statistical techniques,
and theory to solve formal and practical problems posed by or inspired from the
management and analysis of biological data. Computational biology, on the other
hand, refers to hypothesis-driven investigation of a specific biological problem using
computers, carried out with experimental and simulated data, with the primary goal

of discovery and the advancement of biological knowledge.

Initially, the term bioinformatics was used to denote specific tasks related to
the storage of biological data and sequence alignment. As the field evolved, the
term was also employed to include all the algorithms and techniques developed to
interpret and understand all biological data produced and stored by omics
technologies. Moreover, databases were created to standardize, collect and

integrate molecular data, biological knowledge and experiments, and tools were
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developed to access and interrogate this information (some popular examples are

Ensembl http://www.ebi.ac.uk/ensembl/ and GenBank

http://www.ncbi.nlm.nih.gov/Genbank/, for genome and sequence data, the Gene

Ontology (GO) http://www.geneontology.org/, for gene product annotation, or

ArrayExpress http://www.ebi.ac.uk/microarray-as/ae/ and GEO, Gene Expression

Omnibus http://www.ncbi.nlm.nih.gov/geo/, for transcriptomics data). Currently,

understanding the biological phenomena at the genome level implies the use of
multiple data intensive resources and algorithm development tends to orientate

towards data integration and systems biology.

TYPE OF FIELD OF
BIOMOLECULE STUDY

(o] £BY [oom ]

Transcription
~ge-

==
m '\—{/‘—\/‘ | Transcriptome | | Transcriptomic |
—-\/::/\/“

Traduction

...:. | Proteome | | Proteomic |
..

-
Metabolits A A | Metabolome | | Metabolomic |
A AT

ORGANISM

Figure 1.1: Omics technologies. These methodologies deal with all the biomolecules of

a specific organism.

This work focuses on the analysis of transcriptomics data that has a time
component. Throughout this thesis we present and apply several statistical tools to
deal with gene expression data, although most techniques described here can be
applied to data from any other omics technology. The transcriptomics technology is
briefly described in the next section. This technological advance permits the
simultaneous measuring of the gene expression levels of a large proportion of the

genes on a genome, thereby allowing study the gene interactions and function gene
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regulation on the large scale. The use of microarrays and their biological

applications was recently reviewed by Gresham et al., 2008.
1.2 Gene expression microarray data

The classical paradigm in genetics establishes that genes express or copy
themselves to transcript RNA, and this RNA is translated into proteins which are the
ultimate molecules that control and establish the cellular biochemical status. It is
well known that gene expression is not constant, but variable with time and across
tissues, and these changes control the cellular physiology and, ultimately, the

phenotype.

There are several techniques available for measuring gene expression: serial
analysis of gene expression (SAGE), cDNA library sequencing, differential display,
cDNA substraction, multiplex quantitative RT-PCR (Real Time-Polimerase Chain
Reation), and gene expression microarrays (Ahmed, 2002). Microarrays quantify
gene expression by measuring the hybridization of DNA immobilized on a small
glass matrix to mRNA representation from the sample under study. The advantage
of the microarray technology is that it can measure, with only one experiment or
array, the expression of all of the genes of an organism. At present, there are two
main microarray transcriptomics technologies: cDNA arrays and oligonucleotide
arrays which can be used in combination with one or two dye labelling strategies.
Although traditionally cDNA arrays were coupled to the two colour arrays, the use
of commercial oligonucleotide arrays of either one or two colour has imposed in the
last years. The most popular oligonucleotide chip is commercialized by the company
Affymetrix with the name GeneChip, which use probe sets. Other platforms are
from Agilent, Codelink and Nimblegene that use short oligonucleotides, i.e., DNA
sequences of up 80 nucleotides which are normally synthesised in vitro and placed
onto the array. In the following we briefly comment the elaboration process of the
two traditional microarray platforms: the two colour (cDNA) chips and Affymetrix

chips.

cDNA microrrays consist of glass slides where a collection of DNA fragments,
normally cDNA libraries, are spotted at defined positions, each cDNA fragment or
probe ideally representing one gene of the genome. These chips are interrogated
with two biological samples, habitually the sample of interest and a control or

reference sample. mRNA from these samples is isolated, and reverse-transcribed
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with incorporation of a fluorescent label or dye. Two dyes (Cy3, green, and Cy5,
red) are used to mark differentially each sample. After labelling, samples are mixed
and hybridized onto the microarray, previous denaturalization of both array probes
and sample double-stranded cDNAs. After hybridization, slides are scanned at two
wavelengths to identify fluorescent signals corresponding to each dye on every
probe position or spot. Spot signal intensity is quantified as the mean pixel level at
red and green channels. The relative gene expression of the sample related to the
control will be the ratio between these intensities. High fluorescence indicates large
amounts of hybridized cDNA of the respective sample and it is related to the level
of gene expression (Figure 1.2). A ratio greater than one indicates that the gene is
more expressed in the sample than the control (i.e. is over-expressed), while for a
ratio smaller than one follows that this gene is less expressed in the sample than in
the control (i.e. is repressed). If the expression is similar in both cases the ratio will
be close to 1 and the gene is not differentially expressed. cDNA arrays and
oligonucleotides of Agilent, Codelink and Nimblegene use this strategy. More details

of this technology can be found in DeRisi et al. (1997).

Gene A

Figure 1.2: DNA chip preparation process.

The Affymetrix chip uses probe sets along with one colour technology. In

these arrays, expression of each gene is measured by comparing hybridization of
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the sample mRNA to a set of probes, composed of 11-20 pairs of oligonucleotides,
each of length 25 base pairs. The first type of probe in each pair is known as
perfect match (PM) and it is taken from the gene sequence. The second type is
known as mismatch (MM) and it is created by changing the middles base of the first
sequence to reduce the rate of specific binding of mRNA for that gene. An RNA
sample is taken, labelled with a fluorescent dye and hybridized onto the array.
When scanning the arrays, two vectors of intensity readings, one for PMs and one
for MMs are obtained for each gene. The expression level of the gene is the average

difference between PM and MM. This technology is described in Affymetrix (1999).

Apart from DNA chips to measure gene expression, there exist other types
of DNA chips with other purposes. For instance, Exons chips are useful to study
alternative splicing, CGH (Comparative Genome Hybridization) to the detection of
large genome alterations, and Illumina chips to detect SNPS (Single Nucleotide

Polimorfisms) variations across individuals.

Chip 1 Chip 2 Chip P
11 T2 lip
X = Ny Iy
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Figure 1.3: Gene expression profiles for N genes in P microarrays. Each cell is measured with a gene

expression ratio in a scale from green (ratio<1) to red colours (ratio>1) going through yellow colour
(ratio=1). Gene expression values are represented in matrix X, where rows are the genes and columns

the chips.

Normally, in a transcriptomic experiment more than one sample is analysed.
Each sample will be associated with an experimental condition. The information
obtained from the microarrays is organised in a data matrix X where the rows
represent the genes and the columns the different situations or arrays (Figure 1.3).

We name gene expression profile at the different expression values that one
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gene has for the different conditions, treatments or tissues (rows of matrix X). If
we consider the columns of this matrix X, we are looking to the transcriptional
status or fingerprint of a given sample. Before applying data analysis to find
responses to our biological questions, addressed by the microarray study,
preliminary processes have to be made to the data to extract the signal of interest.
These preliminary processes depend on the employed technology but, in general,
the normalization and removal of the noise are critical steps required before
proceeding with the statistical analysis of transcriptome differences. These steps

are discussed in next chapter.

1.3 Time Course Microarray Data

This thesis focuses on the analysis of a specific type of transcriptomics
experiments, where gene expression is measured over time and under one or more
biological conditions. Biological questions addressed by these experiments could be
divided into three major types. One type of experiments aims to the understanding
of gene-expression basis of physiological phenomena or developmental processes,
for instance the study of the cell cycle. Another kind of experiments tries to
determine the gene expression response to stimuli or treatments. Finally, time
course experiments are also designed to study gene regulatory networks or

interactions between genes.

From the experimental design point of view, time series are classified based
on different criteria: the number of time points, the number of biological conditions
and the independency between each individual time point. When the number of
time points ranges between 3-6 we talk of short time series while more than 6 time
points are considered as long series. The second categorization divides time course
data into single or multiples series data, if one experimental group or more are
evaluated. Finally, time course experiments can be classified into longitudinal and
independent, also named cross-sectional data. In longitudinal series individuals are
sampled at different time-points, whereas in independent experiments samples at
different times are from different and independent individuals. Normally, in these
experiments several replicate measurements are available and the evolution of the
averages of each time point across time will be analysed taking into account their
independence, as they belong to different individuals.

Experiments where the purpose is the study of biological processes are
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normally related to long, longitudinal and single time series. In these cases gene
expression of natural biological processes are studied, as the case of the study of
cell cycles and circadian rhythms where periodic expression patterns are expected.
In contrast, studies addressed to investigate the responses to stimuli use frequently
short, independent and multiple time series. The goal of multiple time course
experiments is to analyse the differences in gene expression between the various
experimental groups, i.e. different treatments or tissues. These responses to stimuli
are usually expected in a predefined period of time included in the design therefore
these series are also short. Finally, gene network data usually are associated with
single series of time-course data. Most recent research in this area integrates
multiple datasets to derive co-expression modules defined through a large variety

of biological conditions.
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Tools for microarray data

2.1. Introduction

Microarray technology generates gene expression data in unprecedented
amounts. Specific algorithms and computational tools are required to cope with the
analysis of these huge data volumes. In this chapter we provide an overview of the
main steps in microarray data analysis, illustrating their current use with
experimental data and discussing the achievements and limitations. In particular
we address aspects such as experimental design, data pre-processing, descriptive

and inferential analysis.

Due to the relatively high cost of microarrays and the normally limited
amount of biological material available, a very important aspect is to determine the
proper experimental design and to establish the number of replicates necessary to
obtain a given statistical/discovery power. Furthermore, microarray data must be
pre-treated and normalized to remove technical noise that disturbs the biological
signal and to set all arrays in the same experiment to the same base-line.
Moreover, in two colour technology, the effect of the labelling dyes and the fact that
the data consists of ratio values between the two dye intensities are relevant
aspects to consider during data pre-processing. Finally, the researcher must choose
the adequate data analysis technique that correctly addresses the biological
question under investigation. A first step in the analysis of transcriptomics is
normally the visualization of the data globally. Different clustering algorithms are
used to this end and in some cases this is the only analysis that is performed,
which could be sufficient when few arrays and few conditions are studied.
Clustering techniques help to group genes with similar behaviour and the
visualization of the profiles of these groups can reveal meaningful biological
patterns. However, these techniques are only descriptive and the conclusions can

not be evaluated in terms of statistical significance.

One of the main goals in microarray studies, which is also within the scope
of this thesis, is the selection of genes with different expression between two or
more conditions. Classical inferential techniques and also microarray-specific
algorithms have been applied to this end. These aspects will be treated in detail in
the following sections. Other uses of transcriptomics such as the classification of
biological samples or gene network analysis are not in the scope of this thesis and

we will only mention them briefly.
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2.2 Experimental design

As previously stated, one of the main goals in transcriptomics is to identify
genes with different expression under the experimental conditions of study or, in
other words, to analyse if the different experimental conditions have an influence in
gene expression. However, transcriptomics signals are not noiseless and the proper
identification of the existing sources of variation is an important aspect in a
successful analysis of the data. Factors that contribute to the measured intensity
values are the array, the gene, the treatment and, in two colour chips, also the
labelling dye. Array effect refers to non-biological sources of variation collected in a
single hybridization experiment, such as the differences in slide manufacturing,
variations in the biochemical reactions, scanner intensity, etc. Gene effect relates to
the different levels of expression between genes but also variations in the quantity
of DNA in the array spots. Treatment effects measures the variation in gene
expression through the different experimental conditions such as different tissues,
treatments doses, time-points or a combination of these. Finally, in two colour
arrays, a dye effect means that the two dyes (green Cy3 and red Cy5) can undergo
differential incorporation efficiencies into the molecules of their respective cDNAs.
Other sources of variation exist that are more difficult to estimate as the instability
of the RNA molecule, the synthesis reaction of cDNA from the RNA, the initial
quantity of RNA in the samples, etc. These sources will contribute to increase the

residual variation.

Although the cost of microarrays has reduced significantly in recent years, a
multiple treatment microarray experiment is still quite costly. For this reason the
election of an adequate design is required to optimize power in statistical analysis
with the minimum number of replicates. In two colour arrays, this implies making a
decision on how to label and distribute samples through hybridizations, which is
referred as “array design”. Due to the high influence of the dye in gene expression,
several specific designs for two colour microarray experiments have been
developed. The “Reference” design is the most used in practise although there are
other alternatives such as the “Loop” design and the “dye-swap” design (Figure
2.1).

The “Reference” design. In this design the samples associated with the
treatments are labelled with the same dye and are hybridized against a common

control that is labelled with the other dye. This common sample can be a truly
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experimental control, but more frequently it is a pool of all the samples included in
the experiment, which is then denoted as “reference”. This design is very extensive
due to the fact that it only needs v arrays to the study of v treatments, it allows for
adding a posteriori treatments and the comparison between the different
treatments is simple as all of them are referenced to the same control.
Furthermore, in this design the treatment effects are completely confounded with
the dye effects and the reference is the sample from which more information is
being obtained and it is possibly the sample with the least interest for the study,

which has caused some criticisms towards this approach.

The “Loop” design. Kerr and Churchill (2001) proposed this design with
the intention of extracting more information from the samples of interest with the
same number of arrays as the “reference” design. From each treatment two
samples are labelled with red and green dyes and samples are hybridized following
a loop structure (see Figure 2.1). In this way, the dye effects are not confounded
with the treatment effects but a drawback appears as the number of labelling
reactions is doubled (2v instead of v+1 in the reference design) which can be
considered as an extra effort. On the other hand, this design complicates the
comparison between non-adjacent treatments and suffers from great instability of

missing values.

Sometimes it is useful to introduce a reference as another variety in the loop
design (“loop with reference”, Draghici, S., 2003), for example if the interest is to
study the evolution of a drug through time the control could be a sample before the

treatment.

The “Dye-Swap” design. This experimental design provides two
measurements for each sample through labelling with each dye. It uses two arrays
to compare two samples. In the first array the control is labelled with one of the
dyes (i.e. the green dye) and the treatment is labelled with the other (i.e. the red
dye) while in the second array the dyes are exchanged. This design allows

estimating dye effects, avoiding and removing this from the treatment effect.

These are the three basic designs but combinations of them are also widely
used such as, for example, a “reference” design with “dye-swap”. Some of these
combinations are shown in Yang and Speed (2002) where designs for factorial and

time course experiments are compared.
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Figure 2.1 The most common designs. a) Reference design, b) Loop design and c) Dye-swap
design. Nodes represent the control samples and arrows the treatment with which the control is

hybridised in the same array. See text for descriptions.
2.3 Data pre-processing

Data pre-processing are the transformations and manipulations needed to
prepare the data for posterior statistical analysis. Although there is no standard
protocol, the usual steps are logarithm transformation, treatment of missing values
and outliers, replicate handling and normalization. The large dimensions of gene
expression datasets sometimes hamper the performance of these computations due
to the amount of memory required and the fact that effective tools for other types
of data can fail in transcriptomics analysis. Visual inspection to estimate the
amount of missing data or to look for outliers, for example, is not enough. For this
reason specific programs and web services have been developed to carry out the
pre-processing microarray data (Tarraga et al., 2008 and Kapushesky et al., 2004
to cite some popular web sites). In the following sections we discuss the logarithm
transformation and normalization as being the most relevant and specific steps in

two colour microarray data pre-treatment process.
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2.3.1 The logarithm transformation

When gene expression is computed as the ratio between two hybridization
signals, the range of over-expressed genes, that is greater than 1, is not the same
as the range of repressed genes, that is ]0,1[. In this case the logarithm
transformation is applied to microarray ratios to generate data symmetrical
distributions and provide more interpretable comparisons between genes. The most
usual logarithm base is 2. In this manner, for a gene whose expression in the
treatment is the double of the control, the ratio=2 and log2(ratio)=1. Conversely, a
gene with half of the expression in the treatment will have a ratio=0.5 and
logy(ratio)=-1. With this transformation the values now reflect that the two genes
change in different directions by the same magnitude (Quackenbush, 2001). For
one colour data, log transformations are also normally taken to reduce the scale of
the data. In some cases, logarithms are taken for the ratio of each sample to the

control array, to make expression data look similar to the two colour situation.

2.3.2 Normalization

As previously mentioned, technical aspects inherent to microarray
technology introduce sources of variation in the data that alter the identification of
the true gene expression signals. A data normalization step needs to be applied to
remove this noise and calibrate all observations. Array, dye and background
variations are the most usual sources of noise which are taken care of during
normalization. However, not every statistical analysis equally needs the
normalization steps, for instance ANOVA can isolate this variation in the model and

only focuses on the variation of interest.

The use of fluorescent dyes, inherent in 2 colour microarray technology,
introduces variation and error sources. The different labelling efficiency between
the dyes means that the red and green signals are not exactly equivalent.
Moreover, the auto-fluorescence of spotted DNA on the red spectrum, adds a
positive signal value to red-labelled samples which results in a bias of the logarithm
of the ratio (computed as /og2(Red/Green)) towards positive values at low intensity
ranges. Moreover, the noisy nature of data at low intensity values are amplified
when ratios are used. Working with ratios implies that the magnitude and variation
of the data is greater in low intensities than in high intensities. For example, a gene

with an absolute difference of 2 at low intensities: Red=4, Green=2 corresponds to
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a log-ratio=1, meanwhile the same difference at high levels is an absolute
difference, Red=257, Green=255 corresponds to a log-ratio=0.01. This effect is
clearly shown in a self-self experiment where two samples of the same RNA are
labelled with different dyes (Dudoit et al., 2002b). If the dye did not have an
influence on gene expression the /log,R vs. log,G plot would be on the diagonal.
However we can observe in Figure 2.2a) a deviation to high values at low
intensities. This effect, known as the name of “Banana shape”, is more noticeable in

the MA-plot (Figure 2.2b). This plot represents M=/log,R/G vs. A=l0g;VRxG
(A:%(I092R+I092V), mean of the intensities logarithm) and it is a 45°

counterclockwise rotation of the /og,R vs. log,G plot along with a scale change.

a) b)
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Figure 2.2: Hybridization of two samples of the same RNA. a) log.R vs. log,G R: red and G: green

intensities. b) MA-plot. M=log,R/G A=log.vR xG . M=0 is the solid line and the median the dashed line
(Dudoit et al., 2002b).

Normalization can be carried out using genes for which a constitutive and
invariant expression level is assumed (i.e. house-keeping genes), or using spiked
controls, that are synthetic or unrelated DNA sequences, included in the array
design and mixed at known concentrations with the labelled samples. However,
these strategies are not always available, because the first ones require study and
definition of the house keeping genes —-which is very controversial- and the second
require additional purchases. Therefore, the most usual normalization techniques
are based on several properties of global gene expression. The most used
assumption is the invariability: thousands of genes are analysed in a chip but the
condition under study only affects a small percentage of them. Therefore we can

assume without introducing big errors that gene expression of the majority of the
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genes does not change or that the number of over-expressed and repressed genes
is nearly equivalent. This hypothesis implies that the average of the ratios should
be close to 1. Under this assumption several normalization methods have been

proposed, from simple standardization to non-linear regression techniques.

Yang et al. (2001) describe normalization methods that account for the
intensity and spatial dependence for cDNA microarray experiments. We distinguish
two types of normalization: within-slide normalization and between-slide
normalization. Figure 2.3 shows a graphical example with gene expression
representation of a slide through the different transformations until normalized data

is obtained.

1) Within-slide normalization: the normalization is carried out taking into

account the available information separately for each array.

e Global normalization: To normalize the different arrays, often global

normalization is the simplest methodology: a ¢ constant adjustment to achieve
the distribution of the log-ratios intensity has a median or average of zero for

each slide:

log, (R/G) —log,(R/G)-c. (2.1)

However, such global normalization approaches are inadequate in situations
where systematic noise depends on overall intensity or spatial location within the

array.

o Intensity dependent normalization (smoother lowess): To account for the

intensity and spatial dependence normalization methods based on robust local
regression have been proposed. The most used normalization method is
“Lowess” (locally weighted regression technique) that adjusts the ratios through
locally linear fits that depend on the intensity: f(A), representing A the intensity
as A=/0g,JRxG :

log, (R/G) —log, (R/G)-c(A). (2.2)

The estimation of the function f(A) depends on the choice of the bandwidth, that

establishes the area where the function is estimated, and the parametric function
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to fit. These criteria are related because changes in the bandwidth can determine

that another type of function was more adequate (Cleveland and Loader, 1996).

e Within-print-tip group normalization: Apart from the intensity it is possible that
the print-tip or subdivision of the chip affects the gene expression

measurements. In spotted arrays there are several grids that are printed with
the same print-tip or position of the arrayer, and systematic differences may
exist between the print-tips. In these cases it is recommendable to apply
different lowess fits for each grid, i:

log, (R/G), »10g,(R/G),-c(A), i=1,..,1I. (2.3)
The problem here is that the assumption of invariability must hold for each print-

tip group, which is not always possible.

a) Original data b) Global normalization

o mie e

Figure 2.3: MA-plots with the change of the data distribution through the different
transformations until normalized data is obtained. a) Original data. We can see the
dependency between gene expression and intensity. b) With global normalization the points
are shifted up. c) Lowess normalization eliminates the intensity dependency. d) Finally the

between-slide normalization homogenizes the variation between the different slides.

2) Between-slide normalization. Previous normalization methods are effective in
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obtaining centred data but it is still possible that the log-ratios have different
variances across slides (see Figure 2.4). In such cases between-slide or scale

normalization could be applied.

a) Slide 1 b) Slide 2

Figure 2.4: An example where gene expression variation is different in
two different microarrays. After scale normalization the array variance will be

the same and therefore the ratios comparable.

One useful approach is to assume that the log-ratios of the i-th array are
normally distributed with mean zero and variance a’c*, where o is the variance of
the log-ratios and &’ the scale factor for the i-th array. These factors can be

estimated using the maximum likelihood estimators that are the sample variance of

each array:

o T, (2.4)

where M;; denotes the j-th log-ratio in the i-th array group, j=1,..,N; and M, is the

ratio average of the j-th array. However it is more usual to use the statistic:

4 = % being MAD, = median, {
1[TMAD,

i=1

M, — median(M;)

} (2.5)

that is an estimator for which numerous empirical works have shown that remove
the influence of outliers. After estimating these parameters data will be rescaled by

the factor 1/4 to achieve similar scales.

Huber et al. (2002) proposed another method to stabilize the variance. They

considered that the variance of the data is related to the mean by

21



Tools for microarray data

s2=(c,X+C,) +¢c, beingc, >0, a relation that must be checked in each
experiment. To get independence between the mean and variance, they suggested

the following transformation h(x) = yar sinh(a + bx), with y=¢,*, a=c, /\/a and

b=c /\/E , that coincides with the logarithmic transformation for large intensities.

Durbin and Rocke (2004) introduced a transformation within the
generalized-log family which stabilizes the variance of the difference of transformed
observations. They also introduced transformations from the started-log and log-
linear-hybrid families which provide good approximate variance stabilization of
differences. More recently, Papana and Ishwaran (2006) used Classification and
Regression Tree (CART) to cluster genes by the different variances. This
classification allows for the improval of the estimation of the population variance to

better stabilize the variance of the data.

Quantile normalization is another important normalization technique (Bolstad

et al. 2003). This method is the standard normalization procedure used in one-
colour chips as Affymetrix but it can also be applied to two-colour technology. It is
based on the idea that the distribution of two data vectors is the same if the

quantile-quantile associated plot is a straight diagonal line that we can represent by

the unit vector (1/\/5,1/\/5). Extending this to n data vectors the quantiles plot

will be the line given by the n-dimensional unit vector d=(1/xm,-~~,1/\/ﬁ).

Therefore projecting the quantiles of n arrays onto the diagonal makes the
distributions for each one of them the same. Due to the fact that the projection of

each quantile is the mean quantile vector, by taking q, =(q,,,...,q,,) for k=1,...,p

to be the vector of the k™ quantile the projections on d are
1 12 S . .

proy,q, = ;quj,...,;quj , the method consists in replacing the original values
j=1 Jj=1

for the corresponding mean quantile. We can see that the method forces the values

of quantiles to be equal losing original information from the data.
2.4 Exploratory analysis

Graphical representations of transcriptomics data are useful mechanisms to

obtain an overall understanding of the variation patterns contained in large
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datasets and to find associations between components. When exploring the data,
two aspects can be considered, the gene fingerprint for each experimental condition
(column-wise analysis) and the trend or profile of each gene in the different

experimental conditions studied (row-wise analysis).

Initial transciptomics studies considered the comparison gene expression
profiles, rows of matrix X, for grouping genes in homogeneous classes and
available clustering algorithms were used to this end (Spellman et al., 1998 and
Cho et al., 1998). Clustering analysis helps exploration of gene expression profiles
as we can jointly visualize genes with similar profiles. Different experimental
conditions can be also clustered by comparing columns of matrix X and in this way

the relationships can be derived between clustered conditions and genes.

All clustering techniques are based on comparing distances between the
elements to group: rows or columns of matrix X. In data analysis the most
frequently used distance measures are Euclidean, Manhattan, correlation and
Mahalanobis distances. Given two vectors x; and x; of dimension g (p in row-wise

analyses and N in column-wise analysis) these metrics are defined as:

q
1. Euclidean distance: d(x;,x;) = /> (X, —Xjk)2 .
k=1

q
2. Manhattan distance: d(x;, x,) =" |x, — X;].
k=1

3. Correlation distance: d(x;,x;)=1-r, being r the Pearson correlation

coefficient:

9 — —
z(xrk - XI)(X]k - X])
k=1

\/ki(xfk _)?i)zki(xjk _)?j)z

r =

4. Mahalanobis distance: D2=(x,—xj)TV’1(x,—xj), being V variance-

covariance matrix.

As we can observe the Euclidean and Manhattan distances are based on the
differences from each pair of points, therefore they measure the geometric

closeness of the two vectors. Correlation distance measures the co-variation of the
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two vectors and Mahalanobis distance takes into account the variance of the
vectors and also their covariance. As most of the times there is an interest in
understanding co-expression patterns, the most used distance in transcriptomics

analysis is the correlation distance.

Traditional clustering techniques have been applied to microarray data and
many new methodologies have also been developed or adapted from classical

methods. In general clustering algorithms can be divided into two major types:

e Hierarchical cluster, where groups are joined in a hierarchical structure
according to the distance between them. The most frequently used is UPGMA

(Unweighed pair-group method using arithmetic averages).

¢ Non hierarchical cluster or partitioning methods, which seek to obtain
an optimal division of the data being the number of clusters prefixed. Typical

representative algorithms are k-means and Self Organizing Maps (SOM).

Another useful approach for microarray data exploration is Principal
Components Analysis (PCA). Although it is not specifically designed for clustering

purposes, PCA can help to visualize groups of genes with similar behaviour.

2.4.1 Hierarchical cluster

Hierarchical cluster analysis can be agglomerative or divisive. The
agglomerative ones begin with all the elements as groups and join them until one
unique group is formed. The divisive ones begin by considering the total group as
unique and work by splitting it sequentially. Hierarchical procedures are usually
performed visually in a tree diagram named dendogram, where the joints or

divisions are represented.

As the agglomerative methods are the most widely used, to simplify the

exposition, we only develop this procedure that has the following steps:

1. Initially the N elements to group are considered as clusters. We consider

matrix D that collects the distances between the N objects to group.

2. An inter-cluster distance measure is chosen, represented by &(C;,C;), being
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C, and C; two different clusters. Distances between all pairs of clusters are

computed.
3. The two nearest clusters are joined as one.

4. The distances between clusters are computed again considering the change

done in step 3. Then, step 3 must be repeated till obtaining only one cluster.

Given the clusters C;, C;, the most used inter-cluster distances are:

1. Single linkage (closest neighbour): min{d(x,,x].), X,

i

€eC, X, e Cj} .
2. Complete linkage (furthest neighbour): max{d(x;, x;), x,€C, x,C,}.

3. Centroid linkage: d(x;, x;), the distance between the centres of the clusters,

being )?,:iZX, and )?j=i > x;.

i X;eC; nj x;eC;

4. Median linkage: d(Me,, Me;), the distance between the median of the

clusters.

. 1 . .
5. Average distance: — Z d(x;, x;), average distance of all elements in
il x;eCi
x;eGj
each cluster.
1.- Single linkage 2.- Complete linkage 3.- Centroid linkage

4.- Median linkage 5.- Average distance

a @,

Figure 2.5: Inter-clusters distances graphical examples.
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As we can see in Figure 2.5, single and complete linkage depend on the
extreme data, therefore the existence of outliers can have a high influence on the
results. The median linkage is the inter-cluster distance that must be used in these
cases. However, centroid linkage and average distance are the most used inter-

cluster distances, which are also influenced for outliers but with less intensity.

2.4.2 Non hierarchical cluster

Non hierarchical cluster or partitioning procedures are divisive and their goal
is to make a unique partition of K groups, this number being a priori fixed. To
determine K the researcher must be guided by their own experience or by the
previous hierarchical cluster results. In such procedures the elements are assigned

to the groups by optimizing a pre-selected criterion.

The most well known approach is the k-means algorithm. This procedure
first chooses the centres of the clusters randomly or by using any information
available. Secondly the elements are assigned to the closer cluster using an
adequate distance measure and after each assignment the centroids are
recomputed. Finally, when all the elements are assigned, distances between all the
elements and centres are computed to evaluate possible changes of cluster. The

process stops when there is no reassigning to do.

2.4.3 Self Organizing Maps (SOM)

Kohonen (1997) proposed another non hierarchical clustering algorithm
named SOM. This procedure was designed to perform a grid in which similar cluster
patterns are plotted next to each other, in other words, a plot where the
neighbourhood of each cluster is similar to the other. The number of clusters and
the desired geometry of nodes (for example, 6 clusters in a 3x2 grid) must be pre-

specified.

Initially, the representation of the nodes in the P-dimensional space (if we
are clustering genes) is random and they go changing sequentially to the optimum
solution (see Figure 2.6 where P=2). The subsequent position of the nodes is
represented by fi(k), t=1,...,T, fy being the initial position and T the total number of
iterations to do. To group N genes in K groups, firstly a gene is selected randomly

(G) and the nearest node is computed (kg). Then all the nodes are modified by
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applying:

foa(K) = (K) + (d(k, k), t)(G - f,(K)), (2.6)

0,027

. =, x<p(t
being 7(x,t)={T +100t At)
0, otherwise

and p(t)the threshold to decide if a node is

changed or not (Tamayo et al., 1999). In this way only the closest nodes to kg are
changed and the rate «(d(k,k;),t) becomes smaller in each iteration, the changes to
make also being smaller. This adjustment tries to approximate the nodes to the
centroids of the existing clusters. The process is repeated with the rest of the genes

until a cycle is complete. Several cycles can be developed.

Figure 2.6: SOM example. Initially there are 6
nodes in a 3x2 rectangular grid. Black points are the data
and grey circles the centroids. Arrows indicate changes in
the position of the nodes until the final configuration is
obtained.

SOM is a very effective algorithm to exploratory data analysis and it is
capable of exposing the fundamental patterns of a great amount of elements.
However, it does not perform a hierarchical structure to show the relationships
between clusters. Furthermore, it has been detected that when a very common
type of profile exists and with very little variation, as in flat profile cases, the

majority of the clusters reflect this situation and the changing genes, normally a
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minority, are represented in a few clusters losing the important details in their

representation.
2.4.4 Self Organizing Tree Algorithm (SOTA)

SOTA is another divisive method that combines the data management
capability of SOM and the hierarchical cluster method advantages (Herrero et al.,
2001 and Herrero and Dopazo, 2002). SOTA begins doing a SOM where the number
of clusters to develop is two. Then, the cluster with the most variation is chosen to
have SOM applied to it to divide this cluster in two new groups and so on. Each
time a cluster is divided the clusters are analysed to decide if the process stops or
continues. The decision is made depending on two criteria: a pre-established level

of variation in all the clusters and a prefixed number of clusters to develop.

By comparing the time consumed by hierarchical cluster, SOM and SOTA, we
can see that this time for SOM and SOTA is proportional to N (genes to study)
whereas in hierarchical cluster it is proportional to N°.

2.4.5 Principal Components Analysis (PCA)

Projection techniques such as PCA can help to represent a summary of the
available information in a single plot. PCA is a multivariate technique that reduces
the dimension of a set of objects measured in a P-dimensional basis, taking
advantage of the relationship between the variables. The method consists of
projecting the individuals on a subspace of dimension Q<P extracting the major
information. The solution of this problem is the subspace defined by the Q
eigenvectors associated with the Q higher eigenvalues of the variance-covariance
matrix of the data. The representation of the objects (genes) and the variables
(experimental conditions), in the new dimension allows for graphically visualizing

the relationships between them.

Xnxp being the data matrix with N genes and P conditions, the problem can
be formulated as minimizing the global deformation of the original cluster of dots

when it is projected on a vectorial subspace W. This global deformation is called

N
inertia over W and it is defined as I, =) pd*(x,X;), being p; the weight or
i=1

importance of the object i/, X, = proy,(x;) is the projection vector of x; on W and
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d*(x;,X;) =‘ ° the distance between the original representation of the object

X; - X;

and its projection in the new space. The problem is translated to Min I, .

Taking W =span {w, w,,-, Wy}, with {w, w,, -, wy| orthonormal
Q

system of vectors, I, can be expressed as I, = ZN: p; ||x,.||2 -> wiVvw, ,
i=1 k=1

where V is variance-covariance matrix of the variables x; x5 . . . xp. As the first

addend is constant, the problem is translated to maximize the second addend:

Q
Max ZWZVWk . The solution to this problem is {ul,...,uq}, an orthonormal
k=1

system of eigenvectors associated with the Q highest eigenvalues of matrix V.

The k-th principal component, Z¥, is the vector of RY whose components are

the projections of the original data on the new space: z¢ = x/u,, i=1,...,N.

2.5 Inferential analysis

Visualization tools described in the previous section are very useful to find
genes with similar profiles and to identify samples with similar gene expression
fingerprints. However, these methods are only descriptive and they do not provide
enough information to derive a value of significance, i.e. to indicate generalization
power. As the main purpose of microarray analysis is the identification of
differentially expressed genes, hypothesis testing methods are usually applied. In
transcriptomics data, this implies as many statistical tests as variables and the
appearance of a multiple testing scenario that demands adjustments of the single
test p-values. Classical statistical methods such as the t-Student test, ANOVA F-test
or mixed models have been applied. However, to address the specific problems of
microarray data, new methodologies or variations of classical statistical procedures
were developed. In the following we mention some of the most noteworthy aspects
especially related to microarray data and the methodologies that address them.
Firstly, we introduce classical statistical tests to show the simplest way to handle
this analysis and to show the test basis from which the majority of the tools for
microarrays have started. Secondly, we mention the main aspects inherent to
microarray data. Finally, we describe some specific tools developed to deal with

microarray experiments.
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2.5.1 Classical statistical tests
Two conditions

The simplest and most frequent microarray experiment involves only two
conditions, for instance experiments where cancer is compared with healthy tissue.
Two conditions can be directly compared in the same array for each replicate using
two-colour cDNA microarrays technology and the hypothesis to test is if the ratio is
1 (or if the log-ratio is 0). An arbitrary level is normally used as cut-off value to
declare a gene as differentially expressed. However, this test, named “fold” change
is not a statistical test. When replicated data is available, the t-test statistic
associated with this experiment for each gene is based on:

X

s/m

T = t

m-1

(2.7)

being:

X: Sample average log-ratio.
m: Sample size or number of replicates.
s%: Sample variance.

This sample distribution assumes normally distributed data or the size of the

samples is big enough to apply the central limit theorem (m=30).

Two conditions can also be compared indirectly by hybridizing the samples
with a common reference and testing to see if there are differences in the ratios,
that is the same test to use for single-colour technology. As the most usual
experiments compare samples indirectly, the developed methods and also the
methods described in this chapter can be applied to both technologies. The t-test

statistic associated with this experiment for each gene is based on:

5% = tm1+m272 (2'8)
(m -1)s+(m,-1)s2( 1 1
m

m +m, -2

T =
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being:

X;: Sample average log-ratio of condition i, i =1,2.
m;: Sample size of condition i, i =1,2.

s?: Sample variance of condition i, i = 1,2.

This test is also based on normality assumptions and furthermore equality of the

variances between the samples of the two conditions.

More than two conditions

When the object of the study is to compare the effects of K treatments of a
factor, for example, multiple drug treatments or different doses of the same
treatment, ANOVA (ANalysis Of Variance) is the classical tool developed to handle
this problem. To explain the differences in gene expression through the different

levels of the considered factor, the following model is considered for each gene:

X, =p e =uta;teg, i=1...,.N., Jj=1,..., K. (2.9)

J

Xx; being the i-th replication of gene expression at level (or treatment) j, x the
global average, «; the effect of the j-th level of the factor, N; the available data in

level j and ¢; the residual term.

To determine the existence of differences between the gene expression
population average at the different levels, in other words to contrast the null

hypothesis Hotay =, = =0, =0 against the  alternative hypothesis
Hi:3i=j/e; #a;,0,je(l,...,K), the following decomposition of the variance is

considered:

(2.10)

where X is the global sample average and x; the sample average for group j, SSr

the total sum of the squares, SSg the sum of the squares between groups defined
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for the levels of the factor and SSy, the sum of the squares within groups. From this

SS, /(K -1)

that under the null
SS, /(N -K)

decomposition the F statistic is formed as F =

hypothesis and assuming normality and independence of the residuals it is
distributed as the F-Snedecor with (K-1, N-K) degrees of freedom.

Multifactor experiments

When two or more factors are available the interest is not only to study the
differences between the groups of a factor but the possible interaction between the
different factors. Taking the most simple case: an experiment with two factors, the

ANOVA model to consider for each gene is:

Xpp =+ + B +y;+é&y, 1=1..,K, J=1..,K,, h=1,....N;

;o (2.11)
X;jn being the h-th replication of gene expression at level j of factor 1 and level j of

factor 2, ux the global average, «; the effect of the i-th level of the first factor, g,
the effect of the j-th level of the second factor and y; the interaction effect

between the factors at / and j levels, respectively.

By splitting the total variance in variability due to the factors and interaction
in a similar way that the decomposition (2.10) three different F-statistics can be
developed to test the existence of population average gene expression differences

between the groups formed by the considered factors.
2.5.2 Relevant aspects in data analysis of microarray experiments

These classical methods have some limitations when dealing with microarray
data. Firstly, these techniques contrast a unique hypothesis and they control the
type I error rate. Transcriptomics data imply many tested variables (genes) and the
control of this rate is not enough. Furthermore, there are not always enough
replications to obtain good estimations of the variance of the estimators. Finally,
these techniques require the normality assumption to their success, and this can
not always be assumed in microarray data. In this section we discuss these three
main issues that are major aspects considered by statisticians when developing new

specific techniques to improve statistical analysis.
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Multiple testin

The multiple testing problem is one of the most challenging topics. In
experiments where there are n tests to do the global significance, the so-called

family-wise type I error rate, is computed by FWER=1-(1-«)". In spite of

selecting a very low significance level « for each test, FWER increases
considerably. For instance, in an experiment with 1000 genes and two conditions
there are 1000 statistical tests, taking « =0,01 the FWER =0.9999. In other words,
the procedure will almost definitely wrongly conclude that there is at least a

difference in one test (when there are no real differences).

A simple solution is the Bonferroni correction that consists in choosing a
global significance level and working for each comparison at FWER/n level.
Unfortunately this correction is very strong for gene expression analysis due to the
large number of comparisons to do. The required significance level for each contrast
will be so small that the almost no statistically significant gene would be found in
the results, yielding many false negatives. Other procedures exist to control the
FWER as Sidak procedure and Holm’s step-wise correction (Dudoit et al., 2002a).
However, the control of the FWER is conservative. Instead, it is more appropriate to
control the false discovery rate (FDR) that is the proportion of errors among the

identified differentially expressed genes.

There are several procedures to control the FDR. The first and most used
one is the linear step-up procedure (Benjamini and Hochberg, 1995). This
procedure firstly orders the p-values associated with the employed statistics for n

null hypothesis considered: p.)<... <pu). And secondly, for a desired FDR level g,

the number of null hypothesis to reject is k =max{i/p, <gqi/n}, i=1,..,n. This

method has the drawback that implies independency of tests (gene expression)
which is not true. To circumvent this problem, resampling-based FDR controlling

procedures have been developed (Reiner et al., 2003).

Sharing information

Some authors have developed the idea of moderation or shrinkage to
analyse microarray data. Moderating or shrinking gene variances refers moving the
variances towards a common value estimated by using the global information of all

the genes. In experiments where a small number of replicates are available for

33



Tools for microarray data

each gene, variances can be poorly estimated and therefore the results of the
classical t or F statistics can lead to increased false negatives and positives.
However, it is well known that genes do not act alone, therefore there is shared
information within microarray data that could be used to improve variance
estimates. Borrowing information from the ensemble of genes can assist in the
inference about each gene individually. Tusher et al. (2001) developed one of the
first approaches that uses this idea. These authors proposed a modification of the t-
statistic by adding a constant in its denominator which improves the estimation of
the variance. Another way to do this is through the application of empirical Bayes
methods (Efron et al., 2001 and Lonnstedt and Speed, 2002). In this case the
information of all the genes is used to estimate the parameters of a prior
distribution that is later used for especifically evaluating each gene. Recently,
Storey et al. (2007) proposed a new approach for performing multiple tests in high-
dimensional studies by applying the optimal discovery procedure (ODP). This new
approach utilizes the information of all the statistical tests available to improve the
existing thresholding methods. Theoretically, the data for each specific test is
evaluated by using the ODP statistic. Suppose that there are n significant tests or
genes: X;, X,...,X, €ach one with m observations or arrays. Assume n, true null
hypotheses, i=1,...,n, and the alternative is true for i=ny+1,...,n. If the significance
test i has null probability density function f; and alternative density g; they consider

the statistic:

Go i (X) +.. 4+ G,(x)

Soor () = S oy FL 00

(2.12)

The null hypothesis i will be rejected if Sppp(x;) is higher than an acceptable
threshold. They provide an example in Storey (2005) showing how microarray data

contains information shared across genes.

Distributional assumptions

Standard statistical methods rely on the normality hypotheses to give good
results. The failure to meet this requirement is not a serious problem when large
samples are available because in such cases the “law of large numbers” holds. In
microarray experiments high replication is not possible -or very rare- and
alternative methodologies, such as permutation or empirical bayes methods, are

being applied to estimate the empirical distribution of the statistics of interest or,
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most typical, the distribution of the FDR (Efron et al., 2001 and Tusher et al.,
2001).

2.5.3. Specific statistical methods for microarray data analysis

Significance analysis of microarrays (SAM)

SAM (Tusher et al., 2001) is one of the most popular versions of the t-test
and it is the first method that applies the idea of moderation introduced in section
2.5.2. SAM uses an empirical distribution by applying permutation techniques and
controls the false discovery rate (FDR) to take into account the multiple testing

problem. The method can be applied to compare two or more conditions.

For the most simple analysis scenario (two conditions) the SAM approach
computes a modified t-statistic (see equation 2.13) for each gene adding in the
denominator a suitable constant (sp) for all the genes which avoids those small
estimated variances which give false positives for having high values of the t-
statistic. This constant is chosen to obtain a constant coefficient of variation for the
t-statistic that is not possible when sample standard deviations change between
genes.

_X,(1) =%, (i)

d(iiy="——""2-i=1,...,.N (2.13)
s(i)+s,

SAM orders the computed values of d(i): d,, <d, that are the observed

iy Sy <. <4,

)
values, and compares them with the empirical distribution or expected ones. In
each permutation of the data the statistic is again computed and ordered

djy <dgj <...<dy,. Developing R permutations r=1,..R we can obtain the averages

_ R
of these values d,, :%Zd&;, i=1,...,N that are used as the expected values
r=1

under the null hypothesis of no differences. A common rejection region is defined

—-d, >A. The delta value is chosen by

for all the genes fixing a threshold: d, 0 2

Q)
computing the FDR for several deltas until one is obtained where FDR(A) < y, which
is prefixed. SAM was very much used in the early 2000 's. Today, it is still a popular
method but some stability and granularity problems have been reported. In Zhang

(2007) the drawbacks of SAM are analysed by pointing out that the main problem is
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the poor estimation of FDR and modifications to improve its control are being

proposed.

Linear Models for Microarray Data: LIMMA

Lénnstedt and Speed (2002) applied the idea of moderation to develop the
B-statistic to compare two conditions using a Bayesian mixture model. The B-
statistic is the logarithm of a ratio of probabilities: the probability of being
differentially expressed and the probability of invariability. They smoothed gene-
specific residual sample variances towards a common value. Smyth (2004)
developed the hierarchical model of Lénnstedt and Speed (2002) into a practical
approach for general microarray experiments. Smyth proposes linear models to
consider the comparisons of interest for each gene, two or more conditions, and
applies the empirical Bayes approach to do inference about the regression
coefficients of the model. The implementation of this method has been carried out
in the statistical language R within the LIMMA package by adding general tools for
data exploration and normalization. This package is one of the most used programs

for microarray analysis.

ANOVA in transcriptomics

The analysis of variance (ANOVA) model has also been adapted to the
analysis of microarray data. One of the first publications by Kerr et al. (2000)
considered a model for non-normalized data to study the main effects with array
signals: array (A), dye (D), variety (V) and gene (G) and two interactions (AG),
measuring the gene specific spot bias, and (VG) which is the actual interest of the
analysis. Let xjg, denote the intensity from the i-th array, j-th dye, k-th variety and
g-th gene, the considered fixed-effects ANOVA model is:

log x., (2.14)

ijkg

=pu+A+D,+V, +G, + AG, +VG,, + &,
The fixed-effects model is applicable to many microarray experiments, however
some of the factors can be considered as random samples from a population as can
be the array and the spots of the array, which can be added to the model. Although
the mixed model has the same structure showed above, there is a difference in the
interpretation of the random effects that are considered as sources of variance.

Wolfinger et al. (2001) proposed a two-stage approach using a mixed-model
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ANOVA. These authors use a linear model in the first step to normalize the data:

Iogx,jkg =u+A +Dj +AD,J. + Nk (2.15)
and then fit a gene-specific model to the residuals of the first model:
I =G +VG, + DG, + AG, + ¢ . (2.16)

A similar approach in two steps but only with fixed effects was also considered by
Kerr et al. (2000). This was implemented in a package named MAANOVA
(MicroArray Analysis Of Variance), although currently this package includes random
effects as well. MAANOVA package also includes normalization and visualization
tools and it is implemented in both R and MATLAB programming environments.
Specific variations of the classical F test are available to deal with microarray data
(Cui and Churchill, 2003).

Mixture modelling

Another approach to the study of gene expression is mixture modelling. This
model has been used for the study of two condition microarray experiments, (Pan
et al., 2003), and also for clustering purposes (MclLachlan et al., 2002). The
proposed method avoids the strong distributional assumptions of the t-test and
regression approaches considering that the observations are from a Normal mixture
distribution. In Pan (2002) a comparison of these three methods can be found
which also includes SAM approach. Pan concluded that the main differences among
the results of the application of these methods were produced when dealing with
small samples. This is due to the fact that with large samples (>30) the standard
Normal distribution can be used as the null distribution for the t-test. The Normal
mixture model is fitted by maximum likelihood using the Expectation-Maximization
(EM) algorithm (MclLachlan et al., 1997). The available software to apply this
technology is called EMMIX and it is described in McLachlan et al. (1999).

2.6 Other applications of interest

Although this thesis focuses on differentially expressed gene selection, this is
not the only application of microarrays. The use of transcriptomics for class

prediction is a major topic in many medical fields, especially in cancer research. A
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recent review can be found in Boulesteix et al. (2008) focusing on the statistical

evaluation of microarray-based prediction methods.

Basically, the problem in class prediction using microarrays has two
elements. First, a method for variable selection is required, i.e., a subset of the
original probes included in microarray matrices is selected. Selection is normally
carried out on the basis of a per gene measure, such as by fold change, t-test or
ANOVA. Genes are ranked by value of differential expression or significance and an
arbitrary number is selected for the next step. Dimension reduction techniques, as
PCA (Principal Component Analysis) or PLS (Partial Least Squares, Boulesteix,
2004), can be applied as a previous step to summarize the information and then
use any classification method to the obtained components. Although this approach
takes into account the correlation structure of the data, the components can be
difficult to interpret. After a variable selection is obtained, the actual predictor is
constructed using a machine learning approach. Larrafaga et al. (2006) review
machine learning in bioinformatics including class prediction. Popular strategies are
logistic regression, the k-nearest neighbour algorithm and support vector machines
(Vapnik, 1995). There are also statistical methods based on penalization or
shrinkage as the Penalized Logistic Regression (Zhu, 2004) or the Prediction
Analysis of Microarrays (PAM) method based on shrunken centroids (Tibshirani et
al., 2002). Irrespective of the statistical method used, the methodology for
developing class predictor involves the use of a part of the data, the training set to
build the predictor, and another part, the test set, to evaluate its prediction power
(Medina et al., 2007).

Another application of microarray experiments is the study of gene
regulatory networks. This type of analysis evaluates the interactions between genes
and looks for models to describe or predict gene expression behaviour. Describing
molecular processes allows for identifying the genes involved, their relationships
and their sequence of action. These models can be useful in many studies, for
instance, by characterizing the gene expression mechanisms that cause certain
disorders it would be possible to target those genes to block the progress of the

disease.
The main approaches to study gene regulatory networks deal with time

series microarray data, although there are other inputs. Bayesian networks,

Boolean networks, and differential equations and other mathematical models are
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the most used models to this end (de Jong, 2002 and Bansal et al., 2007).
2.7 Method comparison applied to Time Course data

We have applied some of the descriptive and inferential methods described
in the previous sections to a time course microarray experiment in order to make a
comparative evaluation of the performance of the different analysis strategies and
to highlight difficulties in the analysis of this type of data analysis. Hierarchical
clustering, SOM, SOTA and PCA are applied to find groups of genes with similar
profiles. Next, statistical inferential analysis has been applied using t-test and
ANOVA modelling to find differentially expressed genes for some proposed

questions of interest about differences between some experimental conditions.
2.7.1 Toxicogenomics experiment

In our evaluation we have used data from a toxicogenomics study where the
effect of the hepatotoxicant brombenzene in rats was analysed (Heijne et al.,
2003). Rats were treated with three doses (low, medium and high) of
bromobenzene dissolved in corn oil. Additionally, there were two groups of rats
without toxic treatment: an untreated rats group and a group treated only with the
drug administration vehicle, corn oil. In total there were five groups denoted by the
labels: UT (untreated), CO (corn oil), LO (low dose), ME (medium dose) and HI
(high dose). At different time-point measurement (6, 24 and 48 hours) one to three
rats were randomly selected from each treatment group. Each individual RNA rat
sample was co-hybridized against an external reference and the hybridizations were
duplicated by swapping the two labelling dyes. This makes a total of 54 slides (see
Table 2.1) and 2665 genes available for statistical analysis. Data pre-processing
included background subtraction, calculation of log2 ratios and Lowess

normalization.

This example is a Time Course experiment where there are 5 experimental
groups, 3 time points and 2 or 6 replications. The original dataset consisted of 2665
genes and 54 chips associated with the conditions detailed in Table 2.1. We have
also considered a subset of this data matrix denoted as “reduced data matrix” to
simplify the evaluation with some of the studied techniques from which it is difficult
to draw conclusions from the entire dataset. The simplification of the original data

has been done by taking the averages of the replicates and removing the genes
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with a flat profile or genes without important changes in their profiles. To remove

the flat profiles we used the tools of GEPAS “Gene Expression Pattern Analysis

Suite” available at http://gepas.bioinfo.cipf.es. We considered as flat profiles genes

whose expression change between -1 and 1. By doing this, the reduced data matrix

consists of 487 genes and 30 conditions (5 treatment levels x 3 time-points x 2

dyes).

Slide Treatment Slide Treatment Group Time #Replications

1 Cy3-UT-T6 28 Cy5-UT-T6 1 6 2

Cy3-UT-T24 29 Cy5-UT-T24 1 24 2

3 Cy3-UT-T48 30 Cy5-UT-T48 1 48 2

4 Cy3-CO-T6 31 Cy5-CO-T6 2 6 2

5 Cy3-CO-T24 32 Cy5-CO-T24 2 24 2

6 Cy3-CO-T48 33 Cy5-CO-T48 2 48 2

7 Cy3-LO-T6 34 Cy5-LO-T6 3 6 2

8,9,10 Cy3-LO-T24 | 35,36,37 | Cy5-LO-T24 3 24 6

11 Cy3-LO-T48 38 Cy5-LO-T48 3 48 2

12 Cy3-ME-T6 39 Cy5-ME-T6 4 6 2

13,14,15 | Cy3-ME-T24 | 40,41,42 | Cy5-ME-T24 4 24 6

16,17,18 | Cy3-ME-T48 | 43,44,45 | Cy5-ME-T48 4 48 6

19,20,21 Cy3-HI-T6 46,47,48 Cy5-HI-T6 5 6 6

22,23,24 | Cy3-HI-T24 | 49,50,51 Cy5-HI-T24 5 24 6

25,26,27 | Cy3-HI-T48 | 52,53,54 | Cy5-HI-T48 5 48 6

54

Table 2.1: Treatments assigned to each slide. The indicated dye is the assigned dye to the

sample.

When we show gene profiles the order of the abscise axis is the order of the

columns of the data matrix. This order coincides with the order of the slides as is

described in Table 2.1 and is further indicated in Figure 2.7.

Cy3 Cy5
A A
/ Y / Y
uT Cco LO ME HI uT Cco LO ME HI

I_H_H_H_H_HI_H_H_H_H_H

6 24 48 6 24 48 6 24 48 6 24 48 6 24 48 6 24 48 6 24 48 6 24 48 6 24 48 6 24 48

Figure 2.7: Identification of the treatment for the gene profiles representation.

2.7.2 Data visualization

A common plot used to see the overall data is a box-plot for each of the

arrays. Figure 2.8 shows the 54 box-plots of our experiment. Visually, we can see

that the slides are centred on 0. We can also observe that data ranges are between

2 and -2 and that there are basically equivalent distributions between different
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arrays, which is an indication of a proper normalization of the data.

Figure 2.8: Boxplots for each one of the 54 arrays. Colours indicate the treatment group

assigned to each array.

Hierarchical clustering

We have applied hierarchical cluster using the GEPAS suite. We chose the
correlation distance to measure the relation between the genes and the centroid
linkage distance to measure the inter-cluster distances. Firstly, we applied the
method to the complete dataset. However, due to the huge dimension of the
obtained dendogram and the difficult interpretation we prefer to show only the
result with the reduced data matrix, which is shown in Figure 2.9. In this
representation we can see the dendogram and a heat map together. The heat map
is a graph that assigns a colour to each data, being green for negative values
(repressed) and red for positive values (over-expressed). We can see that in spite
of the reduction of the data, the interpretation continues to be difficult. The analysis
of the dendogram suggested genes can be divided into 16 groups. This number can
be taken as reference when applying other visualization techniques such as SOM,
SOTA or non hierarchical clustering. The difficulty of the interpretation of this graph
is not only due to the number of genes but also to the number of conditions
present. If we had two conditions instead of 30, it would be simple to identify the

meaning of the identified groups by looking at their colours.
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Red colour indicates that the

Here we can see how the
joints between the genes are |

gene is overexpressed, i.e.
produced.

more expression than the

control (ratio>1), and green
colour indicates the gene is

underexpressed (ratio<1).

Figure 2.9: 487 genes in a dendogram obtained by applying hierarchical cluster analysis.
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SOM

We applied SOM to the reduced data matrix again by choosing 16 clusters,
as suggested by the previous hierarchical cluster results, with a rectangular
structure (4x4). SOM gives as a result the profiles of the genes classified in each
group and the average profile (black line) along the experimental conditions
detailed in Figure 2.7 (see Figure 2.10). We realize that the clusters contain genes
with similar patterns, for instance the first cluster is formed by repressed genes and

the last one by over-expressed genes (see Figure 2.11).
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Figure 2.10: Groups obtained by applying SOM to the reduced matrix. Marked clusters show some

examples of interest: repressed genes (position 1.1), over-expressed genes (position 4.4) and genes

affected by the dye (position 1.4).

a) b)

LH Jan

Figure 2.11: Amplified gene expression profiles of a) the first cluster that includes repressed

genes and b) the last cluster that includes over-expressed genes.

We can also observe that clusters with similar profiles are adjacent. An
interesting result is that the cluster in position 1.4. contains genes with different
expression for the two dyes (Figure 2.12). This result leads us to think that there
were genes for which the dye effect had not been removed in the normalization
process and that data portioning might have been affected by this dye bias. If we
are interested in studying the evolution through the treatments it would be
preferable to run two SOM analyses, one with each dye to focus on the changes in

trends through treatments not through the dyes (Figure 2.13).
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Cy3

Cy5

-5 76

Figure 2.12: Amplified gene expression profiles of cluster 1.4. which includes genes

with different expression for the two dyes.

Looking at Figure 2.13 we realize that in both results there are clusters

showing changes in expression in high and medium doses of bromobenzene (e.g.

third and fourth group of both results). In Figure 2.14 we can see two examples

where the profiles are amplified to see the details and illustrate our previous

comments.
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Figure 2.13: Clusters obtained by applying SOM to the samples
labelled with green dye (@) and with red dye (b) of the reduced data

matrix.
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Figure 2.14: Gene expressions of the genes included in the third and fourth cluster obtained

applying SOM to the data where samples are labelled with red dye. In both clusters there are changes

in expression in high and medium doses of bromobenzene.
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Figure 2.15: Hierarchical structure obtained by applying SOTA to the reduced data matrix
choosing the data with the red dye. Graphs represent gene expression average of genes within

each cluster. We can identify 7 clusters where gene expression changes for high doses. Red

circles indicate the location of these changes.
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SOTA

By applying SOTA to the reduced data matrix, a similar effect as in the
previous case is observed, making again difficult the interpretation of the clustering
results. Therefore we choose to apply the clustering method to the data split by dye
orientation. For each subdata matrix it is then possible to identify clusters of genes
with up-regulation and clusters of genes where expression decreases. Figure 2.15
shows the clustering results obtained by applying SOTA to the samples with red
dye. The graph shows the data partioning, the number of genes in each cluster and
the evolution of the profiles of each cluster with bars. Visually we can identify 7
clusters where gene expression changes for high doses. These cases have been

marked with red circles: groups 1,2,3,10,11,12 and 14.

PCA

We apply PCA to the initial matrix (2665 genes and 54 slides) considering
the samples (conditions) as variables and the genes as individuals. The first three
components explained 60% of the total variation. By analysing these first three
components we detect the overall behaviour of gene expression. Furthermore, the
analysis of the residuals graph of this model (not shown) shows no large values,
indicating that genes are well described. Loadings are related to the correlation
between samples and principal components. By analysing the loadings of the
samples we can interpret the meaning of the principal components (Figure 2.16).
The first component, that explains 34% of variation, is correlated positively with all
the samples, so this component is related to the basal expression level of each
gene. Actually this result is not too important due to the fact that we are looking for
changes in expression through the experimental conditions. We could have avoided
this first component by previously centering the data gene by gene. The second
component had positive correlations with the slides where the sample is labelled
with red dye and negative correlations in the cases labelled with green dye. This
component shows that the dye effect accounts for an important amount of data
variation and identifies the genes most affected by this dye bias. Finally, the third
component is negatively correlated with the slides where high doses have been
applied and the time period is 24 or 48 hours. This is the effect that we have
observed in previous sections. This component will be useful to identify genes

related to this treatment effect.
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Figure 2.16: Loadings of the initial variables to the three components selected. The first component

represents the signal intensity effect, the second one is related to the dye-swap and the third reveals the

treatment effect.
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Figure 2.17: Scores values of genes in the second and third
components. Genes whose expression in high doses is over-expressed are
in area B and genes whose expression is repressed in high doses are in
area A. Genes within the black circle are those whose expression is not

affected either by high bromobenzene doses nor dye.
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Figure 2.17 shows the graphic representation of the scores of the second
and third components. The scores are the values of the genes in the new space.
Genes with high scores for a component are genes correlated with the profile
described for this component. On the other hand, genes with high negative scores
are negatively correlated with the component. In our case, focusing on the third
component (x-axis), we can detect two interesting groups of genes identified in
areas A and B. Genes whose expression in high doses is over-expressed are in area

B while genes whose expression is repressed in high doses are in area A.

Conclusions of data visualization

The application of hierarchical clustering, SOM, SOTA and PCA leads us to
some interesting conclusions. Firstly, we have seen that the results obtained with
hierarchical clustering are very difficult to interpret. Although this method gave us a
first idea for the number of clusters to choose, we could not obtain conclusions
about the characteristics of each cluster. Secondly, by applying SOM and SOTA we
discovered a batch effect associated with the labelling orientation of the samples
and also identified a group of genes with differential expression for medium and
high doses of bromobenzene. These conclusions were obtained after a close
examination of the cluster profiles. However, in the case of complex experimental
designs, it is not always easy to draw conclusions from solely the visual inspection
of these profiles. Thirdly, we have seen that PCA efficiently deals with the entire
dataset while for the clustering methods, reduced and split matrices were needed
to achieve interpretability. A PCA model with three components has revealed the
data features more compactly: directly showing the signal intensity effect, the
problem of the dye-swap and the effect of the treatment. Furthermore, PCA tells us
that pre-processing could be improved since size effect and dye bias take more of

data variability than the treatment effect that is the effect of interest.

In general, we have seen that the application of these methods is useful to
discover general behaviours of the data. By selecting specific clusters or genes with
high PC loadings, lists of differentially expressed genes could be generated.
However, this is not an inference-based mechanism for feature selection which does
not give an indication of the significance (generalization power) of the obtained
gene selection. This is better achieved by applying hypothesis testing

methodologies, which is discussed in the next section.
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2.7.3 Inferential analysis

The experimental design of the toxicogenomic experiment has two factors of
interest for each gene; time and treatment with three and five levels, respectively.
Moreover, the time factor is of a continuous nature. Therefore, an appropriate
analysis method for these data should be able to handle these characteristics.
However, when applying the statistical techniques described in the previous
sections, it becomes evident that different methods have different application
scopes and that comparisons are biased for these differences. In this section,
therefore, we tried to reveal these differences and indicate how they limit the
analysis of a multifactorial experiment such as the one used in this example. As the
dye effect discovered in the previous section could disturb the results, we
eliminated this structural noise by centering each gene with its corresponding dye

average.

Two conditions

A first limitation comes from approaches which are focused on the
comparison of two conditions. To apply these in our cases, we need to either
perform multiple pair-wise comparisons or to split data into two conditions that
would provide the most informative analysis. The explorative analysis of the data
carried out in the previous section suggested that gene expression changes are
most pronounced at the high-dose condition. Therefore, we choose to perform a
statistical comparison between this condition and the corn oil group that is one of

the control groups, using the t-test statistics and the SAM methodology.

The application of the t-test implied 2665 comparisons between the average
of the values with high doses (18 cases) to the average of the values with corn oil
(6 cases). We computed the p-values associated with each t-test, applied multiple
test correction and by choosing a FDR=0.01 we obtained 44 genes with statistically

significant differences.

We also applied SAM to the same data with the same purpose using the
specific application developed by Standford University through the EXCEL
spreadsheet available at http://www-stat-class.stanford.edu/SAM/SAMServlet. We

chose 1000 permutations and FDR=0.01 obtaining 55 genes as significant. Figure

2.18 shows one of the results that the program offers.
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By comparing the t-test and SAM results we can observe that the number of
genes is similar in both cases. Furthermore, there are 21 genes in common in both

solutions.

Significant: 55 Tail strength (%): 40.1
Median number of false positives: 0.7 SAM Plotsheet se (%):21.5

False Discovery Rate (%): 1.59
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Figure 2.18: SAM plot for delta=1. Significant genes are those plotted outside the bands with

red and green colours. Genes in red are over-expressed genes and genes in green are repressed.

More than two conditions

Here we applied the LIMMA R package available in the Bioconductor
platform. Considering only the dose effect, first LIMMA estimates a linear model
with the 5 groups involved. Then, we can consider multiple contrasts for the
comparisons of our interest that are performed from the coefficients of the
estimated model. E.g.: the analysis of gene expression differences between the
High and the other ones: Medium, Low, CO and UT groups. This implies the analysis
of four contrasts: HI.vs.ME, HI.vs.LO, HI.vs.CO and HI.vs.UT. Selecting FDR=0.01,

188 genes are selected.

LIMMA seems to be easy to use when more than two conditions need to be
compared. The definition of a contrast matrix facilitates the performance of such
cases. However, although t-test and SAM can also be programmed to this goal, it is

a more complicated task. In order to compare LIMMA with t-test and SAM results,
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we focus on the same analysis done previously. This implies analysing the contrast
HI.vs.CO. Selecting FDR=0.01, 47 genes were detected. We can observe that the
results are very similar in number. Table 2.2 shows the number of genes that the
different obtained results have in common. Differences could be related to the
different approaches that each method involves. As we have seen in previous
sections, the main difference in the approaches is the way in which the distribution
needed is obtained to perform the contrasts. SAM uses permutations, LIMMA the
empirical bayes approach and the classical t-test uses the theoretical t-Student

distribution.

t-test SAM LIMMA
t-test 44 - -
SAM 21 55 -
LIMMA 24 31 47

Table 2.2: cComparisons of the selections of genes
obtained with t-test, SAM and LIMMA by comparing HI with
CO doses.

Multifactor experiment

If we consider the two involved factors: time and treatment and their
interaction, we can compute the corresponding ANOVA model for each gene. By
analysing the statistical significance of any of the mentioned three effects with a
FDR=0.01 we obtain 421 genes as statistically significant (without considering the
interaction the solution is a set of 281 genes). We can observe the high increase of
statistically significant genes with respect to the previous selections. This is due to
the fact that ANOVA implies the testing of all possible differences between time,

treatment and interactions.

The next step is introducing the gene factor in the ANOVA model. In our
data, this is a factor with 2665 levels. This calculation is extremely memory
demanding and was not possible to perform with available computer resources
(Intel Core 2 Quad processor and 2046 MB of RAM memory).

Finally, we have applied the MAANOVA R-package, also available in
BIOCONDUCTOR platform. As we have already mentioned in section 2.5.3, the
main benefit of this method is that before applying the ANOVA model it performs a
first step to estimate the dye and array effect jointly to all the data as a

normalization step. We presume that this will not have an important effect on our
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data because it has already been normalized. Other interesting features of
MAANOVA package is that it allows the control of the FDR and it uses an empirical
distribution to carry out the statistical tests associated with the F-statistics.
Considering the additive model (time + treatment) MAANOVA selected 411 genes
by choosing a FDR=0.01. However, the program does not let us include the
interaction between time and treatment in the model, as there were not enough
degrees of freedom to do the corresponding tests. The estimation of global effects
of the data consumes the degrees of freedom for the ANOVA model of interest.
Comparing this result with the selection of genes obtained with the general ANOVA
model without previously applied interaction (281 genes) we obtained an overlap of

279 genes.

Conclusions of inferential analysis

The application of inferential tools has offered us several lists of selected
genes. Our intention here was to study the performance of the available packages
and how they adapt to the characteristics of a multiple series time course dataset.
The first conclusion is that comparisons are not fully possible since different
methods treat data differently and different contrasts are tested in each case. t-test
and SAM focus on double comparisons, LIMMA in multiple comparisons, and ANOVA
and MAANOVA in multifactor comparisons. We used LIMMA in an example with a
double comparison to compare its results with those obtained with SAM and t-test
(Table 2.2). On the other hand, and as MAANOVA did not permit us to include the
interaction between time and treatment in the model, we have neither considered
this interaction in the ANOVA model to better compare the results between these
techniques. Mainly, we have seen that results are very similar between techniques
with the same hypothesis to test. The differences can be due to the different ways

in which the empirical distribution needed in each method is estimated.

2.8 Discussion

In this chapter we have described the major techniques to deal with
microarray data in different steps of the data analysis process focusing on
visualization and inferential tools. By applying some of these techniques to
microarray data we have discovered the main benefits and limitations of classical

and new specific techniques.
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With the application of the visualization tools, we have mainly seen the
difficulties in obtaining an informative representation of all the available data. This
is related to the multifactorial nature of the experiment considered. In these cases
and if a different number of replicates per condition are present, profile-based
representations of the data are hard to interpret. In spite of this, we have detected
some interesting global effects in our data such as the dye effect and the
differences in expression in high doses of bromobenzene. Moreover, we have seen
that PCA is able to deal with the complete data, dissecting sources of variation and
identifying genes related to these main effects. In any case, these selections of
genes are obtained from descriptive methods without statistical significance to

evaluate their interest.

With the application of inferential tools we have mainly analysed their use
and performance. Different selections of genes have been obtained depending on
the comparisons done and the method employed. Here we can see the importance
that the number of comparisons has in the results. For this reason researchers
must be clear and concise in biological questions they want to address with their
microarray study when planning the experimental set-up. For instance, the
illustrated real example is a Time-Course experiment that has been used with
several techniques planning different comparisons. However, the most typical
objective when dealing with Time-Course data is to compare the gene expression
pattern through time for the different treatments. For this goal, neither of the
techniques shown are adequate as they do not analyze the dynamics of the data.

Following chapters address this important issue.

All these techniques, as with other microarray data analysis methods,
provide us with lists of differentially expressed genes. The next step in microarray
data analysis is the biological interpretation of the gene selection. For this, the
available knowledge on gene function is extracted from public databases and
combined with the statistical results. A widely used approach relies on the
utilization of structured vocabularies to represent the functionalities associated with
genes. The use of these controlled terminologies eases the quantification of gene-
wise results and hypothesis-testing analysis from a functional perspective. The
most widely used vocabulary to describe gene function is the Gene Ontology (GO,
http://www.geneontology.org/). GO describes gene products by their molecular
function, the biological process they participate in and the cellular component they

localize, and it is a general schema that can be applied to describe any biological
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domain. Annex 8 includes the description of this ontology and the available

methods to extract biological meaning from genomics data using the GO.
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Review of Statistical Analysis of

Time Course Microarray Data
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3.1 Introduction

The main goal of the research presented in this thesis is the development of
new statistical methods which are able to identify patterns of gene expression
variation in time course transcriptomics data. In this chapter we review the current
research topics which are addressed by time series microarray experiments and the
statistical methodologies that have been applied or specially developed for this type
of data.

The classification of time series experiments presented in Chapter 1
considers three criteria: i) The length of the series: depending on the number of
time points, experiments can be regarded as short time courses (3-6 time points)
and long series (> 6 time points); ii) The number of series: experiments can
evaluate time evolution in one series (single series) or investigate time associated
differences along different series (multiple series); iii) Dependence on observations:
measurements can be linked by the individual (sampling the same individuals at
different moments), referred to as longitudinal or repeated measurement data, or
be obtained from different and independent individuals at each time point, i.e.
independent data. In longitudinal series the correlation between the measures for
the same individual, called autocorrelation, must be taken into consideration,
meanwhile in the independent series this problem does not exist. Additionally we
can consider if there is replication at each experimental condition (time-point X
series) or not and if the expected pattern should obey some kind of cyclic

behaviour.

Time course experiments are used to address a wide variety of biological
questions. Typically, time course data relate to the study of the dynamics of
biological systems, developmental processes, gene regulatory networks and
responses to stimuli. Depending on the type of study, the corresponding data will fit

into one of the specific types described above.

For example, the study of periodic time courses such as the cell cycle is the
most popular study of biological systems where regular periodic patterns are
expected. These series are long, longitudinal and single, and normally non-
replicated for each time-point. Spellman et al. (1998) and Cho et al. (1998) are

examples of the study of the cell cycle system in yeast.
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In developmental time series studies there is an interest in understanding
the temporal profile of an organism in its natural state or under a specific condition.
These series are also normally long, longitudinal or not, depending on the biological
source, and are single but usually replicated. Examples of developmental studies
are the works by Himanen et al. (2004) in Arabydpsis thaliana to characterize the
early molecular regulation induced by auxin; the study by Cercos et al., 2006 on
fruit ripening in citrus; or on organ development studies in Drosophila (Arbeitman
et al., 2002 and Tomancak et al., 2002).

In gene network analysis the objective is the study of the interactions
between genes. These studies are associated with single and long series of time-
course data under a specific experimental condition. For these studies cell cycle
time series microarray data has been used as Spellman et al. (1998) dataset,
although there are also specific experiments designed for the study of gene
networks as in Rangel et al. (2004). We have to mention that time course data is
not the unique type of data used for the study of gene network interactions.
Regulatory relationships can also be inferred using steady-state gene expression
data. The steady-state data are obtained by altering specific gene activities, such
as deleting or over-expressing genes. Bansal et al., 2007 claim that time-series
data contain less information than steady-state data for the study of gene
networks. This is due to the fact that in steady-state data multiple perturbations of
the cell are available while time series are measured following only few

perturbations in time.

Finally, studies that evaluate responses to stimuli normally use,
independent, short and multiple series. The goal of multiple series time course
(MSTC) experiments is to analyse the differences in gene expression between the
various experimental groups of interest: different treatments or doses of the same
treatment to inspect their evolutions. These reactions or possible changes are
usually expected in a predefined period of time included in the design, therefore
these series are typically short. In Heijne et al. (2003) we can find the
toxicogenomics experiment used in this thesis, where there are 5 experimental

groups and 3 time-points.
The analysis of time course microarray data requires specific treatment to

adequately deal with variable time in each case. The statistical analysis of

microarray time course data has been reviewed by Bar-Joseph (2004) and Tai and
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Speed (2005). Bar-Joseph presents the review considering four sections:
experimental design, data analysis, pattern recognition and networks, discussing
the challenges and proposed methods but focusing on the analysis of long series.
Tai and Speed (2005) focused on clustering and gene selection techniques for

developmental or non periodic time course series that are also long series.

In this chapter we review the existing and novel methodologies applied to
the analysis of time course experiments in a broad sense. We classify statistical
approaches according to the different possible discovery aims in associated studies:
methods for clustering of gene expression patterns, methods for identifying
differentially expressed genes and specific methods for the inference of gene
regulatory relationships. We use this classification to emphasize the major current
lines of research, although it does not match exactly with the biological purposes of
the previously mentioned studies. This is due to the fact that clustering and gene
selection methods can tackle the studies of biological processes (associated with
long series) and also the studies of MSTC (normally short series), although the
effectiveness of the techniques is not always the same in both cases. A large
number of currently available methods are devoted to the clustering of gene
expression patterns, and for the deciphering of gene regulatory networks.
Curiously, few methodologies can be found that directly address the problem of
finding statistical profile differences between experimental groups. The analysis
methodologies developed in this thesis deal with this last case. Therefore we will

mainly focus on it, after briefly reviewing the other topics.
3.2 Clustering

Clustering is the most frequently used multivariate technique to analyse
gene expression data for the assumption that genes with similar expression profiles
could be involved in similar biological processes. In the previous chapter we have
described the different types of cluster analysis and their limitations with large
multifactorial datasets. Here we mention the specific problem of clustering in

microarray time course data.

The first applications of clustering techniques to microarray data also include
applications to microarray time course data in the works of Spellman et al. (1998)
and Cho et al. (1998) that have become classical experiments. The goal in these

studies was to discover gene expression patterns related to the cell cycle and
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therefore used clustering techniques in long time series. Applying hierarchical
clustering, the authors succeeded in identifying co-expressed genes associated with
specific biological categories. These studies showed the biological importance of
gene expression in time. Furthermore, these datasets have been used and continue
to be used in many other statistical developments to show the performance of new

algorithms and techniques dealing with time course microarray data.

However classical clustering methods are not the best choice for the analysis
of time course data. As we have seen in previous chapter, when dealing with
multilevel experimental factors the difficulty in extracting general conclusions about
the effects of interest were pointed out as the main limitation of classical clustering
methods. Obviously, as time can be considered as a multilevel factor, this problem
also appears in microarray time course data. Furthermore, levels in time factor

involve a specific order and magnitude that must be taken into consideration.

More recently, dedicated clustering algorithms have been envisaged where
the particular temporal property of gene expression is considered. The continuous
and recent publications in this field show that the development of this type of
methodology is an active topic of research. There is still a need for efficient
methods that exploit the nature of these data, taking into account the inherent
between time-point relationships present in the observations. Several proposals
have appeared that exploit different mathematical strategies. Here we cite some

examples:

. Yeung et al. (2001) proposed to use Gaussian mixture models assuming that

the data is generated by a finite mixture of underlying probability
distributions such as multivariate normal distributions. In this sense they
formulate a statistical model to select an adequate number of clusters and a

suitable clustering method.

. Ramoni et al. (2002) introduced a Bayesian model-based clustering
algorithm representing temporal profiles by autoregression equations and
grouping the gene profiles with the highest posterior probability of having
been generated by the same process.

. Luan and Li (2003) considered a mixed-effects model for time course gene

expression data using B-splines. Under this model they apply the
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Expectation-Maximization (EM) algorithm to cluster genes and demonstrate
the use of the Bayesian inference criteria (BIC) to decide the number of
clusters. Similar algorithms have been developed by Bar Joseph et al.
(2003) by applying cubic splines.

. Schliep et al. (2003) used Hidden Markov Models to account for time
dependency. They develop an iterative algorithm to assign genes to clusters

maximizing the likelihood of clustering and models.

. Ma et al. (2006) introduced a method using a smoothing spline model to
estimate the gene expression curves avoiding the application of the EM

algorithm that, as they say, is costly for large-scale data.

. Kim et al. (2006) used Fourier series approximation to model periodic
patterns of gene expression profiles and to apply the EM algorithm to cluster

genes from their corresponding estimated Fourier coefficients.

Although these approaches have been successfully applied to long series,
the effectiveness in short time course is not so clear because these algorithms
require a high number of time-points to capture the evolution of the profiles.
Moreover, there is an increasing tendency to do experiments with short series for
which the developed clustering techniques are inadequate. For this reason, the
most recent works in clustering time course microarray data try to deal with short

series. For instance:

. Ernst et al. (2005) developed a cluster algorithm for short time series gene
expression. This algorithm establishes representative profiles independently
of the data, and then assigns genes to the profile that is most correlated and
determines the most statistically significant profiles by using a permutation
test. This method is implemented in the STEM package (Ernst and Bar-
Joseph, 2006).

. Kim and Kim (2007) proposed an algorithm for cluster short series taking
into account the replicates of each time-point. This algorithm is based on the
evaluation of the statistical significance of the differences between each pair
of adjacent time-points computed with a t-statistic. However, this method

does not describe the dynamics of gene expression evolution.
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Although both methodologies are specific for single short series, they do not
include adaptations to multiple series. The series used in studies involving multiple
conditions are normally short. The consideration of the differences between the
same time-points through the different series is the most interesting way of
clustering the genes and this is not specifically treated by conventional clustering

methods.

In general, we can conclude that the specific clustering methods for time-
course deals with aspects related to the time factor which are valid mainly for long
series as they are based on modelling approaches that require a sufficient number
of data-points to be estimated. However, few clustering studies deal with short
series and there are no suitable methodologies for the extension to multiple series.
Summing up, the mentioned approaches are efficient in finding groups of co-
expressing genes but when the experimental set-up is complex (different numbers
of series, replicates, dye-swaps, etc.) the evaluation of the results on the basis of
the clustering can still be rather complicated. On the other hand, these clustering
methods tend to equally weigh all samples while deriving gene partition, which
could not be the most convenient approach when expression changes are located to

a restricted period of the analyzed time course.
3.3 Gene regulatory networks

Another very interesting application of time course microarray experiments
is the unravelling of gene regulatory networks. This type of analysis evaluates the
interactions between genes and look for models to describe or predict the gene
expression behaviour. Describing molecular processes implies not only the
identification of the genes involved but also infers possible casual relationships and
the sequence of gene action. These models have many applications, for instance by
characterizing the gene expression mechanisms that cause certain disorders it
would be possible to target those genes to block the progress of the disease.
Several approaches have been proposed to describe the genetic regulatory
networks from time series microarray data such as Bayesian networks, Boolean
networks, differential equations and other mathematical models (for an overview
see de Jong, 2002 and, more recently, Bansal et al., 2007). Lahdesmaki et al.
(2006) stated that the two most often used large-scale modelling frameworks are

Boolean and Bayesian networks. They demonstrate the relationships between both

62



TCM review

approaches that are very useful to extend the developed tools for both models.

Bayesian Networks (BNs) is a very effective method to describe interacting
processes by inferring causal relationships from the derived models and efficiently
handling noisy and missing data (Friedman et al., 2000). However BNs can not
construct cyclic networks. This limitation can be avoided by applying Dynamic
Bayesian Networks (DBNs). Since Murphy and Mian (1999) proposed the use of

DBNs for modelling time series expression data, many papers have appeared
applying and discussing this approach. In Kim et al. (2003) the methodology of
estimating gene networks from time series microarray data using discrete and
continuous DBNs models is reviewed. However DBNs has been applied mainly to
small datasets and the computational costs of the application of DBNs to the
genome-wide dataset are very high. New approaches are trying to deal with this
challenge. For example, Beal et al. (2005) build a DBN model considering hidden
variables or unmeasured genes to simplify the network structure and Geier et al.
(2007) exploited the benefit of using knock-out data and prior knowledge to

reconstruct gene networks.

The Boolean network model considers that the genes of interest are
deterministically predicted by the so-called input genes and the defined Boolean
functions. However, modelling the uncertainty inherent to genetic regulation in the
biological level by a deterministic model is not appropriate. To incorporate this
uncertainty in the model Probabilistic Boolean networks (PBNs) have been
developed (Schmulevich et al., 2002a). In a PBN each gene can have more than
one Boolean function and there are probabilities associated with the possible
network. Random gene perturbations can also be considered in this model
(Schmulevich et al., 2002b). Recent works in PBNs try to study the steady-state
probability distribution (Ching et al., 2007 and Brun et al., 2007) which is critical to
identify the influent genes in a network and understand how to control some of

these genes.

Methods based on differential equations have been successfully applied to
small networks (de Hoon et al., 2003; Bansal et al., 2006), but their use in larger
datasets are not appropriate. In these cases the underlying biological system is
considered to be known to avoid computational costs. By doing this, unknown
regulatory relationships are not estimated from the data and alternative modelling

approaches have to be considered.
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Most of the available methods for gene network reconstruction are normally
applied to a single dataset of time-course data under a specific experimental
condition. New trends to the analyses of networks propose data integration from
multiple datasets. For example, many researchers are interested in combining
microarray data with protein interaction data and binding site information. Works
dealing with multiple datasets under different experimental conditions are
considerated more adequate to meet the goal in gene networks. In this way, Shi et
al. (2007) consider the task of combining diverse time series datasets for pairwise
lagged regulatory relationship inference and Wang et al. (2006) combine multiple
time-course microarray datasets from different conditions for inferring gene

regulatory networks applying linear programming and a decomposition procedure.

In general, it can be concluded that although the task of unravelling the
complete cellular gene regulatory network is still far from being solved, new
approaches that consider hidden variables and combine different datasets and

information sources are providing interesting progress into this challenging field.
3.4 Identifying differentially expressed genes

As we have already mentioned, the primary goal in many transcriptomic
experiments is the identification of genes with a change in expression over the
conditions of the study (see Chapter 2). In multiple TCM experiments the objective
is to find genes with different trends in time across several experimental groups or
series. The most widely used approaches in this context address this problem by
applying general methods described in Chapter 2 designed for replicated microarray
experiments for two or more independent groups such as the Student’s t-test and
its related algorithms SAM (Tusher et al., 2001) and LIMMA (Smyth, 2004). For
instance, de Hoon et al. (2002) applied Student’s t-test to select genes by making
comparisons for each time point separately and then analysing gene expression
evolution for selected genes by using regression splines. This type of approach,
although conceptually easy, is based on pair-wise comparisons (e.g. between all
consecutive pairs of time points, or all possible pairs of time points) and when
applied to microarray time courses especially when multiple series are present, it
might be tedious and ineffective to capture the dynamic nature of the temporal
data.

A first possible approach to consider time variable is applying classical
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ANOVA to independent time series or mixed-effect ANOVA to longitudinal data.
ANOVA-models can easily study multilevel factors and their interactions, and by
evaluating the associated F-statistic, the statistical significance of each effect can
be determined. Due to the success of the results of the classical F-statistic relying
on the assumptions of normality, homoscedasticity and independence of the
measurements, some variants of this statistic have been developed. For instance,
Park et al. (2003) proposed a permutation test based on the ANOVA-model which
does not need the normality assumption to deal with independent time course
experiments. Similarly, ANOVA variants of Cui and Churchill (2003) have been
successfully applied to time series in Fischer et al. (2007) to background-
normalized simulated data. As TCM experiments normally are designed
experiments, the time levels are pre-fixed and equal and a sufficient number of
replicates for each time-point can be obtained, and the application of the ANOVA
model seems to be a suitable approach. However, when analysing models
containing quantitative variables or experiments with unbalanced designs,
traditional ANOVA procedures are not appropriate and specific modifications have to

be incorporated.

Another approach could be to consider specific tests to perform contrasts
about the mean vector on the different time-points to study differences in the
evolution through time. In this line, Tai and Speed (2006) proposed one and two
sample multivariate empirical Bayes statistics (the MB-statistic) using shrinking
covariance estimates to make inference about the average vector of a gene’s
expression levels. The algorithm contrasts, for each gene, the null hypothesis of
constant vector of means along the time component (invariability), to the
alternative hypothesis of non-invariability. The MB-statistic can be used to rank
genes in the order of evidence of non-constancy. The method has been
implemented in the R language in the timecourse package for the study of
longitudinal data of one, two or multi-sample problems. However this method,
similarly to ANOVA-models, requires replications for each combination of time-
point/experimental group for sensitive estimates and also synchronized sample

times for multiple time series.

Bar-Joseph et al. (2003) obtained a selection of differentially expressed
genes between two cell-cycle microarray datasets by computing a difference
measure between the continuous representations of the two time series expression

data using B-splines that are defined as linear combinations of a set of basis
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polynomials. Storey et al. (2005) also proposed the use of B-splines to fit the same
dimensional model to each gene where the coefficients are estimated by applying
standard least squares regression techniques. They develop their method to deal
with both independent and longitudinal data. And by using bootstrap techniques to
find the empirical distribution of the F-statistic they detect genes with changes in
expression over time and rank them by their p-values. There is an implementation
of this method in the software EDGE (Leek et al., 2006). B-spline based approaches
seem to be one of the most suitable methods to represent the gene expression
evolution. However they work well with long time series (>10) and their adequacy

for shorter time course experiments is not clear.

Regression approaches appear to be a more straightforward and flexible
solution for the analysis of this type of data. Regression methods treat time as a
quantitative variable, and therefore not only differentially expressed genes can be
detected, but changes in trends can also be discovered and their magnitude can be
studied by analysing the coefficients of the model. A regression model approach
was used by Xu et al. (2002) to identify differential gene profiles in an inducible
transgenic model. Their model includes the time as variable and specific covariates
to identify differences in expression between two series. This tailor-made approach
was claimed to be useful to evaluate specific gene expression behaviour but it
implies redefining the variables for other biological systems. However, the
complexity of the model shows the thorough knowledge that the researchers have
in the experiment. A simpler modelling was proposed in Liu et al. (2005) where a
quadratic regression model with time variable is fitted for identifying changes in
expression in a short single time-series. Based on a linear regression model Guo et
al. (2003) constructed a variant of the robust Wald-Statistic for studying
longitudinal data. Due to the fact that asymptotic distribution of the Wald-statistic
is not adequate when the number of subjects is small, they propose to use the
permutation methods developed in Tusher et al. (2001) and Pan et al. (2003) to
make inferences. Recently, DeCook et al. (2006) applied regression models to the
study of multiple series. The method is based on the F-statistic of several pre-
defined regression models to choose the best model for each gene. The authors
emphasize the advantage of no need for replication in each time-point condition to
apply regression models. Although this statement is true, it can be misleading for a
non-statistician user. We have to bear in mind that we need enough data to
estimate the polynomial model for each particular treatment around the period of

interest. Mathematically, to estimate the coefficients of a polynomial model of p
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degree, we need at least p+1 time-points without the need of having replicates in
each time-point. Obviously, the more replicates, the better estimations can be

obtained.

3.5 Discussion

In this chapter we have reviewed the main statistical approaches and the
related papers dealing with TCM. We have presented the methods classified in three
categories responding to analysis purposes: co-expression (clustering), gene
networks and differential expression (gene selection). We have seen that, both in
clustering and gene selection approaches, the majority of the methodologies are
developed for long series. However, there is an increasing tendency to use
microarray technology to explore the response to different stimuli by using short

series.

The wide variety of mathematical and statistical approaches applied to deal
with this data led us to conclude that there are no general rules for the researcher
to obtain the best choice to analyse his/her data. For instance, the ANOVA model is
one of the most criticized methodologies, used in many papers as a comparative
method to introduce a novel technique. It is argued that the ANOVA model does not
take the temporal ordering into account. However, other authors highly recommend
its use. For instance in Fischer et al. (2007) we can find a comparison of several
tests for identifying genes in experiments with different types of normalization and
ANOVA is recommended to analyse background-normalized data. We think that the
application of the ANOVA model could be a suitable approach as TCM experiments
normally are designed experiments, which means that time levels are fixed, and the
number of replicates for each time-point is constant. However, when analysing
models containing quantitative variables or experiments with unbalanced or
longitudinal designs, traditional ANOVA procedures are not appropriate and specific

modifications need to be incorporated.

The use of B-splines to represent the evolution of gene expression in long
series seems to be effective and it is being used for clustering and gene selection
purposes. However, to deal with short series the use of regression models is more
adequate, especially when multiple series are present. Fitting regression models
with multiple variables that can be correlated may cause multicollinearity problems.

Taking this problem into account, we have developed maSigPro (microarray
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Significant Profiles, Chapter 4 and also in Conesa et al., 2006), a general
regression-based approach for the analysis of short, single or multiple microarray
time series. The procedure is a two-step regression strategy with adjustable model
parameters. First the method fits a global polynomial regression model with all the
defined variables to each gene to pre-select differentially expressed genes, and
second a variable selection strategy is applied to find more suitable models for each
gene and to study the different profiles between genes trying to avoid the
multicollinearity problem. Furthermore, this second step allows for the ranking of
genes through the value of the R-squared statistic that is a measure of the

goodness of fit model or from the p-value of its specific stepwise model.

Most of the methods described above are univariate in the way they
approach analysis: one gene is considered at a time. This implies that many
informative correlation structures within the data are simply ignored. The ASCA-
genes methodology presented in Chapter 5 (published in Nueda et al., 2007) is an
approximation to a multivariate consideration of time course data. This strategy
combines ANOVA-modelling and a dimension reduction technique to discover the
general targeted trends in time-course. The methodology is valuable for identifying
the principal and secondary responses associated with the experimental factors and
spotting relevant experimental conditions, and for identifying differentially
expressed genes that follow specific variation patterns. This method is particularly
interesting for the way it treats noise. ASCA can be used to extract the latent
structure of the data and to filter out the systematic noise, thereby enhancing the
statistical power of the maSigPro methodology. In Chapter 6 we describe this
particular application of ASCA as a filtering method. There are other methods that
consider the correlation structures to estimate the underlying distribution of the
gene expression, such as the mentioned timecourse method (Tai and Speed, 2006).
However, these methods focus on the average vectors and do not take into account

the separation between the sources of variation involved in the experiment.

The ultimate purpose of microarray experiments is to generate biological
knowledge. However, the results of the statistical methods for the analysis of
microarray data are lists of differentially expressed genes (d.e.g.). A more difficult
challenge for researchers is to understand the biological phenomena behind these
gene lists. A priori knowledge stored in public databases on gene functions is
habitually used along the statistical treatment of the data to provide biological

meaning to transcriptome analysis. The most widely applied method is to assess
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the enrichment of functional categories within the group of the d.e.g. This analysis
is also applied in time course microarrays analysis. However, there are no methods
which incorporate the a priori knowledge in an efficient way into the dynamic of the
time series. In Chapter 7 we propose a novel strategy to deal with this topic. We
apply data analysis methods to groups of genes belonging to the same biological
functional category. In this sense we have applied maSigPro, ASCA and PCA to
develop three new methodologies called maSigFun, PCA-maSigFun and ASCA-

functional.
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Chapter 4

maSigPro: a Method to Identify
Significantly Differential
Expression Profiles in Time-Course

Microarray Experiments

Conesa A., Nueda, M.]., Ferrer, A. and Talén, M. (2006) maSigPro: a Method to
Identify Significantly Differential Expression Profiles in Time-Course Microarray
Experiments. Bioinformatics, 22 (9), 1096-1102.
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maSigPro: analysis of time-course microarray data

4.1 Introduction

Multiple series time-course (MSTC) microarray experiments are useful
approaches for exploring biological processes. In this type of experiments, the
researcher is frequently interested in studying gene expression changes along time
and in evaluating trend differences between the various experimental groups. The
large amount of data, multiplicity of experimental conditions and the dynamic

nature of the experiments poses great challenges to data analysis.

As we have seen in previous chapter most of the currently available methods
are devoted to the identification and clustering of gene expression patterns, and for
the deciphering of gene regulatory networks. However, few methodologies can be
found that address the problem of finding statistical profile differences between

experimental groups.

In this chapter, we propose a statistical procedure to identify genes that
show different gene expression profiles across analytical groups in time-course
experiments. The method is a two-regression-step approach where the
experimental groups are identified by dummy variables. The procedure first adjusts
a global regression model with all the defined variables to identify differentially ex-
pressed genes and secondly, a variable selection strategy is applied to study
differences between groups and to find statistically significant different profiles. The
proposed method has been successfully applied to several experiments. In this
work the procedure is illustrated both on simulated data and a public domain

toxicogenomics dataset.

The method has been implemented in the statistical language R and is freely
available from the Bioconductor contributed packages repository and from the

personal webs of the authors (http://www.ua.es/personal/mj.nueda or

http://biocinfo.cipf.es/aconesa) and it has also been included in the gene expression

pattern analysis suite (http://www.gepas.org). In Annex 1 we have included a

scheme with the main functions of the maSigPro package that summarizes the

process to obtain the results.
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4.2 Methods

4.2.1 Definition of the model

In the problem we are considering there are normally two or more variables
of interest. One of them is typically the time, which is a quantitative variable (in the
type of experiments considered for this approach, time is usually the independent
variable, however the methodology would accept as well other experimental
continuous variables, such as a quantified physiological parameter). The others
variables are usually qualitative variables (e.g. different treatments, strains,
tissues, etc.) and represent the experimental groups for which temporal gene
expression differences are sought. For clarity in the exposition, only one qualitative

variable or factor will be considered here.

Let be J experimental groups described by the qualitative variable evaluated
at I time points for each particular condition jj (i=1,...,I and j=1,...,J). Assume that

gene expression is measured for N genes in R; replicated hybridizations.

We define J-1 dummy variables (binary variables) to distinguish between

each group and a reference group (Table 4.1).

Group D, D, D,
1 (Ref.group) 0 0 0 0
2 1 0 0 0
3 0 1 0 0
0 0 0
J 0 0 0 1

Table 4.1: Definition of experimental groups with dummy variables.

Let x;- denote the normalized and transformed expression value from each
gene in the situation jjr (r=1,...,,R;). To explain the evolution of x along the time (T)
we consider the following polynomial model, where simple time effects and
interactions between the dummies and the time have been modelled. In principle,
the maSigPro methodology allows a polynomial model of I-1 degree as the model
described in Equation (4.1).
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Xjr = Bo + /BlDlijr ot ﬂ(Jfl)D(Jfl)ijr
+ 6Ty + 0,1, Dy + o+ 0,5_4yT;;.D

ijr ijr=1ijr (J-1) " ijr = I-1)ijr

+ }’ng D(Jfl)i]'r (4.1)

ijr

+ 1 TaDy + o+ vy T,

2
ijr =" 1ijr ijr

+ AT+ AT D, + .o+ A, TE'D,

ijr ijr 1ijr (J-1) " ijr (I-1)ijr + gijr

B,16,.7,---4 ¢ are the regression coefficients corresponding to the reference group.

Bir 651 75 A, 1 are the regression coefficients that account for specific differences

(linear, quadratic, cubic,etc.) between the (j+1)-th group profile and

the first group (reference) profile, j=1,...,J-1.

;- ‘is the random variation associated with each gene in each hybridization jjr

owing to all sources other than those that have already been incorporated into

the model.

This model defines implicitly as many models as experimental groups. For

example, the model for the first group 1 is x,,, = B, + 5Ty, + 1oT2 + -+ LT + &,
since in this group all the dummies are 0; and for the second group is
Xige = (Bo + B) + (85 +6) T + (76 + 1) Tiop + oo+ (A + 4) T3,  + &5, . In this example
B 6,0 714 measure the differences between the second and first (reference)

groups related to linear, quadratic, etc. and (I-1)-th time order effects;

respectively.
4.2.2 First regression model: gene selection

The first step of the maSigPro approach applies the least-squares technique
to estimate the parameters of the described general regression model for each

gene. This means that we are testing the following null and alternative hypotheses:

Hy:fi==f1=0,=8=0.=8, , =Vg =01 =20e=V31= o =lg=A=..=2,,=0

: . : (4.2)
H 3/ B #0(j=1,..,J-1)v 3, #20v y; #0v..v4 =0, (j=0,..,7-1)

This first analysis generates N ANOVA tables as shown in Table 4.2, one for
each gene. A gene with different profiles between the reference group and any

other experimental group will show some statistically significant coefficient, and its
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corresponding regression model will be statistically significant. The p-value
associated with the F-Statistic in the general regression model is used to select
significant genes. This p-value is corrected for multiple comparisons by applying the
linear step-up (BH) false discovery rate (FDR) procedure (Reiner et al., 2003).
Therefore, genes with a FDR lower than a predetermined threshold will be selected.

Source Sum of squares Degrees of Mean square F-Statistic
(SSs) freedom error
. ss S/
i SS, =Y (X, -X =
Regression (R) R UZ( g = X) p B SS, /(SR - (p+1)
iJj
SS,
Error (E = -x. ) -
(E) SS. ,,Z,(X”' X5) ;RU (p+1) SR~ (p+1)
. <
Total (T) SS; =D (x, - XY >R, -1
ijr L

Table 4.2: ANOVA table. X is the predicted expression value, X is the average expression value

and p is the number of variables in the model, (polynomial order +1)J-1=IJ-1.

4.2.3 Second regression step: variable selection

Once statistically significant gene models have been found, the regression
coefficients of the models can be used to identify the conditions for which genes
shows statistically significant profile changes. To do this, a nhew model is obtained
only for selected genes, applying a variable selection strategy (stepwise regression,
Draper and Smith, 1998). Stepwise regression is an iterative regression approach
that selects from a pool of potential variables the “best” ones (according to a
specified criterion) to fit the available data. In this process, the statistical
significance of the regression coefficients of the variables present in the model at
each iteration is computed and only those variables with a p-value under a given
threshold (type I risk) are maintained. In this case, applying FDR for multiple
comparisons is not easy due to the fact that p-values associated with each
coefficient vary as the model evolves. Therefore, we apply a threshold that must be
fixed by the researcher. We recommend correct the desired level of significance for
the total possible number of variables in the model. The variables included in these
new models will be those that indicate the differences in profiles. The maSigPro
package provides different types of stepwise regression: backward, forward,

stepwise backward and stepwise forward. This variable selection approach has a
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double effect: on one hand it provides the significant differences between
experimental groups, and on the other hand, it generates an adequate regression
model for the data. This implies that for each gene and experimental group,
polynomial regressions of different degree (up to the maximum initially given in the
formulation of the model) can be obtained. The method will therefore generate a
matrix with so many rows as significant genes and so many columns as parameters
in the complete regression model (Equation (4.1)). This results matrix contains
information (estimated coefficient and its p-value) for those variables that remained

in the model of each gene. Table 4.3 is an illustrating example of such a results

matrix.

1 2 3 J 1 2 3 J 1 2 3 J
genelD by B 5 I % 21 S e Sy | A A % e A

Intercept D, D, .. Dy Time TimexD, TimexD, ... TimexD | .| Time"' Time"'xD, Time"'xD, ... Time"'xD ,

genel Por Pu o Aoy Aoan
gene2 P 2% Sy % | o2 2o
gene3 v Boas O3 Qs | A Ao
gene4 Pra Poa /‘2) 14 504 524 5(1—1)4 Aos ;‘24
geneN | P Pn . Poaw o LY N on Ao

Table 4.3: Results matrix of regression coefficients for the variable selection fit. Genes are shown in

rows and model parameters in columns. Regression coefficients exclusively associated with the same
experimental group are labelled with the same number. NA value for regression coefficients indicates

that the variable was not statistically significant for that gene (under a given threshold, type I risk).

This matrix provides the framework for selecting significant genes for each
variable of the complete model and for each experimental group. For example, to
find genes that have significant differences in group 2 respect to the reference
group, those genes having statistically significant coefficients for the variables
associated with the Dummy1l (D;, TimexDy,..., Time™xD;) must be selected, i.e.
genes which have a significant coefficients (column labelled as 2 in Table 4.3).
Additionally, the study of individual model variables allows focusing on the
evaluation of specific pattern differences. For example, the analysis of the
regression coefficients of the variable TimexD; allows the classification of genes for
their different behaviour in the linear model component (i.e. induction or
repression) of group 2 with respect to the reference group. The maSigPro package

includes functions to easily perform different types of gene selection at this stage.

Until now, the goodness of fit (R-squared) of the new models has not been
considered. This means that all significant genes are selected genes. The
researcher might however be interested only in genes with clear trends as this may

reflect biologically meaningful behaviours. In such case, maSigPro allows an
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additional gene selection step based on the R-squared value of the second

regression model.
4.2.4 Visualization

The maSigPro package provides a number of functions for the visual analysis
of the results. Individual plots of expression profiles by experimental group can
easily be generated for each significant gene. Computed regression curves can also
be superimposed to visualize the modelling obtained for the data. When the
number of selected genes is large, cluster algorithms may be used to split the data
into groups of similar expression patterns. maSigPro incorporates a number of
traditional clustering algorithms to do so. These algorithms typically use gene
expression data to compute clusters. Additionally, maSigPro provides a clustering
alternative that uses the estimated regression coefficients rather than the original
data. This option will group genes on the basis of their statistically significant
profiles changes, discarding the noise of the data that has been removed by the
estimated model. Once clusters have been obtained, maSigPro displays both the
continuous expression profile along all experimental conditions and the average
expression profile by experimental group for each cluster. The first representation
helps to analyze the homogeneity of the clusters while the second provides a useful

visualization of the between-groups differences for the genes of each cluster.

4. 3 Results

4.3.1 Case 1: Toxicogenomics dataset.

The maSigPro method has been applied to the analysis of the published
dataset described in Chapter 2. As we have mentioned, it is a toxicogenomics study
where the effect of the hepatotoxicant brombenzene in rats was studied. In this
example there are 5 experimental groups (j=1,...,5), 3 time points (i=1,2,3), 2 or 6
observations, r=1,...,R; (2 or 6) for each case ij, and 2665 genes (n=1,...,N). The
corn oil group was taken as reference group as this provides the true control for the
treatments. Consequently, we defined four dummy variables Dyr, Do, Dye and Dy
to introduce in the model the experimental groups in an analogous way as
described in Table 4.1. We considered for each gene the model given in Equation

(4.3) where linear and quadratic time effects and their interactions with the
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dummies have been modelled.

X = Bo + By Duryr + Bo Dioyge + BsBimersr + BaDipinyr +
BsTye + Bs Dyryse X Ty + By Dyoyge Ty + BeDiweyze * T + BoDpyye < Tye + (4.3)
2 2 2 2 2
BTy + B D(UT)fjr x Ty + By D(LO)ijr x Ty + ﬂ13D(ME)fjr x Ty + 1614D(H1)ijr x Ty + &y

Applying maSigPro to these data a total of 155 significant genes were
selected at a FDR=0.01 and R-squared threshold=0.6. The FDR gives the expected
number of false positives among the selected genes, in this case 1.5, and the R-
squared criterion selects for genes which are statistically well modelled. All these
155 genes showed statistically significant differences in the comparison between
the high dose and the CO reference group. Out of these, 28 and 91 genes showed
also significant differences at the low and medium dose, with respect to the

reference CO group, respectively.

Visualization of these expression profiles differences can be performed
through the clustering and plotting functions available in the package. A more
directed visualization to specific gene expression behaviours is also possible by
using the values of the estimated regression coefficients. For example, we identified
genes having either an induction or repression response upon the HI treatment
(with respect to the reference group) by selecting genes with positive or negative
values on the estimation of regression parameter, respectively. This variable gives
the slope difference between HI and CO groups when variable Dy;xT? is not
significant, or the slope difference at Time=0 between these two groups when the
quadratic term is significant. Thus, we obtained 59 genes grouped in the “induction
response” and 86 genes in the “repression response”. Each of these groups was
then subjected to clustering for visualizing the differences between experimental
groups (Figure 4.1 and Figure 4.2). Figure 4.1 shows the experiment-wide gene
expression profiles, whereas Figure 4.2 gives the mean profile by groups of each
cluster. Figure 4.1 is useful to evaluate the homogeneity of the obtained clusters
but the actual profile differences between experimental groups can be better

analyzed on Figure 4.2.
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Figure 4.1: Data visualization by cluster analysis. The gene expression profile along all 54

experimental conditions (see Table 2.1 for array labelling) is displayed. A) Genes with a positive
D,, x T coefficient (induced). B) Genes with a negative D, x T coefficient (repressed). Average

expression profile is showed (black line) together with the expression profiles of the genes in

the cluster (grey lines).

Functional classification of the significant genes showed a high proportion of
genes involved in functions related to a toxicological response. Cluster 1 contained
a high number of genes related to drug-response, while clusters 2 and 3 were
populated by genes involved in protein synthesis, and degradation and
maintenance of cell structure. Among the down-regulated genes, many were
participating in acute-phase, fatty acid metabolism or had oxidative properties.
Interestingly, cluster 4 contained many retinol-signalling and tumorogenesis genes,
most of them not found in the original paper analysis (Heijne et al., 2003). Overall,
maSigPro detected 104 new genes that showed statistically significant differences
between experimental groups compared to Heijne et al.” results. These authors
used a two-tailed Student’s t-test per gene on the comparison BB treated (joining

LO, ME and HI experimental groups) and CO control with no FDR correction.
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Figure 4.2: Data visualization by cluster analysis. Each plot shows the cluster average

expression profile by experimental group. A) Genes with a positive D, x T coefficient (induced).
B) Genes with a negative D, xT coefficient (repressed). Dots show actual expression values.

Solid lines have been drawn joining the average value of gene expression at each time point for

each experimental group. Fitted curves are displayed as dotted lines.

To further evaluate the performance of maSigPro we compared our results
with those generated by using the R package LIMMA. We chose LIMMA for this
comparison for being a widely used methodology for the statistical analysis of
microarray experiments. LIMMA performs a linear fit of the data on the
experimental variables and allows setting multiple contrasts for the comparison of
the experimental conditions. When applying LIMMA to the bromobenzene study, it
became immediately notorious the high number of pair-wise comparisons that had
to be set to mimic the maSigPro analysis. We focused on the analysis of gene
expression differences between the High dose and the CO group. This implied to
analyze the contrasts HI_6h.vs.CO_6h., (HI_24h.-HI_6h.) vs. (CO_24h.-CO_6h.),
(HI_48h.-HI_24) vs. (CO_48-C0O_24h.) and (HI_48h.-HI_6) vs. (CO_48-CO_6h.),
and gather the results in one unique gene list. Using this approach, LIMMA selected
63 significant genes at an FDR of 0.01 while maSigPro detected 155. A total of 53

genes were selected by both methodologies, 10 additional genes were called
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significant by the LIMMA approach and 102 were solely found by maSigPro. LIMMA
exclusive genes showed a greater data variability than those selected with
maSigPro. These genes were actually found significant also by maSigPro at the first
regression fit but had low R-squared values and were consequently not selected. On
the other hand, genes detected with maSigPro and not with LIMMA show clear
differences between the high doses and corn oil groups. The reasons for the
different detection might be due to the different criterion for significance between
maSigPro and LIMMA. LIMMA applies FDR on the estimated coefficients while
maSigPro controls false positives on the significance of each gene model.

4.3.2 Case 2: Simulated data.

Since “live” experimental data cannot tell which genes are truly differentially
expressed, we evaluated the power detection of maSigPro on a simulated dataset
resembling the structure of the bromobenzene experiment. The dataset contained
600 genes with profile differences which could be classified into 3 expression
patterns; single group continuous induction (A), single group transitory repression
(B) and differential multi-group induction (C) (see examples of these situations in
Figure 4.3). Additionally, there were 2000 flat profile genes without differences
between experimental groups, making a total of 2600 genes. The replicates for

each gene were produced as independent observations from a distribution
N(y,].n,cr,,z-n), i=1,2,3; j=1,..,5; n=1,..,2600. The data was generated considering

higher variance to the cases with high gene expression and introducing outliers. We
performed 100 independent simulations and computed the number of false
positives detected with both maSigPro and LIMMA using an FDR of 0.05. Our results
show that maSigPro was successful in controlling the number of false positive at the
given FDR, while LIMMA exceeded this threshold in many cases (see Figure 4.4).
The difference between the FDR obtained with LIMMA and maSigPro is statistically
significant at 95% confidence level (0.02+0.002). Furthermore, no type-II errors
(false negatives) were present within maSigPro solutions whereas 16% of the
simulations analyzed by LIMMA did contain at least one false negative. Further
analysis of maSigPro estimates showed that all the significant effects were included
in the models and there were approximately 2.8% of the significant genes with
some additional variable in the model, which indicates an adequate control of the

false positives at this step of the analysis.
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Figure 4.3: Three simulated data examples. Different points correspond to the data at different
groups. Different lines join mean expression values at each GroupxTime combination for the five

different groups.
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Figure 4.4: Results on simulated microarray

data. Box-plots summarizing FDR applying LIMMA

and maSigPro to 100 simulated datasets.

4. 4 Discussion

In this work we present a statistical procedure to identify genes that have
different expression profiles among experimental groups in microarray time-course
experiments. The method is a two-step regression approach where experimental
groups are defined by dummy variables. The first regression fit adjusts a global
model and serves to select differentially expressed genes, while in the second step
a variable selection strategy is applied to identify statistically significant profile

differences between experimental groups. The way variables are defined in the
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model provides a versatile procedure for studying specific pattern differences

among experimental groups and genes.

The choice of using a two-regression steps approach instead of fitting a
unique model had a number of reasons and consequences. In principle, it is
possible that a model including all the available variables would be statistically
significant but would not have any statistically significant coefficient. This situation
is possible in multicollinear scenarios. Therefore, it appears more adequate to apply
a variable selection strategy to obtain gene-specific models containing only
statistically significant variables and where correlated variables had been removed.
However, this way of building the models is not very recommendable for the
purpose of selecting significant genes. Firstly because the time necessary to obtain
models by steps is much longer than the time needed to estimate a unique model.
With datasets including thousands of genes this can become highly time consuming
and practically unfeasible. Consequently, it appears much more effective to first fit
a global model for all genes, use the ANOVA p-values of these global models to find
significant genes and apply then stepwise variable selection fit to only this selection
of genes. A second reason is based on the out-come of some studies that have
shown that regression models created by stepwise approaches yield p-values
biased towards low values (Harrell, 2002). These p-values do not have a proper
meaning and their appropriate correction is still a problem. We checked how this
circumstance would affect gene expression analysis by applying both the maSigPro
approach and solely stepwise regression, with their corresponding p-value
corrections for multiple comparisons, on different datasets. This experiment showed
that Harrell ‘s assertion was true when the goodness of fit of the models (R-
squared) was not considered, but as the R-squared of the estimated models
increased, normally above 0.5, both approaches converged (see the case of the
Bromobenze data in Figure 4.5). When gene selection uses a high R-squared
threshold (e.g. 0.6 as used in this example), both approaches yield similar results,

but the two-step procedure is computationally less intensive.

Gene selection based on the goodness of fit criterion (high R-squared)
provides the possibility of selecting genes for which good models could be obtained.
This can be in many cases a very interesting option when the researcher is mainly
interested in finding biologically meaningful expression trends and in detecting
evenly meaningful profiles differences. In this case, high R-squared gene models

might be successful in capturing these behaviours. In other cases, the aim of the
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analysis may be the detection of any possible gene expression difference and low
R-squared models showing some significant coefficients could be allowed. The
knowledge of the researcher and the objectives of study in each experiment will

help to take a decision about the R-squared threshold to use.

Bromobenzene Data

250

200

150

100 Only Stepwise regression

> 2 steps - maSigPro

Number of selected genes

50

0.00 25 50 75 1.00
R-squared threshold

Figure 4.5: Gene selection evolution for maSigPro

and only stepwise for different levels of R-squared.

Regression approaches rely on a number of assumptions such as
independence of the observations, homoscedasticity and normality. Since
microarray data might not always meet these requirements, validation of the
models would be pertinent. In the simulation study maSigPro successfully detected
the existing gene expression profile differences despites the heteroscedasticity and
influential values present in the data, indicating that the method is valid for the
detection of profile differences in such cases. The maSigPro package provides a
series of tools for evaluating the presence of influential data, which is given as one

of the results of the analysis process.

In the toxicogenomics example analysed, observations were independent
because each rat was removed from the experiment after RNA extraction and
therefore the measurements had been obtained from different individuals.
However, in experiments where gene expression is measured over time on the
same subjects the assumption of independence of the observations will not be
satisfied. In these cases it would be more recommendable to analyse the data via

repeated measures or longitudinal studies (Vittinghoff et al., 2005).
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Although we have presented the method with (I-1)-th time order effects, in
experiments where simple gene expression responses are sought or expected and a
reduced number of time points are evaluated (< 6), quadratic or cubic models
would usually be sufficient to analyse the data (note that the polynomial degree is
always a maximum, the variable selection step will create in the end models that
“best” fit the data). As already discussed above, it is likely that the researcher is
mostly interested in genes which follow biologically meaningful patterns like
induction/repression, saturation kinetics, or transitory responses, which can easily
be modelled with low degree polynomials. In experiments expanding a larger
number of time points, more complex expression patterns could be expected. In
this case, simple polynomial models may fail to capture the evolution of gene
expression. For such scenarios a piece-wise regression or splines regression
approach could be applied (Marsh and Cormier, 2001). The inclusion of a splines
regression alternative within the maSigPro approach is in principle quite
straightforward, as it would simply imply to introduce new dummy variables to
define time intervals. The feasibility of this strategy will be addressed in future

studies.

The results presented in this work show that maSigPro is a powerful method
for the analysis of time course microarray data. The method detects significant
profiles differences without carrying out tedious multiple pair-wise comparisons,
allowing for unbalanced designs and heterogeneous sampling times. The variable
definition of the models does permit not only to find genes with temporal
expression changes between experimental groups, but also to analyze the
magnitude of these differences. The proposed method can easily be extended to
include additional variables (e.g. dye) or reduced by removing variables (e.g. to
study the evolution over time for one unique group). The availability of the
maSigPro methodology as an R package makes this analysis approach easily

accessible to the research community.
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Chapter 5

ASCA-genes: Discovering gene
expression patterns in Time
Course Microarray Experiments by

ANOVA-SCA

Nueda, M.].; Conesa, A.; Westerhuis, J.A.; Hoefsloot, H.C.J.; Smilde, A.K.; Taldn,
M. and Ferrer, A. (2007) Discovering gene expression patterns in Time Course
Microarray Experiments by ANOVA-SCA. Bioinformatics, 23 (14), 1792-1800.
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5.1 Introduction

Designed microarray experiments, as multiple series time-course (MSTC)
microarray experiments, are used to investigate the effects that controlled
experimental factors have on gene expression and learn about the transcriptional
responses associated with external variables. In these datasets signals of interest
coexist with varying sources of unwanted noise in a framework of (co)relation
among the measured variables and with the different levels of the studied factors.
Discovering experimentally relevant transcriptional changes require methodologies

that take all these elements into account.

Multiple series time-course (MSTC) microarray experiments are designed
experimental set-ups in which gene expression is measured at various points of a
given time interval on samples that correspond to different levels of other
experimental factor(s), such as treatment, tissue or strain. As in many other
functional genomics datasets, MSTC data contain information about a large number
of variables (genes) measured on a relatively small number of samples
(experimental conditions). The analysis of this kind of data is usually addressed
either as the identification of co-expressing genes clusters, or as the detection of
differentially expressed genes. Traditional clustering methods have been applied to
the analysis of microarray time course data (Spellman et al., 1998, Lukashin and
Fuchs, 2001) and more recently dedicated clustering algorithms have been
developed that particularly consider the temporal property of gene expression (Bar-
Joseph et al., 2003). These approaches are efficient in finding groups of co-
expressing genes but when the experimental set-up is complex (different numbers
of treatments, replicates, dye-swaps, etc.) the evaluation of the results on the basis
of the clustered patterns can become a rather complicated task. Furthermore,
clustering methods tend to equally weight all samples while deriving gene partition,
which could not be the most convenient approach when expression changes are
only present in a subset of conditions. A second type of methodologies aims at the
identification of genes whose expression vary across experimental conditions in a
statistically significant manner (Conesa et al., 2006, Storey et al., 2005, Tai and
Speed, 2006). These approaches are frequently univariate and as such do not
provide the adequate framework for generating a global understanding of the

information contained in the data.
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In general, when managing large amounts of noisy but correlated data, such
as in the case of microarray experiments and especially when various experimental
factors and levels combine, data analysis can greatly benefit from approaches that
generate information about major and secondary patterns of variability present
through the experimental set-up. Such explorative approaches are effective in
providing a global understanding of the effects that the different factors cause on
gene expression, help in identifying most relevant experimental conditions and can
shed light on how to address subsequent statistical analysis, e.g., which would be
the contrasts of greatest interest. Dimensionality reduction techniques, such as
Principal Component Analysis (PCA) are suited for explorative and summarizing
analyses in these datasets as they are able to model the relationships between
genes by analysing the correlation structure of the data (Quakenbush, 2001). PCA
in microarray data was introduced by Raychaudhuri et al., (2000) for the analysis
of Chu’s yeast sporulation dataset (Chu et al. 1998). These authors showed the
basis of Principal Component (PC) interpretation in the gene expression framework
indicating the possibilities and difficulties of using PCA as a clustering technique.
Other studies have applied PCA and related dimension reduction techniques in
microarray data analysis for the purpose of classifying samples (Landgrebe et al.,
2002; Nguyen and Rocke, 2002; Dai et al., 2006), finding co-expressing genes
(Yeung and Ruzzo, 2001) or identifying odd data (Hilsenbeck et al., 1999). Methods
have been developed to introduce statistical significance in the choice of PCs or for
selecting relevant genes (Landgrebe et al., 2002, Roden et al., 2006). However,
these approaches generally do not take the underlying experimental design into
account. Therefore, the different sources of variation are confounded in the PCA
model and this can seriously hamper the interpretation of the principal compo-
nents (Jansen et al., 2005). The typical methodology for the analysis of designed
experiments is Analysis of Variance (ANOVA), which focuses on the separation of
the different sources of variability. Smilde and coworkers (Smilde et al., 2005)
proposed an adaptation of the SCA (Simultaneous Component Analysis) algorithm
that incorporates experimental design information through ANOVA modelling. The
so-called ASCA (ANOVA-SCA) basically applies PCA to the estimated parameters in
each source of variation of an ANOVA model. This methodology has been
successfully applied to data analysis problems in psychology (Timmerman and
Kiers, 2003) and metabolomics (Jansen et al., 2005).

In this chapter, we study further the applicability of the ASCA approach to
the analysis of high-dimensional microarray data from a designed experiment
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involving several factors. In particular, we use ASCA to explore gene expression
trends and differences in MSTC microarray experiments. We show how ASCA is an
effective approach for separating the data variability present in a complex MSTC
experimental set-up to i) extract the signal of interest from noisy data, ii) reveal
major expression patterns associated with the different experimental factors and iii)
identify most relevant experimental conditions. We develop further the original
methodology by incorporating algorithms for identifying significant signals and
selecting genes that behave according to the detected patterns. We use a published
MSTC dataset for illustrating the methods presented in this work and synthetic data
to provide a deeper understanding of the working of the methodology. The
methodology, denoted by ASCA-genes, has been implemented in the statistical

language R and it is available at http://www.ua.es/personal/mj.nueda and also at

http://bioinfo.cipf.es/aconesa.

5.2 Methods

5.2.1. Model definition

We will consider the general case of a multiseries time-course microarray
experiment, where the experimental design is defined by two main types of
variables: the time component and the experimental groups for which temporal
gene expression differences are sought. Consider I time points (i=1,..,I), J
experimental groups (j=1,...,J), R; replications, r=1,...,R; for each case jj, and N
genes (n=1,..,N). For each gene, we will denote by xj the gene expression

measure at the time /i, under condition j and for replicate r.

The analysis of this experiment with the ASCA approach (Smilde et al.,
2005), implies the definition for each gene of the ANOVA model given in Equation
(5.1)

X =M +; + f; +(a,8)l_j +(a,87)l_jr (5.1)

where # is an offset term, «; is the model parameter for factor time on level i, 5;
measures the j-th group effect, (aﬂ),.j represents the interaction effect between the
i-th time and j-th group, and the individual variation is indicated by (aﬂ}/)ijr instead

of &; to avoid confusion with the error term in the subsequently derived ASCA
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model. The terms in Equation (5.1) can be estimated by least squares under certain

constraints as indicated in Table 5.1.

ANOVA FACTOR CONSTRAINTS ESTIMATE
u - X..
a, 2% =0 X" X..
5 2B,=0 Xj=X..
J
(aB), 2 (aB), =2 (ap), =0 Xij.Xi.m XX

Table 5.1: ANOVA factor estimates. The value x... is the overall average of variable x; x;. is the
average value of all measurements of variable x corresponding to level i of the factor «, x; is the
average value of all measurements of variable x corresponding to level j of the factor g and x; is the
average value of all measurements of variable x corresponding to the levels j and j of the factors « and

B respectively.

When we consider a microarray experiment with N genes and m =3 R, samples, a
i

matrix X of dimensions (MxN) can be defined containing the entire gene expression
dataset. Similarly, the estimates of the ANOVA parameters on the right hand side of
Equation (5.1) can be obtained for all genes and collected into matrices, where
rows represent samples and columns represent genes. Therefore expression (5.2)

can be obtained:
X=1m"+ X, + X, +X,, + X, (5.2)

where, 1 is a size M column vector of ones, m’ is a size N row vector containing

estimates of # for each gene, matrices X,, X, and X,, contain the estimates of
parameters «;, f; and (aﬂ),.j respectively, and X,y contains the residuals named

(apr),, . The rows of matrices X, and X, are highly structured. All rows related to

one level i of factor a are equal in X; and analogously all rows of X, are equal for
each level j of factor B . Figure 5.1 shows schematically the structure of the
matrices X, X,, X, and X_,,. For illustrative purposes the non-replicated case is

shown. Besides the high dimension of these matrices, they have low rank. These

ranks are related to the number of levels of each factor of the experimental design
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and the number of constrains involved. The rank of matrices X, X, and X, are I-1,
J-1and (I-1)(J-1).

Genes Genes
Time 1 N Time 1
1 T 1
X11
Treatment 1 : Treatment 1 X
. T . 2
I X1 I
1 T 1
le
Treatment J : Treatment J X
. T . g
I Xy I
Matrix X Matrix X,
Genes Genes
Time 1 N Time 1
1 1
Treatment 1 * Treatment 1 *
Xb,l Xab,l
I I
1 1
Treatment J * Treatment J *
Xb,J Xab,J
I I
Matrix X} Matrix Xzp

Figure 5.1: Structure of the matrices X, X,, X», Xs» for the non-replicated MSTC microarray

experiment with I time-points, J experimental groups (treatments) and N genes.

T

x| is a row vector that contains the expression value for all genes on level i of

)

factor Time and level j of factor Experimental Group.
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X;,J. =| : where x, ; is a size N vector containing estimates of group effect on
T

X, ;

level j for all the genes.

ab,1j

X, = where x

a,; 1S @ size N vector containing estimates of the

.
Xab,1j

interaction effect on level jj for all the genes.

When experimental data contains numerous variables in which correlation
relationships are present as it would normally be expected in a microarray dataset,
the data matrix X contains redundant information, and therefore also the matrices
Xa, Xp, Xap and X In this case, information can be summarized by applying
multivariate projection techniques that reduce data dimensionality. These methods
project the data into a subspace with the minimal loss of information, and this
subspace represents the principal directions of data variability. The analysis of the
data in the new subspace allows the identification of the major signals. Given the
data decomposition obtained by the ANOVA model, it is possible that each source of
variability has different principal directions. It is therefore convenient to apply
dimension reduction separately to each matrix X;, X,, Xa» and Xs,g. Consequently,
the ASCA model corresponding to ANOVA Equation (5.2) is given in Equation (5.3),

X=1im" +T,P! +T,P] +T, P, +T, P, +E (5.3)

abg” abg

where the SCA component scores of each submodel are given by the matrices

indicated by T,, Ty, T, Tang, and the submodel loadings are given by the matrices
P., Py, P.;, Psy, where PP, =1 for x=a, b or ab, without loss of generality,

(Jansen et al., 2005). E is a matrix in which the residuals of all submodels of the
ASCA-model are collected: E=E,+E,+E,,+Epg. The structure of the matrices X, X,

X:p and X,y defines the structure of matrices T, Ty, T.p, Tapg. For example, for the
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case showed in Figure 5.1 the structure of these matrices of scores is as follows:

T; Tl:,l T;b,l t:bg,ll
X=1m"+| : |P] +| : |P[+| i |PL+ P, +E (5.4)
Ta Tb J Tab,J t:bg IJ

where T, is repeated inside T, J times, the I rows of each matrix Tbj are equal and

the rows of each matrix T,

,; are different, although if there were replicates the

rows of the same cases ij would be equal.

In the rest of this work, the ASCA submodels in Equation (5.3) will be
indicated as “submodel a”, “submodel b”, “submodel ab” and “submodel abg”,
respectively. Further details on the ASCA approach can be found in Jansen et al.
(2005).

Once the ASCA model has been derived and computed, data analysis
proceeds, as in regular PCA, with the exploration of the loadings in a selected
number of PCs, which are typically obtained on the basis of the percentage of the
explained variability or by a cross-validation criterion. In the case of ASCA, the
number of components to retain has to be decided for each of the submodels. We
propose a PC selection procedure based on the scree-plot of each submodel and the
explained variability and interpretation of the associated patterns. Main PCs are
identified as those previous to the slope inflexion on a scree-plot representation of
the accumulated variability and additional PCs are retained when they describe
interesting expression patterns. Finally, the graphical analysis of the score profiles
of the selected components in the different submodels (time, experimental groups
and interactions, T,, T, and T, respectively) allows to extract conclusions on the

effects that the different experimental factors have on gene expression.
5.2.2 Gene-wise analysis

Once major variability patterns have been identified, one step further in the
analysis is to identify both those genes that more closely follow the detected trends
as well as those that clearly diverge from the general model. The first ones would
represent those genes that most coordinately respond in the experimental context;
and the second ones would include odd behaviours or outlier data. For this goal we

analyze the loadings (P,, Py, P.») and the residuals (E,, E,, Es,) of the genes in the
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components selected in each model. Genes with high absolute loading in a specific
component are those that follow the behaviour described by this component and
genes with high residuals are genes poorly modelled by this component. We
propose the use of two statistics, the leverage and the squared prediction error

(SPE) to quantify these two aspects.

The leverage is a measure of the importance of a variable (in this case gene)
in the PCA model. This is computed according to Equation (5.5) (Martens and Nezes,
1989):

h,  =diag[P,P] ], x=a, borab (5.5)

Where diag[PxPTx] is a vector with the diagonal of matrix P,P", and h, the vector
containing the leverage values for all the genes in submodel x (x=a, b or ab). A
threshold for statistical significance of leverage can be defined by resampling
methods. In our case we have chosen a permutation approach in which a number
of row permutations of matrix X are generated to create a reference distribution
where the designed structure of the data has been destroyed. ASCA is then applied
to each permuted matrix with the same number of components as taken for the
original data and gene leverages are computed in each case. The leverage
threshold value at a given confidence (1-«) is obtained as the average of the

(1-a )% quantiles computed for all the genes.

The SPE associated with a particular gene is a measure of the goodness of fit
of the model for that specific gene. Genes not following the general structure
defined in the fitted model will have high SPE. The vector containing the values of
this statistic for all the genes can be computed in each submodel according to
Equation (5.6):

SPE_ = diag[E!E,] x=a, borab (5.6)

The SPE for a particular gene in a submodel is a quadratic form of the errors
associated with that gene. Assuming that these errors are well approximated by a

multivariate normal distribution, Box (1954) showed that the SPE is well
approximated by a weighted chi-squared distribution (gy?). We have used this
approximation to establish the (1- «) confidence SPE threshold. We estimate g and

h by matching moments of the gy’ distribution: the mean and variance

(x4 =gh,o? =2g*h) are equated to the sample mean (m) and variance (v) of the
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SPE sample obtaining the next expression as SPE threshold at « level of

significance:

v 2
SPE, = —y (5.7)
2m 2':2,(1

Therefore, by combining leverage and SPE criteria allows genes can be
categorized in relation to modelling and interest. Most relevant genes in the derived
ASCA model will be those showing high leverage and low squared prediction error.
Poorly modelled genes will be identified by high values in their SPE, while those
genes having low leverage and low SPE will be regarded as not affected by the

experimental factors (Table 5.2).

Low SPE High SPE
. Badly modelled
Low leverage Not responsive Possibly odd data
High leverage Well modelled Influential but poorly
9 9 Follow main trends modelled.

Table 5.2: criteria for gene categorization. Shaded categories provide genes for further

analysis.

5.2.3 Comparative analysis

The ASCA-genes approach was compared with four different methodologies
described for the analysis of time course microarray data: the clustering methods
SOTA and K-means, and the hypothesis testing based approaches timecourse and
maSigPro. SOTA is a hierarchical unsupervised growing neural network which
adopts the topology of a binary tree and offers a statistical criterion for cluster
division (Herrero et al., 2001). K-means is a non-hierarchical partition based
algorithm widely used in microarray data analysis (Hartigan and Wong, 1979). K-
means uses a minimum "within-class sum of squares from the centers" criterion to
select the clusters and requires the number of partitions to be fixed in advanced.
Timecourse applies a multivariate empirical Bayes statistic (the MB-statistic) to the
analysis of replicated time course data. The algorithm contrasts, for each gene, the
null hypothesis of constant vector of means along the time component, to the
alternative hypothesis of non invariability. The MB-statistic can be used to rank
genes in the order of evidence of non constancy (Tai and Speed, 2006). Finally,
maSigPro is a model-based univariate method in which different temporal series are

modelled by binary variables. The method assesses significant differences in gene
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expression profiles between time series through the significance of the estimated

model parameters (Conesa et al., 2006).

SOTA analysis of time course data was done at the GEPAS server
(www.gepas.org) taking Euclidean distance as similarity metric and a threshold of
90% node variability as stop growing tree condition. K-means, timecourse and
maSigPro analyses were performed with the corresponding R packages available at

the Bioconductor repository (www.bioconductor.org). The default Hartigan and

Wong algorithm and 25 partitions were taken as parameters of the kmeans
function. A criterion of positive MB-statistics was used for the feature selection in
the timecourse package while a significance value of 0.01 was applied in the
maSigPro approach. Additionally, Principal Component Analysis computations were

done using the princomp function of the stats R package.

5.3 Results

The proposed method has been applied to two datasets. The first one is the
toxicogenomics study described in Chapter 2 that involves different treatments and
time points. The second one is a synthetic dataset which reproduces the structure
present in the real toxicogenomics experiment. In the latter dataset, signals and
noise sources have been simulated to resemble real data. The synthetic data was
used to analyze how different sources of variability are treated by the ASCA-genes
approach while the real dataset was used to study the biological interpretation of
the ASCA-genes results.

As we have explained in Chapter 2, the experimental dataset comes from a
toxicogenomics study by Heijne et al. (2003) where the effect of the hepatotoxicant
bromobenzene is studied. In this study there are 3 time points (i=1,2,3), 5
experimental groups (j=1,...,5), 2 or 6 replicates, r=1,...,R; (2 or 6) for each case ij,
and 2665 genes (n=1,...,N).

The simulated data was created to reproduce the experimental set-up of the
previous dataset -5 experimental groups and 3 time points- introducing responsive
genes and noise in a controlled manner. The synthetic dataset contained 410 genes
with profile changes classified into 5 expression patterns: 100 genes with
continuous induction for all the groups (A), 100 genes with continuous induction for

group 5 (B), 100 genes with continuous repression for group 5 (C), 100 genes with
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continuous induction for group 4 (D) and only 10 with transitory induction for group
3 (E) (see examples in Figure 5.2). The reason for including a responsive group
with few genes, group (E), is the interest in analysing the behaviour of the method
on a minor trend. Additionally, there were 2500 flat profile genes without
differences between experimental groups, making a total of 2910 genes. The
replicates for each gene were produced as independent observations from a normal
distribution. It is however, known that in real experiments residuals do not
necessarily follow a normal distribution. Non-random sources of technical variability
such as spatial bias, not corrected dye-swap labelling, or mixture of data from
different labs or experimenters can deviate data from Gaussian distributions.
Therefore, to better reproduce real microarray data and in order to analyze how
ASCA-genes behaves with this type of variability, systematic noise was introduced
to the dataset by splitting the dataset in two replicates and adding two opposite
normal distributions to each half.

Pattern A Pattern B (C is the opposite)
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Figure 5.2: Examples from each expression pattern simulated. Lines join the averages for

each group and time-point.
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As the purpose of this study is to identify gene expression profile differences
between experimental groups, when applying ASCA-genes the choice is made to

join for each gene g, and (aﬂ)ij effects in Equation (5.1) and analyze them in one

submodel as it is shown in Equation (5.8) (Jansen et al., 2005).
Xy = H +oy+ [ﬂj + (aﬂ)l_]} + (“ﬁ7),-j, =u +o+ (,8 + aﬂ)l_j + (aﬂ}/)l_jr (5.8)

Out of these effects, (ﬁ +aﬂ) _is the most important for biological interpretations:

ij
it represents the effect of the treatment group on the gene expression measured as

deviations from the common time effect o, for each gene. The terms in Equation

(5.8) can be estimated using Table 5.1. And by arranging all the estimates of the
ANOVA parameters for all the genes into matrices, Equation (5.9) is obtained.

X=1m" + X, + X, +X,, + X, =1m" + X, + X, ,, +X,,. (5.9)

where “submodel a” describes the variation due to the factor time, “submodel
b+ab” describes all the variation related to the factor treatment group, and
“submodel abg” describes the residual (random and non-random) variation in the
data. Therefore, the ASCA-model applied to the described datasets is given by
Equation (5.10):

X=1m" +T,P’ +T, Pl + TP +E (5.10)

abg" abg
5.3.1 Case 1: Simulated data.

By fitting the ASCA model to the synthetic dataset and using the PC
selection criterion described, one and two components were selected for “submodel

a” and “submodel b+ab” respectively.

The score profiles of the components of the submodels reveal the most
common expression patterns in the genes. The first component of the “submodel a”
(Figure 5.3) shows a positive linear effect through time for all experimental groups.
This pattern is the case to the simulated pattern A, where no time-experimental
group interactions were modelled, only a time effect in all the groups. The first

component of the “submodel b+ab” (Figure 5.4) shows different behaviour for
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group 5 and group 4 with respect to the other groups: a clear positive linear effect
through time for group 5 (related to patterns B and C) and a light negative one for
group 4 (related to pattern D). The second component of the same submodel
(Figure 5.4) shows positive differential behaviour of group 4 and group 5 (related to
patterns D, B and C) and also signals different behaviour of group 3 (related to

pattern E), even this is less pronounced.
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Figure 5.3: Score profiles of component 1 in

“submodel a”.
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Figure 5.4: Score profiles of component 1 and component 2 in “submodel b+ab”.

By analysing the loadings of the genes, we can detect genes that follow the
trends shown in the score profiles of the components of the ASCA-model. For
example, if we focus on “submodel b+ab” (Figure 5.5), genes with a high positive
loadings value for the first component of this submodel correspond to genes which

were simulated in pattern B, while genes with a high negative value in the same
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component were genes simulated as pattern C. As pattern D is detected negatively
by the first component and positively for the second one, genes from pattern D
have negative loadings for the first component and positive loadings for the second.
Another interesting result is that genes without interactions between time and
groups (simulated pattern A and modelled by “submodel a”) and flat profile genes

have low loadings in this model.

lat

o .
moow>» T

Component 2
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-0.05 0.00 0.05

Component 1

Figure 5.5: Gene loadings in the two components of “submodel b+ab”.

The analysis of the leverages and SPE in both models shows interesting
results (Figure 5.6). First of all, “submodel a” shows high leverages and good
modelling for case A, which is the case where the time effect is the same for all the
groups. Secondly, “submodel b+ab” in general shows high leverages and good
modelling for cases B, C and D, low leverages for case A and Flat profiles, and high
leverages and high SPE for case E. This indicates that case E is bad represented by
the model. The reason for this is presumably due to the fact that the variability
associated with case E represents a small percentage of the gene set, and hence
this source of variation is not included in the model. This example illustrates that
when there is a small group of genes whose behaviour is not described in the
model, they can be detected by residuals analysis or in extra components. The
thresholds shown in Figure 5.6 have been computed with 100 permutations and

«=0.01 using the gene-wise analysis described previously. Taking into account
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that genes of interest have either high leverages or high SPE the method points to
426 genes. This selection means a sensitivity (defined as the proportion of
detections above true positives) of 91% and a specificity (defined as the ratio

between false calls and true negatives) of 98% (Table 5.3).

Sensitivity = —"— R?a_l Rea_l
TP +FN positive | negative

Specificity = —V Test positive TP FP
TN+FP  Test negative FN ™

Table 5.3: Sensitivity and specificity definitions.
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Figure 5.6: Leverages and SPE of the genes for the simulated dataset in “submodel a” and “b+ab”.

To illustrate how ASCA-genes analysis is able to filter non-random or
unwanted sources of noise and extracts the variability associated with the
experimental factors we decided to compare the method with a general projection
technique: Principal Component Analysis. We applied PCA to this synthetic dataset
and analyzed the variability and meaning of the components similarly to the
procedure followed with ASCA-genes. Two components were extracted according to
the scree-plot criterion. We observe that the first PCA component explains 82.1% of
the total variation. However, as it can be seen on the first plot of Figure 5.7 this
component can not be associated with the behaviour of any of the simulated

patterns (A, B, C, D or E). When sample scores were analyzed for this first
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component, we observed that this PC represents the technical noise introduced to
the data. The second component (3.94% explained variation) identifies the pattern
B and the opposite C. Inspection of a possibly interesting third component (2.6%
explained variation) revealed a general linear tendency in all the groups (patterns
A) and the pattern simulated in D (not shown). Although these results are
interesting, they pose a difficulty to interpretation as the by far main direction of
variability turns out to be associated with a technical feature rather to the
experimental factors which are the goal of the study. When the identification of
these sources of non-random noise is not possible or at least easy - as could be the
case in real data-, we would probably fail to give a biological interpretation to the
results obtained by this approach. In short, because PCA does not impose the
experimental design when doing variability analysis, targeted and non targeted

effects can show up and confound.
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Figure 5.7: Score profiles of the two components of PCA model in the simulated

dataset. Lines join the averages for each group and time-point.

PCA (2 PC's) ASCA (1& 2 PC's)
Model Initial | Explained % Explained %
a (time) 272 32 11.76 255.3 93.86
b+ab (group+ interaction) 1053 461 43.78 713.9 67.80
abg (residual) 10815 9954 92.04 0 0
TOTAL 12140 10447 86.05 969.2 7.98

Table 5.4: variation of the submodels explained by PCA and ASCA-genes. Values collecting most

variability in each approach are given in bold.

This problem is directly addressed by ASCA. By taking into account the
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experimental design, the methodology focuses on the signals of interest avoiding
the interference of non-random noise effects. Table 5.4 shows the amount of
variation associated with each experimental factor and the percentage explained
in PCA and ASCA in this example. In PCA, the variation has been computed using
ANOVA on the fitted principal components. This is the so-called PC-ANOVA
(Jansen et al., 2005). We can observe that while PCA mainly recovers the
variability structure present in the residuals (“submodel abg”), the ASCA-genes

procedure focuses in the variation of “submodels a” and “b+ab” directly.

5.3.2 Case 2: Toxicogenomics dataset.

Once the technical aspects of the ASCA-genes procedure has been revealed
on a synthetic dataset, we study the methodology on a real experiment to analyze
the biological meaning of the results generated by this approach. We have used for

this the toxicogenomics study described earlier.

Firstly, data exploration by PCA showed that the first component of
variability was associated with the dye labelling of the samples, and only on the
second PC revealed a distinct behaviour for the high bromobenzene dose Figure
5.8). This result was already detected in Chapter 2 and illustrates the structural

noise problem described in the previous section.

c N _]

S o RS AL o ur
] o

= & - Cco
(E % A 10
T 2 L o ME
> 5 A0 o v * v HI
3 T a [0
c AV e = &
& o v, M

o a

R« .

=) -4 o

e o v e

o

oo v v

T 9 v

5] v

o v 4

(] ™ v

N o —

T T T T T T
-0.2 -0.1 0.0 0.1 0.2 0.3

First PC, 25% explained variation

Figure 5.8: PC scores of bromobenzene data.
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For ASCA analysis of these data, Equation (5.9) was applied to model the
gene expression response. The component selection procedure gave as a result one
and three components for “submodel a” and “submodel b+ab”, respectively. The
score profile of the first component of the “submodel a” (submodel for the time
factor, explaining 75.15% of variability) shows that in general, gene expression is
mostly affected after 24 hours of treatment, followed by a slight reversion at 48
hours (Figure 5.9). This result reveals the time frame in which treatments have the
strongest effect on gene expression and might indicate either a recovery of the
biological systems or a loss of drug action at 48 hours. The score profiles of the
three components of the “submodel b+ab” (treatment plus interaction submodel)
describe the different responses in time (gene expression patterns) for the
treatment groups (Figure 5.10). These score profiles show a different effect of the
bromobenzene doses on gene expression through time. The score profile of the first
component identifies a marked effect of the high bromobenzene dose in gene
expression which is different to the rest of treatments. As this component represent
almost 50% of the variability associated with this model, it can be interpreted that
high bromobenze is, by far, the treatment that most affects gene expression. The
next two components have a lower weight (they explain around 10% of the data
variability each) and thus represent behaviours of lower impact. Second component
identifies a gene expression pattern characterized by a difference in the gene
expression response between the HI and ME treatments at 24 hours, while the third
component detects basically an effect of differential expression at 6 hours for the HI
and ME doses. In general, the ASCA-genes analysis indicates that the major gene
expression response of this study is focused on the HI doses at 24 hours and there
is a lower response to medium bromobenzene doses. Interestingly similar
conclusions about the patterns of bromobenzene toxicity were obtained by Jansen
et al., 2005 on the analysis of metabolic changes present in the rats used for this

study.
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Figure 5.9: Score profiles of component 1 of “submodel a”.
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Figure 5.10: Score profiles of the first three components of “submodel b+ab”.

The identification of genes following the patterns given by the score profiles
of the components is done by loading analysis. Genes with high absolute loading
values for the first component of the “submodel b+ab” are genes for which the
bromobenzene produces an effect in the high doses very different to the rest of the
doses: in case of positive loading, in the high doses gene expression decreases
(repression) at 24 hours and it is maintained at 48 hours while the remaining
groups do not vary very much over time; on the other hand, genes with negative
loadings for this component have the opposite described effect (induction). Finally,
genes with loadings on this component near 0 have a pattern different to that
described by the first component. Similar reasoning can be applied to the second

and third components.

Genes well modelled by the ASCA-model will have high leverages; whereas
poorly modelled genes will show high SPE values. Figure 5.11 shows SPE and
leverage values computed for all the genes in “submodels a” and “b+ab”. In
general, genes with high leverage exhibit low SPE value, which means that
significant model contributions are also well modelled genes. Cut off values for SPE
and leverage were computed as described in the methods section taking « =0.05.
In total, 345 genes were found with SPE and leverage values beyond their
respective thresholds, of which 157 in “submodel a”, 247 in “submodel b+ab” and
59 in both submodels. Additionally 28 genes were identified as high SPE genes.
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Figure 5.11: sSquared prediction error (SPE) and leverage statistics of the genes in

“submodel a” (left) and “submodel b+ab” (right). SPE and leverage cut-off values are

indicated by horizontal and vertical lines, respectively.

To investigate the biological meaning of the gene selection provided by this
approach, Gene Ontology (GO) annotations were fetched for the collection of genes
present in the rat chip and functional class enrichment analysis was executed using
the software Blast2GO (Conesa et al., 2005) taking a false discovery rate control
level of 0.05. The ASCA-genes selected gene pool was significantly enriched for
functional categories such as glutathione transferase activity, oxidorreductase
activity, microsome, heme binding, fatty acid metabolism, steroid biosynthesis,
xenobiotic metabolism, ferric ion binding, response to stimulus, secondary
metabolism, fibrinogen complex and structural component of ribosome. These
categories are in agreement with a detoxification response described by Heijne et
al. (2003) that includes upregulation of redox enzymes, such as microsomal
glutathione-S transferase or heme oxygenase, which act in the degradation of
xenobiotic compounds, the induction of ribosomal constituents and the regulation of
acute-phase related proteins such as ferritin and fibrinogen. Steroid biosynthesis
and fatty acid metabolism are pathways reported to be induced by corn oil
administration trial animals (Takashima et al., 2006). This result indicates a
meaningful biological content in the genes associated with the main transcriptional
responses detected by the proposed procedure. Additionally, high SPE genes
included epoxide hydrolase and alfatoxin B1 inhibitor, activities also reported to be
triggered by bromobenzene treatment in rats, already at medium bromobenzene
doses, differently from most differentially expressed genes which responded only to

the highest dose.
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To understand the added value of ASCA-genes above other MSTC analysis
methods we compared our approach with four different methodologies described for
the analysis of time course microarray data: two clustering methods, SOTA and K-
means, widely used in many gene expression profiling studies, and two hypothesis
testing based approaches, timecourse and maSigPro, especially conceived for time
series data. For this, the toxicogenomics dataset was analyzed with each of the
alternative methods and results were compared to ASCA-genes in terms of

provided overall information and biological meaning of feature selection.

The first noticeable difference when comparing ASCA-genes to the methods
described above, is the absence in the latter of an explicit view of major gene
expression features related to the experimental factors. While ASCA-genes gives at
first glance a representation of the main gene expression changes occurring along
time and across series (Figure 5.9 and Figure 5.10), the extraction of this
information in the other methods is at least not immediate. The SOTA analysis
provided a tree of 26 end nodes in which the gene expression profiles on the
different time series and their relative importance were difficult to reveal (Annex 2).
Similar conclusions were drawn from the K-means partitioning (Annex 2). On the
other hand, timecourse and maSigPro packages produced lists of genes with an
associated value of statistical significance for differential expression and again
without a summarizing representation of experimental factor effects related to
major gene expression trends. Next, for comparing the feature selection aspect of
ASCA-genes, a selection of genes has to be made for the alternative approaches. In
the case of the clustering methods this implied the selection of “important” clusters
and here we encountered the difficulty of not having an objective tool for this
selection. We therefore made a selection on the basis of visual inspection of the
cluster profiles, selecting according to a series associated pattern of differential
expression and by the magnitude of the change. In the case of SOTA, this resulted
in the selection of the upper 11 and lower 9 clusters, summing up a total of 155
genes. Upper clusters corresponded basically to genes induced by high and medium
doses of the drug, while the lower 9 clusters contained repressed genes (Annex 2).
In the case of K-means this resulted in the selection of 5 clusters (136 genes)
which also included up and down regulated genes at high and medium
bromobenzene doses (Annex 2). In the case of maSigPro, a selection of 155 genes
was obtained when applying a significance level of 0.01. Timecourse, on the
contrary, does not provide a selection of significant features but a rank of genes

ordered by the value of the MB-statistic. Taking genes with a positive value for the
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MB-statistic, a total of 256 genes were selected for comparisons. It should be
mentioned that the results of the timecourse approach changed with the scale of
the data: when data values were multiplied by 100, the gene associated MB values
greatly increased, becoming positive in many cases (data not shown), which
drastically affects the results of any absolute feature selection criterion. This did not

happen with any of the other statistical approaches.

Table 5.5 shows the results of comparing the ASCA-genes feature selection
with the alternative approaches. A complete list of selected genes by the different
approaches is given in a supplementary file of the published paper available at

http://bioinformatics.oxfordjournals.org/cgi/content/full/btm251/DC1 and also at

http://www.ua.es/personal/mj.nueda. In all cases, ASCA-genes provided a greater

gene selection. Moreover, 70-85% of the genes selected with the alternative
method were present in the ASCA-gene pool, except for the timecourse method
where overlap was only of 50%. Analysis of the biological meaning content in the
groups of genes that were different in each pairwise comparison indicated the
presence of significantly enriched GO terms in any of the groups of genes selected
by ASCA-genes and not detected by the other approaches. In contrast, for the
opposite comparison no enriched GO terms could be detected, except for the K-
means vs. ASCA-genes comparison which revealed the presence of ribosomal

proteins not selected by the ASCA-genes approach.

Taken together, these results suggest a stronger discovery power of the
multivariate approach and illustrate another distinct feature of the ASCA-genes, i.e.
categorization according to values of leverage and SPE statistics. High leverage and
low SPE genes are genes that vary according to the main trend and correspond to
major molecular functions affected by the treatment. High SPE genes are model
diverging data and would correspond to responsive genes with a minority pattern.
Low leverage genes show low variance and encode functions less specific in the
bulk response. Although the commonality or not of a given gene expression pattern
can also be derived through cluster analysis (i.e. high SPE genes can be found in
the two most upper clusters of the SOTA result), the explicitness and magnitude of

this kind of information is best obtained in the ASCA approach.
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ASCA-genes SOTA K-means Timecourse | masSigPro
(373) (155) (136) (256) (155)
Common with
106 106 119 132
ASCA-genes
biosynthetic Lipid-metabolic microsome oxidoreductase
process process fibrinogen activity
translation monooxygenase complex steroid
L activity . .| biosynthetic
fibrinogen ribonucleoprotein
) process
complex oxidoreductase complex
tivit fibri
RNA binding activity cytoplasm ;or:rp‘)cl)an
ASCA-genes retinoid  metabolic | )
= process biosynthetic
vs. alternative process
method steroid )
dehydrogenase translation
activity lipid  metabolic
response to | Process
xenobiotic stimulus
glutathione
transferase activity
Alternative
method vs. none Ribosome none none
ASCA-genes

Table 5.5: Gene selection comparison between ASCA-genes and alternative methods. GO term
enrichment analysis of differential set was done with the software Blast2GO (Conesa et al., 2005).

Numbers in brackets indicate the selection of genes in each method.

5.4 Discussion

This chapter addresses the development and application of the ASCA-genes
methodology for the analysis of MSTC microarray data. ASCA combines ANOVA and
SCA techniques. Basically, ASCA applies PCA to the estimated parameters in each
source of variation of an ANOVA model. The method estimates two gene statistics,
leverage and SPE that provide information on the adequateness of the model for
each gene. This methodology analyses data from a multivariate prospective, taking
into account the experimental design and focusing on the sources of variability

associated with each of the experimental factors.

The application of the ASCA approach to transcriptomics data has two
practical uses. On the one hand, the analysis of the score profiles of the
components of the submodels of interest (time, experimental groups and
interactions) helps to understand the shared behaviours of gene expression under
the studied conditions. On the other hand, the study of the loadings allows the
identification of the genes that follow the discovered patterns. Finally, by analysing
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the residuals small group of genes following different expression profiles as those
modelled by the ASCA-model can be identified.

One follow up question is how to identify most interesting genes in such
approach. We have proposed a criterion for feature selection based on the
combined use of two statistics: the leverage, as a measure of the importance of a
gene contribution to the multivariate fitted ASCA-model, and the squared prediction
error (SPE) as an evaluation of the goodness of fit of the model to a particular
gene. Threshold values for these parameters can be derived by resampling methods
or using a weighted chi-squared distribution proposed by Box (1954). The
simulated data shows that we can use these measures to categorize genes as (1)
genes with a variability pattern associated with the main effects of the experimental
factors, (2) genes that diverge from the most abundant behaviour but can display a
minor gene expression response, and (3) genes which basically do not respond to
the factors evaluated in the study. Taking as “interesting” genes those falling into
the first two classes, our simulation example also showed that these selection
criteria provide specificity and sensitivity values above 90%. Furthermore, the
results obtained with experimental microarray data, show that the score profiles
derived by ASCA-genes are consistent in the context of a dose-related toxicological
response and that the feature selection provided by the leverage and SPE
parameters is biologically significant. Comparison of the ASCA approach to other
existing methodologies for the analysis of time course data shows the potentials
and uniqueness of the proposed method for extracting major and secondary
patterns of gene expression associated with the factors of study and for highlighting

meaningful gene pools.

Another important benefit of the ASCA-genes approach is the possibility of
isolating non-random or unwanted sources of noise. These sources of noise can
originate from different labs, experimenters or labelling conditions which associate
to only a subset of the data. These non-modelled sources of variability can pollute
data and hamper the identification of the signals of interest. We show that when
PCA is applied to the gene expression signals in such cases, principal components
can pop up that do not associate to the factors of the study and can obscure the
interpretation of the results. In fact, complains on the poor interpretability of PCA
principal components in microarray analysis has been reported (Raychaudhuri et
al., 2000). As ASCA-genes focuses only on the variability associated with these

experimental factors, it clearly outperforms PCA in terms of interpretability and
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feature selection.

The ASCA methodology relies on standard ANOVA for extracting the
variability in the data associated with the experimental factors. ANOVA, however,
might not be the most adequate strategy for the analysis of time series as it does
not takes into account possible autocorrelation of serial data. In this work we have
considered datasets where this problem was not present, as biological and
simulated samples were truly independent at each time point. Application of ASCA-
genes to longitudinal data, therefore, should be cautious. In any case, the strategy
ASCA (PCA restricted to the variability associated with experimental factors) might
be extended to other models such as repeated-measures ANOVA or linear mixed

models, which would deserve further research.

Posterior studies revealed that the criterion described in this chapter to
select genes is not adequate for experiments with high number of genes and high
structural noise. In Annex 3 we include one of these studies. We consider that
finding an independent criterion of the signal-noise ratio level is an interesting topic

for future research.
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6.1 Introduction

As we have already stated in previous chapters, microarrays are a noisy
technology where both random and systematic sources of variation can obscure the
biological signal. Most of the normalization methods are devoted to centre and scale
the data assuming general invariability for all observations and greatly ignoring the
particular sample hybridized in each array. It is arguable that when systematic
noise is associate with an array or sampling effects, the consideration of the
experiment design could provide some means to correct this noise. On the other
hand, the co-regulation mechanism that underlies gene expression implies that
transcriptomics data has an inherent structure of correlation. Taking this covariance
structure into account is an effective way, as we have seen in Chapter 5, to
enhance data analysis. In this chapter we propose a strategy to transform the
original data by considering the relationships within gene expression and the
information of the experimental design. We use the ASCA (ANOVA-SCA, Analysis of
Variance - Simultaneous Component Analysis, Smilde et al., 2005) approach
described in Chapter 5.

ASCA is mainly used as an exploratory tool for the analysis of multivariate
data with an underlying experimental design. The approach is effective in
identifying variability patterns associated with experimental factors and for the
descriptive analysis of complex multivariate dataset which follow a designed set-up.
ASCA has been applied in metabolomics (Jansen et al.,, 2005) and also in
transcriptomics (ASCA-genes, Chapter 5) where the methodology was expanded to
include a gene selection feature. ASCA-genes was developed for a model with two
factors and their interaction, although it could easily extend to more complex
models. Although these could be any factors, we associated them with time and

treatment to specifically consider the Time Course Microarray (TCM) experiments.

The data decomposition offered by the ASCA and ASCA-genes approach is
an interesting means of isolating targeted effects (time and treatment effects) from
noise effects -through the ANOVA decomposition- and identifying the gene
expression features associated with these effects -through the PCA on the ANOVA
factors—-. In this study we propose to exploit this pre-processing data to generate a
data filter strategy that extracts the information of interest by removing both the
noise present in the gene expression signal and the signal (or structure) present in
the noise of the data. The processed data can then be used for statistical analysis
with any dedicated methodology for TCM. We have analyzed the effect of the ASCA-
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based filter in the performance of maSigPro (described in Chapter 4) and also in
other recently developed methodologies, i.e. timecourse and EDGE. The main
reasons for choosing these last two methodologies were, firstly, their availability

and, secondly, their ability of dealing with multiple time series.

Simulations studies have been carried out to investigate the performance of
the ASCA filter in different situations. In a first study, datasets were simulated with
a structure of independent observations and short time-course experimental
design. Different amounts and types of noise were added resulting in distinct
scenarios. In the second case, datasets with longitudinal data structures were
simulated introducing likewise different types of noise. maSigPro, timecourse and
EDGE packages were applied to simulated data before and after the ASCA-filtering
and rates of false positive and negative discoveries were recorded. maSigPro is
indicated for independent observations, while timecourse deals especially with
longitudinal data. EDGE claims to be suited for both longitudinal and independent
data. Our results indicate that the ASCA filter is effective in improving the detection
power of TCM analysis methods, especially when high levels of structural noise are
present. Interestingly, although maSigPro is not a longitudinal data analysis
method, it does provide an efficient selection of d.e.g. in combination with the
ASCA filter.

6.2 Material and methods

6.2.1 The proposed filter

We consider the ASCA model described in Chapter 5, where PCA is applied to
the matrices collecting the ANOVA estimated effects of time factor (X,), treatment
(X»), interaction (Xp) and error (X,g) for all genes. As Equation (6.1) indicates, the
model can be divided in two parts: one corresponding to the gene expression
feature the experiment is aimed at and the other corresponding to the experiment

noise which is captured in the model residuals.

PART I: Signal of interest PART II: Residuals
Xa Xb Xab Xabg
——— ———
_ T T T T T
X=1m +TP, +E,+T,P, +E +T, P, +E, + TabgPabg + Eabg (6.1)

As discussed in Chapter 5, the ASCA approach provides the means of

identifying relevant behaviours within each source of variability considering the
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correlation structure of the data. These behaviours are represented in the scores of
the main components of each submodel (T matrices). Furthermore, gene loadings
(P matrices) are the representations of individual expressions in the extracted
components and can be used to select genes that more closely follow the

discovered patterns.

However, as ASCA is based on the ANOVA model, it does not directly exploit
the quantitative nature of the time factor and it could be argued that other methods
that do consider this aspect could be more suited for identifying differentially
expressed genes in TCM data analysis. In order to benefit from the decomposition
properties of ASCA while keeping a significant analysis under a quantitative-based
statistics, we propose to use the former method as a pre-processing or filtering
strategy to the later methodology. This previous step would help to reduce noise
and focus on the main structures present in the data, as the filtered data will be the
projections on the principal directions of variation. Hence, final results would be
improved in two ways, firstly we focus on genes with shared behaviours and
secondly we remove noise. A filtered data matrix can be obtained by removing from
the original data matrix, the residual matrices of time, group and interaction
submodels obtained by data decomposition, such as given by Equation (6.2).

X=-X-E,-E,-E,, (6.2)

By removing the residual matrices E,, E, and E., from matrix X, the noise
embedded in the signal, i.e. the noise contained in each of the experimental factors
(time, group and their interaction), will be filtered out. Note that in this model, we
are still leaving all the noise not captured by the ASCA model in the data, i.e matrix
Xabg, Which would provide the noise variation required to carry out an effective
inferential analysis. However, in experimental datasets, noise is frequently a
mixture of random and systematic or structural noise components. Sources of
systematic noise are, for example, dye effects in two colour technologies, or a
batch (lab, time schedule, technician, etc.) effect affecting subsets of arrays
differently. Formally, this systematic noise can be modelled as the latent structures
present in the component X, of the ASCA model and can be identified by applying

PCA to this matrix. Therefore our filtering strategy can be improved by subtracting
Ta,,gPaT,,g in Equation (6.2), resulting in a data processing according to Equation

(6.3). In this formulation we generate a filtered dataset ):( where putatively both
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the noise of the signal (E matrices in ASCA submodels) and the signal of the noise

(TP element of the ANOVA error) are removed.

X=X-E,-E,-E, -T,P. (6.3)

abg® abg

We therefore suggest using X instead of X as filtered data to be subjected
to further analysis by any statistical methodology for time course data, as explained

in the next section.

Following the same rationale discussed in Chapter 5, we concentrate
analysis of TCM data in the differences between experimental groups (Xp) over time
and therefore we choose to join for each gene this factor with the interaction (Xap).
Arranging parameter estimates of the ANOVA models for all genes into matrices,

equation (6.4) is obtained.
X=1m" + X, + X, + X, + X, =1m" + X+ X, _, +X,,. (6.4)

Therefore, the applied ASCA model is al follows:

Xa Xb + ab Xabg
X = 1mT + TaPaT + Ea + .rb+abe7;-ab + Eb+ab + TabgPaTl-Jg + Eabg (65)

The number of components criterion

The ASCA approach requires that a number of PC will be selected to
generate the different submodels. The number of components taken affects the
amount of signal and noise retained and therefore the goodness of fit of the

solution depends on the correctness of this selection.

There are several methods to choose from: analysis of the scree-plots,
cross-validation, choosing a predefined threshold of variability, etc. As the goal is to
select the variation of interest, described by models X, and Xp+ap, and to remove
the possible structural noise, included in model X,pg, we decided to use different
criteria for each part. For retaining signal, we choose a number of components that
explain a high quantity of variation of X, and Xp+ap Submodels, fixed in more than

the 75% of the variation in each case. For removing structural noise the situation is
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different. If X,pg has structural noise, PCA will capture it and there will be some
eigenvalues of the covariance matrix of Xapg, Var(Xapg), which are noticeably higher
compared with the remaining ones. Therefore we can select components associated
with the highest eigenvalues. A classical criterion is to take the eigenvalues higher

than the average:

rank(XE,,g)

j'k
Ay > —KL 6.6
“ 7 rank(X,,,) (6.6)

However, when there is only random noise, eigenvalues of variance matrix of Xapg
will be approximately equal and half of them will be higher than the average.

Therefore we prefer to weigh the previous average by a coefficient g >1:

rank(Xapg )
/11(

A > p—kL 6.7
K ﬂrank(Xabg) (6.7)

In our results we have taken g =2. The validity of this strategy was studied by

comparing the gene selection given in this case, with those obtained when other
selections of components were data-filtered. This study has been carried out with
only one of the statistical methods, maSigPro methodology, in one of the simulation
studies. The results, included in Annex 4, are discussed in the following section. As
we have previously mentioned, there are other methods to select the number of
components whose suitability in the performance of our filter method merits future

research.

6.2.2 Datasets

6.2.2.1 Synthetic data

Two simulation studies have been performed to evaluate the ASCA filter. The
first study is an independent time-course experiment while the second case
simulates longitudinal data. Different scenarios have been considered in each case

to resemble situations with different types and quantities of noise.
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Independent time-course data. We have simulated datasets in several
scenarios with the same structure, 3 experimental groups (1, 2 and 3), 3 time
points and 4 replications. The datasets contained 410 genes with profile differences
classified into 5 expression patterns: 100 genes with continuous induction for the
three groups (pattern A), 100 genes with continuous induction for group 3 (pattern
B), 100 genes with continuous repression for group 3 (pattern C), 100 genes with
transitory induction for group 2 (pattern D) and a minority group, a group with only
10 genes with transitory induction for group 1 (pattern E). Additionally, there were
9590 flat profile genes without differences between experimental groups, making a
total of 10000 genes. The replicates for each gene were produced as independent
observations from a distribution N(y,jn,a;n), i=1,2,3 j=12,3;n=1,...,10000.

Although all the datasets have the same structure there are some
differences among them regarding the noise. Different random noise has been
considered with ¢ =0.05 and 0.1 for the simulated replicates. Systematic noise was
introduced to the datasets in the same way that the simulated dataset in Chapter 5.
This noise simulates a dye-swap experiment by splitting the dataset in two
replicates and adding two opposite normal distributions to each half. Furthermore
this structural noise has been added in two different quantities: low: +N(0.1,0.05?)
and high: +N(0.25,0.1%). Therefore, six different scenarios have been studied and we

refer them by the enumeration indicated in Table 6.1.

Random noise
Structural noise o =0.05 o =0.1
None 1 2
Low: +N(0.1,0.05%) 3 4
High: +N(0.25,0.1%) 5 6

Table 6.1: Simulated scenarios.

Longitudinal data. We have also simulated longitudinal data to evaluate the
performance of the ASCA filter with this type of time course data. Furthermore, as
timecourse and EDGE methods have been designed for the analysis of longitudinal
data, we could better examine the suitability of the ASCA filter with these

techniques.

122



ASCA as a filter

a) b) °)
Microarrays Data matrix Microarrays Data matrix Microarrays Data matrix

Figure 6.1: Examples of the alterations in the simulated chips. Shaded parts of the data matrix

indicate wich data data will be affected by the alteration of the chip. a) Spatial differences inside all the

chips. b) Several chips altered in the same way. c) Combination of both effects a) and b).

We decided to use the structure of the simulated longitudinal data described
in the timecourse package documentation. This is a dataset with 5 time points, 3
experimental groups with 4, 3 and 2 repetitions each one of them making a total of
9 individuals and 45 chips. We simulated 500 changing genes, with the functions
detailed in the timecourse package and 9500 flat genes yielding a total of 10000
genes. These functions generate the dataset by simulating multivariate normal data
considering the same normal distribution for the average profile and the same
correlation matrix between the individuals of the same experimental group. This
produces a series of data with similar behaviour inside each experimental group
which is different to the other groups. However, this method does not target
selection to genes with the same time pattern for all groups. In our analysis we do
consider this behaviour as differential expression and only label as non-interesting

those genes which have flat profiles across all treatments.

Structural noise was added in different ways to resemble different problems
that may appear in microarrays. In the first scenario no structural noise is added.
The second case is a scenario where spatial differences are consistently present

across all arrays (Figure 6.1 a). The quality of the glass or systematic hybridization
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problems can cause different intensities in all the chips of an experiment. As a
result several genes will have higher or lower gene expression values in a constant
value and therefore several rows of the data matrix will be altered by this constant.
We have simulated this scenario by adding a normally distributed variable, N(3,1)
to 5000 genes (50% of the total: 250 significant and 4750 flat genes). The third
scenario simulates the experiment for which there are several chips affected
globally by a constant value. This is the typical batch effect, which arises when
different labs, persons or time-scheduling take part in the elaboration of the chips.
Here, several columns of the data matrix will be modified (Figure 6.1 b). We have
simulated this scenario by adding a normally distributed variable, N(3,1), to 15
chips. In the fourth scenario both effects are combined: spatial effects are only
present in a subset (batch) of the arrays (Figure 6.1 c). We have simulated this
case by adding to 5000 genes (50% of the total: 250 significant and 4750 flat
genes) a normally distributed variable, N(10,2.25), to the expression of 5
individuals of different experimental groups. Finally, the fifth scenario simulates a
dye swap as it has been described in the simulated study 1 with a normally
distributed variable £N(3,1).

6.2.2.2 Experimental datasets
We also show the application of this filter to two real experiments: the
toxicogenomics study analysed in previous chapters and a larger transcriptomics

experiment of abiotic stress on a plant system.

Toxicogenomics dataset. The first experimental dataset is the

toxicogenomics study by Heijne et al. (2003) where the effect of the hepatotoxicant
bromobenzene is studied. In this study there are 3 time points (6, 12 and 48 hours
after the administration of the drug), 5 experimental groups (2 placebos and 3
different doses of bromobenzene) and 2665 genes. This dataset is described in
detail in Chapter 2.

NSF potato stress dataset. The second experimental dataset corresponds to

a stress study in plants that investigates the transcriptional response to three
different abiotic stressors (Salt, Cold and Heat) in potato using the NSF 10k potato
array (Rensink et al., 2005). A common reference design is also used in this case.

The dataset has 4 series (1 Control and 3 types of stress: Heat, Salt and Cold), 3
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time points, three replicates per experimental condition and 9993 genes.

6.2.3 The evaluation approach

The general strategy to evaluate the proposed filter was to apply a statistical
method for TCM data (maSigPro, EDGE and timecourse) before and after applying
the filter, and compare results in terms of feature selection. We have used
sensitivity (true positives detected/real true positives) and specificity (true
negatives detected/real true negatives) to quantify the performance of each
pipeline analysis. A good selection of genes is obtained when both measures are
close to 1. In the case of experimental data, as the true differentially expressed
genes are not known, these metrics cannot be used. Instead, we have applied a

functional enrichment analysis to evaluate the biological consistency of the results.

In the following, the time course methodologies used to demonstrate the
performance of the proposed filter (maSigPro, timecourse and EDGE) are described.
Since maSigPro is extensively described in Chapter 4, we will only include here a
brief mention of basic characteristics. Timecourse and EDGE methods were
introduced in Chapter 3 but not explained in detail. A more exhaustive description

of these comparing methods is provided in this chapter.

masSigPro

The maSigPro approach fits a polynomial regression model that describes
the evolution of gene expression over time. The methodology follows a two-step
strategy. First, a global regression with the complete polynomial model is estimated
for each gene applying least-squares technique. Differentially expressed genes are
identified based on the FDR-controlled p-values of the F-statistic associated with
the regression ANOVA. Secondly, a variable selection strategy is applied to identify
gene-specific expression differences among experimental groups and to find
statistically significant different profiles. At this stage genes might also pass a
selection filter based on the R-squared value of the second regression model. This
value measures the goodness of fit and therefore allows for the selection of genes
with consistent expression trends. As a result, a refined gene selection is obtained,

together with the set of significant regression coefficients of each selected gene.

125



ASCA as a filter

TimeCourse

This methodology, proposed by Tai and Speed (2006), considers one and

two sample multivariate tests about the mean vector g on different k time-points

to study differences in the evolution through time in longitudinal time series. The
hypothesis testing applied is the invariability of gene expression profile against non-

constancy for one biological condition (H, : g =0vs H, : g =0), and equality of

the gene’s mean expression levels versus the alternative that they are not

(Hy * By =Hg vs H, 1 g, # gy ) under two biological treatments or conditions.

Based on the likelihood ratio statistic they develop a moderated likelihood
ratio statistic and a moderated Hotelling T?-statistic taking into account the
information in all the available data to estimate the variance-covariance matrix by
applying a multivariate empirical Bayes procedure. They consider the posterior odds
for each gene that is the probability that H; is true divided by the probability that
H, is true. Furthermore, they introduce a MB-statistic in both problems as the log
base 10 of the posterior odds, which is the equivalent to the B-statistic in the
univariate model (Lonnstedt et al., 2002 and Smyth, 2004) and is also called in
genetics LOD score. When MB-statistic is positive it indicates that H; is more

probable than Hy, therefore this gene will be of interest.

The methodology has been implemented in the R package timecourse
available from Bioconductor. Additionally, the program also includes the
corresponding implementation for multi-sample problems, generalizing the

hypothesis of the two conditions case.

The method focuses on gene ranking, using the MB or T?-statistics, and
there is no significant assessment or a p-value computation. The gene ranking is
obtained from the order of evidence of non-constancy for one condition and from
the order of evidence of differences in evolution between conditions. Therefore, and
for comparison purposes with the other statistical approaches, we defined the
feature selection criterion with the timecourse methodology as positiveness of the
MB statistics in the case of experimental data. In the case of simulated datasets the
selection applied was the n first features, n being the number of genes simulated as
significant. This was due to the fact that the MB values were negative in the first
simulated study and there were big differences in positive cases between the

original and filtered data in the second simulation study. Our purpose here is not to
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demonstrate the performance of this method but to investigate improvements in
gene selection by ASCA filtering when timecourse is used as a statistical test and

the ranking of genes is the main output of this method.
EDGE

Storey et al. (2005) proposed the use of B-splines to fit the same
dimensional model to each gene where the coefficients are estimated by applying
standard least squares regression techniques. They develop their method to handle
both independent and longitudinal data. The method is implemented in the
statistical language R in the software EDGE (Leek et al., 2006).

Let x; be the relative expression level of gene /i in individual j. For

independent data they propose the model:
X, = u(t)+ ¢, (6.8)

where y(t;) is the population average time curve for gene / evaluated at time ¢
and ¢; the random deviation from this curve. y(t) is parameterized in terms of an

intercept plus a g-dimensional linear basis:

w(t) =o; + B,Ts(t) =a; + S (6) +...+ ﬁquq(t) (6.9)

where s(t) is a prespecified g-dimensional basis, o, is the unknown gene-specific
intercept and B/ :[ﬂ,l,...,ﬂq]T a g-dimensional vector of unknown gene-specific

parameters. The authors indicate that a natural choice for this basis is a polynomial
of degree g, that was effective in their studies, although a natural cubic spline basis
is more flexible, and this option was chosen in our analysis. The curve is estimated
by minimizing the sum of squares between the curve and the observed values. To
decide between the null hypothesis of no differential expression (x4 (t) constant)
against the alternative of differential expression ((t) a curve) they consider a
statistic for each gene analogue to the F-statistic used in maSigPro that compares
the variation explained for the model with the residual variation. Finally they use
bootstrap techniques to find the empirical distribution of the F-statistic and they
compute a Q-value for each gene which estimates the FDR incurred when calling

the gene significant (Storey and Tibshirani, 2003).
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For longitudinal data, x;, the relative expression level of gene j in individual
J at the k-th time point, they use the model:

X = ﬂi(tjk)"'}’ij + & (6.10)

being y, the individual deviations from the average time curve y(t). The term y,

can be modelled as a curve or as a constant. However, to model a curve enough

observations need to be available.

6.3 Results

6.3.1. Simulation study 1: independent time-course data

In this simulation study, we first asked if the proposed criterion for the
selection of a number of components in each ASCA submodel was adequate. We
studied this in a pilot simulation where only one dataset was created for each of the
proposed scenarios. Table 6.2 describes the percentage of variation simulated in
each submodel and the explained percentage of variation captured by each
submodel when the proposed criterion for component selection is applied (the
actual number of components obtained by this criterion is indicated in the table).
We can observe how the residual variation increases with more noisy scenarios.
When gene selection on these simulated data is obtained by the ASCA-genes
approach we observed that selection becomes unsatisfactory when high levels of
structural noise and low signal-ration values are present. This study is provided as
supplementary material in Annex 3 and will not be discussed further here, although
results indicated the necessity of adapting ASCA-genes feature selection strategy to

high noise / low signal scenarios.

%Variation Number of % Explained in each model
SCENARIO Xa Xbab Xres Components Xa Xbab Xres
1 33.6 39.8 26.6 1,2,0 89.7 89 0
2 19.4 28.2 52.3 1,3,0 83.5 7.7 0
3 12.3 18.9 68.8 1,2,1 89.7 89.9 79.8
4 10.5 18.3 71.2 1,3,1 83.7 79.5 57.1
5 3 7.8 89.2 1,2,1 89.6 83.5 92.6
6 3.3 8.6 88.1 1,2,1 83.7 75 86

Table 6.2: Percentage of variation simulated in each submodel with independent data and %

explained variation by applying ASCA with the number of components indicated in each submodel.

128



ASCA as a filter

masSigPro

As indicated before, we used this pilot study to evaluate the adequacy of the
proposed criterion for a number of component selection. We include the different
solutions in Annex 4, in terms of FN, FP, sensitivity and specificity, obtained with
the proposed and other numbers of components for each submodel and with
different R-squared levels (0.6, 0.7 and 0.8). We can observe that the proposed
criterion provides an efficient selection of differentially expressed genes in all
scenarios although there are also other good solutions. We can also observe in
Annex 4 that as the number of components of submodel b+ab or submodel abg
increases the number of selected genes also increases. This is related to the

definition of the F-statistic used for gene selection in maSigPro:

_ Explained variability with the model
" Residual or non explained variability

As the maSigPro model tries to explain the variability in X, and Xpia, if this
variability increases, the F-statistic also increases and there will be more genes
selected because the associated p-value exceeds the prefixed threshold. On the
other hand, by increasing the number of components in the submodel abg, the
considered residual variability in the associated regression model decreases,
thereby the F-statistic will increase and consequently so will the number of selected

genes.

Table 6.3 shows the results obtained with the proposed number of
components taking R-squared=0.8 (results with R-squared of 0.6 and 0.7 are
included in Annex 4 and lead to similar conclusions). The election of the cut-off
levels for a method depends on the proportion of genes that it is expected to be
obtained and the level of noise in the dataset. In the following we try to maintain
the same levels for the different techniques, but this not always result in
comparable analysis scenarios. Considering the sensitivity and specificity indicators
we can state that in all scenarios the selection of genes applying maSigPro to the
filtered data is equal or better than the selection with maSigPro to the original data.
In scenarios where there is no systematic noise, maSigPro behaves efficiently both
in the original and the filtered data, thus the ASCA filter does not affect the original
good results. On the other hand, in scenarios with high noise, the ASCA filter
clearly improves sensitivity, specificity being unaffected. Taken together we can
conclude that this pilot study suggests that the ASCA filter is an efficient way of
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improving the detection of differentially expressed genes in high noise scenarios

and it has no significant effect when noise is limited.

SCENARIO DATA SELECTION FP FN SENSIT SPECIF
1 Original 410 0 0 1.000 1.000
Filtered 410 0 0 1.000 1.000
2 Original 410 0 0 1.000 1.000
Filtered 399 0 11 0.973 1.000
3 Original 369 0 41 0.900 1.000
Filtered 409 1 2 0.995 1.000
4 Original 281 0 129 0.685 1.000
Filtered 389 0 21 0.949 1.000
5 Original 8 0 402 0.020 1.000
Filtered 558 206 58 0.859 0.979
6 Original 4 0 406 0.010 1.000
Filtered 311 3 102 0.751 1.000

Table 6.3: maSigPro results with original and filtered data for the 6 simulated scenarios with

independent data by using FDR=0.05 and R-squared=0.8.

We confirmed the results of this pilot experiment by running an extended
simulation study in which each scenario was simulated 10 times summing up 60
simulations. Again, we applied maSigPro to each original dataset and to the ASCA-
filtered datasets at different R-squared threshold levels (0.6, 0.7 and 0.8) and
collected selected genes, making a total of 360 analyses. We applied ANOVA to the
data obtained in this study to assess the statistical significance of the differences in
specificity and sensitivity observed for the involved factors: Data (original or
filtered), Scenario (1 to 6) and R-squared (0.6, 0.7 or 0.8). ANOVA showed that all
factors and some interactions (mainly Scenario x Data) were statistically significant
(p-values < 0.05, Annex 5). The ASCA-filter pre-processing improves the average
sensitivity by 0.23 when maSigPro is used as a method for gene selection.
However, although the average decrease of the specificity is also statistically

significant, its magnitude is very limited (0.01), and is not considered relevant.

The most important result is that filtered data is less sensitive to noise than
original data and there is no practical difference in specificity. This is shown in
Figure 6.2 where 95% Least Significance Difference (LSD) intervals and average
sensitivity and specificity evolution through the different scenarios obtained with all
the levels of R-squared for filtered and original data are shown. In Annex 5 details
of these results have been included. The extended study confirmed the results and
pattern observed in the pilot study: maSigPro sensitivity is good at low noise levels
(scenarios 1 and 2) but decreases when high structural noise is present (scenarios
5 and 6). Sensitivity is restored in these cases by applying the ASCA filter while this
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pre-processing has little effect in scenarios where maSigPro alone is already

effective.
Interactions and 95% LSD intervals Interactions and 95% LSD intervals
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Figure 6.2: Interaction ScenarioxData for Sensitivity (left) and Specificity (right). The
graphs represent the 95% Least Significance Difference (LSD) intervals obtained with the

different levels of R-squared.

Timecourse

The application of the timecourse package to the simulated datasets showed
negative MB-values in all cases. As this package does not provide a criterion to
obtain a statistically significant list of genes and the criterion of taking genes with
positive values was not applicable, we chose the first 410 genes of the ranking
offered by the package. However, we know that the method aims at selecting
genes with differences in trends between experimental groups and those genes with
similar and significant trends for all the groups are not considered of interest.
Therefore 100 genes simulated as Pattern A would not be target by the method.
Therefore, we have computed as solution the first 310 genes simulated in Patterns
B, C, D and E. By doing this, false positives and false negatives are always based
on the same number. Sensitivity and specificity are also computed considering 310
genes as the right solution (Table 6.4). We can observe that in scenarios without
structural noise the results with original and filtered data are equal. In scenarios 4
and 5 there is a slight improvement in sensitivity by applying the ASCA-filter, and

in scenarios 3 and 6 this improvement becomes more evident.
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SCENARIO DATA SELECTION* FP FN SENSIT* SPECIF*
1 Original 310 0 0 1.000 1.000
Filtered 310 1 1 0.997 1.000
2 Original 310 0 0 1.000 1.000
Filtered 310 0 0 1.000 1.000
3 Original 310 60 60 0.806 0.994
Filtered 310 0 0 1.000 1.000
4 Original 310 6 6 0.981 0.999
Filtered 310 2 2 0.994 1.000
5 Original 310 68 68 0.781 0.993
Filtered 310 58 58 0.813 0.994
6 Original 310 90 90 0.710 0.991
Filtered 310 57 57 0.816 0.994

Table 6.4: Timecourse results with original and filtered data for the 6 simulated scenarios with
independent data. (*) Gene selection is obtained by choosing the first 310 genes of the ranking provided
by the Timecourse package. FP, FN, sensitivity and specificity is computed by considering 310 genes as

the right solution.

EDGE

EDGE does provide a p-value and multiple testing correction in its output.
We used a Q-value cut-off of 0.05 to declare genes significant. Results are
presented in Table 6.5. We can observe that the number of false negatives is 100
genes in many cases. To a great extent these are genes simulated with pattern A,
cases with the same gene-expression evolution, which are hard to detect by this
method. In general, we observe that sensitivity is lower than in the other two
methods. Pre-processing of data by ASCA-filtering improves detection capacity in
some scenarios, although sensitivity values are still reduced. Similar to other
methodologies, the specificity of the method is good regardless of the pre-

treatment of the data.

SCENARIO DATA SELECTION FP FN SENSIT SPECIF
1 Original 983 667 94 0.771 0.930
Filtered 366 58 102 0.751 0.994
2 Original 1058 744 96 0.766 0.922
Filtered 428 117 99 0.759 0.988
3 Original 310 0 100 0.756 1.000
Filtered 566 255 99 0.759 0.973
4 Original 332 21 99 0.759 0.998
Filtered 363 53 100 0.756 0.994
5 Original 279 0 131 0.680 1.000
Filtered 444 211 177 0.568 0.978
5 Original 254 0 156 0.620 1.000
Filtered 210 9 209 0.490 0.999

Table 6.5: EDGE results with original and filtered data for the 6 simulated scenarios with

independent data taking genes with Q-values<0.05.
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6.3.2. Simulation study 2: longitudinal data.

One dataset per scenario was simulated to study the effects of the ASCA-
filter on longitudinal data. We first applied the ASCA methodology to these datasets
to explore the variation created in each submodel. Table 6.6 describes the
percentage of variation simulated in each submodel and the explained percentage
of variation in each case with the number of components indicated. The structural
noise added to the data in scenario 2 (in which we included a deviation by genes) is
not introducing any structural noise in the residuals (submodel X.;). As we
simulated this scenario by adding a normally distributed variable to half of the
genes, the ANOVA model considered for each gene captures the deviation of gene

expression average and the residuals of the model are increased randomly.

%Variation Number of % Explained in each model
SCENARIO Xa Xbab Xres Components Xa Xbab Xres
1 10.6 26.1 63.3 3,8,0 75.7 82.9 0
2 11 26 63 3,8,0 75.6 82.6 0
3 8.8 21.9 69.3 3,8,1 76 82.7 27
4 4.7 12.9 824 3,8,1 76 84 66
5 5.8 14.2 80 3,8,1 75.6 82.4 57.2

Table 6.6: Percentage of variation simulated in each submodel with longitudinal data and %

explained variation by applying ASCA with the number of components indicated in each submodel.

Table 6.7, Table 6.8 and Table 6.9 show the results offered by maSigPro,
timecourse and EDGE respectively applied to the longitudinal simulated datasets.
Timecourse selection has been obtained by choosing the first 500 genes of the
obtained ranking. On the other hand maSigPro has been applied by using
FDR=0.05 and R-squared=0.6, and EDGE with Q-value cut-off=0.05.

By comparing false positives and negatives of the original and filtered data
results we can observe, also in the case of longitudinal data, that ASCA-filter
improves sensitivity. This improvement is more well known in scenarios with
structural noise meanwhile in scenarios without noise results do not change
substantially. We can also observe that maSigPro with filtered data is the strategy

that offer the best results.
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SCENARIO DATA SELECTION FP FN SENSIT SPECIF
No noise Original 512 14 2 0.996 0.999
Filtered 498 3 5 0.990 1.000
Rows Original 509 12 3 0.994 0.999
Filtered 499 5 6 0.988 0.999
Columns Original 460 2 42 0.916 1.000
Filtered 499 4 5 0.990 1.000
%chips Original 249 1 252 0.496 1.000
Filtered 492 6 14 0.972 0.999
Dye-Swap Original 87 0 413 0.174 1.000
Filtered 489 3 14 0.972 1.000

Table 6.7: maSigPro results with original and filtered data for the 5 simulated scenarios with

longitudinal data by using FDR=0.05 and R-squared=0.6.

SCENARIO DATA SELECTION FP FN SENSIT SPECIF
No noise Original 500 49 49 0.902 0.995
Filtered 500 51 51 0.898 0.995
Rows Original 500 64 64 0.872 0.993
Filtered 500 74 74 0.852 0.992
Columns Original 500 83 83 0.834 0.991
Filtered 500 56 56 0.888 0.994
%chips Original 500 171 171 0.658 0.982
Filtered 500 126 126 0.748 0.987
Dye-Swap Original 500 80 80 0.840 0.992
Filtered 500 68 68 0.864 0.993

Table 6.8: Timecourse results with original and filtered data for the 5 simulated scenarios with

longitudinal data. (*) Gene selection is obtained by choosing the first 500 genes of the ranking provided
by the timecourse package.

SCENARIO DATA SELECTION FP FN SENSIT SPECIF
No noise Original 317 9 192 0.616 0.999
Filtered 330 2 172 0.656 1.000
Rows Original 323 16 193 0.614 0.998
Filtered 340 11 171 0.658 0.999
Columns Original 339 22 183 0.634 0.998
Filtered 312 5 193 0.614 0.999
%chips Original 300 12 212 0.576 0.999
Filtered 332 1 179 0.642 0.999
Dye-Swap Original 283 10 227 0.546 0.999
Filtered 334 8 174 0.652 0.999

Table 6.9: EDGE results with original and filtered data for the 5 simulated scenarios with longitudinal

data selecting cases with Q-values<0.05.

6.3.3 Toxicogenomics dataset.

In the exploratory analysis of the original toxicogenomics dataset, showed in
Chapter 2, we detected a considerable dye effect. This structural noise was
removed by centering each gene with its corresponding dye average. This centered

data was used in inferential analysis described in Chapter 2 and also in maSigPro
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analysis. The application of the ASCA model to this centered data revealed some
additional structural noise which had not been removed. In this study, we used the
original data, without centering, to identify and remove structural noise by ASCA
filtering, since this implies a single treatment of all structural noise. The proposed
filter will be removing the structural noise due to the dye and other possible
structures in an effective way. Consequently we are comparing the sophisticated
ASCA-filter with the simple transformation done by centering the data with the dye
averages. The component selection procedure described in the previous section
gave as a result one, five and two components for submodel a, b+ab and abg
respectively. This selection explains 75% of time variation, 78% of experimental

groups plus interaction variation and 48% of the residuals variation.

DATA maSigPro timecourse EDGE
Centered 155 237 298
Filtered 180 189 206
SEI?EEgTIfON Coincidences 136 158 181
Only Original data 19 79 117
Only Filtered data 44 31 25

Table 6.10: Gene selection and comparisons obtained with the different approaches on original and

filtered data of toxicogenomics dataset. maSigPro has been applied with FDR=0.01 and R?=0.6 and
EDGE with Q-values<0.01.

Table 6.10 shows gene selection obtained with the different methods in
original and filtered data and comparisons between both types of data. Timecourse
selection has been obtained by choosing genes with a positive MB-statistic. On the
other hand maSigPro has been applied by using FDR=0.01 and R-squared=0.6, and
EDGE with a Q-value cut-off=0.01.

The enrichment functional analysis identified a varying number of functional
categories for each of the methods (detailed in the Supplementary material Chapter

6 at http://www.ua.es/personal/mj.nueda). Several of these functional categories

have parent-child relationships or are closely related. In Table A-9, included in
Annex 6, we provide a subset of categories that try to be semantically orthogonal,
i.e., reflect different cellular activities or processes. The first conclusion of the
enrichment analysis is that a number of biological proceses were detected by any of
the three methods with or without ASCA-filter. These are general terms such as
ribosome, translation and cytosol. Other classes, describing more specific
processes, were only identified by one or two methods as oxidoreductase activity,
detected by maSigPro and EDGE, or retinol binding and nitric oxide mediated signal

transduction, detected only by maSigPro. However, the most interesting result of
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this analysis is the nature of the additional processes that showed up when the
ASCA-filter was used and that represent functions of known involvement in the
toxicological response. These additional GO categories do not coincide in all three
methods but do represent relevant processes to the biological problem under study
and somehow provide a more complete functional picture of the process than when
the filter is not applied. These processes include heme binding, lipid metabolic and
glutathione transferase activity, with maSigPro, oxidoreductase activity and nitric
oxide mediated signal transduction, with timecourse, and glutathione transferase
activity, with EDGE.

6.3.4 NSF potato stress dataset

Again, filtered data is obtained by applying the component selection
procedure described in the previous section. This choice gave as a result two, three
and two components for submodel a, b+ab and abg respectively. This selection
explains 100% of time variation, 80% of experimental groups plus interaction

variation and 28% of the residuals variation.

DATA maSigPro timecourse EDGE
Original 409 890 526
Filtered 828 721 25
SEIE;EE(?TEION Coincidences 368 602 19
Only Original data 41 288 507
Only Filtered data 460 119 6

Table 6.11: Gene selection and comparisons obtained with the different approaches on original and

filtered data of NSF potato stress dataset. maSigPro has been applied with FDR=0.01 and R?=0.8 and
EDGE with Q-values<0.01.

Gene selection obtained with the different methods in original and filtered
data and comparisons between both results are shown in Table 6.11. Timecourse
selection has been obtained by choosing genes with MB-statistic positive. On the
other hand maSigPro has been applied by using FDR=0.01 and R-squared=0.8, and
EDGE with a Q-vaule cut-off=0.01.

The enrichment functional analysis (detailed in the Supplementary material

Chapter 6 at http://www.ua.es/personal/mj.nueda) showed firstly that the selection

obtained with maSigPro in filtered data has over-represented a higher number of
functional categories than the cases obtained with the original data. Timecourse in

filtered data also has more categories than the original data in spite of the lower
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number of genes detected. However, the poor gene selection obtained with EDGE
and filtered data do not show any over-represented functional category. Table A-
10, included in Annex 6, lists the selected functional classes with each inference
methodology with and without ASCA-filter pre-processing. We can observe a limited
level of functional coincidences between the 3 methods that correspond with basic
stress response functions. However, when data is cleaned by ASCA, maSigPro and
timecourse analysis are able to reveal a much more specific view on the actual
regulated processes, such as hormone signalling cascades, diverse enzymatic

activities, specific metabolic functions and/or binding activities.

6.4 Discussion

In this chapter we show how a model-based multivariate projection
technique ASCA can be used to pre-process microarray data. The rational of the
methodology is the identification and removal of structured signals that cannot be
associated with the experimental factors designed in the transcriptomics study. This
structural noise is habitually referred to as the “batch” effect and corresponds to
dye, lab, experimentalist, etc. The ASCA-filtering strategy uses ASCA to identify per
gene signals associated with experimental factors and PCA to separate structured
and random variation in these signals. By removing from the original dataset the
non-structured part of the experimental factor signals and the structured variation
of the factor-free ANOVA errors, we create a filtered dataset that is enriched in the
information of interest and only keeps the random noise needed for inferential

analysis.

The function of this filter was analyzed in two simulation studies where
independent and longitudinal data, respectively, were mimicked. As we were
interested in the way ASCA-filter removes noise from expression signals, different
types “systematic and random” and the amount of noise “high or low” were
introduced in the synthetic data. Additionally, we asked whether the filter would be
generally valid, irrespective of the inference methodology used to identify
differentially expressed genes. Therefore, we tested the filter with three published
methods for the analysis of TCM data that follow very different statistical strategies.
maSigPro applies polynomial regression, timecourse is based on empirical Bayes
and EDGE uses B-splines to model the time gene expression patterns. The results
showed that by filtering the data with ASCA there are great improvements in gene

selection when a high quantity of structural noise is simulated, and there is no
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effect when no structural noise is present in the data. Although this pattern was
observed for each of the three statistical methodologies, maSigPro is clearly the
method where the ASCA-filter had a greater impact and is also the analysis
strategy with the best end result, i.e. sensitivity increase with timecourse and EDGE
were not as large as with maSigPro and the amount of differential expression
detected when either methodology was applied in combination with the ASCA filter
never reached the sensitivity levels obtained by the ASCA-maSigPro. This difference
could be due to the fact that maSigPro applies independent analysis gene by gene
without exploiting the correlation structure of the data and considering the noise as
random. As the ASCA filter precisely exploits this correlation aspect, the benefit of
combining the two methodologies is maximal. However, both timecourse as EDGE
employ empirical methods to determine the statistical significance of the
correspondending statistics used, which implicitly brings the consideration of
possible structural noise in all data. On the other hand, as timecourse applies
shrinking covariance estimates, it is considered the correlation structure of the
data. In some way these methods take into account those aspects that are used by
the proposed filter and therefore its impact is not as well known as in maSigPro.
Still the ASCA filter improves sensitivity of timecourse and EDGE. We argue that
this is related to the more refined treatment ASCA gives to variation by imposing an
ANOVA model prior to component analysis. This decomposition allows for a more
efficient, experimental factor focussed, analysis of covariance, in comparison to a
design-blind consideration of correlation structures that would operate in
timecourse and EDGE methods. Finally, we should mention that EDGE uses B-
splines that, as already discussed in chapter 3, work well with series with more
than 10 time-points and our simulations in this study restricted to short series, of 3

to 5 time-points.

When applied to experimental datasets, pre-processing by ASCA filter
improved the identification of the affected biological processes by the maSigPro and
timecourse methodologies, although this was not so clear when inference analysis
was done by EDGE. The improvement in the two first cases was not associated with
an increase in the number of genes declared as significant, as this only occurred
with maSigPro but not with timecourse, but presumably because the better filter
revealed the coordinative behaviour of genes belonging to the same functional class
or because the filter eliminated noisy or poorly correlated genes that polluted
functional enrichment analysis. Both in the case of toxicogenomics and abiotic

stress datasets application of the filter not only increased the number of enriched
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functional class, but more importantly, the semantic diversity of the class selection,
offers a more complete and detailed picture of the functional processes affected in
the experiments. The reason why this did not happened with the EDGE

methodology is unclear.
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The work presented in this Chapter is included in:

Nueda, M.].; Sebastian, P.; Tarazona, S.; Garcia-Garcia, F.; Dopazo, J.; Ferrer, A.

and Conesa, A. (2009) Functional Assessment of Time Course Microarray Data.
BMC-Bioinformatics, in Press.
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7.1 Introduction

In the previous chapters we have addressed the analysis of microarray time
series data upon different  considerations and statistical models
(regression/univariate, latent-factor/multivariate and the combined). In all cases,
statistical analysis has focussed on the modelling of gene expression patterns and
on the identification of differentially expressed genes. This orientation, though valid
and useful, solves only one (frequently the first) requirement to understand
transcriptomics changes from any kind of microarray experiment. In most cases,
the analysis proceeds through the identification of cellular processes and functions
which are represented by the gene selection, i.e. genes are identified by their
functional role and the question is then which functional modifications can be
derived from the observed gene regulation. The incorporation of functional
information into data analysis is normally obtained by the use of functional
annotation databases that define and assign function labels to known genes. The
most widely used functional annotation scheme is the Gene Ontology (GO)
(Ashburner et al., 2000), which characterizes genes for their molecular functions
(MF), cellular locations (CC) and involved biological processes (BP), but others such
as the KEGG metabolic pathways (Kanehisa et al., 2004), transcription factor
targets (Wingender et al., 2000) or Interpro functional motifs (Mulder et al., 2003)
can be also employed to query for specific biological questions. This functional
assessment aspect is traditionally handled in microarray data analysis via the so-
called enrichment analysis: the list of significant genes is interrogated for the over
(and/or under) abundance, as compared to the entire genome represented in the
array, of the considered functional categories. In time course microarray data, this
strategy could be similarly followed for the set of time-dependent differentially
expressed genes (for example, as provided in the time course module of the GEPAS
suite, Tarraga et al., 2008), or for the distinct clusters this gene selection can be
divided into (available in STEM package, Ernst and Bar-Joseph, 2006). As a matter
of fact, gene enrichment analysis is used many times to validate the results of a

gene selection or a clustering strategy (Azuaje et al., 2006 and Dopazo, 2006).

This strategy for functional evaluation of differential gene expression has a
number of limitations (Dopazo, 2008). First, the functional enrichment analysis is
greatly dependent on the definition of an arbitrary threshold for significance and
gene selection, and eventually on the clustering strategy of choice. The threshold

aspect has been overcome in two class experiments through the Gene Set Analysis
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approaches (GSA), which evaluate functional enrichment over a rank rather than a
selection of genes (Al-Shahrour et al., 2005; Mootha et al., 2003; Subramanian et
al., 2005 and Al-Shahrour et al., 2007). To our knowledge, no equivalent approach
is yet available for time series data. Secondly, functional assessment is done after
gene selection and therefore does not allow for a direct evaluation of expression
changes as gene functions which might obscure relationships between functional
categories and ignore significant sub-patterns of variations within the functional

class.

In this chapter we have set out to address the problem of the functional
assessment of gene expression in time series data in an alternative manner. We
have developed and tested three distinct strategies which respond differently to the
various concerns mentioned above. The proposed methods derive from previous
methodologies developed in this thesis for the analysis of short, multiple series
data, which follow a gene-centric orientation: the maSigPro, a two-step regression
approach; and the ASCA-genes, a multivariate method that combines ANOVA
decomposition with Singular Component Analysis. In this study, we first assess the
fully correlated nature of the functional category in a modification of the maSigPro
methodology to directly model the combined expression of genes belonging to the
same functional class (maSigFun). In a second approach, we consider the
possibility of different patterns of coordinative time-dependent gene expression
variation within the functional class and the selection of those with a significant
change (PCA-maSigFun). Finally, we develop an adaptation of the GSA strategy to
time series through the identification of main patterns of variation in the dataset
and the ranking of genes according to their correlation to such patterns (ASCA-

functional).

As in previous chapters, we have used both synthetic and experimental
datasets to assess the different methods. Simulated data provides a means of
understanding the working of the methodologies, while experimental data offered
insights on the biological relevance of the strategies. Algorithms have been
implemented in the R language and are available at

http://bioinfo.cipf.es/downloads and also at http://www.ua.es/personal/mj.nueda.

Supplementary material of  this Chapter is also available at

http://www.ua.es/personal/mj.nueda.
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7.2 Methods

7.2.1 maSigFun

This methodology derives from maSigPro, a regression-based approach for
the analysis of multiple series time-course microarray data (Chapter 4). The
maSigPro method follows a two-stage regression strategy to model gene expression
and select differential expressed genes: the first step uses a generic polynomial
model to spot responsive genes, while the second applies step-wise regression to

disclosure the patterns of significant differential time profiles.

The adaptation of maSigPro to consider functional information -maSigFun- is
quite straightforward: the regression model is fit not gene-wise as in maSigPro, but
to the data matrix composed by the expression values of all genes belonging to the
functional class, thereby being one regression model fitted for each functional
category. In this approach individual genes are considered as different observations
of the expression profile of the class. As genes belonging to the same class may
show different basal expression levels and this may influence negatively model
parameters estimation, expression data is standardized gene-wise to better capture
the correlation structure within the functional group (Figure 7.1.a). After this
transformation, statistical analysis proceeds as in regular maSigPro. The expected
result is that significant functional classes are those whose genes change their
expression along time in the same manner, i.e. a high level of co-expression is

present within the functional class.
7.2.2 PCA-maSigFun

In this strategy we consider that a functional block might display not only
one but several patterns of coordinative gene expression. These distinct patterns
are extracted following a strategy similar to that proposed by Conesa et al. (2008)
to directly link gene function to the phenotype. Basically, the strategy applies
Principal Component Analysis (PCA) to the gene expression matrices composed by
all genes belonging to the same functional class. PCA modeling will dissect
orthogonal, time-dependent, transcriptional patterns contained in the class, and a
number of those will be selected. The selection criterion implemented in the PCA-
maSigFun method follows the rationale of retaining patterns that represent non-

random variation. Considering the general assumption that holds in transcriptomics
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analysis of global invariability in gene expression, a good estimate of noise level
variation would be the mean gene variance across the complete dataset. Therefore,
for each functional-class associated PCA, selected components are those having a
normalized explained variance above this mean gene variance value. The scores
vector of each component depicts an expression pattern that corresponds to a
correlated gene subset of the functional class and can be taken as transformed
expression values for that subset. All so-obtained scores vectors are collected into a
matrix of function-labeled “synthetic genes” which is then subjected to regular
masSigPro for regression-based statistical analysis. Selected features will therefore
correspond to defined function patterns that show a significant association with the
time (Figure 7.1.b). Once significant functional features are obtained the question is
how individual genes relate to these significant patterns. This information can be
obtained from the analysis of the gene loadings in each PCA model. Genes with a
high absolute loading value in a given selected component will have an important
contribution to the associated profile and therefore can be considered as members
of the gene subset that defined that correlated pattern of the class. Genes with a
low absolute loading value will not correspond to this subset. In the current PCA-
maSigFun implementation, a value for loading cutoff is derived by bootstrapping
over the whole dataset to create a null loadings distribution across all functional
classes and defining an arbitrary threshold (typically the 95% percentile) to declare

a gene significantly contributing.

7.2.3 ASCA-Functional

As we have shown in Chapter 5 ASCA analysis provides a PCA submodel for
each experimental factor -time, treatment and the interaction- that encompass all
genes in the dataset and collects most of the variability associated with each
experimental factor. In ASCA-functional these models are used to create ranks of
genes that can be subjected to GSA analysis. In this sense, the third proposed
approach can be considered as an adaptation of GSA methods to situations when
not only two, but more experimental conditions are involved, as it is the case of
(multiple series) time course data. In two class data, genes are ranked according to
a measure of differential expression such as fold change, a t-statistics or a similar
statistics. Enrichment analysis is performed along this rank by assessing the
differential distribution of each functional block along the ranked gene list. In the
case of ASCA-functional, ASCA-genes is first applied to create PCA submodels

associated with each experimental factor. Similarly to the previous method, the
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genes loadings at each component of each submodel are a measure of the
similarity of each particular gene expression profile to the pattern depicted by the
component of the submodel. Genes with high positive loadings will greatly follow
the pattern indicated by the component, genes with high negative loadings follow
an opposite pattern, while genes with loadings close to zero do not resemble the
behavior represented by the principal component. Those bad modelled genes are
identified in ASCA-genes by their high SPE (Chapter 5) and are assigned a loading
value of 0. The gene loadings offer therefore the way to rank genes according to
specific patterns of variation which corresponds to biological phenomena. This
ranking can be then subjected to GSA analysis. In our particular implementation,
ranked lists are analyzed by the partitioning method FatiScan (Al-Shahrour et al.,
2005 and Al-Shahrour et al., 2007) to identify functional categories associated with

specific time patterns (Figure 7.1.c).

7.2.4 Datasets

Synthetic and experimental datasets were used to assess the proposed
methods. Synthetic data was designed to depict different scenarios of co-expression
while the experimental sets reflect two microarray studies involving different probe

sizes and biological systems.

Simulated datasets

Two simulation studies were designed to evaluate the effect of class size and
percentage of co-expressed genes in the identification of time-course changing
functional categories. Both studies use the same primary data structure. The
hypothetical experiment contained two series (Control and Treatment) and three
time-points (0, 1 and 2). Synthetic datasets consisted of a total of 10000 genes in
study A and several sizes in study B, distributed in 250 classes from which 225
classes contain only flat genes and 25 classes include at least one differentially
expressed gene. Modelled responsive genes follow one of four possible patterns of
expression: 1) Flat profile for control and continuous induction for treatment, 2)
Flat profile for control and continuous repression for treatment, 3) Flat profile for
control and transitory induction for treatment and 4) Flat profile for control and
transitory repression for treatment. In all of the 25 classes with some non-flat
genes only one of the four patterns is present, meaning that all changing genes in
the class follow the same profile, have a positive correlation and could be regarded

as “co-expressed”. At each individual simulation, noise was introduced in the
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datasets by adding to the defined profiles random values taken from a normal
distribution N(0, 0.01).
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Figure 7.1: Schematic representation of the proposed methods a) maSigFun fits a regression model
for each gene expression submatrix defined by the genes annotated to a given functional class (FC.1 to 4
in scheme). Significant classes are obtained by the maSigPro method (FC.3). b) PCA-maSigFun obtains a
PCA model for the gene expression submatrix defined as in maSigFun and extracts a number of
components that collect non-random variation. Generally 0 (FC.1) to 2 (FC.2) components are extracted
for each functional class. A regression model is then fitted to the scores vector of extracted components to
select function-defined patterns with a significant association to time (FC.2 and FC.3). c) ASCA-
functional applies ASCA-genes to identify principal patterns of variation associated with time and time x
treatment experimental factors (PC1 to 3 in scheme). Genes are ranked by loading value in each PC and
GSA analysis is applied to each loading value ordered gene list to identify a functionally related block of
genes associated with the principal patterns of variation (FC.2 and FC.3).

The first simulated study (A) analyzes how the percentage of co-expressed
genes within the functional class affects the identification of the category. In this
study, functional classes were varying in size (number of genes), taking values

from 5, 10, 30, 55 and 100. Seven different datasets were created in this study,

148



Functional assessment of TCM data

each of them with a different percentage of co-expressed genes (20, 30, 40, 50,
60, 70 and 80%) for all of the 25 non-all-flat classes present in the dataset. For
example, dataset A-40 has 10000 genes distributed in 250 classes of different size
from which 25 classes have all a 40% of genes which follow the same changing
profile and 60% of the genes that are flat. In the remaining 225 classes of dataset
A-40, 100% of the genes are invariant. Fifty simulations were run per each of the

seven proportion levels.

In the second simulated study (B) we evaluated the effect of the class size.
Here, 4 x 3 datasets were created, each of them having a fixed value for the class
size (5, 10, 50 and 100) and a fixed value for the percentage of genes with change
(30, 50, and 70%). For example, dataset B-50-70 contains 250 classes of size 50
(12500 genes), from which 25 classes have 35 genes with a defined changing
profile and 15 flat genes, while the remaining 225 classes of dataset B-50-70 have

all 50 genes flat. Again, 50 simulations are run for each size and proportion levels.

Experimental datasets

Two experimental datasets were selected for the evaluation of the
methodologies on real data: the toxicogenomics dataset used in previous chapters,
as this has been repeatedly characterized and the involved biological pathways are
to a great extent known, and the potato dataset introduced in Chapter 6 which has
a larger number of genes and a different pattern of variation across series. Briefly,
the toxicogenomics dataset evaluates transcriptome response in rat liver to
increasing doses of the drug bromobenzene (BB). In this study 2-6 rats were
sacrificed after 6, 24 or 48 hours of drug exposure to extract liver mRNA which was
then labeled and hybridized to a custom cDNA using a dye-swap design with a
common reference. The dataset consists of 3 time points, 5 series (HIgh, LOw and
MEdium BB levels, UnTreated and Corn Qil vehicle controls) and 2665 genes (Heijne
et al., 2003). The second experimental dataset corresponds to a stress study in
plants that investigates the transcriptional response to three different abiotic
stressors (Salt, Cold and Heat) in potato using the NSF 10k potato array (Rensink
et al., 2005). Also a common reference design is used in this case. The dataset has
4 series (3 treatments plus one Control), 3 time points and three replicates per

experimental condition.
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7.3 Results

7.3.1 Simulation studies

For either simulation study, fifty datasets of each type were generated and
analyzed by the three proposed methods. For each observation, the identified
categories were recorded and considering the 25 non-all-flat classes as “true
positives”, values of false positives (FP), false negatives (FN), sensitivity
(proportion of actual positives which were correctly detected) and specificity
(proportion of negatives which were correctly identified) were computed. In all

methods significance threshold were set to 0.05 false discovery rate (FDR).

masSigFun

In the case of maSigFun analysis recall statistics were calculated at different
values of the R? parameter since this was expected to have a great influence on the
results. The R? or goodness of fit indicates how well the model fits the data and
therefore reflects the coherence within the observations. Previous studies with
masSigPro indicated that a cut-off value of 0.6 would be appropriate for the selection
of d.e.g.’s in time course microarray data (Conesa et al., 2006). In this study, four

levels of R?, 0, 0.4, 0.6 and 0.8 were evaluated. Results are presented in Annex 7.

The in silico analysis revealed that the maSigFun methodology is sensitive
for identifying functional classes with a high proportion of changing genes (70%)
when a moderate R? cut-off (0.4) is imposed. At higher R? sensitivity drops while
releasing the R? filter (R? = 0) has as a consequence that functional classes with a
low proportion of regulated genes (20%-30%) could also be selected (Figure 7.2).
In all cases, the rate of false positives is under control and specificity remains high

(see Annex 7).

Regarding to class size, simulation study B showed that this factor is of little
relevance when a sufficient level of co-expression and R? cut-off value are used,
being the sensitivity of the method more dependent on the amount of regulated
genes in the class (Figure 7.3, panels b, c and d). However, when functional classes
have a lower level of co-expression and a permissive R? is used, maSigFun revealed
a dependency on the size of the class, being the method more sensitive for classes

with a large number of members (Figure 7.3.a). Again, specificity was high in all
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cases (see Annex 7).

Taken together, the simulation analysis showed that maSigFun is effective in
identifying those functional classes for which a relative high level of gene
expression coherence is present regardless the number of genes annotated to the
class.
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Figure 7.2: Results of simulation study A with the maSigFun

method. Changes in sensitivity with the percentage of co-
expressed genes in the class at four values of the goodness of
fit R? of the regression models. Data points correspond to the
mean value of 50 simulations. Confidence intervals were

omitted due to their negligible size.

PCA-maSigFun

The simulation analysis for the PCA-maSigFun resulted in sensitivity and
specificity values near to one in all scenarios and dataset types (see Annex 7),
indicating that the method basically identifies any functional class with at least 20%
of changing genes, regardless of it size, and also that the methodology is robust for
the occurrence of false discoveries. This result is not surprising, since the specific
property of the method is the ability of extracting gene expression sub-patterns
within each class and the positive selection of the functional class happens by the

identification of the correlated profile.
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Figure 7.3: Results of simulation study B with the maSigFun method. Changes in

sensitivity with the size of the class at three levels of percentage of changing genes (co-
expression) in the class. One plot is provided for each level of the goodness of fit R? of the
regression models. Data points correspond to the mean value of 50 simulations.

Confidence intervals were omitted due to their negligible size.

ASCA-functional

As only one pattern of variation was modelled in each synthetic functional
class, ASCA was applied with only one component in the submodel capturing time
and treatment effects , denoted as “submodel b+ab” in the ASCA-genes paper
(Nueda et al., 2007). Genes were ranked according to the loading value of this
single component, leading to one FatiScan analysis per synthetic dataset. The in
silico study for ASCA-functional showed also interesting results. Simulation study A
revealed a turning point for sensitive detection at a percentage of changing genes
of 60% (Figure 7.4). This result is in agreement with the nature of the GSA
strategy since the asymmetric distribution along the ordered gene list of the genes
annotated to a given class is expected to occur when the percentage of genes
associated with the biological phenomenon captured by the ASCA component is
above half of the class size. On the other hand, simulation study B indicated that

the size of the class does not affect sensitivity of detection which is merely
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dependent on the level of inner co-expression of the class. Full specificity was
obtained for all dataset types in both studies (Annex 7).
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Figure 7.4: Results of simulation study A with the ASCA-
functional method. Changes in sensitivity with the
percentage of changing genes (co-expression) in the
functional class. Data points correspond to the mean value
of 50 simulations. Confidence intervals were omitted due to

their negligible size.

7.3.2 Experimental datasets

The different functional assessment methods were applied to the analysis of
two different experimental datasets. Since in real datasets the true differentially
expressed genes are not known, recall statistics cannot be calculated. Therefore
results were evaluated in terms of number of functional classes detected and
biological coherence of the selection. The Gene Ontology was used as a functional
classification scheme. The set of GO terms characterizing each dataset was
obtained by fetching GO information from public databases, completing annotation
with the Blast2GO software (Conesa et al., 2005), constructing the Direct Acyclic
Graphs (DAGs) of each GO branch -BP, MF and CC- and obtaining all nodes in
graph. This set of terms was then refined by removing annotation redundant terms.
A GO term was considered annotation redundant if it has the same set of annotated

genes than any of its child terms.
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Toxicogenomics dataset

In this study, three increasing doses of the bromobenzene drug were tested
for their toxic effects on rat liver. The original analysis of the data showed that
most marked effects on the transcriptome were provoked at high BB doses and 24
hours post-administration. Also important but more moderate were the effects of
medium dose and later time points. The 2665 probes contained in the rat chip were
annotated to a total of 967 BP, 534 MF, and 243 CC non redundant GO terms
(Table 7.1). The three analysis approaches provided semantically related results

but with very different levels of specification (Supplementary material Chapter7).

SELECTIONS
GO Original | Non redundant . PCA- ASCA-

) . maSigFun . L
category | Annotation| Annotations maSigFun| Functional
BP 1828 967 7 33 15
MF 992 534 8 15 20

CC 398 243 0 10 8

Table 7.1: Functional analysis results for Toxicogenomics study. Number of functional terms in each

of the three GO branches present in the original dataset, after removal of redundant annotations and

selected after analysis with each of the proposed methods.

maSigFun analysis identified 7 BP, 8 MF and 0 CC categories (Table 7.1 and
Supplementary material Chapter?7) as significant at a FDR level of 0.05 and R? of
0.3. More restrictive values for the R? parameter failed to give any significant
result. Functional categories included heme oxydation, cell-aging, caspase
activation via cytochrome c oxygenase, ferric ion binding, rRNA binding and
plasminogen activator activity, induced by BB administration, and bile acid
transporter activity, oxidoreductase activity, retinol binding and long-chain-fatty
acid-CoA ligase activity, repressed by high BB (Figure 7.5). Interestingly, selected
categories had between 4 and 6 annotated genes and a mean inner correlation
value (computed as the mean value of all pair-wise Pearson correlations of the
expression profiles of the genes annotated to the class) of 0.6+0.1. This measure
of class coherence is close to the critic value of 70% percentage of co-regulated

genes obtained in the simulation studies for efficient selection by maSigFun.
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Figure 7.5: Gene expression profiles for two significant representative GO categories obtained by

maSigFun analysis of the Toxicogenomics dataset. a) Ferric iron binding category induced by high
Bromobenzene and b) Bile acid transporter activity category repressed by high Bromobenzene. On the
left panel, the median value of the functional class is plotted while the right panel shows the expression
profiles of all genes annotated in the class. Treatments are labeled by color: pink HI, light blue ME, dark
blue LO, green CO, red UT.

Analysis by PCA-maSigFun provided a much richer repertoire of functional
classes. GO-based PCA transformation of gene expression data compressed

transcriptional information into function-associated transcriptome patterns
(“synthetic genes", referred here as "GO-components”). In most cases one or two
GO-components were obtained per GO term and only in very generic classes, such
as translation or ribosome, up to 3 patterns of correlated behaviors were extracted.
maSigPro analysis on the matrix of these new functional variables resulted in the
identification of 33 BP 15 MF and 10 CC significant features (Table 7.1 and
Supplementary material Chapter?7). Interpretation of these results is facilitated by
plotting the PCA scores of each maSigPro significant GO-component along with the
PCA loading of the annotated genes. In this way we can identify the gene
expression patterns captured by the significant GO-component (Figure 7.6 a) and
locate the most contributing genes (Figure 7.6 b), i.e. genes that most closely
follow the pattern indicated by the GO-component either with a positive (+, gene

loading greater than 0), or negative correlation (-, gene loading smaller than 0).
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Horizontal lines indicate the threshold for significant contribution of the gene to the
GO-component pattern. The PCA-maSigFun approach identified 3 different patterns
of expression: i) classes that show a peak of expression on high BB and 24 hours,
i) classes that also respond at 24 hours at medium BB and iii) classes that show a
early (6 hrs) regulation for both high and medium BB (Figure 7.6). The first pattern
was found for different GO terms pointing to processes as fatty acid metabolism
and oxidation (-), cell adhesion (-), amino acid metabolism (-), translation (+,-)
microtubule organization (+), endopeptidase inhibitor activity (-) and vesicular
fraction (+). Functions associated with the second pattern include translation (+),
negative regulation of cell proliferation (+), acute inflammatory response (+,-),
xenobiotic metabolic process (+,-), signal transduction (+,-), biopolymer
methylation (-), maintenance of localization (+), response to toxic compound (+),
iron jon binding (+,-), exopeptidase activity (+), kinase activity (+), epoxide
hydrolase activity (+), ribosome (+,-). Finally, in the third pattern we found cation
homeostasis (+), nitric oxide mediated signal transduction (+), copper ion binding
(+) and lysosome (+). It is important to mention that, in most cases, only a subset
of each GO term annotated genes showed significant contributions to the GO-
component, indicating the predominant role of these genes in the determination of
the pattern. In a few cases, corresponding to very general categories such as
translation or ribosome, none of the annotated genes reach the threshold of
significant contribution, but a continuum signal was observed, which would indicate
a small but coordinated gene activity within the class. Finally, in some cases, such
as xenobiotic compound and acute-phase, genes were observed that display either
a positive or negative significant contribution to the component, which implies that
coordination is present but with positively and negatively acting elements. For
example, in the case of acute-phase, the alpha-1-glycoprotein, a positive acute
phase protein, was found to have a significant contribution to the acute-phase GO-
component pattern that represented gene expression activation with high BB at 24
h. Other three proteins, alpha-1- inhibitor, albumin and tripsin, known as negative
acute-phase proteins (Al-Shahrour et al., 2007), had significant but negative
contributions to the GO pattern, which indicates an opposite pattern of expression
(Figure 7.7). Therefore, this GO-component collects the induction of positive acute-
phase proteins and the repression of negative acute-phase genes, suggesting a

general activation of this cellular process.
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ii)

Figure 7.6: Score vs Loading analysis of PCA-maSigFun
Score profiles for three representative GO-components. b) Loading plot (gene contributions) for the
same GO-components, genes labeled by their array ID. Blue lines indicate the threshold for significant
contribution obtained by re-sampling (see methods).
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Figure 7.7: Principal variation pattern of acute-phase response GO category in Toxicogenomics

dataset analyzed by PCA-maSigFun. a) Scores plot reveals the profile of the GO-component. b) Loadings

plot show gene contributions. Threshold for significant contribution are indicated by blue line. Names of

positively correlated and negatively correlated significant contributing genes are indicated.

Finally the ASCA-functional method gave an intermediate result between the

two previous approaches. Analysis by ASCA indicated three main independent

157



Functional assessment of TCM data

patterns of variation within the transcriptomics signal. As in the other approaches,
the first component, which collects 46% of the gene expression variability,
represents the pattern of change (induction or repression) by high BB at 24 hours
(Figure 5.10). The second component, with 10% associated explained variance,
represents the change of medium BB at 24 hours. The third component (9%
explained variance) captures the early responses at medium and high BB. As the
first principal component represents mostly the toxicological response, this was the
one subjected to FatiScan that resulted in the identification of 15 BP 20 MF and 8
CC significant features (Table 7.1 and Supplementary material Chapter?).
Significant processes included ribosome, ferric ion binding, rRNA binding, energy
and electron transport, at the upper end of the gene rank, indicating that these
functions are positively correlated with the pattern provided by the first ASCA-
genes component of submodel b+ab, i.e, induction by high BB at 24 h. GO terms
such as retinoic metabolic process, fatty acid beta oxidation, glutamine family
amino-acid metabolism, oxidorreductase activity were found significantly enriched
at the bottom end of the gene rank, indicating their opposite correlated pattern of

change.

NSF potato stress dataset.

The Potato Stress dataset consists of three abiotic stress series (cold, heat
and salt treatments) plus one control series measured along 3 time points on the
NSF potato 10k chip. In general, the three different approaches behaved in a
similar fashion as in the toxicogenomics dataset although a much richer functional
response was observed in this study. The major gene expression pattern within this
dataset corresponds to the differential behavior of the cold and salt stresses with
respect to the control and heat conditions. A differential regulation is observed
between the two pairs of series already at 3 hours, peaking at 9 hours and

maintained till the end of the experiment (Figure 7.8).

The number of functional classes obtained with each of the methods is
shown in Table 7.2. and a complete list of all significant GO terms is provided in
Supplementary material Chapter7. maSigFun analysis gave the smallest amount of
significant GO terms, which had on average 6.4 annotated terms and a mean inner
correlation value of 0.63+0.1. Significant functions corresponded to profiles of
induction (+) or repression (-) of the class as a whole for the cold and salt stressors

with respect to the control and heat conditions. Down-regulated processes included
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photosynthesis-related terms, fructose metabolism, cell-wall modification, lateral
root morphogenesis and reductive pentose-phosphate cycle. Up-regulated
processed referred to protein turnover, response to hypoxia and glucose stimulus,
multi-drug transport, salicylic acid signaling pathway and diverse enzymatic
activities. PCA-maSigFun gave again a much richer view on cellular processed (447
selected GO terms) and highlighted additional functions such as response to stress,
chitinase activity, oxidoreductase activity, transmembrane transport, secretory

pathway, jasmonic acid signaling and abscisic acid pathways, among many others.
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Figure 7.8: Pprincipal variation pattern in the Potato Stress dataset. The pattern is

captured by the first component of submodel b+ab (treatment + timextreatment) of ASCA-

functional analysis. The plot shows the score values of this first component.

Finally ASCA-functional analysis indicated the major pattern of variability as the
difference between the cold and salt stresses on one hand and heat and control
conditions on the other, comprising this pattern 57% of the variability contained in
the dataset (Figure 7.8). FatiScan analysis on the gene loadings rank provided by
this first component indicated as significant most of the processes revealed by the
other methods, i.e., response to several stimuli, protein synthesis and degradation,
diverse hormone signaling pathways, lignin biosynthesis associated with genes in
upper rank positions; photosynthesis, microtubule-based movement, RNA binding
and lypoxigenase activity as processed over-represented in bottom rank genes.
Taken together, the results of the three different approaches reveal, at different
levels of detail, the cellular response triggered by the treatments. While the heat

stress does not seem to provoke, at least in this experiment, a large response, cold
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and salt treatment produced similar patterns of transcriptome regulation. Hormone
signaling cascades, response to stress markers, lignin biosynthesis, oxidoreductase
activity and protein metabolism were induced processes while the whole

photosynthetic machinery seems to be halted by these abiotic stress agents.

SELECTIONS
GO Original Non redundant maSiaFun PCA- ASCA-
category | Annotation Annotations 9 masSigFun| Functional
BP 2444 780 23 258 116
MF 943 431 21 141 29
CC 369 203 14 48 46

Table 7.2: Functional analysis results for Potato Stress study. Number of functional terms in each of
the three GO branches present in the original dataset, after removal of redundant annotations and
selected after analysis with each of the proposed methods.

7.4 Discussion

The understanding of the cellular and functional implications of global gene
expression changes measured through microarrays is in many cases the ultimate
and most important goal of the biological experiments analyzed by this technology.
When the experiment includes a time component data has dynamic nature that
needs to be incorporated in the functional analysis. The statistical approaches
presented and evaluated in this study try to exploit this dynamic property from
different perspectives and offer methods that explicitly focus on coordinative
behaviors within the cellular functionality along the time span. This is in contrast to
more traditional approaches that require a gene selection method and a partitioning
algorithm before reaching the stage of functional assessment. maSigFun is, from
the three algorithms proposed, the method that more strongly concentrates in co-
expression. By fitting one regression model on the expression data gathered by
each functional class, it follows that class members need to be highly correlated.
Conceptually, maSigFun could be related to the globaltest developed by Goeman et
al. (2004) where one statistical model is fit for a gene set, although the two
methodologies have very different realizations. While the globaltest treats genes in
the set as the dependent variables of the model, maSigFun regresses on
experimental factors (time and treatment) and considers individual genes as
observations of the values that time and treatment take for the functional class.
The simulation studies indicated that only classes with a high proportion of
coordinately changing genes (~ 70%) were readily detected by this method. The
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experimental datasets confirmed this tendency and also showed a bias in class
selection for those with a reduced number of annotated genes and a relatively high
(~60%) inner correlation. This is not surprising since large -and frequently more
general- functional classes are more likely to include different regulation patterns
and also to capture more noise. The consequence is that this method is able to
reveal specific cellular functionalities which are affected by the experimental
conditions but may escape to other interesting phenomena which are not so well
defined by a one-block behavior of the functional class. This, which might be
sufficient in some cases, may imply a partial result in some others where a broader
view of the transcriptional changes is sought. In the case of the toxicogenomics
dataset maSigFun analysis provided a clearly limited result. Although some
detected functions such as heme oxygenase activity and bile acid transporter
activity are key makers of the toxicological response (Heijne et al., 2003), many
other important processes such as the xenobiotic metabolic process, acute-phase
response and epoxide hydrolase activity did not show up in this analysis. In the
case of the abiotic stress study, however, maSigFun analysis did provide already a
quite extensive functional view of the regulated processes, possibly due to the
involvement of numerous specific enzymatic activities and cellular locations with
low number of annotated genes, and the more extensive transcriptional profiling (~

10k probes) of the potato dataset.

The above mentioned aspect of the broader evaluation of the transcriptional
response from a functional point of view is probably best addressed by the PCA-
masSigFun method. In this strategy sub-patterns of time-associated changes within
each functional class are identified by PCA analysis followed by regression modeling
on the principal components. PCA-maSigFun provided the largest GO term selection
in both experimental datasets and the simulated study indicated that the method is
able to identify any functional group in which some correlation structure is present.
The method should not be considered as an enrichment analysis strategy, but more
a methodology to dissect and investigate how genes, functions and co-expression
relate. This exercise can be very interesting in some cases such as in the acute-
phase example shown in the toxicogenomics section. Here, PCA-maSigFun clearly
showed the correlation and anti-correlation relationships between acute-phase
positive and negative genes, which would presumably result in an activation of the
process. Any method that would concentrate only in shared profiles would fail to
identify this class in which co-regulation is clearly present. Possibly recently

introduced term relationships in the Gene Ontology (regulates_positively and
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regulates_negatively) would help to more formally consider these situations (see

http://www.geneontology.org/GO.process.guidelines.shtml#reg) but, to our
knowledge, there are not yet functional assessment methods that incorporate these
relationship descriptors. It is also important to indicate, that although PCA-
masSigFun is not an enrichment method, it does not return just any functional class.
First, PCA assures that selected categories must contain a structure of correlation
above the level of noisy variance of each particular dataset and secondly, the
maSigPro analysis on the selected components imposes that these patterns can be
fitted to a time-dependent model. In fact, in most of the selected functional terms
the significant profile corresponded to the first component of the PCA analysis of
the class (data not shown). This implies that the major function-dependent patterns
of variation also corresponded to time-related events and consequently are
consistent with the biological scenario investigated by the time-course experiment.
A possible draw-back of this method is the large size of the resulting selections.
This means that browsing of the analysis results could be time consuming and that
some too general-low informative classes may “artificially” enlarge the output. We
partially solved this problem by including only non-annotation redundant GO terms
in the analysis (a GO term is considered annotation redundant if it has the same set
of annotated genes as any of its child terms). Other options would be to filter
results according to the GO structure (by level, by branch most specific term, etc)
or to group significant functional patterns by some clustering method. The last
option has been implemented in the PCA-maSigFun method and is included in the

standard output.

An intermediate result between the restricted view of maSigFun and the
profusion of classes given by PCA-maSigFun is obtained by ASCA-functional. In
contrast to the two previous methods, this strategy does not imply a transformation
from a gene profile to a class profile, but simply ranks genes according to a pattern
of variation and assessing a functional enrichment along this rank. This pattern of
variation is provided by the ASCA-genes model and, although in this work this is
related to time series analysis, the method is generally applicable when more than
two conditions are present in the study. In this sense ASCA-functional can be
considered as an extension of GSA to multi-class and time series data. Other
adaptations of the GSA methodology propose the employment of diverse statistics
such as linear modeling and/or posterior probability to measure the association of
the gene expression with the phenotype (Jiang and Gentleman, 2007), but to our

knowledge no statistics have yet been suggested to consider dynamic data. The
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simulation study indicated that our strategy can identify classes from an inner co-
expression level of 50% - 60%, which is indeed in between the other two
methodologies presented. ASCA-functional does not provide a detailed analysis of
co-expression as in PCA-maSigPro, but it does very naturally show the relationship
between functional classes: as the rank provided by the gene loadings in the
principal components of the ASCA submodels is a measure of how well each gene
follows the pattern identified as major time-dependent expression trends, functional
classes overrepresented in the upper part of the rank will follow this pattern while
enriched terms at bottom positions will have the opposite profile. Another
particularity of this method is that it only reaches major expression trends, since
the PCA models simplify data by their predominant structures. We argue that this,
which could be suggested as a limitation for a gene-centric analysis, is of little
relevance when considering functional blocks with coordinated behaviors. Recently,
Chen et al. (2008) proposed a methodology for gene set enrichment analysis based
on PCA. However, their approach is very different to ours since the authors use PCA
to select gene sets whose one-component projection best associates to the
phenotype, rather than to quantify the relationship of individual gene profiles to a

defined generic pattern.

We can conclude that the methodologies presented in this paper are
valuable and offer different approaches to study microarray time series data from a
functional perspective. The methods should not be considered as competitive but
providing different insights on the molecular and functional events taken place

within the biological system under study.
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General conclusion

This thesis is dedicated to the development and application of new statistical
methods for the analysis of multiple series of “Time Course Microarray” (TCM) by
considering the specific problematic of this type of data. The work was started by
providing a general overview of microarray technology and a review of statistical
general methods used and also the specific ones for TCM. Furthermore, the main
limitations of the application of general tools to time series microarray data were
identified using a practical study on experimental data. Next, the methodologies
developed in this thesis, maSigPro, ASCA-genes, ASCA as pre-processing technique
and a group of tools to deal with functional categories: maSigFun, PCA-maSigFun
and ASCA-Functional are presented. These new techniques were sistematically
applied on simulated and real datasets to analyze their performance and

comparison with other existing methodologies.

Here the main conclusions of the thesis are summarized, organized

according to the objectives presented at the beginning of the document:

a) Study of the state-of-the-art transcriptomic analysis methodologies
applied to TCM.

e The analysis of TCM data by clustering approaches poses limitations to
the interpretation of partioning results and time differences across

multiple series are difficult to extract from clustered profiles.

e The aplication of classical inferential tools to TCM are not adequate as

they do not analyze the dynamics of the data.

¢ The majority of the specific methodologies for TCM, both in clustering and
in gene selection approaches, were developed for long series, such as is

the case of cell cycle and long developmental studies.
e There was a need to develop methodologies to visualise and analyse short
MSTC due to the increasing use of microarrays to explore the gene

expression response to different stimuli by using short series.

b) Development of new statistical methods to deal with TCM focusing

on short, independent and multiple series time course (MSTC)
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e maSigPro is a powerful statistical procedure to identify genes that have
different expression profiles among experimental groups in TCM

experiments.

¢ maSigPro detects significant profiles differences without carrying out
tedious multiple pair-wise comparisons, allowing for unbalanced designs

and heterogeneous sampling times.

e The variable definition of the maSigPro models allows us not only finding
genes with temporal expression changes between experimental groups,

but also to analyze the magnitude of these differences.

e The application of ASCA to TCM data, ASCA-genes, helps to understand
the shared behaviours of gene expression under the studied factors (time,
experimental group and interaction) and allows the identification of the

genes that follow the discovered patterns.

e ASCA can be used as pre-processing technique to remove systematic
noise from microarray datasets. The ANOVA decomposition and analysis
of covariance present in ASCA provide the means to remove the noise
present in the gene expression signal and the signal present in the arrays

noise.

e TCM lacks of specific methodologies that integrate biological knowledge in
statistical analysis and exploit the dynamics of functional -rather than

gene expression- changes.

e The developed methodologies for the functional assessment of time
course, maSigFun, PCA-maSigFun and ASCA-functional, are able to
capture different aspects of the relationship between genes, functions and

co-expression that are biologically meaningful.
e The availability of the developed methodologies in this thesis as R
packages makes these analysis approaches easily accessible to the

research community.

c) Study of the effectiveness of the developed methods by comparing
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their performance with other available techniques.

e Comparisons between different analysis methodologies are difficult to
carry out and they are not always fair. Different treatment of the data or
different criteria to establish cut-offs for gene selection can make this

task complicated and prone to arbitrary considerations.

e Simulations are very useful to investigate how to use a statistical
methodology and to understand its working. However, performance
results obtained with simulation studies must be considered as orientative

due to synthetic data is a necessary simplification of true microarray data.

e maSigPro and the combination ASCA-filter and maSigPro has proven
to provide good gene-selection results over a wide variety of data analysis
scenarios and to outperform other methodologies for the analysis of TCM.
Similarly, our methodologies developed for functional assessment of TCM
provide quality and exhaustive functional results, difficult to obtain by

other available methods.

e The rapid evolution of genomics research poses continuous challenges to
the bioinformatics and statistics disciplines which need to be dynamic in
delivering new analysis methodologies that are able of processing

datasets of increasing complexity and size.

To summarize, this thesis offers four useful techniques for the analysis of
Time Course Microarray data and a review of the state-of-the-art of the developed
methodologies for transcriptomic data. Our methods, as any other, do not intent to
model gene expression perfectly, but provide us with useful tools for studying and
understanding the biology. Pharaphrasing the statistician George Box: “All models
are wrong, but some are useful”.

Apart from all this technical conclusions, the developed work has offer to me
the opportunity of involving in the research world developing (I think) important
personal skills. Critical view of the proposed problems and of the works developed

for researchers is one of them. However, on my point of view, the most important
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thing the bioinformatics field has shown me is the need of collaborating with the

scientific community to the advance of the science.

Future lines

This thesis opens interesting research lines. In the following we mention

several options that arise throughout the different chapters of this work. In each

line of research we indicate the specific chapter which it is related to.

170

The incorporation of statistical tools to maSigPro to explicitly consider long,
heteroscedastic and longitudinal data in an accurate way (Chapter 4).
maSigPro applies classical least-squares technique to estimate the
coefficients of the regression model and these estimates are optimum if the
assumptions of homoscedasticity and independence of the observations are
satisfied. Since microarray data might not always meet these requirements,
it is possible that the obtained coefficients are not the best ones. The study
of incorporating in our model generalized least squares, weighted least

squares and splines regression to our model could be an option.

Similarly, ASCA-genes has been also developed for independent and
homoscedastic data (Chapter5). The study of the application of ANOVA
models for longitudinal and heteroscedastic data within the ASCA model

could be another option.

The search of an independent criterion of the signal-to-noise ratio for gene
selection in ASCA-genes methodology (Chapter 5). The gene selection
method implemented in ASCA-genes was developed by testing the strategy
in experiments with high level of signal-to-noise ratio. Posterior studies
revealed that this criterion is not robust with experiments with a large
number of genes and low signal-to-noise ratio. The application of other
thresholds statistics and strategies for feature selection is a line of research

we are already studying.

Multivariate statistics, while powerful in extracting knowledge in large
datasets, can also render difficult to interpret when applied to omics data of
low signal-to-noise ratios. Recent tendencies try to use simple models that

describe the effect of small groups of variables, in our case genes. It would
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be a good extension of ASCA-genes to apply this approach to improve

interpretation.

Selection of components to apply the ASCA-filter strategy (Chapter 6). In
spite of the good results obtained and the ingenious theoretical strategy
proposed with ASCA-filter to remove the noise of the signal and the signal of
the noise, we admit that the method is not easy to apply. The main difficulty
comes from the selection of the number of principal components. It requires
a good comprehension of the variation of the data to analyse and the results
are very sensitive to the number of components chosen. Furthermore, as the
variation removed depends on these components, which is a discrete
parameter, we can not choose a quantity of variation in a continuous way
being the different solutions associated with the different selections of

components also not continuous selections of genes.

The development of new tools for functional categories (Chapter 7). The
application of several combinations of tools to groups of genes has shown to
be an efficient way to asses the functional aspects of time course
transcriptomics data. However, more possibilities can be studied as ASCA-
maSigFun (instead of PCA-maSigFun), that could apply maSigPro to the
patterns discovered with ASCA (instead of the patterns discovered with
PCA). This alternative would help to avoid the structural noise present in the

group of genes and would focus on the time patterns of variation.

In simulation studies we have always generated different patterns of
variation. We think that it would be interesting to simulate combinations of
them to analyse how our methods, especially ASCA-genes, are able to

capture these behaviours.

The application of Multiway techniques to omics data. This thesis work
concentrates on transcriptomics, i.e. one data matrix is subjected to
analysis. However to obtain biological knowledge in System Biology, multiple
omics technologies should be combined resulting in multiple data structures.
In this line Conesa et al. (2008) developed a strategy that uses Partial Least
Squares (PLS) to identify correlated gene function features with physiological
variables. Multi-way methods are able to take into account the different

levels of data organization and analyze the underlying components of
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variability that affect different types of biological variables. They seem to us
as a very attractive tool for explorative and variable selection analysis of

Systems Biology data.
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Annex 1: maSigPro package scheme
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Figure A-1: maSigPro scheme. Grey boxes include the name of main functions of the maSigPro

package in order of intervention: makeDesignMatrix, p.vector, T.fit, get.siggenes and see.genes.
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The scheme showed in Figure A-1 summarizes the performance of maSigPro
package. The scheme is illustrated with some pictures of an example with only two

time-points and two groups to clarify the results.

The maSigPro package can be obtained from the Bioconductor repository or

downloaded from the personal webs of the authors: www.ua.es/persona/mj.nueda

and http://bioinfo.cipf.es/aconesa. Load maSigPro by typing at the R prompt:

>library(maSigPro)

The maSigPro vignette will be added to the Vignettes menu of R and it can

be downloaded from the personal webs of the authors.

The analysis approach implemented in maSigPro is executed in 5 major
steps which are run by the package core functions make.design.matrix(),
p.vector(), T.fit(), get.siggenes() and see.genes(). Additionaly, the package

provides the wrapping function maSigPro which executes the entire analysis in one

go.

The maSigPro vignette explains the usage of each of these functions using
as example a dataset from a multiple series time course experiment. At the end of
the document there is also explained how to apply maSigPro to other experimental

designs.
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Annex 2: Supplementary figures of Chapter 5
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Figure A-2: SOTA cluster analysis. Clusters where changes in gene expression profiles were

evident (red circled) were selected for further analysis.
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Figure A-3: K-means cluster analysis. Clusters where changes in gene expression profiles were

evident (red circled) were selected for further analysis.
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Annex 3: ASCA-genes on simulated datasets with

high number of genes

In this annex we show gene-selection obtained with ASCA-genes when the
experiment has a high number of genes. The study has been carried out with the
simulation study 1 of Chapter 6, i.e. an independent time-course experiment with 3
time-points, 3 experimental groups and 410 changing genes of a total of 10000
genes. 6 different scenarios were simulated with different type and amount of noise

(see Chapter 6 for details).

Table A-1 shows that in scenarios without noise or with low noise the
obtained selection is adequate. However when high structural noise is added to the
data, the solution is not as adequate. In Chapter 5 we obtained a good solution by
applying ASCA-genes to a scenario with high structural noise. However in such case
we simulated a dataset with 2600 genes to resemble the structure of the
bromobenzene dataset. By considering a more real experiment with 10000 genes,
the leverage limit is affected by the high proportion of flat profiles providing a
considerable number of false positives (Figure A-5). On the other hand, leverage
limits obtained in scenarios without noise or with small number of genes provide a

good solution (see Figure A-4 and Figure 5.6 of Chapter 5).

SCENARIO | SELECTION FP FN SENSIT SPECIF
1 410 0 0 1.000 1.000
2 413 3 0 1.000 1.000
3 434 24 0 1.000 0.997
4 450 40 0 1.000 0.996
5 649 239 0 1.000 0.975
6 614 204 0 1.000 0.979

Table A-1: ASCA-genes results.
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Figure A-4: Leverage and SPE of “submodels a” and “b+ab” for scenario 1. Black colours

represent flat genes and red colours non flat genes.
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Figure A-5: Leverage and SPE of “submodels a” and “b+ab” for scenario 6. Black colours

represent flat genes and red colours non flat genes.

We have tried other different criteria to select genes with ASCA approach by
using scaled leverage and SPE to compute the distances of each gene to the origin.
The use of scaled leverage and SPE allows that both measures have the same
importance. By ordering these distances we obtain a ranking of genes in each
submodel. Graphically we can determine a level to decide the important genes (see
case of scenario 6 in Figure A-6, the remaining scenarios not shown). This level has
been choosen looking for a hollow that indicates change of the distances to the
origin. This option offers the correct solution in all the scenarios (410 genes). We
have also designed a non graphical criterion assigning to each gene the largest

distance of each submodel to get a unique measure for each gene. By choosing the
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first 410 genes of this distance we obtain also the correct solution. However,
although these selections are correct the criteria do not offer a statistic significance
level. Currently, we are studying new ways to obtain an adequate statistic gene

selection criterion. This is a future line of research to be developed.
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Figure A-6: Distances from leverage-SPE scaled points to the origin

in Scenario 6.
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Annex 4: Supplementary tables of maSigPro applied

to the simulation study 1 of Chapter 6

SCENARIO 1

DATA RSQ _ SELECTION FP FN SENSIT SPECIF
0 430 20 0 7.000 0.998
Oricinal 06 414 4 0 1.000 1.000
9 07 410 0 0 1.000 1.000
08 410 0 0 1.000 1.000
0 11 1 0 1.000 1.000
. 0.6 411 1 0 1.000 1.000
Filtered 1,2,0 0.7 410 0 0 1.000 1.000
0.8 410 0 0 1.000 1.000
0 211 1 0 7.000 1.000
. 06 411 1 0 1.000 1.000
Filtered 1,2,1 07 410 0 0 1.000 1.000
0.8 410 0 0 1.000 1.000
0 212 2 0 7.000 7.000
. 06 412 2 0 1.000 1.000
Filtered 1,2,3 0.7 410 0 0 1.000 1.000
0.8 410 0 0 1.000 1.000
0 217 7 0 7.000 0.999
. 0.6 412 2 0 1.000 1.000
Filtered 1,2,5 0.7 410 0 0 1.000 1.000
0.8 410 0 0 1.000 1.000
0 211 1 0 7.000 1.000
. 06 410 0 0 1.000 1.000
Filtered 1,3,0 07 410 0 0 1.000 1.000
08 410 0 0 1.000 1.000
0 11 1 0 1.000 1.000
. 0.6 411 1 0 1.000 1.000
Filtered 1,3,1 07 410 0 0 1.000 1.000
0.8 410 0 0 1.000 1.000
0 213 3 0 1.000 1.000
. 0.6 411 1 0 1.000 1.000
Filtered 1,3,3 0.7 410 0 0 1.000 1.000
08 410 0 0 1.000 1.000
0 219 9 0 1.000 0.999
. 0.6 411 1 0 1.000 1.000
Filtered 1,3,5 07 410 0 0 1.000 1.000
058 410 0 0 1.000 1.000

Table A-2: maSigPro results for scenario 1 with original and filtered data with different strategies.
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SCENARIO 2

DATA RSQ _ SELECTION FP FN SENSIT SPECIF
0 427 17 0 7.000 0.998
original 0.6 412 2 0 1.000 1.000
9 0.7 410 0 0 1.000 1.000
0.8 410 0 0 1.000 1.000
0 410 0 0 1.000 1.000
. 0.6 410 0 0 1.000 1.000
Filtered 1,2,0 0.7 409 0 1 0.998 1.000
0.8 391 0 19 0.954 1.000
0 410 0 0 7.000 7.000
. 0.6 410 0 0 1.000 1.000
Filtered 1,2,1 0.7 409 0 1 0.998 1.000
0.8 392 0 18 0.956 1.000
0 413 3 0 7.000 7.000
. 0.6 410 0 0 1.000 1.000
Filtered 1,2,3 07 410 0 0 1.000 1.000
0.8 395 0 15 0.963 1.000
0 414 2 0 7.000 7.000
. 0.6 411 1 0 1.000 1.000
Filtered 1,2,5 0.7 410 0 0 1.000 1.000
0.8 405 0 5 0.988 1.000
0 410 0 0 1.000 1.000
. 0.6 410 0 0 1.000 1.000
Filtered 1,3,0 0.7 410 0 0 1.000 1.000
0.8 399 0 11 0.973 1.000
0 411 1 0 1.000 1.000
. 0.6 410 0 0 1.000 1.000
Filtered 1,3,1 0.7 410 0 0 1.000 1.000
08 400 0 10 0.976 1.000
0 415 5 0 1.000 0.999
. 0.6 411 1 0 1.000 1.000
Filtered 1,3,3 0.7 410 0 0 1.000 1.000
08 404 0 6 0.985 1.000
0 419 9 0 7.000 0.999
. 0.6 413 3 0 1.000 1.000
Filtered 1,3,5 0.7 410 0 0 1.000 1.000
08 408 0 2 0.995 1.000

Table A-3: maSigPro results for scenario 2 with original and filtered data with different strategies.
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SCENARIO 3

DATA RSQ _ SELECTION FP FN SENSIT SPECIF
0 413 3 0 1.000 1.000
original 0.6 411 1 0 1.000 1.000
9 0.7 410 0 0 1.000 1.000
0.8 369 0 41 0.900 1.000
0 410 2 2 0.995 1.000
. 0.6 392 1 19 0.954 1.000
Filtered 1,2,0 0.7 370 0 40 0.902 1.000
0.8 315 0 95 0.768 1.000
0 823 213 0 1.000 0.957
. 0.6 489 79 0 1.000 0.992
Filtered 1,2,1 0.7 430 21 1 0.998 0.998
0.8 409 1 2 0.995 1.000
0 1733 1323 0 7.000 0.861
. 0.6 662 252 0 1.000 0.974
Filtered 1,2,3 0.7 489 79 0 1.000 0.992
0.8 415 5 0 1.000 0.999
0 2126 1716 0 7.000 0.820
. 0.6 754 344 0 1.000 0.964
Filtered 1,2,5 0.7 525 115 0 1.000 0.988
0.8 422 12 0 1.000 0.999
0 411 3 2 0.995 1.000
. 0.6 404 1 7 0.983 1.000
Filtered 1,3,0 0.7 382 0 28 0.932 1.000
0.8 322 0 88 0.785 1.000
0 1183 773 0 1.000 0.919
. 0.6 599 189 0 1.000 0.980
Filtered 13,1 0.7 454 45 1 0.998 0.995
0.8 411 2 1 0.998 1.000
0 2643 2233 0 1.000 0.765
. 06 911 501 0 1.000 0.947
Filtered 1,3,3 0.7 563 153 0 1.000 0.984
0.8 426 16 0 1.000 0.998
0 3047 2637 0 7.000 0723
. 06 1091 681 0 1.000 0.928
Filtered 1,3,5 0.7 626 216 0 1.000 0.977
0.8 439 29 0 1.000 0.997

Table A-4: maSigPro results for scenario 3 with original and filtered data with different strategies.
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SCENARIO 4

DATA RSQ _ SELECTION FP FN SENSIT SPECIF
0 411 1 0 7.000 1.000
Original 06 410 0 0 1.000 1.000
9 07 387 0 23 0.944 1.000
08 281 0 129 0.685 1.000
0 395 0 15 0.963 7.000
. 06 348 0 62 0.849 1.000
Filtered 1,2,0 0.7 325 0 85 0.793 1.000
08 264 0 146 0.644 1.000
0 429 19 0 7.000 0.998
. 06 412 2 0 1.000 1.000
Filtered 1,2,1 0.7 400 0 10 0.976 1.000
08 363 0 47 0.885 1.000
0 457 47 0 7.000 0.995
. 06 419 9 0 1.000 0.999
Filtered 1,2,3 07 410 1 1 0.998 1.000
08 377 0 33 0.920 1.000
0 495 85 0 7.000 0.991
. 06 425 15 0 1.000 0.998
Filtered 1,2,5 0.7 411 1 0 1.000 1.000
08 389 1 22 0.946 1.000
0 404 0 6 0.985 7.000
. 06 389 0 21 0.949 1.000
Filtered 1,3,0 0.7 339 0 71 0.827 1.000
08 268 0 142 0.654 1.000
0 450 20 0 1.000 0.996
. 0.6 414 5 1 0.998 0.999
Filtered 1,3,1 0.7 405 1 6 0.985 1.000
0.8 379 0 31 0.924 1.000
0 505 95 0 7.000 0.990
. 0.6 431 21 0 1.000 0.998
Filtered 1,3,3 0.7 413 3 0 1.000 1.000
08 393 0 17 0.959 1.000
0 590 180 0 7.000 0.981
. 0.6 447 37 0 1.000 0.996
Filtered 1,3,5 0.7 415 5 0 1.000 0.999
08 396 1 15 0.963 1.000

Table A-5: maSigPro results for scenario 4 with original and filtered data with different strategies.
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SCENARIO 5

DATA RSQ _ SELECTION FP FN SENSIT SPECIF
0 255 0 155 0622 7.000
original 06 215 0 195 0.524 1.000
9 07 84 0 326 0.205 1.000
0.8 8 0 402 0.020 1.000
0 211 0 199 0515 7.000
. 06 154 0 256 0.376 1.000
Filtered 1,2,0 07 72 0 338 0.176 1.000
08 6 0 404 0.015 1.000
0 3702 3294 2 0.995 0.654
. 0.6 1829 1429 10 0.976 0.850
Filtered 1,2,1 0.7 1035 653 28 0.932 0.931
0.8 558 206 58 0.859 0.978
0 7125 6715 0 7.000 0.294
. 06 4534 4125 1 0.998 0.566
Filtered 1,2,3 0.7 3089 2681 2 0.995 0.718
08 1527 1125 8 0.980 0.882
0 7389 6979 0 7.000 0.266
. 06 4843 4434 1 0.998 0.534
Filtered 1,2,5 07 3393 2984 1 0.998 0.686
08 1771 1366 5 0.988 0.856
0 229 0 181 0.559 7.000
. 06 206 0 204 0.502 1.000
Filtered 1,3,0 07 83 0 327 0.202 1.000
0.8 8 0 402 0.020 1.000
0 3992 3583 1 0.998 0.623
. 06 2043 1641 8 0.980 0.827
Filtered 1,31 0.7 1144 759 25 0.939 0.920
08 581 227 56 0.863 0.976
0 7442 7032 0 7.000 0.261
. 06 4770 4360 0 1.000 0.542
Filtered 1,3,3 07 3270 2861 1 0.998 0.699
08 1624 1218 4 0.990 0.872
0 7686 7276 0 7.000 0.235
. 06 5095 4685 0 1.000 0.507
Filtered 1,3,5 0.7 3584 3175 1 0.998 0.666
08 1868 1461 3 0.993 0.846

Table A-6: maSigPro results for scenario 5 with original and filtered data with different strategies.
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SCENARIO 6

DATA RSQ _ SELECTION FP FN SENSIT SPECIF
0 255 0 155 0622 1.000
original 0.6 199 0 211 0.485 1.000
9 0.7 64 0 346 0.156 1.000
0.8 4 0 406 0.010 1.000
0 203 0 207 0.495 1.000
. 06 151 0 259 0.368 1.000
Filtered 1,2,0 0.7 64 0 346 0.156 1.000
0.8 2 0 408 0.005 1.000
0 1198 805 17 0.959 0.915
. 0.6 610 235 35 0.915 0.975
Filtered 1,2,1 0.7 391 49 68 0.834 0.995
0.8 311 3 102 0.751 1.000
0 2570 2165 5 0.988 0772
. 06 1041 648 17 0.959 0.932
Filtered 1,2,3 0.7 560 184 34 0.917 0.981
0.8 358 25 77 0.812 0.997
0 3012 2605 3 0.993 0.726
. 06 1214 818 14 0.966 0.914
Filtered 1,2,5 07 646 266 30 0.927 0.972
0.8 381 39 68 0.834 0.996
0 228 0 182 0556 7.000
. 06 104 0 216 0.473 1.000
Filtered 1,3,0 0.7 66 0 344 0.161 1.000
0.8 5 0 405 0.012 1.000
0 1460 1055 5 0.988 0.889
. 06 656 277 31 0.924 0.971
Filtered 13,1 0.7 419 73 64 0.844 0.992
08 315 3 98 0.761 1.000
0 3016 2609 3 0.993 0726
. 0.6 1144 746 12 0.971 0.922
Filtered 1,3,3 0.7 592 216 34 0.917 0.977
08 371 30 69 0.832 0.997
0 3484 3077 3 0.993 0676
. 0.6 1328 927 9 0.978 0.903
Filtered 1,3,5 0.7 692 311 29 0.929 0.967
08 391 45 64 0.844 0.995

Table A-7: maSigPro results for scenario 6 with original and filtered data with different strategies.

190




Annexes

Annex 5: Details of the evolution of specificity and

sensitivity with maSigPro on simulated study 1 of

Chapter 6.

Original data[0.6]-Sensitivity

1.0

00 02 04 06 08

Scenario

Original data[0.6]-Specificity

 — —— —— — — —

1.0

00 02 04 06 08
|

Scenario
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04 06 08

0.0 0.2

1.0

00 02 04 06 08

Filtered data[0.6]-Sensitivity

-—

Scenario

Filtered data[0.6]-Specificity

Scenario

Figure A-7: Sensitivity and specificity maSigPro results with R-squared=0.6

of original and ASCA-filtered data simulated in six different scenarios.

191



Annexes

Original data[0.7]-Sensitivity Filtered data[0.7]-Sensitivity
S J——— C ————
< = <
o _| o _| ————
o o
© ] © |
o o
= g
o o
S - S
< ] < |
e T T T T T T e T T T T T T

1 2 3 4 5 6 1 2 3 4 5 6
Scenario Scenario

Original data[0.7]-Specificity Filtered data[0.7]-Specificity
O [ e e —— — — —— i ey —— ——
« _] @ _]
o o
© | © _|
o o
< | =
o o
N ] N ]
o o
e ] o
e T T T T T T e T T T T T T

1 2 3 4 5 6 1 2 3 4 5 6
Scenario Scenario

Figure A-8: Sensitivity and specificity maSigPro results with R-squared=0.7 of

original and ASCA-filtered data simulated in six different scenarios.
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Original data[0.8]-Sensitivity Filtered data[0.8]-Sensitivity
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Figure A-9: Sensitivity and specificity maSigPro results with R-squared=0.8 of

original and ASCA-filtered data simulated in six different scenarios.

To carry out the ANOVA analysis we applied the arcsin+/x transformation to
the sensitivity and specificity. This transformation is necessary to avoid the
dependence between the variance and the average, as these parameters are
proportions. Doing this we could see in the residuals graphs of the respective
ANOVA models that the residuals are independent (graphs not shown). Table A-8
includes the ANOVA tables for these two transformed measures. We can observe
that all the effects are statistically significant. Interaction ScenarioxData graphs of
the transformed sensitivity and specificity have the same evolution than those

shown in Chapter 6.
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ANALYSIS OF VARIANCE arc.sin(sgrt(sensitivity))

Source of Variation D.F. Sum Squares Mean Square F value Pr(>F)
Data 1 25547 25547 21428.30 <2.2E-16
Scenario 5 119135 23827 19985.36 <2.2E-16
R-squared 2 12363 6181 5184.73 <2.2E-16
Data x Scenario 5 36245 7249 6080.28 <2.2E-16
Data x R-squared 2 2619 1310 1098.50 <2.2E-16
Scenario x R-squared 10 5923 592 496.80 <2.2E-16
Data x Scenario x R-squared 10 2240 224 187.84 <2.2E-16
Residuals 324 386 1

ANALYSIS OF VARIANCE arc.sin(sqgrt(specificity))
Source D.F. Sum Squares Mean Square F value Pr(>F)

Data 1 805.0 805.0 421.87 <2.2E-16
Scenario 5 2534.0 506.8 265.58 <2.2E-16
R-squared 2 995.7 497.9 260.90 <2.2E-16
Data x Scenario 5 3658.5 731.7 383.45 <2.2E-16
Data x R-squared 2 96.8 48.4 25.37 5.79E-11
Scenario x R-squared 10 888.3 88.8 46.55 <2.2E-16
Data x Scenario x R-squared 10 1279.5 128.0 67.05 <2.2E-16
Residuals 324 618.3 1.9

Table A-8: ANOVA tables for transformed sensitivity and specificity.
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Annex 6: Enrichment functional analysis of

experimental data used in Chapter 6

maSigPro timecourse EDGE

Original | Filtered | Original | Filtered | Original | Filtered
ribosome X X X X X X
translation X X X X X X
cytosol X X X X X X
oxidoreductase activity X X X X X
retinol binding X X
nitric oxide mediated signal transduction X X X
heme binding X X X X
lipid metabolic process X
glutathione transferase activity X X
long-chain fatty acid metabolic process X
aldo-keto reductase activity X
peroxisome X
coenzyme binding X
fatty acid metabolic process X
iron ion binding X

Table A-9: Summary of the biological processes detected with maSigPro, timecourse and EDGE

applied to the original and filtered data of Toxicogenomics experiment. Red crosses indicate that the

process is over-represented in filtered data and not in the original, and blue crosses is the opposite case.
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masSigPro timecourse EDGE
Original | Filtered | Original | Filtered | Original | Filtered

Hormonal Response
Abscisic acid mediated signaling X X

Jasmonic acid
response to salicylic acid stimulus
auxin mediated signaling pathway
Response to stimuli
response to stress X X
Response to light
Response to abiotic stimuli X X
Response to biotic stimuli X
Response to water peroxide
response to osmotic stress
response to toxin
Enzimatic activities
pectinesterase inhibitor activity
racemase and epimerase activity
isomerase activity
phosphoric monoester hydrolase activity
oxidoreductase activity
phosphoric ester hydrolase activity
lyase activity
transferase activity, transferring hexosyl
groups
N-acetyltransferase activity
protein tyrosine/serine/threonine
phosphatase activity
phosphoprotein phosphatase activity
glutathione transferase activity
dodecenoyl-CoA delta-isomerase activity
monodehydroascorbate reductase (NADH)
activity
3-hydroxyacyl-CoA dehydratase activity
4-coumarate-CoA ligase activity
3-hydroxybutyryl-CoA epimerase activity
glutamate metabolic process

X[X]X[>x

XX
x

X[X([*x
x

X
X

had By B
X

X| X |IX]| X X[X[X]*x
x

hydrolase activity, acting on glycosyl bonds

X[ XXX XX} PX|X| X X

dephosphorylation
Binding

FK506 binding
rRNA binding
protein folding
drug binding
Protein metabolism

protein folding
cysteine-type endopeptidase activity
cellular carbohydrate metabolic process
sucrose synthase activity
phenylpropanoid metabolic process
glutamine family amino acid metabolic
process
inmune response
spermidine metabolic process

Others
Chloroplast X
cell wall X
glyoxysome X
leaf senescence

XX XX

X[x

XXX X|X

X[X] X [X

XX

Table A-10: Summary of the biological processes detected with maSigPro, timecourse and EDGE

applied to the original and filtered data of NSF potato stress experiment. Red crosses indicate that the

process is over-represented in filtered data and not in the original, and blue crosses is the opposite case.
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Annex 7: Details of simulated datasets results of
Chapter 7

In this annex we present detailed information about the results of maSigFun,
PCA-maSigFun and ASCA-functional to the simulation studies A and B of analysed
in Chapter 7. In all tables results are provided as average and limits of the
confidence interval at 95% of the selection, computed from 50 independent
simulation runs. False positives (FP), false negatives (FN), sensitivity (SENSIT) and

specificity (SPECIF) are reported.
maSigFun

Simulation study A

_ _
/"cgh:n"eg’s'"g R2 SELECTION FP FN SENSIT SPECIF
0 16.02 + 0.49 11 :028| 1008 £ 036 06 £ 0.01 Tz0

20 04 00 00 25 £ 0 040 120
06 00 00 25 £ 0 040 120

0.8 00 00 25 £ 0 040 110

0 22.32 £ 0.69 17 £ 0.4 238 + 048 | 082 £ 0.02 | 0.99 £ 0

30 04 040 040 25 £ 0 040 120
06 040 00 25 £ 0 0£0 120

0.8 040 00 25 £ 0 040 120

0 23.66 £ 049 138 £ 0.31 272034 | 089 £ 001|099 0

40 04 00 00 25 £ 0 040 120
06 00 00 25 £ 0 040 120

0.8 00 00 25 £ 0 00 110

0 24.26 £ 052 158 £ 035 | 232029 | 091 £001]099 0

50 04 00 00 25 £ 0 040 110
06 040 00 25 £ 0 040 110

0.8 00 00 25 £ 0 00 110

0 26.96 £ 0.38 798 £ 038 | 0.02 £ 004 1Tt0 ]099z0

60 04 2.52 £ 043 0£0 2248 £ 0434 | 0.1 £ 0.02 120
06 040 040 25 £ 0 040 120

0.8 00 00 25 £ 0 040 110

0 26.62 + 0.34 162 + 0.34 00 1T+t0 ]099 %0

7 04 24.1 £ 0.24 040 09 +024 | 096 0.01 120
06 212 £ 0.37 00 22.88 + 0.37 | 0.08 £ 0.01 120

0.8 040 040 25 £ 0 040 110

0 27.06 £ 047 | 206 £ 0.47 020 1:t0 ]009z0

80 04 25 £ 0 00 00 110 120
0.6 12.96 + 0.61 00 12.04 £ 061 | 052 £ 0.02 120

0.8 00 00 25 +0 010 110

Figure A-10: Results of simulated datasets for different proportions of co-expression in functional

categories and a mixed class size.
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Simulation study B

#Genes in
each R2 SELECTION FP FN SENSIT SPECIF
category
0 26.66 + 0.37 1.66 + 0.37 00 120 099 £ 0
5 0.4 25 %0 00 00 10 120
0.6 12.86 + 0.67 00 12.14 + 0.67 0.51 £ 0.03 1+0
0.8 0+0 00 25 +0 0+0 1+0
0 26.82 + 0.44 1.82 £ 0.44 0+0 120 099 £ 0
10 0.4 21.58 + 0.52 0+0 3.42 + 0.52 0.86 + 0.02 1+0
0.6 0.08 £ 0.11 00 2492 + 0.11 00 120
0.8 0+0 00 25+0 0+0 1+0
0 27.08 + 0.42 2.08 + 0.42 00 110 0.99 + 0
50 0.4 24.84 + 0.10 00 0.16 + 0.10 099 £+ 0 1+0
0.6 0+0 00 25+0 0+0 1+0
0.8 0+0 00 25 +0 0+0 1+0
0 26.94 + 0.44 1.94 + 0.44 00 1+0 0.99 £+ 0
100 0.4 25+0 00 00 120 1+0
0.6 00 00 25+0 00 1+0
0.8 0+0 00 25 +0 0+0 1+0

Figure A-11: Results of simulated datasets with 70% of coexpression for different sizes of functional

category.
#Genes in

each R2 SELECTION FP FN SENSIT SPECIF
category

0 10.96 + 1.04 0.84 + 0.33 14.88 + 0.91 0.4 + 0.04 1+0

5 0.4 00 00 25+0 0+0 1+0

0.6 0+0 0+0 250 00 1+0

0.8 0+0 00 25 +0 0+0 1+0

0 26.66 + 0.44 1.66 + 0.44 00 110 099 + 0

10 0.4 00 00 25+0 0+0 1+0

0.6 00 00 25+0 0+0 1+0

0.8 0+0 00 25 +0 0+0 1+0

0 27.22 + 043 222 + 043 00 120 099 £ 0

50 0.4 00 00 25+0 00 1+0

0.6 00 00 25+0 0+0 1+0

0.8 0+0 00 25 +0 0+0 1+0

0 26.9 + 0.43 1.9 + 043 0+0 1+0 0.99 + 0

100 0.4 0+0 0+0 250 00 10

0.6 00 00 25+0 0+0 1+0

0.8 0+0 0+0 250 0+0 1+0

Figure A-12: Results of simulated datasets with 50% of coexpression for different sizes of functional

category.
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#Genes in
each R2 SELECTION FP FN SENSIT SPECIF
category
0 11.46 + 1.03 1.08 + 0.38 14.62 + 0.87 0.42 + 0.04 1+0
5 0.4 00 00 25+0 00 1+0
0.6 00 00 25+0 00 1+0
0.8 0+0 00 25+0 0+0 1+0
0 15.08 + 0.99 1.2 £ 0.34 11.12 + 0.89 0.56 + 0.04 | 0.99 £ 0
10 0.4 00 00 25+0 0+0 1+0
0.6 00 00 25+0 00 1+0
0.8 0+0 00 25 +0 0+0 1+0
0 26.62 + 0.35 1.62 + 0.35 00 120 0.99 £+ 0
50 0.4 00 00 25+0 0+0 1+0
0.6 00 00 25+0 0+0 1+0
0.8 0+0 00 25 +0 0+0 1+0
0 26.98 + 0.41 1.98 + 0.41 00 120 099 £ 0
100 0.4 00 00 25+0 0+0 1+0
0.6 00 00 25+0 0+0 1+0
0.8 0+0 00 25+0 0+0 1+0

Figure A-13: Results of simulated datasets with 30% of coexpression for different sizes of functional

category.

PCA-maSigFun

Simulation study A

%Changing | gp) ecTiON FP FN SENSIT SPECIF
genes
20 25.76 + 0.23 0.76 = 0.23 0+0 1+0 10
30 2562 + 024 062 * 0.24 0+0 1%0 1+0
40 2552 + 0.22 0.52 « 0.22 0+0 1£0 1+0
50 254 + 0.21 0.4 + 0.21 0+0 120 1+0
60 25.52 + 0.20 0.52 + 0.20 0 +0 1£0 70
70 25.42 + 0.21 0.42 + 0.21 0 +0 1T +0 7+0
80 2544 + 0.21 0.44 * 0.21 00 10 70

Figure A-14: Results of simulated datasets for different proportions of co-expression in functional

categories and a mixed class size.

Simulation study B

#Genes in
each SELECTION FP FN SENSIT SPECIF
category
5 25.28 + 0.14 0.28 + 0.14 00 10 1+0
10 25.5 + 0.22 0.5 £ 0.22 00 1+0 1+0
50 25.56 + 0.23 0.56 + 0.23 00 10 1+0
100 25.84 + 0.28 0.84 + 0.28 00 1+£0 1+0

Figure A-15: Results of simulated datasets with 70% of coexpression for different sizes of functional

category.
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#Genes in
each SELECTION FP FN SENSIT SPECIF
category
5 25.22 + 0.17 0.22 + 0.17 00 10 1+0
10 25.42 + 0.17 0.42 + 0.17 00 1+£0 1+0
50 25.7 + 0.25 0.7 £ 0.25 00 1+0 1+0
100 25.58 + 0.24 0.58 + 0.24 00 1+£0 1+0

Figure A-16: Results of simulated datasets with 50% of coexpression for different sizes of functional

category.
#Genes in
each SELECTION FP FN SENSIT SPECIF
category
5 25.38 + 0.19 0.38 + 0.19 00 1+0 1+0
10 25.54 + 0.22 0.54 + 0.22 00 1+0 1+0
50 25.74 + 0.23 0.74 + 0.23 0+0 1+0 1+0
100 25.6 + 0.24 0.6 £ 0.24 00 1+0 1+0

Figure A-17: Results of simulated datasets with 30% of coexpression for different sizes of functional

category.

ASCA-Functional

Simulation study A

- .

A’cgh:n"ing SELECTION FP FN SENSIT SPECIF
20 048 * 0.33 0.06 £ 0.07 | 24.58 = 0.32 | 0.02 £ 0.01 70
30 2.86 + 0.57 0.06  0.07 222 £ 056 | 0.11 % 0.02 1£0
40 9 + 075 012 £ 011 | 1612 = 0.75 | 0.36 £ 0.03 70
50 16.64 = 0.47 0.18 £ 0.12 854 + 045 | 066 = 0.02 1+0
60 2526 + 0.14 0.26 + 0.14 00 1+0 1+0
70 255 + 0.18 0.5 + 0.18 00 1+0 1%0
80 256 + 0.26 0.6 * 0.26 0+0 1T£0 17£0

Figure A- 18: Results of simulated datasets for different proportions of co-expression in functional

categories and a mixed class size.

Simulation study B

#Genes in
each SELECTION FP FN SENSIT SPECIF
category
5 25.16 + 0.13 0.16 + 0.13 0+0 10 10
10 25.24 + 0.12 0.24 + 0.12 0+0 10 10
50 25.68 + 0.29 0.68 + 0.29 00 120 120
100 25.58 + 0.22 0.58 + 0.22 0+0 1+£0 1+0

Figure A-19: Results of simulated datasets with 70% of coexpression for different sizes of functional

category.
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#Genes in
each SELECTION FP SENSIT SPECIF
category
5 0.3 + 0.13 00 0.01 + 0.01 1+0
10 0.7 + 0.25 00 0.03 + 0.01 10
50 1.52 + 0.48 0+0 0.06 + 0.02 120
100 1.66 + 0.43 0+0 0.07 + 0.02 1+£0

Figure A-20: Results of simulated datasets with 50% of coexpression for different sizes of functional

category.
#Genes in
each SELECTION FP SENSIT SPECIF
category
5 0.5 + 0.27 0+0 0.02 + 0.01 10
10 0.64 £ 0.25 0+0 0.03 + 0.01 1+0
50 1.46 + 0.36 0+0 0.06 + 0.01 10
100 1.38 + 0.38 0+0 0.06 + 0.02 10

Figure A-21: Results of simulated datasets with 30% of coexpression for different sizes of functional

category.
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Annex 8: Gene Ontology (GO)

Gene Ontology (GO) Consortium was developed over the past few years in
order to unify different formats and vocabularies used in the existing databases of
functional gene annotation (Ashburner et al., 2000 and Ashburner et al., 2001).
The advantage of such ontology is the ability to explore functional annotations of
genomes of different organisms in an automatic way. This ontology provides a set
of structured and controlled vocabulary for specific biological domains that can be

used to describe gene products in any organism.

Several organisms database groups joined to carry out this project. They
annotate genes and gene products using GO vocabulary terms and incorporate
these annotations into their respective model organism databases. Each database
contributes its annotation files to a shared GO data resource accessible to the public
at http://www.geneontology.org/.

GO includes three extensive ontologies to describe molecular function,
biological process, and cellular component. These are attributes of a gene, a gene
product or a gene product group. The molecular function is the biochemical activity
of a gene product. The biological process is a biological objective to which the gene
or gene product contributes. The cellular component refers to the place in the cell
where the gene product is active. A gene product can have one or more molecular
functions, be used in one or more biological processes and may be associated with

one or more cellular components that are related between them.

Each term in GO is a node of a Directed Acyclic Graph (DAG), which is a tree
where it is possible for a node to have more than one parent. The relationship
between a child and a parent can be: “it is part of”, “it is a” and "“it regulates”. Each
GO term is identified with “"GO:nnnnnnn”, where nnnnnnn is an integer of seven

digits.

GO is dynamic, the ontologies must be updated continuously as more
information becomes available. To keep up with the new information, each GO term
is cross-referenced with external databases (GenBank, EMBL, SWISS-PROT,...) by
links.
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Due to the availability of GO and their cross-referencing databases, GO
terms are usually used to obtain biological meaning to the results of a microarray
experiment. There are many tools to provide efficient search mechanisms that
return quickly the annotation information associated with specific lists of genes (for
instance Blast2GO tool used in this thesis, Conesa et al., 2005). These tools
incorporate also statistical methods to decide if a functional category is more
represented in the obtained sample than in the whole microarray to offer a list of
statistical significant functional categories. This is the named “functional enrichment
analyses”. Fisher’s exact test, the Kolmogorov-Smirnov test, or the chi-squared are
common statistics to identify statistical significant functional classes (Rivals et al.,
2007). These methods consider only the functional categories related to the subset
of genes selected and most of the tests used to this selection assume independence
in the behaviours of the genes (Dopazo, 2008). Therefore, there are also appearing
approaches that consider the functional role of genes while trying to capture the
cooperative acting of the whole set of genes, GSA (Subramanian et al., 2005) and
FatiScan (Al-Sharour et al. 2007).
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